WO2022022110A1 - 平板探测器及成像*** - Google Patents

平板探测器及成像*** Download PDF

Info

Publication number
WO2022022110A1
WO2022022110A1 PCT/CN2021/099751 CN2021099751W WO2022022110A1 WO 2022022110 A1 WO2022022110 A1 WO 2022022110A1 CN 2021099751 W CN2021099751 W CN 2021099751W WO 2022022110 A1 WO2022022110 A1 WO 2022022110A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
pixel units
flat panel
panel detector
electrode
Prior art date
Application number
PCT/CN2021/099751
Other languages
English (en)
French (fr)
Inventor
李金钰
侯学成
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/790,268 priority Critical patent/US11986331B2/en
Publication of WO2022022110A1 publication Critical patent/WO2022022110A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors

Definitions

  • At least one embodiment of the present disclosure relates to a flat panel detector and an imaging system.
  • Amorphous silicon (a-Si) X-ray flat panel detector is an X-ray image detector with an amorphous silicon photodiode array as the core. Under X-ray irradiation, the scintillator or phosphor layer of the detector converts X-ray photons. It is converted into visible light, and then converted into an image electrical signal by an amorphous silicon array with the function of a photodiode, which is transmitted through peripheral circuits and analog-to-digital conversion to obtain a digital image. Because it has undergone an imaging process of X-ray-visible light-charge image-digital image, it is also commonly called an indirect conversion type flat panel detector. Amorphous silicon X-ray flat panel detectors have the advantages of fast imaging speed, good spatial and density resolution, high signal-to-noise ratio, and direct digital output, so they are widely used in various digital X-ray imaging devices.
  • At least one embodiment of the present disclosure provides a flat panel detector, the flat panel detector includes: a plurality of pixel units arranged in an array; the plurality of pixel units include: a plurality of photosensitive pixel units and a plurality of alignment pixel units.
  • Each of the plurality of photosensitive pixel units includes a photosensitive device that converts incident light into an electrical signal so that the photosensitive pixel unit in which the photosensitive pixel unit is located has a grayscale that changes with the real-time change of the incident light. level; each of the plurality of alignment pixel units is configured to have a fixed gray level, and the fixed gray level does not change with the real-time change of the incident light.
  • the plurality of alignment pixel units include a plurality of first alignment pixel units and a plurality of second alignment pixel units.
  • Each of the plurality of first alignment pixel units has a first fixed grayscale; each of the plurality of second alignment pixel units has a second fixed grayscale, and the first fixed grayscale is the same as the The second fixed gray scale is different.
  • the absolute value of the difference between the first fixed gray level and the second fixed gray level is greater than or equal to the maximum gray level of the plurality of photosensitive pixel units 30% of the absolute value of the difference from the smallest grayscale.
  • each of the plurality of first alignment pixel units is a normally black pixel unit
  • each of the plurality of second alignment pixel units is a normally bright pixel unit.
  • At least two of the plurality of first alignment pixel units form a first alignment mark
  • at least two of the plurality of second alignment pixel units Two make up a second alignment mark.
  • the first alignment marks and the second alignment marks are alternately arranged.
  • two of the plurality of first alignment pixel units form a first alignment mark, and two of the first alignment marks located in the same first alignment mark
  • the first alignment pixel units are respectively located in adjacent columns and adjacent rows of the pixel unit array
  • two of the plurality of second alignment pixel units form a second alignment mark, located in the same second alignment mark.
  • the two second alignment pixel units in the two alignment marks are respectively located in adjacent columns and adjacent rows of the pixel unit array.
  • the number of the first alignment pixel units included in each of the first alignment marks is greater than that included in each of the second alignment marks The number of the second alignment pixel units.
  • first alignment pixel units in the plurality of first alignment pixel units form a first alignment mark
  • the plurality of second alignment pixel units form a first alignment mark
  • Two second alignment pixel units in the alignment pixel unit form a second alignment mark
  • the two second alignment pixel units located in the same second alignment mark are respectively located in adjacent columns of the pixel unit array and adjacent rows, where m and n are positive integers.
  • n 8.
  • a flat panel detector provided by an embodiment of the present disclosure includes an image acquisition area.
  • the image acquisition area is used for acquiring image information and includes at least part of the photosensitive pixel units in the plurality of photosensitive pixel units; the first alignment mark and the second alignment mark surround the image acquisition area.
  • the first alignment marks and the second alignment marks are uniformly distributed in the circumferential direction of the image acquisition area.
  • the photoelectric sensing device includes: a first electrode, a photoelectric sensing layer, and a second electrode.
  • the photosensitive layer is stacked with the first electrode, and is configured to convert the incident light into an electrical signal, and the electrical signal controls the real-time gray scale of the corresponding photosensitive pixel unit; the second electrode is located on the photosensitive layer the side away from the first electrode.
  • Each of the plurality of photosensitive pixel units and each of the plurality of alignment pixel units respectively includes a transistor including a gate electrode, a first electrode and a second electrode.
  • the flat panel detector further includes a signal line, and the signal line includes a bias line, a grid line and a data line.
  • the bias line is electrically connected to the second electrode of the photosensitive device and is configured to provide a bias voltage to each of the photosensitive pixel units; the gate line is configured to provide gate driving signals to the transistors; the data line crosses the gate line to define the plurality of pixel units arranged in an array.
  • the first electrode of the transistor is electrically connected to the first electrode of the photosensitive device, and the data line is electrically connected to the second electrode of the transistor to read the photoelectric The electrical signal generated by the sensing layer.
  • each of the plurality of first alignment pixel units also includes the photoelectric sensing device, and at least part of the first alignment pixel units of the plurality of first alignment pixel units
  • the transistor of the alignment pixel unit forms an open circuit with the signal line so that the data line cannot read the electrical signal generated by the photosensitive layer, and the at least part of the first alignment pixel unit is a normally black pixel unit.
  • the gate of the transistor of the first alignment pixel unit is disconnected from the gate line.
  • the second electrode of the transistor of the first alignment pixel unit is disconnected from the data line.
  • the first electrode of the transistor of the first alignment pixel unit is disconnected from the first electrode of the photoelectric sensing device.
  • the second alignment pixel units of the plurality of second alignment pixel units also include the photoelectric sensing device; the at least some of the second alignment pixels
  • the second electrode of the photoelectric sensing device and the planar shape of the photoelectric sensing layer of the unit both have hollow regions, and the hollow regions expose the first electrode of the photoelectric sensing device; the bias line passes through the first electrode
  • the via hole is electrically connected to the first electrode of the photoelectric sensing device, the first via hole exposes the first electrode of the photoelectric sensing device, and the first via hole is located in the hollow area, the at least Some of the second alignment pixel units are always-on pixel units.
  • At least part of the second alignment pixel units of the plurality of second alignment pixel units includes a third electrode and a fourth electrode and does not include the photosensitive layer;
  • the third electrode is electrically connected to the first electrode of the transistor of the alignment pixel unit, and the fourth electrode is electrically connected to the bias line; the third electrode and the fourth electrode are stacked and directly connected to each other.
  • the at least part of the second alignment pixel unit is a normally bright pixel unit by making contact to electrically connect the two.
  • the photoelectric sensing device is a photodiode.
  • the flat panel detector when the flat panel detector includes an image acquisition area, the plurality of photosensitive pixel units generate a charge image according to the electrical signal.
  • the flat panel detector further includes: a coordinate acquisition unit and a data output unit.
  • the coordinate collection unit is configured to collect the coordinates of each of the alignment pixel units and the real-time coordinates of at least part of the photosensitive pixel units used to form the charge image;
  • the data output unit is configured to output the data of each of the photosensitive pixel units.
  • the electrical signal is used to form an image, and is configured to output the coordinates of each of the alignment pixel units and the real-time coordinates of the at least part of the photosensitive pixel units for locating the charge image to control the charge
  • the image is always located in the image acquisition area.
  • At least one embodiment of the present disclosure further provides an imaging system, where the imaging system includes any of the flat panel detectors provided in the embodiments of the present disclosure, and a position control unit, a position adjustment device, and an imaging processing module.
  • the position control unit is configured to receive the coordinates from the alignment pixel unit and the real-time coordinates of the at least part of the photosensitive pixel units in real time, and use the received coordinates to calculate the coordinates of the at least part of the photosensitive pixel units relative to the alignment pixels distance of the unit, and send an instruction according to the calculation result;
  • the position adjustment device is configured to receive an instruction from the position control unit in real time, and adjust the position of the flat panel detector in real time under the control of the instruction so that the charge image is always located at in the image acquisition area;
  • the imaging processing module includes a display and an imaging processor, the display includes a preset display area; the imaging processor is configured to receive the electrical signal output by the flat panel detector and adjust the flat panel detector The position information of the charge image after the position of the charge
  • the imaging system provided by an embodiment of the present disclosure further includes a light transmitter.
  • the light emitter is configured to emit light to the object to be imaged; the light irradiates the flat panel detector after passing through the object to be imaged.
  • the light emitter is configured to rotate around the object to be imaged, and emit light to the object to be imaged at multiple angles to generate light at each angle in real time. a corresponding charge image; the imaging processing module generates a three-dimensional image in the preset display area by processing a plurality of the charge images generated by emitting light from the object to be imaged at multiple angles.
  • the light emitter emits X-rays.
  • FIG. 1A is a schematic diagram of a flat panel detector according to an embodiment of the disclosure.
  • FIG. 1B is a schematic diagram of another flat panel detector provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of another flat panel detector according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of still another flat panel detector according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of still another flat panel detector according to an embodiment of the present disclosure.
  • 5A is a plan view of a photosensitive pixel unit of a flat panel detector according to an embodiment of the present disclosure
  • Figure 5B is a schematic cross-sectional view along line A-A' in Figure 5A;
  • Figure 5C is a schematic cross-sectional view along the line H-H' in Figure 5A;
  • 6A is a plan view of a first alignment pixel unit of a flat panel detector provided by an embodiment of the disclosure.
  • Figure 6B is a schematic cross-sectional view along line B-B' in Figure 6A;
  • FIG. 7A is a plan view of another first alignment pixel unit of a flat panel detector provided by an embodiment of the present disclosure.
  • Figure 7B is a schematic cross-sectional view along line C-C' in Figure 7A;
  • FIG. 8A is a plan view of still another first alignment pixel unit of a flat panel detector provided by an embodiment of the disclosure.
  • Figure 8B is a schematic cross-sectional view along the line D-D' in Figure 8A;
  • FIG. 8C is a plan view of still another first alignment pixel unit of the flat panel detector provided by an embodiment of the disclosure.
  • Figure 8D is a schematic cross-sectional view along line G-G' in Figure 8C;
  • 9A is a plan view of a second alignment pixel unit of a flat panel detector provided by an embodiment of the disclosure.
  • Figure 9B is a schematic cross-sectional view along the line E-E' in Figure 9A;
  • FIG. 10A is a plan view of another second alignment pixel unit of a flat panel detector provided by an embodiment of the present disclosure.
  • Figure 10B is a schematic cross-sectional view along line F-F' in Figure 10A;
  • Figure 10C is a schematic cross-sectional view along line G-G' in Figure 10A;
  • FIG. 11 is a schematic diagram of an imaging system according to an embodiment of the disclosure.
  • the flat panel detector Under the illumination of the object to be imaged, the light passing through the object to be imaged enters the flat panel detector, and then the light signal of the incident light is converted into an image electrical signal by the photosensitive element of the flat panel detector, thereby generating a charge image.
  • the flat panel detector receives and responds to the incident light to generate different charge images at different positions, and the positions of these charge images are located in different regions .
  • the position information of multiple real-time charge images needs to be used to synthesize the final image, requiring multiple real-time charge images are located in preset areas for compositing the ideal final image.
  • At least one embodiment of the present disclosure provides a flat panel detector, the flat panel detector includes: a plurality of pixel units arranged in an array; the plurality of pixel units include: a plurality of photosensitive pixel units and a plurality of alignment pixel units.
  • Each of the plurality of photosensitive pixel units includes a photosensitive device that converts incident light into an electrical signal so that the photosensitive pixel unit in which the photosensitive pixel unit is located has a grayscale that changes with the real-time change of the incident light. level; each of the plurality of alignment pixel units is configured to have a fixed gray level, and the fixed gray level does not change with the real-time change of the incident light.
  • the plurality of alignment pixel units include a plurality of first alignment pixel units and a plurality of second alignment pixel units.
  • Each of the plurality of first alignment pixel units has a first fixed grayscale; each of the plurality of second alignment pixel units has a second fixed grayscale, and the first fixed grayscale is the same as the The second fixed gray scale is different.
  • FIG. 1A is a schematic diagram of a flat panel detector according to an embodiment of the present disclosure.
  • a flat panel detector 10 provided by at least one embodiment of the present disclosure includes a plurality of pixel units arranged in an array, and the plurality of pixel units includes a plurality of photosensitive pixel units 1 and a plurality of alignment pixel units 2 .
  • the operation of the flat panel detector 10 is as described above.
  • Each of the plurality of photosensitive pixel units 1 includes a photosensitive device, and the photosensitive device is configured to convert incident light into an electrical signal so that the photosensitive pixel unit in which the photosensitive pixel unit is located has a gray scale that changes with the real-time change of the incident light, thereby generating charge image.
  • Each of the plurality of alignment pixel units is configured to have a fixed gray scale that does not change with real-time changes of incident light, so that the plurality of alignment pixel units can be identified and the plurality of alignment pixel units can be obtained.
  • the position information is, for example, coordinates, and the coordinates of a plurality of alignment pixel units are used as a reference to determine the position of the charge image generated by the flat panel detector 10 .
  • the position of the incident light incident on the flat panel detector 10 after passing through the object to be imaged changes, and the flat panel detector 10 is used for
  • the position of the photosensitive pixel unit 1 that receives and responds to the incident light changes, and the shape and position of the formed charge image change. position so that the charge image is always located in a preset area, for example, the preset area is called the image acquisition area.
  • the image acquisition area In order to meet the above-mentioned requirements that multiple real-time charge images generated with the change of incident light are all located in the image acquisition area, so as to facilitate the synthesis of an ideal final image and avoid the generation of different charge images in different areas.
  • the plurality of alignment pixel units 2 include a plurality of first alignment pixel units 21 and a plurality of second alignment pixel units 22 .
  • the gray level between the first fixed gray level and the second fixed gray level has a difference value, so that compared with only setting pixel units of the same fixed gray level, during the working process of the flat panel detector 10 provided by the present application, it is possible to simultaneously Obtaining the coordinates of the plurality of first alignment pixel units 21 and the coordinates of the plurality of second alignment pixel units 22, in the case where the photosensitive pixel units 1 have different gray scales, for example, in most or all photosensitive pixel units 1
  • the second alignment pixel unit 22 can be accurately identified; or, when the gray scale of most or all of the photosensitive pixel units 1 is close to the second alignment pixel unit
