WO2022017208A1 - 作为TGF-βR1抑制剂的吡啶氧基连吡唑类化合物的盐型、晶型以及其药物组合物 - Google Patents

作为TGF-βR1抑制剂的吡啶氧基连吡唑类化合物的盐型、晶型以及其药物组合物 Download PDF

Info

Publication number
WO2022017208A1
WO2022017208A1 PCT/CN2021/105662 CN2021105662W WO2022017208A1 WO 2022017208 A1 WO2022017208 A1 WO 2022017208A1 CN 2021105662 W CN2021105662 W CN 2021105662W WO 2022017208 A1 WO2022017208 A1 WO 2022017208A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
crystal form
pharmaceutical composition
present
Prior art date
Application number
PCT/CN2021/105662
Other languages
English (en)
French (fr)
Inventor
付翔宇
李小庭
胡利红
房效娟
周晨晨
姚婷
吴松亮
丁照中
陈曙辉
Original Assignee
江苏奥赛康药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏奥赛康药业有限公司 filed Critical 江苏奥赛康药业有限公司
Priority to CN202180007608.5A priority Critical patent/CN114867723B/zh
Publication of WO2022017208A1 publication Critical patent/WO2022017208A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the invention relates to a salt form, a crystal form, a preparation method and a pharmaceutical composition of a 5-(4-pyridyloxy)pyrazole compound as a TGF- ⁇ R1 inhibitor and a preparation method thereof.
  • TGF- ⁇ Transforming growth factor- ⁇
  • TGF- ⁇ is a multifunctional growth factor superfamily with a wide range of biological activities, involved in early embryonic development, cartilage and bone formation, synthesis of extracellular matrix, inflammation, Interstitial fibrosis, regulation of immune and endocrine functions, tumor formation and progression.
  • TGF- ⁇ superfamily consists of a class of structurally and functionally related polypeptide growth factors, and TGF- ⁇ is one of the important members of this family.
  • TGF- ⁇ mainly exists in three forms: TGF- ⁇ 1, TGF- ⁇ 2 and TGF- ⁇ 3, which are located on different chromosomes, of which TGF- ⁇ 1 accounts for the highest proportion (>90%) in somatic cells, It is the most active, the most functional, and the most widely distributed.
  • TGF- ⁇ signaling molecules carry out signal transduction through transmembrane receptor complexes.
  • TGF- ⁇ receptors are transmembrane proteins that exist on the cell surface, and are divided into type I receptors (TGF- ⁇ R1), type II receptors (TGF- ⁇ R2) and type III receptors (TGF- ⁇ R3).
  • ⁇ R1 is also known as activin-like receptor 5 (activin receptor-like kinase 5, ALK5).
  • TGF- ⁇ R3 lacks intrinsic activity and is mainly related to the storage of TGF- ⁇ .
  • TGF- ⁇ R1 and TGF- ⁇ R2 belong to the serine/threonine kinase family
  • type II receptors can bind to TGF- ⁇ ligands with high affinity, and form heterologous receptor complexes with type I receptors, which bind I receptors.
  • a region rich in glycine and serine residues (GS domain) near the membrane of the receptor is phosphorylated to initiate intracellular signaling cascades.
  • TGF- ⁇ /Smads are important TGF- ⁇ signal transduction and regulation molecules in cells, which can directly transduce TGF- ⁇ signals from the cell membrane, such as in the nucleus.
  • the TGF- ⁇ /Smads signaling pathway plays an important role in the occurrence and development of tumors. .
  • activated TGF- ⁇ first binds to TGF- ⁇ R2 on the cell membrane surface to form a heterodimeric complex, which is recognized and bound by TGF- ⁇ R1.
