WO2022021241A1 - 同步信号块的传输方法、装置、设备及存储介质 - Google Patents

同步信号块的传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022021241A1
WO2022021241A1 PCT/CN2020/105946 CN2020105946W WO2022021241A1 WO 2022021241 A1 WO2022021241 A1 WO 2022021241A1 CN 2020105946 W CN2020105946 W CN 2020105946W WO 2022021241 A1 WO2022021241 A1 WO 2022021241A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
ssb
channel resource
information
grids
Prior art date
Application number
PCT/CN2020/105946
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/105946 priority Critical patent/WO2022021241A1/zh
Priority to CN202080101583.0A priority patent/CN115702589A/zh
Publication of WO2022021241A1 publication Critical patent/WO2022021241A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, apparatus, device, and storage medium for transmitting a synchronization signal block.
  • 3GPP 3rd Generation Partnership Project, 3rd Generation Partnership Project
  • 5G 5th-Generation, fifth generation mobile communication
  • NR New Radio, new air interface
  • the synchronization signal block is to couple the primary and secondary SS (Synchronization Signal, synchronization signal) of the cell with the PBCH (Physical Broadcast Channel, physical broadcast channel) to some extent, and appears in the form of SS/PBCH resource blocks.
  • the SS/PBCH resource block may be abbreviated as SSB (SS/PBCH Blocks, synchronization signal block).
  • the terminal device may receive the SSB sent by the network device, and obtain frame synchronization, system information (such as QCL (Quasi Co-Located, quasi-co-located) relationship), measurement, and the like according to the received SSB.
  • Embodiments of the present application provide a method, apparatus, device, and storage medium for transmitting a synchronization signal block.
  • the technical solution is as follows:
  • an embodiment of the present application provides a method for receiving a synchronization signal block, which is applied to a terminal device, and the method includes:
  • n synchronization grids are allowed synchronization grids in preset synchronization grids within the channel bandwidth.
  • an embodiment of the present application provides a method for sending a synchronization signal block, which is applied to a network device, and the method includes:
  • n is an integer greater than 1;
  • n synchronization grids are allowed synchronization grids in preset synchronization grids within the channel bandwidth.
  • an embodiment of the present application provides an apparatus for receiving a synchronization signal block, which is set in a terminal device, and the apparatus includes:
  • a detection module configured to detect one or more SSBs based on n synchronization grids within the channel bandwidth, where n is an integer greater than 1;
  • n synchronization grids are allowed synchronization grids in preset synchronization grids within the channel bandwidth.
  • an embodiment of the present application provides an apparatus for sending a synchronization signal block, which is set in a network device, and the apparatus includes:
  • a sending module configured to send multiple SSBs to the terminal device based on n synchronization grids within the channel bandwidth, where n is an integer greater than 1;
  • n synchronization grids are allowed synchronization grids in preset synchronization grids within the channel bandwidth.
  • an embodiment of the present application provides a terminal device, where the terminal device includes: a processor, and a transceiver connected to the processor; wherein:
  • the transceiver is configured to detect one or more SSBs based on n synchronization grids within the channel bandwidth, where n is an integer greater than 1; wherein, the n synchronization grids are pre-set within the channel bandwidth. Sets the sync grids allowed in the sync grid.
  • an embodiment of the present application provides a network device, where the network device includes: a processor, and a transceiver connected to the processor; wherein:
  • the transceiver is configured to send multiple SSBs to the terminal device based on n synchronization grids within the channel bandwidth, where n is an integer greater than 1; wherein the n synchronization grids are within the channel bandwidth
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a terminal device, so as to realize the above-mentioned synchronization on the side of the terminal device The receiving method of the signal block.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a network device, so as to realize the above-mentioned network device side synchronization The transmission method of the signal block.
  • an embodiment of the present application provides a chip, where the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a terminal device, it is used to implement the above-mentioned terminal device side synchronization signal block the receiving method.
  • an embodiment of the present application provides a chip, where the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a network device, it is used to implement the above-mentioned network device side synchronization signal block the sending method.
  • an embodiment of the present application provides a computer program product, which, when the computer program product runs on a terminal device, causes the computer to execute the above method for receiving a synchronization signal block on the side of the terminal device.
  • an embodiment of the present application provides a computer program product, which, when the computer program product runs on a network device, enables a computer to execute the above method for sending a synchronization signal block on the network device side.
  • the SSB is transmitted through the network device and the terminal device based on a plurality of synchronization grids, which are the synchronization grids in the preset synchronization grids within the channel bandwidth that allow the network device and the terminal device to transmit the SSB, so that for more Large channel bandwidth, the embodiment of the present application ensures that the transmission of the SSB meets the OCB requirement, and improves the success rate of the transmission of the SSB between the terminal device and the network device.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an SSB time-frequency structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a transmission pattern of an SSB in a DRS window provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a candidate transmission position and an actual transmission position in a DRS window provided by an embodiment of the present application;
  • FIG. 5 is a flowchart of a method for transmitting a synchronization signal block provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of a design method of a synchronization grid provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of indicating a candidate SSB index using the MIB information field provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an indication mode of CORESET#0 provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an apparatus for receiving a synchronization signal block provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an apparatus for receiving a synchronization signal block provided by another embodiment of the present application.
  • FIG. 12 is a schematic diagram of an apparatus for sending a synchronization channel block provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an apparatus for sending a synchronization signal block provided by another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of an SSB index in a DRS window provided by an embodiment of the present application.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of new business scenarios and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of a system architecture provided by an embodiment of the present application.
  • the system architecture may include: a terminal device 10 and a network device 20 .
  • the number of terminal devices 10 is usually multiple, and one or more terminal devices 10 may be distributed in a cell managed by each network device 20 .
  • the terminal device 10 may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication functions, as well as various forms of user equipment (UE), mobile stations (Mobile Station, MS) and so on.
  • UE user equipment
  • MS Mobile Station
  • the network device 20 is a device deployed in an access network to provide a wireless communication function for the terminal device 10 .
  • the network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with network device functions may be different, such as in 5G NR systems or NR-U (New Radio-Unlicensed, Unlicensed Carrier New Radio) systems , called gNodeB or gNB.
  • gNodeB New Radio-Unlicensed, Unlicensed Carrier New Radio
  • the name "network equipment” may change.
  • the above-mentioned apparatuses for providing a wireless communication function for the terminal device 10 are collectively referred to as network devices.
  • the "5G NR system" in the embodiments of this application may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of this application may be applicable to the 5G NR system or the NR-U system, and may also be applicable to the subsequent evolution system of the 5G NR system or the NR-U system.
  • the common channels and signals (such as synchronization signals and broadcast channels) in the NR system require the network device to cover the cell that provides network services under the network device by means of multi-beam scanning, so that the terminal device in the cell can receive it. And obtain frame synchronization, acquisition of system information (such as QCL relationship), measurement, etc. according to the received SSB.
  • the network device performs multi-beam transmission of the synchronization signal, it is realized by defining the SS/PBCH burst set (burst set).
  • An SS/PBCH burst set includes one or more SS/PBCH blocks (resource blocks), one SS/PBCH block (synchronization signal block, referred to as "SSB", for ease of description, hereinafter referred to as "SSB") for Carrying a beam of synchronization signals and broadcast channels. Therefore, in this embodiment of the present application, the number of beams corresponding to the synchronization signal in one SS/PBCH burst set may be equal to the number of SSBs (SSB number) in the cell. In one example, the maximum number (L) of SSB numbers is related to the frequency of the system as follows:
  • L is 4;
  • L is 8;
  • L is 64.
  • the SSB is obtained by coupling the primary and secondary SS of the cell with the PBCH to some extent, and is composed of three components: PSS (Primary Synchronization Signal, primary synchronization signal), SSS (Secondary Synchronization Signal, secondary synchronization signal) and PBCH. part together.
  • FIG. 2 shows a schematic diagram of a time-frequency structure of an SSB provided by an embodiment of the present application.
  • the SSB occupies a total of 4 OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols in the time domain; the frequency domain occupies a total of 240 subcarriers (20 PRB (Physical Resource Block, physical resource blocks). block)), numbered from 0 to 239, respectively.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • PSS occupies one symbol and is located on 127 subcarriers in the middle of symbol 0; SSS also occupies one symbol and is located on 127 subcarriers in the middle of symbol 2; PBCH occupies three symbols and is located in symbols 1, 1 and 2. Symbol 3 and symbol 2, where the PBCH occupies all sub-carriers on symbols 1 and 3, that is, the sub-carriers numbered 0 to 239, and occupies the sub-carriers excluding the sub-carriers occupied by SSS and the sub-carriers protected by SSS on symbol 2 all subcarriers.
  • the time-frequency resources occupied by the PBCH also include DMRS (Demodulation Reference Signals, demodulation dedicated reference signals), and the DMRS can be used to demodulate the data resources transmitted on the PBCH.
  • DMRS Demodulation Reference Signals, demodulation dedicated reference signals
  • all SSBs in the SS/PBCH burst set are repeatedly sent by the network device within a time window of 5ms (Millisecond milliseconds) with a certain period.
  • the sending period is configured by high-layer parameters (such as SSB-timing), and exemplarily, the sending period is any one of the following time periods: 5ms, 10ms, 20ms, 40ms, 80ms, 160ms.
  • the terminal device it can obtain the index (index) of the SSB through the received SSB, or is called the sequence number of the SSB.
  • the SSB index corresponds to the relative position of the SSB within the 5ms time window, and the terminal device can obtain frame synchronization according to the SSB index and the half-frame indication carried in the PBCH.
  • the SSB index is indicated by the DMRS in the time-frequency resources occupied by the PBCH or other information in the PBCH.
  • the SSB burst set contains at most 8 SSBs, and the SSB index ranges from 0 to 7.
  • the SSB index can be used by the terminal device to obtain frame synchronization and/or QCL relationship.
  • the terminal device can obtain the position of the SSB in the radio frame through the SSB index and the half-frame indication carried in the PBCH, thereby obtaining the frame synchronization.
  • the following describes the information carried in the PBCH.
  • the information carried in the PBCH includes A (A is a positive integer) bit MIB (Master Information Block, master information block) information from a higher layer (for example, an RRC (Radio Resource Control, radio resource control) layer) and 8-bit information related to the physical layer
  • the information related to the physical layer includes SFN (System Frame Number, system frame number), field indication, SSB index, and the like.
  • the 8-bit information related to the physical layer is the payload of the PBCH in the following embodiments.
  • the A-bit MIB information includes: 6-bit SFN, 1-bit subCarrierSpacingCommon (subcarrier spacing) information field, 4-bit ssb-SubcarrierOffset (subcarrier offset) information field, and also includes DMRS related information, scheduling SIB (System Information Block, system information block) resource information of PDCCH (Physical Downlink Control CHannel, physical downlink control channel), etc., in addition, it also includes 1-bit idle bit.
  • SIB System Information Block, system information block
  • PDCCH Physical Downlink Control CHannel, physical downlink control channel
  • the 4-bit ssb-SubcarrierOffset information field is used to indicate the offset between the PRB grids between SSB and non-SSB, and the offset includes 0 to 11 or 0 to 23 subcarriers.
  • ssb- The SubcarrierOffset information field corresponds to the lowest 4 bits of the parameter k SSB ; the 4-bit subCarrierSpacingCommon information field is used to indicate the subcarrier spacing between the PDCCH and PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • 8 bits of information related to the physical layer middle is the lowest 4 bits of SFN; is the field indication; when L is 64, is the highest 3 bits of the SSB index, otherwise, is the highest bit of parameter k SSB , reserved bits.
  • L is the maximum number of SSB numbers in the cell
  • k SSB is the subcarrier offset information of the SSB.
  • the above embodiment is an introduction and description for how to transmit SSB and how to indicate control information (such as SSB index, k SSB , etc.) in an NR system using licensed spectrum.
  • control information such as SSB index, k SSB , etc.
  • the transmission of the SSB is different from the transmission of the SSB in the NR system using the licensed spectrum.
  • the following is the transmission of the SSB in the unlicensed spectrum and the NR-U system.
  • Unlicensed spectrum is the spectrum that can be used for terminal equipment communication. This spectrum is usually considered to be shared spectrum, that is, terminal equipment in different communication systems can use the spectrum as long as they meet the requirements for setting the spectrum, and do not need to apply for exclusive use of the spectrum. spectrum licensing.
  • the relevant departments stipulate the requirements that must be met when using the unlicensed spectrum, for example, the communication equipment in the communication system (including the terminal equipment and the network equipment) needs to follow the LBT (Listen Before Talk, first listen and then talk) mechanism, that is, before the communication equipment performs data transmission on the transmission channel based on the unlicensed spectrum, it needs to perform channel monitoring first, in the case that the channel monitoring result is that the channel is idle , the communication device can send the signal; if the channel detection result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot send the signal.
  • LBT Listen Before Talk, first listen and then talk
  • the communication equipment using the unlicensed spectrum channel for signal transmission cannot exceed the maximum channel occupancy time (Maximum Channel Occupation Time, MCOT).
  • the bandwidth of the signal transmitted by the communication device on the unlicensed spectrum needs to be To meet the OCB (Occupancy Channel Bandwidth, minimum transmission bandwidth) requirements, that is, the span of the bandwidth occupied by the signal transmitted by the communication device is at least L% of the total spectrum bandwidth, where L is a positive number.
  • the OCB requirement means that the difference between the lowest frequency and the highest frequency in the frequency band range occupied by the signal transmitted by the communication device is L% of the total spectrum bandwidth. Exemplarily, when the total spectral bandwidth is 5 GHz, L is 80; when the total spectral bandwidth is 60 GHz, L is 70.
  • NR-U technology is used for unlicensed frequency bands below 7 GHz.
  • NR-U and its related technologies may be used in higher frequency bands, for example, in the frequency band range of 52.6GHz to 71GHz.
  • the SSB is transmitted within the configured DRS (Discovery Reference Signal) window.
  • DRS Discovery Reference Signal
  • some designs are made for SSB transmission within the DRS window, including the length of the DRS window, the transmission pattern of SSB, and so on.
  • the length of the DRS window is configurable, and the configurable length includes at least one of the following: 0.5ms, 1ms, 2ms, 3ms, 4ms, and 5ms.
  • the maximum length of the DRS window that can be configured is half a frame.
  • the starting time for obtaining channel access may not be the starting time point of the DRS window, but is based on Indeterminate channel access start time. To this end, the concept of candidate transmission positions of the SSB within the DRS window is introduced.
  • each time slot includes two candidate transmission positions of the SSB, as shown in FIG. 3 , according to the number of time slots included in the DRS window, the transmission pattern of the SSB in the DRS window can be obtained.
  • the length of the DRS window as 5ms as an example, for an SSB with a subcarrier spacing of 30KHz (Kilo Hertz, kilohertz), the DRS window contains 20 candidate transmission positions of SSBs; for an SSB with a subcarrier spacing of 15KHz, the DRS window contains 20 candidate transmission positions. Contains 10 SSB candidate transmission locations.
  • whether to transmit on a certain candidate transmission location depends on the result of LBT.
