WO2022021614A1 - 无接触智能监护仪及其检测方法 - Google Patents

无接触智能监护仪及其检测方法 Download PDF

Info

Publication number
WO2022021614A1
WO2022021614A1 PCT/CN2020/120969 CN2020120969W WO2022021614A1 WO 2022021614 A1 WO2022021614 A1 WO 2022021614A1 CN 2020120969 W CN2020120969 W CN 2020120969W WO 2022021614 A1 WO2022021614 A1 WO 2022021614A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise reduction
concave
optical fiber
photocurrent
convex
Prior art date
Application number
PCT/CN2020/120969
Other languages
English (en)
French (fr)
Inventor
陈智浩
武存江
王燕香
魏文会
阮韵婕
孙炜堂
杨会成
Original Assignee
泉州师范学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉州师范学院 filed Critical 泉州师范学院
Priority to US17/616,646 priority Critical patent/US20220330894A1/en
Publication of WO2022021614A1 publication Critical patent/WO2022021614A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • A61B2562/0266Optical strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/221Arrangements of sensors with cables or leads, e.g. cable harnesses
    • A61B2562/223Optical cables therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation

Definitions

  • the invention relates to the technical field of optical fiber sensing, in particular to a non-contact intelligent monitor and a detection method thereof.
  • Fiber Bragg grating sensors for monitoring vital sign parameters are considered as a kind of potential sensor, and there are a lot of researches.
  • This type of fiber grating sensor uses a wavelength detection method, the technology is complex, the equipment is expensive, and the practical and commercialization also faces great challenges.
  • a microbend optical fiber sensor can also be used to detect the patient's breathing, heart rate and body movement.
  • the sensor system is simple, low-cost, easy to manufacture, has high sensitivity and good robustness, and has been practical and commercialized for home use.
  • This kind of sensor is currently the most attractive type of sensor, which is comparable to traditional electrical sensors in terms of cost and reliability and has advantages that electrical sensors do not have, such as immunity to electromagnetic interference, rich spectral characteristics and scalable transmission. Sensitivity area and sensitivity, etc.
  • the study of microbend optical fiber sensors in vital signs has long been neglected. As with all smart hardware, noise interference is the number one problem that microbend fiber optic sensors need to address.
  • the purpose of the present invention is to provide a non-contact intelligent monitor and a detection method thereof, which can effectively reduce the interference and false alarms caused by noise in the measurement process.
  • the present invention adopts the following technical solutions:
  • a non-contact intelligent monitor comprising: a light source, a coupler, a bump noise reduction unit, a first photodetector and a second photodetector, an MCU and a terminal; the light source, the coupler, and the bump noise reduction unit are connected in sequence; The output of the bump noise reduction unit is respectively connected to the MCU through the first photodetector and the second photodetector; the MCU is connected to the terminal through the communication module.
  • the bump noise reduction unit includes a bump noise reduction member, a first transmission fiber and a second transmission fiber; the first transmission fiber and the second transmission fiber are respectively disposed on the upper surface and the lower surface of the bump noise reduction member.
  • the concave-convex noise reduction unit includes a first concave-convex noise reduction member, a second concave-convex noise reduction member, a first transmission optical fiber and a second transmission optical fiber arranged in sequence from top to bottom; Between the lower surface of the concave-convex noise reduction member and the upper surface of the second concave-convex noise reduction member; the second transmission optical fiber is arranged on the lower surface of the second concave-convex noise reduction member.
  • the bump noise reduction unit includes a first bump noise reduction member, a second bump noise reduction member, a third bump noise reduction member, a first transmission optical fiber and a second transmission optical fiber, which are arranged in sequence from top to bottom; the The first transmission-one optical fiber is arranged between the lower surface of the first concave-convex noise reduction member and the upper surface of the second concave-convex noise reduction member; the second transmission optical fiber is arranged between the lower surface of the second concave-convex noise reduction member and the third concave-convex noise reduction member between the upper surfaces of the noise reduction members.
  • the light source is a light emitting diode or a laser light source.
  • the sensing fiber is a multi-mode fiber or a single-mode fiber or a mixture of a single-mode fiber and a multi-mode fiber.
  • the concave-convex noise reduction member is an elastic sheet body with concave-convex shapes.
  • a detection method for a non-contact intelligent monitor comprising the following steps:
  • Step S1 the light source is divided into incident light 1 and incident light 2 after passing through the coupler, and is respectively transmitted to the first sensing fiber and the second sensing fiber;
  • Step S2 the incident light is connected to the first photodetector and the second photodetector through the output optical fiber after passing through the first sensing fiber and the second sensing fiber;
  • Step S3 convert by photodetector, obtain photocurrent 1 and photocurrent 2, and input into MCU;
  • Step S4 MCU performs amplification, filtering, analog-to-digital conversion and calculation analysis processing on the input photocurrent signal;
  • Step S5 Send the processed data to the terminal through the communication module.
  • step calculation and analysis processing is specifically:
  • Step S42 calculate the heartbeat frequency from the signal data of the photocurrent 1,