  • TGF- ⁇ R2 phosphorylates serine/threonine in the GS domain of the cytoplasmic domain of TGF- ⁇ R1, thereby activating TGF- ⁇ R1; the activated TGF- ⁇ R1 further phosphorylates R-Smads (Smad2/Smad3) protein, which in turn interacts with Co-Smad (Smad4) binds to form a heterotrimeric complex, which enters the nucleus and cooperates with other co-activators and co-inhibitors to regulate the transcription of target genes . Changes in any link in the TGF- ⁇ /Smads signaling pathway will lead to abnormalities in the signal transduction pathway.
  • TGF- ⁇ can directly affect tumor growth (extrinsic effects of TGF- ⁇ signaling), or by inducing epithelial-mesenchymal transition, blocking anti-tumor immune responses, and increasing tumor-associated fibrosis and enhanced angiogenesis indirectly affects tumor growth (intrinsic effect of TGF- ⁇ ).
  • TGF- ⁇ has a strong fibrosis-inducing effect, and it is an activator of tumor-associated fibroblasts. These fibroblasts are a major source of collagen type I and other fibrotic factors. Induced products of fibroblasts and other fibrotic factors may go on to foster a microenvironment that reduces immune responses, increases drug resistance, and enhances tumor angiogenesis.
  • TGF- ⁇ affects blood vessels during ontogeny and tumor growth. regeneration.
  • TGF- ⁇ R1-deficient mouse embryos display severe defects in vascular development, demonstrating that the TGF- ⁇ signaling pathway is a key regulator in vascular endothelial and smooth muscle cell development.
  • TGF- ⁇ is significantly related to immune escape, and has a greater impact on CD8+ T cell-mediated anti-tumor immune responses.
  • patients with high expression of TGF- ⁇ gene had a low response to PD-L1 monoclonal antibody and a low simulated survival rate.
  • the basic research of TGF- ⁇ monoclonal antibody has also proved that when it is used synergistically with PD-L1 monoclonal antibody, more CD8+ T cells infiltrate and play a role, revealing the activation effect of blocking TGF- ⁇ on immunity and its mechanism. Due to the immunomodulatory effect of TGF- ⁇ , small molecule TGF- ⁇ R1 inhibitors alone or in combination with PD-(L)1 monoclonal antibody have great application prospects in the treatment of various solid tumors.
  • the present invention provides crystal form A of the compound of formula (I), the X-ray powder diffraction pattern of CuK ⁇ radiation has characteristic diffraction peaks at the following 2 ⁇ angles: 15.96 ⁇ 0.20°, 18.65 ⁇ 0.20°, 20.94 ⁇ 0.20° and 23.57 ⁇ 0.20 °,
  • the X-ray powder diffraction pattern of CuK ⁇ radiation of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.97 ⁇ 0.20°, 13.21 ⁇ 0.20°, 14.17 ⁇ 0.20°, 15.96 ⁇ 0.20°, 18.65 ⁇ 0.20°, 20.94 ⁇ 0.20°, 21.52 ⁇ 0.20° and 23.57 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of CuK ⁇ radiation of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.97 ⁇ 0.20°, 12.20 ⁇ 0.20°, 12.78 ⁇ 0.20°, 13.21 ⁇ 0.20°, 14.17 ⁇ 0.20°, 15.96 ⁇ 0.20°, 18.65 ⁇ 0.20°, 20.94 ⁇ 0.20°, 21.52 ⁇ 0.20°, 22.05 ⁇ 0.20°, 23.57 ⁇ 0.20° and 25.01 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the CuK ⁇ radiation of the crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 5.84°, 7.97°, 9.30°, 11.69°, 12.20°, 12.78°, 13.21° , 14.17°, 14.86°, 15.52°, 15.96°, 16.60°, 16.91°, 17.58°, 18.25°, 18.65°, 19.21°, 19.50°, 20.11°, 20.94°, 21.52°, 22.05°, 22.80°, 23.05 °, 23.57°, 24.06°, 25.01°, 25.33°, 26.49°, 26.93°, 27.36°, 28.09°, 28.54° and 29.96°.
  • the XRPD pattern of the above-mentioned crystal form A is shown in FIG. 1 .