  • the first alignment pixel unit 21 can be accurately identified. Under these circumstances, the alignment pixel unit can be accurately identified, so as to achieve more accurate alignment.
  • the above-mentioned incident light is X-rays.
  • the X-ray emission source moves or the object to be imaged moves, for example, the X-ray rotates around the object to be imaged, and the flat panel detector is used at multiple different angles when the X-ray emission source rotates at different angles 10.
  • Forming a plurality of real-time charge images of the object to be imaged converting the plurality of charge images into digital images. Multiple charge images are located in the preset image acquisition area, so that the generated digital image is always located in the preset display area by using the position information of each charge image, which is beneficial to the imaging effect and the convenience of operation, and improves the use of the flat panel detector.
  • 10 Get the desired image productivity.
  • a real-time stereoscopic three-dimensional image can be obtained by synthesizing a plurality of digital images.
  • the flat panel detector 10 can be used in the field of medical inspection, using X-rays to form images of parts of the human body such as organs.
  • the flat panel detector 10 provided by the embodiment of the present application can form an ideal image of the object to be detected, such as an organ to be detected, by placing multiple real-time charge images in the image acquisition area, for example, to form an ideal three-dimensional image
  • the image can more truly and accurately reflect the shape of the object to be detected, obtain more realistic and accurate image information, improve the accuracy of the detection results, and improve the imaging speed.
  • the above-mentioned incident light may also be visible light, and a color plane image and a color stereo image may also be formed.
  • the application scenarios and imaging types of the flat panel detector provided by the embodiments of the present disclosure are not limited to the above situations.
  • the plurality of first alignment pixel units 21 are respectively the first alignment pixel units 211 , 212 , 213 and 214 ; the plurality of second alignment pixel units 22 are respectively the second alignment pixel units 21 Align pixel units 221, 222, 223, 224.
  • a plurality of first alignment pixel units 211 , 212 , 213 , and 214 and a plurality of second alignment pixel units 221 , 222 , 223 , and 224 surround a preset image capture area. D.
  • positioning can be performed around the entire image acquisition area D, which is more conducive to accurate positioning.
  • the shape of the image acquisition area D is not limited to that shown in FIG. 1A .
  • the shape of the image acquisition area D may also be a rectangle, that is, a plurality of first alignment pixel units and a plurality of second alignment pixel units are surrounded to form a rectangular area.
  • FIG. 1B is a schematic diagram of another flat panel detector provided by an embodiment of the present disclosure.
  • a plurality of first alignment pixel units 211 , 212 , 213 , and 214 and a plurality of second alignment pixel units 221 , 222 , 223 , 224 , and 225 are arranged in a cross shape.
  • a first alignment pixel unit 21 and a plurality of second alignment pixel units 22 are located on one side of the image acquisition area D.
  • FIG. 2 is a schematic diagram of another flat panel detector provided by an embodiment of the present disclosure.
  • the first alignment pixel units 211 and 212 and the second alignment pixel units 221 and 222 are located in the image acquisition area D. side.
  • the plurality of first alignment pixel units and the plurality of second alignment pixel units may also be arranged in other shapes, for example, in a line shape or a rice shape, which is not limited in this embodiment of the present disclosure.
  • the first alignment pixel units 211, 212, 213, 214 are alternately arranged with the second alignment pixel units 221, 222, 223, 224, that is, along the arrangement of the first alignment pixel unit and the second alignment pixel unit
  • the second alignment pixel unit 221 and the second alignment pixel unit 222 are respectively located on both sides of the first alignment pixel unit 212 and adjacent to it, and the first alignment pixel unit 211 is located in the second alignment pixel unit 221
  • the side of the first alignment pixel unit 212 that is far away is adjacent to the second alignment pixel unit 221
  • the first alignment pixel unit 213 is located on one side of the first alignment pixel unit 212 that is far away from the second alignment pixel unit 222 .
  • the alternating arrangement of the first alignment pixel unit and the second alignment pixel unit can make the grayscale difference of the adjacent alignment pixel units obvious, which is beneficial to improve the accuracy of identifying the first alignment pixel unit and the second alignment pixel unit , thereby improving the accuracy and reliability of positioning.
  • the absolute value of the difference between the first fixed gray level and the second fixed gray level is greater than or equal to 30% of the absolute value of the difference between the maximum gray level and the minimum gray level of the plurality of photosensitive pixel units, so that each A pair of pixel units 211, 212, 213, 214 and each of the second pixel units 221, 222, 223, 224 have obvious grayscale differences, and the grayscales of most or all of the above-mentioned photosensitive pixel units 1 are close to the first.
  • the recognition degree of the other is improved, thereby achieving more accurate positioning. For example, there are 216 gray levels in total, and the difference between the first fixed gray level and the second fixed gray level is greater than 20,000 gray levels.
  • each of the plurality of first alignment pixel units 21 is a normally black pixel unit
  • each of the plurality of second alignment pixel units 22 is a normally bright pixel unit.
  • the normally black pixel unit is always in the black state
  • the normally bright pixel unit is always in the bright state, for example, the brightness is always the highest achievable brightness.
  • the first alignment pixel unit 21 that is always in a bright state can be accurately identified; when the flat panel detector 10 is in a bright state as a whole, it can be accurately identified that it is always in a bright state.
  • the second alignment pixel unit 22 in the dark state. That is, when the flat panel detector 10 as a whole is in a black state and a bright state, the effect of accurate positioning can be achieved.
  • At least two of the plurality of first alignment pixel units form a first alignment mark
  • at least two of the plurality of second alignment pixel units form a second alignment mark, so as to increase the availability of The identified areas of the first alignment mark and the second alignment mark improve the reliability and accuracy of positioning.
  • two of the plurality of first alignment pixel units 21 constitute a first alignment mark 31 , and two of the first alignment marks 31 located in the same first alignment mark 31 .
  • the first alignment pixel units 211 and 212 are respectively located in adjacent columns and adjacent rows of the pixel unit array; two of the plurality of second alignment pixel units 22 form a second alignment mark 32, which are located in the same second alignment mark 32.
  • the two second alignment pixel units 221 and 222 in the alignment mark 32 are located in adjacent columns and adjacent rows of the pixel unit array, respectively.
  • first alignment mark 31 two adjacent first alignment pixel units at diagonally opposite corners form a first alignment mark 31
  • second alignment mark 32 two diagonally diagonally adjacent second alignment pixel units form a second alignment mark 32 . It has been verified by experiments that such a design is beneficial to improve the accuracy of identifying the first alignment mark 31 and the second alignment mark 32 .
  • the alignment mark formed by the combination of pixels is beneficial to improve the accuracy of identification, avoid misidentification caused by the confusion of simple single-point pixel marks and pixel dead pixels, and the alignment mark has a simple design.
  • the first alignment marks 311 , 312 , 313 and 314 and the second alignment marks 321 , 322 , 323 and 324 are alternately arranged. That is, along the arrangement direction of the first alignment mark and the second alignment mark, the second alignment mark 321 and the second alignment mark 322 are located on both sides of the first alignment mark 312 and are respectively connected with the first alignment mark 312 Adjacent, the first alignment mark 311 is located on the side of the second alignment mark 321 away from the first alignment mark 312 and adjacent to the second alignment mark 321, and the first alignment mark 313 is located on the second alignment mark The side of the 322 away from the first alignment mark 312 is adjacent to the second alignment mark 322 .
  • the alternating arrangement of the first alignment mark and the second alignment mark can make the grayscale difference of the adjacent alignment marks obvious, which is beneficial to improve the recognition accuracy of the first alignment mark and the second alignment mark, thereby improving the positioning accuracy. Accuracy and reliability.
  • the planar figure formed by the plurality of first alignment marks 311 , 312 , 313 and 314 and the plurality of second alignment marks 321 , 322 , 323 and 324 is a center-symmetrical figure.
  • the plane figure is center-symmetric with the point O in FIG. 3 as the center of symmetry.
  • each pair of first alignment marks is centrosymmetric with point O as the symmetry center
  • each pair of second alignment marks is centrosymmetric with point O as the symmetry center.
  • the first alignment mark 311 and the first alignment mark 313 are centrally symmetric, the first alignment mark 312 and the first alignment mark 314 are centrally symmetric; the second alignment mark 321 and the second alignment mark 323 are centrally symmetric , the second alignment mark 322 and the second alignment mark 324 are center-symmetrical.
  • FIG. 4 is a schematic diagram of still another flat panel detector according to an embodiment of the present disclosure, and this embodiment has the following differences from the embodiment shown in FIG. 3 .
  • the number of the first alignment pixel units 21 included in each first alignment mark 31 is greater than the number of the second alignment pixel units 22 included in each second alignment mark 32 . In this way, the area of the first alignment mark is increased, and the recognition accuracy of the darker first alignment mark is higher.
  • first alignment pixel units in the plurality of first alignment pixel units form a first alignment mark
  • m and n are both positive integers.
  • two second alignment pixel units in the plurality of second alignment pixel units form a second alignment mark 32, and the two second alignment pixel units 221 and 222 located in the same second alignment mark are respectively Located in adjacent columns and adjacent rows of pixel cell arrays.
  • a plane figure formed by a plurality of first alignment marks and a plurality of second alignment marks arranged is not a center-symmetrical figure.
  • the plane figure formed by the arrangement of the plurality of first alignment marks and the plurality of second alignment marks may also be an axisymmetric figure, and the orderly arrangement of positions is conducive to the convenience and accuracy of identification.
  • the embodiment of the present disclosure does not limit the plane figure formed by the arrangement of the plurality of first alignment marks and the plurality of second alignment marks.
  • the image capturing area D for capturing image information includes at least part of the photosensitive pixel units 1 among the plurality of photosensitive pixel units 1 .
  • the flat panel detector 10 further includes a photosensitive pixel unit 1 located outside the image acquisition area D.
  • a plurality of first alignment marks 31 and a plurality of second alignment marks 32 surround the image capture area D to perform positioning around the entire image capture area D, which is more conducive to accurate positioning.
  • a plurality of first alignment marks 31 and a plurality of second alignment marks 32 are evenly distributed in the circumferential direction of the image acquisition area, so that the position of the final charge image in the entire direction around the image acquisition area D can be obtained All are more accurately located in the image acquisition area D.
  • the plurality of first alignment marks 31 and the plurality of second alignment marks 32 may not surround the image acquisition area D.
  • FIG. 5A is a plan view of a photosensitive pixel unit of a flat panel detector according to an embodiment of the disclosure
  • FIG. 5B is a schematic cross-sectional view along line AA' in FIG. 5A
  • FIG. 5C is a schematic view along line H-H' in FIG. 5A
  • the photosensitive device includes: a first electrode 03 , a photosensitive layer 04 and a second electrode 08 .
  • the photosensitive layer 04 is stacked with the first electrode 03 and is configured to convert incident light into an electrical signal, and the electrical signal controls the real-time gray scale of the corresponding photosensitive pixel unit 1 .
  • the second electrode is located on the side of the photosensitive layer 04 away from the first electrode.
  • Each of the plurality of photosensitive pixel units 1 includes a transistor including a gate electrode 010 , a first electrode 021 and a second electrode 022 .
  • the flat panel detector 10 further includes signal lines including bias lines 05 , grid lines 01 and data lines 02 .
  • the bias line 05 is electrically connected to the second electrode 08 of the photosensitive device and is configured to provide a bias voltage to each photosensitive pixel unit 1;
  • the gate line 01 is electrically connected to the gate 010, and is configured to provide a gate drive signal to the transistor;
  • data Line 02 intersects gate line 010 to define a plurality of pixel cells arranged in an array.
  • the first electrode 021 of the transistor is electrically connected to the first electrode 03 of the photosensitive device, and the data line 02 is electrically connected to the second electrode 022 of the transistor to read the electrical signal generated by the photosensitive layer 04 .
  • the above-mentioned transistors are thin film transistors.
  • the thin film transistor may be an amorphous silicon thin film transistor, an oxide thin film transistor, or a low temperature polysilicon (LTPS) thin film transistor.
  • the thin film transistor may have a top-gate structure or a bottom-gate structure.
  • the embodiments of the present disclosure do not limit the type of the thin film transistor, which can be selected according to specific needs.
  • the photosensitive device is a photodiode, including a PIN junction.
  • the photodiode 11 includes an N-type semiconductor layer, an intrinsic semiconductor layer, and a P-type semiconductor layer.
  • the first electrode of the thin film transistor is connected to the N-type semiconductor layer.
  • the flat panel detector 10 is provided with a scintillation layer, and the scintillation layer can convert the X-rays into visible light, and the visible light illuminates the photosensitive pixel unit.
  • the working process of the flat panel detector 10 is: X-rays are modulated by the human body on its path, the modulated X-rays are converted into visible light by the scintillation layer, the visible light is absorbed by the photodiode and converted into charge carriers, and the charge carriers are stored A charge image is formed by the flat panel detector 10 in the self-capacitance of the photodiode or an additional storage capacitor; the scanning drive circuit sequentially turns on the thin film transistors of the photosensitive pixel units in each row, and outputs the charge image in the manner of reading out one row at the same time. That is, the electrical signal generated by each photosensitive pixel unit is output.
  • the charge image read out by each thin film transistor corresponds to the dose of incident X-rays, and the charge amount of each photosensitive area can be determined by processing, and then the X-ray dose of each photosensitive area can be determined.
  • a black-and-white image or a color image can be generated by the display device using the electrical signal generated by the photosensitive pixel unit.
  • the above-mentioned bias voltage is a common voltage, such as a ground voltage or other types of common voltages.
  • a bias line 05 is connected to each photosensitive pixel unit 1 .
  • the flat panel detector 10 further includes a gate insulating layer 011 and an interlayer insulating layer 013 between the thin film transistor and the first electrode 03 of the photosensitive device.
  • the first electrode 021 of the transistor is electrically connected to the first electrode 03 of the photosensitive device through the first via hole 031 penetrating the interlayer insulating layer 013 .
  • the flat panel detector 10 further includes a first insulating layer 09 on a side of the photosensitive device away from the base substrate 101 and a first insulating layer 09 on a side away from the base substrate 101 of the first insulating layer 09
  • the second insulating layer 014 .
  • the first insulating layer 09 is an organic insulating layer.
  • the first insulating layer 09 is a flat layer.
  • the first insulating layer 09 is made of an organic material, such as a resin, or a photoresist material;
  • the second insulating layer 014 is an inorganic insulating layer, made of an inorganic material, such as silicon oxide, At least one of silicon nitride or silicon oxynitride.
  • the bias line 05 is electrically connected to the second electrode 08 of the photosensitive device through the second via hole 06 penetrating the second insulating layer 014 and the third via hole 07 penetrating the first insulating layer 09 .
  • the second via hole 06 and the third via hole 07 are communicated with each other.
  • the flat panel detector 10 further includes a third insulating layer (not shown) on the side of the first insulating layer 09 close to the second electrode 08.
  • the third insulating layer is an electrodeless insulating layer, and its material includes, for example, silicon oxide, At least one of silicon nitride or silicon oxynitride.
  • the base substrate 101 may be a rigid substrate, and the material of the rigid substrate includes one of glass, quartz, and metal.
  • the base substrate 101 may also be a flexible substrate, and the material of the flexible substrate includes polyimide (Polyimide, PI for short), polyethylene terephthalate (Polyethylene terephthalate, PET for short), polyethylene naphthalate Ester (Polyethylenenaphthalate two formic acid glycol ester, referred to as PEN), polycarbonate (Polycarbonate, referred to as PC) and other polymers.
  • the biasing wire 05 includes a main body part 050 and a protruding part 051 .
  • the protruding part 051 is connected to the main body part 050 and protrudes from the main body part 050 , and the second via hole 06 and the third via hole 07 are in the lining