  • the network device starts from the candidate transmission position of the first SSB after the start time of the channel access, and actually transmits the SSB at the candidate transmission positions of the consecutive SSBs.
  • the candidate transmission position of each SSB corresponds to an SSB index.
  • FIG. 4 it exemplarily shows a schematic diagram of a candidate transmission position and an actual transmission position in the DRS window provided by an embodiment of the present application. Assuming that the LBT succeeds in time slot 2, the network device can be used at the moment when the LBT succeeds. Access the channel, and start from the first SSB candidate transmission position (its corresponding SSB index is 4) after the channel access start time, and actually send the SSB at the consecutive SSB candidate transmission positions.
  • the DRS window contains at most 20 candidate transmission positions of the SSB, so the range of the SSB index needs to support 0 to 19. Therefore, it needs to be in the 5 bits are determined in the PBCH to indicate the SSB index.
  • FIG. 16 shows a schematic structural diagram of an SSB index in a DRS window provided by an embodiment of the present application.
  • R15 Release15, the 15th version
  • 8 kinds of DMRS sequences are defined, and the index of the DMRS sequence can be used to indicate the lowest 3 bits in the SSB index.
  • NR-U follows this method, that is, the index of the DMRS sequence is used to indicate the lowest 3 bits in the SSB index.
  • FR2 Frequency2, frequency band 2
  • the same indication mode is defined as the 4th bit and the 5th bit of the SSB index to indicate the remaining 2 bits of the SSB index in the above-mentioned DRS window.
  • the carrier frequency band of the NR-U system belongs to FR1 (Frequency1, frequency band 1)
  • these two bits in the PBCH payload are free, so they can be used in the NR-U system.
  • 2 bits are redefined to indicate the remaining 2 bits of the SSB index, that is, these two bits in the payload of the PBCH are used to indicate the remaining 2 bits of the SSB index.
  • the synchronization grid can be understood as the frequency location in the channel bandwidth where the SSB can be deployed.
  • the frequency domain position of the synchronization grid corresponding to the SSB used for initial access is defined in the communication protocol.
  • Table 1 for the licensed spectrum, the interval between each synchronization grid is 1.2 MHz or 1.44 MHz, corresponding to the frequency ranges of 0 to 3 GHz and 3 GHz to 24.25 GHz, respectively.
  • GSCN Global Synchronization Channel Number
  • the bandwidth occupied by a single channel can reach 2.16GHz. If the definition of the synchronization grid in the 20MHz channel bandwidth is followed, that is, there is only one synchronization grid in each channel bandwidth. , because the current subcarrier spacing of SSB is up to 240KHz, at this time, the bandwidth occupied by SSB is only 57.6MHz, which is far from meeting the requirements of OCB.
  • an embodiment of the present application proposes a method for transmitting synchronization signal blocks, which is implemented as a method for receiving synchronization signal blocks for the terminal device side; and a method for transmitting synchronization signal blocks for the network device side.
  • a method for transmitting synchronization signal blocks which is implemented as a method for receiving synchronization signal blocks for the terminal device side; and a method for transmitting synchronization signal blocks for the network device side.
  • FIG. 5 shows a flowchart of a method for receiving a synchronization signal block provided by an embodiment of the present application.
  • the method may be applied to the system architecture shown in FIG. 1 , and the method may include the following steps:
  • Step 510 the network device sends multiple SSBs to the terminal device based on n synchronization grids within the channel bandwidth, where n is an integer greater than 1; wherein, the n synchronization grids are allowed in the preset synchronization grids within the channel bandwidth. synchronous grid.
  • Channel bandwidth is the bandwidth of the channel used by network equipment and terminal equipment to transmit data.
  • the channel bandwidth in this embodiment of the present application is the channel bandwidth corresponding to the unlicensed spectrum.
  • the channel bandwidth is the channel bandwidth corresponding to the unlicensed spectrum of the high frequency band.
  • the size of the channel bandwidth may also be different.
  • the channel bandwidth in the embodiment of the present application is the channel bandwidth corresponding to the unlicensed spectrum of the high frequency band, and the channel bandwidth may be 2.16 GHz.
  • the channel bandwidth includes multiple preset synchronization grids
  • n synchronization grids in the multiple preset synchronization grids are synchronization grids that allow network devices to send SSBs and/or allow terminal devices to detect SSBs grid.
  • the network device can send the SSB to the terminal device based on the n synchronization grids
  • the terminal device can detect the SSB from the network device based on the n synchronization grids.
  • the SSBs corresponding to the n synchronization grids correspond to a first cell or a first channel bandwidth, where the first cell refers to a serving cell that provides network services for terminal devices, and the first channel bandwidth refers to the first cell.
  • the n sync grids are located on unlicensed spectrum.
  • n synchronization grids that allow network equipment and terminal equipment to be used for SSB transmission can be predefined.
  • the n synchronization grids are predefined by a communication protocol; or, the n synchronization grids are preconfigured by a network device, and the manner of determining the n synchronization grids is not limited in this embodiment of the present application.
  • the interval between two adjacent synchronization grids in the n synchronization grids is greater than or equal to a separation threshold, and the separation threshold may be a predefined or preconfigured separation threshold.
  • the interval threshold includes the sum of the bandwidth of the SSB and the bandwidth of the control channel resource set.
  • the set of control channel resources in this embodiment of the present application is CORESET#0.
  • FIG. 6 shows a multiplexing pattern of SSB and CORESET#0 provided by an embodiment of the present application.
  • the multiplexing pattern of SSB and CORESET#0 adopts the multiplexing pattern 3 in the communication protocol.
  • n is an integer greater than 1. This embodiment of the present application does not limit the specific value of n. In practical applications, the value of n may be determined in combination with one or more factors such as the bandwidth of the SSB, the bandwidth of the control channel resource set, and the channel bandwidth. For example, for the frequency range from 52.6GHz to 71GHz, the maximum bandwidth of CORESET#0 is 48 RBs.
  • the bandwidth of SSB as 240KHz and the subcarrier spacing of PDCCH as 120KHz as an example
  • the number of synchronization grids in the channel bandwidth can be reduced. For example, as shown in Figure 7, within the channel bandwidth of 2.16 GHz, five synchronization grids with an interval of 400 MHz are defined to satisfy the OCB requirements.
  • the signal bandwidth transmitted by the communication equipment on the unlicensed spectrum needs to meet the power spectral density requirements in addition to the OCB requirements. Due to the power spectral density requirements, the communication equipment is still unable to realize data transmission. Therefore, it is necessary to define more than two synchronization grids to meet the power spectral density requirements on the premise of meeting the OCB requirements.
  • SSB and OCB requirements please refer to the above method embodiments, and details are not repeated here.
  • Step 520 the terminal device detects one or more SSBs based on the n synchronization grids within the channel bandwidth.
  • the network device may send the SSB to the terminal device on one or more of the n synchronization grids based on the n synchronization grids.
  • the network device sends the SSB to the terminal device on all n synchronization grids, wherein the information carried by the PBCH in the SSB sent on the n synchronization grids is the same.
  • the terminal device may detect the SSB from the network device on one or more of the n synchronization grids based on the n synchronization grids. It is precisely because the information carried by the PBCH in the SSB sent on the n synchronization grids is the same, in order to reduce the detection complexity, the terminal device may detect the SSB only on one synchronization grid among the n synchronization grids. In practical applications, it can be determined based on the specific implementation of the terminal device (such as the working capability of the terminal device, the device performance of the terminal device, etc.) to determine whether the terminal device detects SSB in one or multiple synchronization grids in the n synchronization grids. For other descriptions such as n synchronization grids, SSBs, etc., please refer to the above method embodiments, and details are not repeated here.
  • the technical solutions provided by the embodiments of the present application transmit SSBs through network equipment and terminal equipment based on multiple synchronization grids, where the multiple synchronization grids are preset synchronization grids within the channel bandwidth that allow network equipment and The terminal device is used to transmit the synchronization grid of the SSB, so that for a larger channel bandwidth, the embodiment of the present application ensures that the SSB transmission meets the OCB requirement, and improves the success rate of the SSB transmission between the terminal device and the network device.
  • the interval between two adjacent synchronization grids in the n synchronization grids is greater than or equal to the interval threshold, and the interval threshold includes the bandwidth of the SSB and the bandwidth of the control channel resource set. and, thereby avoiding the overlap between the bandwidth of the SSB and the bandwidth of the control channel resource set, and improving the accuracy of the terminal device detecting the SSB.
  • the information carried in the PBCH includes data and control information.
  • other information carried in the PBCH may be collectively referred to as control information, such as SSB index, QCL relationship parameters, and the like.
  • control information such as SSB index, QCL relationship parameters, and the like.
  • the control information carried in the PBCH may require more bits to indicate.
  • the number of bits that the PBCH can carry may remain different. Change.
  • the SSB index As an example, for the frequency range from 52.6GHz to 71GHz, assuming that the subcarrier spacing of SSB still adopts the subcarrier spacing of 120KHz or 240KHz, and assuming that the window of DRS is still 5ms, then for the subcarrier spacing of 120KHz, The DRS window includes 80 candidate SSB positions; for the subcarrier spacing of 240KHz, the DRS window includes 160 candidate SSB positions. At this time, it is necessary to carry 8 bits in the PBCH to indicate the SSB index.
  • multiple SSBs jointly indicate the control information carried on the PBCH.
  • the bearing manner of the control information corresponding to the SSB will be described.
  • control information corresponding to the SSB is jointly indicated by at least two SSBs in the SSB.
  • the control information carried in the PBCH may require more bits to indicate, but the number of bits that the PBCH of the SSB can carry may remain unchanged.
  • the control information is accurately and completely indicated, and multiple SSBs are used to jointly indicate the control information of the SSBs, that is, each SSB in the multiple SSBs respectively carries a part of the control information.
  • This embodiment of the present application does not limit the number of SSBs that indicate control information.
  • the number of SSBs that indicate a certain control information may be determined in combination with the number of bits required to indicate the control information. For example, if the required number of bits is large, control information, more SSBs can be used to indicate the control information.
  • the embodiment of the present application also does not limit the specific type of the control information.
  • the control information includes at least one of the following: an SSB index (SSB index), and a QCL relationship parameter of the SSB.
  • the SSB index in the embodiment of the present application is used to indicate the relative time domain position of the SSB received by the terminal device in the candidate SSB.
  • the SSB index may also be referred to as the candidate SSB index.
  • the network device since the n synchronization grids are defined in the same time domain position, the network device sends multiple SSBs based on the n synchronization grids, or the terminal device detects based on the n synchronization grids.
  • One or more SSBs are located at the same time domain location, ie these SSBs are frequency division multiplexed. Therefore, the time domain information of the SSBs transmitted on the n synchronized grids is the same, that is, the SSB index is the same.
  • the SSB index of one SSB in the n synchronized grids is obtained, and then the other SSBs transmitted on the n synchronized grids can be known.
  • control information is jointly indicated by the indication information of the PBCH of at least two SSBs, and the indication information includes at least one of the following: the DMRS of the PBCH, the load of the PBCH, and the MIB information field of the PBCH.
  • control information may be jointly indicated by one item of indication information of the PBCHs of multiple SSBs, such as being jointly indicated by the DMRSs of the PBCHs of multiple SSBs, and the DMRS of the PBCHs of each SSB indicates a part of the control information;
  • the information can be indicated by multiple items in the indication information of the PBCH of multiple SSBs, such as the DMRS of the PBCH of multiple SSBs and the load of the PBCH.
  • the DMRS of the PBCH of each SSB can indicate the same part of the control information.
  • the payload of the PBCH of each SSB may indicate different parts of the control information.
  • the embodiment of the present application also reuses the MIB information field of the PBCH, so as to realize that the MIB information field is used to indicate control information.
  • the MIB information field includes at least one of the following: a subcarrier offset information field, a subcarrier spacing information field, and a system message information field.
  • control information as the candidate SSB index as an example to introduce and describe several indication methods of the control information.
  • Indication mode 1 The DMRS of the PBCH of multiple SSBs is used to jointly indicate the control information.
  • the 8 kinds of sequences supported by the DMRS of the PBCH of each SSB respectively optionally, the DMRS of the PBCH of multiple SSBs use the same 8 kinds of sequences; .
  • the DMRS of the PBCH of each SSB can implicitly indicate 3 bits of the candidate SSB index, and the DMRS of the PBCH of different SSBs can respectively indicate the different 3 bits of the candidate SSB index, so that it can be jointly indicated by multiple SSBs Candidate SSB index.
  • the DMRS of the PBCH of the first SSB transmitted within the channel bandwidth indicates the lowest 3 bits (1st to 3rd bits) of the candidate SSB index
  • the DMRS of the PBCH of the second SSB indicates the 4th to 6th bits of the candidate SSB index
  • the DMRS of the PBCH of the third SSB indicates the highest 2 bits (7th to 8th bits) of the candidate SSB index.
  • the DMRS of the PBCH of each SSB is extended to support 16 sequences respectively, then the DMRS of the PBCH of each SSB can implicitly indicate 4 bits of the candidate SSB index.
  • only the DMRS of the PBCH of the two SSBs can indicate the 8-bit candidate SSB index.
  • the DMRS of the PBCH of the first SSB transmitted within the channel bandwidth indicates the lower 4 bits of the candidate SSB index (1st to 4th bit)
  • the DMRS of the PBCH of the second SSB indicates the upper 4 bits (5th to 8th bits) of the candidate SSB index.
  • Indication mode 2 The PBCH payloads of multiple SSBs are used to jointly indicate control information.
  • the payload of the PBCH for each SSB may indicate a fraction of bits of the candidate SSB index.
  • the payload of the PBCH is the information related to the physical layer carried by the PBCH in the foregoing embodiment.
  • the PBCH payload of 3 SSBs is used to indicate the 8 bits of the candidate SSB index, such as the PBCH payload of the first SSB transmitted within the channel bandwidth indicates bits 1 to 3 of the candidate SSB index, the PBCH of the second SSB
  • the payload of the PBCH indicates the 4th to 6th bits of the candidate SSB index
  • the payload of the PBCH of the third SSB indicates the 7th to 8th bits of the candidate SSB index.
  • the PBCH payload of 5 SSBs can be used to indicate the 8 bits of the candidate SSB index, for example, the PBCH payload of the first SSB transmitted within the channel bandwidth indicates the first bit of the candidate SSB index, and the PBCH of the second SSB
  • the payload of the PBCH of the third SSB indicates bits 2 to 3 of the candidate SSB index
  • the payload of the PBCH of the third SSB indicates the bits 4 to 5 of the candidate SSB index
  • the payload of the PBCH of the fourth SSB indicates the bits 6 to 7 of the candidate SSB index
  • the PBCH payload of the fifth SSB indicates the 8th bit of the candidate SSB index.
  • the PBCH payload can be reused for indication.
  • the field indication information field is no longer required to indicate the field where the SSB is sent, and 1 bit of the field indication information field can be reused at this time to indicate the candidate SSB index.
  • Indication mode 3 use the DMRS of the PBCH of multiple SSBs and the load of the PBCH to jointly indicate the control information.