  • the heart rate of photocurrent 1 is the heart rate of photocurrent 1
  • the heart rate of photocurrent 2 is the heart rate of photocurrent 2
  • the present invention has the following beneficial effects:
  • the present invention can effectively reduce the interference and false alarms caused by noise in the measurement process.
  • the present invention has low cost and is easy to apply and popularize.
  • Embodiment 1 is a schematic diagram of the system structure of Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic diagram of the system structure of Embodiment 2 of the present invention.
  • Embodiment 3 is a schematic diagram of the system structure of Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a concave-convex noise reduction unit according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of a concave-convex noise reduction unit according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a concave-convex noise reduction unit according to Embodiment 3 of the present invention.
  • the present embodiment provides a kind of non-contact intelligent monitor, including: light source, incident optical fibers 1 and 2, sensing optical fibers 3 and 4, exit optical fibers 5 and 6, concave-convex noise reduction member 1, photodetector 1 and 2, MCU and terminal.
  • the above-mentioned sensing fibers 3 and 4 are respectively placed on the upper surface and the lower surface of the concave-convex member 1 .
  • the light source enters the incident fibers 1 and 2 respectively after passing through the 1 ⁇ 2 coupler, and simultaneously the incident fibers 1 and 2 transmit through the sensing fibers 3 and 4 respectively. It is then input to the photodetector 1 and the photodetector 2 through the output fibers 5 and 6 . After passing through photodetector 1 and photodetector 2, the light waves in optical fibers 5 and 6 are converted into photocurrent 1 and photocurrent 2. In the MCU, the photocurrent undergoes a series of processing such as amplification, filtering, analog-to-digital conversion, and calculation.
  • the calculation processing is as follows:
  • the respiration rate RR1 is calculated from the path of photocurrent 1
  • the heart rate of photocurrent 2 is the heart rate of photocurrent 2
  • the calculation results are transmitted to the terminal host computer through wireless devices such as wired or bluetooth, and the host computer software performs various processing, analysis, display and alarming on the received results in terms of application.
  • the present embodiment provides a kind of non-contact intelligent monitor, including: light source, incident light 1 and 2, bump noise reduction member 2, bump noise reduction member 3, sensor output fiber 5 and 6, photoelectric detection device 1 and 2, MCU and terminal.
  • the sensing fiber 3 is placed between the lower surface of the concave-convex member 2 and the upper surface of the concave-convex member 3 , and the sensing fiber 4 is placed on the lower surface of the concave-convex member 3 .
  • the light source enters fibers 1 and 2 after passing through the 1x2 coupler, and transmits through sensing fibers 3 and 4, respectively. It is then input to the photodetector 1 and the photodetector 2 through the output fibers 5 and 6 . After passing through photodetector 1 and photodetector 2, the light waves in optical fibers 5 and 6 are converted into photocurrent 1 and photocurrent 2. In the MCU, the photocurrent goes through a series of processing such as amplification, filtering, analog-to-digital conversion and calculation.
  • the present embodiment provides a kind of non-contact intelligent monitor, including: light source, incident light 1 and 2, bump noise reduction member 4, bump noise reduction member 5, bump noise reduction member 6, sensing output optical fiber 5 And 6,, photodetector 1 and 2, MCU and terminal.
  • the sensing optical fiber 3 is placed between the lower surface of the concave-convex member 4 and the upper surface of the concave-convex member 5 ; between the upper surfaces of the member 6 .
  • the light source enters fibers 1 and 2 after passing through the 1x2 coupler, and transmits through sensing fibers 3 and 4, respectively. It is then input to the photodetector 1 and the photodetector 2 through the output fibers 5 and 6 . After passing through photodetector 1 and photodetector 2, the light waves in optical fibers 5 and 6 are converted into photocurrent 1 and photocurrent 2. In the MCU, the photocurrent undergoes a series of processing such as amplification, filtering, analog-to-digital conversion and calculation.
  • the preferred concave-convex member can be made of mesh, filter, gauze, cloth, plastic mesh and other materials with concave-convex structures.
  • Table 1 shows the calculated results of breathing and heart rate of a volunteer.
  • the respiratory frequency calculated from the photocurrent 1 path is 0.244Hz
  • the respiratory frequency calculated from the photocurrent 2 path is 0.245Hz.
  • the fundamental and harmonic frequencies of the heartbeat are 1.12Hz, 2.29Hz and 3.42Hz calculated from the path of photocurrent 1 in Table 2; the fundamental frequencies of the heartbeat calculated from the path of photocurrent 2 are 1.12Hz, 2.25Hz, and 3.42Hz. then heart rate
  • Respiratory rate (bpm) Respiratory rate x60
  • Heart rate corresponding to the heartbeat fundamental wave (bpm) heartbeat fundamental wave frequency x60
  • Heart rate corresponding to the second harmonic of the heartbeat (bpm) (the second harmonic frequency of the heartbeat/2) x60
  • Heart rate corresponding to the third harmonic of the heartbeat (bpm) (the third harmonic frequency of the heartbeat/3) x60
  • multiple sensing fiber channels, 1x multiplex fiber optic couplers, and multiple or multiple photoelectric detectors are required.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Signal Processing (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种无接触智能监护仪及其检测方法,包括:光源、耦合器、凹凸降噪单元、第一光电探测器和第二光电探测器、MCU和终端;光源、耦合器、凹凸降噪单元依次连接;凹凸降噪单元输出分别通过第一光电探测器和第二光电探测器与MCU连接;MCU通过通信模块与终端连接。能够有效地降低测量过程中噪声带来的干扰和误报。