  • the orthographic projection on the base substrate 101 is located within the orthographic projection of the protruding portion 051 on the base substrate 101.
  • the protruding portion 051 can be formed by a patterning process, and the second via hole 06 and the third via hole 07 provide sufficient space to reduce patterning. It is difficult to accurately form the second via hole 06 and the third via hole 07 .
  • the gate line 01 extends in the first direction
  • the data line 02 extends in the second direction
  • the bias line 05 extends in the second direction
  • the protrusion 051 protrudes from the main body 050 in the first direction.
  • the gate line 01 and the data line 02 overlap, that is, the orthographic projection of the gate line 01 on the base substrate 101 and the orthographic projection of the data line on the base substrate 101 intersect
  • the line widths of the gate line 01 and the data line 02 both become smaller, that is, the line width of the part of the gate line 01 that overlaps the data line 02 is smaller than that of the gate line 01 and the data line 02.
  • the line width of the portion of the data line 02 that does not overlap, and the line width of the portion of the data line 02 that overlaps with the gate line 01 is smaller than the line width of the portion of the data line 02 that does not overlap with the gate line 01 .
  • an isolation layer is provided in the region C.
  • the isolation layer and the active layer are provided in the same layer and located between the gate line 01 and the data line 02 to further prevent signal crosstalk between the gate line 01 and the data line 02 .
  • each of the plurality of first alignment pixel units also includes a transistor and a photosensitive device.
  • the transistor and the signal line form an open circuit so that the data line cannot read the electrical signal generated by the photosensitive layer, so as to realize the at least part of the first alignment pixel unit.
  • a pair of pixel units are normally black pixel units.
  • FIG. 6A is a plan view of a first alignment pixel unit of a flat panel detector provided by an embodiment of the present disclosure
  • FIG. 6B is a schematic cross-sectional view along the line B-B' in FIG. 6A
  • each first alignment pixel unit also includes a transistor and a photosensitive device. The difference between the structure of the first alignment pixel unit and the structure of the photosensitive pixel unit 1 shown in FIGS.
  • the first alignment pixel unit is a normally black pixel unit.
  • Other features of the gate line 01a here are the same as the gate line 01 shown in FIGS. 5A-5C
  • the data line 02a is the same as the data line 02 shown in FIGS. 5A-5C .
  • the first alignment pixel unit such as the semiconductor layer 012, the first electrode and the second electrode of the thin film transistor, and the first electrode 03a, the photosensitive layer 04a and the second electrode of the photosensitive device
  • the electrode 05a, the second via hole 06a and the third via hole 07a, etc. are all the same as those of the photosensitive pixel unit 1 .
  • FIG. 7A is a plan view of another first alignment pixel unit of a flat panel detector according to an embodiment of the present disclosure
  • FIG. 7B is a schematic cross-sectional view along line C-C' in FIG. 7A
  • the second electrode 022 of the transistor is disconnected from the data line 02c, that is, the second electrode 022 of the transistor is not connected to the data line 02c, so that the thin film transistor is connected to the data line 02c forms an open circuit, the data line 02c cannot read the electrical signal generated by the photosensitive layer
  • the first alignment pixel unit is a normally black pixel unit.
  • FIGS. 7A-7B is the same as the gate line 01 shown in FIGS. 5A-5C, and other features of the data line 02c are the same as the data line 02 shown in FIGS. 5A-5C.
  • other unmentioned structures of the first alignment pixel unit such as the semiconductor layer 012, the first electrode 021 and the second electrode 022 of the thin film transistor, and the first electrode 03c, the photosensitive layer 04c and The second electrodes 05c and the like are the same as those of the photosensitive pixel unit 1 .
  • FIG. 8A is a plan view of another first alignment pixel unit of a flat panel detector provided by an embodiment of the present disclosure
  • FIG. 8B is a schematic cross-sectional view along the line D-D' in FIG. 8A
  • the first electrode 021 of the transistor of the first alignment pixel unit is disconnected from the first electrode 03e of the photosensitive device, that is, the transistor of the first alignment pixel unit
  • the first electrode 021 of the photosensitive device is not connected to the first electrode 03e of the photosensitive device, so that the thin film transistor and the first electrode 03e of the photosensitive device are disconnected, and the data line 02e cannot read the electrical signal generated by the photosensitive layer.
  • the alignment pixel unit is a normally black pixel unit.
  • the data line 02e here is the same as the data line 02 shown in FIGS. 5A-5C.
  • the first electrode 03e and the first electrode 021 of the photoelectric sensing device are disposed in different layers, and the two are not connected by via holes.
  • other unmentioned structures of the first alignment pixel unit such as the semiconductor layer 012, the first electrode 021 and the second electrode 022 of the thin film transistor, and the first electrode 03e, the photosensitive layer 04e and The second electrodes 05e and the like are the same as those of the photosensitive pixel unit 1 .
  • FIG. 8C is a plan view of still another first alignment pixel unit of a flat panel detector provided by an embodiment of the disclosure
  • FIG. 8D is a schematic cross-sectional view along the line G-G' in FIG. 8C
  • the bias line 05 is disconnected from the photosensitive device of the first alignment pixel unit. As shown in FIG.
  • a first insulating layer 09 and a second insulating layer 014 are provided between the bias line 05 and the second electrode 08 of the photosensitive device of the first alignment pixel unit, so that the bias line 05 It is insulated from the second electrode 08 of the photosensitive device of the first alignment pixel unit, so that the bias line 05 is disconnected from the photosensitive device of the first alignment pixel unit, that is, the bias line 05 is connected to the first alignment pixel unit.
  • the photoelectric sensing device is not electrically connected, so that the thin film transistor and the photoelectric sensing device cannot transmit electrons, and the data line 02e cannot read the electrical signal generated by the photoelectric sensing layer.
  • the first alignment pixel unit is a normally black pixel unit. For example, other features except that the bias line 05 is disconnected from the photosensitive device of the first alignment pixel unit are the same as those in Figs. 5A-5C.
  • FIG. 9A is a plan view of a second alignment pixel unit of a flat panel detector provided by an embodiment of the disclosure
  • FIG. 9B is a schematic cross-sectional view along the line E-E' in FIG. 9A
  • at least a portion of each of the second alignment pixel units also includes a transistor and a photosensitive device.
  • the structure of each second alignment pixel unit and the photosensitive pixel unit 1 shown in FIGS. 5A-5C has the following differences.
  • the planar shape of the second electrode 08b of the photosensitive device of the second alignment pixel unit and the planar shape of the photosensitive layer 04b both have a hollow region 200, and the hollow region 200 exposes the first electrode 03b of the photosensitive device.
  • the bias line 05b is electrically connected to the first electrode 03b of the photosensitive device through the second via hole 06b and the third via hole 07b, and the second via hole 06b and the third via hole 07b are connected to form a via hole.
  • the second via hole 06b and the third via hole 07b expose the first electrode 03b of the photosensitive device, and the second via hole 06b and the third via hole 07b are located in the hollow region 200 .
  • a fixed bias voltage can be provided to the second alignment pixel unit through the bias voltage line 05b, so that the data line 02b can read the fixed voltage difference between the second electrode 08b and the first electrode 03b of the photosensitive device, so that the The second alignment pixel unit has a fixed gray scale, so that at least part of the second alignment pixel unit is a normally bright pixel unit.
  • the gate line 01b in FIG. 9A is the same as the gate line 01 shown in FIG. 5A
  • the data line 02b is the same as the data line 02 shown in FIG. 5A.
  • other unmentioned structures of the second alignment pixel unit such as the semiconductor layer of the thin film transistor, the first electrode and the second electrode, etc., are the same as those of the photosensitive pixel unit 1 .
  • the plane pattern of the hollow area 200 is an unclosed groove, that is, the second electrode 08b and the photosensitive layer 04b of the photosensitive device respectively include the hollow area 200 and a non-hollow area surrounding part of the hollow area 200 .
  • the hollow region 200 is recessed inward from one side of the planar pattern of the second electrode 08b of the photosensitive device, and is recessed inward from one side of the planar pattern of the photosensitive layer 04b.
  • the plane pattern of the hollow region 200 may also be a closed pattern, that is, the second electrode 08b and the photosensitive layer 04b of the photosensitive device respectively include a hollow region and a non-conductive region surrounding the entire hollow region. Hollow out area.
  • the bias line 05b includes a first portion 05b1 , a second portion 05b2 and a third portion 05b3 connected in sequence along its extending direction, and the line width of the second portion 05b2 is larger than that of the first portion 05b1 and greater than The line width of the third portion 05b3, and the orthographic projection of the second portion 05b2 on the base substrate 101 overlaps with a part of the orthographic projection of the edge of the hollow region 200 on the base substrate 101.
  • a slope is formed.
  • the second part 05b2 climbs a slope at the edge, so the larger line width of the second part 05b2 can avoid the risk of disconnection at the climbing part.
  • FIG. 10A is a plan view of another second alignment pixel unit of the flat panel detector provided by an embodiment of the disclosure
  • FIG. 10B is a schematic cross-sectional view along the line FF' in FIG. 10A
  • FIG. 10C is a schematic view along the line of FIG. 10A Schematic cross-section of the G-G' line.
  • at least a part of the second alignment pixel units of the plurality of second alignment pixel units includes a third electrode 03d and a fourth electrode 08d and does not include a photosensitive layer.
  • the third electrode 03d is electrically connected to the bias line 05d
  • the third electrode 03d is electrically connected to the first electrode 021 of the transistor of the aligned pixel unit.
  • the third electrode 03d and the fourth electrode 08d are stacked and in direct contact to electrically connect the two. In this way, since there is no photo-inductance layer, the second alignment pixel unit will not generate an electrical signal that changes according to the change of incident light, and a fixed bias can be provided to the third electrode 03d electrically connected to it through the bias line 05d.
  • the third electrode 03d is electrically connected to the data line 02b through a thin film transistor, so that the electrical signal read by the data line 02b is basically the same as the fixed bias voltage, so that the second alignment pixel unit has a fixed gray scale , so that the second alignment pixel unit is a normally bright pixel unit.
  • the gate line 01d in FIG. 10A is the same as the gate line 01 shown in FIG.
  • the data line 02d is the same as the data line 02 shown in FIG. 5A.
  • other unmentioned structures of the second alignment pixel unit such as the semiconductor layer of the thin film transistor, the first electrode and the second electrode, etc., are the same as those of the photosensitive pixel unit 1 .
  • the third electrode 03d is in direct contact with the fourth electrode 08d
  • the third electrode 03d means that there is no other layer or structure between the third electrode 03d and the fourth electrode 08d, and the two are not in contact through via holes, and the third electrode The surface of 03d which is far from the base substrate 101 is in contact with the surface of the fourth electrode 08d which is close to the base substrate 101 .
  • the flat panel detector 10 further includes a coordinate acquisition unit and a data output unit.
  • the coordinate collection unit is configured to collect the coordinates of each alignment pixel unit or the coordinates of the alignment mark, and the real-time coordinates of at least part of the photosensitive pixel units used to form the charge image.
  • the data output unit is configured to output the electrical signal of each photosensitive pixel unit for forming an image, and is configured to output the coordinates of each alignment pixel unit and the real-time coordinates of at least some of the photosensitive pixel units for locating the charge image thereby
  • the control charge image is always in the image acquisition area.
  • a positioning point is selected on the charge image, and the position of the flat panel detector 10 is adjusted according to the positional relationship between the positioning point and the alignment pixel unit or the alignment mark, and the flat panel detector 10 can be moved to make The charge image is always in the image acquisition area.
  • At least one embodiment of the present disclosure further provides an imaging system, where the imaging system includes any of the flat panel detectors provided in the embodiments of the present disclosure, and a position control unit, a position adjustment device, and an imaging processing module.
  • the position control unit is configured to receive the coordinates from the alignment pixel unit and the real-time coordinates of the at least part of the photosensitive pixel units in real time, and use the received coordinates to calculate the coordinates of the at least part of the photosensitive pixel units relative to the alignment pixels distance of the unit, and send an instruction according to the calculation result;
  • the position adjustment device is configured to receive an instruction from the position control unit in real time, and adjust the position of the flat panel detector in real time under the control of the instruction so that the charge image is always located at in the image acquisition area;
  • the imaging processing module includes a display and an imaging processor, the display includes a preset display area; the imaging processor is configured to receive the electrical signal output by the flat panel detector and adjust the flat panel detector The position information of the charge image after the position of the charge
  • FIG. 11 is a schematic diagram of an imaging system according to an embodiment of the disclosure.
  • the imaging system 100 includes any one of the flat panel detectors 10 provided in the embodiments of the present disclosure, and a position control unit 11 , a position adjustment device 12 and an imaging processing module 13 .
  • the position control unit 11 is configured to receive the coordinates of the alignment pixel units and the real-time coordinates of at least part of the photosensitive pixel units from the flat panel detector 10 in real time, and use the received coordinates to calculate the relative alignment pixels of at least some photosensitive pixel units. The distance of the unit, send the command according to the calculation result.
  • the at least part of the photosensitive pixel units are used for photosensitive generation of charge images, for example, some selected photosensitive pixel units.
  • the position adjusting device 12 is configured to receive an instruction from the position control unit 11 in real time, and adjust the position of the flat panel detector 10 in real time under the control of the instruction so that the charge image is always located in the image acquisition area D above.
  • the imaging processing module 13 includes a display 131 and an imaging processor 132 .
  • the display 131 includes a preset display area; the imaging processor 132 is configured to receive the electrical signal output by the flat panel detector 10 and the position information of the charge image after the position of the flat panel detector 10 is adjusted, and use the electrical signal and the position of the charge image The information generates an image of the object to be imaged within the preset display area.
  • a positioning point is selected on the charge image, and the coordinates of the positioning point and the positional relationship between the positioning point and the alignment pixel unit or the alignment mark are obtained through the position control unit 11 .
  • the position control unit 11 includes a processor, and the processor calculates the distance between the positioning point and the alignment pixel unit or the alignment mark, adjusts the position of the flat panel detector 10 according to the distance, and moves the flat panel detector 10 to make the charge image Always in the image acquisition area.
  • the imaging system 100 further includes a light emitter, which is configured to emit light to the object to be imaged.
  • the light passes through the object to be imaged and then illuminates the flat panel detector 10.
  • the light after the object to be imaged is the incident light.
  • the light emitter is configured to rotate around the object to be imaged and emit light at multiple angles to the object to be imaged to generate corresponding charge images in real time at each of the angles respectively.
  • the imaging processing module generates a three-dimensional image in a preset display area by processing multiple charge images generated by emitting light from the object to be imaged at multiple angles.
  • the imaging system 100 can be used in the field of medical inspection, where the light emitter emits X-rays.
  • the imaging system 100 forms images of parts of the human body, such as organs, using X-rays.
  • the imaging system 100 provided by the embodiment of the present application can form an image of the object to be detected with ideal effect, for example, an ideal three-dimensional image is formed, which can more truly and accurately reflect the appearance of the object to be detected, and obtain a more realistic and accurate image.
  • Accurate image information improve the accuracy of detection results, and improve the imaging speed, and conveniently make the formed image always located in the preset area of the display, simple operation, and good film output effect.
  • the light emitted by the light emitter may also be visible light, so as to form a black and white image or a color image.
  • the black-and-white image or the color image is, for example, a planar image or a stereoscopic image.
  • the application scenarios and imaging types of the flat panel detector provided by the embodiments of the present disclosure are not limited to the above situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