  • the DMRS of the PBCH supports 8 kinds of sequences, which can implicitly indicate 3 bits of the candidate SSB index.
  • the embodiment of the present application can follow the design of the related art, and the DMRS of the PBCH of each SSB in the multiple SSBs indicates the same 3 bits in the index of the candidate SSB.
  • the other 5 bits of the candidate SSB index are jointly indicated by the PBCH payload of multiple SSBs.
  • one bit of the candidate SSB index is indicated by the PBCH payload of five SSBs respectively.
  • the bit positions in the candidate SSB index indicated by the load of the PBCH of each SSB are in a predefined order, such as the order from low to high in the 4th to 8th bits of the candidate SSB index, corresponding to the synchronization grid number from small to high. big order.
  • the remaining bits of the candidate SSB index are jointly indicated by the PBCH loads of fewer (eg, 2) SSBs, so that the terminal device can obtain the remaining bits of the candidate SSB index by detecting fewer SSBs.
  • the remaining bits of the candidate SSB index are repeatedly indicated by the PBCH payload of 5 SSBs, which can avoid the detection error of the candidate SSB index caused by false detection or missed detection, and improve the accuracy of the candidate SSB index.
  • Indication mode 4 The MIB information fields of the PBCHs of multiple SSBs are used to jointly indicate the control information.
  • each content in the MIB information field indicates the candidate SSB index.
  • the subcarrier offset information field includes 4 bits.
  • the location of the synchronization grid where the SSB is located is predefined, and the selection of the synchronization grid or the channel grid is not so flexible.
  • the subcarrier offset between the RB boundary of the SSB and the common RB boundary may be limited due to the flexible selection of the synchronization grid and the channel grid, so there is no need to pass the subcarrier offset information field. 4 bits to indicate 12 offsets.
  • the subcarrier offset information field only needs 2 bits to represent all the possible subcarrier offsets, so the saved 2 bits can be reused to use It is used to indicate the 2 bits in the candidate SSB index, such as the upper 2 bits.
  • FIG. 8 shows a schematic diagram of indicating a candidate SSB index by using the MIB information field provided by an embodiment of the present application. As shown in FIG. 8 , the 0th bit and the 1st bit of the subcarrier offset information field can be reused to indicate 2 bits in the candidate SSB index.
  • subcarrier spacing information field (subCarrierSpacingCommon): Since in R16, NR-U technology defines that the subcarrier spacing of PDCCH and SSB is the same, the subcarrier spacing of channels such as PDCCH no longer needs to be indicated by the subcarrier spacing information field. , the NR-U technology for high frequency bands in R17 (Release 17, version 17) may still use this design. At this time, the subcarrier spacing information field is not required to indicate the subcarrier spacing, so that the subcarrier spacing information can be reused 1 bit of the field to indicate the 1-bit information of the candidate SSB index. As shown in FIG. 8, 1 bit of the subcarrier spacing information field can be reused to indicate 1 bit in the candidate SSB index.
  • a new mapping table of the indication information of CORESET#0 is defined, and the following table 3 exemplarily shows a mapping table of the indication information of CORESET#0 .
  • the 4-bit CORESET#0 information field in the 8-bit system message information field actually only needs 3 bits to indicate that the highest bit is not actually used, so this bit can be used. A bit used to indicate a candidate SSB index.
  • the 4-bit SearchSpace#0 information field in the 8-bit system message information field is actually not fully utilized.
  • SearchSpace#0 it is actually not necessary to indicate SearchSpace#0, so that all 4-bit SearchSpace#0 information fields can be used to indicate the candidate SSB index.
  • the 0th bit and the 1st bit of the system message information field can be reused to indicate 2 bits in the candidate SSB index.
  • Table 3 The mapping table of the indication information of CORESET#0
  • the above-mentioned several indication manners may be used alone or in any combination, which is not limited in this embodiment of the present application. It should also be noted that the embodiments of this application only take the indication mode of the candidate SSB index of 8 bits as an example for description.
  • the subcarrier spacing of the SSB may be larger, for example, The subcarrier interval of SSB is 480KHz, then for a 5ms DRS window, the candidate transmission positions of SSB can include 320, and 9 bits are needed to indicate the candidate SSB index. At this time, the above indication method can still be used to indicate the candidate SSB index. .
  • the technical solutions provided by the embodiments of the present application can avoid changing the channel format of the PBCH by using multiple SSBs to jointly indicate the control information corresponding to the SSBs when the SSBs are transmitted based on multiple synchronization grids.
  • the design complexity caused by the change of the channel format can be reduced, and on the other hand, backward compatibility can be maintained.
  • the embodiments of the present application further provide multiple indication manners to indicate the control information, which improves the flexibility of the indication of the control information.
  • control channel resources used by the terminal device during communication can be pre-configured by the network device, can also be pre-defined by the communication protocol, and can also be determined by the terminal device itself. This is not limited, and the following only takes the pre-configured manner by the network device as an example for description. For other manners, reference may be made to the following examples for description, and details are not repeated in this embodiment of the present application.
  • the above method further includes: the network device determines the first channel resource information based on at least one synchronization grid among the n synchronization grids; and determines the control channel resource indicated by the first channel resource information as the communication of the terminal device control channel resources to be used.
  • the SSB transmitted on each synchronization grid can indicate control channel resource information, and the control information resource used by the terminal device for communication can be determined from the control channel resource information indicated by the SSB transmitted on at least one synchronization grid.
  • the network device may determine the first channel resource information based on at least one synchronization grid among the n synchronization grids, and the control channel resource indicated by the first channel resource information is the control channel used by the terminal device for communication channel resources.
  • at least one synchronization grid in the above n synchronization grids is the synchronization grid that the network device actually sends the SSB.
  • control channel resource information includes at least one of the following: a control channel resource set and a search space resource set.
  • the set of control channel resources is used to determine the frequency position of the communication data transmission when the terminal device communicates.
  • the set of control information resources includes CORESET#0;
  • the set of search space resources is used to determine the time domain of monitoring the communication data when the terminal device communicates.
  • the location, exemplarily, the set of search space resources includes SearchSpace#0.
  • the embodiments of the present application provide several ways for determining the first channel resource.
  • the above-mentioned determining the first channel resource information based on at least one synchronization grid in the n synchronization grids includes: the control channel resource information indicated by the SSB corresponding to any synchronization grid in the at least one synchronization grid, It is determined to be the first channel resource information.
  • the control channel resource indicated by the SSB corresponding to any synchronization grid in the above-mentioned at least one synchronization grid can be information, which can be determined as the first channel resource information.
  • the control channel resource information indicated by the SSB corresponding to any synchronization grid in the n synchronization grids is the first channel resource information, and the control channel resource indicated by the first channel resource information is relative to the n synchronization grids.
  • the control channel resource of the first SSB in the SSB corresponding to the synchronization grid. This embodiment of the present application does not limit the location information of the first SSB.
  • the first SSB is an SSB transmitted on the first synchronization grid among n synchronization grids; or, the first SSB is n synchronization grids The SSB transmitted on the last synchronization grid among n synchronization grids; or, the first SSB is the SSB transmitted on the middle synchronization grid among the n synchronization grids.
  • the CORESET#0 indicated by the SSB transmitted on any one of the five synchronization grids is the offset relative to the SSB transmitted on the intermediate synchronization grid shift.
  • the above-mentioned determining the first channel resource information based on at least one synchronization grid in the n synchronization grids includes: converting the control channel resource information indicated by the SSB corresponding to the mth synchronization grid in the at least one synchronization grid , which is determined to be the first channel resource information, and m is a positive integer.
  • the control channel resource information indicated by the SSB transmitted on each synchronization grid among the n synchronization grids may be different, it is necessary to select a synchronization grid from the n synchronization grids to transmit the synchronization grid on the synchronization grid.
  • the control channel resource information indicated by the SSB is determined as the first channel resource information.
  • the control channel resource information indicated by the SSB corresponding to the i-th synchronization grid in the n synchronization grids is the i-th control channel resource information, and the control channel resource indicated by the i-th control channel resource information is relative.
  • i is a positive integer less than or equal to n.
  • the specific value of i is predefined by the communication protocol; or, it is determined by negotiation between the terminal device and the network device, and the specific value of i is not limited in this embodiment of the present application.
  • i may be determined according to some set rules or algorithms.
  • i is determined according to the channel bandwidth.
  • the terminal equipment may determine the specific value of i based on the current channel bandwidth; exemplarily, i is determined according to the physical cell identifier, for example, the terminal equipment obtains the current physical cell identifier (such as the physical cell ID), and then determines the value of i according to the physical cell identifier. value, such as performing operations such as modulo on the physical cell identifier to obtain the value of i.
  • the technical solutions provided by the embodiments of the present application determine when the terminal device communicates from the control channel resource information indicated by the SSB transmitted on the multiple synchronization grids when the SSB is transmitted based on the multiple synchronization grids.
  • the used control channel resources ensure that the terminal equipment accurately determines the control channel resources when the SSB is transmitted on multiple synchronization grids.
  • the embodiments of the present application also provide different ways to determine the control channel resources, fully consider the different bearing characteristics of the control channel resource information, and improve the determination of the control channel resources. Flexibility of control channel resources.
  • the method for transmitting the synchronization signal block provided by the present application is mainly described from the perspective of interaction between a terminal device and a network device.
  • the above steps performed by the relevant terminal equipment can be independently implemented as a method for receiving synchronization signal blocks on the terminal equipment side; the above steps performed by the relevant network equipment can be independently implemented as a method for sending synchronization signal blocks on the network equipment side.
  • FIG. 10 shows a block diagram of an apparatus for receiving a synchronization signal block provided by an embodiment of the present application.
  • the apparatus has the function of implementing the above-mentioned method example on the terminal device side, and the function may be implemented by hardware or by executing corresponding software in hardware.
  • the apparatus may be the above-mentioned terminal equipment, or may be set in the terminal equipment.
  • the apparatus 1000 may include: a detection module 1010 .
  • a detection module 1010 configured to detect one or more SSBs based on n synchronization grids within the channel bandwidth, where n is an integer greater than 1; wherein the n synchronization grids are preset within the channel bandwidth The sync grids allowed in the sync grid.
  • the number of the SSBs is multiple; the control information corresponding to the SSBs is jointly indicated by at least two SSBs in the SSBs.
  • control information includes at least one of the following: an index of the SSB, a QCL relationship parameter of the SSB.
  • control information is jointly indicated by indication information of the physical broadcast channel PBCH of the at least two SSBs, and the indication information includes at least one of the following: the DMRS of the PBCH, the load of the PBCH, the The MIB information field of the PBCH described above.
  • the MIB information field includes at least one of the following: a subcarrier offset information field, a subcarrier spacing information field, and a system message information field.
  • the apparatus 1000 further includes: an information determination module 1020, configured to determine first channel resource information based on at least one synchronization grid among the n synchronization grids; a resource determination module 1030: Determine the control channel resource indicated by the first channel resource information as the control channel resource used by the terminal device for communication.
  • the information determination module 1020 is configured to: determine the control channel resource information indicated by the SSB corresponding to any synchronization grid in the at least one synchronization grid as the first channel resource information.
  • control channel resource information indicated by the SSB corresponding to any one of the n synchronization grids is first channel resource information
  • the control channel resource indicated by the first channel resource information is relative The control channel resources of the first SSB in the SSBs corresponding to the n synchronization grids.
  • the information determining module 1020 is configured to: determine the control channel resource information indicated by the SSB corresponding to the mth synchronization grid in the at least one synchronization grid as the the first channel resource information, and the m is a positive integer.
  • control channel resource information indicated by the SSB corresponding to the i-th synchronization grid in the n synchronization grids is the i-th control channel resource information
  • the i-th control channel resource information indicates The control channel resource is the control channel resource relative to the SSB corresponding to the i-th synchronization grid
  • the i is a positive integer less than or equal to the n.
  • an interval between two adjacent synchronization grids in the n synchronization grids is greater than or equal to an interval threshold.
  • the interval threshold includes the sum of the bandwidth of the SSB and the bandwidth of the set of control channel resources.
  • the SSBs corresponding to the n synchronization grids correspond to the first cell or the first channel bandwidth.
  • the n synchronization grids are located on unlicensed spectrum.
  • the technical solutions provided by the embodiments of the present application transmit SSBs through network equipment and terminal equipment based on multiple synchronization grids, where the multiple synchronization grids are preset synchronization grids within the channel bandwidth that allow network equipment and The terminal device is used to transmit the synchronization grid of the SSB, so that for a larger channel bandwidth, the embodiment of the present application ensures that the SSB transmission meets the OCB requirement, and improves the success rate of the SSB transmission between the terminal device and the network device.
  • the interval between two adjacent synchronization grids in the n synchronization grids is greater than or equal to the interval threshold, and the interval threshold includes the bandwidth of the SSB and the bandwidth of the control channel resource set. and, thereby avoiding the overlap between the bandwidth of the SSB and the bandwidth of the control channel resource set, and improving the accuracy of the terminal device detecting the SSB.
  • FIG. 12 shows a block diagram of an apparatus for sending a synchronization signal block provided by an embodiment of the present application.
  • the apparatus has the function of implementing the foregoing method example on the network device side, and the function may be implemented by hardware, or by executing corresponding software in hardware.
  • the apparatus may be the network device described above, or may be set in the network device.
  • the apparatus 1200 may include: a sending module 1210 .
  • the sending module 1210 is configured to send multiple SSBs to the terminal device based on n synchronization grids within the channel bandwidth, where n is an integer greater than 1; wherein the n synchronization grids are within the channel bandwidth.
  • control information corresponding to the SSB is jointly indicated by at least two SSBs in the SSB.
  • control information includes at least one of the following: an index of the SSB, a QCL relationship parameter of the SSB.
  • control information is jointly indicated by indication information of PBCHs of the at least two SSBs, and the indication information includes at least one of the following items: DMRS of the PBCH, payload of the PBCH, and PBCH of the PBCH. MIB information field.
  • the MIB information field includes at least one of the following: a subcarrier offset information field, a subcarrier spacing information field, and a system message information field.
  • the apparatus 1200 further includes: an information determination module 1220, configured to determine first channel resource information based on at least one synchronization grid in the n synchronization grids; a resource determination module 1230: Determine the control channel resource indicated by the first channel resource information as the control channel resource used by the terminal device for communication.
  • the information determining module 1220 is configured to: determine the control channel resource information indicated by the SSB corresponding to any synchronization grid in the at least one synchronization grid as the first channel resource information.
  • control channel resource information indicated by the SSB corresponding to any one of the n synchronization grids is first channel resource information
  • the control channel resource indicated by the first channel resource information is relative The control channel resources of the first SSB in the SSBs corresponding to the n synchronization grids.
  • the information determination module 1220 is configured to: determine the control channel resource information indicated by the SSB corresponding to the mth synchronization grid in the at least one synchronization grid as the the first channel resource information, and the m is a positive integer.