Description

无接触智能监护仪及其检测方法 技术领域
本发明涉及光纤传感技术领域,具体涉及一种无接触智能监护仪及其检测方法。
背景技术
随着光纤传感技术的进步,人们使用光纤传感器来检测人体的生命体征参数(如呼吸率、心率和体动等),不需要身体皮肤的直接接触即可测量。比较早的美国专利,US6498652B1提出利用光纤干涉仪来检测人体的生命体征参数。但是,光纤干涉测量术需要相干光源,需要屏蔽光纤参考臂,这增加成本,其信号解调相对复杂。这种传感器的实用化和商业化应用有较大的挑战。至今仍然有不少这方面的研究,比如,最近发表的论文Noninvasive Monitoring of Vital Signs Based on Highly Sensitive Fiber Optic Mattress. IEEE Sensors J.,20(11):6182-6190, 2020 。光纤光栅传感器用于监测生命体征参数被认为是有潜力的一种传感器,有大量的研究。这类光纤光栅传感器使用波长检测方法,技术复杂,设备昂贵,实用化和商业化也面临很大的挑战。
技术问题
现有技术中,还可以采用微弯光纤传感器,检测病患的呼吸、心率和体动。该传感器***简单,成本低,容易制造同时有很高的灵敏度和很好的鲁棒性,已经实用化和商业化,并在家里使用。这种传感器是目前最有吸引力的一种传感器,在成本和可靠性方面可与传统电传感器媲美并有电传感器所没有的优点,例如,抗电磁干扰、丰富的频谱特性和可扩展的传感区域和灵敏度等。长期以来人们忽视了微弯光纤传感器在生命体征方面的研究。和所有智能硬件一样,噪声干扰是微弯光纤传感器需要解决的头号问题。
技术解决方案
有鉴于此,本发明的目的在于提供一种无接触智能监护仪及其检测方法,能够有效地降低测量过程中噪声带来的干扰和误报。
为实现上述目的,本发明采用如下技术方案:
一种无接触智能监护仪,包括:光源、耦合器、凹凸降噪单元、第一光电探测器和第二光电探测器、MCU和终端;所述光源、耦合器、凹凸降噪单元依次连接;所述凹凸降噪单元输出分别通过第一光电探测器和第二光电探测器与MCU连接;所述MCU通过通信模块与终端连接。
进一步的,所述凹凸降噪单元包括凹凸降噪构件、第一传输光纤和第传输二光纤;所述第一传输光纤和第传输二光纤分别设置于凹凸降噪构件上表面和下表面。
进一步的,所述凹凸降噪单元包括从上至下依次设置的第一凹凸降噪构件、第二凹凸降噪构件、第一传输光纤和第二传输光纤;所述第一传输光纤设置于第一凹凸降噪构件下表面和第二凹凸降噪构件上表面之间;所述第二传输光纤设置于第二凹凸降噪构件的下表面。
进一步的,所述凹凸降噪单元包括从上至下依次设置的第一凹凸降噪构件、第二凹凸降噪构件、第三凹凸降噪构件、第一传输光纤和第二传输光纤;所述第一传输一光纤设置于第一凹凸降噪构件的下表面和第二凹凸降噪构件的上表面之间;所述第二传输光纤设置于第二凹凸降噪构件的下表面和第三凹凸降噪构件的上表面之间。
进一步的,所述光源采用发光二极管或激光光源。
进一步的,所述传感光纤为多模光纤或单模光纤或单模光纤和多模光纤的混合。
进一步的,所述凹凸降噪构件为有凹凸形状的弹性片体。
一种无接触智能监护仪的检测方法,包括以下步骤:
  步骤S1:光源通过耦合器后被分为入射光1和入射光2,并分别传输至第一传感光纤和第二传感光纤;
  步骤S2:入射光通过第一传感光纤和第二传感光纤后,经过输出光纤接到第一光电探测器和第二光电探测器;
  步骤S3:通过光电探测器转换,得到光电流1和光电流2,并输入至MCU中;
  步骤S4:MCU对输入的光电流信号,进行放大、滤波、模数转换和计算分析处理;
  步骤S5:将处理后的数据,通过通信模块传送至终端。
进一步的,所述步骤计算分析处理具体为:
步骤S41:从光电流1的信号数据计算出呼吸率RR1,从光电流2的信号数据计算出呼吸率RR2;如果RR1和RR2的误差小于3bpm,则呼吸率RR=(RR1+RR2)/2;否则就是误报的结果,数据不上传至终端;
步骤S42:从光电流1的信号数据计算出心跳频率,
f 11=f+df 11
f 12=2f+df 12
f 13=3f+df 13
……
f 1N=Nf+df 1N
从光电流2的信号数据,计算心跳频率为
f 21=f+df 21
f 22=2f+df 22
f 23=3f+df 23
……                                                         
f 2N=Nf+df 2N
计算得到:
光电流1这一路心率为
HR 11=f 11*60
HR 12=f 12*60/2
HR 13=f 13*60/3
……
HR 1N=f 1N*60/N
光电流2这一路心率为
HR 21=f 21*60
HR 22=f 22*60/2
HR 23=f 23*60/3
……
HR 2N=f 2N*60/N
步骤S43:根据光电流1的信号数据计算出心率HR1=(HR 11+ HR 12+ HR 13+…+ HR 1N)/N,从光电流2的信号数据计算出心率HR2=(HR 21+ HR 22+ HR 23+…+ HR 2N)/N;如果HR1和HR2的误差小于预设值心率HR=(HR1+HR2)/2;否则就是误报的结果,不能输出到终端。
有益效果
本发明与现有技术相比具有以下有益效果:
1. 本发明能够有效地降低测量过程中噪声带来的干扰和误报。
2. 本发明成本较低,易于应用和推广。
附图说明
图1是本发明实施例1的***结构示意图;
图2是本发明实施例2的***结构示意图;
图3是本发明实施例3的***结构示意图;
图4是本发明实施例1的凹凸降噪单元的结构示意图;
图5是本发明实施例2的凹凸降噪单元的结构示意图;
图6是本发明实施例3的凹凸降噪单元的结构示意图。
本发明的实施方式
下面结合附图及实施例对本发明做进一步说明。
实施例1:
 请参照图1,本实施例提供一种无接触智能监护仪,包括:光源、入射光纤1和2、传感光纤3和4、出射光纤5和6、凹凸降噪构件1、光电探测器1和2、MCU和终端。
优选的,参考图4,在本实施例中,上述传感光纤3和4分别置于凹凸构件1的上表面和下表面。
在本实施例中,光源通过1x2的耦合器后分别进入入射光纤1和2,同时入射光纤1和2分别传输经过传感光纤3和4。再经过输出光纤5和6输入到光电探测器1和光电探测器2。经过光电探测器1和光电探测器2后,光纤5和6中的光波转换成光电流1和光电流2。在MCU中,光电流经过放大、滤波、模数转换、计算等一系列处理。
在本实施例中,优选的,计算处理具体如下:
从光电流1这一路计算出呼吸率RR1,从光电流2这一路计算出呼吸率RR2。如果RR1和RR2的误差小于3bpm,那么呼吸率RR=(RR1+RR2)/2;否则就是误报的结果。确保所测呼吸率的准确率在一定的范围内,不出现误报。
再从光电流1这一路计算出心跳频率,
f 11=f+df 11
f 12=2f+df 12
f 13=3f+df 13
……
f 1N=Nf+df 1N
从光电流2这一路,计算心跳频率为
f 21=f+df 21
f 22=2f+df 22
f 23=3f+df 23
……                                                         
f 2N=Nf+df 2N
这样光电流1这一路心率为
HR 11=f 11*60
HR 12=f 12*60/2
HR 13=f 13*60/3
……
HR 1N=f 1N*60/N
光电流2这一路心率为
HR 21=f 21*60
HR 22=f 22*60/2
HR 23=f 23*60/3
……