一种平板探测器(10)及成像***(100),平板探测器(10)包括:呈阵列排布的多个像素单元;多个像素单元包括:多个感光像素单元(1)和多个对位像素单元(2)。多个感光像素单元(1)的每个包括光电感应器件,光电感应器件将入射光转化为电信号以使其所在的感光像素单元(1)具有随入射光的实时变化而变化的灰阶;多个对位像素单元(2)的每个构造为具有固定灰阶,固定灰阶不随入射光的实时变化而变化。多个对位像素单元(2)包括多个第一对位像素单元(21)和多个第二对位像素单元(22)。多个第一对位像素单元(21)的每个具有第一固定灰阶;多个第二对位像素单元(22)的每个具有第二固定灰阶,第一固定灰阶与所述第二固定灰阶不同。

Description

平板探测器及成像***
本申请要求于2020年7月29日递交的中国专利申请第202010747055.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种平板探测器及成像***。
背景技术
非晶硅(a-Si)X射线平板探测器是一种以非晶硅光电二极管阵列为核心的X射线影像探测器,在X射线照射下探测器的闪烁体或荧光体层将X射线光子转换为可见光,而后由具有光电二极管作用的非晶硅阵列变为图像电信号,通过***电路传输及模拟数字转换,从而获得数字化图像。由于其经历了X射线一可见光一电荷图像一数字图像的成像过程,通常也被称作间接转换型平板探测器。非晶硅X射线平板探测器具有成像速度快、良好的空间及密度分辨率、高信噪比、直接数字输出等优点,从而被广泛的应用于各种数字化X射线成像装置。
发明内容
本公开至少一实施例提供一种平板探测器,该平板探测器包括:呈阵列排布的多个像素单元;所述多个像素单元包括:多个感光像素单元和多个对位像素单元。所述多个感光像素单元的每个包括光电感应器件,所述光电感应器件将入射光转化为电信号以使其所在的所述感光像素单元具有随所述入射光的实时变化而变化的灰阶;所述多个对位像素单元的每个构造为具有固定灰阶,所述固定灰阶不随所述入射光的实时变化而变化。所述多个对位像素单元包括多个第一对位像素单元和多个第二对位像素单元。所述多个第一对位像素单元的每个具有第一固定灰阶;所述多个第二对位像素单元的每个 具有第二固定灰阶,所述第一固定灰阶与所述第二固定灰阶不同。
例如,本公开一实施例提供的平板探测器中,所述第一固定灰阶与所述第二固定灰阶的差的绝对值大于或等于所述多个感光像素单元所具有的最大灰阶与最小灰阶的差的绝对值的30%。
例如,本公开一实施例提供的平板探测器中,所述多个第一对位像素单元的每个为常黑像素单元,所述多个第二对位像素单元的每个为常亮像素单元。
例如,本公开一实施例提供的平板探测器中,所述多个第一对位像素单元中的至少两个组成一个第一对位标记,所述多个第二对位像素单元中的至少两个组成一个第二对位标记。
例如,本公开一实施例提供的平板探测器中,所述第一对位标记与所述第二对位标记交替排列。
例如,本公开一实施例提供的平板探测器中,所述多个第一对位像素单元中的两个组成一个第一对位标记,位于同一所述第一对位标记中的两个所述第一对位像素单元分别位于所述像素单元阵列的相邻列和相邻行;所述多个第二对位像素单元中的两个组成一个第二对位标记,位于同一所述第二对位标记中的两个第二对位像素单元分别位于所述像素单元阵列的相邻列和相邻行。
例如,本公开一实施例提供的平板探测器中,每个所述第一对位标记所包括的所述第一对位像素单元的个数大于每个所述第二对位标记所包括的所述第二对位像素单元的个数。
例如,本公开一实施例提供的平板探测器中,所述多个第一对位像素单元中的m*n个第一对位像素单元组成一个第一对位标记;所述多个第二对位像素单元中的两个第二对位像素单元组成一个第二对位标记,位于同一第二对位标记中的两个第二对位像素单元分别位于所述像素单元阵列的相邻列和相邻行,m和n均为正整数。
例如,本公开一实施例提供的平板探测器中,m=2,n=8。
例如,本公开一实施例提供的平板探测器包括图像采集区域。所述图像采集区域用于采集图像信息且包括所述多个感光像素单元中的至少部分感光 像素单元;所述第一对位标记与所述第二对位标记围绕所述图像采集区域。
例如,本公开一实施例提供的平板探测器中,所述第一对位标记与所述第二对位标记在所述图像采集区的周向方向上均匀分布。
例如,本公开一实施例提供的平板探测器中,所述光电感应器件包括:第一电极、光电感应层和及第二电极。光电感应层与所述第一电极堆叠,且配置为将所述入射光转化为电信号,所述电信号控制对应的所述感光像素单元的实时灰阶;第二电极位于所述光电感应层的远离所述第一电极的一侧。所述多个感光像素单元的每个和所述多个对位像素单元的每个分别包括晶体管,晶体管包括栅极、第一电极和第二电极。所述平板探测器还包括信号线,所述信号线包括:偏压线、栅线和数据线。偏压线与所述光电感应器件的第二电极电连接且配置为给每个所述感光像素单元提供偏置电压;栅线配置为给晶体管提供栅驱动信号;数据线与所述栅线交叉以限定出所述呈阵列排布的多个像素单元。在每个所述感光像素单元中,所述晶体管的第一电极与所述光电感应器件的第一电极电连接,所述数据线与所述晶体管的第二电极电连接以读取所述光电感应层产生的电信号。
例如,本公开一实施例提供的平板探测器中,所述多个第一对位像素单元的每个也包括所述光电感应器件,所述多个第一对位像素单元的至少部分第一对位像素单元的晶体管与所述信号线构成断路以使所述数据线无法读取所述光电感应层产生的电信号,所述至少部分第一对位像素单元为常黑像素单元。
例如,本公开一实施例提供的平板探测器中,所述第一对位像素单元的晶体管的栅极与所述栅线断开。
例如,本公开一实施例提供的平板探测器中,述第一对位像素单元的晶体管的第二电极与所述数据线断开。
例如,本公开一实施例提供的平板探测器中,所述第一对位像素单元的晶体管的第一电极与所述光电感应器件的第一电极断开。
例如,本公开一实施例提供的平板探测器中,所述多个第二对位像素单元的至少部分第二对位像素单元也包括所述光电感应器件;所述至少部分第二对位像素单元的所述光电感应器件的第二电极和所述光电感应层的平面形 状均具有挖空区,所述挖空区暴露所述光电感应器件的第一电极;所述偏压线通过第一过孔与所述光电感应器件的第一电极电连接,所述第一过孔暴露所述光电感应器件的第一电极,且所述第一过孔位于所述挖空区内,所述至少部分第二对位像素单元为常亮像素单元。
例如,本公开一实施例提供的平板探测器中,所述多个第二对位像素单元的至少部分第二对位像素单元包括第三电极和第四电极且不包括所述光电感应层;所述第三电极与所述对位像素单元的的晶体管的第一电极电连接,所述第四电极与所述偏压线电连接;所述第三电极与所述第四电极堆叠且直接接触以使两者电连接,所述至少部分第二对位像素单元为常亮像素单元。
例如,本公开一实施例提供的平板探测器中,所述光电感应器件为光电二极管。
例如,本公开一实施例提供的平板探测器中,在所述平板探测器包括图像采集区时,所述多个感光像素单元根据所述电信号生成电荷图像。所述平板探测器还包括:坐标采集单元和数据输出单元。坐标采集单元配置为采集每个所述对位像素单元的坐标和用于形成所述电荷图像的至少部分所述感光像素单元的实时坐标;数据输出单元配置为输出每个所述感光像素单元的所述电信号以用于形成图像,且配置为输出每个所述对位像素单元的坐标和所述至少部分感光像素单元的实时坐标以用于对所述电荷图像进行定位从而控制所述电荷图像始终位于所述图像采集区中。
本公开至少一实施例还提供一种成像***,该成像***包括本公开实施例提供的任意一种平板探测器,以及位置控制单元、位置调节装置和成像处理模块。位置控制单元配置为实时接收来自对位像素单元的坐标和所述至少部分感光像素单元的实时坐标,并利用接收到的所述坐标计算所述至少部分感光像素单元的相对于所述对位像素单元的距离,根据计算结果发送指令;位置调节装置配置为实时接收来自所述位置控制单元的指令,在所述指令的控制下实时调节所述平板探测器的位置以使所述电荷图像始终位于所述图像采集区中;成像处理模块包括显示器和成像处理器,所述显示器包括预设显示区域;所述成像处理器配置为接收所述平板探测器输出的所述电信号以及调节平板探测器的位置之后的所述电荷图像的位置信息,利用所述电信号及 所述电荷图像的位置信息在所述预设显示区域内生成待成像物体的图像。
例如,本公开一实施例提供的成像***还包括光发射器。光发射器配置为向所述待成像物体发射光线;所述光线经过所述待成像物体后照射所述平板探测器。
例如,本公开一实施例提供的成像***中,所述光发射器配置为围绕所述待成像物体转动,在多个角度对所述待成像物体发射光线以分别在每个所述角度实时生成对应的电荷图像;所述成像处理模块通过对在多个角度对待成像物体发射光线而生成的多个所述电荷图像进行处理在所述预设显示区域内生成三维图像。
例如,本公开一实施例提供的成像***中,所述光发射器发射X射线。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1A为本公开一实施例提供的一种平板探测器的示意图;
图1B为本公开一实施例提供的另一种平板探测器的示意图;
图2为本公开一实施例提供的另一种平板探测器的示意图;
图3为本公开一实施例提供的又一种平板探测器的示意图;
图4为本公开一实施例提供的再一种平板探测器的示意图;
图5A为本公开一实施例提供的平板探测器的感光像素单元的平面图;
图5B为沿图5A中的A-A’线的截面示意图;
图5C为沿图5A中的H-H’线的截面示意图;
图6A为本公开一实施例提供的平板探测器的一种第一对位像素单元的平面图;
图6B为沿图6A中的B-B’线的截面示意图;
图7A为本公开一实施例提供的平板探测器的另一种第一对位像素单元的平面图;
图7B为沿图7A中的C-C’线的截面示意图;
图8A为本公开一实施例提供的平板探测器的又一种第一对位像素单元的平面图;
图8B为沿图8A中的D-D’线的截面示意图;
图8C为本公开一实施例提供的平板探测器的又一种第一对位像素单元的平面图;
图8D为沿图8C中的G-G’线的截面示意图;
图9A为本公开一实施例提供的平板探测器的一种第二对位像素单元的平面图;
图9B为沿图9A中的E-E’线的截面示意图;
图10A为本公开一实施例提供的平板探测器的另一种第二对位像素单元的平面图;
图10B为沿图10A中的F-F’线的截面示意图;
图10C为沿图10A中的G-G’线的截面示意图;
图11为本公开一实施例提供的一种成像***的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开中的附图并不是严格按实际比例绘制,平板探测器中感光像素单元、第一对位像素单元、第二对位像素单元、第一对位标记和第二对位标记的个数不是限定为图中所示的数量,各个结构的具体地尺寸和数量可根据实际需要进行确定。本公开中所描述的附图仅是结构示意图。
待成像物体在光的照射下,经过待成像物体的光入射至平板探测器,而后由平板探测器的感光元件将入射光的光信号转变为图像电信号,从而产生电荷图像。在这一过程中,当入射光入射至平板探测器上的位置发生移动时,在平板探测器中接收并响应入射光而在不同位置生成不同的电荷图像,这些电荷图像的位置位于不同的区域。后续需要利用随着入射光的实时移动而获得的多个实时电荷图像合成最终的图像,这个过程中,需要利用多个实时电荷图像的位置信息来合成最终的图像,要求多个实时电荷图像均位于预设的区域中,以便于合成理想的最终的图像。
本公开至少一实施例提供一种平板探测器,该平板探测器包括:呈阵列排布的多个像素单元;所述多个像素单元包括:多个感光像素单元和多个对位像素单元。所述多个感光像素单元的每个包括光电感应器件,所述光电感应器件将入射光转化为电信号以使其所在的所述感光像素单元具有随所述入射光的实时变化而变化的灰阶;所述多个对位像素单元的每个构造为具有固定灰阶,所述固定灰阶不随所述入射光的实时变化而变化。所述多个对位像素单元包括多个第一对位像素单元和多个第二对位像素单元。所述多个第一对位像素单元的每个具有第一固定灰阶;所述多个第二对位像素单元的每个具有第二固定灰阶,所述第一固定灰阶与所述第二固定灰阶不同。
示例性地,图1A为本公开一实施例提供的一种平板探测器的示意图。如图1A所示,本公开至少一实施例提供的平板探测器10包括呈阵列排布的多个像素单元,多个像素单元包括多个感光像素单元1和多个对位像素单元2。例如,平板探测器10的工作过程如上所述。多个感光像素单元1的每个包括光电感应器件,光电感应器件配置为将入射光转化为电信号以使其所在的感光像素单元具有随入射光的实时变化而变化的灰阶,从而可生成电荷图像。多个对位像素单元的每个构造为具有固定灰阶,所述固定灰阶不随入射光的实时变化而变化,从而可以将多个对位像素单元识别出来,并获取多个 对位像素单元的位置信息,该位置信息例如为坐标,以多个对位像素单元的坐标作为参考,确定该平板探测器10所生成的电荷图像的位置。随入射光的实时变化,例如当入射光的发射源相对于待成像物体发生移动时,经过待成像物体后的入射光入射至平板探测器10上的位置发生变化,平板探测器10的用于接收并响应入射光的感光像素单元1的位置发生改变,形成的电荷图像的形状和位置发生变化,此时,通过计算电荷图像相对于对位像素单元的距离,从而实时调节平板探测器10的位置以使电荷图像始终位于预设区域内,例如该预设区域称为图像采集区。从而满足上述对随着入射光的变化而产生的多个实时电荷图像均位于图像采集区内的需求,以便于合成理想的最终的图像,避免在不同的区域内生成不同的电荷图像而造成合成最终的图像难度大或效果不理想的问题。多个对位像素单元2包括多个第一对位像素单元21和多个第二对位像素单元22。多个第一对位像素单元21的每个具有第一固定灰阶;多个第二对位像素单元22的每个具有第二固定灰阶,第一固定灰阶与第二固定灰阶不同。第一固定灰阶与第二固定灰阶之间的灰度具有差值,从而与只设置同一种固定灰阶的像素单元相比,在本申请提供的平板探测器10工作过程中,可以同时获取多个第一对位像素单元21的坐标和多个第二对位像素单元22的坐标,以在感光像素单元1具有不同的灰阶的情况下,例如在大多数或者全部感光像素单元1的灰阶接近于第一对位像素单元21的灰阶时,能够准确地识别第二对位像素单元22;或者,在大多数或者全部感光像素单元1的灰阶接近第二对位像素单元22的灰阶时,能够准确地识别第一对位像素单元21。在这些情形下,均能够准确地识别对位像素单元,从而达到更加准确地对位。