  • the XRPD pattern diffraction peak data of the above-mentioned crystal form A is shown in Table 1.
  • the differential scanning calorimetry curve (DSC) of the above-mentioned Form A has an endothermic peak at 192.6°C.
  • the DSC spectrum of the above-mentioned crystal form A is shown in FIG. 2 .
  • thermogravimetric analysis (TGA) curve of the above-mentioned crystal form A is at 180.0° C. ⁇ 3° C.
  • the weight loss is 1.40%.
  • the TGA spectrum of the above-mentioned crystal form A is shown in FIG. 3 .
  • the DVS spectrum of the above-mentioned crystal form A is shown in FIG. 4 .
  • the present invention also provides pharmaceutically acceptable salts of the compounds of formula (I).
  • the pharmaceutically acceptable salt of the compound of formula (I) is selected from the group consisting of hydrobromide, mesylate, oxalate or phosphate.
  • the present invention also provides the hydrate of the compound hydrobromide of the formula (I), the structure of which is shown in the formula (I-1),
  • x is 0.9 to 1.1
  • y is 0.9 to 1.1
  • the present invention also provides the crystalline form B of the compound of formula (II), the X-ray powder diffraction pattern of CuK ⁇ radiation has characteristic diffraction peaks at the following 2 ⁇ angles: 10.98 ⁇ 0.20°, 19.53 ⁇ 0.20°, 24.37 ⁇ 0.20° and 25.32 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the CuK ⁇ radiation of the crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 9.27 ⁇ 0.20°, 10.98 ⁇ 0.20°, 13.99 ⁇ 0.20°, 19.53 ⁇ 0.20°, 22.01 ⁇ 0.20°, 24.37 ⁇ 0.20°, 25.32 ⁇ 0.20° and 26.90 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the CuK ⁇ radiation of the crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 9.27 ⁇ 0.20°, 10.98 ⁇ 0.20°, 13.99 ⁇ 0.20°, 14.83 ⁇ 0.20°, 17.50 ⁇ 0.20°, 19.53 ⁇ 0.20°, 20.37 ⁇ 0.20°, 22.01 ⁇ 0.20°, 24.37 ⁇ 0.20°, 24.78 ⁇ 0.20°, 25.32 ⁇ 0.20° and 26.90 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the CuK ⁇ radiation of the crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 8.41°, 9.27°, 10.98°, 11.64°, 13.99°, 14.44°, 14.83° , 17.50°, 18.55°, 19.53°, 19.78°, 20.37°, 21.08°, 21.48°, 22.01°, 22.76°, 23.41°, 23.84°, 24.37°, 24.78°, 25.32°, 26.90°, 27.34°, 28.15 °, 29.29°, 29.96°, 30.36°, 31.23°, 32.70°, 33.25°, 34.17°, 35.50° and 38.32°.
  • the XRPD pattern of the above-mentioned crystal form B is shown in FIG. 5 .
  • the XRPD pattern diffraction peak data of the above-mentioned crystal form B are shown in Table 2.
  • the differential scanning calorimetry (DSC) curve of the above-mentioned Form B has endothermic peaks at 130.7°C and 181.8°C.
  • the DSC spectrum of the above-mentioned crystal form B is shown in FIG. 6 .
  • thermogravimetric analysis (TGA) curve of the above-mentioned crystal form B is at 160.0° C. ⁇ 3° C.
  • the weight loss is 4.22%.
  • the TGA spectrum of the above-mentioned crystal form B is shown in FIG. 7 .
  • the DVS spectrum of the above-mentioned crystal form B is shown in FIG. 8 .
  • the present invention also provides a preparation method of the above-mentioned crystal form B, which comprises the following steps:
  • reaction solution was cooled to room temperature, filtered, and the filter cake was vacuum-dried;
  • the solvent is isopropanol.