HR 2N=f 2N*60/N
从光电流1这一路计算出心率HR1=(HR 11+ HR 12+ HR 13+…+ HR 1N)/N,从光电流2这一路计算出心率HR2=(HR 21+ HR 22+ HR 23+…+ HR 2N)/N。如果HR1和HR2的误差小于一个值,比如3bpm,那么心率HR=(HR1+HR2)/2;否则就是误报的结果,不能输出到终端。其中,N是正整数,至少是1,通常不超过10。
优选的,在本实施例中计算结果通过有线或蓝牙等无线设备传输到终端上位机中,上位机软件将接收到的结果进行应用方面的各种处理、分析、显示和报警。
实施例2:
 请参照图2,本实施例提供一种无接触智能监护仪,包括:光源、入射光1和2、凹凸降噪构件2、凹凸降噪构件3、传感输出光纤5和6、、光电探测器1和2、MCU和终端。
参考图5,在本实施例中,优选的,传感光纤3置于凹凸构件2的下表面和凹凸构件3的上表面之间,上述传感光纤4置于凹凸构件3的下表面。
光源通过1x2的耦合器后进入光纤1和2,分别传输经过传感光纤3和4。再经过输出光纤5和6输入到光电探测器1和光电探测器2。经过光电探测器1和光电探测器2后,光纤5和6中的光波转换成光电流1和光电流2。在MCU中,光电流经过放大、滤波、模数转换和计算等一系列处理。
实施例3:
请参照图3,本实施例提供一种无接触智能监护仪,包括:光源、入射光1和2、凹凸降噪构件4、凹凸降噪构件5、凹凸降噪构件6、传感输出光纤5和6、、光电探测器1和2、MCU和终端。
参考图6,在本实施例中,优选的,传感光纤3置于凹凸构件4的下表面和凹凸构件5的上表面之间;上述传感光纤4置于凹凸构件5的下表面和凹凸构件6的上表面之间。
光源通过1x2的耦合器后进入光纤1和2,分别传输经过传感光纤3和4。再经过输出光纤5和6输入到光电探测器1和光电探测器2。经过光电探测器1和光电探测器2后,光纤5和6中的光波转换成光电流1和光电流2。在MCU中,光电流经过放大、滤波、模数转换和计算等一系列处理。
在本实施例中,优选的凹凸构件可采用网纱、滤网、纱布、布、塑料网等具有凹凸结构的材料。
下面给出一个计算实例:
表1是一个志愿者的呼吸和心跳频率计算结果。从光电流1这一路计算出呼吸频率为0.244Hz,从光电流2这一路计算出呼吸频率为0.245Hz。呼吸率RR1=0.244*60=14.64bpm,RR2=0.245*60=14.7bpm。 RR1和RR2的误差小于3bpm,那么呼吸率RR=(RR1+RR2)/2=14.67bpm,如表2所示。
从表2光电流1这一路计算出心跳基波和谐波频率为1.12Hz,2.29Hz和3.42Hz;从光电流2这一路计算出心跳基波频率为1.12Hz,2.25Hz,3.42Hz。那么心率
HR1=(1.12+2.29/2+3.42/3)*60/3=68.1bpm
心率
HR2=(1.12+2.25/2+3.42/3)*60/3=67.7bpm
HR1和HR2的误差均在1bpm以内(小于3bpm),根据本实施例方法计算,不会出现误报。
表1一个志愿者的呼吸和心跳频率计算结果
Figure dest_path_image001
表2一个志愿者的呼吸率和心率计算结果
Figure 304012dest_path_image002
注:呼吸率(bpm)=呼吸频率x60
心跳基波对应的心率(bpm)=心跳基波频率x60
心跳二次谐波对应的心率(bpm)=(心跳二次谐波频率/2)x60
心跳三次谐波对应的心率(bpm)=(心跳三次谐波频率/3)x60
在本实施例中,凹凸降噪构件至少1个,所述凹凸降噪构件越多,降噪效果越好。此时需用传感光纤多路,1x多路光纤耦合器,多个或多路光电探测器。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (9)