例如,上述入射光为X射线。例如,在成像过程中,X射线的发射源移动或者待成像物体发生移动,例如X射线围绕待成像物体转动,在X射线的发射源转动不同的角度时在多个不同的角度利用平板探测器10形成待成像物体的多个实时的电荷图像,将该多个电荷图像转换为数字图像。多个电荷图像均位于预设的图像采集区内便于利用每个电荷图像的位置信息使生成的数字图像也始终位于预设的显示区域,利于成像效果和操作的便捷,提高使用该平板探测器10得到所需的图像的工作效率。例如,进一步地可以利用多 个数字图像合成得到实时立体三维图像。
例如,该平板探测器10可用于医疗检测领域,利用X射线用于形成人体的局部例如器官的影像。这种情况下,本申请实施例提供的平板探测器10能够通过使多个实时电荷图像均位于图像采集区内而形成效果理想的待检测物体例如为待检测器官的影像,例如形成理想的立体影像,更真实更准确地反映待检测物体的形貌,得到更为真实和准确地图像信息,提高检测结果的准确性,并提高成像速度。当然,上述入射光也可以为可见光,也可以形成彩色平面图像和彩色立体图像。本公开实施例提供的平板探测器的应用场景和成像类型不限于上述情形。
例如,在图1A所示的实施例中,多个第一对位像素单元21分别为第一对位像素单元211、212、213、214;多个第二对位像素单元22分别为第二对位像素单元221、222、223、224。
例如,在图1A所示的实施例中,多个第一对位像素单元211、212、213、214和多个第二对位像素单元221、222、223、224围绕预设的图像采集区D。如此,可在整个图像采集区D的周边进行定位,更有利于定位的准确。图像采集区D的形状不限定为图1A所示的情形。例如,图像采集区D的形状也可以为矩形,即多个第一对位像素单元和多个第二对位像素单元围绕成矩形区域。
当然,在本公开的实施例不限于多个对位像素单元围绕图像采集区D的情形。例如,图1B为本公开一实施例提供的另一种平板探测器的示意图。在图1B所示的实施例中,多个第一对位像素单元211、212、213、214和多个第二对位像素单元221、222、223、224、225呈十字形排布,多个第一对位像素单元21和多个第二对位像素单元22位于图像采集区D的一侧。例如,图2为本公开一实施例提供的另一种平板探测器的示意图,在图2中,第一对位像素单元211、212和第二对位像素单元221、222位于图像采集区D的一侧。在其他实施例中,多个第一对位像素单元和多个第二对位像素单元也可以呈其他形状排列,例如呈一字形或米字形排列,本公开实施例对此不作限定。
例如,第一对位像素单元211、212、213、214与第二对位像素单元221、 222、223、224交替排列,即,沿第一对位像素单元和第二对位像素单元的排列方向,第二对位像素单元221、第二对位像素单元222分别位于第一对位像素单元212的两侧且与之相邻,第一对位像素单元211位于第二对位像素单元221远离的第一对位像素单元212的一侧且与第二对位像素单元221相邻,第一对位像素单元213位于第二对位像素单元222远离的第一对位像素单元212的一侧且与第二对位像素单元222相邻。第一对位像素单元与第二对位像素单元交替排列能够使相邻的对位像素单元的灰度差别明显,利于提高对第一对位像素单元和第二对位像素单元识别的准确度,从而提高定位的准确性和可靠性。
例如,第一固定灰阶与第二固定灰阶的差的绝对值大于或等于多个感光像素单元所具有的最大灰阶与最小灰阶的差的绝对值的30%,以使每个第一对位像素单元211、212、213、214与每个第二对位像素单元221、222、223、224具有明显的灰阶差异,在上述大多数或者全部感光像素单元1的灰阶接近第一对位像素单元与第二对位像素单元两者中的一者的灰阶时,提高另一者的识别度,从而实现更准确的定位。例如共有2 16个灰阶,第一固定灰阶与第二固定灰阶的差异大于20000个灰阶。
例如,多个第一对位像素单元21的每个为常黑像素单元,多个第二对位像素单元22的每个为常亮像素单元。常黑像素单元始终为黑态,常亮像素单元始终为亮态,例如亮度始终为可达到的最高亮度。如此,在平板探测器10整体上呈黑态时,可准确地识别出始终为亮态的第一对位像素单元21;在平板探测器10整体上呈亮态时,可准确地识别出始终为暗态的第二对位像素单元22。即,在平板探测器10整体上呈黑态和亮态时,均可实现准确定位的效果。
例如,多个第一对位像素单元中的至少两个组成一个第一对位标记,所述多个第二对位像素单元中的至少两个组成一个第二对位标记,以增大可被识别的第一对位标记和第二对位标记的面积,提高定位的可靠性和准确性。
示例性地,在图2和图3所示的实施例中,多个第一对位像素单元21中的两个组成一个第一对位标记31,位于同一第一对位标记31中的两个第一对位像素单元211、212分别位于像素单元阵列的相邻列和相邻行;多个第 二对位像素单元22中的两个组成一个第二对位标记32,位于同一第二对位标记32中的两个第二对位像素单元221、222分别位于像素单元阵列的相邻列和相邻行。即斜对角的两个相邻的第一对位像素单元组成一个第一对位标记31,斜对角的两个相邻的第二对位像素单元组成一个第二对位标记32。经试验验证,这样的设计有利于提高对第一对位标记31和第二对位标记32的识别的准确性。这种像素组合而形成的对位标记有利于提高识别的准确性,避免由于简单的单点像素标记与像素坏点混淆而造成错误识别,且这种对位标记具有简单的设计。
例如,如图3所示,第一对位标记311、312、313、314与第二对位标记321、322、323、324交替排列。即,沿第一对位标记和第二对位标记的排列方向,第二对位标记321和第二对位标记322位于第一对位标记312的两侧且分别与第一对位标记312相邻,第一对位标记311位于第二对位标记321的远离第一对位标记312的一侧且与第二对位标记321相邻,第一对位标记313位于第二对位标记322的远离第一对位标记312的一侧且与第二对位标记322相邻。第一对位标记与第二对位标记交替排列能够使相邻的对位标记的灰度差别明显,利于提高对第一对位标记和第二对位标记识别的准确度,从而提高定位的准确性和可靠性。
例如,如图3所示,多个第一对位标记311、312、313、314与多个第二对位标记321、322、323、324排列成的平面图形是中心对称图形。例如,该平面图形以图3中的O点为对称中心呈中心对称。例如每对第一对位标记以O点为对称中心呈中心对称,每对第二对位标记以O点为对称中心呈中心对称。第一对位标记311与第一对位标记313呈中心对称,第一对位标记312与第一对位标记314呈中心对称;第二对位标记321与第二对位标记323呈中心对称,第二对位标记322与第二对位标记324呈中心对称。
图3所示的实施例的其他没有提及的特征和效果均与图1A所示的实施例的相同。
图4为本公开一实施例提供的再一种平板探测器的示意图,该实施例与图3所示的实施例具有以下区别。如图4所示,每个第一对位标记31所包括的第一对位像素单元21的个数大于每个第二对位标记32所包括的第二对位 像素单元22的个数。如此,增大了第一对位标记的面积,对较暗的第一对位标记识别的准确度较高。
例如,多个第一对位像素单元中的m*n个第一对位像素单元组成一个第一对位标记,m和n均为正整数。如此,在平板探测器10采用多行同时扫描的情况下,可同时扫描m行像素单元,从而可同时识别构成一个第一对位标记的位于m行的第一对位像素单元,在提高第一对位标记识别的准确度的同时,便于识别操作和用于识别第一对位标记的电路的设计。
例如,如图4所示,多个第一对位像素单元中的2*8个第一对位像素单元21组成一个第一对位标记31,对于每个第一对位标记均是如此,即m=2,n=8。例如,多个第二对位像素单元中的两个第二对位像素单元组成一个第二对位标记32,位于同一第二对位标记中的两个第二对位像素单元221、222分别位于像素单元阵列的相邻列和相邻行。
例如,在图4中,多个第一对位标记与多个第二对位标记排列成的平面图形不是中心对称图形。例如,多个第一对位标记与多个第二对位标记排列成的平面图形也可以是轴对称图形,位置排布规整利于识别的便利和准确。但本公开实施例对多个第一对位标记与多个第二对位标记排列成的平面图形不做限定。
例如,在图4中,用于采集图像信息的图像采集区域D包括多个感光像素单元1中的至少部分感光像素单元1。例如,平板探测器10还包括位于图像采集区域D外的感光像素单元1。例如,多个第一对位标记31与多个第二对位标记32围绕图像采集区域D,以在整个图像采集区D的周边进行定位,更有利于定位的准确。
例如,多个第一对位标记31与多个第二对位标记32在图像采集区的周向方向上均匀分布,可使最终的电荷图像的在围绕图像采集区域D的整个方向上的位置均较准确地位于图像采集区D内。
当然,在其他实施例中,多个第一对位标记31与多个第二对位标记32也可以不围绕图像采集区域D。
图4所示的实施例的其他没有提及的特征和效果均与图3所示的实施例的相同。
图5A为本公开一实施例提供的平板探测器的感光像素单元的平面图,图5B为沿图5A中的A-A’线的截面示意图,图5C为沿图5A中的H-H’线的截面示意图。参考图5A-5C,光电感应器件包括:第一电极03、光电感应层04和第二电极08。光电感应层04与第一电极03堆叠,且配置为将入射光转化为电信号,该电信号控制对应的感光像素单元1的实时灰阶。第二电极位于光电感应层04的远离第一电极的一侧。多个感光像素单元1的每个和包括晶体管,晶体管包括栅极010、第一电极021和第二电极022。平板探测器10还包括信号线,信号线包括偏压线05、栅线01和数据线02。偏压线05与光电感应器件的第二电极08电连接且配置为给每个感光像素单元1提供偏置电压;栅线01与栅极010电连接,配置为给晶体管提供栅驱动信号;数据线02与栅线010交叉以限定出呈阵列排布的多个像素单元。在每个感光像素单元1中,晶体管的第一电极021与光电感应器件的第一电极03电连接,数据线02与晶体管的第二电极022电连接以读取光电感应层04产生的电信号。
例如,上述晶体管为薄膜晶体管。薄膜晶体管可以为非晶硅薄膜晶体管、氧化物薄膜晶体管或低温多晶硅(LTPS)薄膜晶体管。薄膜晶体管可以为顶栅结构或底栅结构。本公开实施例对薄膜晶体管的类型不作限定,可根据具体需要进行选择。
例如,光电感应器件为光电二极管,包括PIN结。通常光电二极管11包括N型半导体层、本征半导体层、P型半导体层。薄膜晶体管的第一电极与N型半导体层连接。当入射光为X射线时,平板探测器10上设置有闪烁层,闪烁层可将X射线转换为可见光,可见光照射感光像素单元。平板探测器10的工作过程是:X射线被处于其路径上的人体调制,调制后的X射线由闪烁层转换为可见光,可见光被光电二极管吸收并转换成电荷载流子,电荷载流子存储在光电二极管自身电容或者另外设置的存储电容中而由平板探测器10形成电荷图像;由扫描驱动电路顺序接通每一行感光像素单元的薄膜晶体管,以一行同时读出的方式将电荷图像输出,即输出每个感光像素单元产生的电信号。经每一薄膜晶体管读出的电荷图像对应于入射X射线的剂量,通过处理可以确定每一感光区的电荷量,进而确定每一感光区的X射线剂量。 可通过显示装置利用感光像素单元产生的电信号生成黑白图像或彩色图像。
例如,上述偏置电压为公共电压,例如为接地电压或其他类型的公共电压。偏压线05连接到每个感光像素单元1。
例如,如图5B所示,平板探测器10还包括栅绝缘层011和位于薄膜晶体管与光电感应器件的第一电极03之间的层间绝缘层013。晶体管的第一电极021通过贯穿层间绝缘层013的第一过孔031与光电感应器件的第一电极03电连接。
例如,如图5C所示,平板探测器10还包括位于光电感应器件的远离衬底基板101的一侧的第一绝缘层09和位于第一绝缘层09的远离衬底基板101的一侧的第二绝缘层014。例如,第一绝缘层09为有机绝缘层。例如第一绝缘层09是平坦层。例如第一绝缘层09由有机材料制成,该有机材料例如包括树脂,或者为光刻胶材料;第二绝缘层014为无机绝缘层,由无机材料制成,该无机材料例如包括氧化硅、氮化硅或氮氧化硅中的至少之一。例如,偏压线05通过贯穿第二绝缘层014的第二过孔06和贯穿第一绝缘层09的第三过孔07与光电感应器件的第二电极08电连接。例如,第二过孔06与第三过孔07是彼此连通的。例如,平板探测器10还包括位于第一绝缘层09的靠近第二电极08一侧的第三绝缘层(图未示出),第三绝缘层为无极绝缘层,其材料例如包括氧化硅、氮化硅或氮氧化硅中的至少之一。
