WO2022023159A1 - Reluctance motor device, reluctance motor comprising the reluctance motor device, and method for cooling a stator unit of the reluctance motor - Google Patents

Reluctance motor device, reluctance motor comprising the reluctance motor device, and method for cooling a stator unit of the reluctance motor Download PDF

Info

Publication number
WO2022023159A1
WO2022023159A1 PCT/EP2021/070527 EP2021070527W WO2022023159A1 WO 2022023159 A1 WO2022023159 A1 WO 2022023159A1 EP 2021070527 W EP2021070527 W EP 2021070527W WO 2022023159 A1 WO2022023159 A1 WO 2022023159A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
rotor
stator
axis
rotation
Prior art date
Application number
PCT/EP2021/070527
Other languages
German (de)
French (fr)
Inventor
Csongor Horvath
Kristof Nagy
Vilmos Paiss
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022023159A1 publication Critical patent/WO2022023159A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/02Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type
    • H02K37/08Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors axially facing the stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • Reluctance motor device reluctance motor with the reluctance motor device and method for cooling a stator unit of the reluctance motor
  • a reluctance motor device having at least one rotor unit and having at least one stator unit has already been proposed, the stator unit being provided for causing the rotor unit to rotate about a rotation axis by a reluctance force.
  • the invention is based on a reluctance motor device, in particular a synchronous axial flux reluctance motor device, with at least one rotor unit and with at least one stator unit, the stator unit being provided to set the rotor unit into a rotational movement about an axis of rotation by a reluctance force.
  • the rotor unit includes at least one cooling unit for cooling the stator unit.
  • the stator unit comprises at least one power-carrying stator element, for example an electromagnet, and/or a stator pole, with the cooling unit being provided to cool the stator element.
  • “Provided” is to be understood in particular as being specially designed and/or specially equipped. This means in particular that an object, in particular the stator unit, is provided for a specific function, in particular to set the rotor unit into rotary motion about the axis of rotation of the rotor unit by means of a reluctance force that the object fulfills and/or executes this specific function in at least one application and/or operating state.
  • the stator unit in particular the at least one stator element, is preferably provided to heat up during operation of the reluctance motor, in particular the reluctance motor device, in particular by an electric current.
  • the rotor unit is preferably designed to be current-free, with the exception of electrical currents induced by a magnetic field of the stator unit.
  • the cooling unit is preferably arranged at least partially on the rotor unit and/or the stator unit. It is conceivable that the cooling unit is formed at least partially in one piece with the rotor unit and/or the stator unit.
  • one-piece should also be understood to mean one-piece. “In one piece” is to be understood in particular as being formed in one piece.
  • This one piece is preferably produced from a single blank, a mass and/or a cast, particularly preferably in an injection molding process, in particular a single-component and/or multi-component injection molding process.
  • a component, in particular a cooling element and/or a line element, of the cooling unit is designed in one piece with the rotor unit and/or the stator unit.
  • a component of the cooling unit, in particular the cooling element and/or the line element is designed as part of the rotor unit and/or the stator unit.
  • the cooling unit is preferably provided for cooling the stator unit by dissipating heat generated by the stator unit away from the stator unit.
  • the cooling unit is preferably provided to achieve the cooling of the stator unit, in particular the dissipation of heat, via a suitable arrangement of surfaces for more efficient release of heat to an environment and/or via a fluid flow for absorption and directed dissipation of heat.
  • the cooling unit is particularly preferably provided at least partially for active cooling of the stator unit, with the cooling unit in particular comprising at least one cooling element which moves in order to cool the stator unit.
  • a “rotor unit” is to be understood in particular as a structural unit of a machine, in particular the reluctance motor device, which rotates about an axis of the machine, in particular about the axis of rotation, when the machine is in an operating state.
  • the rotor unit is preferably intended to move relative to the stator unit, in particular about the axis of rotation.
  • the rotor unit is provided for generating a torque and/or the rotational movement.
  • the rotor unit is preferably designed as a movable, in particular rotatably mounted, part of the reluctance motor, in particular opposite the stator unit, in particular opposite a motor housing of the reluctance motor device and/or the reluctance motor.
  • the rotor unit preferably comprises at least one rotor body, which is arranged in particular on, in particular in the vicinity of, at least one electromagnet of the stator unit.
  • the rotor body is in particular designed without contact with the stator unit.
  • the rotor unit comprises a multiplicity of rotor bodies.
  • the at least one rotor body is preferably provided for the purpose of being set into rotary motion about the axis of rotation by the electromagnet.
  • the at least one rotor body is preferably formed from a material that promotes a magnetic flux, particularly preferably at least in a reluctance region of the rotor unit, in particular of the rotor body.
  • the rotor body of the rotor unit is designed in particular to be free of a current flow.
  • a magnetic field is preferably generated in the stator unit to drive the rotor unit.
  • the at least one rotor body preferably has a main axis of extension, which is oriented at least essentially perpendicular to the axis of rotation.
  • a “main axis of extension” of an object, in particular of the rotor body, is to be understood in particular as an axis which runs parallel to a longest edge of a smallest geometric cuboid which just about completely encloses the object.
  • Essentially perpendicular is to be understood in particular as an alignment of a straight line, a plane or a direction, in particular the main axis of extension of the rotor body, relative to another straight line, another plane or a reference direction, in particular the axis of rotation, with the straight line , the plane or the direction, viewed in particular in a projection plane, from a perpendicular arrangement to the other straight line, the other plane or the reference direction, deviates by an angle of no more than 8°, preferably 5° and preferably 2° .
  • the at least one rotor body is preferably arranged in such a way that the main axis of extension of the rotor body intersects the axis of rotation of the rotor unit.
  • the rotor body is preferably designed at least essentially as a hollow cylindrical disk.
  • the at least one rotor body preferably extends materially from one, in particular from zero, Different inner radius radially, in particular away from the axis of rotation, up to an outer radius.
  • the rotor body preferably has a maximum extent along the axis of rotation, which is preferably shorter than a maximum extent perpendicular to the axis of rotation and/or along the main axis of extent of the rotor body.
  • the rotor body preferably has two base outer sides facing away from one another, in particular when viewed along the axis of rotation. The at least two outer sides of the base are preferably of the same design, in particular of the same structure.
  • the outer sides of the base each have at least one reluctance area.
  • the reluctance area is preferably provided to be arranged at least for the most part in the at least one magnetic field generated in particular by the stator unit, in particular to promote the reluctance force.
  • the rotor body, in particular the reluctance area is preferably arranged between at least two electromagnets of the stator unit in at least one operating state, in particular during the rotary movement.
  • the outer sides of the base can in particular be designed differently from a uniformly flat surface.
  • the at least one rotor body preferably delimits at least one body recess, which is in particular at least essentially limited to a circular shape and which is in particular arranged centrally on a base outside.
  • the body cavity is limited by the rotor body to an extent within the inner radius.
  • the rotor body is preferably arranged at a distance from the axis of rotation.
  • the rotor unit in particular the at least one rotor body, preferably comprises at least the reluctance area, which is arranged in particular around the axis of rotation.
  • the rotor body, in particular the reluctance area preferably forms a plurality of poles of the rotor unit, in particular of the rotor body.
  • the rotor body, in particular the reluctance area preferably forms an even number of poles of the rotor unit.
  • the poles of the rotor unit are particularly preferably arranged and/or formed in a uniformly distributed manner around the axis of rotation.
  • a “stator unit” is to be understood in particular as a structural unit of a machine, in particular the reluctance motor device, which is designed to be stationary and/or immovable in an operating state, in particular all operating states, of the machine.
  • the static unit preferably comprises at least one stator body and a plurality of, in particular Forming electromagnets, windings.
  • the stator body preferably forms a plurality of stator poles, which are formed in particular as extensions running at least essentially parallel to the axis of rotation. The extensions protrude in particular parallel to the axis of rotation from a basic shape of the stator body.
  • “Substantially parallel” is to be understood in particular as an alignment of a straight line, a plane or a direction, in particular the main axis of extension of the rotor shaft, relative to another straight line, another plane or a reference direction, in particular the axis of rotation, with a deviation of the Straight lines, the plane or the direction from the other straight line, the other plane or the other direction, in particular viewed in a projection plane, is at most 8°, preferably at most 5° and preferably at most 2°.
  • the stator poles each form an electromagnet with one of the windings.
  • the electromagnets are preferably provided to generate the magnetic field and in particular to generate the reluctance force on the rotor unit through the magnetic field.
  • the windings are preferably arranged on the at least one stator body, in particular the stator poles, and are preferably firmly connected to the stator body, in particular the stator poles.
  • the stator unit is preferably designed as an immovable part of the electric motor, in particular opposite the motor housing.
  • the stator body preferably has a central axis which is arranged coaxially with the axis of rotation.
  • the stator unit preferably has a large number of electromagnets which are arranged, in particular distributed uniformly, along a direction of rotation around the axis of rotation and/or the central axis of the at least one stator body.
  • the at least one stator body is preferably formed from a material that promotes magnetic flux, in particular with regard to air.
  • the at least one stator body preferably has at least one main axis of extension, which is oriented at least essentially perpendicularly to the axis of rotation and/or the central axis of the stator body.
  • the static purity, in particular the stator body preferably delimits at least one passage which is arranged around the axis of rotation and/or the central axis of the stator body.
  • the passage is designed to be rotationally symmetrical about the axis of rotation and/or the central axis of the stator body.
  • the leadthrough is provided for receiving the rotor unit, in particular a rotor shaft of the rotor unit.
  • the stator unit particularly preferably comprises at least one further stator body, which in particular is at least substantially identical in construction to the stator body.
  • the further stator body is preferably arranged in such a way that it is mirrored on a virtual plane which is arranged perpendicularly to the axis of rotation and/or to the central axis of the stator body.
  • the virtual plane is designed as the main extension plane of the rotor body, in particular when the reluctance motor device is in a mounted state.
  • a "main extension plane" of a structural unit, in particular of the rotor body, is to be understood in particular as a plane which is parallel to a largest side surface of the smallest imaginary cuboid, which just completely encloses the structural unit, and in particular runs through the center of the cuboid.
  • the further stator body preferably comprises a plurality of stator poles, which together with at least one winding of the stator unit form an electromagnet, a central axis and a recess in the region of the central axis of the further stator body.
  • the rotor unit in particular the at least one rotor body, is preferably arranged at least partially, in particular viewed perpendicularly to the axis of rotation, between the stator body and the further stator body.
  • the electromagnets preferably each have a maximum radial extent with respect to the axis of rotation, particularly viewed along the axis of rotation, which spans an annular area around the axis of rotation in particular.
  • the rotor unit is preferably arranged and/or designed in such a way that the rotor body, in particular the reluctance area, viewed along the axis of rotation is at least largely, in particular at least essentially completely, within the maximum radial extension of the electromagnets and/or the spanned annular area is arranged and / or can be arranged during the rotary movement.
  • the stator body and the further stator body are preferably arranged coaxially with one another and in particular coaxially with the axis of rotation, in particular with respect to their central axes.
  • a number of electromagnets formed on the stator body is preferably equal to a number of electromagnets formed on the further stator body.
  • the stator body and the further stator body are particularly preferably designed and/or arranged in such a way that the electromagnets formed on the further stator body and the electromagnets formed on the stator body are coaxial with one another and/or behind are arranged one on top of the other.
  • central axes of the windings forming the electromagnets of the two electromagnets arranged coaxially to one another and/or one behind the other are arranged coaxially to one another.
  • the stator unit is particularly preferably provided to generate a reluctance force in the rotor body when passing through the at least one rotor body, in particular the reluctance region, through a gap formed parallel to the axis of rotation between two of the electromagnets.
  • the stator unit is preferably provided to operate the electromagnets by means of an electrical alternating current. Alternatively or additionally, it is conceivable that the electromagnets are selectively controlled with an electric current.
  • the electromagnets are operated and/or controlled in such a way that when the at least one rotor body, in particular the reluctance area, passes through a plurality of gaps arranged one behind the other along the direction of rotation, a change in the magnetic field causes a reluctance force, in particular to one in the direction of rotation Rotorkör by the nearest gap, the rotational movement of the rotor unit is effected.
  • the reluctance motor device comprises at least one frequency converter for controlling the stator unit, in particular the electromagnets.
  • a "reluctance motor device” should preferably be understood to mean at least a part, preferably a subassembly, of a reluctance motor, preferably a synchronous axial flux reluctance motor.
  • the reluctance motor device can also include the entire reluctance motor, in particular the entire synchronous axial flux reluctance motor.
  • a "synchronous axial flux reluctance motor” is to be understood in particular as a reluctance motor which comprises a rotor which has a rotor shape which differs from a round rotor and has an even number of poles, and which transmits the reluctance force at least for the most part via an axial/parallel to a The magnetic field running along the axis of rotation of the motor is generated.
  • the reluctance motor can be designed as an induction machine, in particular as a squirrel-cage rotor.
  • the reluctance motor is designed as a synchronous axial flux reluctance motor, which counteracts the reluctance force by at least one at least essentially axially, in particular at least essentially parallel to the axis of rotation, aligned magnetic field generated.
  • the stator unit is intended to generate the magnetic field in such a way that the magnetic field is aligned at least substantially parallel to the axis of rotation in a homogeneous area in which the magnetic field lines in particular run at least substantially parallel to one another.
  • the windings of the electromagnets are preferably aligned at least essentially perpendicularly to the axis of rotation and/or the central axes of the stator bodies, with the stator poles being arranged at least essentially parallel to the axis of rotation and/or the central axes of the stator bodies, in particular within the windings.
  • the rotor shaft is preferably provided for mechanical power transmission from the rotor unit to a drive element, such as a drive shaft, a wheel, a conveying element or the like.
  • the rotor unit is preferably provided to transmit the rotational movement generated by the reluctance force, at least partially, to the at least one output element.
  • the design of the reluctance motor device according to the invention enables heat to be dissipated quickly from the stator unit.
  • Undesired damage such as deformations due to thermal expansion or the like, and/or malfunctions due to excessively high temperature of the stator unit, in particular the stator element, can advantageously be prevented.
  • An advantageously long service life can be achieved for components, in particular for temperature-sensitive bearing elements, of the reluctance motor device.
  • advantageously low maintenance and/or repair costs can be made possible.
  • the cooling unit comprises at least one cooling element, in particular the aforementioned one, which is intended to move about the axis of rotation during the rotary movement due to the reluctance force.
  • the cooling element is preferably arranged on the rotor shaft in a rotationally fixed manner, at least towards a movement about the axis of rotation.
  • the cooling element is preferably arranged on the rotor body in a rotationally fixed manner, at least with regard to movement about the axis of rotation.
  • the rotor body is preferably provided to drive the cooling element during the rotary movement generated by the reluctance force about the axis of rotation.
  • the cooling element is designed as a conveying element, in particular a fan wheel.
  • An advantageously simple construction of the cooling unit can be made possible.
  • low production costs can be achieved.
  • air cooling of the stator unit can be made possible.
  • the cooling element designed as a conveying element, in particular a fan wheel preferably has at least one central axis, which is designed in particular as an axis of symmetry.
  • the cooling element is preferably arranged in such a way that the central axis of the fan element is arranged coaxially to the axis of rotation of the rotor unit.
  • the cooling element preferably delimits a recess which is formed in particular around the central axis of the cooling element.
  • the recess of the cooling element is provided for at least partially accommodating the rotor shaft of the rotor unit.
  • the cooling element is preferably arranged on the rotor shaft via the inner surfaces of the cooling element delimiting the recess of the cooling element, in particular pushed onto the rotor shaft.
  • the cooling unit is provided for conducting and/or generating at least one fluid flow in an interior space delimited by the rotor unit and the stator unit.
  • air cooling of the stator unit can be made possible.
  • An advantageously simple dissipation of heat generated by the stator unit can be made possible.
  • An advantageously long service life can be achieved for bearing elements of the rotor unit, which are arranged in particular adjacent to the interior.
  • the cooling element which is designed in particular as a conveying element and/or a fan wheel, is preferably provided to generate the fluid flow and/or direct.
  • the cooling element is preferably provided for guiding the fluid flow, in particular in a close-up area around the cooling element, at least essentially parallel to the axis of rotation.
  • the cooling element is intended to direct the fluid flow, in particular in a close area around the cooling element, at least essentially perpendicularly to the axis of rotation of the rotor unit and/or radially away from the axis of rotation.
  • the fluid flow is preferably in the form of an air flow.
  • another gas or another gas mixture or a liquid is used to cool the stator unit.
  • the interior space delimited by the rotor unit and the stator unit preferably includes gaps between the electromagnets of the stator unit and/or an area formed by the recesses of the stator body and/or the further stator body.
  • the fluid flow is preferably intended to dissipate heat from the stator element, the stator poles and/or the electromagnets of the stator unit.
  • the interior at least partially borders on the stator element, the stator poles and/or the electromagnets.
  • the rotor unit comprises at least one rotor shaft, in particular the aforementioned rotor shaft, which is at least essentially hollow when viewed along the axis of rotation and which is intended to move about the axis of rotation during the rotary movement due to the reluctance force
  • the cooling unit comprises a plurality of passages defined by at least one outer wall of the rotor shaft.
  • the rotor shaft in particular with the exception of the passages, is at least essentially in the form of a hollow cylinder.
  • the outer wall of the rotor shaft delimits at least one hollow area of the rotor shaft.
  • the hollow area is at least essentially cylindrical.
  • the passages are preferably designed in each case in the form of a cylinder or cuboid. de. It is also conceivable for the passages to have a flow-optimized shape, with edges of the outer wall of the rotor shaft delimiting the passages being rounded off or having a chamfer, for example.
  • the bushings are preferably evenly distributed around the axis of rotation.
  • the cooling unit comprises an even number of passages, which are delimited in particular by the outer wall of the rotor shaft.
  • the bushings are preferably arranged in front of or behind the rotor body and/or the cooling element on the rotor shaft.
  • the passages are arranged perpendicularly to the axis of rotation, outside of a maximum width of the rotor body and/or the cooling element on the rotor shaft, which is at least essentially parallel to the axis of rotation.
  • the passages are preferably each connected at least in terms of fluid technology to the hollow area of the rotor shaft.
  • the bushings preferably extend over an entire thickness of the outer wall of the rotor shaft.
  • the bushings in particular when the rotor shaft is in an assembled state, are connected at least in terms of fluid technology to the interior space delimited by the rotor unit and the stator unit.
  • the rotor unit comprises at least one rotor body and at least one rotor shaft, in particular the aforementioned rotor shaft, which are intended to move about the axis of rotation during the rotary movement due to the reluctance force, with the cooling element being separated from the axis of rotation in the radial direction is located between a reluctance region of the rotor body and the rotor shaft.
  • the cooling element is preferably formed on the rotor unit or is constructed as part of the rotor unit.
  • the cooling element is arranged on the rotor body and/or the rotor shaft.
  • the cooling element is preferably arranged in or on the body recess of the rotor body.
  • the cooling element is rotationally fixed to the rotor body, at least with regard to a movement about the axis of rotation and/or arranged on the rotor shaft.
  • the rotor body is preferably provided for the purpose of moving the cooling element about the axis of rotation during the rotary movement caused by the reluctance force.
  • the cooling element preferably extends from a minimum radial distance from the axis of rotation to a maximum radial distance from the axis of rotation.
  • the minimum ra Diale distance of the cooling element to the axis of rotation is greater than a maximum diameter of the rotor shaft, which is aligned perpendicular to the axis of rotation.
  • the maximum radial distance between the cooling element and the axis of rotation is preferably smaller than a minimum radial distance between the reluctance region and the axis of rotation.
  • a "radial distance” is to be understood in particular as a distance between a component or a surface, in particular the cooling element and/or the reluctance area, and a rotationally symmetrical body, a rotationally symmetrical surface or an axis, in particular the axis of rotation, with the distance increasing extends on a straight line which is perpendicular to an axis of rotation of the body or the surface or to the axis and intersects the axis of rotation of the body or the surface or the axis at exactly one point.
  • the radial distance of the component or the surface extends along a radius of the component or the surface to the axis of rotation or the axis.
  • the cooling element is designed in one piece with the rotor body and/or the rotor shaft.
  • the cooling element is at least substantially completely surrounded by the rotor body, viewed along the axis of rotation of the rotor unit.
  • the cooling unit is intended to generate at least one, in particular the previously mentioned, fluid flow, wherein the cooling unit comprises at least one, in particular the previously mentioned, line element, in particular a multiplicity of line elements, which is connected to the stator unit and/or or is formed by the rotor unit, the fluid flow guided through the line element being provided for cooling at least one, in particular the aforementioned, power-carrying stator element of the static unit.
  • the cooling unit comprises at least one, in particular the previously mentioned, line element, in particular a multiplicity of line elements, which is connected to the stator unit and/or or is formed by the rotor unit, the fluid flow guided through the line element being provided for cooling at least one, in particular the aforementioned, power-carrying stator element of the static unit.
  • the cooling unit preferably comprises a plurality of line elements.
  • the stator body of the stator unit preferably delimits the at least one line element. It is also conceivable that the at least one line element is delimited by the stator body and the rotor shaft and/or the rotor body.
  • a “line element” is to be understood in particular as an element which is at least partially intended to guide a fluid flow and which, viewed in a direction of flow, directly encloses the air flow at least partially, preferably on three sides and particularly advantageously completely.
  • a main extension of the line element is preferably parallel to the flow direction of the fluid stream and at least twice, in particular at least 5 times and advantageously at least 10 times longer than at least one cross-sectional extension of the air flow channel.
  • the at least one line element preferably has a round, in particular circular, or a rectangular, in particular square, cross-sectional area, which in particular extends at least essentially perpendicularly to the main extension of the line element.