  • the present invention also provides the hydrobromide salt of the compound of formula (I), the structure of which is shown in formula (III),
  • the present invention also provides the crystalline form C of the compound of formula (III), whose X-ray powder diffraction pattern of Cu K ⁇ radiation has characteristic diffraction peaks at the following 2 ⁇ angles: 11.21 ⁇ 0.20°, 18.69 ⁇ 0.20°, 22.47 ⁇ 0.20° and 25.60 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of the Cu K ⁇ radiation of the crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 7.38 ⁇ 0.20°, 11.21 ⁇ 0.20°, 16.64 ⁇ 0.20°, 18.69 ⁇ 0.20° , 21.25 ⁇ 0.20°, 22.47 ⁇ 0.20°, 25.60 ⁇ 0.20° and 29.98 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of CuK ⁇ radiation of the above-mentioned crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 7.38 ⁇ 0.20°, 11.21 ⁇ 0.20°, 16.64 ⁇ 0.20°, 18.69 ⁇ 0.20°, 20.57 ⁇ 0.20°, 21.25 ⁇ 0.20°, 21.80 ⁇ 0.20°, 22.47 ⁇ 0.20°, 25.60 ⁇ 0.20°, 26.27 ⁇ 0.20°, 28.50 ⁇ 0.20° and 29.98 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of CuK ⁇ radiation of the above-mentioned crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 7.38°, 10.33°, 11.21°, 14.75°, 16.64°, 17.84°, 18.69° a °.
  • the XRPD pattern of the above-mentioned crystal form C is shown in FIG. 9 .
  • the XRPD pattern diffraction peak data of the above-mentioned crystal form C is shown in Table 3.
  • the differential scanning calorimetry curve (DSC) of the above-mentioned crystal form C has an endothermic peak at 232.4°C.
  • the DSC spectrum of the above-mentioned crystal form C is shown in FIG. 10 .
  • thermogravimetric analysis (TGA) curve of the above-mentioned crystal form C is at 200.0° C. ⁇ 3° C.
  • the weight loss is 1.18%.
  • the TGA spectrum of the above-mentioned crystal form C is shown in FIG. 11 .
  • the present invention also provides the mesylate of the compound of formula (I), the structure of which is shown in formula (IV),
  • the present invention also provides the crystal form D of the compound of formula (IV), the X-ray powder diffraction pattern of the Cu K ⁇ radiation has characteristic diffraction peaks at the following 2 ⁇ angles: 5.74 ⁇ 0.20°, 8.84 ⁇ 0.20°, 11.91 ⁇ 0.20°, 16.70 ⁇ 0.20°, 17.61 ⁇ 0.20°, 18.45 ⁇ 0.20°, 19.09 ⁇ 0.20°, 20.46 ⁇ 0.20°, 22.98 ⁇ 0.20°, 25.35 ⁇ 0.20°, 25.81 ⁇ 0.20° and 27.22 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned crystal form D has characteristic diffraction peaks at the following 2 ⁇ angles: 5.74°, 8.84°, 11.91°, 13.28°, 13.88°, 15.00°, 16.70° degrees 33.24°, 33.80°, 35.94° and 39.19°.
  • the XRPD pattern of the above-mentioned crystal form D is shown in FIG. 12 .
  • the XRPD pattern diffraction peak data of the above-mentioned crystal form D are shown in Table 4.
  • the differential scanning calorimetry curve (DSC) of the above-mentioned crystal form D has an endothermic peak at 204.4°C.
  • the DSC spectrum of the above-mentioned crystal form D is shown in FIG. 13 .
  • thermogravimetric analysis (TGA) curve of the above-mentioned crystal form D is at 180.0°C ⁇ 3°C
  • the weight loss is 0.58%.
  • the TGA spectrum of the above-mentioned crystal form D is shown in FIG. 14 .
  • the DVS spectrum of the above-mentioned crystal form D is shown in FIG. 15 .