  • control channel resource information indicated by the SSB corresponding to the i-th synchronization grid in the n synchronization grids is the i-th control channel resource information
  • the i-th control channel resource information indicates The control channel resource is the control channel resource relative to the SSB corresponding to the i-th synchronization grid
  • the i is a positive integer less than or equal to the n.
  • an interval between two adjacent synchronization grids in the n synchronization grids is greater than or equal to an interval threshold.
  • the interval threshold includes the sum of the bandwidth of the SSB and the bandwidth of the set of control channel resources.
  • the SSBs corresponding to the n synchronization grids correspond to the first cell or the first channel bandwidth.
  • the n synchronization grids are located on unlicensed spectrum.
  • the technical solutions provided by the embodiments of the present application transmit SSBs through network equipment and terminal equipment based on multiple synchronization grids, where the multiple synchronization grids are preset synchronization grids within the channel bandwidth that allow network equipment and The terminal device is used to transmit the synchronization grid of the SSB, so that for a larger channel bandwidth, the embodiment of the present application ensures that the SSB transmission meets the OCB requirement, and improves the success rate of the SSB transmission between the terminal device and the network device.
  • the interval between two adjacent synchronization grids in the n synchronization grids is greater than or equal to the interval threshold, and the interval threshold includes the bandwidth of the SSB and the bandwidth of the control channel resource set. and, thereby avoiding the overlap between the bandwidth of the SSB and the bandwidth of the control channel resource set, and improving the accuracy of the terminal device detecting the SSB.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 14 shows a schematic structural diagram of a terminal device 140 provided by an embodiment of the present application.
  • the terminal device can be used to execute the above method for receiving a synchronization signal block on the terminal device side.
  • the terminal device 140 may include: a processor 141, and a transceiver 142 connected to the processor 141; wherein:
  • the processor 141 includes one or more processing cores, and the processor 141 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 142 includes a receiver and a transmitter.
  • transceiver 142 is a communication chip.
  • the terminal device 140 further includes: a memory and a bus.
  • the memory is connected to the processor through a bus.
  • the memory can be used to store a computer program, and the processor is used to execute the computer program, so as to implement various steps performed by the terminal device in the above method embodiments.
  • volatile or non-volatile storage devices include but are not limited to: RAM (Random-Access Memory, random access memory) and ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory) ), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cassettes, tapes, disk storage or other magnetic storage devices. in:
  • a transceiver 142 configured to detect one or more SSBs based on n synchronization grids within the channel bandwidth, where n is an integer greater than 1;
  • n synchronization grids are allowed synchronization grids in preset synchronization grids within the channel bandwidth.
  • the number of the SSBs is multiple; the control information corresponding to the SSBs is jointly indicated by at least two SSBs in the SSBs.
  • control information includes at least one of the following: an index of the SSB, a QCL relationship parameter of the SSB.
  • control information is jointly indicated by indication information of the physical broadcast channel PBCH of the at least two SSBs, and the indication information includes at least one of the following: the DMRS of the PBCH, the load of the PBCH, the The MIB information field of the PBCH described above.
  • the MIB information field includes at least one of the following: a subcarrier offset information field, a subcarrier spacing information field, and a system message information field.
  • the processor 141 is configured to: determine first channel resource information based on at least one synchronization grid among the n synchronization grids; and determine the control channel resource indicated by the first channel resource information It is the control channel resource used by the terminal device for communication.
  • the processor 141 is configured to: determine the control channel resource information indicated by the SSB corresponding to any synchronization grid in the at least one synchronization grid as the first channel resource information.
  • control channel resource information indicated by the SSB corresponding to any one of the n synchronization grids is first channel resource information
  • the control channel resource indicated by the first channel resource information is relative The control channel resources of the first SSB in the SSBs corresponding to the n synchronization grids.
  • the processor 141 is configured to: determine the control channel resource information indicated by the SSB corresponding to the mth synchronization grid in the at least one synchronization grid as the first channel resource information, the m is a positive integer.
  • control channel resource information indicated by the SSB corresponding to the i-th synchronization grid in the n synchronization grids is the i-th control channel resource information
  • the i-th control channel resource information indicates The control channel resource is the control channel resource relative to the SSB corresponding to the i-th synchronization grid
  • the i is a positive integer less than or equal to the n.
  • an interval between two adjacent synchronization grids in the n synchronization grids is greater than or equal to an interval threshold.
  • the interval threshold includes the sum of the bandwidth of the SSB and the bandwidth of the set of control channel resources.
  • the SSBs corresponding to the n synchronization grids correspond to the first cell or the first channel bandwidth.
  • the n synchronization grids are located on unlicensed spectrum.
  • FIG. 15 shows a schematic structural diagram of a network device 150 provided by an embodiment of the present application.
  • the network device may be used to execute the above method for sending a synchronization signal block on the network device side.
  • the network device 150 may include: a processor 151, and a transceiver 152 connected to the processor 151; wherein:
  • the processor 151 includes one or more processing cores, and the processor 151 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 152 includes a receiver and a transmitter.
  • transceiver 152 is a communication chip.
  • the network device 150 also includes: a memory and a bus.
  • the memory is connected to the processor through a bus.
  • the memory can be used to store a computer program, and the processor is used to execute the computer program, so as to implement various steps performed by the network device in the above method embodiments.
  • volatile or non-volatile storage devices include but are not limited to: RAM (Random-Access Memory, random access memory) and ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory) ), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cassettes, tapes, disk storage or other magnetic storage devices. in:
  • a transceiver 152 configured to send multiple SSBs to the terminal device based on n synchronization grids within the channel bandwidth, where n is an integer greater than 1;
  • n synchronization grids are allowed synchronization grids in preset synchronization grids within the channel bandwidth.
  • control information corresponding to the SSB is jointly indicated by at least two SSBs in the SSB.
  • control information includes at least one of the following: an index of the SSB, a QCL relationship parameter of the SSB.
  • control information is jointly indicated by indication information of PBCHs of the at least two SSBs, and the indication information includes at least one of the following items: DMRS of the PBCH, payload of the PBCH, and PBCH of the PBCH. MIB information field.
  • the MIB information field includes at least one of the following: a subcarrier offset information field, a subcarrier spacing information field, and a system message information field.
  • the processor 151 is configured to: determine first channel resource information based on at least one synchronization grid among the n synchronization grids; and determine the control channel resource indicated by the first channel resource information It is the control channel resource used by the terminal device for communication.
  • the processor 151 is configured to: determine the control channel resource information indicated by the SSB corresponding to any synchronization grid in the at least one synchronization grid as the first channel resource information.
  • control channel resource information indicated by the SSB corresponding to any one of the n synchronization grids is first channel resource information
  • the control channel resource indicated by the first channel resource information is relative The control channel resources of the first SSB in the SSBs corresponding to the n synchronization grids.
  • the processor 151 is configured to: determine the control channel resource information indicated by the SSB corresponding to the mth synchronization grid in the at least one synchronization grid as the first channel resource information, the m is a positive integer.