  • the line elements are in particular along the axis of rotation of the rotor unit and/or along the central axis of the stator body and/or further Considered the stator body, arranged in a region of the stator body spaced apart from the stator poles and/or of the further stator body, which is preferably arranged between the recess(es) and the stator poles.
  • the line elements extend, in particular in the region of the stator body arranged between the stator poles and the recesses, preferably over the entire thickness of the stator body and/or the further stator body.
  • the cooling unit comprises at least one heat sink.
  • a “heat sink” is to be understood in particular as a unit that is specifically designed to cool other components, in particular the stator element, and in particular is in thermal and preferably direct mechanical contact with these components.
  • the cooling body has in particular an at least 5-fold, in particular at least 10-fold, advantageously at least 20-fold times and particularly advantageously at least 50 times the surface area of a cube of the same volume and comprises in particular at least 3, in particular at least 10 and advantageously at least 20 cooling fins.
  • a “cooling fin” should be understood to mean an elongate, in particular wall- or rod-shaped, component made of a heat-conducting material which is connected at least at one point to a base body of the heat sink, in particular in one piece.
  • a "base body of the heat sink” is to be understood in particular as a construction element made of a thermally conductive material which has at least one surface which is in thermal contact with a component to be cooled.
  • the entire heat sink preferably consists of a thermally conductive material and has, in particular, a plate-shaped base body from which cooling ribs extend, preferably only on one side of the base body.
  • the heat sink is specially designed for heat transfer to a fluid stream flowing along at least one of the surfaces of the heat sink and preferably has flow channels through which a fluid stream is guided for cooling the heat sink.
  • the heat sink is arranged on the stator unit, in particular the stator element.
  • the cooling element is provided to dissipate heat from the heat sink, in particular via the fluid flow.
  • the at least one line element runs at least essentially parallel to the axis of rotation.
  • An advantageously fast and efficient dissipation of heat via the fluid flow can be achieved.
  • Additional recesses in an outer wall of the reluctance motor device arranged at least essentially parallel to the axis of rotation and/or a motor housing of the reluctance motor can advantageously be omitted, in particular since the fluid flow can be discharged along the axis of rotation and/or the rotor shaft.
  • An advantageously compact configuration of the reluctance motor device can be made possible, in particular with regard to a maximum extension radially to the axis of rotation.
  • the main extent of the at least one line element is preferably aligned at least essentially parallel to the axis of rotation.
  • the at least one line element preferably extends at least essentially parallel to a main axis of extension and/or the outer wall of the rotor shaft. It is conceivable that at least at least one line element, in particular a further line element, of the cooling unit runs at least essentially perpendicularly to the axis of rotation.
  • a reluctance motor in particular a synchronous axial flux reluctance motor, is proposed with at least one reluctance motor device according to the invention.
  • the inventive design of the reluctance motor can be achieved before geous fast dissipation of heat from the stator.
  • Undesired damage such as deformations due to thermal expansion or the like, and/or malfunctions due to an excessively high temperature of the stator unit, in particular the stator element, can advantageously be prevented.
  • An advantageously long service life can be achieved for components, in particular for bearing elements that are susceptible to temperature, of the reluctance motor.
  • advantageously low maintenance and/or repair costs can be achieved.
  • a method for cooling at least one stator unit of a reluctance motor, in particular a synchronous axial flux reluctance motor, by means of at least one reluctance motor device according to the invention is proposed.
  • the rotor unit, in particular the rotor body is preferably moved about the axis of rotation by means of the stator unit via a reluctance force.
  • the rotor shaft and the cooling element are preferably moved about the axis of rotation together with the rotor body.
  • the fluid flow is preferably generated in at least one method step during the rotational movement about the axis of rotation by means of the cooling element.
  • the fluid flow is preferably effected by means of the recesses, the hollow area of the rotor shaft and/or by means of the at least one line element, in particular through the gate unit and the stator unit limited interior space, out such that the stator unit, in particular the stator element, is cooled.
  • the configuration of the method according to the invention enables heat to be dissipated from the stator unit in an advantageously rapid manner. Unwanted damage, such as deformations due to thermal expansion or the like, and/or malfunctions due to an excessively high temperature of the stator unit, in particular the stator element, can advantageously be prevented. An advantageously long service life can be achieved for components, in particular for temperature-sensitive bearing elements, of the reluctance motor device. As a result, advantageously low maintenance and/or repair costs can be made possible.
  • a high degree of flexibility with regard to an area of use of the reluctance motor device can be made possible, in particular since an environment with lower tolerances with regard to high temperatures can be selected. Handling of the reluctance motor device during operation can advantageously be simplified.
  • the reluctance motor device according to the invention, the re luctance motor according to the invention and/or the method according to the invention should/should not be limited to the application and embodiment described above.
  • the reluctance motor device according to the invention, the reluctance motor according to the invention and/or the method according to the invention can have a number of individual elements, components and units as well as method steps that differs from the number specified here in order to fulfill a function described herein.
  • values lying within the specified limits should also be considered disclosed and can be used as desired.
  • FIG. 1 shows a schematic sectional view of a reluctance motor according to the invention with a reluctance motor according to the invention, which comprises a cooling unit, for carrying out a method according to the invention
  • FIG. 2 shows a perspective sectional view of a rotor unit of the reluctance motor device according to the invention with a cooling element of the cooling unit arranged on a rotor element of the rotor unit and
  • FIG. 3 shows a schematic representation of an exemplary sequence of the method according to the invention for cooling a stator unit of the reluctance motor according to the invention by means of the reluctance motor device according to the invention.
  • the reluctance motor 10 is designed in particular as a synchronous axial flow reluctance motor.
  • the reluctance motor 10 comprises a reluctance motor device 12.
  • the reluctance motor device 12 comprises a stator unit 14, a rotor unit 16 and a cooling unit 18.
  • the stator unit 14 is intended to rotate the rotor unit 16 by means of a reluctance force into at least one rotational movement about at least one axis of rotation 20 of the rotor unit 16 to move.
  • the rotor unit 16 is intended to provide a driving force via the rotary movement.
  • the cooling unit 18 is intended to cool at least the Statorein unit 14 and in particular to dissipate heat from the stator unit 14 to an environment of the reluctance motor 10, in particular the device 12 Reluctanzmotorvorrich.
  • Other configurations of the reluctance motor 10 are also conceivable.
  • the reluctance motor device 12 comprises more than one rotor unit 16 and/or more than one stator unit 14.
  • the reluctance motor device 12 preferably includes the same number of rotor units 16 and stator units 14.
  • the reluctance motor 10 includes a control and/or regulation unit 22 for controlling and/or regulating the stator unit 14.
  • the control and/or regulation unit 22 provided to control the stator unit 14 to generate the reluctance force via at least one electric current.
  • the stator unit 14 comprises a stator body 24 and a further stator body 26.
  • the stator body 24 and the further stator body 26 each form a plurality of stator poles 28, which in particular are each formed as extensions on a side of the stator body 24 facing a rotor body 30 of the rotor unit 16 or of the further stator body 26 are arranged and in particular each extend from a base body of the stator body 24 or of the further stator body 26 in an at least substantially parallel to the axis of rotation 20 directed direction.
  • the rotor body 30 is preferably arranged between the stator body 24 and the further stator body 26 when viewed perpendicularly to the axis of rotation 20 of the rotor unit 16 .
  • the stator unit 14 comprises a multiplicity of windings 32, with at least one winding 32 being arranged on each stator pole 28 of the stator body 24 and of the further stator body 26.
  • One of the stator poles 28 and the at least one winding 32 arranged on the stator pole 28 together form an electromagnet 34, 35.
  • the windings 32 are in particular aligned at least substantially perpendicularly to the axis of rotation 20 of the rotor unit 16, with a central axis 36 in particular passing through the windings 32 is aligned at least essentially parallel to the axis of rotation 20 .
  • a magnetic field 38 generated by the electromagnets 34, 35 (shown schematically by field lines in FIG.
  • the stator body 24 and the further stator body 26 each delimit a recess 40 which is formed around the axis of rotation 20 and/or around central axes 42 of the stator body 24 and the further stator body 26 .
  • the recesses 40 are each cylindrical, with the axis of rotation 20 of the rotor unit 16 and the central axes of the stator bodies 24, 26 comprising an axis of symmetry of the recesses 40.
  • the recesses 40 are preferably in the stator body 24, 26 provided to at least partially accommodate a rotor shaft 44 of the rotor unit 16.
  • the stator body 24, 26 and the rotor unit 16, in particular the rotor shaft 44 are spaced from each other.
  • the rotor unit 16 is preferably provided to drive at least one output element (not shown in the figures) connected to the rotor shaft 44 .
  • the output element as a wheel, as a drive shaft, as a belt, as a conveyor element or the like. educated.
  • a main axis of extension 46 of the rotor shaft 44 is arranged coaxially with the axis of rotation 20 of the rotor unit 16 .
  • the electromagnets 34 configured on the stator body 24 and the electromagnets 35 configured on the other stator body 26 are preferably arranged coaxially with one another and/or one behind the other when viewed along the axis of rotation 20 of the rotor unit 16 .
  • the rotor unit 16 comprises the rotor body 30 and the rotor shaft 44.
  • the rotor body 30 is connected to the rotor shaft 44 in a rotationally fixed manner relative to a movement about the axis of rotation 20, with the rotor shaft 44 being moved about the axis of rotation 20 together with the rotor body 30 by the reluctance force .
  • the rotor body 30 comprises a reluctance area 48 which is arranged in an area of the electromagnets 34, 35 with regard to a radial distance from the axis of rotation 20 of the rotor unit 16.
  • the rotor body 30, in particular the reluctance area 48, can have a large number of different shapes and in particular does not have to be at least substantially perpendicular to the axis of rotation 20 of the rotor unit 16.
  • the stator unit 14 is intended to continuously apply a reluctance force to the rotor body 30 in a direction of rotation 50 about the axis of rotation 20 of the rotor unit 16 (see Figure 2) by targeted activation of two mutually facing and coaxially arranged electromagnets 34, 35 and thereby generate the rotary motion.
  • the rotor body 30 is at least essentially in the form of a hollow cylinder.
  • the rotor body 30 has an annular base area, which in particular runs at least substantially perpendicularly to the axis of rotation 20 .
  • a maximum radial extent 52 of the rotor body 30, in particular of the reluctance region 48, with respect to the axis of rotation 20 preferably corresponds at least essentially to a maximum radial extent 54 of the stator body 24, the further stator body 26 and/or the electromagnets 34, 35 with respect to the axis of rotation 20
  • the Ro- Gate body 30, particularly preferably at least in the reluctance area 48 is made of a material that promotes a magnetic flux.
  • the rotor body 30 preferably has a main axis of extent and a main plane of extent, which are each aligned at least essentially perpendicularly to the axis of rotation 20 of the rotor unit 16 .
  • the rotor body 30 extends materially from an inner radius 56, in particular different from zero, radially, in particular away from the axis of rotation 20 of the rotor unit 16, to an outer radius 58.
  • the rotor body 30 preferably has a maximum extension along the axis of rotation 20 of the rotor unit 16 60, which is preferably shorter than the maximum radial extension 52 of the rotor body 30 perpendicular to the axis of rotation 20 and/or along the main axis of extension of the rotor body 30.
  • the rotor body 30, particularly viewed along the axis of rotation 20, has two base outer sides 62 facing away from one another .
  • the at least two base outer sides 62 are preferably of the same design, in particular of the same structure.
  • the base outer sides 62 preferably each have the reluctance region 48 .
  • the reluctance region 48 is preferably provided to be arranged at least for the most part in the at least one magnetic field 38 generated in particular by the stator unit 14, in particular to promote the reluctance force.
  • the rotor body 30, in particular the special reluctance region 48, is preferably arranged in at least one operating state, in particular during the rotary movement, between at least two electromagnets 34, 35 of the stator unit 14 which are arranged coaxially to one another.
  • the base outer sides 62 can in particular be configured differently from a uniformly flat surface.
  • the at least one rotor body 30 preferably delimits at least one body recess 64, which is in particular at least essentially limited to a circular shape and which is arranged in the center in particular on the outer sides 62 of the base.
  • the body recess 64 is defined by the rotor body 30 to extend within the inner radius 56 .
  • the rotor body 30 is preferably arranged at a distance from the axis of rotation 20 .
  • the rotor unit 16 and the stator unit 14 delimit an interior space 66 of the reluctance motor device 12.
  • the cooling unit 18 comprises a cooling element 68 which is intended to move about the axis of rotation 20 during the rotary movement due to the reluctance force.
  • the cooling element 68 is at least with respect to a movement about the axis of rotation se 20 rotatably on the rotor shaft 44 is arranged.
  • the cooling element 68 is arranged on the rotor body 30 in a rotationally fixed manner, at least with regard to a movement about the axis of rotation 20 .
  • the rotor body 30 is intended to drive the cooling element 68 during the rotary motion about the axis of rotation 20 generated by the reluctance force.
  • the cooling element 68 is designed as a fan wheel.
  • the cooling element 68 is also shown in FIG. 2 together with the rotor body 30 .
  • the cooling element 68 has a central axis 70 which is designed in particular as an axis of symmetry.
  • the cooling element 68 is arranged in such a way that the central axis 70 of the cooling element 68 is arranged coaxially to the axis of rotation 20 of the rotor unit 16 .
  • the cooling element 68 delimits a recess 72 (see also FIG. 2), which is formed in particular around the central axis 70 of the cooling element 68 .
  • the recess 72 delimited by the cooling element 68 is cylindrical and arranged symmetrically about the axis of rotation 20 and/or the central axis 70 of the cooling element 68 .
  • the recess 72 delimited by the cooling element 68 is intended to at least partially accommodate the rotor shaft 44 of the rotor unit 16 .
  • the cooling element 68 is arranged on the rotor shaft 44 via the recess 72 of the cooling element 68 limiting inner surfaces of the cooling element 68 , in particular pushed onto the rotor shaft 44 .
  • the cooling unit 18, in particular the cooling element 68, is intended to generate at least one fluid flow 74 and to conduct it into the interior space 66 delimited by the rotor unit 16 and the stator unit 14.
  • the cooling element 68 is intended to generate and/or direct the fluid flow 74 .
  • the cooling element 68 is provided for guiding the fluid flow 74 , in particular in a region close to the cooling element 68 , at least essentially parallel to the axis of rotation 20 .
  • the cooling element 68 is provided for directing the fluid flow 74, in particular in a region close to the cooling element 68, at least essentially perpendicularly to the axis of rotation 20 of the rotor unit 16 and/or radially away from the axis of rotation 20 .
  • the fluid flow 74 is designed as an air flow.
  • another gas or another gas mixture or a liquid is used for cooling the stator unit 14, which is inside the reactor. luctance engine 10 is located.
  • the interior space 66 delimited by the rotor unit 16 and the stator unit 14 comprises an area formed by gaps between the electromagnets 34, 35 of the stator unit 14 and/or by the recesses 40 of the stator body 24 and/or the further stator body 26.
  • the fluid stream 74 is provided to heat from the Statorpo len 28, the stator body 24 and / or the electromagnet 34, 35 of the unit 14 Statorein dissipate.
  • the interior space 66 is at least partially adjacent to the stator bodies 24, 26, the stator poles 28 and/or the electromagnets 34,
  • the rotor unit 16 comprises the rotor shaft 44 which, viewed along the axis of rotation 20, is at least essentially hollow.
  • the rotor shaft 44 is intended to move about the axis of rotation 20 during the rotary movement due to the reluctance force.
  • the cooling unit 18 includes a plurality of passages 76 defined by an outer wall 78 of the rotor shaft 44 .
  • the rotor shaft 44 is, in particular with the exception of the passages 76, at least essentially in the form of a hollow cylinder.
  • the outer wall 78 of the rotor shaft 44 delimits a hollow area 80 of the rotor shaft 44.
  • the hollow area 80 is at least essentially cylindrical and extends symmetrically around the main axis of extension 46 of the rotor shaft 44 and/or the axis of rotation 20 of the rotor unit 16.
  • the implementation gene 76 are each cylindrical. It is also conceivable that the bushings 76 have a different basic shape and/or have a flow-optimized shape, with edges 82 of the outer wall 78 of the rotor shaft 44 delimiting the bushings 76 being rounded off or having a chamfer, for example.
  • the bushings 76 are distributed uniformly around the axis of rotation 20 on the outer wall 78 .
  • the cooling unit 18 includes an even number of passages 76 which are delimited in particular by the outer wall 78 of the rotor shaft 44 .
  • the passages 76 are arranged on the rotor shaft 44 in front of or behind the rotor body 30 and/or the cooling element 68 when viewed along the axis of rotation 20 .
  • the passages 76 are arranged on the rotor shaft 44 outside of the maximum extent 60 of the rotor body 30 and/or the cooling element 68, which is arranged at least essentially parallel to the axis of rotation 20, as viewed perpendicularly to the axis of rotation 20.
  • the bushings 76 are each fluid-tech nically connected to the hollow portion 80 of the rotor shaft 44.
  • the leadthroughs 76 extend over an entire thickness 86 of the outer wall 78 of the rotor shaft 44.
  • the leadthroughs 76 in particular when the rotor shaft 44 is in an assembled state, are connected at least in terms of fluid technology to the interior space 66 delimited by the rotor unit 16 and the stator unit 14 the.
  • the bushings 76 are preferably provided for fluidly connecting the hollow region 80 of the rotor shaft 44 and the interior space 66 to one another.
  • the cooling unit 18 comprises a plurality of line elements 88 which are formed by the stator unit 14, in particular the stator body 24 and the further stator body 26.
  • a fluid flow 74 guided through the line elements 88 is provided for cooling power-carrying stator elements of the stator unit 14 .
  • the stator body(s) 24, the electromagnets 34, 35, in particular the windings 32 and/or the stator poles 28, and/or connecting lines between the control and/or regulating unit 22 and the stator unit 14 can preferably be designed as power-carrying stator elements.
  • a fluid flow 74 guided through the line elements 88 is provided for cooling the stator body 24 , the further stator body 26 , the stator poles 28 and the windings 32 of the stator unit 14 .
  • the line elements 88 run at least essentially parallel to the axis of rotation 20.
  • the line elements 88 each have a round, in particular circular, cross-sectional area, which in particular extends at least essentially perpendicularly to a main extent 92 of the line element 88.
  • other configurations of the line elements 88 are also conceivable.
  • the line elements 88 extend, in particular in a region of the stator bodies 24, 26 arranged between the stator poles 28 and the recesses 40 delimited by the stator bodies 24, 26, over an entire thickness 90 of the stator body 24 and/or the further stator body 26.
  • the rotor unit 16, in particular the rotor body 30, forms the line elements 88 or other line elements of the cooling unit 18.
  • the main extension 92 of the line elements 88 is preferably aligned at least essentially parallel to the axis of rotation 20 .
  • the line elements 88 preferably extend at least essentially parallel to the main first stretch ckungsachse 46 and the outer wall 78 of the rotor shaft 44.
  • the cooling unit 18 comprises at least one further line element, which runs at least substantially perpendicularly to the axis of rotation 20 and is formed by the rotor unit 16 and/or the stator unit 14.
  • the cooling unit 18 comprises at least one cooling body for cooling the stator unit 14, which is not shown in particular in the figures.
  • a fluid flow 74 of the cooling unit 18 is provided to remove heat from the heat sink of the reluctance motor device 12 .
  • FIG. 1 A perspective sectional view of the rotor body 30, the cooling element 68 and the rotor shaft 44 is shown in FIG.
  • the rotor body 30 and the rotor shaft 44 are intended to move about the axis of rotation 20 during the rotary movement due to the re luktanzkraft.
  • the cooling element 68 is arranged in the radial direction from the axis of rotation 20 between a reluctance region 48 of the rotor body 30 and the rotor shaft 44 .
  • the rotor body 30 is provided to move the cooling element 68 about the axis of rotation 20 during the rotary movement caused by the reluctance force.
  • the cooling element 68 is arranged in the body recess 64 of the rotor body 30 .
  • the cooling element 68 is preferably designed essentially as an axial fan. But it is also conceivable that the cooling element 68 is formed as a different type of fan wheel.
  • the cooling element 68 extends from a minimum radial distance 94 to the axis of rotation 20 to a maximum radial distance 96 to the axis of rotation 20.
  • the minimum radial distance 94 of the cooling element 68 to the axis of rotation 20 is greater than a maximum diameter of the rotor shaft 44, which is aligned perpendicularly to the axis of rotation 20 .
  • the maximum radial distance 96 of the cooling element 68 to the axis of rotation 20 is preferably smaller than a minimum radial distance of the reluctance region 48 to the axis of rotation 20.
  • the cooling element 68 is preferably arranged on the rotor body 30 and the rotor shaft 44.
  • the rotor body 30 and the cooling element 68 are arranged on the rotor shaft 44, in particular arranged in a rotationally fixed manner at least with regard to a movement about the axis of rotation 20.
  • the rotor body 30, the cooling element 68 and the rotor shaft 44 are connected to one another via a clamp connection, a screw connection, a latching connection or the like.
  • the rotor body 30, the cooling element 68 and / or the Rotor shaft 44 are formed in one piece.
  • the rotor body 30 forms a plurality of poles via the reluctance region 48 in order to promote the reluctance force.
  • the rotor body 30 in the reluctance area 48 along the direction of rotation 50 around the axis of rotation 20 delimits a multiplicity of recesses 98, which each extend radially to the axis of rotation 20 over an entire maximum radial extent 100 of the reluctance area 48 (see also Figure 1).
  • the rotor body 30 preferably has a material thickness that varies in the direction of rotation 50 in the region of the recesses 98 delimited by it, viewed along the axis of rotation 20 .
  • the recesses 98 delimited by the rotor body 30 and/or a shape of the recesses 98 are provided to form the poles and to generate a reluctance force that is dependent on a position of the rotor body 30, in particular of the reluctance region 48, along the direction of rotation 50.
  • other configurations of the rotor body 30 are also conceivable.
  • the recesses 98 delimited by the rotor body 30 are designed as other line elements of the cooling unit 18 and are intended in particular to direct a fluid flow for cooling the stator unit 14 radially outwards as viewed from the axis of rotation 20 . Viewed along the axis of rotation 20 , the cooling element 68 is completely surrounded by the rotor body 30 .
  • FIG. 3 shows an exemplary sequence of a method 102 for cooling the stator unit 14 of the reluctance motor 10 by means of the reluctance motor device 12 .
  • the control and/or regulating unit 22 controls the stator unit 14 to generate the magnetic field 38, in particular via an alternating electrical current.
  • the magnetic field 38 is preferably generated by energizing two electromagnets 34, 35 of the plurality of electromagnets 34, 35 of the stator unit 14, the two electromagnets 34, 35 being arranged coaxially with one another on the stator body 24 and the further stator body 26.
  • the rotor unit 16 in particular the rotor body 30, is moved about the axis of rotation 20 by means of the stator unit 14 via a re luctance force.
  • the reluctance force on the rotor body 30 is preferably generated via the magnetic field 38 generated by the stator unit 14, in particular the electromagnets 34, 35.
  • a continuous movement of the rotor body 30 about the axis of rotation 20 preferably takes place by means of a ner in the direction of rotation 50 about the axis of rotation 20 alternating energization of two coaxially arranged electromagnets 34, 35, which cause in particular a continuous application of force to the rotor body 30 by a reluctance force.
  • the rotor shaft 44 and the cooling element 68 are preferably moved together with the rotor body 30 about the axis of rotation 20 .
  • a fluid flow 74 is generated during the rotary motion of the cooling element 68 about the axis of rotation 20.
  • the fluid flow 74 is preferably guided via the interior space 66, the recesses 40 delimited by the stator bodies 24, 26, the hollow region 80 of the rotor shaft 44 and/or the line elements 88 in such a way that the stator unit 14, in particular the stator body 24, 26, the Stator poles 28 and the windings 32 are cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The invention relates to a reluctance motor device, in particular a synchronous axial-flux reluctance motor device, comprising at least one rotor unit (16) and at least one stator unit (14), wherein the stator unit (14) is designed to rotate the rotor unit (16) about a rotational axis (20) by means of a reluctance force. According to the invention, the rotor unit (16) comprises at least one cooling unit (18) for cooling the stator unit (14).