  • the present invention also provides the oxalate of the compound of formula (I), the structure of which is shown in formula (V),
  • the present invention also provides the crystalline form E of the compound of formula (V), whose CuK ⁇ radiation X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.83 ⁇ 0.20°, 7.25 ⁇ 0.20°, 10.56 ⁇ 0.20°, 13.18 ⁇ 0.20°, 18.10 ⁇ 0.20°, 19.00 ⁇ 0.20°, 19.77 ⁇ 0.20°, 20.20 ⁇ 0.20°, 22.16 ⁇ 0.20°, 23.90 ⁇ 0.20°, 24.37 ⁇ 0.20° and 25.58 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 5.12°, 6.39°, 6.83°, 7.25°, 9.96°, 10.56°, 12.75° degrees 23.90°, 24.37°, 25.00°, 25.58°, 26.01°, 26.93°, 27.66°, 28.36°, 29.27°, 32.17°, 32.68° and 36.51°.
  • the XRPD pattern of the above-mentioned crystal form E is shown in FIG. 16 .
  • the XRPD pattern diffraction peak data of the above-mentioned crystal form E are shown in Table 5.
  • the differential scanning calorimetry curve (DSC) of the above-mentioned Form E has endothermic peaks at 82.1°C, 129.3°C, 145.6°C and 168.3°C.
  • the DSC spectrum of the above-mentioned crystal form E is shown in FIG. 17 .
  • thermogravimetric analysis (TGA) curve of the above crystal form E shows a weight loss of 1.16% at 110.0°C ⁇ 3°C, and a weight loss of 2.30% again at 150.0°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned crystal form E is shown in FIG. 18 .
  • the present invention also provides the crystal form F of the compound of formula (V), the X-ray powder diffraction pattern of the CuK ⁇ radiation has characteristic diffraction peaks at the following 2 ⁇ angles: 5.15 ⁇ 0.20°, 7.93 ⁇ 0.20°, 10.56 ⁇ 0.20°, 15.40 ⁇ 0.20°, 16.79 ⁇ 0.20°, 17.98 ⁇ 0.20°, 19.33 ⁇ 0.20°, 20.20 ⁇ 0.20°, 21.11 ⁇ 0.20°, 22.49 ⁇ 0.20°, 23.84 ⁇ 0.20° and 26.63 ⁇ 0.20°,
  • the X-ray powder diffraction pattern of Cu K ⁇ radiation of the above-mentioned crystal form F has characteristic diffraction peaks at the following 2 ⁇ angles: 5.15°, 6.44°, 7.93°, 10.56°, 11.69°, 12.82°, 13.45° degrees 34.57° and 36.44°.
  • the XRPD pattern of the above-mentioned crystal form F is shown in FIG. 19 .
  • the XRPD pattern diffraction peak data of the above-mentioned crystal form F are shown in Table 6.
  • the differential scanning calorimetry (DSC) curve of the above-mentioned crystal form F has endothermic peaks at 97.6°C, 145.3°C and 211.5°C.
  • the DSC spectrum of the above-mentioned crystal form F is shown in FIG. 20 .
  • thermogravimetric analysis (TGA) curve of the above-mentioned crystal form F is at 120.0° C. ⁇ 3° C.
  • the weight loss is 4.19%.
  • the TGA spectrum of the above-mentioned crystal form F is shown in FIG. 21 .
  • the present invention also provides the phosphate of the compound of formula (I), the structure of which is shown in formula (VI),
  • the present invention also provides the crystal form G of the compound of formula (VI), the X-ray powder diffraction pattern of the Cu K ⁇ radiation has characteristic diffraction peaks at the following 2 ⁇ angles: 4.94° ⁇ 0.20°, 9.84° ⁇ 0.20°, 10.60° ⁇ 0.20°, 14.75° ⁇ 0.20°, 15.72° ⁇ 0.20°, 16.85° ⁇ 0.20°, 18.04° ⁇ 0.20°, 18.99° ⁇ 0.20°, 20.37° ⁇ 0.20°, 21.20° ⁇ 0.20°, 21.75° ⁇ 0.20° , 22.32° ⁇ 0.20°, 23.51° ⁇ 0.20°, 24.70° ⁇ 0.20°, 26.73° ⁇ 0.20° and 29.12° ⁇ 0.20°,
  • the XRPD pattern of the above-mentioned crystal form G is shown in FIG. 22 .