  1. 一种无接触智能监护仪,其特征在于,包括:光源、耦合器、凹凸降噪单元、第一光电探测器和第二光电探测器、MCU和终端;所述光源、耦合器、凹凸降噪单元依次连接;所述凹凸降噪单元输出分别通过第一光电探测器和第二光电探测器与MCU连接;所述MCU通过通信模块与终端连接。
  2. 根据权利要求1所述的一种无接触智能监护仪,其特征在于:所述凹凸降噪单元包括凹凸降噪构件、第一传输光纤和第二传输光纤;所述第一传输光纤和第二传输光纤分别设置于凹凸降噪构件上表面和下表面。
  3. 根据权利要求1所述的一种无接触智能监护仪,其特征在于:所述凹凸降噪单元包括从上至下依次设置的第一凹凸降噪构件、第二凹凸降噪构件、第一传输光纤和第二传输光纤;所述第一传输光纤设置于第一凹凸降噪构件下表面;所述第二传输光纤设置于第二凹凸降噪构件的下表面。
  4. 根据权利要求1所述的一种无接触智能监护仪,其特征在于:所述凹凸降噪单元包括从上至下依次设置的第一凹凸降噪构件、第二凹凸降噪构件、第三凹凸降噪构件、第一传输光纤和第二传输光纤;所述第一传输光纤设置于第一凹凸降噪构件的下表面和第二凹凸降噪构件的上表面之间;所述第二传输光纤设置于第二凹凸降噪构件的下表面和第三凹凸降噪构件的上表面之间。
  5. 根据权利要求1所述的一种无接触智能监护仪,其特征在于:所述光源采用发光二极管或激光光源。
  6. 根据权利要求1-5任一所述的一种无接触智能监护仪,其特征在于:所述传感光纤为多模光纤或单模光纤或单模光纤多模光纤混合。
  7. 根据权利要求2-5任一所述的一种无接触智能监护仪,其特征在于:所述凹凸降噪构件为有凹凸形状的弹性片体。
  8. 一种无接触智能监护仪的检测方法,其特征在于,包括以下步骤:
      步骤S1:光源通过耦合器后被分为入射光1和入射光2,并分别传输至第一传感光纤和第二传感光纤;
      步骤S2:入射光通过第一传感光纤和第二传感光纤后,经过输出光纤接到第一光电探测器和第二光电探测器;
      步骤S3:通过光电探测器转换,得到光电流1和光电流2,并输入至MCU中;
      步骤S4:MCU对输入的光电流信号,进行放大、滤波、模数转换和计算分析处理;
      步骤S5:将处理后的数据,通过通信模块传送至终端。
  9. 根据权利要求8所述的一种无接触智能监护仪的检测方法,其特征在于,所述步骤计算分析处理具体为:
    步骤S41:从光电流1的信号数据计算出呼吸率RR1,从光电流2的信号数据计算出呼吸率RR2;如果RR1和RR2的误差小于3bpm,则呼吸率RR=(RR1+RR2)/2;否则就是误报的结果,数据不上传至终端;
    步骤S42:从光电流1的信号数据计算出心跳频率,
    f 11=f+df 11
    f 12=2f+df 12
    f 13=3f+df 13
    ……
    f 1N=Nf+df 1N
    从光电流2的信号数据,计算心跳频率为
    f 21=f+df 21
    f 22=2f+df 22
    f 23=3f+df 23
    ……                                                         
    f 2N=Nf+df 2N
    计算得到:
    光电流1这一路心率为
    HR 11=f 11*60
    HR 12=f 12*60/2
    HR 13=f 13*60/3
    ……
    HR 1N=f 1N*60/N
    光电流2这一路心率为
    HR 21=f 21*60
    HR 22=f 22*60/2
    HR 23=f 23*60/3
    ……
    HR 2N=f 2N*60/N
    步骤S43:根据光电流1的信号数据计算出心率HR1=(HR 11+ HR 12+ HR 13+…+ HR 1N)/N,从光电流2的信号数据计算出心率HR2=(HR 21+ HR 22+ HR 23+…+ HR 2N)/N;如果HR1和HR2的误差小于预设值心率HR=(HR1+HR2)/2;否则就是误报的结果,不能输出到终端。
PCT/CN2020/120969 2020-07-29 2020-10-14 无接触智能监护仪及其检测方法 WO2022021614A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/616,646 US20220330894A1 (en) 2020-07-29 2020-10-14 Contactless intelligent monitor and its detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010741628.2A CN111759295A (zh) 2020-07-29 2020-07-29 无接触智能监护仪及其检测方法
CN202010741628.2 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022021614A1 true WO2022021614A1 (zh) 2022-02-03