Description

Beschreibung description
Reluktanzmotorvorrichtung, Reluktanzmotor mit der Reluktanzmotorvorrichtung und Verfahren zu einem Kühlen einer Statoreinheit des Reluktanzmotors Reluctance motor device, reluctance motor with the reluctance motor device and method for cooling a stator unit of the reluctance motor
Stand der Technik State of the art
Es ist bereits eine Reluktanzmotorvorrichtung mit zumindest einer Rotoreinheit und mit zumindest einer Statoreinheit, wobei die Statoreinheit dazu vorgesehen ist, die Rotoreinheit durch eine Reluktanzkraft in eine Drehbewegung um eine Drehachse zu versetzen, vorgeschlagen worden. A reluctance motor device having at least one rotor unit and having at least one stator unit has already been proposed, the stator unit being provided for causing the rotor unit to rotate about a rotation axis by a reluctance force.
Offenbarung der Erfindung Disclosure of Invention
Die Erfindung geht aus von einer Reluktanzmotorvorrichtung, insbesondere einer Synchronaxialflussreluktanzmotorvorrichtung, mit zumindest einer Rotoreinheit und mit zumindest einer Statoreinheit, wobei die Statoreinheit dazu vorgesehen ist, die Rotoreinheit durch eine Reluktanzkraft in eine Drehbewegung um eine Drehachse zu versetzen. The invention is based on a reluctance motor device, in particular a synchronous axial flux reluctance motor device, with at least one rotor unit and with at least one stator unit, the stator unit being provided to set the rotor unit into a rotational movement about an axis of rotation by a reluctance force.
Es wird vorgeschlagen, dass die Rotoreinheit zumindest eine Kühleinheit zu einer Kühlung der Statoreinheit umfasst. Insbesondere umfasst die Statoreinheit zu mindest ein leistungstragendes Statorelement, beispielsweise ein Elektromagnet, und/oder einen Statorpol, wobei die Kühleinheit dazu vorgesehen ist, das Stato relement zu kühlen. Unter „vorgesehen“ soll insbesondere speziell ausgelegt und/oder speziell ausgestattet verstanden werden. Darunter, dass ein Objekt, insbesondere die Statoreinheit, zu einer bestimmten Funktion, insbesondere die Rotoreinheit durch eine Reluktanzkraft in die Drehbewegung um die Drehachse der Rotoreinheit zu versetzen, vorgesehen ist, soll insbesondere verstanden werden, dass das Objekt diese bestimmte Funktion in zumindest einem Anwen- dungs- und/oder Betriebszustand erfüllt und/oder ausführt. Vorzugsweise ist die Statoreinheit, insbesondere das zumindest eine Statorelement, dazu vorgesehen, sich bei einem Betrieb des Reluktanzmotors, insbesondere der Reluktanzmotor vorrichtung, zu erhitzen, insbesondere durch einen elektrischen Strom. Bevorzugt ist die Rotoreinheit, mit Ausnahme von durch ein Magnetfeld der Statoreinheit induzierten elektrischen Strömen, stromfrei ausgebildet. Vorzugsweise ist die Kühleinheit zumindest teilweise an der Rotoreinheit und/oder der Statoreinheit angeordnet. Es ist denkbar, dass die Kühleinheit zumindest teilweise einteilig mit der Rotoreinheit und/oder der Statoreinheit ausgebildet ist. Vorteilhaft soll unter einteilig auch einstückig verstanden werden. Unter „einteilig“ soll insbesondere in einem Stück geformt verstanden werden. Vorzugsweise wird dieses eine Stück aus einem einzelnen Rohling, einer Masse und/oder einem Guss, besonders bevorzugt in einem Spritzgussverfahren, insbesondere einem Ein- und/oder Mehrkomponenten-Spritzgussverfahren, hergestellt. Insbesondere ist denkbar, dass ein Bauteil, insbesondere ein Kühlelement und/oder ein Leitungselement, der Kühleinheit einteilig mit der Rotoreinheit und/oder der Statoreinheit ausgebil det ist. Es ist auch denkbar, dass ein Bauteil der Kühleinheit, insbesondere das Kühlelement und/oder das Leitungselement, als Teil der Rotoreinheit und/oder der Statoreinheit ausgebildet ist. Vorzugsweise ist die Kühleinheit dazu vorgese hen, die Kühlung der Statoreinheit über eine Abfuhr von durch die Statoreinheit erzeugter Wärme von der Statoreinheit weg zu erreichen. Bevorzugt ist die Küh leinheit dazu vorgesehen, die Kühlung der Statoreinheit, insbesondere die Abfuhr von Wärme, über eine geeignete Anordnung von Oberflächen zur effizienteren Abgabe von Wärme an eine Umgebung und/oder über einen Fluidstrom zu einer Aufnahme und gerichteter Abfuhr von Wärme zu erreichen. Besonders bevorzugt ist die Kühleinheit zumindest teilweise zu einer aktiven Kühlung der Statoreinheit vorgesehen, wobei insbesondere die Kühleinheit zumindest ein, sich zur Kühlung der Statoreinheit bewegendes Kühlelement umfasst. It is proposed that the rotor unit includes at least one cooling unit for cooling the stator unit. In particular, the stator unit comprises at least one power-carrying stator element, for example an electromagnet, and/or a stator pole, with the cooling unit being provided to cool the stator element. “Provided” is to be understood in particular as being specially designed and/or specially equipped. This means in particular that an object, in particular the stator unit, is provided for a specific function, in particular to set the rotor unit into rotary motion about the axis of rotation of the rotor unit by means of a reluctance force that the object fulfills and/or executes this specific function in at least one application and/or operating state. The stator unit, in particular the at least one stator element, is preferably provided to heat up during operation of the reluctance motor, in particular the reluctance motor device, in particular by an electric current. The rotor unit is preferably designed to be current-free, with the exception of electrical currents induced by a magnetic field of the stator unit. The cooling unit is preferably arranged at least partially on the rotor unit and/or the stator unit. It is conceivable that the cooling unit is formed at least partially in one piece with the rotor unit and/or the stator unit. Advantageously, one-piece should also be understood to mean one-piece. “In one piece” is to be understood in particular as being formed in one piece. This one piece is preferably produced from a single blank, a mass and/or a cast, particularly preferably in an injection molding process, in particular a single-component and/or multi-component injection molding process. In particular, it is conceivable that a component, in particular a cooling element and/or a line element, of the cooling unit is designed in one piece with the rotor unit and/or the stator unit. It is also conceivable that a component of the cooling unit, in particular the cooling element and/or the line element, is designed as part of the rotor unit and/or the stator unit. The cooling unit is preferably provided for cooling the stator unit by dissipating heat generated by the stator unit away from the stator unit. The cooling unit is preferably provided to achieve the cooling of the stator unit, in particular the dissipation of heat, via a suitable arrangement of surfaces for more efficient release of heat to an environment and/or via a fluid flow for absorption and directed dissipation of heat. The cooling unit is particularly preferably provided at least partially for active cooling of the stator unit, with the cooling unit in particular comprising at least one cooling element which moves in order to cool the stator unit.
Unter einer „Rotoreinheit“ soll insbesondere eine Baueinheit einer Maschine, ins besondere der Reluktanzmotorvorrichtung, verstanden werden, welche in einem Betriebszustand der Maschine um eine Achse der Maschine, insbesondere um die Drehachse, rotiert. Bevorzugt ist die Rotoreinheit dazu vorgesehen, sich rela tiv zur Statoreinheit zu bewegen, insbesondere um die Drehachse. Vorzugsweise ist die Rotoreinheit zu einem Erzeugen eines Drehmoments und/oder der Dreh bewegung vorgesehen. Die Rotoreinheit ist vorzugsweise als ein beweglicher, insbesondere drehbar gelagerter, Teil des Reluktanzmotors, insbesondere ge genüber der Statoreinheit, insbesondere gegenüber einem Motorgehäuse der Reluktanzmotorvorrichtung und/oder des Reluktanzmotors, ausgebildet. Die Ro toreinheit umfasst vorzugsweise zumindest einen Rotorkörper, welcher insbe sondere an, insbesondere in einer Nähe zu, zumindest einem Elektromagnet der Statoreinheit angeordnet ist. Der Rotorkörper ist insbesondere kontaktlos zu der Statoreinheit ausgebildet. Insbesondere ist denkbar, dass die Rotoreinheit eine Vielzahl von Rotorkörpern umfasst. Bevorzugt ist der zumindest eine Rotorkörper dazu vorgesehen, durch den Elektromagnet in die Drehbewegung um die Dreh achse versetzt zu werden. Vorzugsweise ist der zumindest eine Rotorkörper, besonders bevorzugt zumindest in einem Reluktanzbereich der Rotoreinheit, insbesondere des Rotorkörpers, aus einem, einen Magnetfluss fördernden Mate rial ausgebildet. Der Rotorkörper der Rotoreinheit ist in einem Betrieb insbeson dere frei von einem Stromfluss ausgebildet. Bevorzugt wird in einem Betrieb ein Magnetfeld zu einem Antrieb der Rotoreinheit in der Statoreinheit erzeugt. Vor zugsweise weist der zumindest eine Rotorkörper eine Haupterstreckungsachse auf, welche zumindest im Wesentlichen senkrecht zu der Drehachse ausgerichtet ist. Unter einer „Haupterstreckungsachse“ eines Objekts, insbesondere des Ro torkörpers, soll insbesondere eine Achse verstanden werden, welche parallel zu einer längsten Kante eines kleinsten geometrischen Quaders verläuft, welcher das Objekt gerade noch vollständig umschließt. Unter „im Wesentlichen senk recht“ soll insbesondere eine Ausrichtung einer Geraden, einer Ebene oder einer Richtung, insbesondere der Haupterstreckungsachse des Rotorkörpers, relativ zu einer anderen Geraden, einer anderen Ebene oder einer Bezugsrichtung, insbe sondere der Drehachse, verstanden werden, wobei die Gerade, die Ebene oder die Richtung, insbesondere in einer Projektionsebene betrachtet, von einer senk rechten Anordnung zu der anderen Geraden, der anderen Ebene oder der Be zugsrichtung höchstens um einen Winkel von 8°, vorzugsweise von 5° und be vorzugt von 2°, abweicht. Bevorzugt ist der zumindest eine Rotorkörper derart angeordnet, dass die Haupterstreckungsachse des Rotorkörpers die Drehachse der Rotoreinheit schneidet. Vorzugsweise ist der Rotorkörper zumindest im We sentlichen als eine Hohlzylinderscheibe ausgebildet. Vorzugsweise erstreckt sich der zumindest eine Rotorkörper materiell von einem, insbesondere von null ver- schiedenen, Innenradius radial, insbesondere von der Drehachse weg, bis zu einem Außenradius. Vorzugsweise weist der Rotorkörper entlang der Drehachse eine maximale Erstreckung auf, welche bevorzugt kürzer ist als eine maximale Erstreckung senkrecht zu der Drehachse und/oder entlang der Haupterstre ckungsachse des Rotorkörpers. Vorzugsweise weist der Rotorkörper, insbeson dere entlang der Drehachse betrachtet, zwei einander abgewandte Basisaußen seiten auf. Vorzugsweise sind die zumindest zwei Basisaußenseiten gleich, ins besondere gleich strukturiert, ausgebildet. Vorzugsweise weisen die Basisau ßenseiten jeweils zumindest einen Reluktanzbereich auf. Bevorzugt ist der Re luktanzbereich dazu vorgesehen, zumindest größtenteils in dem zumindest ei nen, insbesondere durch die Statoreinheit generierten, Magnetfeld angeordnet zu sein, insbesondere zu einem Fördern der Reluktanzkraft. Vorzugsweise ist der Rotorkörper, insbesondere der Reluktanzbereich, in zumindest einem Betriebs zustand, insbesondere während der Drehbewegung, zwischen zumindest zwei Elektromagneten der Statoreinheit angeordnet. Die Basisaußenseiten können insbesondere von einer einheitlich ebenen Fläche verschieden ausgebildet sein. Vorzugsweise begrenzt der zumindest eine Rotorkörper zumindest eine Kör perausnehmung, welche insbesondere zumindest im Wesentlichen auf eine kreisrunde Form begrenzt ist und welche insbesondere an einer Basisaußenseite mittig angeordnet ist. Vorzugsweise ist die Körperausnehmung von dem Rotor körper auf eine Erstreckung innerhalb des Innenradius begrenzt. Vorzugsweise ist der Rotorkörper beabstandet von der Drehachse angeordnet. Vorzugsweise umfasst die Rotoreinheit, insbesondere der zumindest eine Rotorkörper, zumin dest den Reluktanzbereich, welcher insbesondere um die Drehachse angeordnet ist. Bevorzugt bildet der Rotorkörper, insbesondere der Reluktanzbereich, mehre re Pole der Rotoreinheit, insbesondere des Rotorkörpers, aus. Bevorzugterweise bildet der Rotorkörper, insbesondere der Reluktanzbereich, eine gerade Anzahl an Polen der Rotoreinheit aus. Besonders bevorzugt sind die Pole der Rotorein heit gleichmäßig verteilt um die Drehachse angeordnet und/oder ausgebildet. A “rotor unit” is to be understood in particular as a structural unit of a machine, in particular the reluctance motor device, which rotates about an axis of the machine, in particular about the axis of rotation, when the machine is in an operating state. The rotor unit is preferably intended to move relative to the stator unit, in particular about the axis of rotation. Preferably the rotor unit is provided for generating a torque and/or the rotational movement. The rotor unit is preferably designed as a movable, in particular rotatably mounted, part of the reluctance motor, in particular opposite the stator unit, in particular opposite a motor housing of the reluctance motor device and/or the reluctance motor. The rotor unit preferably comprises at least one rotor body, which is arranged in particular on, in particular in the vicinity of, at least one electromagnet of the stator unit. The rotor body is in particular designed without contact with the stator unit. In particular, it is conceivable that the rotor unit comprises a multiplicity of rotor bodies. The at least one rotor body is preferably provided for the purpose of being set into rotary motion about the axis of rotation by the electromagnet. The at least one rotor body is preferably formed from a material that promotes a magnetic flux, particularly preferably at least in a reluctance region of the rotor unit, in particular of the rotor body. During operation, the rotor body of the rotor unit is designed in particular to be free of a current flow. During operation, a magnetic field is preferably generated in the stator unit to drive the rotor unit. The at least one rotor body preferably has a main axis of extension, which is oriented at least essentially perpendicular to the axis of rotation. A “main axis of extension” of an object, in particular of the rotor body, is to be understood in particular as an axis which runs parallel to a longest edge of a smallest geometric cuboid which just about completely encloses the object. “Essentially perpendicular” is to be understood in particular as an alignment of a straight line, a plane or a direction, in particular the main axis of extension of the rotor body, relative to another straight line, another plane or a reference direction, in particular the axis of rotation, with the straight line , the plane or the direction, viewed in particular in a projection plane, from a perpendicular arrangement to the other straight line, the other plane or the reference direction, deviates by an angle of no more than 8°, preferably 5° and preferably 2° . The at least one rotor body is preferably arranged in such a way that the main axis of extension of the rotor body intersects the axis of rotation of the rotor unit. The rotor body is preferably designed at least essentially as a hollow cylindrical disk. The at least one rotor body preferably extends materially from one, in particular from zero, Different inner radius radially, in particular away from the axis of rotation, up to an outer radius. The rotor body preferably has a maximum extent along the axis of rotation, which is preferably shorter than a maximum extent perpendicular to the axis of rotation and/or along the main axis of extent of the rotor body. The rotor body preferably has two base outer sides facing away from one another, in particular when viewed along the axis of rotation. The at least two outer sides of the base are preferably of the same design, in particular of the same structure. Preferably, the outer sides of the base each have at least one reluctance area. The reluctance area is preferably provided to be arranged at least for the most part in the at least one magnetic field generated in particular by the stator unit, in particular to promote the reluctance force. The rotor body, in particular the reluctance area, is preferably arranged between at least two electromagnets of the stator unit in at least one operating state, in particular during the rotary movement. The outer sides of the base can in particular be designed differently from a uniformly flat surface. The at least one rotor body preferably delimits at least one body recess, which is in particular at least essentially limited to a circular shape and which is in particular arranged centrally on a base outside. Preferably, the body cavity is limited by the rotor body to an extent within the inner radius. The rotor body is preferably arranged at a distance from the axis of rotation. The rotor unit, in particular the at least one rotor body, preferably comprises at least the reluctance area, which is arranged in particular around the axis of rotation. The rotor body, in particular the reluctance area, preferably forms a plurality of poles of the rotor unit, in particular of the rotor body. The rotor body, in particular the reluctance area, preferably forms an even number of poles of the rotor unit. The poles of the rotor unit are particularly preferably arranged and/or formed in a uniformly distributed manner around the axis of rotation.
Unter einer „Statoreinheit“ soll insbesondere eine Baueinheit einer Maschine, insbesondere der Reluktanzmotorvorrichtung, verstanden werden, welche in ei nem Betriebszustand, insbesondere allen Betriebszuständen, der Maschine fest stehend und/oder unbeweglich ausgebildet ist. Vorzugsweise umfasst die Stato reinheit zumindest einen Statorkörper und eine Mehrzahl von, insbesondere Elektromagneten ausbildenden, Wicklungen. Bevorzugt bildet der Statorkörper eine Mehrzahl von Statorpolen aus, welche insbesondere als zumindest im We sentlichen parallel zur Drehachse verlaufende Fortsätze ausgebildet sind. Die Fortsätze ragen insbesondere parallel zu der Drehachse aus einer Grundform des Statorkörpers. Unter „im Wesentlichen parallel“ soll insbesondere eine Aus richtung einer Geraden, einer Ebene oder einer Richtung, insbesondere der Haupterstreckungsachse des Rotorschafts, relativ zu einer anderen Geraden, einer anderen Ebene oder einer Bezugsrichtung, insbesondere der Drehachse, verstanden werden, wobei eine Abweichung der Geraden, die Ebene oder die Richtung von der anderen Geraden, der anderen Ebene oder der anderen Rich tung, insbesondere in einer Projektionsebene betrachtet, höchstens 8°, vorzugs weise höchstens 5° und bevorzugt höchstens 2°, beträgt. Bevorzugt bilden die Statorpole jeweils mit einer der Wicklungen einen Elektromagneten. Die Elektro- magnete sind vorzugsweise dazu vorgesehen, das Magnetfeld zu erzeugen und insbesondere durch das Magnetfeld die Reluktanzkraft an der Rotoreinheit zu erzeugen. Vorzugsweise sind die Wicklungen an dem zumindest einen Stator körper, insbesondere den Statorpolen, angeordnet und bevorzugt fest mit dem Statorkörper, insbesondere den Statorpolen, verbunden. Die Statoreinheit ist vorzugsweise als ein unbeweglicher Teil des Elektromotors, insbesondere ge genüber dem Motorgehäuse, ausgebildet. Bevorzugt weist der Statorkörper eine Mittelachse auf, welche koaxial zur Drehachse angeordnet ist. Vorzugsweise weist die Statoreinheit eine Vielzahl von Elektromagneten auf, welche, insbeson dere gleichmäßig verteilt, entlang einer Umlaufrichtung um die Drehachse und/oder die Mittelachse des zumindest einen Statorkörpers angeordnet sind. Vorzugsweise ist der zumindest eine Statorkörper aus einem einen Magnetfluss fördernden, insbesondere in Bezug auf Luft, Material ausgebildet. Vorzugsweise weist der zumindest eine Statorkörper zumindest eine Haupterstreckungsachse auf, welche zumindest im Wesentlichen senkrecht zu der Drehachse und/oder der Mittelachse des Statorkörpers ausgerichtet ist. Bevorzugt begrenzt die Stato reinheit, insbesondere der Statorkörper, zumindest eine Durchführung, welche um die Drehachse und/oder die Mittelachse des Statorkörpers angeordnet ist. Insbesondere ist die Durchführung rotationssymmetrisch um die Drehachse und/oder die Mittelachse des Statorkörpers ausgebildet. Bevorzugt ist die Durch führung zu einer Aufnahme der Rotoreinheit, insbesondere eines Rotorschafts der Rotoreinheit, vorgesehen. Besonders bevorzugt umfasst die Statoreinheit zumindest einen weiteren Statorkörper, welcher insbesondere zumindest im We sentlichen baugleich zu dem Statorkörper ausgebildet ist. Vorzugsweise ist der weitere Statorkörper derart angeordnet, dass dieser an einer virtuellen Ebene, welche senkrecht zu der Drehachse und/oder zu der Mittelachse des Statorkör pers angeordnet ist, gespiegelt angeordnet ist. Insbesondere ist die virtuelle Ebene, insbesondere in einem montierten Zustand der Reluktanzmotorvorrich tung, als Haupterstreckungsebene des Rotorkörpers ausgebildet. Unter einer „Haupterstreckungsebene“ einer Baueinheit, insbesondere des Rotorkörpers, soll insbesondere eine Ebene verstanden werden, welche parallel zu einer größten Seitenfläche eines kleinsten gedachten Quaders ist, welcher die Baueinheit ge rade noch vollständig umschließt, und insbesondere durch den Mittelpunkt des Quaders verläuft. Bevorzugt umfasst der weitere Statorkörper eine Mehrzahl von Statorpolen, welche jeweils zusammen mit zumindest einer Wicklung der Stato reinheit einen Elektromagneten bilden, eine Mittelachse und eine Ausnehmung im Bereich der Mittelachse des weiteren Statorkörpers. Vorzugsweise ist die Ro toreinheit, insbesondere der zumindest eine Rotorkörper, zumindest teilweise, insbesondere senkrecht zur Drehachse betrachtet, zwischen dem Statorkörper und dem weiteren Statorkörper angeordnet. Bevorzugt weisen die Elektromagne- te, insbesondere entlang der Drehachse betrachtet, jeweils eine maximale radiale Erstreckung bezüglich der Drehachse auf, die insbesondere um die Drehachse einen ringförmigen Bereich aufspannt. Bevorzugt ist die Rotoreinheit derart an geordnet und/oder ausgebildet, dass der Rotorkörper, insbesondere der Re luktanzbereich, entlang der Drehachse betrachtet zumindest größtenteils, insbe sondere zumindest im Wesentlichen vollständig, innerhalb der maximalen radia len Erstreckung der Elektromagnete und/oder dem aufgespannten ringförmigen Bereich angeordnet ist und/oder bei der Drehbewegung anordenbar ist. Vor zugsweise sind der Statorkörper und der weitere Statorkörper, insbesondere hin sichtlich ihrer Mittelachsen, koaxial zueinander und insbesondere koaxial zur Drehachse angeordnet. Bevorzugt ist eine Anzahl an, an dem Statorkörper aus gebildeten Elektromagneten gleich einer Anzahl an, an dem weiteren Statorkör per ausgebildeten Elektromagneten. Besonders bevorzugt sind der Statorkörper und der weitere Statorkörper derart ausgebildet und/oder angeordnet, dass die an dem weiteren Statorkörper ausgebildeten Elektromagnete und die an dem Statorkörper ausgebildeten Elektromagneten entlang der Drehachse und/oder der Mittelachsen der Statorkörper betrachtet koaxial zueinander und/oder hinter- einander angeordnet sind. Insbesondere sind Mittelachsen von die Elektromag- nete bildenden Wicklungen der zwei koaxial zueinander und/oder hintereinander angeordneten Elektromagneten koaxial zueinander angeordnet. A “stator unit” is to be understood in particular as a structural unit of a machine, in particular the reluctance motor device, which is designed to be stationary and/or immovable in an operating state, in particular all operating states, of the machine. The static unit preferably comprises at least one stator body and a plurality of, in particular Forming electromagnets, windings. The stator body preferably forms a plurality of stator poles, which are formed in particular as extensions running at least essentially parallel to the axis of rotation. The extensions protrude in particular parallel to the axis of rotation from a basic shape of the stator body. “Substantially parallel” is to be understood in particular as an alignment of a straight line, a plane or a direction, in particular the main axis of extension of the rotor shaft, relative to another straight line, another plane or a reference direction, in particular the axis of rotation, with a deviation of the Straight lines, the plane or the direction