  • the XRPD pattern diffraction peak data of the above-mentioned crystal form G are shown in Table 7.
  • the differential scanning calorimetry curve (DSC) of the above-mentioned Form G has endothermic peaks at 62.4°C, 98.4°C, 110.7°C and 158.0°C.
  • the DSC spectrum of the above-mentioned crystal form G is shown in FIG. 23 .
  • thermogravimetric analysis (TGA) curve of the above-mentioned crystal form G is at 120.0° C. ⁇ 3° C.
  • the weight loss is 3.79%.
  • the TGA spectrum of the above-mentioned crystal form G is shown in FIG. 24 .
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising an active ingredient, a filler, a binder, a disintegrant and a lubricant, and the active ingredient is a compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • the pharmaceutically acceptable salt of the compound of formula (I) in the above pharmaceutical composition is selected from the group consisting of hydrobromide, mesylate, oxalate and phosphate.
  • the active ingredients in the above-mentioned pharmaceutical composition are selected from: the crystal form A of the compound of formula (I), the crystal form B of the hydrate of the compound of formula (II) hydrobromide, the hydrogen of the compound of formula (III) Form C of bromate salt, Form D of methanesulfonate of compound of formula (IV), Form E and Form F of oxalate of compound of formula (V), Form G of phosphate of compound of formula (VI) .
  • the dosage form of the above-mentioned pharmaceutical composition is a tablet.
  • each tablet is composed of the following ingredients in mass fractions: 10% to 15% of active ingredients, 75% to 82% of filler, 1% to 3% of binder, disintegrating Solution 4% to 10% and lubricant 1% to 3%.
  • each tablet is composed of the following ingredients by mass fraction: 12.06% of active ingredients, 78.94% of fillers, 1.5% of binders, 6.0% of disintegrants and 1.5% of lubricants .
  • the filler in the above-mentioned pharmaceutical composition is selected from one or more of microcrystalline cellulose, mannitol, lactose, starch, sucrose or pregelatinized starch.
  • the binder in the above-mentioned pharmaceutical composition is selected from hypromellose, povidone, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose or sodium carboxymethyl cellulose one or more of them.
  • the disintegrant in the above-mentioned pharmaceutical composition is selected from one of croscarmellose sodium, sodium starch glycolate, hydroxypropyl starch, low-substituted hydroxypropyl cellulose or crospovidone. one or more.
  • the lubricant in the above-mentioned pharmaceutical composition is selected from one or more of colloidal silicon dioxide, magnesium stearate, stearic acid, talc or sodium stearyl fumarate.
  • each tablet is composed of the following ingredients in mass fractions: 12.06% of the compound of formula (I) hydrobromide, 58.94% of microcrystalline cellulose, 20% of mannitol, colloidal Silica 0.5%, Hypromellose 1.5%, Croscarmellose Sodium 6.0% and Magnesium Stearate 1.0%.
  • the hydrobromide salt of the compound of formula (I) is the crystalline form B of the compound of formula (II) or the crystalline form C of the compound of formula (III).
  • each tablet is composed of the following ingredients in mass fractions: 12.06% of the compound of formula (I) hydrobromide, 58.94% of microcrystalline cellulose, 20% of lactose, colloidal two Silica 0.5%, Hypromellose 1.5%, Croscarmellose Sodium 6.0% and Magnesium Stearate 1.0%.
  • the hydrobromide salt of the compound of formula (I) is the crystalline form B of the compound of formula (II) or the crystalline form C of the compound of formula (III).