Family

ID=72727763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120969 WO2022021614A1 (zh) 2020-07-29 2020-10-14 无接触智能监护仪及其检测方法

Country Status (3)

Country Link
US (1) US20220330894A1 (zh)
CN (1) CN111759295A (zh)
WO (1) WO2022021614A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111759295A (zh) * 2020-07-29 2020-10-13 泉州师范学院 无接触智能监护仪及其检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498652B1 (en) * 2000-02-08 2002-12-24 Deepak Varshneya Fiber optic monitor using interferometry for detecting vital signs of a patient
CN206342462U (zh) * 2016-10-19 2017-07-21 苏州安莱光电科技有限公司 一种基于马赫曾德干涉的光纤生命体征监控装置
CN107072565A (zh) * 2014-09-30 2017-08-18 深圳市大耳马科技有限公司 生命体征光纤传感器***及方法
CN107233097A (zh) * 2017-07-20 2017-10-10 苏州安莱光电科技有限公司 一种新型光纤干渉型生命体征监测装置和方法
CN109602400A (zh) * 2019-01-25 2019-04-12 泉州师范学院 基于四锥光纤干涉仪的生命体征参数监测装置及方法
CN110432877A (zh) * 2019-07-26 2019-11-12 华中科技大学 一种基于光纤的多生理参量的监测***
CN111281389A (zh) * 2018-12-10 2020-06-16 深圳麦格米特电气股份有限公司 一种智能呼吸监测床垫
CN111759295A (zh) * 2020-07-29 2020-10-13 泉州师范学院 无接触智能监护仪及其检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1007901B1 (en) * 1997-06-02 2009-04-29 Joseph A. Izatt Doppler flow imaging using optical coherence tomography
US6765678B2 (en) * 2002-01-08 2004-07-20 Honeywell International Inc. Relative intensity noise controller with maximum gain at frequencies at or above the bias modulation frequency or with second order feedback for fiber light sources
CN101458212B (zh) * 2009-01-04 2011-01-26 北京心润心激光医疗设备技术有限公司 实时成像的光学相干层析皮肤诊断设备
CN103335600B (zh) * 2013-07-12 2016-07-06 武汉理工大学 基于双f-p干涉仪的比值条纹计数法及其位移传感器解调***
CN105699050B (zh) * 2016-02-04 2018-02-13 南京晓庄学院 融合混沌光源和相干探测的复合型分布式光纤传感方法及***
CN106767905B (zh) * 2016-11-29 2019-06-21 浙江大学 分离双探测器型光纤陀螺光源和电子噪声相关性计算方法
CN213075627U (zh) * 2020-07-29 2021-04-30 泉州师范学院 无接触智能监护仪