  • control channel resource information indicated by the SSB corresponding to the i-th synchronization grid in the n synchronization grids is the i-th control channel resource information
  • the i-th control channel resource information indicates The control channel resource is the control channel resource relative to the SSB corresponding to the i-th synchronization grid
  • the i is a positive integer less than or equal to the n.
  • an interval between two adjacent synchronization grids in the n synchronization grids is greater than or equal to an interval threshold.
  • the interval threshold includes the sum of the bandwidth of the SSB and the bandwidth of the set of control channel resources.
  • the SSBs corresponding to the n synchronization grids correspond to the first cell or the first channel bandwidth.
  • the n synchronization grids are located on unlicensed spectrum.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a terminal device, so as to realize the above-mentioned synchronization signal block on the terminal device side. receive method.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a network device, so as to realize the above-mentioned network device-side synchronization signal block. delivery method.
  • Embodiments of the present application further provide a chip, where the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a terminal device, it is used to implement the above method for receiving a synchronization signal block on the terminal device side .
  • An embodiment of the present application further provides a chip, where the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a network device, it is used to implement the method for sending a synchronization signal block on the network device side as described above. .
  • the present application also provides a computer program product, which, when the computer program product runs on the terminal device, enables the computer to execute the above method for receiving a synchronization signal block on the terminal device side.
  • the present application also provides a computer program product, which, when the computer program product runs on a network device, enables a computer to execute the above method for sending a synchronization signal block on the network device side.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种同步信号块的传输方法、装置及设备,属于通信技术领域。所述方法包括:网络设备基于信道带宽内的n个同步栅格,向终端设备发送SSB,n为大于1的整数;其中,n个同步栅格为信道带宽内的预设同步栅格中允许的同步栅格;终端设备基于信道带宽内的n个同步栅格检测SSB。本申请实施例通过网络设备和终端设备基于多个同步栅格传输SSB,该多个同步栅格是信道带宽内的预设同步栅格中允许网络设备和终端设备用于传输SSB的同步栅格,从而对于较大的信道带宽,确保了SSB的传输满足OCB要求,提升了SSB在终端设备和网络设备之间传输的成功率。

Description

同步信号块的传输方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,特别涉及一种同步信号块的传输方法、装置、设备及存储介质。
背景技术
3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)在5G(5th-Generation,第五代移动通信)NR(New Radio,新空口)***中引入了同步信号块这一概念。
同步信号块是将小区主辅SS(Synchronization Signal,同步信号)与PBCH(Physical Broadcast Channel,物理广播信道)进行某种程度上的耦合,以SS/PBCH资源块的形式出现。示例性地,可以将该SS/PBCH资源块简称为SSB(SS/PBCH Blocks,同步信号块)。在一个示例中,终端设备可以接收网络设备发送的SSB,并根据接收的SSB获得帧同步、***信息的获取(如QCL(Quasi Co-Located,准共址)关系)、测量等。
然而,如何传输SSB还需要进一步讨论。
发明内容
本申请实施例提供了一种同步信号块的传输方法、装置、设备及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种同步信号块的接收方法,应用于终端设备,所述方法包括:
基于信道带宽内的n个同步栅格检测一个或多个SSB,所述n为大于1的整数;
其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
另一方面,本申请实施例提供了一种同步信号块的发送方法,应用于网络设备,所述方法包括:
基于信道带宽内的n个同步栅格,向终端设备发送多个SSB,所述n为大于1的整数;
其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
再一方面,本申请实施例提供了一种同步信号块的接收装置,设置在终端设备,所述装置包括:
检测模块,用于基于信道带宽内的n个同步栅格检测一个或多个SSB,所述n为大于1的整数;
其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
又一方面,本申请实施例提供了一种同步信号块的发送装置,设置在网络设备,所述装置包括:
发送模块,用于基于信道带宽内的n个同步栅格,向终端设备发送多个SSB,所述n为大于1的整数;
其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
还一方面,本申请实施例提供了一种终端设备,所述终端设备包括:处理器,以及与所述处理器相连的收发器;其中:
所述收发器,用于基于信道带宽内的n个同步栅格检测一个或多个SSB,所述n为大于1的整数;其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
还一方面,本申请实施例提供了一种网络设备,所述网络设备包括:处理器,以及与所述处理器相连的收发器;其中:
所述收发器,用于基于信道带宽内的n个同步栅格,向终端设备发送多个SSB,所述n为大于1的整数;其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
还一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现如上述终端设备侧同步信号块的接收方法。
还一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现如上述网络设备侧同步信号块的发送方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现如上述终端设备侧同步信号块的接收方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现如上述网络设备侧同步信号块的发送方法。
还一方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得 计算机执行上述终端设备侧同步信号块的接收方法。
还一方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在网络设备上运行时,使得计算机执行上述网络设备侧同步信号块的发送方法。
本申请实施例提供的技术方案可以包括如下有益效果:
通过网络设备和终端设备基于多个同步栅格传输SSB,该多个同步栅格是信道带宽内的预设同步栅格中允许网络设备和终端设备用于传输SSB的同步栅格,从而对于较大的信道带宽,本申请实施例确保了SSB的传输满足OCB要求,提升了SSB在终端设备和网络设备之间传输的成功率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的***架构的示意图;
图2是本申请一个实施例提供的SSB时频结构的示意图;
图3是本申请一个实施例提供的SSB在DRS窗口内的传输图样的示意图;
图4是本申请本申请一个实施例提供的DRS窗口内的候选传输位置和实际传输位置的示意图;
图5是本申请一个实施例提供的同步信号块的传输方法的流程图;
图6是本申请一个实施例提供的SSB和CORESET#0的复用图样;
图7是本申请一个实施例提供的同步栅格的设计方式的示意图;
图8是本申请一个实施例提供的利用MIB信息域指示候选SSB index的示意图;
图9是本申请一个实施例提供的CORESET#0的指示方式的示意图;
图10是本申请一个实施例提供的同步信号块的接收装置的示意图;
图11是本申请另一个实施例提供的同步信号块的接收装置的示意图;
图12是本申请一个实施例提供的同步信道块的发送装置的示意图;
图13是本申请另一个实施例提供的同步信号块的发送装置的示意图;
图14是本申请一个实施例提供的终端设备的结构示意图;
图15是本申请一个实施例提供的网络设备的结构示意图;
图16是本申请一个实施例提供的DRS窗口中SSB索引的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请一个实施例提供的***架构的示意图。该***架构可以包括:终端设备10和网络设备20。
终端设备10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端设备10。终端设备10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端设备。
网络设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的装置。网络设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的***中,具备网络设备功能的设备的名称可能会有所不同,例如在5G NR***或NR-U(New Radio-Unlicensed,非授权载波的新无线)***中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为网络设备。
本申请实施例中的“5G NR***”也可以称为5G***或者NR***,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于5G NR***或NR-U***,也可以适用于5G NR***或NR-U***后续的演进***。
在一个示例中,NR***中的公共信道和信号(如同步信号和广播信道),需要网络设备通过多波束扫 描的方式覆盖该网络设备下提供网络服务的小区,以便于小区内的终端设备接收并根据接收的SSB获得帧同步、***信息的获取(如QCL关系)、测量等。其中,网络设备在进行同步信号的多波束发送时,是通过定义SS/PBCH burst set(突发集)实现的。一个SS/PBCH burst set包含一个或多个SS/PBCH block(资源块),一个SS/PBCH block(同步信号块,简称为“SSB”,为便于描述,以下使用该简称“SSB”)用于承载一个波束的同步信号和广播信道。因此,本申请实施例中,一个SS/PBCH burst set中同步信号对应的波束的数量可以等于小区内SSB的数量(SSB number)。在一个示例中,SSB number的最大数目(L)与***的频段(frequency)有关,如下所示:
(1)针对不大于(up to)3GHz(Giga Hertz,千兆赫兹)的频段范围,L为4;
(2)针对3GHz至6GHz的频段范围,L为8;
(3)针对6GHz至52.6GHz的频段范围,L为64。
本申请实施例中,SSB由小区主辅SS与PBCH进行某种程度上的耦合得到的,由PSS(Primary Synchronization Signal,主同步信号)、SSS(Secondary Synchronization Signal,辅同步信号)和PBCH这三部分共同组成。
请参考图2,其示出了本申请一个实施例提供的SSB时频结构的示意图。从图2可以看出,SSB在时域上共占用4个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号;频域共占用240个子载波(20个PRB(Physical Resource Block,物理资源块)),编号分别为0至239。如图2所示,PSS占用一个符号,并位于符号0中间的127个子载波上;SSS也占用一个符号,并位于符号2中间的127个子载波上;PBCH占用三个符号,并位于符号1、符号3以及符号2,其中,PBCH在符号1和符号3上占用所有子载波,即编号为0至239的子载波,在符号2上占用除去SSS占用的子载波以及保护SSS的子载波以外的所有子载波。此外,在PBCH所占的时频资源中,还包括DMRS(Demodulation Reference Signals,解调专用参考信号),该DMRS可用于解调PBCH上传输的数据资源。
在一个示例中,SS/PBCH burst set内所有的SSB均由网络设备在5ms(Millisecond毫秒)的时间窗内、以一定的周期重复发送。其中,发送周期通过高层的参数(如SSB-timing)进行配置,示例性地,发送周期为以下任意一个时间周期:5ms、10ms、20ms、40ms、80ms、160ms。对于终端设备而言,其通过接收到的SSB可以得到该SSB的index(索引),或称为SSB的序号。其中,SSB index对应于该SSB在5ms时间窗内的相对位置,终端设备根据SSB index和PBCH中承载的半帧指示可以获得帧同步。可选地,SSB index通过PBCH占用的时频资源中的DMRS或者PBCH中的其它信息来指示。有关PBCH中承载的信息的介绍说明,请参见下述实施例,此处不多赘述。在授权频谱中,例如,6GHz以下的频段,SSB burst set中包含的SSB最多有8个,进而SSB index的取值为0至7。在使用授权频谱的NR***中,SSB index可以用于终端设备获得帧同步和/或QCL关系。例如,针对SSB index用于终端设备获得帧同步这一实现方式,示例性地,终端设备通过SSB index和PBCH中承载的半帧指示,可以获得SSB在无线帧中的位置,从而获得帧同步。
下面对PBCH中承载的信息进行介绍说明。
在一个示例中,PBCH中承载的信息包括来自高层(例如RRC(Radio Resource Control,无线资源控制)层)的A(A为正整数)比特MIB(Master Information Block,主信息块)信息
Figure PCTCN2020105946-appb-000001
和与物理层相关的8比特信息
Figure PCTCN2020105946-appb-000002
其中,物理层相关的信息包括SFN(System Frame Number,***帧号)、半帧指示、SSB index等。本申请实施例中,与物理层相关的8比特信息即为下述实施例中的PBCH的载荷。
A比特MIB信息包括:6比特的SFN、1比特的subCarrierSpacingCommon(子载波间隔)信息域、4比特的ssb-SubcarrierOffset(子载波偏移)信息域,并且,还包括DMRS相关信息、调度SIB(System Information Block,***信息块)的PDCCH(Physical Downlink Control CHannel,物理下行控制信道)的资源信息等,此外,还包括1比特的空闲位。
其中,4比特的ssb-SubcarrierOffset信息域用于指示SSB与非SSB之间的PRB栅格之间的偏移,该偏移包括0至11或者0至23个子载波,在一个示例中,ssb-SubcarrierOffset信息域对应于参数k SSB的最低4位;4比特的subCarrierSpacingCommon信息域用于指示PDCCH和PDSCH(Physical Downlink Shared Channel,物理下行共享信道)之间的子载波间隔。
与物理层相关的8比特信息
Figure PCTCN2020105946-appb-000003
中,
Figure PCTCN2020105946-appb-000004
为SFN的最低4位;
Figure PCTCN2020105946-appb-000005
为半帧指示;当L为64时,
Figure PCTCN2020105946-appb-000006
为SSB index的最高的3个比特位,否则,
Figure PCTCN2020105946-appb-000007
为参数k SSB的最高位,
Figure PCTCN2020105946-appb-000008
为保留的比特位。其中,L为小区内SSB number的最大数目,k SSB为SSB的子载波偏移信息。当***频带小于6GHz时,即L小于64时,物理层相关的信息有 保留的2比特(即为
Figure PCTCN2020105946-appb-000009
)。
上述实施例是针对使用授权频谱的NR***中,如何传输SSB以及如何指示控制信息(如SSB index、k SSB等)的介绍说明。针对使用非授权频谱的NR***,也即,NR-U***,SSB的传输与使用授权频谱的NR***中的SSB的传输有所区别,下面针对非授权频谱以及NR-U***中SSB的传输进行介绍说明。
首先,对非授权频谱进行介绍说明。
非授权频谱是可用于终端设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信***中的终端设备只要满足设置该频谱上的要求,就可以使用该频谱,不需要额外申请专有的频谱授权。
为了确保使用非授权频谱的各个通信***都能正常使用非授权频谱进行无线通信,有关部门规定了使用非授权频谱时必须要满足的要求,例如,通信***中的通信设备(包括终端设备和网络设备)需要遵循LBT(Listen Before Talk,先听后说)机制,即通信设备在基于非授权频谱的传输信道上进行数据传输前,需要先进行信道监听,在信道监听结果为信道空闲的情况下,该通信设备才可以进行信号发送;若通信设备在非授权频谱的信道上的信道侦听结果为信道忙,则该通信设备不能进行信号发送。
另外,为了保证各个通信***中的通信设备公平使用非授权频谱进行无线通信,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。
另外,在NR-U技术中,为了避免非授权频谱上传输的信号相互干扰,也为了提高通信设备检测非授权频谱上传输的信号的准确性,通信设备在非授权频谱上传输的信号带宽需要满足OCB(Occupancy Channel Bandwidth,最小传输带宽)要求,即通信设备传输的信号所占带宽的跨度至少为总频谱带宽的L%,其中,L为正数。需要说明的一点是,本申请实施例中,OCB要求是指通信设备传输的信号占用的频段范围的最低频率与最高频率的差值为总频谱带宽的L%。示例性地,在总频谱带宽为5GHz的情况下,L为80;在总频谱带宽为60GHz的情况下,L为70。
目前,在R16(Release 16,第16版本)中,NR-U技术用于7GHz以下的非授权频段。在后续的技术演进中,NR-U及其相关的技术可能会在更高的频段使用,例如在52.6GHz至71GHz的频段范围内使用。
其次,对NR-U***中SSB的传输进行介绍说明。