  • each tablet is composed of the following ingredients in mass fractions: 12.06% of the compound of formula (I) hydrobromide, 20% of microcrystalline cellulose, 58.94% of lactose, colloidal two Silica 0.5%, Hypromellose 1.5%, Croscarmellose Sodium 6.0% and Magnesium Stearate 1.0%.
  • the hydrobromide salt of the compound of formula (I) is the crystalline form B of the compound of formula (II) or the crystalline form C of the compound of formula (III).
  • each tablet is composed of the following ingredients in mass fractions: 12.06% of the compound of formula (I) hydrobromide, 58.94% of microcrystalline cellulose, 20% of lactose, colloidal two Silica 0.5%, hypromellose 1.5%, sodium starch glycolate 6.0% and magnesium stearate 1.0%.
  • the hydrobromide salt of the compound of formula (I) is the crystalline form B of the compound of formula (II) or the crystalline form C of the compound of formula (III).
  • the present invention also provides a method for preparing the above-mentioned pharmaceutical composition, which comprises the following steps: accurately weighing the active ingredient, filler, lubricant and disintegrant in the recipe quantity, after mixing, adding a binder solution to prepare Granules, wet granules are granulated with a sieve (preferably a 20-mesh sieve), then dried (preferably below 60°C), the dry granules are sieved and granulated (preferably a 20-mesh sieve), and a disintegrant is added to mix. Evenly, then add lubricant and mix well and press into tablets.
  • a binder solution to prepare Granules
  • wet granules are granulated with a sieve (preferably a 20-mesh sieve)
  • dried preferably below 60°C
  • the dry granules are sieved and granulated (preferably a 20-mesh sieve)
  • a disintegrant is added to mix. Evenly,
  • the salt form and crystal form of the present invention are simple in preparation process, and the salt form and crystal form are stable, less affected by heat, humidity and light, and are convenient for preparation.
  • the crystal form of the present application has good pharmacokinetic properties and is suitable for use as a medicine.
  • the preparation of the invention has simple composition, stable preparation performance and simple preparation process, and is suitable for large-scale production and research and development.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by their combination with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
  • pharmaceutically acceptable salt refers to a salt of a compound of formula (I) prepared from a compound of formula (I) with a relatively nontoxic acid or base; based on the properties of the compound of formula (I), preferably a compound of formula (I) with a relatively nontoxic acid preparation.
  • Acid addition salts can be obtained by contacting a compound of formula (I) with a sufficient amount of acid in neat solution or in a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts including, for example, oxalic acid, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, caprylic acid acid, fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, methanesulfonic acid, and similar acids; also includes amino acids (eg, arginine, etc.) , and salts of organic acids such as glucuronic acid.
  • Compounds of formula (I) and pharmaceutically acceptable salts of compounds of formula (I) in the present invention can be in crystalline form or in Amorphous; when in crystalline form, it may be solvated or unsolvated.
  • a hydrate is a case of a solvate.
  • the solvent used in the present invention is commercially available.
  • the present invention adopts the following abbreviations:
  • N2 nitrogen gas
  • RH relative humidity
  • mL milliliter
  • L liter
  • min minute
  • s seconds
  • nm nanometers
  • MPa megapascals
  • lux lux
  • ⁇ w/cm 2 microwatts per square centimeter
  • h hours
  • Kg kilograms
  • nM nanomoles
  • RRT relative retention time
  • rpm rotational speed .
  • the compounds of the present invention are named according to the conventional nomenclature in the art, and the commercially available compounds use the names of the suppliers' catalogues.
  • Test Method Approximately 10 mg of sample was used for XRPD detection.
  • Test method Take a sample of 1-5 mg and place it in an aluminum crucible with a lid. The sample is raised from room temperature to 350 °C at a heating rate of 10 °C/min under the protection of 50 mL/min of dry N2, and recorded by the TA software. The thermal change of the sample during the heating process.