from the other straight line, the other plane or the other direction, in particular viewed in a projection plane, is at most 8°, preferably at most 5° and preferably at most 2°. Preferably, the stator poles each form an electromagnet with one of the windings. The electromagnets are preferably provided to generate the magnetic field and in particular to generate the reluctance force on the rotor unit through the magnetic field. The windings are preferably arranged on the at least one stator body, in particular the stator poles, and are preferably firmly connected to the stator body, in particular the stator poles. The stator unit is preferably designed as an immovable part of the electric motor, in particular opposite the motor housing. The stator body preferably has a central axis which is arranged coaxially with the axis of rotation. The stator unit preferably has a large number of electromagnets which are arranged, in particular distributed uniformly, along a direction of rotation around the axis of rotation and/or the central axis of the at least one stator body. The at least one stator body is preferably formed from a material that promotes magnetic flux, in particular with regard to air. The at least one stator body preferably has at least one main axis of extension, which is oriented at least essentially perpendicularly to the axis of rotation and/or the central axis of the stator body. The static purity, in particular the stator body, preferably delimits at least one passage which is arranged around the axis of rotation and/or the central axis of the stator body. In particular, the passage is designed to be rotationally symmetrical about the axis of rotation and/or the central axis of the stator body. Preferably, the leadthrough is provided for receiving the rotor unit, in particular a rotor shaft of the rotor unit. The stator unit particularly preferably comprises at least one further stator body, which in particular is at least substantially identical in construction to the stator body. The further stator body is preferably arranged in such a way that it is mirrored on a virtual plane which is arranged perpendicularly to the axis of rotation and/or to the central axis of the stator body. In particular, the virtual plane is designed as the main extension plane of the rotor body, in particular when the reluctance motor device is in a mounted state. A "main extension plane" of a structural unit, in particular of the rotor body, is to be understood in particular as a plane which is parallel to a largest side surface of the smallest imaginary cuboid, which just completely encloses the structural unit, and in particular runs through the center of the cuboid. The further stator body preferably comprises a plurality of stator poles, which together with at least one winding of the stator unit form an electromagnet, a central axis and a recess in the region of the central axis of the further stator body. The rotor unit, in particular the at least one rotor body, is preferably arranged at least partially, in particular viewed perpendicularly to the axis of rotation, between the stator body and the further stator body. The electromagnets preferably each have a maximum radial extent with respect to the axis of rotation, particularly viewed along the axis of rotation, which spans an annular area around the axis of rotation in particular. The rotor unit is preferably arranged and/or designed in such a way that the rotor body, in particular the reluctance area, viewed along the axis of rotation is at least largely, in particular at least essentially completely, within the maximum radial extension of the electromagnets and/or the spanned annular area is arranged and / or can be arranged during the rotary movement. The stator body and the further stator body are preferably arranged coaxially with one another and in particular coaxially with the axis of rotation, in particular with respect to their central axes. A number of electromagnets formed on the stator body is preferably equal to a number of electromagnets formed on the further stator body. The stator body and the further stator body are particularly preferably designed and/or arranged in such a way that the electromagnets formed on the further stator body and the electromagnets formed on the stator body are coaxial with one another and/or behind are arranged one on top of the other. In particular, central axes of the windings forming the electromagnets of the two electromagnets arranged coaxially to one another and/or one behind the other are arranged coaxially to one another.
Besonders bevorzugt ist die Statoreinheit dazu vorgesehen, bei einem Durchlau fen des zumindest einen Rotorkörpers, insbesondere des Reluktanzbereichs, durch einen parallel zur Drehachse zwischen jeweils zwei der Elektromagnete gebildeten Spalt eine Reluktanzkraft in dem Rotorkörper zu erzeugen. Bevorzugt ist die Statoreinheit dazu vorgesehen, die Elektromagneten mittels eines elektri schen Wechselstroms zu betreiben. Alternativ oder zusätzlich ist denkbar, dass die Elektromagnete selektiv mit einem elektrischen Strom angesteuert werden. Insbesondere werden die Elektromagnete derart betrieben und/oder angesteuert, dass bei einem Durchlaufen des zumindest einen Rotorkörpers, insbesondere des Reluktanzbereichs, durch mehrere entlang der Umlaufrichtung hintereinan der angeordnete Spalte über ein Wechseln des magnetischen Felds jeweils über eine Reluktanzkraft, insbesondere zu einem in Rotationsrichtung dem Rotorkör per nächstgelegenen Spalt, die Drehbewegung der Rotoreinheit bewirkt wird. Es ist denkbar, dass die Reluktanzmotorvorrichtung zumindest einen Frequenzum richter zu einem Ansteuern der Statoreinheit, insbesondere der Elektromagnete, umfasst. The stator unit is particularly preferably provided to generate a reluctance force in the rotor body when passing through the at least one rotor body, in particular the reluctance region, through a gap formed parallel to the axis of rotation between two of the electromagnets. The stator unit is preferably provided to operate the electromagnets by means of an electrical alternating current. Alternatively or additionally, it is conceivable that the electromagnets are selectively controlled with an electric current. In particular, the electromagnets are operated and/or controlled in such a way that when the at least one rotor body, in particular the reluctance area, passes through a plurality of gaps arranged one behind the other along the direction of rotation, a change in the magnetic field causes a reluctance force, in particular to one in the direction of rotation Rotorkör by the nearest gap, the rotational movement of the rotor unit is effected. It is conceivable that the reluctance motor device comprises at least one frequency converter for controlling the stator unit, in particular the electromagnets.
Unter einer „Reluktanzmotorvorrichtung“ soll vorzugsweise zumindest ein Teil, bevorzugt eine Unterbaugruppe, eines Reluktanzmotors, bevorzugt eines Syn chronaxialflussreluktanzmotors, verstanden werden. Insbesondere kann die Re luktanzmotorvorrichtung auch den gesamten Reluktanzmotor, insbesondere den gesamten Synchronaxialflussreluktanzmotor, umfassen. Unter einem „Syn chronaxialflussreluktanzmotor“ soll insbesondere ein Reluktanzmotor verstanden werden, der einen Rotor umfasst, welcher eine, von einem runden Rotor ver schiedene Rotorform und eine gerade Anzahl von Polen aufweist, und der die Reluktanzkraft zumindest größtenteils über ein, axial/parallel zu einer Drehachse des Motors verlaufendes Magnetfeld generiert. Der Reluktanzmotor kann als eine Induktionsmaschine, insbesondere als Kurzschlussläufer, ausgebildet sein. Vor zugsweise ist der Reluktanzmotor als ein Synchronaxialflussreluktanzmotor aus gebildet, welcher die Reluktanzkraft durch zumindest ein zumindest im Wesentli chen axial, insbesondere zumindest im Wesentlichen parallel zur Drehachse, ausgerichtetes Magnetfeld erzeugt. Insbesondere ist die Statoreinheit dazu vor gesehen, das Magnetfeld derart zu erzeugen, dass das Magnetfeld in einem ho mogenen Bereich, in dem insbesondere die Magnetfeldlinien zumindest im We sentlichen parallel zueinander verlaufen, zumindest im Wesentlichen parallel zur Drehachse ausgerichtet ist. Bevorzugt sind die Wicklungen der Elektromagnete zumindest im Wesentlichen senkrecht zur Drehachse und/oder den Mittelachsen der Statorkörper ausgerichtet, wobei die Statorpole jeweils zumindest im Wesent lichen parallel zur Drehachse und/oder den Mittelachsen der Statorkörper ange ordnet sind, insbesondere innerhalb der Wicklungen. Vorzugsweise ist der Rotor schaft zu einer mechanischen Kraftübertragung von der Rotoreinheit auf ein Ab triebselement, wie beispielsweise eine Antriebswelle, ein Rad, ein Förderelement o. dgl., vorgesehen. Bevorzugt ist die Rotoreinheit dazu vorgesehen, die durch die Reluktanzkraft erzeugte Drehbewegung, zumindest anteilsweise, auf das zumindest eine Abtriebselement zu übertragen. A "reluctance motor device" should preferably be understood to mean at least a part, preferably a subassembly, of a reluctance motor, preferably a synchronous axial flux reluctance motor. In particular, the reluctance motor device can also include the entire reluctance motor, in particular the entire synchronous axial flux reluctance motor. A "synchronous axial flux reluctance motor" is to be understood in particular as a reluctance motor which comprises a rotor which has a rotor shape which differs from a round rotor and has an even number of poles, and which transmits the reluctance force at least for the most part via an axial/parallel to a The magnetic field running along the axis of rotation of the motor is generated. The reluctance motor can be designed as an induction machine, in particular as a squirrel-cage rotor. Preferably, the reluctance motor is designed as a synchronous axial flux reluctance motor, which counteracts the reluctance force by at least one at least essentially axially, in particular at least essentially parallel to the axis of rotation, aligned magnetic field generated. In particular, the stator unit is intended to generate the magnetic field in such a way that the magnetic field is aligned at least substantially parallel to the axis of rotation in a homogeneous area in which the magnetic field lines in particular run at least substantially parallel to one another. The windings of the electromagnets are preferably aligned at least essentially perpendicularly to the axis of rotation and/or the central axes of the stator bodies, with the stator poles being arranged at least essentially parallel to the axis of rotation and/or the central axes of the stator bodies, in particular within the windings. The rotor shaft is preferably provided for mechanical power transmission from the rotor unit to a drive element, such as a drive shaft, a wheel, a conveying element or the like. The rotor unit is preferably provided to transmit the rotational movement generated by the reluctance force, at least partially, to the at least one output element.
Durch die erfindungsgemäße Ausgestaltung der Reluktanzmotorvorrichtung kann eine vorteilhaft schnelle Abfuhr von Wärme der Statoreinheit erreicht werden. Es können ungewollte Beschädigungen, wie beispielsweise Verformungen durch Wärmedehnung o. dgl., und/oder Fehlfunktionen durch eine zu hohe Temperatur der Statoreinheit, insbesondere des Statorelements, vorteilhaft verhindert wer den. Es kann eine vorteilhaft hohe Lebensdauer von Bauteilen, insbesondere von temperaturanfälligen Lagerelementen, der Reluktanzmotorvorrichtung erreicht werden. Dadurch können vorteilhaft geringe Wartungs- und/oder Reparaturkos ten ermöglicht werden. Es kann eine vorteilhaft hohe Flexibilität hinsichtlich eines Einsatzbereichs der Reluktanzmotorvorrichtung ermöglicht werden, insbesondere da ein Umfeld mit geringeren Toleranzen bezüglich hoher Temperaturen gewählt werden kann. Es kann eine Handhabung der Reluktanzmotorvorrichtung wäh rend eines Betriebs vorteilhaft vereinfacht werden, insbesondere da eine Tempe ratur an einer über die Statoreinheit erwärmten Außenseite vorteilhaft reduziert werden kann. Advantageously, the design of the reluctance motor device according to the invention enables heat to be dissipated quickly from the stator unit. Undesired damage, such as deformations due to thermal expansion or the like, and/or malfunctions due to excessively high temperature of the stator unit, in particular the stator element, can advantageously be prevented. An advantageously long service life can be achieved for components, in particular for temperature-sensitive bearing elements, of the reluctance motor device. As a result, advantageously low maintenance and/or repair costs can be made possible. An advantageously high degree of flexibility with regard to a field of application of the reluctance motor device can be made possible, in particular since an environment with lower tolerances with regard to high temperatures can be selected. Handling of the reluctance motor device during operation can be advantageously simplified, in particular since a temperature on an outside that has been heated via the stator unit can advantageously be reduced.
Des Weiteren wird vorgeschlagen, dass die Kühleinheit zumindest ein, insbeson dere das vorher genannte, Kühlelement umfasst, das dazu vorgesehen ist, sich bei der Drehbewegung durch die Reluktanzkraft um die Drehachse zu bewegen. Es kann vorteilhaft ein zusätzlicher Antrieb der Kühleinheit, insbesondere des Kühlelements, entfallen. Dadurch können vorteilhaft geringe Herstellungs- und Montagekosten erreicht werden. Es kann eine vorteilhaft kompakte Ausgestal tung erreicht werden, insbesondere da die Kühleinheit vorteilhaft in die Rotorein heit integriert werden kann. Vorzugsweise ist das Kühlelement zumindest hin sichtlich einer Bewegung um die Drehachse drehfest an dem Rotorschaft ange ordnet. Vorzugsweise ist das Kühlelement zumindest hinsichtlich einer Bewe gung um die Drehachse drehfest an dem Rotorkörper angeordnet. Bevorzugt ist der Rotorkörper dazu vorgesehen, das Kühlelement bei der durch die Reluktanz kraft erzeugten Drehbewegung um die Drehachse anzutreiben. Furthermore, it is proposed that the cooling unit comprises at least one cooling element, in particular the aforementioned one, which is intended to move about the axis of rotation during the rotary movement due to the reluctance force. An additional drive for the cooling unit, in particular the Cooling element omitted. As a result, advantageously low production and assembly costs can be achieved. An advantageously compact design can be achieved, in particular since the cooling unit can advantageously be integrated into the rotor unit. The cooling element is preferably arranged on the rotor shaft in a rotationally fixed manner, at least towards a movement about the axis of rotation. The cooling element is preferably arranged on the rotor body in a rotationally fixed manner, at least with regard to movement about the axis of rotation. The rotor body is preferably provided to drive the cooling element during the rotary movement generated by the reluctance force about the axis of rotation.
Zudem wird vorgeschlagen, dass das Kühlelement als ein Förderelement, insbe sondere ein Lüfterrad, ausgebildet ist. Es kann eine vorteilhaft einfache Konstruk tion der Kühleinheit ermöglicht werden. Es können vorteilhaft geringe Herstel lungskosten erreicht werden. Es kann vorteilhaft eine Luftkühlung der Statorein heit ermöglicht werden. Vorzugsweise weist das als Förderelement, insbesonde re Lüfterrad, ausgebildete Kühlelement zumindest eine Mittelachse auf, die ins besondere als Symmetrieachse ausgebildet ist. Bevorzugt ist das Kühlelement derart angeordnet, dass die Mittelachse des Lüfterelements koaxial zur Drehach se der Rotoreinheit angeordnet ist. Vorzugsweise begrenzt das Kühlelement eine Ausnehmung, welche insbesondere um die Mittelachse des Kühlelements aus gebildet ist. Insbesondere ist die Ausnehmung des Kühlelements dazu vorgese hen, den Rotorschaft der Rotoreinheit zumindest teilweise aufzunehmen. Bevor zugt ist das Kühlelement über die Ausnehmung des Kühlelements begrenzende Innenflächen des Kühlelements an dem Rotorschaft angeordnet, insbesondere auf den Rotorschaft aufgeschoben. In addition, it is proposed that the cooling element is designed as a conveying element, in particular a fan wheel. An advantageously simple construction of the cooling unit can be made possible. Advantageously, low production costs can be achieved. Advantageously, air cooling of the stator unit can be made possible. The cooling element designed as a conveying element, in particular a fan wheel, preferably has at least one central axis, which is designed in particular as an axis of symmetry. The cooling element is preferably arranged in such a way that the central axis of the fan element is arranged coaxially to the axis of rotation of the rotor unit. The cooling element preferably delimits a recess which is formed in particular around the central axis of the cooling element. In particular, the recess of the cooling element is provided for at least partially accommodating the rotor shaft of the rotor unit. The cooling element is preferably arranged on the rotor shaft via the inner surfaces of the cooling element delimiting the recess of the cooling element, in particular pushed onto the rotor shaft.
Ferner wird vorgeschlagen, dass die Kühleinheit dazu vorgesehen ist, zumindest einen Fluidstrom in einen/einem von der Rotoreinheit und der Statoreinheit be grenzten Innenraum zu leiten und/oder zu erzeugen. Es kann vorteilhaft eine Luftkühlung der Statoreinheit ermöglicht werden. Es kann eine vorteilhaft einfa che Abfuhr von durch die Statoreinheit erzeugter Wärme ermöglicht werden. Es kann eine vorteilhaft hohe Lebensdauer von Lagerelementen der Rotoreinheit, welche insbesondere angrenzend an den Innenraum angeordnet sind, erreicht werden. Vorzugsweise ist das, insbesondere als Förderelement und/oder Lüfter rad, ausgebildete Kühlelement dazu vorgesehen, den Fluidstrom zu erzeugen und/oder zu leiten. Bevorzugt ist das Kühlelement dazu vorgesehen, den Flu idstrom, insbesondere in einem Nahbereich um das Kühlelement, zumindest im Wesentlichen parallel zur Drehachse zu leiten. Alternativ oder zusätzlich ist denkbar, dass das Kühlelement dazu vorgesehen ist, den Fluidstrom, insbeson dere in einem Nahbereich um das Kühlelement, zumindest im Wesentlichen senkrecht zur Drehachse der Rotoreinheit und/oder radial von der Drehachse weg zu leiten. Vorzugsweise ist der Fluidstrom als ein Luftstrom ausgebildet. Es ist aber auch denkbar, dass zur Kühlung der Statoreinheit ein anderes Gas oder ein anderes Gasgemisch oder eine Flüssigkeit verwendet wird. Vorzugsweise umfasst der von der Rotoreinheit und der Statoreinheit begrenzte Innenraum Spalte zwischen den Elektromagneten der Statoreinheit und/oder einen durch die Ausnehmungen des Statorkörpers und/oder des weiteren Statorkörpers gebilde ten Bereich. Vorzugsweise ist der Fluidstrom dazu vorgesehen, Wärme von dem Statorelement, den Statorpolen und/oder den Elektromagneten der Statoreinheit abzuführen. Insbesondere grenzt der Innenraum zumindest teilweise an das Sta torelement, die Statorpole und/oder die Elektromagnete. Furthermore, it is proposed that the cooling unit is provided for conducting and/or generating at least one fluid flow in an interior space delimited by the rotor unit and the stator unit. Advantageously, air cooling of the stator unit can be made possible. An advantageously simple dissipation of heat generated by the stator unit can be made possible. An advantageously long service life can be achieved for bearing elements of the rotor unit, which are arranged in particular adjacent to the interior. The cooling element, which is designed in particular as a conveying element and/or a fan wheel, is preferably provided to generate the fluid flow and/or direct. The cooling element is preferably provided for guiding the fluid flow, in particular in a close-up area around the cooling element, at least essentially parallel to the axis of rotation. Alternatively or additionally, it is conceivable that the cooling element is intended to direct the fluid flow, in particular in a close area around the cooling element, at least essentially perpendicularly to the axis of rotation of the rotor unit and/or radially away from the axis of rotation. The fluid flow is preferably in the form of an air flow. However, it is also conceivable that another gas or another gas mixture or a liquid is used to cool the stator unit. The interior space delimited by the rotor unit and the stator unit preferably includes gaps between the electromagnets of the stator unit and/or an area formed by the recesses of the stator body and/or the further stator body. The fluid flow is preferably intended to dissipate heat from the stator element, the stator poles and/or the electromagnets of the stator unit. In particular, the interior at least partially borders on the stator element, the stator poles and/or the electromagnets.
Des Weiteren wird vorgeschlagen, dass die Rotoreinheit zumindest einen, insbe sondere den vorher genannten, Rotorschaft umfasst, welcher entlang der Dreh achse betrachtet zumindest im Wesentlichen hohl ausgebildet ist und welcher dazu vorgesehen ist, sich bei der Drehbewegung durch die Reluktanzkraft um die Drehachse zu bewegen, wobei die Kühleinheit eine Vielzahl von Durchführungen umfasst, die durch zumindest eine Außenwand des Rotorschafts begrenzt sind. Es kann ein vorteilhaft hoher Massenstrom des Fluidstroms ermöglicht werden. Dadurch kann eine vorteilhaft schnelle und effiziente Abfuhr von durch die Stato reinheit erzeugter Wärme erreicht werden. Es kann eine vorteilhaft kompakte Ausgestaltung der Reluktanzmotorvorrichtung ermöglicht werden, insbesondere da weitere Fluidkanäle, welche beispielsweise außerhalb der Statoreinheit ver laufen könnten, entfallen können. Es kann eine vorteilhaft einfache Integration der Kühleinheit in die Rotoreinheit erfolgen. Insbesondere ist der Rotorschaft, insbesondere mit Ausnahme der Durchführungen, zumindest im Wesentlichen hohlzylinderförmig ausgebildet. Vorzugsweise begrenzt die Außenwand des Ro torschafts zumindest einen Hohlbereich des Rotorschafts. Insbesondere ist der Hohlbereich zumindest im Wesentlichen zylinderförmig ausgebildet. Die Durch führungen sind vorzugsweise jeweils zylinderförmig oder quaderförmig ausgebil- det. Es ist auch denkbar, dass die Durchführungen eine strömungsoptimierte Form aufweisen, wobei beispielsweise die Durchführungen begrenzende Kanten der Außenwand des Rotorschafts abgerundet sind oder eine Fase aufweisen. Bevorzugt sind die Durchführungen gleichmäßig verteilt um die Drehachse ange ordnet. Insbesondere umfasst die Kühleinheit eine gerade Anzahl an Durchfüh rungen, welche insbesondere durch die Außenwand des Rotorschafts begrenzt sind. Bevorzugt sind die Durchführungen entlang der Drehachse betrachtet vor oder hinter dem Rotorkörper und/oder dem Kühlelement an dem Rotorschaft an geordnet. Insbesondere sind die Durchführungen senkrecht zur Drehachse be trachtet außerhalb einer zumindest im Wesentlichen parallel zur Drehachse an geordneten maximalen Breite des Rotorkörpers und/oder des Kühlelements an dem Rotorschaft angeordnet. Vorzugsweise sind die Durchführungen jeweils zumindest fluidtechnisch mit dem Hohlbereich des Rotorschafts verbunden. Vor zugsweise erstrecken sich die Durchführungen über eine gesamte Dicke der Au ßenwand des Rotorschafts. Insbesondere sind die Durchführungen, insbesonde re in einem montierten Zustand des Rotorschafts, zumindest fluidtechnisch mit dem von der Rotoreinheit und der Statoreinheit begrenzten Innenraum verbun den. It is also proposed that the rotor unit comprises at least one rotor shaft, in particular the aforementioned rotor shaft, which is at least essentially hollow when viewed along the axis of rotation and which is intended to move about the axis of rotation during the rotary movement due to the reluctance force wherein the cooling unit comprises a plurality of passages defined by at least one outer wall of the rotor shaft. An advantageously high mass flow of the fluid flow can be made possible. As a result, an advantageously fast and efficient dissipation of heat generated by the stator purity can be achieved. An advantageously compact configuration of the reluctance motor device can be made possible, in particular since further fluid channels, which could run outside the stator unit, for example, can be omitted. An advantageously simple integration of the cooling unit into the rotor unit can take place. In particular, the rotor shaft, in particular with the exception of the passages, is at least essentially in the form of a hollow cylinder. Preferably, the outer wall of the rotor shaft delimits at least one hollow area of the rotor shaft. In particular, the hollow area is at least essentially cylindrical. The passages are preferably designed in each case in the form of a cylinder or cuboid. de. It is also conceivable for the passages to have a flow-optimized shape, with edges of the outer wall of the rotor shaft delimiting the passages being rounded off or having a chamfer, for example. The bushings are preferably evenly distributed around the axis of rotation. In particular, the cooling unit comprises an even number of passages, which are delimited in particular by the outer wall of the rotor shaft. Viewed along the axis of rotation, the bushings are preferably arranged in front of or behind the rotor body and/or the cooling element on the rotor shaft. In particular, the passages are arranged perpendicularly to the axis of rotation, outside of a maximum width of the rotor body and/or the cooling element on the rotor shaft, which is at least essentially parallel to the axis of rotation. The passages are preferably each connected at least in terms of fluid technology to the hollow area of the rotor shaft. The bushings preferably extend over an entire thickness of the outer wall of the rotor shaft. In particular, the bushings, in particular when the rotor shaft is in an assembled state, are connected at least in terms of fluid technology to the interior space delimited by the rotor unit and the stator unit.