NR-U***中,SSB在配置的DRS(Discovery Reference Signal,发现参考信号)窗口内传输。为了减少LBT失败对SSB传输造成的影响,对于SSB在DRS窗口内的传输进行了一些设计,这些设计包括DRS窗口的长度、SSB的传输图样等。在一个示例中,DRS窗口的长度是可以配置的,可以配置的长度包括以下至少一个:0.5ms、1ms、2ms、3ms、4ms、5ms。可选地,DRS窗口可以配置的最大长度为半帧。在网络设备发送SSB时,由于LBT的影响,需要在监听到信道空闲的情况下才能使用该信道发送SSB,因此获得信道接入的起始时间可能不是DRS窗口的起始时间点,而是基于不确定的信道接入起始时间。为此,引入了DRS窗口内SSB的候选传输位置的概念。
在一个示例中,每个时隙内包含两个SSB的候选传输位置,如图3所示,根据DRS窗口包含的时隙个数,可以得到SSB在DRS窗口内的传输图样。以DRS窗口的长度为5ms为例,对于子载波间隔为30KHz(Kilo Hertz,千赫兹)的SSB,DRS窗口内包含20个SSB的候选传输位置;对于子载波间隔为15KHz的SSB,DRS窗口内包含10个SSB的候选传输位置。可选地,是否在某一候选传输位置上发送,取决于LBT的结果。在LBT成功的情况下,网络设备从信道接入的起始时间之后的第一个SSB的候选传输位置开始,在连续的SSB的候选传输位置上实际发送SSB。其中,每个SSB的候选传输位置对应一个SSB索引。如图4所示,其示例性示出了本申请一个实施例提供的DRS窗口内的候选传输位置和实际传输位置的示意图,假设LBT在时隙2成功,那么网络设备可以在LBT成功的时刻接入信道,并在信道接入的起始时间之后的第一个SSB的候选传输位置(其对应的SSB索引为4)开始,在连续的SSB的候选传输位置上实际发送SSB。
以子载波间隔为30KHz的SSB为例,由于DRS窗口的长度最大为5ms,则该DRS窗口内最多包含20个SSB的候选传输位置,从而SSB索引的范围需要支持0至19,因此,需要在PBCH中确定5比特用于指示SSB索引。
请参考图16,其示出了本申请一个实施例提供的DRS窗口中SSB索引的结构示意图。在R15(Release15,第15版本),定义了8种DMRS序列,该DMRS序列的索引可以用于指示SSB索引中最低的3比特。目前,NR-U沿用了这种方式,即,使用DMRS序列的索引指示SSB索引中最低的3比特。在R15中,定义使用FR2(Frequency2,频段2)时SSB索引的第4个比特位和第5个比特位相同的指示方式,来指示上述DRS窗口中SSB索引的剩余2比特。然而,由于在R16中,NR-U***的载波频段属于FR1(Frequency1,频段1),在FR1频段时,PBCH的载荷中的这两个比特位是空闲的,因此可以在NR-U***中重新定义2比特来指示SSB索引的剩余2比特,即使用PBCH的载荷中的这两个比特位来指示SSB索引的剩余2比特。
为了使得终端设备和网络设备明确SSB的候选传输位置,在通信协议中定义了同步栅格这一概念。同步栅格可以理解为在信道带宽中,可以在其中部署SSB的频率位置。目前,通信协议中定义了用于初始接入的SSB所对应的同步栅格的频域位置。如下述表一所示,针对授权频谱,各个同步栅格之间的间隔为1.2MHz或1.44MHz,分别对应0至3GHz和3GHz至24.25GHz频率范围。
表一 全局同步栅格的GSCN(Global Synchronization Channel Number,全局同步栅格号)参数(GSCN parameters for the global frequency raster)
Figure PCTCN2020105946-appb-000010
由上述表一可以看出,同步栅格之间间隔较小,这是由于授权频谱支持不同的信道带宽和频段分配,因而需要在尽可能多的频率位置上发送同步信号块以部署小区。然而,对于非授权频谱,由于6至7GHz频段范围的非授权频谱的信道带宽为20MHz,并且是多个通信***共享使用,因此信道带宽(20MHz)中不需要定义很多同步栅格,这样减少同步栅格,进而可以减少终端设备的盲检测复杂度。在R16中,定义每个信道带宽内只有一个同步栅格。然而,对于52.6GHz至71GHz频段范围的非授权频谱而言,单个信道占用的带宽可以达到2.16GHz,若沿用20MHz的信道带宽中同步栅格的定义,即每个信道带宽内只有一个同步栅格,由于目前SSB的子载波间隔最高为240KHz,此时,SSB占用的带宽仅为57.6MHz,距离满足OCB的要求还相差甚远。
基于此,本申请实施例提出了一种同步信号块的传输方法,针对终端设备侧而言,实现为同步信号块的接收方法;针对网络设备侧而言,实现为同步信号块的发送方法。下面,结合几个实施例对本申请的技术方案进行介绍说明。
请参考图5,其示出了本申请一个实施例提供的同步信号块的接收方法的流程图,该方法可应用于图1所示的***架构中,该方法可以包括如下步骤:
步骤510,网络设备基于信道带宽内的n个同步栅格,向终端设备发送多个SSB,n为大于1的整数;其中,n个同步栅格为信道带宽内的预设同步栅格中允许的同步栅格。
信道带宽是网络设备和终端设备用于传输数据的信道的带宽。在一个示例中,本申请实施例中的信道带宽为非授权频谱对应的信道带宽,可选地,非授权频谱包括低频段(如6GHz至7GHz)和高频段(如52.6GHz至71GHz),本申请实施例中信道带宽为高频段的非授权频谱对应的信道带宽。针对不同的频段范围,信道带宽的大小也可能不相同,例如,针对6GHz至7GHz的频段范围的非授权频谱,信道带宽可以为20MHz(Mega Hertz,兆赫兹);针对52.6GHz至71GHz的频段范围的非授权频谱,信道带宽可以为2.16GHz。可选地,本申请实施例中的信道带宽为高频段的非授权频谱对应的信道带宽,则信道带宽可以为2.16GHz。
本申请实施例中,信道带宽内包括多个预设同步栅格,该多个预设同步栅格中的n个同步栅格是允许网络设备发送SSB和/或允许终端设备检测SSB的同步栅格。一方面,网络设备可以基于该n个同步栅格向终端设备发送SSB,另一方面,终端设备可以基于该n个同步栅格检测来自于网络设备的SSB。在一个示例中,n个同步栅格对应的SSB与第一小区或者第一信道带宽对应,其中,第一小区是指为终端设备提供网络服务的服务小区,第一信道带宽是指该第一小区与终端设备之间传输数据的信道的带宽。在一个示例中,n个同步栅格位于非授权频谱上。
例如,如下述表二所示,针对24.25GHz至100GHz的频段范围,信道带宽内有多个预设同步栅格的位置。从下述表二中多个预设同步栅格中,可以预定义n个允许网络设备和终端设备用于SSB传输的同步栅格。
表二 全局同步栅格的GSCN参数
频率范围 同步信号块的频率位置 GSCN GSCN的范围
24250MHz至100000GHz 24250.8MHz+N*17.28MHz,N=0:4383 22256+N 22256至26639
可选地,n个同步栅格由通信协议预定义;或者,n个同步栅格由网络设备预配置,本申请实施例对n个同步栅格的确定方式不作限定。在一个示例中,n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值,该间隔阈值可以是预定义或预配置的间隔阈值。为了避免SSB的带宽和控制信道资源集合(与SSB频分复用)的带宽之间出现重叠区域,可选地,该间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和。示例性地,本申请实施例中的控制信道资源集合为CORESET#0。请参考图6,其示出了本申请一个实施例提供的SSB和CORESET#0的复用图样。如图6所示,对于高频段的非授权频谱(如52.6GHz至71GHz),SSB和CORESET#0的复用图样采用通信协议中的复用图样3。
为了确保SSB的传输满足OCB要求,n为大于1的整数。本申请实施例对n的具体取值不作限定,实际应用中,n的取值可以结合SSB的带宽、控制信道资源集合的带宽、信道带宽等一个或多个因素来确定。例如,针对52.6GHz至71GHz的频段范围,CORESET#0的最大带宽为48个RB,以SSB的子载波间隔为240KHz,PDCCH的子载波间隔为120KHz为例,那么为了避免SSB的带宽和CORESET#0的带宽出现重叠,n个同步栅格之间的间距至少要求57.6MHz+69.12MHz=126.72MHz。实际应用中,为了简化***设计,可以减少信道带宽内同步栅格的数量,例如,如图7所示,在2.16GHz的信道带宽内,定义间隔为400MHz的5个同步栅格,即可满足OCB的要求。需要说明的一点是,通信设备在非授权频谱上传输的信号带宽除了需要满足OCB要求之外,还需要满足功率谱密度要求,从而在定义两个满足OCB要求的同步栅格时,由于无法满足功率谱密度要求,通信设备还是无法实现数据传输,为此,需要在满足OCB要求的前提下,定义两个以上的同步栅格以满足功率谱密度要求。有关SSB、OCB要求等其它介绍说明,请参见上述方法实施例,此处不多赘述。
步骤520,终端设备基于信道带宽内的n个同步栅格检测一个或多个SSB。
一方面,网络设备可以基于n个同步栅格,在这n个同步栅格中的一个或多个同步栅格上向终端设备发送SSB。为了确保终端设备检测SSB的成功率,网络设备在全部的n个同步栅格上向终端设备发送SSB,其中,n个同步栅格上发送的SSB中的PBCH承载的信息是相同的。
另一方面,终端设备可以基于n个同步栅格,在这n个同步栅格中的一个或多个同步栅格上检测来自于网络设备的SSB。正是由于n个同步栅格上发送的SSB中的PBCH承载的信息是相同的,为了降低检测复杂度,终端设备可以只在n个同步栅格中的一个同步栅格上检测SSB。实际应用中,可以结合终端设备的具体实现(如终端设备的工作能力、终端设备的设备性能等),确定终端设备在n个同步栅格中的一个还是多个同步栅格检测SSB。有关n个同步栅格、SSB等其它介绍说明,请参见上述方法实施例,此处不多赘述。
综上所述,本申请实施例提供的技术方案,通过网络设备和终端设备基于多个同步栅格传输SSB,该多个同步栅格是信道带宽内的预设同步栅格中允许网络设备和终端设备用于传输SSB的同步栅格,从而对于较大的信道带宽,本申请实施例确保了SSB的传输满足OCB要求,提升了SSB在终端设备和网络设备之间传输的成功率。另外,本申请实施例提供的技术方案,通过n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值,该间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和,从而避免SSB的带宽与控制信道资源集合的带宽之间出现重叠,提升终端设备检测SSB的准确性。
在一个示例中,PBCH中承载的信息包括数据和控制信息,可选地,除了数据信息之外,PBCH中承载的其它信息均可以统称为控制信息,如SSB index、QCL关系参数等。针对52.6GHz至71GHz的频段范围,相比于相关技术,PBCH中承载的控制信息可能需要更多的比特数来指示,然而出于后向兼容性的考虑,PBCH能够承载的比特数可能保持不变。例如,以SSB index为例,针对52.6GHz至71GHz的频段范围,假设SSB的子载波间隔仍然采用120KHz或240KHz的子载波间隔,且假设DRS的窗口仍然为5ms,则针对120KHz的子载波间隔,DRS窗口内包括80个候选SSB的位置;针对240KHz的子载波间隔,DRS窗口内包括160个候选SSB的位置,此时,需要在PBCH中承载8比特以指示SSB index。为了确保高频段的频段范围下,PBCH中承载的控制信息被完整准确地指示,本申请实施例中提出由多个SSB共同指示PBCH承载的控制信息。下面针对基于多个同步栅格传输SSB时,SSB对应的控制信息的承载方式进行介绍说明。
在一个示例中,SSB对应的控制信息由SSB中至少两个SSB共同指示。
由上述介绍说明可知,针对52.6GHz至71GHz的频段范围,PBCH中承载的控制信息可能需要更多的比特数来指示,然而SSB的PBCH能够承载的比特数可能保持不变,此时,为了确保控制信息被准确完整的指示,采用多个SSB来共同指示SSB的控制信息,也即,多个SSB中的每个SSB分别承载控制信息的一部分。
本申请实施例对指示控制信息的SSB的数量不作限定,可选地,指示某一控制信息的SSB的数量可以结合指示该控制信息需要的比特数来确定,例如,针对需要的比特数较多的控制信息,可以使用较多的SSB来指示该控制信息。本申请实施例对控制信息的具体类型也不作限定,可选地,控制信息包括以下至少一项:SSB的索引(SSB index)、、SSB的QCL关系参数。其中,本申请实施例中的SSB index用于指示终端设备接收到的SSB在候选SSB中的相对时域位置,在某些示例中,也可以称SSB index为候选SSB index。另外,本申请实施例中,由于n个同步栅格定义在相同的时域位置中,网络设备基于这n个同步栅格发送的多个SSB,或者终端设备基于这n个同步栅格检测的一个或多个SSB位于相同的时域位置,即这些SSB是频分复用的。因此,这n个同步栅格上传输的SSB的时域信息相同,即SSB index相同,通常得到n个同步栅格中一个SSB的SSB index,即可知道n个同步栅格上传输的其它SSB的SSB index。
可选地,本申请实施例中,控制信息由至少两个SSB的PBCH的指示信息共同指示,该指示信息包 括以下至少一项:PBCH的DMRS、PBCH的载荷、PBCH的MIB信息域。也即,控制信息可以由多个SSB的PBCH的指示信息中一项共同指示,如由多个SSB的PBCH的DMRS来共同指示,每个SSB的PBCH的DMRS指示控制信息的一部分;或者,控制信息可以由多个SSB的PBCH的指示信息中多项共同指示,如由多个SSB的PBCH的DMRS和PBCH的载荷来共同指示,每个SSB的PBCH的DMRS可以指示控制信息相同的部分,每个SSB的PBCH的载荷可以指示控制信息不同的部分。
除了PBCH的DMRS和PBCH的载荷,本申请实施例还重用了PBCH的MIB信息域,以实现将MIB信息域用于指示控制信息。可选地,该MIB信息域包括以下至少一项:子载波偏移信息域、子载波间隔信息域、***消息信息域。有关MIB信息域中各项内容的介绍说明,请参见上述实施例,此处不多赘述。
下面以控制信息为候选SSB index为例,介绍说明几种控制信息的指示方式。
指示方式一:使用多个SSB的PBCH的DMRS共同指示控制信息。
由上述实施例的介绍说明可知,每个SSB的PBCH的DMRS分别支持的8种序列,可选地,多个SSB的PBCH的DMRS采用相同的8种序列;或者,分别采用不同的8种序列。其中,每个SSB的PBCH的DMRS可以隐含地指示候选SSB index的3个比特,不同的SSB的PBCH的DMRS可以分别指示候选SSB index的不同的3位,从而可以实现由多个SSB共同指示候选SSB index。
例如,信道带宽内传输的第一个SSB的PBCH的DMRS指示候选SSB index最低的3比特(第1至3比特),第二个SSB的PBCH的DMRS指示候选SSB index的第4至6比特,第三个SSB的PBCH的DMRS指示候选SSB index最高的2比特(第7至8比特)。又例如,针对52.6GHz至71GHz的频段范围,每个SSB的PBCH的DMRS分别扩展支持至16种序列,则每个SSB的PBCH的DMRS可以隐含地指示候选SSB index的4个比特,此时,仅需两个SSB的PBCH的DMRS即可指示8比特的候选SSB index,示例性地,信道带宽内传输的第一个SSB的PBCH的DMRS指示候选SSB index的低4比特(第1至4比特),第二个SSB的PBCH的DMRS指示候选SSB index的高4比特(第5至8比特)。
指示方式二:使用多个SSB的PBCH的载荷共同指示控制信息。
每个SSB的PBCH的载荷可以指示候选SSB index的一部分比特。本申请实施例中,PBCH的载荷即为上述实施例中PBCH承载的物理层相关的信息。例如,利用3个SSB的PBCH的载荷来指示候选SSB index的8比特,如信道带宽内传输的第一个SSB的PBCH的载荷指示候选SSB index的第1至3比特,第二个SSB的PBCH的载荷指示候选SSB index的第4至6比特,第三个SSB的PBCH的载荷指示候选SSB index的第7至8比特。又例如,可以利用5个SSB的PBCH的载荷来指示候选SSB index的8比特,如信道带宽内传输的第一个SSB的PBCH的载荷指示候选SSB index的第1比特,第二个SSB的PBCH的载荷指示候选SSB index的第2至3比特,第三个SSB的PBCH的载荷指示候选SSB index的第4至5比特,第四个SSB的PBCH的载荷指示候选SSB index的第6至7比特,第五个SSB的PBCH的载荷指示候选SSB index的第8比特。
此外,对于候选SSB index的指示,在PBCH承载的物理层相关的信息没有变化的情况下,可以重用PBCH的载荷进行指示,例如,在定义发送SSB所在的半帧为前半帧或后半帧的情况下,不再需要半帧指示信息域来指示发送SSB所在的半帧,此时可以重用半帧指示信息域的1比特来指示候选SSB index。
指示方式三:使用多个SSB的PBCH的DMRS和PBCH的载荷共同指示控制信息。
在相关技术中,PBCH的DMRS支持8种序列,可以隐含地指示候选SSB index的3个比特位。本申请实施例可以沿用相关技术的设计,多个SSB中的每个SSB的PBCH的DMRS指示候选SSB index中相同的3个比特位。候选SSB index的其他5个比特位通过多个SSB的PBCH的载荷共同指示。
例如,通过5个SSB的PBCH的载荷分别指示候选SSB index的一个比特位。可选地,各个SSB的PBCH的载荷指示的候选SSB index中的比特位置是预定义的顺序,如候选SSB index的第4至8比特中从低至高的顺序,对应于同步栅格编号从小至大的顺序。又例如,通过更少(如2个)的SSB的PBCH的载荷共同指示候选SSB index的剩余比特位,这样终端设备检测更少的SSB即可获得候选SSB index的剩余比特位。还例如,通过5个SSB的PBCH的载荷重复指示候选SSB index的剩余比特位,这样可以避免误检或漏检导致的候选SSB index检测错误,提升候选SSB index的准确性。
指示方式四:使用多个SSB的PBCH的MIB信息域共同指示控制信息。
有关MIB信息域的介绍说明请参见上述实施例,此处不多赘述。下面针对MIB信息域中各项内容指示候选SSB index的方式进行介绍说明。
针对子载波偏移信息域(ssb-SubcarrierOffset):子载波偏移信息域包括4个比特。在NR-U***中,出于简化设计的考虑,SSB所在的同步栅格位置是预定义的,同步栅格或信道栅格的选择不会那么灵活。此时,由于同步栅格和信道栅格的灵活选择而造成的SSB的RB边界和公共的RB边界之间的子载波偏移可能也是有限的,那么,就不需要通过子载波偏移信息域的4个比特来指示12种偏移。例如,假设可能的子载波偏移只包含4种,那么该子载波偏移信息域只需要2个比特即可表示所有的子载波偏移的可能,从而节省的2个比特可以重用,以用于指示候选SSB index中的2个比特,如高2比特。请参考图8,其 示出了本申请一个实施例提供的利用MIB信息域指示候选SSB index的示意图。如图8所示,可以重用子载波偏移信息域的第0比特和第1比特,以用于指示候选SSB index中的2个比特位。
针对子载波间隔信息域(subCarrierSpacingCommon):由于在R16中,NR-U技术定义了PDCCH和SSB的子载波间隔是相同的,PDCCH等信道的子载波间隔不再需要通过子载波间隔信息域来指示,R17(Release 17,第17版本)中针对高频段的NR-U技术,可能仍然沿用此设计,此时,也不需要子载波间隔信息域来指示子载波间隔,从而可以重用子载波间隔信息域的1个比特来指示候选SSB index的1比特信息。如图8所示,可以重用子载波间隔信息域的1个比特,以用于指示候选SSB index中的1个比特位。
针对***消息信息域(pdcch-ConfigSIB1):在R16中,定义了新的CORESET#0的指示信息的映射表格,下述表三示例性地示出了一种CORESET#0的指示信息的映射表格。从下述表三可以看出,8比特的***消息信息域中的4比特CORESET#0信息域实际上只需要3个比特就可以指示,其最高位实际上没有被利用,从而可以利用该比特用于指示候选SSB index中的一个比特。同理,8比特的***消息信息域中的4比特SearchSpace#0信息域实际上也是没有被完全利用的,在SSB和CORESET#0的复用采用FDM时,SearchSpace#0的配置只有一种,因此,实际上不需要指示SearchSpace#0,从而4比特SearchSpace#0信息域均可以用于指示候选SSB index。如图8所示,可以重用***消息信息域的第0比特和第1比特,以用于指示候选SSB index中的2个比特位。
表三 CORESET#0的指示信息的映射表格
Figure PCTCN2020105946-appb-000011
需要说明的一点是,上述几种指示方式可以单独使用,也可以任意组合的形式组合使用,本申请实施例对此不作限定。还需要说明的一点是,本申请实施例仅以8个比特的候选SSB index的指示方式为例进行介绍说明,对于52.6GHz至71GHz的高频段,SSB的子载波间隔可能会更大,例如,SSB的子载波间隔为480KHz,那么对于5ms的DRS窗口,SSB的候选传输位置可以包括320个,就需要9个比特来指示候选SSB index,此时,仍然可以采用上述指示方式来指示候选SSB index。
综上所述,本申请实施例提供的技术方案,通过在基于多个同步栅格传输SSB时,采用多个SSB来共同指示SSB对应的控制信息,从而可以避免更改PBCH的信道格式,一方面可以减少信道格式的更改带来的设计复杂度,另一方面可以保持后向兼容性。并且,本申请实施例还提供了多种指示方式来指示控制信息,提升了控制信息指示的灵活性。
下面,针对基于多个同步栅格传输SSB的情况下,确定终端设备通信时使用的控制信道资源的方式进行介绍说明。需要说明的一点是,本申请实施例中,终端设备通信时使用的控制信道资源既可以由网络设备预配置,也可以由通信协议预定义,还可以由终端设备自行确定,本申请实施例对此不作限定,下面仅以由网络设备预配置的方式进行举例说明,其他方式可以参考下述举例说明,本申请实施例不再赘述。
在一个示例中,上述方法还包括:网络设备基于n个同步栅格中至少一个同步栅格,确定第一信道资源信息;将第一信道资源信息所指示的控制信道资源,确定为终端设备通信时使用的控制信道资源。