例如,衬底基板101可以为刚性基板,刚性基板的材料包括玻璃、石英、金属中的一种。衬底基板101也可以为柔性基板,柔性基板的材料包括聚酰亚胺(Polyimide,简称PI)、聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,简称PET)、聚萘二甲酸乙二醇酯(Polyethylenenaphthalate two formic acid glycol ester,简称PEN)、聚碳酸酯(Polycarbonate,简称PC)等聚合物中的一种。
如图5A所示,例如,偏压线05包括主体部050和突出部051,突出部051与主体部050连接且从主体部050上突出,第二过孔06和第三过孔07在衬底基板101上的正投影位于突出部051在衬底基板101上的正投影内,突出部051可以为通过构图工艺形成,第二过孔06和第三过孔07提供充足的空间,降低构图难度,准确形成第二过孔06和第三过孔07。例如,栅线 01的延伸方向为第一方向,数据线02的延伸方向为第二方向,例如偏压线05沿第二方向延伸,突出部051从主体部050上沿第一方向突出。
如图5A所示,如图中的区域C,栅线01与数据线02交叠,即栅线01在衬底基板101上的正投影与数据线在衬底基板101上的正投影存在交叠,且在两者交叠的区域C中,栅线01与数据线02的线宽均变小,即,栅线01的与数据线02交叠的部分的线宽小于栅线01的与数据线02不交叠的部分的线宽,且数据线02的与栅线01交叠的部分的线宽小于数据线02的与栅线01不交叠的部分的线宽。并且,该区域C中设置有隔离层,隔离层与有源层同层设置,且位于栅线01与数据线02之间,以进一步防止栅线01与数据线02之间的信号串扰。
例如,多个第一对位像素单元的每个也包括晶体管和光电感应器件。在至少部分(多个对位像素单元中的至少一些)第一对位像素单元中,晶体管与信号线构成断路以使数据线无法读取光电感应层产生的电信号,以实现该至少部分第一对位像素单元为常黑像素单元。
示例性地,图6A为本公开一实施例提供的平板探测器的一种第一对位像素单元的平面图,图6B为沿图6A中的B-B’线的截面示意图。参考图6A-6B,每个第一对位像素单元也包括晶体管和光电感应器件。第一对位像素单元的结构与图5A-5C所示的感光像素单元1的结构的区别在于,第一对位像素单元的晶体管的栅极010与栅线01a断开,即第一对位像素单元的晶体管的栅极010与栅线01a不连接,从而使薄膜晶体管形成断路,数据线02a无法读取光电感应层产生的电信号,该第一对位像素单元为常黑像素单元。这里的栅线01a的其他特征与图5A-5C所示的栅线01相同,数据线02a与图5A-5C所示的数据线02相同。例如,该第一对位像素单元的其他未提及的结构,例如薄膜晶体管的半导体层012、第一电极和第二电极、以及光电感应器件的第一电极03a、光电感应层04a和第二电极05a、以及第二过孔06a和第三过孔07a等,均与感光像素单元1的相同。
又例如,图7A为本公开一实施例提供的平板探测器的另一种第一对位像素单元的平面图,图7B为沿图7A中的C-C’线的截面示意图。在图7A-7B所示的第一对位像素单元中,晶体管的第二电极022与数据线02c断开,即 晶体管的第二电极022与数据线02c不连接,从而使薄膜晶体管与数据线02c形成断路,数据线02c无法读取光电感应层产生的电信号,该第一对位像素单元为常黑像素单元。图7A-7B所示的栅线01a与图5A-5C所示的栅线01相同,数据线02c的其他特征与图5A-5C所示的数据线02相同。例如,该第一对位像素单元的其他未提及的结构,例如薄膜晶体管的半导体层012、第一电极021和第二电极022、以及光电感应器件的第一电极03c、光电感应层04c和第二电极05c等,均与感光像素单元1的相同。
又例如,图8A为本公开一实施例提供的平板探测器的另一种第一对位像素单元的平面图,图8B为沿图8A中的D-D’线的截面示意图。在图8A-8B所示的第一对位像素单元中,第一对位像素单元的晶体管的第一电极021与光电感应器件的第一电极03e断开,即第一对位像素单元的晶体管的第一电极021与光电感应器件的第一电极03e不连接,从而使薄膜晶体管与光电感应器件的第一电极03e形成断路,数据线02e无法读取光电感应层产生的电信号,该第一对位像素单元为常黑像素单元。这里的数据线02e与图5A-5C所示的数据线02相同。如图8B所示,光电感应器件的第一电极03e与第一电极021异层设置,两者不通过过孔连接。例如,该第一对位像素单元的其他未提及的结构,例如薄膜晶体管的半导体层012、第一电极021和第二电极022、以及光电感应器件的第一电极03e、光电感应层04e和第二电极05e等,均与感光像素单元1的相同。
图8C为本公开一实施例提供的平板探测器的又一种第一对位像素单元的平面图,图8D为沿图8C中的G-G’线的截面示意图。在图8C-8D所示的第一对位像素单元中,偏压线05与第一对位像素单元的光电感应器件断开。如图8D所示,例如,偏压线05与第一对位像素单元的光电感应器件的第二电极08之间设置有第一绝缘层09和第二绝缘层014,以使偏压线05与第一对位像素单元的光电感应器件的第二电极08绝缘,从而偏压线05与第一对位像素单元的光电感应器件断开,即偏压线05与第一对位像素单元的光电感应器件不电连接,从而使薄膜晶体管与光电感应器件无法实现电子的传输,数据线02e无法读取光电感应层产生的电信号,该第一对位像素单元为常黑像素单元。例如除了偏压线05与第一对位像素单元的光电感应器件断开之外的 其他特征均与图5A-5C中的相同。
图9A为本公开一实施例提供的平板探测器的一种第二对位像素单元的平面图,图9B为沿图9A中的E-E’线的截面示意图。参考图9A-9B,至少部分第二对位像素单元的每个也包括晶体管和光电感应器件。每个第二对位像素单元与图5A-5C所示的感光像素单元1的结构具有以下区别。第二对位像素单元的光电感应器件的第二电极08b的平面形状和光电感应层04b的平面形状均具有挖空区200,挖空区200暴露光电感应器件的第一电极03b。偏压线05b通过第二过孔06b和第三过孔07b与光电感应器件的第一电极03b电连接,第二过孔06b和第三过孔07b连通成一个过孔。第二过孔06b和第三过孔07b暴露光电感应器件的第一电极03b,且第二过孔06b和第三过孔07b位于挖空区200内。如此,可通过偏压线05b给第二对位像素单元提供固定的偏置电压,使数据线02b读取光电感应器件的第二电极08b与第一电极03b之间固定的电压差,从而使第二对位像素单元具有固定的灰阶,实现该至少部分第二对位像素单元为常亮像素单元。图9A的栅线01b与图5A所示的栅线01相同,数据线02b与图5A所示的数据线02相同。例如,该第二对位像素单元的其他未提及的结构,例如薄膜晶体管的半导体层、第一电极和第二电极等,均与感光像素单元1的相同。
例如,挖空区200的平面图形为不封闭的凹槽,即光电感应器件的第二电极08b和光电感应层04b分别包括挖空区200和围绕部分挖空区200的非挖空区。例如,如图9A所示,挖空区200自光电感应器件的第二电极08b的平面图形的一条边向内凹陷,且位于光电感应层04b的平面图形的一条边向内凹陷。当然,在其他实施例中,挖空区200的平面图形也可以为封闭的图形,即,光电感应器件的第二电极08b和光电感应层04b分别包括挖空区和围绕整个挖空区的非挖空区。
例如,如图9A所示,偏压线05b包括沿其延伸方向依次连接的第一部分05b1、第二部分05b2和第三部分05b3,第二部分05b2的线宽大于第一部分05b1的线宽且大于第三部分05b3的线宽,并且,第二部分05b2在衬底基板101上的正投影与挖空区200的边缘在衬底基板101上的正投影的一部分重叠。由于在挖空区200的边缘的段差较大,即第二电极08b的平面形状和 光电感应层04b的围绕挖空区200的边缘与第一电极03b之间具有高度差而形成边坡,第二部分05b2在该边缘处爬坡,因此,第二部分05b2的线宽较大可以避免在爬坡处发生断线的风险。
图10A为本公开一实施例提供的平板探测器的另一种第二对位像素单元的平面图,图10B为沿图10A中的F-F’线的截面示意图,图10C为沿图10A中的G-G’线的截面示意图。如图10A-10C所示,多个第二对位像素单元的至少部分第二对位像素单元包括第三电极03d和第四电极08d且不包括光电感应层。第三电极03d与偏压线05d电连接,第三电极03d与对位像素单元的的晶体管的第一电极021电连接。第三电极03d与第四电极08d堆叠且直接接触以使两者电连接。如此,由于不存在光电感层,所以该第二对位像素单元不会产生根据入射光的变化而变化的电信号,可通过偏压线05d给与其电连接的第三电极03d提供固定的偏置电压,第三电极03d通过薄膜晶体管与数据线02b电连接,从而数据线02b读取到的电信号与固定的偏置电压基本相同,从而使该第二对位像素单元具有固定的灰阶,实现该第二对位像素单元为常亮像素单元。图10A的栅线01d与图5A所示的栅线01相同,数据线02d与图5A所示的数据线02相同。例如,该第二对位像素单元的其他未提及的结构,例如薄膜晶体管的半导体层、第一电极和第二电极等,均与感光像素单元1的相同。
需要说明的是,“第三电极03d与第四电极08d直接接触”指第三电极03d与第四电极08d之间没有其他的层或结构,这两者也不通过过孔接触,第三电极03d的远离衬底基板101的面与第四电极08d的靠近衬底基板101的面接触。
例如,平板探测器10还包括坐标采集单元和数据输出单元。坐标采集单元配置为采集每个对位像素单元的坐标或对位标记的坐标,以及用于形成电荷图像的至少部分感光像素单元的实时坐标。数据输出单元配置为输出每个感光像素单元的电信号以用于形成图像,且配置为输出每个对位像素单元的坐标和至少部分感光像素单元的实时坐标以用于对电荷图像进行定位从而控制电荷图像始终位于图像采集区中。例如,出于方便操作的目的,在电荷图像上选择定位点,并根据定位点与对位像素单元或对位标记的位置关系来调 整平板探测器10的位置,平板探测器10可移动以使电荷图像始终位于图像采集区中。
本公开至少一实施例还提供一种成像***,该成像***包括本公开实施例提供的任意一种平板探测器,以及位置控制单元、位置调节装置和成像处理模块。位置控制单元配置为实时接收来自对位像素单元的坐标和所述至少部分感光像素单元的实时坐标,并利用接收到的所述坐标计算所述至少部分感光像素单元的相对于所述对位像素单元的距离,根据计算结果发送指令;位置调节装置配置为实时接收来自所述位置控制单元的指令,在所述指令的控制下实时调节所述平板探测器的位置以使所述电荷图像始终位于所述图像采集区中;成像处理模块包括显示器和成像处理器,所述显示器包括预设显示区域;所述成像处理器配置为接收所述平板探测器输出的所述电信号以及调节平板探测器的位置之后的所述电荷图像的位置信息,利用所述电信号及所述电荷图像的位置信息在所述预设显示区域内生成待成像物体的图像。
图11为本公开一实施例提供的一种成像***的示意图。如图11所示,成像***100包括本公开实施例提供的任意一种平板探测器10,以及位置控制单元11、位置调节装置12和成像处理模块13。位置控制单元11配置为实时接收来自平板探测器10的对位像素单元的坐标和至少部分感光像素单元的实时坐标,并利用接收到的所述坐标计算至少部分感光像素单元的相对于对位像素单元的距离,根据计算结果发送指令。该至少部分感光像素单元用于感光生成电荷图像,例如为选定的一些感光像素单元。位置调节装置12配置为实时接收来自位置控制单元11的指令,在该指令的控制下实时调节平板探测器10的位置以使电荷图像始终位于上述图像采集区D中。成像处理模块13包括显示器131和成像处理器132。显示器131包括预设显示区域;成像处理器132配置为接收平板探测器10输出的电信号以及调节平板探测器10的位置之后的电荷图像的位置信息,利用该电信号及所述电荷图像的位置信息在所述预设显示区域内生成待成像物体的图像。
例如,出于方便操作的目的,在电荷图像上选择定位点,并通过位置控制单元11获取定位点的坐标以及定位点与对位像素单元或对位标记的位置关系。例如位置控制单元11包括处理器,通过处理器计算定位点与对位像素 单元或对位标记之间的距离,根据该距离来调整平板探测器10的位置,移动平板探测器10以使电荷图像始终位于图像采集区中。
例如,成像***100还包括光发射器,光发射器配置为向待成像物体发射光线,光线经过待成像物体后照射平板探测器10,经过待成像物体后的光线即为上述入射光。
例如,光发射器配置为围绕待成像物体转动,在多个角度对待成像物体发射光线以分别在每个所述角度实时生成对应的电荷图像。成像处理模块通过对在多个角度对待成像物体发射光线而生成的多个电荷图像进行处理在预设显示区域内生成三维图像。
例如,该成像***100可用于医疗检测领域,光发射器发射X射线。成像***100利用X射线形成人体的局部例如器官的影像。这种情况下,本申请实施例提供的成像***100能够形成效果理想的待检测物体的影像,例如形成理想的立体影像,更真实更准确地反映待检测物体的形貌,得到更为真实和准确地图像信息,提高检测结果的准确性,并提高成像速度,并且方便地使所形成的图像始终位于显示器的预设区域中,操作简单,出片效果好。当然,再一些实施例中,光发射器发射的光也可以为可见光,以用于形成黑白图像或彩色图像。该黑白图像或彩色图像例如为平面图像或立体图像。本公开实施例提供的平板探测器的应用场景和成像类型不限于上述情形。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (22)