Zudem wird vorgeschlagen, dass die Rotoreinheit zumindest einen Rotorkörper und zumindest einen, insbesondere den vorher genannten, Rotorschaft umfasst, welche dazu vorgesehen sind, sich bei der Drehbewegung durch die Reluktanz kraft um die Drehachse zu bewegen, wobei das Kühlelement in radialer Richtung von der Drehachse aus zwischen einem Reluktanzbereich des Rotorkörpers und dem Rotorschaft angeordnet ist. Es kann eine vorteilhaft kompakte Ausgestal tung der Reluktanzmotorvorrichtung ermöglicht werden. Es kann eine vorteilhaft geringe Anzahl an unterschiedlichen bewegbaren Bauteilen der Reluktanzmotor vorrichtung erreicht werden. Dadurch können vorteilhaft geringe Herstellungs und Wartungskosten ermöglicht werden. Es kann eine vorteilhaft einfache In tegration der Kühleinheit in die Rotoreinheit erfolgen. Vorzugsweise ist das Küh lelement an der Rotoreinheit ausgebildet oder als Teil der Rotoreinheit ausgebil det. Insbesondere ist das Kühlelement an dem Rotorkörper und/oder dem Rotor schaft angeordnet. Bevorzugt ist das Kühlelement in oder an der Körperausneh mung des Rotorkörpers angeordnet. Insbesondere ist das Kühlelement zumin dest hinsichtlich einer Bewegung um die Drehachse drehfest an dem Rotorkörper und/oder dem Rotorschaft angeordnet. Vorzugsweise ist der Rotorkörper dazu vorgesehen, das Kühlelement bei der durch die Reluktanzkraft bewirkten Dreh bewegung um die Drehachse zu bewegen. Bevorzugt erstreckt sich das Küh lelement von einem minimalen radialen Abstand zur Drehachse bis zu einem maximalen radialen Abstand zur Drehachse. Insbesondere ist der minimale ra diale Abstand des Kühlelements zur Drehachse größer als ein maximaler Durchmesser des Rotorschafts, welcher senkrecht zur Drehachse ausgerichtet ist. Vorzugsweise ist der maximale radiale Abstand des Kühlelements zur Dreh achse kleiner als ein minimaler radialer Abstand des Reluktanzbereichs zur Drehachse. Unter einem „radialen Abstand“ soll insbesondere ein Abstand eines Bauteils oder einer Fläche, insbesondere des Kühlelements und/oder des Re luktanzbereichs, zu einem rotationssymmetrischen Körper, einer rotationssym metrischen Fläche oder einer Achse, insbesondere der Drehachse, verstanden werden, wobei sich der Abstand auf einer Geraden erstreckt, welche senkrecht zu einer Rotationsachse des Körpers oder der Fläche oder zu der Achse ausge richtet ist und die Rotationsachse des Körpers oder der Fläche oder die Achse in genau einem Punkt schneidet. Insbesondere erstreckt sich der radiale Abstand des Bauteils oder der Fläche entlang eines Radius des Bauteils oder der Fläche zu der Rotationsachse oder der Achse. Es ist denkbar, dass das Kühlelement einteilig mit dem Rotorkörper und/oder dem Rotorschaft ausgebildet ist. Vor zugsweise ist das Kühlelement entlang der Drehachse der Rotoreinheit betrach tet zumindest im Wesentlichen vollständig von dem Rotorkörper umschlossen. In addition, it is proposed that the rotor unit comprises at least one rotor body and at least one rotor shaft, in particular the aforementioned rotor shaft, which are intended to move about the axis of rotation during the rotary movement due to the reluctance force, with the cooling element being separated from the axis of rotation in the radial direction is located between a reluctance region of the rotor body and the rotor shaft. An advantageously compact configuration of the reluctance motor device can be made possible. An advantageously small number of different movable components of the reluctance motor device can be achieved. As a result, advantageously low production and maintenance costs can be made possible. An advantageously simple integration of the cooling unit into the rotor unit can take place. The cooling element is preferably formed on the rotor unit or is constructed as part of the rotor unit. In particular, the cooling element is arranged on the rotor body and/or the rotor shaft. The cooling element is preferably arranged in or on the body recess of the rotor body. In particular, the cooling element is rotationally fixed to the rotor body, at least with regard to a movement about the axis of rotation and/or arranged on the rotor shaft. The rotor body is preferably provided for the purpose of moving the cooling element about the axis of rotation during the rotary movement caused by the reluctance force. The cooling element preferably extends from a minimum radial distance from the axis of rotation to a maximum radial distance from the axis of rotation. In particular, the minimum ra Diale distance of the cooling element to the axis of rotation is greater than a maximum diameter of the rotor shaft, which is aligned perpendicular to the axis of rotation. The maximum radial distance between the cooling element and the axis of rotation is preferably smaller than a minimum radial distance between the reluctance region and the axis of rotation. A "radial distance" is to be understood in particular as a distance between a component or a surface, in particular the cooling element and/or the reluctance area, and a rotationally symmetrical body, a rotationally symmetrical surface or an axis, in particular the axis of rotation, with the distance increasing extends on a straight line which is perpendicular to an axis of rotation of the body or the surface or to the axis and intersects the axis of rotation of the body or the surface or the axis at exactly one point. In particular, the radial distance of the component or the surface extends along a radius of the component or the surface to the axis of rotation or the axis. It is conceivable that the cooling element is designed in one piece with the rotor body and/or the rotor shaft. Preferably, the cooling element is at least substantially completely surrounded by the rotor body, viewed along the axis of rotation of the rotor unit.
Ferner wird vorgeschlagen, dass die Kühleinheit dazu vorgesehen ist, zumindest einen, insbesondere den vorher genannten, Fluidstrom zu erzeugen, wobei die Kühleinheit zumindest ein, insbesondere das vorher genannte, Leitungselement, insbesondere eine Vielzahl von Leitungselementen, umfasst, welches von der Statoreinheit und/oder von der Rotoreinheit ausgebildet ist, wobei der durch das Leitungselement geführte Fluidstrom zu einer Kühlung zumindest eines, insbe sondere des vorher genannten, leistungstragenden Statorelements der Stato reinheit vorgesehen ist. Es kann eine vorteilhaft einfache und effiziente Leitung des Fluidstroms durch die Reluktanzmotorvorrichtung ermöglicht werden. Es kann eine vorteilhaft einfache Integration der Kühleinheit in die Statoreinheit und/oder die Rotoreinheit erfolgen. Es kann eine vorteilhaft kompakte Ausgestal tung der Reluktanzmotorvorrichtung erreicht werden, insbesondere da von der Rotoreinheit und der Statoreinheit externe Leitungselemente entfallen können. Bevorzugt umfasst die Kühleinheit eine Mehrzahl von Leitungselementen. Vor zugsweise begrenzt der Statorkörper der Statoreinheit das zumindest eine Lei tungselement. Es ist auch denkbar, dass das zumindest eine Leitungselement von dem Statorkörper und dem Rotorschaft und/oder dem Rotorkörper begrenzt wird. Unter einem „Leitungselement“ soll insbesondere ein Element verstanden werden, welches zumindest teilweise zu einer Führung eines Fluidstroms vorge sehen ist, und das den Luftstrom in eine Strömungsrichtung betrachtet unmittel bar zumindest teilweise, vorzugsweise auf drei Seiten und besonders vorteilhaft vollständig, umschließt. Vorzugsweise ist eine Haupterstreckung des Leitungs elements parallel zur Strömungsrichtung des Fluidstroms und zumindest 2-mal, insbesondere wenigstens 5-mal und vorteilhaft zumindest 10-mal, länger als we nigstens eine Querschnittserstreckung des Luftströmungskanals. Vorzugsweise weist das zumindest eine Leitungselement eine runde, insbesondere kreisflä chenförmige, oder eine rechteckige, insbesondere quadratische, Querschnittsflä che auf, welche sich insbesondere zumindest im Wesentlichen senkrecht zur Haupterstreckung des Leitungselements erstreckt. Insbesondere in einer Ausge staltung, wobei zumindest einer der Statorkörper, insbesondere der Statorkörper und/oder der weitere Statorkörper, die Leitungselemente ausbildet, sind die Lei tungselemente, insbesondere entlang der Drehachse der Rotoreinheit und/oder entlang der Mittelachse des Statorkörpers und/oder des weiteren Statorkörpers betrachtet, in einem von den Statorpolen beabstandeten Bereich des Statorkör pers und/oder des weiteren Statorkörpers angeordnet, welcher vorzugsweise zwischen der/den Ausnehmung(en) und den Statorpolen angeordnet ist. Die Lei tungselemente erstrecken sich, insbesondere in dem zwischen den Statorpolen und den Ausnehmungen angeordneten Bereich der Statorkörper, vorzugsweise über eine gesamte Dicke des Statorkörpers und/oder des weiteren Statorkörpers. Furthermore, it is proposed that the cooling unit is intended to generate at least one, in particular the previously mentioned, fluid flow, wherein the cooling unit comprises at least one, in particular the previously mentioned, line element, in particular a multiplicity of line elements, which is connected to the stator unit and/or or is formed by the rotor unit, the fluid flow guided through the line element being provided for cooling at least one, in particular the aforementioned, power-carrying stator element of the static unit. An advantageously simple and efficient routing of the fluid flow through the reluctance motor device can be made possible. An advantageously simple integration of the cooling unit into the stator unit and/or the rotor unit can take place. An advantageously compact design of the reluctance motor device can be achieved, in particular because of the Rotor unit and the stator unit external line elements can be omitted. The cooling unit preferably comprises a plurality of line elements. The stator body of the stator unit preferably delimits the at least one line element. It is also conceivable that the at least one line element is delimited by the stator body and the rotor shaft and/or the rotor body. A “line element” is to be understood in particular as an element which is at least partially intended to guide a fluid flow and which, viewed in a direction of flow, directly encloses the air flow at least partially, preferably on three sides and particularly advantageously completely. A main extension of the line element is preferably parallel to the flow direction of the fluid stream and at least twice, in particular at least 5 times and advantageously at least 10 times longer than at least one cross-sectional extension of the air flow channel. The at least one line element preferably has a round, in particular circular, or a rectangular, in particular square, cross-sectional area, which in particular extends at least essentially perpendicularly to the main extension of the line element. In particular in an embodiment in which at least one of the stator bodies, in particular the stator body and/or the additional stator body, forms the line elements, the line elements are in particular along the axis of rotation of the rotor unit and/or along the central axis of the stator body and/or further Considered the stator body, arranged in a region of the stator body spaced apart from the stator poles and/or of the further stator body, which is preferably arranged between the recess(es) and the stator poles. The line elements extend, in particular in the region of the stator body arranged between the stator poles and the recesses, preferably over the entire thickness of the stator body and/or the further stator body.
Alternativ oder zusätzlich ist denkbar, dass die Kühleinheit zumindest einen Kühlkörper umfasst. Unter einem „Kühlkörper“ soll insbesondere eine Einheit verstanden werden, die gezielt zur Kühlung weiterer Bauteile, insbesondere dem Statorelement, ausgebildet ist und insbesondere mit diesen Bauteilen in thermi schem und vorzugsweise in direktem mechanischen Kontakt steht. Der Kühlkör per weist zur Abgabe von Wärmeenergie an die Umgebung insbesondere eine zumindest 5-fach, insbesondere wenigstens 10-fach, vorteilhaft wenigstens 20- fach und besonders vorteilhaft zumindest 50-fach, größere Oberfläche auf als ein Würfel gleichen Volumens und umfasst insbesondere zumindest 3, insbesondere wenigstens 10 und vorteilhaft mindestens 20, Kühlrippen. Hierbei soll unter einer „Kühlrippe“ ein längliches, insbesondere wand- oder stabförmiges, Bauelement aus einem wärmeleitenden Material verstanden werden, das zumindest an einer Stelle mit einem Grundkörper des Kühlkörpers, insbesondere einstückig, verbun den ist. Unter einem „Grundkörper des Kühlkörpers“ soll insbesondere ein Bau element aus einem wärmeleitenden Material verstanden werden, das zumindest eine Oberfläche aufweist, die in thermischem Kontakt mit einem zu kühlenden Bauteil steht. Vorzugsweise besteht der gesamte Kühlkörper aus einem wärme leitenden Material und weist insbesondere einen plattenförmigen Grundkörper auf, von dem Kühlrippen, vorzugsweise nur auf einer Seite des Grundkörpers, ausgehen. Insbesondere ist der Kühlkörper speziell zu einem Wärmeübertrag auf einen an zumindest einer der Oberflächen des Kühlkörpers entlang strömenden Fluidstrom ausgelegt und verfügt vorzugsweise über Strömungskanäle, durch die ein Fluidstrom zur Kühlung des Kühlkörpers geführt wird. Insbesondere ist der Kühlkörper an der Statoreinheit, insbesondere dem Statorelement, angeordnet.Alternatively or additionally, it is conceivable that the cooling unit comprises at least one heat sink. A “heat sink” is to be understood in particular as a unit that is specifically designed to cool other components, in particular the stator element, and in particular is in thermal and preferably direct mechanical contact with these components. In order to release thermal energy to the environment, the cooling body has in particular an at least 5-fold, in particular at least 10-fold, advantageously at least 20-fold times and particularly advantageously at least 50 times the surface area of a cube of the same volume and comprises in particular at least 3, in particular at least 10 and advantageously at least 20 cooling fins. In this context, a “cooling fin” should be understood to mean an elongate, in particular wall- or rod-shaped, component made of a heat-conducting material which is connected at least at one point to a base body of the heat sink, in particular in one piece. A "base body of the heat sink" is to be understood in particular as a construction element made of a thermally conductive material which has at least one surface which is in thermal contact with a component to be cooled. The entire heat sink preferably consists of a thermally conductive material and has, in particular, a plate-shaped base body from which cooling ribs extend, preferably only on one side of the base body. In particular, the heat sink is specially designed for heat transfer to a fluid stream flowing along at least one of the surfaces of the heat sink and preferably has flow channels through which a fluid stream is guided for cooling the heat sink. In particular, the heat sink is arranged on the stator unit, in particular the stator element.
Es ist denkbar, dass das Kühlelement dazu vorgesehen ist, insbesondere über den Fluidstrom, Wärme von dem Kühlkörper abzuführen. It is conceivable that the cooling element is provided to dissipate heat from the heat sink, in particular via the fluid flow.
Des Weiteren wird vorgeschlagen, dass das zumindest eine Leitungselement zumindest im Wesentlichen parallel zur Drehachse verläuft. Es kann eine vorteil haft schnelle und effiziente Abfuhr von Wärme über den Fluidstrom erreicht wer den. Es können zusätzliche Aussparungen in einer zumindest im Wesentlichen parallel zur Drehachse angeordneten Außenwand der Reluktanzmotorvorrichtung und/oder eines Motorgehäuses des Reluktanzmotors vorteilhaft entfallen, insbe sondere da der Fluidstrom entlang der Drehachse und/oder des Rotorschafts abgeführt werden kann. Es kann eine vorteilhaft kompakte Ausgestaltung der Reluktanzmotorvorrichtung ermöglicht werden, insbesondere hinsichtlich einer maximalen Erstreckung radial zur Drehachse. Bevorzugt ist die Haupterstreckung des zumindest einen Leitungselements zumindest im Wesentlichen parallel zur Drehachse ausgerichtet. Vorzugsweise erstreckt sich das zumindest eine Lei tungselement zumindest im Wesentlichen parallel zu einer Haupterstreckungs achse und/oder der Außenwand des Rotorschafts. Es ist denkbar, dass zumin- dest ein Leitungselement, insbesondere ein weiteres Leitungselement, der Küh leinheit zumindest im Wesentlichen senkrecht zur Drehachse verläuft. Furthermore, it is proposed that the at least one line element runs at least essentially parallel to the axis of rotation. An advantageously fast and efficient dissipation of heat via the fluid flow can be achieved. Additional recesses in an outer wall of the reluctance motor device arranged at least essentially parallel to the axis of rotation and/or a motor housing of the reluctance motor can advantageously be omitted, in particular since the fluid flow can be discharged along the axis of rotation and/or the rotor shaft. An advantageously compact configuration of the reluctance motor device can be made possible, in particular with regard to a maximum extension radially to the axis of rotation. The main extent of the at least one line element is preferably aligned at least essentially parallel to the axis of rotation. The at least one line element preferably extends at least essentially parallel to a main axis of extension and/or the outer wall of the rotor shaft. It is conceivable that at least at least one line element, in particular a further line element, of the cooling unit runs at least essentially perpendicularly to the axis of rotation.
Außerdem wird ein Reluktanzmotor, insbesondere ein synchroner Axialfluss reluktanzmotor, mit zumindest einer erfindungsgemäßen Reluktanzmotorvorrich tung vorgeschlagen. In addition, a reluctance motor, in particular a synchronous axial flux reluctance motor, is proposed with at least one reluctance motor device according to the invention.
Durch die erfindungsgemäße Ausgestaltung des Reluktanzmotors kann eine vor teilhaft schnelle Abfuhr von Wärme der Statoreinheit erreicht werden. Es können ungewollte Beschädigungen, wie beispielsweise Verformungen durch Wärme dehnung o. dgl., und/oder Fehlfunktionen durch eine zu hohe Temperatur der Statoreinheit, insbesondere des Statorelements, vorteilhaft verhindert werden. Es kann eine vorteilhaft hohe Lebensdauer von Bauteilen, insbesondere von tempe raturanfälligen Lagerelementen, des Reluktanzmotors erreicht werden. Dadurch können vorteilhaft geringe Wartungs- und/oder Reparaturkosten ermöglicht wer den. Es kann eine vorteilhaft hohe Flexibilität hinsichtlich eines Einsatzbereichs des Reluktanzmotors ermöglicht werden, insbesondere da ein Umfeld mit gerin geren Toleranzen bezüglich hoher Temperaturen gewählt werden kann. Es kann eine Handhabung des Reluktanzmotors während eines Betriebs vorteilhaft ver einfacht werden, insbesondere da eine Temperatur an einer über die Statorein heit erwärmten Außenseite eines Motorgehäuses vorteilhaft reduziert werden kann. The inventive design of the reluctance motor can be achieved before geous fast dissipation of heat from the stator. Undesired damage, such as deformations due to thermal expansion or the like, and/or malfunctions due to an excessively high temperature of the stator unit, in particular the stator element, can advantageously be prevented. An advantageously long service life can be achieved for components, in particular for bearing elements that are susceptible to temperature, of the reluctance motor. As a result, advantageously low maintenance and/or repair costs can be achieved. An advantageously high degree of flexibility with regard to a field of application of the reluctance motor can be made possible, in particular since an environment with lower tolerances with regard to high temperatures can be selected. Handling of the reluctance motor during operation can advantageously be simplified, in particular since a temperature on an outside of a motor housing that has been heated via the stator unit can be advantageously reduced.
Zudem wird ein Verfahren zu einem Kühlen zumindest einer Statoreinheit eines Reluktanzmotors, insbesondere eines Synchronaxialflussreluktanzmotors, mittels zumindest einer erfindungsgemäßen Reluktanzmotorvorrichtung vorgeschlagen. Vorzugsweise wird in zumindest einem Verfahrensschritt die Rotoreinheit, insbe sondere der Rotorkörper, mittels der Statoreinheit über eine Reluktanzkraft um die Drehachse bewegt. Bevorzugt wird der Rotorschaft und das Kühlelement zusammen mit dem Rotorkörper um die Drehachse bewegt. Vorzugsweise wird in zumindest einem Verfahrensschritt bei der Drehbewegung um die Drehachse mittels des Kühlelements der Fluidstrom erzeugt. Bevorzugt wird der Fluidstrom mittels der Ausnehmungen, des Hohlbereichs des Rotorschafts und/oder mittels des zumindest einen Leitungselements, insbesondere durch den von der Ro- toreinheit und der Statoreinheit begrenzten Innenraum, derart geführt, dass die Statoreinheit, insbesondere das Statorelement, gekühlt wird. In addition, a method for cooling at least one stator unit of a reluctance motor, in particular a synchronous axial flux reluctance motor, by means of at least one reluctance motor device according to the invention is proposed. In at least one method step, the rotor unit, in particular the rotor body, is preferably moved about the axis of rotation by means of the stator unit via a reluctance force. The rotor shaft and the cooling element are preferably moved about the axis of rotation together with the rotor body. The fluid flow is preferably generated in at least one method step during the rotational movement about the axis of rotation by means of the cooling element. The fluid flow is preferably effected by means of the recesses, the hollow area of the rotor shaft and/or by means of the at least one line element, in particular through the gate unit and the stator unit limited interior space, out such that the stator unit, in particular the stator element, is cooled.