每个同步栅格上传输的SSB均可以指示控制信道资源信息,从至少一个同步栅格上传输的SSB所指示的控制信道资源信息中,可以确定终端设备通信时使用的控制信息资源。本申请实施例中,网络设备可以基于n个同步栅格中至少一个同步栅格,确定第一信道资源信息,该第一信道资源信息所指示的控制信道资源即为终端设备通信时使用的控制信道资源。可选地,上述n个同步栅格中至少一个同步栅格是网络 设备实际发送SSB的同步栅格。
可选地,本申请实施例中,控制信道资源信息包括以下至少一项:控制信道资源集合、搜索空间资源集合。其中,控制信道资源集合用于确定终端设备通信时传输通信数据的频率位置,示例性地,控制信息资源集合包括CORESET#0;搜索空间资源集合用于确定终端设备通信时监听通信数据的时域位置,示例性地,搜索空间资源集合包括SearchSpace#0。
针对每个同步栅格上传输的SSB所指示的控制信道资源信息的情况,本申请实施例提供了几种确定第一信道资源的方式。
方式一:针对每个同步栅格上传输的SSB所指示的控制信道资源信息相同的情况。
可选地,上述基于n个同步栅格中至少一个同步栅格,确定第一信道资源信息,包括:将至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为第一信道资源信息。
由于n个同步栅格中各个同步栅格上传输的SSB所指示的控制信道资源信息均相同,因此,可以将上述至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为第一信道资源信息即可。可选地,n个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息均为第一信道资源信息,该第一信道资源信息所指示的控制信道资源为相对于n个同步栅格对应的SSB中第一SSB的控制信道资源。本申请实施例对第一SSB的位置信息不作限定,可选地,第一SSB为n个同步栅格中第一个同步栅格上传输的SSB;或者,第一SSB为n个同步栅格中最后一个同步栅格上传输的SSB;或者,第一SSB为n个同步栅格中最中间的同步栅格上传输的SSB。
例如,如图9所示,在2.16GHz的信道带宽内,定义5个同步栅格,且相邻两个同步栅格之间的间隔为400MHz。其中,这5个同步栅格中的任一同步栅格上传输的SSB所指示的CORESET#0,该CORESET#0所指示的控制信道资源为相对于中间的同步栅格上传输的SSB的偏移。
方式二:针对每个同步栅格上传输的SSB所指示的控制信道资源信息不相同的情况。
可选地,上述基于n个同步栅格中至少一个同步栅格,确定第一信道资源信息,包括:将至少一个同步栅格中第m个同步栅格对应的SSB所指示的控制信道资源信息,确定为第一信道资源信息,m为正整数。
由于n个同步栅格中各个同步栅格上传输的SSB所指示的控制信道资源信息可能不相同,因此,需要从n个同步栅格中选择一个同步栅格,以将该同步栅格上传输的SSB所指示的控制信道资源信息,确定为第一信道资源信息。可选地,n个同步栅格中第i个同步栅格对应的SSB所指示的控制信道资源信息为第i个控制信道资源信息,第i个控制信道资源信息所指示的控制信道资源为相对于第i个同步栅格对应的SSB的控制信道资源,i为小于或等于n的正整数。可选地,i的具体取值由通信协议预先定义;或者,由终端设备和网络设备之间协商确定,本申请实施例对i的具体取值不作限定。在一个示例中,i可以是根据一些设定的规则或算法确定的,示例性地,i根据信道带宽确定,例如,预先定义了不同的信道带宽与不同取值的i之间的对应关系,终端设备可以基于当前信道带宽确定i的具体取值;示例性地,i根据物理小区标识确定,例如,终端设备获取当前物理小区标识(如物理小区ID),然后根据物理小区标识确定i的取值,如对物理小区标识进行取模等运算,以得到i的取值。
综上所述,本申请实施例提供的技术方案,通过在基于多个同步栅格传输SSB时,从多个同步栅格上传输的SSB所指示的控制信道资源信息中,确定终端设备通信时所使用的控制信道资源,确保在多个同步栅格上传输SSB的情况下,终端设备准确确定控制信道资源。并且,本申请实施例还针对不同同步栅格上传输的SSB所指示的控制信道资源信息的特点,提供了不同确定控制信道资源的方式,充分考虑了控制信道资源信息的不同承载特点,提升确定控制信道资源的灵活性。
需要说明的一点是,在上述方法实施例中,主要从终端设备和网络设备之间交互的角度,对本申请提供的同步信号块的传输方法进行了介绍说明。上述有关终端设备执行的步骤,可以单独实现成为终端设备侧同步信号块的接收方法;上述有关网络设备执行的步骤,可以单独实现成为网络设备侧同步信号块的发送方法。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图10,其示出了本申请一个实施例提供的同步信号块的接收装置的框图。该装置具有实现上述终端设备侧方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文所述的终端设备,也可以设置在终端设备中。如图10所示,该装置1000可以包括:检测模块1010。
检测模块1010,用于基于信道带宽内的n个同步栅格检测一个或多个SSB,所述n为大于1的整数;其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
在一个示例中,所述SSB的数量为多个;所述SSB对应的控制信息由所述SSB中至少两个SSB共同指示。
在一个示例中,所述控制信息包括以下至少一项:所述SSB的索引、所述SSB的QCL关系参数。
在一个示例中,所述控制信息由所述至少两个SSB的物理广播信道PBCH的指示信息共同指示,所述指示信息包括以下至少一项:所述PBCH的DMRS、所述PBCH的载荷、所述PBCH的MIB信息域。
在一个示例中,所述MIB信息域包括以下至少一项:子载波偏移信息域、子载波间隔信息域、***消息信息域。
在一个示例中,如图11所示,所述装置1000还包括:信息确定模块1020,用于基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息;资源确定模块1030,用于将所述第一信道资源信息所指示的控制信道资源,确定为所述终端设备通信时使用的控制信道资源。
在一个示例中,如图11所示,所述信息确定模块1020,用于:将所述至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息。
在一个示例中,所述n个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息为第一信道资源信息,所述第一信道资源信息所指示的控制信道资源为相对于所述n个同步栅格对应的SSB中第一SSB的控制信道资源。
在一个示例中,如图11所示,所述信息确定模块1020,用于:将所述至少一个同步栅格中第m个同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息,所述m为正整数。
在一个示例中,所述n个同步栅格中第i个同步栅格对应的SSB所指示的控制信道资源信息为第i个控制信道资源信息,所述第i个控制信道资源信息所指示的控制信道资源为相对于所述第i个同步栅格对应的SSB的控制信道资源,所述i为小于或等于所述n的正整数。
在一个示例中,所述n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值。
在一个示例中,所述间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和。
在一个示例中,所述n个同步栅格对应的SSB与第一小区或者第一信道带宽对应。
在一个示例中,所述n个同步栅格位于非授权频谱上。
综上所述,本申请实施例提供的技术方案,通过网络设备和终端设备基于多个同步栅格传输SSB,该多个同步栅格是信道带宽内的预设同步栅格中允许网络设备和终端设备用于传输SSB的同步栅格,从而对于较大的信道带宽,本申请实施例确保了SSB的传输满足OCB要求,提升了SSB在终端设备和网络设备之间传输的成功率。另外,本申请实施例提供的技术方案,通过n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值,该间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和,从而避免SSB的带宽与控制信道资源集合的带宽之间出现重叠,提升终端设备检测SSB的准确性。
请参考图12,其示出了本申请一个实施例提供的同步信号块的发送装置的框图。该装置具有实现上述网络设备侧方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文所述的网络设备,也可以设置在网络设备中。如图12所示,该装置1200可以包括:发送模块1210。
发送模块1210,用于基于信道带宽内的n个同步栅格,向终端设备发送多个SSB,所述n为大于1的整数;其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
在一个示例中,所述SSB对应的控制信息由所述SSB中至少两个SSB共同指示。
在一个示例中,所述控制信息包括以下至少一项:所述SSB的索引、所述SSB的QCL关系参数。
在一个示例中,所述控制信息由所述至少两个SSB的PBCH的指示信息共同指示,所述指示信息包括以下至少一项:所述PBCH的DMRS、所述PBCH的载荷、所述PBCH的MIB信息域。
在一个示例中,所述MIB信息域包括以下至少一项:子载波偏移信息域、子载波间隔信息域、***消息信息域。
在一个示例中,如图13所示,所述装置1200还包括:信息确定模块1220,用于基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息;资源确定模块1230,用于将所述第一信道资源信息所指示的控制信道资源,确定为所述终端设备通信时使用的控制信道资源。
在一个示例中,如图13所示,所述信息确定模块1220,用于:将所述至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息。
在一个示例中,所述n个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息为第一信道资源信息,所述第一信道资源信息所指示的控制信道资源为相对于所述n个同步栅格对应的SSB中第一SSB的控制信道资源。
在一个示例中,如图13所示,所述信息确定模块1220,用于:将所述至少一个同步栅格中第m个同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息,所述m为正整数。
在一个示例中,所述n个同步栅格中第i个同步栅格对应的SSB所指示的控制信道资源信息为第i个控制信道资源信息,所述第i个控制信道资源信息所指示的控制信道资源为相对于所述第i个同步栅格对应的SSB的控制信道资源,所述i为小于或等于所述n的正整数。
在一个示例中,所述n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值。
在一个示例中,所述间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和。
在一个示例中,所述n个同步栅格对应的SSB与第一小区或者第一信道带宽对应。
在一个示例中,所述n个同步栅格位于非授权频谱上。
综上所述,本申请实施例提供的技术方案,通过网络设备和终端设备基于多个同步栅格传输SSB,该多个同步栅格是信道带宽内的预设同步栅格中允许网络设备和终端设备用于传输SSB的同步栅格,从而对于较大的信道带宽,本申请实施例确保了SSB的传输满足OCB要求,提升了SSB在终端设备和网络设备之间传输的成功率。另外,本申请实施例提供的技术方案,通过n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值,该间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和,从而避免SSB的带宽与控制信道资源集合的带宽之间出现重叠,提升终端设备检测SSB的准确性。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图14,其示出了本申请一个实施例提供的终端设备140的结构示意图,例如,该终端设备可以用于执行上述终端设备侧同步信号块的接收方法。具体来讲,该终端设备140可以包括:处理器141,以及与所述处理器141相连的收发器142;其中:
处理器141包括一个或者一个以上处理核心,处理器141通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器142包括接收器和发射器。可选地,收发器142是一块通信芯片。
在一个示例中,终端设备140还包括:存储器和总线。存储器通过总线与处理器相连。存储器可用于存储计算机程序,处理器用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。其中:
收发器142,用于基于信道带宽内的n个同步栅格检测一个或多个SSB,所述n为大于1的整数;
其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
在一个示例中,所述SSB的数量为多个;所述SSB对应的控制信息由所述SSB中至少两个SSB共同指示。
在一个示例中,所述控制信息包括以下至少一项:所述SSB的索引、所述SSB的QCL关系参数。
在一个示例中,所述控制信息由所述至少两个SSB的物理广播信道PBCH的指示信息共同指示,所述指示信息包括以下至少一项:所述PBCH的DMRS、所述PBCH的载荷、所述PBCH的MIB信息域。
在一个示例中,所述MIB信息域包括以下至少一项:子载波偏移信息域、子载波间隔信息域、***消息信息域。
在一个示例中,处理器141,用于:基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息;将所述第一信道资源信息所指示的控制信道资源,确定为所述终端设备通信时使用的控制信道资源。
在一个示例中,处理器141,用于:将所述至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息。
在一个示例中,所述n个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息为第一信道资源信息,所述第一信道资源信息所指示的控制信道资源为相对于所述n个同步栅格对应的SSB中第一SSB的控制信道资源。
在一个示例中,处理器141,用于:将所述至少一个同步栅格中第m个同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息,所述m为正整数。
在一个示例中,所述n个同步栅格中第i个同步栅格对应的SSB所指示的控制信道资源信息为第i个 控制信道资源信息,所述第i个控制信道资源信息所指示的控制信道资源为相对于所述第i个同步栅格对应的SSB的控制信道资源,所述i为小于或等于所述n的正整数。
在一个示例中,所述n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值。
在一个示例中,所述间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和。
在一个示例中,所述n个同步栅格对应的SSB与第一小区或者第一信道带宽对应。
在一个示例中,所述n个同步栅格位于非授权频谱上。
请参考图15,其示出了本申请一个实施例提供的网络设备150的结构示意图,例如,该网络设备可以用于执行上述网络设备侧同步信号块的发送方法。具体来讲,该网络设备150可以包括:处理器151,以及与所述处理器151相连的收发器152;其中:
处理器151包括一个或者一个以上处理核心,处理器151通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器152包括接收器和发射器。可选地,收发器152是一块通信芯片。
在一个示例中,网络设备150还包括:存储器和总线。存储器通过总线与处理器相连。存储器可用于存储计算机程序,处理器用于执行该计算机程序,以实现上述方法实施例中的网络设备执行的各个步骤。
此外,存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。其中:
收发器152,用于基于信道带宽内的n个同步栅格,向终端设备发送多个SSB,所述n为大于1的整数;
其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
在一个示例中,所述SSB对应的控制信息由所述SSB中至少两个SSB共同指示。
在一个示例中,所述控制信息包括以下至少一项:所述SSB的索引、所述SSB的QCL关系参数。
在一个示例中,所述控制信息由所述至少两个SSB的PBCH的指示信息共同指示,所述指示信息包括以下至少一项:所述PBCH的DMRS、所述PBCH的载荷、所述PBCH的MIB信息域。
在一个示例中,所述MIB信息域包括以下至少一项:子载波偏移信息域、子载波间隔信息域、***消息信息域。
在一个示例中,处理器151,用于:基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息;将所述第一信道资源信息所指示的控制信道资源,确定为所述终端设备通信时使用的控制信道资源。
在一个示例中,处理器151,用于:将所述至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息。
在一个示例中,所述n个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息为第一信道资源信息,所述第一信道资源信息所指示的控制信道资源为相对于所述n个同步栅格对应的SSB中第一SSB的控制信道资源。
在一个示例中,处理器151,用于:将所述至少一个同步栅格中第m个同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息,所述m为正整数。
在一个示例中,所述n个同步栅格中第i个同步栅格对应的SSB所指示的控制信道资源信息为第i个控制信道资源信息,所述第i个控制信道资源信息所指示的控制信道资源为相对于所述第i个同步栅格对应的SSB的控制信道资源,所述i为小于或等于所述n的正整数。
在一个示例中,所述n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值。
在一个示例中,所述间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和。
在一个示例中,所述n个同步栅格对应的SSB与第一小区或者第一信道带宽对应。
在一个示例中,所述n个同步栅格位于非授权频谱上。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现如上述终端设备侧同步信号块的接收方法。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现如上述网络设备侧同步信号块的发送方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现如上述终端设备侧同步信号块的接收方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现如上述网络设备侧同步信号块的发送方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得计算机执行上述终端设备侧同步信号块的接收方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在网络设备上运行时,使得计算机执行上述网络设备侧同步信号块的发送方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (60)

  1. 一种同步信号块的接收方法,其特征在于,应用于终端设备,所述方法包括:
    基于信道带宽内的n个同步栅格检测一个或多个同步信号块SSB,所述n为大于1的整数;
    其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
  2. 根据权利要求1所述的方法,其特征在于,所述SSB的数量为多个;所述SSB对应的控制信息由所述SSB中至少两个SSB共同指示。
  3. 根据权利要求2所述的方法,其特征在于,所述控制信息包括以下至少一项:所述SSB的索引、所述SSB的准共址QCL关系参数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述控制信息由所述至少两个SSB的物理广播信道PBCH的指示信息共同指示,所述指示信息包括以下至少一项:所述PBCH的解调专用参考信号DMRS、所述PBCH的载荷、所述PBCH的主信息块MIB信息域。
  5. 根据权利要求4所述的方法,其特征在于,所述MIB信息域包括以下至少一项:子载波偏移信息域、子载波间隔信息域、***消息信息域。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息;
    将所述第一信道资源信息所指示的控制信道资源,确定为所述终端设备通信时使用的控制信道资源。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息,包括:
    将所述至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息。
  8. 根据权利要求7所述的方法,其特征在于,所述n个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息为第一信道资源信息,所述第一信道资源信息所指示的控制信道资源为相对于所述n个同步栅格对应的SSB中第一SSB的控制信道资源。
  9. 根据权利要求6所述的方法,其特征在于,所述基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息,包括:
    将所述至少一个同步栅格中第m个同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息,所述m为正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述n个同步栅格中第i个同步栅格对应的SSB所指示的控制信道资源信息为第i个控制信道资源信息,所述第i个控制信道资源信息所指示的控制信道资源为相对于所述第i个同步栅格对应的SSB的控制信道资源,所述i为小于或等于所述n的正整数。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值。