  1. 一种平板探测器,包括:呈阵列排布的多个像素单元,所述多个像素单元包括:
    多个感光像素单元,其中,所述多个感光像素单元的每个包括光电感应器件,所述光电感应器件配置为将入射光转化为电信号以使其所在的所述感光像素单元具有随所述入射光的实时变化而变化的灰阶;
    多个对位像素单元,其中,所述多个对位像素单元的每个构造为具有固定灰阶,所述固定灰阶不随所述入射光的实时变化而变化;
    所述多个对位像素单元包括:
    多个第一对位像素单元,其中,所述多个第一对位像素单元的每个具有第一固定灰阶;以及
    多个第二对位像素单元,其中,所述多个第二对位像素单元的每个具有第二固定灰阶,其中,所述第一固定灰阶与所述第二固定灰阶不同。
  2. 根据权利要求1所述的平板探测器,其中,所述第一固定灰阶与所述第二固定灰阶的差的绝对值大于或等于所述多个感光像素单元所具有的最大灰阶与最小灰阶的差的绝对值的30%。
  3. 根据权利要求2所述的平板探测器,其中,所述多个第一对位像素单元的每个为常黑像素单元,所述多个第二对位像素单元的每个为常亮像素单元。
  4. 根据权利要求1-3任一所述的平板探测器,其中,所述多个第一对位像素单元中的至少两个组成一个第一对位标记,所述多个第二对位像素单元中的至少两个组成一个第二对位标记。
  5. 根据权利要求4所述的平板探测器,其中,所述第一对位标记与所述第二对位标记交替排列。
  6. 根据权利要求4所述的平板探测器,其中,所述多个第一对位像素单元中的两个组成一个第一对位标记,位于同一所述第一对位标记中的两个所述第一对位像素单元分别位于所述像素单元阵列的相邻列和相邻行;
    所述多个第二对位像素单元中的两个组成一个第二对位标记,位于同一 所述第二对位标记中的两个第二对位像素单元分别位于所述像素单元阵列的相邻列和相邻行。
  7. 根据权利要求4所述的平板探测器,其中,每个所述第一对位标记所包括的所述第一对位像素单元的个数大于每个所述第二对位标记所包括的所述第二对位像素单元的个数。
  8. 根据权利要求7所述的平板探测器,其中,所述多个第一对位像素单元中的m*n个第一对位像素单元组成一个第一对位标记;所述多个第二对位像素单元中的两个第二对位像素单元组成一个第二对位标记,位于同一第二对位标记中的两个第二对位像素单元分别位于所述像素单元阵列的相邻列和相邻行,m和n均为正整数。
  9. 根据权利要求4-8任一所述的平板探测器,包括图像采集区域,其中,所述图像采集区域用于采集图像信息且包括所述多个感光像素单元中的至少部分感光像素单元;
    所述第一对位标记与所述第二对位标记围绕所述图像采集区域。
  10. 根据权利要求9所述的平板探测器,其中,所述第一对位标记与所述第二对位标记在所述图像采集区的周向方向上均匀分布。
  11. 根据权利要求1-10任一所述的平板探测器,其中,
    所述光电感应器件包括:第一电极;光电感应层,与所述第一电极堆叠,且配置为将所述入射光转化为电信号,所述电信号控制对应的所述感光像素单元的实时灰阶;以及第二电极,位于所述光电感应层的远离所述第一电极的一侧;
    所述多个感光像素单元的每个和所述多个对位像素单元的每个分别包括:晶体管,包括栅极、第一电极和第二电极;
    所述平板探测器还包括信号线,所述信号线包括:
    偏压线,与所述光电感应器件的第二电极电连接且配置为给每个所述感光像素单元提供偏置电压;
    栅线,配置为给所述晶体管提供栅驱动信号;以及
    数据线,与所述栅线交叉以限定出所述呈阵列排布的多个像素单元,其中,
    在每个所述感光像素单元中,所述晶体管的第一电极与所述光电感应器件的第一电极电连接,所述数据线与所述晶体管的第二电极电连接以读取所述光电感应层产生的电信号。
  12. 根据权利要求11所述的平板探测器,其中,
    所述多个第一对位像素单元的每个也包括所述光电感应器件,所述多个第一对位像素单元的至少部分第一对位像素单元的晶体管与所述信号线构成断路以使所述数据线无法读取所述光电感应层产生的电信号,所述至少部分第一对位像素单元为常黑像素单元。
  13. 根据权利要求12所述的平板探测器,其中,所述第一对位像素单元的晶体管的栅极与所述栅线断开。
  14. 根据权利要求12所述的平板探测器,其中,所述第一对位像素单元的晶体管的第二电极与所述数据线断开。
  15. 根据权利要求12所述的平板探测器,其中,所述第一对位像素单元的晶体管的第一电极与所述光电感应器件的第一电极断开。
  16. 根据权利要求11所述的平板探测器,其中,所述偏压线与所述第一对位像素单元的光电感应器件断开。
  17. 根据权利要求11-16任一所述的平板探测器,其中,
    所述多个第二对位像素单元的至少部分第二对位像素单元也包括所述光电感应器件;
    所述至少部分第二对位像素单元的所述光电感应器件的第二电极和所述光电感应层的平面形状均具有挖空区,所述挖空区暴露所述光电感应器件的第一电极;
    所述偏压线通过第一过孔与所述光电感应器件的第一电极电连接,所述第一过孔暴露所述光电感应器件的第一电极,且所述第一过孔位于所述挖空区内,所述至少部分第二对位像素单元为常亮像素单元。
  18. 根据权利要求11-17任一所述的平板探测器,其中,
    所述多个第二对位像素单元的至少部分第二对位像素单元包括第三电极和第四电极且不包括所述光电感应层;
    所述第三电极与所述对位像素单元的的晶体管的第一电极电连接,所述 第四电极与所述偏压线电连接;
    所述第三电极与所述第四电极堆叠且直接接触以使两者电连接,所述至少部分第二对位像素单元为常亮像素单元。
  19. 根据权利要求1-18任一所述的平板探测器,其中,所述光电感应器件为光电二极管。
  20. 根据权利要求1-19任一所述的平板探测器,其中,
    在所述平板探测器包括图像采集区时,所述多个感光像素单元根据所述电信号生成电荷图像;
    所述平板探测器还包括:
    坐标采集单元,配置为采集每个所述对位像素单元的坐标和用于形成所述电荷图像的至少部分所述感光像素单元的实时坐标;
    数据输出单元,配置为输出每个所述感光像素单元的所述电信号以用于形成图像,且配置为输出每个所述对位像素单元的坐标和所述至少部分感光像素单元的实时坐标以用于对所述电荷图像进行定位从而控制所述电荷图像始终位于所述图像采集区中。
  21. 一种成像***,包括:
    权利要求20所述的平板探测器;
    位置控制单元,配置为实时接收来自所述对位像素单元的坐标和所述至少部分感光像素单元的实时坐标,并利用接收到的所述坐标计算所述至少部分感光像素单元的相对于所述对位像素单元的距离,根据计算结果发送指令;
    位置调节装置,配置为实时接收来自所述位置控制单元的指令,在所述指令的控制下实时调节所述平板探测器的位置以使所述电荷图像始终位于所述图像采集区中;以及
    成像处理模块,包括显示器和成像处理器,其中,所述显示器包括预设显示区域;所述成像处理器配置为接收所述平板探测器输出的所述电信号以及调节所述平板探测器的位置之后的所述电荷图像的位置信息,利用所述电信号及所述电荷图像的位置信息在所述预设显示区域内生成待成像物体的图像。
  22. 根据权利要求21所述的成像***,还包括:
    光发射器,配置为向所述待成像物体发射光线,其中,所述光线经过所述待成像物体后照射所述平板探测器;
    所述光发射器配置为围绕所述待成像物体转动,在多个角度对所述待成像物体发射光线以分别在每个所述角度实时生成对应的电荷图像;
    所述成像处理模块通过对在多个角度对待成像物体发射光线而生成的多个所述电荷图像进行处理在所述预设显示区域内生成三维图像。
PCT/CN2021/099751 2020-07-29 2021-06-11 平板探测器及成像*** WO2022022110A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,268 US11986331B2 (en) 2020-07-29 2021-06-11 Flat panel detector and imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010747055.4 2020-07-29
CN202010747055.4A CN114068591A (zh) 2020-07-29 2020-07-29 平板探测器及成像***