Durch die erfindungsgemäße Ausgestaltung des Verfahrens kann eine vorteilhaft schnelle Abfuhr von Wärme der Statoreinheit erreicht werden. Es können unge wollte Beschädigungen, wie beispielsweise Verformungen durch Wärmedehnung o. dgl., und/oder Fehlfunktionen durch eine zu hohe Temperatur der Statorein heit, insbesondere des Statorelements, vorteilhaft verhindert werden. Es kann eine vorteilhaft hohe Lebensdauer von Bauteilen, insbesondere von temperatur anfälligen Lagerelementen, der Reluktanzmotorvorrichtung erreicht werden. Dadurch können vorteilhaft geringe Wartungs- und/oder Reparaturkosten ermög licht werden. Es kann eine vorteilhaft hohe Flexibilität hinsichtlich eines Einsatz bereichs der Reluktanzmotorvorrichtung ermöglicht werden, insbesondere da ein Umfeld mit geringeren Toleranzen bezüglich hoher Temperaturen gewählt wer den kann. Es kann eine Handhabung der Reluktanzmotorvorrichtung während eines Betriebs vorteilhaft vereinfacht werden. The configuration of the method according to the invention enables heat to be dissipated from the stator unit in an advantageously rapid manner. Unwanted damage, such as deformations due to thermal expansion or the like, and/or malfunctions due to an excessively high temperature of the stator unit, in particular the stator element, can advantageously be prevented. An advantageously long service life can be achieved for components, in particular for temperature-sensitive bearing elements, of the reluctance motor device. As a result, advantageously low maintenance and/or repair costs can be made possible. Advantageously, a high degree of flexibility with regard to an area of use of the reluctance motor device can be made possible, in particular since an environment with lower tolerances with regard to high temperatures can be selected. Handling of the reluctance motor device during operation can advantageously be simplified.
Die erfindungsgemäße Reluktanzmotorvorrichtung, der erfindungsgemäße Re luktanzmotor und/oder das erfindungsgemäße Verfahren sollen/soll hierbei nicht auf die oben beschriebene Anwendung und Ausführungsform beschränkt sein. Insbesondere können/kann die erfindungsgemäße Reluktanzmotorvorrichtung, der erfindungsgemäße Reluktanzmotor und/oder das erfindungsgemäße Verfah ren zu einer Erfüllung einer hierin beschriebenen Funktionsweise eine von einer hierin genannten Anzahl von einzelnen Elementen, Bauteilen und Einheiten so wie Verfahrensschritten abweichende Anzahl aufweisen. Zudem sollen bei den in dieser Offenbarung angegebenen Wertebereichen auch innerhalb der genannten Grenzen liegende Werte als offenbart und als beliebig einsetzbar gelten. The reluctance motor device according to the invention, the re luctance motor according to the invention and/or the method according to the invention should/should not be limited to the application and embodiment described above. In particular, the reluctance motor device according to the invention, the reluctance motor according to the invention and/or the method according to the invention can have a number of individual elements, components and units as well as method steps that differs from the number specified here in order to fulfill a function described herein. In addition, in the value ranges specified in this disclosure, values lying within the specified limits should also be considered disclosed and can be used as desired.
Zeichnungen drawings
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merk- male in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammen fassen. Further advantages result from the following description of the drawings. In the drawings an embodiment of the invention is shown. The drawings, the description and the claims contain numerous features paint in combination. The person skilled in the art will expediently also consider the features individually and combine them into further meaningful combinations.
Es zeigen: Show it:
Fig. 1 eine schematische Schnittansicht eines erfindungsgemäßen Reluktanzmotors mit einer erfindungsgemäßen Reluktanzmo torvorrichtung, welche eine Kühleinheit umfasst, zur Durchfüh rung eines erfindungsgemäßen Verfahrens,1 shows a schematic sectional view of a reluctance motor according to the invention with a reluctance motor according to the invention, which comprises a cooling unit, for carrying out a method according to the invention,
Fig. 2 eine perspektivische Schnittansicht einer Rotoreinheit der erfin dungsgemäßen Reluktanzmotorvorrichtung mit einem an einem Rotorelement der Rotoreinheit angeordneten Kühlelement der Kühleinheit und 2 shows a perspective sectional view of a rotor unit of the reluctance motor device according to the invention with a cooling element of the cooling unit arranged on a rotor element of the rotor unit and
Fig. 3 eine schematische Darstellung eines beispielhaften Ablaufs des erfindungsgemäßen Verfahrens zu einem Kühlen einer Stato reinheit des erfindungsgemäßen Reluktanzmotors mittels der erfindungsgemäßen Reluktanzmotorvorrichtung. 3 shows a schematic representation of an exemplary sequence of the method according to the invention for cooling a stator unit of the reluctance motor according to the invention by means of the reluctance motor device according to the invention.
Beschreibung des Ausführungsbeispiels Description of the embodiment
In Figur 1 ist eine schematische Darstellung eines Reluktanzmotors 10 gezeigt. Der Reluktanzmotor 10 ist insbesondere als ein Synchronaxialflussreluktanzmo tor ausgebildet. Der Reluktanzmotor 10 umfasst eine Reluktanzmotorvorrichtung 12. Die Reluktanzmotorvorrichtung 12 umfasst eine Statoreinheit 14, eine Ro toreinheit 16 und eine Kühleinheit 18. Die Statoreinheit 14 ist dazu vorgesehen, die Rotoreinheit 16 durch eine Reluktanzkraft in zumindest eine Drehbewegung um zumindest eine Drehachse 20 der Rotoreinheit 16 zu versetzen. Die Ro toreinheit 16 ist dazu vorgesehen, über die Drehbewegung eine Antriebskraft bereitzustellen. Die Kühleinheit 18 ist dazu vorgesehen, zumindest die Statorein heit 14 zu kühlen und insbesondere Wärme von der Statoreinheit 14 an eine Umgebung des Reluktanzmotors 10, insbesondere der Reluktanzmotorvorrich tung 12, abzuführen. Es sind auch andere Ausgestaltungen des Reluktanzmotors 10 denkbar. Insbesondere ist denkbar, dass die Reluktanzmotorvorrichtung 12 mehr als eine Rotoreinheit 16 und/oder mehr als eine Statoreinheit 14 umfasst. Vorzugsweise umfasst die Reluktanzmotorvorrichtung 12 jeweils eine gleiche Anzahl an Rotoreinheiten 16 und Statoreinheiten 14. Der Reluktanzmotor 10 um fasst eine Steuer- und/oder Regeleinheit 22 zu einer Steuerung und/oder Rege lung der Statoreinheit 14. Insbesondere ist die Steuer- und/oder Regeleinheit 22 dazu vorgesehen, die Statoreinheit 14 zu einer Erzeugung der Reluktanzkraft über zumindest einen elektrischen Strom anzusteuern. A schematic representation of a reluctance motor 10 is shown in FIG. The reluctance motor 10 is designed in particular as a synchronous axial flow reluctance motor. The reluctance motor 10 comprises a reluctance motor device 12. The reluctance motor device 12 comprises a stator unit 14, a rotor unit 16 and a cooling unit 18. The stator unit 14 is intended to rotate the rotor unit 16 by means of a reluctance force into at least one rotational movement about at least one axis of rotation 20 of the rotor unit 16 to move. The rotor unit 16 is intended to provide a driving force via the rotary movement. The cooling unit 18 is intended to cool at least the Statorein unit 14 and in particular to dissipate heat from the stator unit 14 to an environment of the reluctance motor 10, in particular the device 12 Reluctanzmotorvorrich. Other configurations of the reluctance motor 10 are also conceivable. In particular, it is conceivable that the reluctance motor device 12 comprises more than one rotor unit 16 and/or more than one stator unit 14. The reluctance motor device 12 preferably includes the same number of rotor units 16 and stator units 14. The reluctance motor 10 includes a control and/or regulation unit 22 for controlling and/or regulating the stator unit 14. In particular, the control and/or regulation unit 22 provided to control the stator unit 14 to generate the reluctance force via at least one electric current.
Die Statoreinheit 14 umfasst einen Statorkörper 24 und einen weiteren Statorkör per 26. Der Statorkörper 24 und der weitere Statorkörper 26 bilden jeweils eine Vielzahl von Statorpolen 28 aus, die insbesondere jeweils als Fortsätze an einer einem Rotorkörper 30 der Rotoreinheit 16 zugewandten Seite des Statorkörpers 24 oder des weiteren Statorkörpers 26 angeordnet sind und sich insbesondere jeweils von einem Grundkörper des Statorkörpers 24 oder des weiteren Stator körpers 26 in eine zumindest im Wesentlichen parallel zur Drehachse 20 ausge richtete Richtung erstrecken. Vorzugsweise ist der Rotorkörper 30 senkrecht zur Drehachse 20 der Rotoreinheit 16 betrachtet zwischen dem Statorkörper 24 und dem weiteren Statorkörper 26 angeordnet. Die Statoreinheit 14 umfasst eine Vielzahl von Wicklungen 32, wobei an jedem Statorpol 28 des Statorkörpers 24 und des weiteren Statorkörpers 26 jeweils zumindest eine Wicklung 32 angeord net ist. Jeweils einer der Statorpole 28 und die zumindest eine an dem Statorpol 28 angeordnete Wicklung 32 bilden zusammen einen Elektromagneten 34, 35. Die Wicklungen 32 sind insbesondere zumindest im Wesentlichen senkrecht zur Drehachse 20 der Rotoreinheit 16 ausgerichtet, wobei insbesondere eine Mittel achse 36 durch die Wicklungen 32 zumindest im Wesentlichen parallel zur Dreh achse 20 ausgerichtet ist. Vorzugsweise ist ein über die Elektromagneten 34, 35 generiertes Magnetfeld 38 (in Figur 1 schematisch über Feldlinien gezeigt), ins besondere in einem homogenen Bereich des Magnetfelds 38, zumindest im We sentlichen parallel zur Drehachse 20 ausgerichtet. Der Statorkörper 24 und der weitere Statorkörper 26 begrenzen jeweils eine Ausnehmung 40, die um die Drehachse 20 und/oder um Mittelachsen 42 des Statorkörpers 24 und des weite ren Statorkörpers 26 ausgebildet sind. Insbesondere sind die Ausnehmungen 40 jeweils zylinderförmig ausgebildet, wobei die Drehachse 20 der Rotoreinheit 16 und die Mittelachsen der Statorkörper 24, 26 eine Symmetrieachse der Ausneh mungen 40 umfassen. Bevorzugt sind die Ausnehmungen 40 der Statorkörper 24, 26 dazu vorgesehen, zumindest teilweise einen Rotorschaft 44 der Rotorein heit 16 aufzunehmen. Die Statorkörper 24, 26 und die Rotoreinheit 16, insbeson dere der Rotorschaft 44, sind beabstandet voneinander angeordnet. Bevorzugt ist die Rotoreinheit 16 dazu vorgesehen, zumindest ein mit dem Rotorschaft 44 verbundenes Abtriebselement (in den Figuren nicht gezeigt) anzutreiben. Bei spielsweise ist das Abtriebselement als ein Rad, als eine Antriebswelle, als ein Riemen, als ein Förderelement o.dgl. ausgebildet. Insbesondere ist eine Haupt erstreckungsachse 46 des Rotorschafts 44 koaxial zur Drehachse 20 der Ro toreinheit 16 angeordnet. Bevorzugt sind die an dem Statorkörper 24 ausgebilde ten Elektromagnete 34 und die an dem weiteren Statorkörper 26 ausgebildeten Elektromagnete 35 entlang der Drehachse 20 der Rotoreinheit 16 betrachtet je weils koaxial zueinander und/oder hintereinander angeordnet. The stator unit 14 comprises a stator body 24 and a further stator body 26. The stator body 24 and the further stator body 26 each form a plurality of stator poles 28, which in particular are each formed as extensions on a side of the stator body 24 facing a rotor body 30 of the rotor unit 16 or of the further stator body 26 are arranged and in particular each extend from a base body of the stator body 24 or of the further stator body 26 in an at least substantially parallel to the axis of rotation 20 directed direction. The rotor body 30 is preferably arranged between the stator body 24 and the further stator body 26 when viewed perpendicularly to the axis of rotation 20 of the rotor unit 16 . The stator unit 14 comprises a multiplicity of windings 32, with at least one winding 32 being arranged on each stator pole 28 of the stator body 24 and of the further stator body 26. One of the stator poles 28 and the at least one winding 32 arranged on the stator pole 28 together form an electromagnet 34, 35. The windings 32 are in particular aligned at least substantially perpendicularly to the axis of rotation 20 of the rotor unit 16, with a central axis 36 in particular passing through the windings 32 is aligned at least essentially parallel to the axis of rotation 20 . Preferably, a magnetic field 38 generated by the electromagnets 34, 35 (shown schematically by field lines in FIG. 1), particularly in a homogeneous area of the magnetic field 38, is aligned at least substantially parallel to the axis of rotation 20. The stator body 24 and the further stator body 26 each delimit a recess 40 which is formed around the axis of rotation 20 and/or around central axes 42 of the stator body 24 and the further stator body 26 . In particular, the recesses 40 are each cylindrical, with the axis of rotation 20 of the rotor unit 16 and the central axes of the stator bodies 24, 26 comprising an axis of symmetry of the recesses 40. The recesses 40 are preferably in the stator body 24, 26 provided to at least partially accommodate a rotor shaft 44 of the rotor unit 16. The stator body 24, 26 and the rotor unit 16, in particular the rotor shaft 44 are spaced from each other. The rotor unit 16 is preferably provided to drive at least one output element (not shown in the figures) connected to the rotor shaft 44 . For example, the output element as a wheel, as a drive shaft, as a belt, as a conveyor element or the like. educated. In particular, a main axis of extension 46 of the rotor shaft 44 is arranged coaxially with the axis of rotation 20 of the rotor unit 16 . The electromagnets 34 configured on the stator body 24 and the electromagnets 35 configured on the other stator body 26 are preferably arranged coaxially with one another and/or one behind the other when viewed along the axis of rotation 20 of the rotor unit 16 .
Die Rotoreinheit 16 umfasst den Rotorkörper 30 und den Rotorschaft 44. Insbe sondere ist der Rotorkörper 30 gegenüber einer Bewegung um die Drehachse 20 drehfest mit dem Rotorschaft 44 verbunden, wobei der Rotorschaft 44 durch die Reluktanzkraft zusammen mit dem Rotorkörper 30 um die Drehachse 20 bewegt wird. Der Rotorkörper 30 umfasst einen Reluktanzbereich 48, der hinsichtlich eines radialen Abstands zur Drehachse 20 der Rotoreinheit 16 in einem Bereich der Elektromagnete 34, 35 angeordnet ist. Der Rotorkörper 30, insbesondere der Reluktanzbereich 48, kann eine Vielzahl von verschiedenen Formen aufweisen und muss insbesondere nicht zumindest im Wesentlichen senkrecht zur Dreh achse 20 der Rotoreinheit 16 ausgebildet sein. Die Statoreinheit 14 ist dazu vor gesehen, den Rotorkörper 30 durch eine gezielte Ansteuerung von jeweils zwei einander zugewandten und koaxial zueinander angeordneten Elektromagneten 34, 35 in eine Umlaufrichtung 50 um die Drehachse 20 der Rotoreinheit 16 (siehe Figur 2) fortlaufend mit einer Reluktanzkraft zu beaufschlagen und dadurch die Drehbewegung zu erzeugen. Der Rotorkörper 30 ist zumindest im Wesentlichen hohlzylinderförmig ausgebildet. Der Rotorkörper 30 weist eine kreisringförmige Grundfläche auf, welche insbesondere zumindest im Wesentlichen senkrecht zur Drehachse 20 verläuft. Eine maximale radiale Erstreckung 52 des Rotorkörpers 30, insbesondere des Reluktanzbereichs 48, hinsichtlich der Drehachse 20 ent spricht bevorzugt zumindest im Wesentlichen einer maximalen radialen Erstre ckung 54 des Statorkörpers 24, des weiteren Statorkörpers 26 und/oder der Elektromagnete 34, 35 hinsichtlich der Drehachse 20. Vorzugsweise ist der Ro- torkörper 30, besonders bevorzugt zumindest in dem Reluktanzbereich 48, aus einem, einen Magnetfluss fördernden Material ausgebildet. Vorzugsweise weist der Rotorkörper 30 eine Haupterstreckungsachse und eine Haupterstreckungs ebene auf, welche jeweils zumindest im Wesentlichen senkrecht zu der Drehach se 20 der Rotoreinheit 16 ausgerichtet sind. Der Rotorkörper 30 erstreckt sich materiell von einem, insbesondere von null verschiedenen, Innenradius 56 radial, insbesondere von der Drehachse 20 der Rotoreinheit 16 weg, bis zu einem Au ßenradius 58. Vorzugsweise weist der Rotorkörper 30 entlang der Drehachse 20 der Rotoreinheit 16 eine maximale Erstreckung 60 auf, welche bevorzugt kürzer ist als die maximale radiale Erstreckung 52 des Rotorkörpers 30 senkrecht zu der Drehachse 20 und/oder entlang der Haupterstreckungsachse des Rotorkörpers 30. Vorzugsweise weist der Rotorkörper 30, insbesondere entlang der Drehachse 20 betrachtet, zwei einander abgewandte Basisaußenseiten 62 auf. Vorzugswei se sind die zumindest zwei Basisaußenseiten 62 gleich, insbesondere gleich strukturiert, ausgebildet. Vorzugsweise weisen die Basisaußenseiten 62 jeweils den Reluktanzbereich 48 auf. Bevorzugt ist der Reluktanzbereich 48 dazu vorge sehen, zumindest größtenteils in dem zumindest einen, insbesondere durch die Statoreinheit 14 generierten, Magnetfeld 38 angeordnet zu sein, insbesondere zu einem Fördern der Reluktanzkraft. Vorzugsweise ist der Rotorkörper 30, insbe sondere der Reluktanzbereich 48, in zumindest einem Betriebszustand, insbe sondere während der Drehbewegung, zwischen zumindest zwei koaxial zueinan der angeordneten Elektromagneten 34, 35 der Statoreinheit 14 angeordnet. Die Basisaußenseiten 62 können insbesondere von einer einheitlich ebenen Fläche verschieden ausgebildet sein. Vorzugsweise begrenzt der zumindest eine Rotor körper 30 zumindest eine Körperausnehmung 64, welche insbesondere zumin dest im Wesentlichen auf eine kreisrunde Form begrenzt ist und welche insbe sondere an den Basisaußenseiten 62 mittig angeordnet ist. Vorzugsweise ist die Körperausnehmung 64 von dem Rotorkörper 30 auf eine Erstreckung innerhalb des Innenradius 56 begrenzt. Vorzugsweise ist der Rotorkörper 30 beabstandet von der Drehachse 20 angeordnet. Insbesondere begrenzen die Rotoreinheit 16 und die Statoreinheit 14 einen Innenraum 66 der Reluktanzmotorvorrichtung 12. The rotor unit 16 comprises the rotor body 30 and the rotor shaft 44. In particular, the rotor body 30 is connected to the rotor shaft 44 in a rotationally fixed manner relative to a movement about the axis of rotation 20, with the rotor shaft 44 being moved about the axis of rotation 20 together with the rotor body 30 by the reluctance force . The rotor body 30 comprises a reluctance area 48 which is arranged in an area of the electromagnets 34, 35 with regard to a radial distance from the axis of rotation 20 of the rotor unit 16. The rotor body 30, in particular the reluctance area 48, can have a large number of different shapes and in particular does not have to be at least substantially perpendicular to the axis of rotation 20 of the rotor unit 16. The stator unit 14 is intended to continuously apply a reluctance force to the rotor body 30 in a direction of rotation 50 about the axis of rotation 20 of the rotor unit 16 (see Figure 2) by targeted activation of two mutually facing and coaxially arranged electromagnets 34, 35 and thereby generate the rotary motion. The rotor body 30 is at least essentially in the form of a hollow cylinder. The rotor body 30 has an annular base area, which in particular runs at least substantially perpendicularly to the axis of rotation 20 . A maximum radial extent 52 of the rotor body 30, in particular of the reluctance region 48, with respect to the axis of rotation 20 preferably corresponds at least essentially to a maximum radial extent 54 of the stator body 24, the further stator body 26 and/or the electromagnets 34, 35 with respect to the axis of rotation 20 Preferably, the Ro- Gate body 30, particularly preferably at least in the reluctance area 48, is made of a material that promotes a magnetic flux. The rotor body 30 preferably has a main axis of extent and a main plane of extent, which are each aligned at least essentially perpendicularly to the axis of rotation 20 of the rotor unit 16 . The rotor body 30 extends materially from an inner radius 56, in particular different from zero, radially, in particular away from the axis of rotation 20 of the rotor unit 16, to an outer radius 58. The rotor body 30 preferably has a maximum extension along the axis of rotation 20 of the rotor unit 16 60, which is preferably shorter than the maximum radial extension 52 of the rotor body 30 perpendicular to the axis of rotation 20 and/or along the main axis of extension of the rotor body 30. Preferably, the rotor body 30, particularly viewed along the axis of rotation 20, has two base outer sides 62 facing away from one another . The at least two base outer sides 62 are preferably of the same design, in particular of the same structure. The base outer sides 62 preferably each have the reluctance region 48 . The reluctance region 48 is preferably provided to be arranged at least for the most part in the at least one magnetic field 38 generated in particular by the stator unit 14, in particular to promote the reluctance force. The rotor body 30, in particular the special reluctance region 48, is preferably arranged in at least one operating state, in particular during the rotary movement, between at least two electromagnets 34, 35 of the stator unit 14 which are arranged coaxially to one another. The base outer sides 62 can in particular be configured differently from a uniformly flat surface. The at least one rotor body 30 preferably delimits at least one body recess 64, which is in particular at least essentially limited to a circular shape and which is arranged in the center in particular on the outer sides 62 of the base. Preferably, the body recess 64 is defined by the rotor body 30 to extend within the inner radius 56 . The rotor body 30 is preferably arranged at a distance from the axis of rotation 20 . In particular, the rotor unit 16 and the stator unit 14 delimit an interior space 66 of the reluctance motor device 12.
Die Kühleinheit 18 umfasst ein Kühlelement 68, das dazu vorgesehen ist, sich bei der Drehbewegung durch die Reluktanzkraft um die Drehachse 20 zu bewegen. Das Kühlelement 68 ist zumindest hinsichtlich einer Bewegung um die Drehach- se 20 drehfest an dem Rotorschaft 44 angeordnet. Das Kühlelement 68 ist zu mindest hinsichtlich einer Bewegung um die Drehachse 20 drehfest an dem Ro torkörper 30 angeordnet. Der Rotorkörper 30 dazu vorgesehen, das Kühlelement 68 bei der durch die Reluktanzkraft erzeugten Drehbewegung um die Drehachse 20 anzutreiben. Das Kühlelement 68 ist als ein Lüfterrad ausgebildet. Das Küh lelement 68 ist zusammen mit dem Rotorkörper 30 auch in Figur 2 gezeigt. Es sind aber auch andere Ausgestaltungen des Kühlelements 68 denkbar, bei spielsweise als eine Schaufel, als ein Kolben oder als ein anderes, dem Fach mann bekanntes Förderelement. Das Kühlelement 68 weist eine Mittelachse 70 auf, die insbesondere als Symmetrieachse ausgebildet ist. Das Kühlelement 68 ist derart angeordnet, dass die Mittelachse 70 des Kühlelements 68 koaxial zur Drehachse 20 der Rotoreinheit 16 angeordnet ist. Das Kühlelement 68 begrenzt eine Ausnehmung 72 (siehe auch Figur 2), welche insbesondere um die Mittel achse 70 des Kühlelements 68 ausgebildet ist. Die vom Kühlelement 68 begrenz te Ausnehmung 72 ist zylinderförmig ausgebildet und symmetrisch um die Dreh achse 20 und/oder die Mittelachse 70 des Kühlelements 68 angeordnet. Insbe sondere ist die vom Kühlelement 68 begrenzte Ausnehmung 72 dazu vorgese hen, den Rotorschaft 44 der Rotoreinheit 16 zumindest teilweise aufzunehmen. Das Kühlelement 68 ist über die Ausnehmung 72 des Kühlelements 68 begren zende Innenflächen des Kühlelements 68 an dem Rotorschaft 44 angeordnet, insbesondere auf den Rotorschaft 44 aufgeschoben. The cooling unit 18 comprises a cooling element 68 which is intended to move about the axis of rotation 20 during the rotary movement due to the reluctance force. The cooling element 68 is at least with respect to a movement about the axis of rotation se 20 rotatably on the rotor shaft 44 is arranged. The cooling element 68 is arranged on the rotor body 30 in a rotationally fixed manner, at least with regard to a movement about the axis of rotation 20 . The rotor body 30 is intended to drive the cooling element 68 during the rotary motion about the axis of rotation 20 generated by the reluctance force. The cooling element 68 is designed as a fan wheel. The cooling element 68 is also shown in FIG. 2 together with the rotor body 30 . However, other configurations of the cooling element 68 are also conceivable, for example as a blade, as a piston or as another conveying element known to the person skilled in the art. The cooling element 68 has a central axis 70 which is designed in particular as an axis of symmetry. The cooling element 68 is arranged in such a way that the central axis 70 of the cooling element 68 is arranged coaxially to the axis of rotation 20 of the rotor unit 16 . The cooling element 68 delimits a recess 72 (see also FIG. 2), which is formed in particular around the central axis 70 of the cooling element 68 . The recess 72 delimited by the cooling element 68 is cylindrical and arranged symmetrically about the axis of rotation 20 and/or the central axis 70 of the cooling element 68 . In particular, the recess 72 delimited by the cooling element 68 is intended to at least partially accommodate the rotor shaft 44 of the rotor unit 16 . The cooling element 68 is arranged on the rotor shaft 44 via the recess 72 of the cooling element 68 limiting inner surfaces of the cooling element 68 , in particular pushed onto the rotor shaft 44 .