  12. 根据权利要求11所述的方法,其特征在于,所述间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述n个同步栅格对应的SSB与第一小区或者第一信道带宽对应。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,所述n个同步栅格位于非授权频谱上。
  15. 一种同步信号块的发送方法,其特征在于,应用于网络设备,所述方法包括:
    基于信道带宽内的n个同步栅格,向终端设备发送多个同步信号块SSB,所述n为大于1的整数;
    其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
  16. 根据权利要求15所述的方法,其特征在于,所述SSB对应的控制信息由所述SSB中至少两个SSB共同指示。
  17. 根据权利要求16所述的方法,其特征在于,所述控制信息包括以下至少一项:所述SSB的索引、所述SSB的准共址QCL关系参数。
  18. 根据权利要求16或17所述的方法,其特征在于,所述控制信息由所述至少两个SSB的物理广播信道PBCH的指示信息共同指示,所述指示信息包括以下至少一项:所述PBCH的解调专用参考信号DMRS、所述PBCH的载荷、所述PBCH的主信息块MIB信息域。
  19. 根据权利要求18所述的方法,其特征在于,所述MIB信息域包括以下至少一项:子载波偏移信息域、子载波间隔信息域、***消息信息域。
  20. 根据权利要求15至19任一项所述的方法,其特征在于,所述方法还包括:
    基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息;
    将所述第一信道资源信息所指示的控制信道资源,确定为所述终端设备通信时使用的控制信道资源。
  21. 根据权利要求20所述的方法,其特征在于,所述基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息,包括:
    将所述至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息。
  22. 根据权利要求21所述的方法,其特征在于,所述n个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息为第一信道资源信息,所述第一信道资源信息所指示的控制信道资源为相对于所述n个同步栅格对应的SSB中第一SSB的控制信道资源。
  23. 根据权利要求20所述的方法,其特征在于,所述基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息,包括:
    将所述至少一个同步栅格中第m个同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息,所述m为正整数。
  24. 根据权利要求23所述的方法,其特征在于,所述n个同步栅格中第i个同步栅格对应的SSB所指示的控制信道资源信息为第i个控制信道资源信息,所述第i个控制信道资源信息所指示的控制信道资源为相对于所述第i个同步栅格对应的SSB的控制信道资源,所述i为小于或等于所述n的正整数。
  25. 根据权利要求15至24任一项所述的方法,其特征在于,所述n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值。
  26. 根据权利要求25所述的方法,其特征在于,所述间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和。
  27. 根据权利要求15至26任一项所述的方法,其特征在于,所述n个同步栅格对应的SSB与第一小区或者第一信道带宽对应。
  28. 根据权利要求15至27任一项所述的方法,其特征在于,所述n个同步栅格位于非授权频谱上。
  29. 一种同步信号块的接收装置,其特征在于,设置在终端设备,所述装置包括:
    检测模块,用于基于信道带宽内的n个同步栅格检测一个或多个同步信号块SSB,所述n为大于1的整数;
    其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
  30. 根据权利要求29所述的装置,其特征在于,所述SSB的数量为多个;所述SSB对应的控制信息由所述SSB中至少两个SSB共同指示。
  31. 根据权利要求30所述的装置,其特征在于,所述控制信息包括以下至少一项:所述SSB的索引、所述SSB的准共址QCL关系参数。
  32. 根据权利要求30或31所述的装置,其特征在于,所述控制信息由所述至少两个SSB的物理广播信道PBCH的指示信息共同指示,所述指示信息包括以下至少一项:所述PBCH的解调专用参考信号DMRS、所述PBCH的载荷、所述PBCH的主信息块MIB信息域。
  33. 根据权利要求32所述的装置,其特征在于,所述MIB信息域包括以下至少一项:子载波偏移信息域、子载波间隔信息域、***消息信息域。
  34. 根据权利要求29至33任一项所述的装置,其特征在于,所述装置还包括:
    信息确定模块,用于基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息;
    资源确定模块,用于将所述第一信道资源信息所指示的控制信道资源,确定为所述终端设备通信时使用的控制信道资源。
  35. 根据权利要求34所述的装置,其特征在于,所述信息确定模块,用于:
    将所述至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息。
  36. 根据权利要求35所述的装置,其特征在于,所述n个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息为第一信道资源信息,所述第一信道资源信息所指示的控制信道资源为相对于所述n个同步栅格对应的SSB中第一SSB的控制信道资源。
  37. 根据权利要求34所述的装置,其特征在于,所述信息确定模块,用于:
    将所述至少一个同步栅格中第m个同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息,所述m为正整数。
  38. 根据权利要求37所述的装置,其特征在于,所述n个同步栅格中第i个同步栅格对应的SSB所指示的控制信道资源信息为第i个控制信道资源信息,所述第i个控制信道资源信息所指示的控制信道资源为相对于所述第i个同步栅格对应的SSB的控制信道资源,所述i为小于或等于所述n的正整数。
  39. 根据权利要求29至38任一项所述的装置,其特征在于,所述n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值。
  40. 根据权利要求39所述的装置,其特征在于,所述间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和。
  41. 根据权利要求29至40任一项所述的装置,其特征在于,所述n个同步栅格对应的SSB与第一小区或者第一信道带宽对应。
  42. 根据权利要求29至41任一项所述的装置,其特征在于,所述n个同步栅格位于非授权频谱上。
  43. 一种同步信号块的发送装置,其特征在于,设置在网络设备,所述装置包括:
    发送模块,用于基于信道带宽内的n个同步栅格,向终端设备发送多个同步信号块SSB,所述n为大于1的整数;
    其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
  44. 根据权利要求43所述的装置,其特征在于,所述SSB对应的控制信息由所述SSB中至少两个SSB 共同指示。
  45. 根据权利要求44所述的装置,其特征在于,所述控制信息包括以下至少一项:所述SSB的索引、所述SSB的准共址QCL关系参数。
  46. 根据权利要求44或45所述的装置,其特征在于,所述控制信息由所述至少两个SSB的物理广播信道PBCH的指示信息共同指示,所述指示信息包括以下至少一项:所述PBCH的解调专用参考信号DMRS、所述PBCH的载荷、所述PBCH的主信息块MIB信息域。
  47. 根据权利要求46所述的装置,其特征在于,所述MIB信息域包括以下至少一项:子载波偏移信息域、子载波间隔信息域、***消息信息域。
  48. 根据权利要求43至47任一项所述的装置,其特征在于,所述装置还包括:
    信息确定模块,用于基于所述n个同步栅格中至少一个同步栅格,确定第一信道资源信息;
    资源确定模块,用于将所述第一信道资源信息所指示的控制信道资源,确定为所述终端设备通信时使用的控制信道资源。
  49. 根据权利要求48所述的装置,其特征在于,所述信息确定模块,用于:
    将所述至少一个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息。
  50. 根据权利要求49所述的装置,其特征在于,所述n个同步栅格中任一同步栅格对应的SSB所指示的控制信道资源信息为第一信道资源信息,所述第一信道资源信息所指示的控制信道资源为相对于所述n个同步栅格对应的SSB中第一SSB的控制信道资源。
  51. 根据权利要求48所述的装置,其特征在于,所述信息确定模块,用于:
    将所述至少一个同步栅格中第m个同步栅格对应的SSB所指示的控制信道资源信息,确定为所述第一信道资源信息,所述m为正整数。
  52. 根据权利要求51所述的装置,其特征在于,所述n个同步栅格中第i个同步栅格对应的SSB所指示的控制信道资源信息为第i个控制信道资源信息,所述第i个控制信道资源信息所指示的控制信道资源为相对于所述第i个同步栅格对应的SSB的控制信道资源,所述i为小于或等于所述n的正整数。
  53. 根据权利要求43至52任一项所述的装置,其特征在于,所述n个同步栅格中相邻两个同步栅格之间的间隔大于或等于间隔阈值。
  54. 根据权利要求53所述的装置,其特征在于,所述间隔阈值包括SSB的带宽和控制信道资源集合的带宽之和。
  55. 根据权利要求43至54任一项所述的装置,其特征在于,所述n个同步栅格对应的SSB与第一小区或者第一信道带宽对应。
  56. 根据权利要求43至55任一项所述的装置,其特征在于,所述n个同步栅格位于非授权频谱上。
  57. 一种终端设备,其特征在于,所述终端设备包括:处理器,以及与所述处理器相连的收发器;其中:
    所述收发器,用于基于信道带宽内的n个同步栅格检测一个或多个同步信号块SSB,所述n为大于1的整数;其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
  58. 一种网络设备,其特征在于,所述网络设备包括:处理器,以及与所述处理器相连的收发器;其中:
    所述收发器,用于基于信道带宽内的n个同步栅格,向终端设备发送多个同步信号块SSB,所述n为大于1的整数;其中,所述n个同步栅格为所述信道带宽内的预设同步栅格中允许的同步栅格。
  59. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现如权利要求1至14任一项所述的同步信号块的接收方法。
  60. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现如权利要求15或28所述的同步信号块的发送方法。
PCT/CN2020/105946 2020-07-30 2020-07-30 同步信号块的传输方法、装置、设备及存储介质 WO2022021241A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/105946 WO2022021241A1 (zh) 2020-07-30 2020-07-30 同步信号块的传输方法、装置、设备及存储介质
CN202080101583.0A CN115702589A (zh) 2020-07-30 2020-07-30 同步信号块的传输方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105946 WO2022021241A1 (zh) 2020-07-30 2020-07-30 同步信号块的传输方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022021241A1 true WO2022021241A1 (zh) 2022-02-03

Family

ID=80037421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105946 WO2022021241A1 (zh) 2020-07-30 2020-07-30 同步信号块的传输方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115702589A (zh)
WO (1) WO2022021241A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055174A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 部分带宽的确定方法、配置方法、装置、介质及程序产品
WO2024055173A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 同步信号块的接收方法、发送方法、装置、介质及产品
WO2024114453A1 (zh) * 2022-11-30 2024-06-06 中国星网网络创新研究院有限公司 一种ssb扫描方法、装置、设备和计算机存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3515123A1 (en) * 2017-11-17 2019-07-24 LG Electronics Inc. -1- Method for transmitting and receiving downlink channel and device therefor
CN110447204A (zh) * 2017-03-24 2019-11-12 瑞典爱立信有限公司 信道栅格和编号
CN111247844A (zh) * 2017-10-24 2020-06-05 高通股份有限公司 信道和同步栅格
CN111466147A (zh) * 2018-01-09 2020-07-28 华为技术有限公司 混合参数集中的资源栅格偏移指示

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066357B (zh) * 2017-09-11 2023-05-05 中兴通讯股份有限公司 信息传输***
CN110034891B (zh) * 2018-01-12 2020-10-20 电信科学技术研究院有限公司 一种***信息配置方法和装置
CN110710151B (zh) * 2018-01-12 2021-01-12 Oppo广东移动通信有限公司 确定同步信号块的频域位置的方法、终端设备和网络设备
US11102738B2 (en) * 2018-04-06 2021-08-24 Apple Inc. Synchronization signal design for unlicensed spectrum access using cellular communications
US11399356B2 (en) * 2018-06-26 2022-07-26 Qualcomm Incorporated Synchronization signal block (SSB)-based positioning measurement signals
US11184776B2 (en) * 2018-07-16 2021-11-23 Kt Corporation Method and apparatus for performing wireless communication in unlicensed band
US11405144B2 (en) * 2018-09-21 2022-08-02 Kt Corporation Method and apparatus for transmitting sidelink HARQ feedback information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447204A (zh) * 2017-03-24 2019-11-12 瑞典爱立信有限公司 信道栅格和编号
CN111247844A (zh) * 2017-10-24 2020-06-05 高通股份有限公司 信道和同步栅格
EP3515123A1 (en) * 2017-11-17 2019-07-24 LG Electronics Inc. -1- Method for transmitting and receiving downlink channel and device therefor
CN111466147A (zh) * 2018-01-09 2020-07-28 华为技术有限公司 混合参数集中的资源栅格偏移指示

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on initial access for NR-U", 3GPP DRAFT; R1-1810383 DISCUSSION ON INITIAL ACCESS FOR NR-U, vol. RAN WG1, no. ; 20181008 - 20181012, 29 September 2018 (2018-09-29), Chengdu, China, pages 1 - 6, XP051517792 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055174A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 部分带宽的确定方法、配置方法、装置、介质及程序产品
WO2024055173A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 同步信号块的接收方法、发送方法、装置、介质及产品
WO2024114453A1 (zh) * 2022-11-30 2024-06-06 中国星网网络创新研究院有限公司 一种ssb扫描方法、装置、设备和计算机存储介质

Also Published As

Publication number Publication date
CN115702589A (zh) 2023-02-14

Similar Documents

Publication Publication Date Title
KR102451082B1 (ko) Nr 시스템에서 광대역 동작 방법 및 장치
US9974069B2 (en) Telecommunications method and system
US10694480B2 (en) Determining synchronization signal block positions
AU2012319821B2 (en) Wireless communication apparatus, wireless communication method, and wireless communication system
KR102321890B1 (ko) 시간-주파수 자원의 송신 방향을 구성하는 방법, 및 장치
WO2022021241A1 (zh) 同步信号块的传输方法、装置、设备及存储介质
CN110972279B (zh) 传输数据的方法和装置
WO2021146998A1 (zh) 一种确定初始带宽部分bwp的方法、装置及存储介质
US10681623B2 (en) Methods and apparatus for cell access via anchor carrier
CN110474750B (zh) 信号传输方法、相关设备及***
CN111884777A (zh) 一种通信的方法及装置
CN111867074A (zh) 接收数据和发送数据的方法、通信装置
CN110856256A (zh) 一种用于无线通信中的方法和装置
CN112399585B (zh) 一种资源复用方法及装置
US20230139778A1 (en) Resource configuration method and apparatus
CN114982356A (zh) 信息传输方法、装置、设备及存储介质
CN110537386B (zh) 同步广播块的发送方法、接收方法、装置、设备及介质
CN111585692B (zh) 初始信号检测方法、装置
US11108531B2 (en) Method and apparatus for setting symbol
CN115065987B (zh) 空闲信道侦听方法、装置及设备
US8792467B2 (en) Method for downlink sub-frame allocation, information transmission or acquisition in a WiMax evolved system
CN110167165B (zh) 一种资源配置方法及装置
CN114731635A (zh) 用于无线通信的方法及设备
EP2856819A1 (en) Methods and devices for carrier aggregation in a wireless communication system
US20240155581A1 (en) Signal transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947061

Country of ref document: EP

Kind code of ref document: A1