Publications (1)

Publication Number Publication Date
WO2022022110A1 true WO2022022110A1 (zh) 2022-02-03

Family

ID=80037119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099751 WO2022022110A1 (zh) 2020-07-29 2021-06-11 平板探测器及成像***

Country Status (3)

Country Link
US (1) US11986331B2 (zh)
CN (1) CN114068591A (zh)
WO (1) WO2022022110A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI786016B (zh) * 2022-04-26 2022-12-01 友達光電股份有限公司 平板感測器檢測系統及平板感測器檢測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251420A1 (en) * 2003-06-14 2004-12-16 Xiao-Dong Sun X-ray detectors with a grid structured scintillators
CN104576673A (zh) * 2014-12-15 2015-04-29 上海天马微电子有限公司 平板图像传感器及其制造方法
CN109545810A (zh) * 2018-11-20 2019-03-29 京东方科技集团股份有限公司 一种平板探测器及其制备方法
CN109671729A (zh) * 2017-10-17 2019-04-23 京东方科技集团股份有限公司 探测单元及其制作方法、平板探测器
CN110458827A (zh) * 2019-08-12 2019-11-15 深圳蓝韵医学影像有限公司 医学影像坏点的检测方法、装置、设备及介质
CN111161297A (zh) * 2019-12-31 2020-05-15 上海联影医疗科技有限公司 限束器边缘的确定方法、装置及x射线***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497024A (en) * 1981-07-01 1985-01-29 General Electric Company Nuclear image display controller
US4905265A (en) * 1985-12-11 1990-02-27 General Imaging Corporation X-ray imaging system and solid state detector therefor
JP4280024B2 (ja) * 2001-04-23 2009-06-17 株式会社東芝 X線平面検出器
US20040116795A1 (en) * 2002-12-17 2004-06-17 Collins William F. Determination of dose-enhancing agent concentration and dose enhancement ratio
JP4949964B2 (ja) * 2007-08-10 2012-06-13 富士フイルム株式会社 放射線画像検出器
JP5254762B2 (ja) * 2008-11-28 2013-08-07 キヤノン株式会社 撮像装置、撮像システム、及び撮像装置における信号の補正方法
WO2013001991A1 (ja) * 2011-06-29 2013-01-03 富士フイルム株式会社 放射線画像検出装置及び放射線画像撮影装置
DE102011081548A1 (de) * 2011-08-25 2013-02-28 Siemens Aktiengesellschaft Verfahren zum Gewinnen eines Röntgenbildes mit einem direkt-konvertierenden, zählenden Röntgendetektor
US9696439B2 (en) * 2015-08-10 2017-07-04 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251420A1 (en) * 2003-06-14 2004-12-16 Xiao-Dong Sun X-ray detectors with a grid structured scintillators
CN104576673A (zh) * 2014-12-15 2015-04-29 上海天马微电子有限公司 平板图像传感器及其制造方法
CN109671729A (zh) * 2017-10-17 2019-04-23 京东方科技集团股份有限公司 探测单元及其制作方法、平板探测器
CN109545810A (zh) * 2018-11-20 2019-03-29 京东方科技集团股份有限公司 一种平板探测器及其制备方法
CN110458827A (zh) * 2019-08-12 2019-11-15 深圳蓝韵医学影像有限公司 医学影像坏点的检测方法、装置、设备及介质
CN111161297A (zh) * 2019-12-31 2020-05-15 上海联影医疗科技有限公司 限束器边缘的确定方法、装置及x射线***

Also Published As

Publication number Publication date
CN114068591A (zh) 2022-02-18
US11986331B2 (en) 2024-05-21
US20230041531A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US10537295B2 (en) Radiation imaging apparatus and radiation imaging system
WO2020186428A1 (zh) 显示面板及其制作方法
CN104934455B (zh) 光电转换装置及电子设备
US11346953B2 (en) Photo detector, photo detection system, lidar device and vehicle
US9698193B1 (en) Multi-sensor pixel architecture for use in a digital imaging system
KR20240013838A (ko) 엑스레이검출장치
CN109950295B (zh) Oled显示基板、oled显示装置、亮度补偿方法
CN108962928B (zh) 一种探测面板及探测装置
CN102142447A (zh) 共面高填充系数的像素架构
WO2022022110A1 (zh) 平板探测器及成像***
US11887401B2 (en) Display backplane, manufacturing method thereof, and full-screen fingerprint identification display device
JP2003255049A (ja) 光検出装置及び放射線検出装置
CN103050499B (zh) 平板型x射线图像传感器及其制造方法
CN111650632A (zh) 一种光电探测电路、其驱动方法及探测基板、射线探测器
CN111261649A (zh) 一种图像探测器
US20190095017A1 (en) Display substrate and fabrication method thereof, display panel and display system
CN114695399B (zh) 一种飞行时间像素单元及图像传感器
CN113330567B (zh) 一种探测基板、其制作方法及平板探测器
CN112713160B (zh) X射线平板探测器及其光敏单元阵列
CN104288912B (zh) 一种电子射野影像装置及其射线探测器、扫描方法
KR102493317B1 (ko) 엑스레이 영상감지소자
US20220171079A1 (en) Detection panel, method for manufacturing the same and flat panel detector
US11195875B2 (en) X-ray detecting panel and method of operating the same, and X-ray detecting device
WO2023206185A1 (zh) 光电探测器及电子设备
US20240145496A1 (en) Imaging device and ranging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849098

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21849098

Country of ref document: EP

Kind code of ref document: A1