Die Kühleinheit 18, insbesondere das Kühlelement 68, ist dazu vorgesehen, zu mindest einen Fluidstrom 74 zu erzeugen und in den von der Rotoreinheit 16 und der Statoreinheit 14 begrenzten Innenraum 66 zu leiten. Das Kühlelement 68 ist dazu vorgesehen, den Fluidstrom 74 zu erzeugen und/oder zu leiten. Das Küh lelement 68 ist dazu vorgesehen, den Fluidstrom 74, insbesondere in einem Nahbereich um das Kühlelement 68, zumindest im Wesentlichen parallel zur Drehachse 20 zu leiten. Es ist auch denkbar, dass das Kühlelement 68 dazu vor gesehen ist, den Fluidstrom 74, insbesondere in einem Nahbereich um das Küh lelement 68, zumindest im Wesentlichen senkrecht zur Drehachse 20 der Ro toreinheit 16 und/oder radial von der Drehachse 20 weg zu leiten. Insbesondere ist der Fluidstrom 74 als ein Luftstrom ausgebildet. Es ist aber auch denkbar, dass zur Kühlung der Statoreinheit 14 ein anderes Gas oder ein anderes Gas gemisch oder eine Flüssigkeit verwendet wird, welche sich innerhalb des Re- luktanzmotors 10 befindet. Der von der Rotoreinheit 16 und der Statoreinheit 14 begrenzte Innenraum 66 umfasst ein durch Spalte zwischen den Elektromagne ten 34, 35 der Statoreinheit 14 und/oder einen durch die Ausnehmungen 40 des Statorkörpers 24 und/oder des weiteren Statorkörpers 26 gebildeten Bereich. Vorzugsweise ist der Fluidstrom 74 dazu vorgesehen, Wärme von den Statorpo len 28, dem Statorkörper 24 und/oder den Elektromagneten 34, 35 der Statorein heit 14 abzuführen. Insbesondere grenzt der Innenraum 66 zumindest teilweise an die Statorkörper 24, 26, die Statorpole 28 und/oder die Elektromagnete 34,The cooling unit 18, in particular the cooling element 68, is intended to generate at least one fluid flow 74 and to conduct it into the interior space 66 delimited by the rotor unit 16 and the stator unit 14. The cooling element 68 is intended to generate and/or direct the fluid flow 74 . The cooling element 68 is provided for guiding the fluid flow 74 , in particular in a region close to the cooling element 68 , at least essentially parallel to the axis of rotation 20 . It is also conceivable for the cooling element 68 to be provided for directing the fluid flow 74, in particular in a region close to the cooling element 68, at least essentially perpendicularly to the axis of rotation 20 of the rotor unit 16 and/or radially away from the axis of rotation 20 . In particular, the fluid flow 74 is designed as an air flow. However, it is also conceivable that another gas or another gas mixture or a liquid is used for cooling the stator unit 14, which is inside the reactor. luctance engine 10 is located. The interior space 66 delimited by the rotor unit 16 and the stator unit 14 comprises an area formed by gaps between the electromagnets 34, 35 of the stator unit 14 and/or by the recesses 40 of the stator body 24 and/or the further stator body 26. Preferably, the fluid stream 74 is provided to heat from the Statorpo len 28, the stator body 24 and / or the electromagnet 34, 35 of the unit 14 Statorein dissipate. In particular, the interior space 66 is at least partially adjacent to the stator bodies 24, 26, the stator poles 28 and/or the electromagnets 34,
35. 35
Die Rotoreinheit 16 umfasst den Rotorschaft 44, welcher entlang der Drehachse 20 betrachtet zumindest im Wesentlichen hohl ausgebildet ist. Der Rotorschaft 44 ist dazu vorgesehen, sich bei der Drehbewegung durch die Reluktanzkraft um die Drehachse 20 zu bewegen. Die Kühleinheit 18 umfasst eine Vielzahl von Durch führungen 76, die durch eine Außenwand 78 des Rotorschafts 44 begrenzt sind. Der Rotorschaft 44 ist, insbesondere mit Ausnahme der Durchführungen 76, zu mindest im Wesentlichen hohlzylinderförmig ausgebildet. Die Außenwand 78 des Rotorschafts 44 begrenzt einen Hohlbereich 80 des Rotorschafts 44. Insbeson dere ist der Hohlbereich 80 zumindest im Wesentlichen zylinderförmig ausgebil det und erstreckt sich symmetrisch um die Haupterstreckungsachse 46 des Ro torschafts 44 und/oder die Drehachse 20 der Rotoreinheit 16. Die Durchführun gen 76 sind jeweils zylinderförmig ausgebildet. Es ist auch denkbar, dass die Durchführungen 76 eine andere Grundform aufweisen und/oder eine strö mungsoptimierte Form aufweisen, wobei beispielsweise die Durchführungen 76 begrenzende Kanten 82 der Außenwand 78 des Rotorschafts 44 abgerundet sind oder eine Fase aufweisen. Die Durchführungen 76 sind gleichmäßig verteilt um die Drehachse 20 an der Außenwand 78 angeordnet. Insbesondere umfasst die Kühleinheit 18 eine gerade Anzahl an Durchführungen 76, welche insbesondere durch die Außenwand 78 des Rotorschafts 44 begrenzt sind. Die Durchführungen 76 sind entlang der Drehachse 20 betrachtet vor oder hinter dem Rotorkörper 30 und/oder dem Kühlelement 68 an dem Rotorschaft 44 angeordnet. Insbesondere sind die Durchführungen 76 senkrecht zur Drehachse 20 betrachtet außerhalb der zumindest im Wesentlichen parallel zur Drehachse 20 angeordneten maxi malen Erstreckung 60 des Rotorkörpers 30 und/oder des Kühlelements 68 an dem Rotorschaft 44 angeordnet. Die Durchführungen 76 sind jeweils fluidtech- nisch mit dem Hohlbereich 80 des Rotorschafts 44 verbunden. Die Durchführun gen 76 erstrecken sich über eine gesamte Dicke 86 der Außenwand 78 des Ro torschafts 44. Insbesondere sind die Durchführungen 76, insbesondere in einem montierten Zustand des Rotorschafts 44, zumindest fluidtechnisch mit dem von der Rotoreinheit 16 und der Statoreinheit 14 begrenzten Innenraum 66 verbun den. Bevorzugt sind die Durchführungen 76 dazu vorgesehen, den Hohlbereich 80 des Rotorschafts 44 und den Innenraum 66 fluidtechnisch miteinander zu ver binden. The rotor unit 16 comprises the rotor shaft 44 which, viewed along the axis of rotation 20, is at least essentially hollow. The rotor shaft 44 is intended to move about the axis of rotation 20 during the rotary movement due to the reluctance force. The cooling unit 18 includes a plurality of passages 76 defined by an outer wall 78 of the rotor shaft 44 . The rotor shaft 44 is, in particular with the exception of the passages 76, at least essentially in the form of a hollow cylinder. The outer wall 78 of the rotor shaft 44 delimits a hollow area 80 of the rotor shaft 44. In particular, the hollow area 80 is at least essentially cylindrical and extends symmetrically around the main axis of extension 46 of the rotor shaft 44 and/or the axis of rotation 20 of the rotor unit 16. The implementation gene 76 are each cylindrical. It is also conceivable that the bushings 76 have a different basic shape and/or have a flow-optimized shape, with edges 82 of the outer wall 78 of the rotor shaft 44 delimiting the bushings 76 being rounded off or having a chamfer, for example. The bushings 76 are distributed uniformly around the axis of rotation 20 on the outer wall 78 . In particular, the cooling unit 18 includes an even number of passages 76 which are delimited in particular by the outer wall 78 of the rotor shaft 44 . The passages 76 are arranged on the rotor shaft 44 in front of or behind the rotor body 30 and/or the cooling element 68 when viewed along the axis of rotation 20 . In particular, the passages 76 are arranged on the rotor shaft 44 outside of the maximum extent 60 of the rotor body 30 and/or the cooling element 68, which is arranged at least essentially parallel to the axis of rotation 20, as viewed perpendicularly to the axis of rotation 20. The bushings 76 are each fluid-tech nically connected to the hollow portion 80 of the rotor shaft 44. The leadthroughs 76 extend over an entire thickness 86 of the outer wall 78 of the rotor shaft 44. In particular, the leadthroughs 76, in particular when the rotor shaft 44 is in an assembled state, are connected at least in terms of fluid technology to the interior space 66 delimited by the rotor unit 16 and the stator unit 14 the. The bushings 76 are preferably provided for fluidly connecting the hollow region 80 of the rotor shaft 44 and the interior space 66 to one another.
Die Kühleinheit 18 umfasst eine Mehrzahl von Leitungselementen 88, welche von der Statoreinheit 14, insbesondere dem Statorkörper 24 und dem weiteren Statorkörper 26, ausgebildet sind. Ein durch die Leitungselemente 88 geführter Fluidstrom 74 ist zu einer Kühlung von leistungstragenden Statorelementen der Statoreinheit 14 vorgesehen. Vorzugsweise können die/der Statorkörper 24, die Elektromagnete 34, 35, insbesondere die Wicklungen 32 und/oder die Statorpole 28, und/oder Verbindungsleitungen zwischen der Steuer- und/oder Regeleinheit 22 und der Statoreinheit 14 als leistungstragende Statorelemente ausgebildet sein. Insbesondere in der in den Figuren gezeigten Ausgestaltung, ist ein durch die Leitungselemente 88 geführter Fluidstrom 74 zu einer Kühlung des Statorkör pers 24, des weiteren Statorkörpers 26, der Statorpole 28 und der Wicklungen 32 der Statoreinheit 14 vorgesehen. Die Leitungselemente 88 verlaufen zumindest im Wesentlichen parallel zur Drehachse 20. Die Leitungselemente 88 weisen jeweils eine runde, insbesondere kreisflächenförmige, Querschnittsfläche auf, welche sich insbesondere zumindest im Wesentlichen senkrecht zu einer Haupt erstreckung 92 des Leitungselements 88 erstreckt. Es sind aber auch andere Ausgestaltungen der Leitungselemente 88 denkbar. Die Leitungselemente 88 erstrecken sich, insbesondere in einem zwischen den Statorpolen 28 und den durch die Statorkörper 24, 26 begrenzten Ausnehmungen 40 angeordneten Be reich der Statorkörper 24, 26, über eine gesamte Dicke 90 des Statorkörpers 24 und/oder des weiteren Statorkörpers 26. Alternativ oder zusätzlich ist denkbar, dass die Rotoreinheit 16, insbesondere der Rotorkörper 30, die Leitungselemente 88 oder weitere Leitungselemente der Kühleinheit 18 ausbildet. Bevorzugt ist die Haupterstreckung 92 der Leitungselemente 88 jeweils zumindest im Wesentli chen parallel zur Drehachse 20 ausgerichtet. Vorzugsweise erstrecken sich die Leitungselemente 88 zumindest im Wesentlichen parallel zu der Haupterstre- ckungsachse 46 und der Außenwand 78 des Rotorschafts 44. Es ist denkbar, dass die Kühleinheit 18 zumindest ein weiteres Leitungselement umfasst, wel ches zumindest im Wesentlichen senkrecht zur Drehachse 20 verläuft und von der Rotoreinheit 16 und/oder der Statoreinheit 14 ausgebildet ist. Zusätzlich ist denkbar, dass die Kühleinheit 18 zumindest einen Kühlkörper zu einem Kühlen der Statoreinheit 14 umfasst, welcher insbesondere in den Figuren nicht gezeigt ist. Insbesondere ist ein Fluidstrom 74 der Kühleinheit 18 dazu vorgesehen, Wärme von dem Kühlkörper aus der Reluktanzmotorvorrichtung 12 abzuführen. The cooling unit 18 comprises a plurality of line elements 88 which are formed by the stator unit 14, in particular the stator body 24 and the further stator body 26. A fluid flow 74 guided through the line elements 88 is provided for cooling power-carrying stator elements of the stator unit 14 . The stator body(s) 24, the electromagnets 34, 35, in particular the windings 32 and/or the stator poles 28, and/or connecting lines between the control and/or regulating unit 22 and the stator unit 14 can preferably be designed as power-carrying stator elements. Particularly in the embodiment shown in the figures, a fluid flow 74 guided through the line elements 88 is provided for cooling the stator body 24 , the further stator body 26 , the stator poles 28 and the windings 32 of the stator unit 14 . The line elements 88 run at least essentially parallel to the axis of rotation 20. The line elements 88 each have a round, in particular circular, cross-sectional area, which in particular extends at least essentially perpendicularly to a main extent 92 of the line element 88. However, other configurations of the line elements 88 are also conceivable. The line elements 88 extend, in particular in a region of the stator bodies 24, 26 arranged between the stator poles 28 and the recesses 40 delimited by the stator bodies 24, 26, over an entire thickness 90 of the stator body 24 and/or the further stator body 26. Alternatively or it is also conceivable that the rotor unit 16, in particular the rotor body 30, forms the line elements 88 or other line elements of the cooling unit 18. The main extension 92 of the line elements 88 is preferably aligned at least essentially parallel to the axis of rotation 20 . The line elements 88 preferably extend at least essentially parallel to the main first stretch ckungsachse 46 and the outer wall 78 of the rotor shaft 44. It is conceivable that the cooling unit 18 comprises at least one further line element, which runs at least substantially perpendicularly to the axis of rotation 20 and is formed by the rotor unit 16 and/or the stator unit 14. In addition, it is conceivable that the cooling unit 18 comprises at least one cooling body for cooling the stator unit 14, which is not shown in particular in the figures. In particular, a fluid flow 74 of the cooling unit 18 is provided to remove heat from the heat sink of the reluctance motor device 12 .
In Figur 2 ist eine perspektivische Schnittansicht des Rotorkörpers 30, des Küh lelements 68 und des Rotorschafts 44 gezeigt. Der Rotorkörper 30 und der Ro torschaft 44 sind dazu vorgesehen, sich bei der Drehbewegung durch die Re luktanzkraft um die Drehachse 20 zu bewegen. Das Kühlelement 68 ist in radialer Richtung von der Drehachse 20 aus zwischen einem Reluktanzbereich 48 des Rotorkörpers 30 und dem Rotorschaft 44 angeordnet. Der Rotorkörper 30 ist da zu vorgesehen, das Kühlelement 68 bei der durch die Reluktanzkraft bewirkten Drehbewegung um die Drehachse 20 zu bewegen. Das Kühlelement 68 ist in der Körperausnehmung 64 des Rotorkörpers 30 angeordnet. Das Kühlelement 68 ist vorzugsweise im Wesentlichen als ein Axialventilator ausgebildet. Es ist aber auch denkbar, dass das Kühlelement 68 als ein anders geartetes Lüfterrad aus gebildet ist. Das Kühlelement 68 erstreckt sich von einem minimalen radialen Abstand 94 zur Drehachse 20 bis zu einem maximalen radialen Abstand 96 zur Drehachse 20. Insbesondere ist der minimale radiale Abstand 94 des Kühlele ments 68 zur Drehachse 20 größer als ein maximaler Durchmesser des Rotor schafts 44, welcher senkrecht zur Drehachse 20 ausgerichtet ist. Vorzugsweise ist der maximale radiale Abstand 96 des Kühlelements 68 zur Drehachse 20 klei ner als ein minimaler radialer Abstand des Reluktanzbereichs 48 zur Drehachse 20. Vorzugsweise ist das Kühlelement 68 an dem Rotorkörper 30 und dem Ro torschaft 44 angeordnet. In der in den Figuren gezeigten Ausgestaltung der Ro toreinheit 16 sind der Rotorkörper 30 und das Kühlelement 68 an dem Rotor schaft 44 angeordnet, insbesondere zumindest hinsichtlich einer Bewegung um die Drehachse 20 drehfest angeordnet. Beispielsweise sind der Rotorkörper 30, das Kühlelement 68 und der Rotorschaft 44 über eine Klemmverbindung, eine Schraubverbindung, eine Rastverbindung o. dgl. miteinander verbunden. Es ist jedoch auch denkbar, dass der Rotorkörper 30, das Kühlelement 68 und/oder der Rotorschaft 44 einteilig ausgebildet sind. Der Rotorkörper 30 bildet über den Re luktanzbereich 48 eine Mehrzahl an Polen zu einer Förderung der Reluktanzkraft aus. Insbesondere begrenzt der Rotorkörper 30 im Reluktanzbereich 48 entlang der Umlaufrichtung 50 um die Drehachse 20 eine Vielzahl von Ausnehmungen 98, welche sich jeweils radial zur Drehachse 20 über eine gesamte maximale radiale Erstreckung 100 des Reluktanzbereichs 48 (siehe auch Figur 1) erstre cken. Bevorzugt weist der Rotorkörper 30 im Bereich der von diesem begrenzten Ausnehmungen 98 entlang der Drehachse 20 betrachtet eine sich in Umlaufrich tung 50 veränderliche Materialstärke auf. Insbesondere sind die von dem Rotor körper 30 begrenzten Ausnehmungen 98 und/oder eine Form der Ausnehmun gen 98 dazu vorgesehen, die Pole auszubilden und eine von einer Position des Rotorkörpers 30, insbesondere des Reluktanzbereichs 48, entlang der Umlauf richtung 50 abhängige Reluktanzkraft zu erzeugen. Es sind aber auch andere Ausgestaltungen des Rotorkörpers 30 denkbar. Zusätzlich ist denkbar, dass die von dem Rotorkörper 30 begrenzten Ausnehmungen 98 als andere Leitungsele mente der Kühleinheit 18 ausgebildet sind und insbesondere dazu vorgesehen sind, einen Fluidstrom zu einem Kühlen der Statoreinheit 14 von der Drehachse 20 aus betrachtet radial nach außen zu leiten. Das Kühlelement 68 ist entlang der Drehachse 20 betrachtet vollständig von dem Rotorkörper 30 umschlossen. A perspective sectional view of the rotor body 30, the cooling element 68 and the rotor shaft 44 is shown in FIG. The rotor body 30 and the rotor shaft 44 are intended to move about the axis of rotation 20 during the rotary movement due to the re luktanzkraft. The cooling element 68 is arranged in the radial direction from the axis of rotation 20 between a reluctance region 48 of the rotor body 30 and the rotor shaft 44 . The rotor body 30 is provided to move the cooling element 68 about the axis of rotation 20 during the rotary movement caused by the reluctance force. The cooling element 68 is arranged in the body recess 64 of the rotor body 30 . The cooling element 68 is preferably designed essentially as an axial fan. But it is also conceivable that the cooling element 68 is formed as a different type of fan wheel. The cooling element 68 extends from a minimum radial distance 94 to the axis of rotation 20 to a maximum radial distance 96 to the axis of rotation 20. In particular, the minimum radial distance 94 of the cooling element 68 to the axis of rotation 20 is greater than a maximum diameter of the rotor shaft 44, which is aligned perpendicularly to the axis of rotation 20 . The maximum radial distance 96 of the cooling element 68 to the axis of rotation 20 is preferably smaller than a minimum radial distance of the reluctance region 48 to the axis of rotation 20. The cooling element 68 is preferably arranged on the rotor body 30 and the rotor shaft 44. In the configuration of the rotor unit 16 shown in the figures, the rotor body 30 and the cooling element 68 are arranged on the rotor shaft 44, in particular arranged in a rotationally fixed manner at least with regard to a movement about the axis of rotation 20. For example, the rotor body 30, the cooling element 68 and the rotor shaft 44 are connected to one another via a clamp connection, a screw connection, a latching connection or the like. However, it is also conceivable that the rotor body 30, the cooling element 68 and / or the Rotor shaft 44 are formed in one piece. The rotor body 30 forms a plurality of poles via the reluctance region 48 in order to promote the reluctance force. In particular, the rotor body 30 in the reluctance area 48 along the direction of rotation 50 around the axis of rotation 20 delimits a multiplicity of recesses 98, which each extend radially to the axis of rotation 20 over an entire maximum radial extent 100 of the reluctance area 48 (see also Figure 1). The rotor body 30 preferably has a material thickness that varies in the direction of rotation 50 in the region of the recesses 98 delimited by it, viewed along the axis of rotation 20 . In particular, the recesses 98 delimited by the rotor body 30 and/or a shape of the recesses 98 are provided to form the poles and to generate a reluctance force that is dependent on a position of the rotor body 30, in particular of the reluctance region 48, along the direction of rotation 50. However, other configurations of the rotor body 30 are also conceivable. It is also conceivable that the recesses 98 delimited by the rotor body 30 are designed as other line elements of the cooling unit 18 and are intended in particular to direct a fluid flow for cooling the stator unit 14 radially outwards as viewed from the axis of rotation 20 . Viewed along the axis of rotation 20 , the cooling element 68 is completely surrounded by the rotor body 30 .
In Figur 3 ist ein beispielhafter Ablauf eines Verfahrens 102 zu einem Kühlen der Statoreinheit 14 des Reluktanzmotors 10 mittels der Reluktanzmotorvorrichtung 12 gezeigt. In einem Verfahrensschritt 104 des Verfahrens 102 wird mittels der Steuer- und/oder Regeleinheit 22 die Statoreinheit 14 zu einer Erzeugung des Magnetfelds 38 angesteuert, insbesondere über einen elektrischen Wechsel strom. Vorzugsweise wird das Magnetfeld 38 durch eine Bestromung von zwei Elektromagneten 34, 35 der Vielzahl von Elektromagneten 34, 35 der Statorein heit 14 erzeugt, wobei die zwei Elektromagnete 34, 35 koaxial zueinander an dem Statorkörper 24 und dem weiteren Statorkörper 26 angeordnet sind. In ei nem weiteren Verfahrensschritt 106 des Verfahrens 102 wird die Rotoreinheit 16, insbesondere der Rotorkörper 30, mittels der Statoreinheit 14 über eine Re luktanzkraft um die Drehachse 20 bewegt. Vorzugsweise wird die Reluktanzkraft am Rotorkörper 30 über das durch die Statoreinheit 14, insbesondere die Elekt romagneten 34, 35, erzeugte Magnetfeld 38 generiert. Vorzugsweise erfolgt eine kontinuierliche Bewegung des Rotorkörpers 30 um die Drehachse 20 mittels ei- ner in Umlaufrichtung 50 um die Drehachse 20 alternierenden Bestromung von jeweils zwei koaxial zueinander angeordneten Elektromagneten 34, 35, die ins besondere eine kontinuierliche Kraftbeaufschlagung des Rotorkörpers 30 durch eine Reluktanzkraft bewirken. Bevorzugt wird der Rotorschaft 44 und das Küh- lelement 68 zusammen mit dem Rotorkörper 30 um die Drehachse 20 bewegt. In einem weiteren Verfahrensschritt 108 des Verfahrens 102 wird bei der Drehbe wegung des Kühlelements 68 um die Drehachse 20 ein Fluidstrom 74 erzeugt. Bevorzugt wird der Fluidstrom 74 über den Innenraum 66, die von den Statorkör pern 24, 26 begrenzten Ausnehmungen 40, den Hohlbereich 80 des Rotorschafts 44 und/oder die Leitungselemente 88 derart geführt, dass die Statoreinheit 14, insbesondere der Statorkörper 24, 26, die Statorpole 28 und die Wicklungen 32, gekühlt wird/werden. FIG. 3 shows an exemplary sequence of a method 102 for cooling the stator unit 14 of the reluctance motor 10 by means of the reluctance motor device 12 . In a method step 104 of the method 102, the control and/or regulating unit 22 controls the stator unit 14 to generate the magnetic field 38, in particular via an alternating electrical current. The magnetic field 38 is preferably generated by energizing two electromagnets 34, 35 of the plurality of electromagnets 34, 35 of the stator unit 14, the two electromagnets 34, 35 being arranged coaxially with one another on the stator body 24 and the further stator body 26. In a further step 106 of the method 102, the rotor unit 16, in particular the rotor body 30, is moved about the axis of rotation 20 by means of the stator unit 14 via a re luctance force. The reluctance force on the rotor body 30 is preferably generated via the magnetic field 38 generated by the stator unit 14, in particular the electromagnets 34, 35. A continuous movement of the rotor body 30 about the axis of rotation 20 preferably takes place by means of a ner in the direction of rotation 50 about the axis of rotation 20 alternating energization of two coaxially arranged electromagnets 34, 35, which cause in particular a continuous application of force to the rotor body 30 by a reluctance force. The rotor shaft 44 and the cooling element 68 are preferably moved together with the rotor body 30 about the axis of rotation 20 . In a further method step 108 of the method 102, a fluid flow 74 is generated during the rotary motion of the cooling element 68 about the axis of rotation 20. The fluid flow 74 is preferably guided via the interior space 66, the recesses 40 delimited by the stator bodies 24, 26, the hollow region 80 of the rotor shaft 44 and/or the line elements 88 in such a way that the stator unit 14, in particular the stator body 24, 26, the Stator poles 28 and the windings 32 are cooled.