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498652B1 (en) * 2000-02-08 2002-12-24 Deepak Varshneya Fiber optic monitor using interferometry for detecting vital signs of a patient
CN107072565A (zh) * 2014-09-30 2017-08-18 深圳市大耳马科技有限公司 生命体征光纤传感器***及方法
CN206342462U (zh) * 2016-10-19 2017-07-21 苏州安莱光电科技有限公司 一种基于马赫曾德干涉的光纤生命体征监控装置
CN107233097A (zh) * 2017-07-20 2017-10-10 苏州安莱光电科技有限公司 一种新型光纤干渉型生命体征监测装置和方法
CN111281389A (zh) * 2018-12-10 2020-06-16 深圳麦格米特电气股份有限公司 一种智能呼吸监测床垫
CN109602400A (zh) * 2019-01-25 2019-04-12 泉州师范学院 基于四锥光纤干涉仪的生命体征参数监测装置及方法
CN110432877A (zh) * 2019-07-26 2019-11-12 华中科技大学 一种基于光纤的多生理参量的监测***
CN111759295A (zh) * 2020-07-29 2020-10-13 泉州师范学院 无接触智能监护仪及其检测方法

Also Published As

Publication number Publication date
CN111759295A (zh) 2020-10-13
US20220330894A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
Tan et al. Non-invasive human vital signs monitoring based on twin-core optical fiber sensors
CN107072565B (zh) 生命体征光纤传感器***及方法
US6816266B2 (en) Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
US6498652B1 (en) Fiber optic monitor using interferometry for detecting vital signs of a patient
Vavrinsky et al. The current state of optical sensors in medical wearables
WO2018072232A1 (zh) 一种全光非接触式生命体征监测装置
CN206342462U (zh) 一种基于马赫曾德干涉的光纤生命体征监控装置
CN110448282B (zh) 一种光纤感应组件及生命体征监测装置
Bennett et al. Monitoring of vital bio-signs by analysis of speckle patterns in a fabric-integrated multimode optical fiber sensor
CN110558956B (zh) 一种生命体征监测装置
CN110432877A (zh) 一种基于光纤的多生理参量的监测***
WO2019015354A1 (zh) 一种新型光纤干渉型生命体征监测装置和方法
CN108567433A (zh) 一种多功能全光纤非侵入式的状态监测薄垫
Tan et al. Contactless vital signs monitoring based on few-mode and multi-core fibers
CN103271741A (zh) 一种睡眠姿势监测仪
WO2022021614A1 (zh) 无接触智能监护仪及其检测方法
Yu et al. Non-invasive smart health monitoring system based on optical fiber interferometers
CN108451506A (zh) 一种非接触式打鼾及睡眠呼吸暂停监测装置
Majumder et al. Design and implementation of a wireless health monitoring system for remotely located patients
He et al. Optical fiber sensors for heart rate monitoring: A review of mechanisms and applications
CN213075627U (zh) 无接触智能监护仪
Zhao et al. Vital signs monitoring using the macrobending small-core fiber sensor
CN108685576B (zh) 一种基于光纤传感的多用户呼吸频率检测***
Chen et al. Helical long period fiber grating sensor for non-invasive measurement of vital signs
Ke et al. Research on Smart Mattress Based on Fiber Unbalanced Sagnac Loop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947648

Country of ref document: EP

Kind code of ref document: A1