Claims

Ansprüche Expectations
1. Reluktanzmotorvorrichtung, insbesondere Synchronaxialflussreluktanzmo torvorrichtung, mit zumindest einer Rotoreinheit (16) und mit zumindest ei ner Statoreinheit (14), wobei die Statoreinheit (14) dazu vorgesehen ist, die Rotoreinheit (16) durch eine Reluktanzkraft in eine Drehbewegung um eine Drehachse (20) zu versetzen, dadurch gekennzeichnet, dass die Ro toreinheit (16) zumindest eine Kühleinheit (18) zu einer Kühlung der Stato reinheit (14) umfasst. 1. Reluctance motor device, in particular synchronous axial flow reluctance motor device, with at least one rotor unit (16) and with at least one stator unit (14), wherein the stator unit (14) is provided to cause the rotor unit (16) to rotate about an axis of rotation ( 20), characterized in that the rotor unit (16) comprises at least one cooling unit (18) for cooling the stator unit (14).
2. Reluktanzmotorvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Kühleinheit (18) zumindest ein Kühlelement (68) umfasst, das da zu vorgesehen ist, sich bei der Drehbewegung durch die Reluktanzkraft um die Drehachse (20) zu bewegen. 2. reluctance motor device according to claim 1, characterized in that the cooling unit (18) comprises at least one cooling element (68), which is there provided to move during the rotary movement by the reluctance force about the axis of rotation (20).
3. Reluktanzmotorvorrichtung zumindest nach Anspruch 2, dadurch gekennzeichnet, dass das Kühlelement (68) als ein Förderelement, insbesondere ein Lüfterrad, ausgebildet ist. 3. reluctance motor device at least according to claim 2, characterized in that the cooling element (68) is designed as a conveying element, in particular a fan wheel.
4. Reluktanzmotorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühleinheit (18) dazu vorgesehen ist, zumindest einen Fluidstrom (74) in einen/einem von der Rotoreinheit (16) und der Statoreinheit (14) begrenzten Innenraum (66) zu leiten und/oder zu erzeugen. 4. Reluctance motor device according to one of the preceding claims, characterized in that the cooling unit (18) is provided for the purpose of directing at least one fluid flow (74) into an interior space (66) delimited by the rotor unit (16) and the stator unit (14). direct and/or generate.
5. Reluktanzmotorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rotoreinheit (16) zumindest einen Ro torschaft (44) umfasst, welcher entlang der Drehachse (20) betrachtet zu mindest im Wesentlichen hohl ausgebildet ist und welcher dazu vorgese hen ist, sich bei der Drehbewegung durch die Reluktanzkraft um die Dreh achse (20) zu bewegen, wobei die Kühleinheit (18) eine Vielzahl von Durchführungen (76) umfasst, die durch zumindest eine Außenwand (78) des Rotorschafts (44) begrenzt sind. 5. Reluctance motor device according to one of the preceding claims, characterized in that the rotor unit (16) comprises at least one rotor shaft (44) which, viewed along the axis of rotation (20), is at least substantially hollow and which is intended to to move during the rotary movement by the reluctance force around the axis of rotation (20), wherein the cooling unit (18) comprises a plurality of passages (76) which are limited by at least one outer wall (78) of the rotor shaft (44).
6. Reluktanzmotorvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Rotoreinheit (16) zumindest einen Rotorkörper (30) und zumin dest einen Rotorschaft (44) umfasst, welche dazu vorgesehen sind, sich bei der Drehbewegung durch die Reluktanzkraft um die Drehachse (20) zu bewegen, wobei das Kühlelement (68) in radialer Richtung von der Dreh achse (20) aus zwischen einem Reluktanzbereich (48) des Rotorkörpers (30) und dem Rotorschaft (44) angeordnet ist. 6. Reluctance motor device according to claim 3, characterized in that the rotor unit (16) comprises at least one rotor body (30) and at least one rotor shaft (44), which are provided to rotate about the axis of rotation (20) during the rotary movement due to the reluctance force. to move, wherein the cooling element (68) in the radial direction of the axis of rotation (20) from between a reluctance region (48) of the rotor body (30) and the rotor shaft (44) is arranged.
7. Reluktanzmotorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühleinheit (18) dazu vorgesehen ist, zumindest einen Fluidstrom (74) zu erzeugen, wobei die Kühleinheit (18) zumindest ein Leitungselement (88), insbesondere eine Vielzahl von Lei tungselementen (88), umfasst, welches von der Statoreinheit (14) und/oder von der Rotoreinheit (16) ausgebildet ist, wobei der durch das Leitungs element (88) geführte Fluidstrom (74) zu einer Kühlung zumindest eines leistungstragenden Statorelements der Statoreinheit (14) vorgesehen ist. 7. Reluctance motor device according to one of the preceding claims, characterized in that the cooling unit (18) is provided to generate at least one fluid flow (74), the cooling unit (18) having at least one line element (88), in particular a large number of line elements (88), which is formed by the stator unit (14) and/or by the rotor unit (16), the fluid flow (74) guided through the line element (88) being used to cool at least one power-carrying stator element of the stator unit (14 ) is provided.
8. Reluktanzmotorvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das zumindest eine Leitungselement (88) zumindest im Wesentlichen parallel zur Drehachse (20) verläuft. 8. reluctance motor device according to claim 7, characterized in that the at least one line element (88) runs at least substantially parallel to the axis of rotation (20).
9. Reluktanzmotor, insbesondere synchroner Axialflussreluktanzmotor, mit zumindest einer Reluktanzmotorvorrichtung (12) nach einem der vorherge henden Ansprüche. 9. reluctance motor, in particular synchronous axial flux reluctance motor, with at least one reluctance motor device (12) according to one of the preceding claims.
10. Verfahren zu einem Kühlen zumindest einer Statoreinheit (14) eines Re luktanzmotors (10), insbesondere eines Synchronaxialflussreluktanzmo tors, mittels zumindest einer Reluktanzmotorvorrichtung (12) nach einem der Ansprüche 1 bis 8. 10. Method for cooling at least one stator unit (14) of a reluctance motor (10), in particular a synchronous axial flux reluctance motor, by means of at least one reluctance motor device (12) according to one of claims 1 to 8.
PCT/EP2021/070527 2020-07-27 2021-07-22 Reluctance motor device, reluctance motor comprising the reluctance motor device, and method for cooling a stator unit of the reluctance motor WO2022023159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020209424.1 2020-07-27
DE102020209424.1A DE102020209424A1 (en) 2020-07-27 2020-07-27 Reluctance motor device, reluctance motor with the reluctance motor device and method for cooling a stator unit of the reluctance motor

Publications (1)

Publication Number Publication Date
WO2022023159A1 true WO2022023159A1 (en) 2022-02-03

Family

ID=77155773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/070527 WO2022023159A1 (en) 2020-07-27 2021-07-22 Reluctance motor device, reluctance motor comprising the reluctance motor device, and method for cooling a stator unit of the reluctance motor

Country Status (2)

Country Link
DE (1) DE102020209424A1 (en)
WO (1) WO2022023159A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100907A1 (en) * 2019-01-15 2020-07-16 Gkn Sinter Metals Engineering Gmbh Electric motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675206A (en) * 1995-12-18 1997-10-07 Siemens Electric Limited Slim-line brushless motor
US6488486B1 (en) * 1999-06-24 2002-12-03 Jeumont Industrie Indirect cooling of an electric fan
CN201041974Y (en) * 2007-02-07 2008-03-26 熊巨藩 A dual protrusion pole axial magnetic field permanent magnetic electromotor
CN205319816U (en) * 2016-01-20 2016-06-15 崔小兵 Permanent magnetism disk type motor cooling system
EP2251962B1 (en) * 2009-05-14 2020-03-04 Shin-Etsu Chemical Co., Ltd. Cooling mechanism for axial gap type rotating machines
DE102019100907A1 (en) * 2019-01-15 2020-07-16 Gkn Sinter Metals Engineering Gmbh Electric motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675206A (en) * 1995-12-18 1997-10-07 Siemens Electric Limited Slim-line brushless motor
US6488486B1 (en) * 1999-06-24 2002-12-03 Jeumont Industrie Indirect cooling of an electric fan
CN201041974Y (en) * 2007-02-07 2008-03-26 熊巨藩 A dual protrusion pole axial magnetic field permanent magnetic electromotor
EP2251962B1 (en) * 2009-05-14 2020-03-04 Shin-Etsu Chemical Co., Ltd. Cooling mechanism for axial gap type rotating machines
CN205319816U (en) * 2016-01-20 2016-06-15 崔小兵 Permanent magnetism disk type motor cooling system
DE102019100907A1 (en) * 2019-01-15 2020-07-16 Gkn Sinter Metals Engineering Gmbh Electric motor

Also Published As

Publication number Publication date
DE102020209424A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
DE102015205724B4 (en) Cooling system of an electric drive
DE112017000278B4 (en) Electrical rotary machine
EP2305981B1 (en) Electrical turbocharger
WO2013034413A2 (en) Stator for an electric motor
WO2009015946A1 (en) Electric motor
WO2007131887A1 (en) Device for cooling an electrical machine and electrical machine having such a cooling device
DE102005058031A1 (en) Electric machine with a cooling jacket
DE102016115291A1 (en) Electric coolant pump
EP3231070B1 (en) Permanently excited electric machine
WO2021122547A1 (en) Device for handling fluid within an at least partially electrically driven vehicle
DE102017215835A1 (en) Fluid cooled electric machine
EP3091640A1 (en) Rotor for axial flow machine
WO2006066740A1 (en) Electric motor
WO2022023159A1 (en) Reluctance motor device, reluctance motor comprising the reluctance motor device, and method for cooling a stator unit of the reluctance motor
EP3208913A1 (en) Rotor of a permanently excited dynamoelectric rotating machine and its use
WO2015003699A2 (en) Electric machine
WO2013135768A2 (en) Electric machine having a phase separator
EP3912259A1 (en) Electric motor
EP3403317B1 (en) Rotor and electrical machine
EP2187503A2 (en) Permanent magnet machine
DE102009053988A1 (en) Electric machine i.e. brushless electronically commutated motor, for use in e.g. medical application, has guide plate conveying medium in radial inside area with respect to longitudinal axis before medium arrives in radial outside area
EP3266097B1 (en) Electric machine comprising a baffle
DE102014214136A1 (en) Rotor arrangement for an electrical machine with a cooling device and electric machine
EP3593078B1 (en) Cooling device
WO2018091578A1 (en) Electric machine and motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748846

Country of ref document: EP

Kind code of ref document: A1