  • Test Methods 2-5 mg of sample was placed in a platinum crucible, by way of high-resolution detection of the segment, a heating rate of 10 °C / min at 50mL / min was dried under N 2 protection of the sample from room temperature to 350 °C, while the TA software records the weight change of the sample during the heating process.
  • RH gradient 10% (90%RH-0%RH-90%RH), 5% (95%RH-90%RH and 90%RH-95%RH)
  • Test procedure according to the potentiometric titration method, titrate the test solution and blank solution with silver nitrate titration solution (0.1moL/L), each 1mL silver nitrate titration solution (0.1moL/L) is equivalent to 7.990mg of bromine (Br)
  • each 1 mL of silver nitrate titration solution (0.1 mol/L) is equivalent to 7.990 mg of bromine (Br);
  • V SPL the volume (mL) of the silver nitrate titration solution (0.1mol/L) consumed by the test solution
  • V 0 the volume (mL) of the silver nitrate titration solution (0.1 mol/L) consumed by the blank solution
  • Test method Quickly add the accurately weighed sample (the water content in the sample is about 5-25mg), the stirring time is 10s, the Karl Fischer reagent is titrated to the end point, and the moisture content of the sample is obtained.
  • Mobile phase A 0.05% trifluoroacetic acid in water
  • Injection volume 5 ⁇ L
  • Test plan for testing the content of related substances in tablets :
  • Mobile phase A 0.05% trifluoroacetic acid in water
  • Injection volume 5 ⁇ L
  • the gradient program is shown in Table 13 below:
  • 1% reference solution can be stable for 205.0h at room temperature.
  • HPLC detector (Agilent 1260 with DAD detector or equivalent)
  • Mobile phase A 0.05% trifluoroacetic acid in water
  • Injection volume 5 ⁇ L
  • the gradient program is shown in Table 15 below:
  • 10mg specification reference solution can be stable for 109.0h at room temperature
  • 10mg specification sample solution is stable at room temperature for 108.0h
  • 50mg specification reference solution can be stable at room temperature for 108.0h
  • 50mg specification sample solution is stable at room temperature It can be stable for 108.0h.
  • Fig. 1 is the XRPD spectrum of the compound of formula (I) form A.
  • Figure 2 is the DSC spectrum of the crystal form A of the compound of formula (I).
  • Figure 3 is a TGA spectrum of the compound of formula (I) in Form A.
  • Fig. 4 is the DVS spectrum of the crystal form A of the compound of formula (I).
  • Fig. 5 is the XRPD spectrum of the compound of formula (II) form B.
  • Figure 6 is the DSC spectrum of the compound of formula (II) form B.
  • Figure 7 is a TGA spectrum of the compound of formula (II) in Form B.
  • Figure 8 is the DVS spectrum of the compound of formula (II) in Form B.
  • Fig. 9 is the XRPD spectrum of the compound of formula (III) form C.
  • Fig. 10 is the DSC spectrum of the crystal form C of the compound of formula (III).
  • Figure 11 is a TGA spectrum of the compound of formula (III) in Form C.
  • Figure 12 is the XRPD spectrum of the compound of formula (IV), Form D.
  • Figure 13 is a DSC spectrum of Form D of the compound of formula (IV).
  • Figure 14 is the TGA spectrum of the compound of formula (IV) in Form D.
  • Figure 15 is the DVS spectrum of the compound of formula (IV), Form D.
  • Figure 16 is the XRPD spectrum of the compound of formula (V), Form E.
  • Figure 17 is a DSC spectrum of Form E of the compound of formula (V).
  • Figure 18 is a TGA spectrum of the compound of formula (V) in Form E.
  • Figure 19 is the XRPD spectrum of the compound of formula (V), Form F.
  • Figure 20 is a DSC spectrum of Form F of the compound of formula (V).
  • Figure 21 is the TGA spectrum of the compound of formula (V), Form F.
  • Figure 22 is the XRPD spectrum of the compound of formula (VI), Form G.
  • Figure 23 is a DSC spectrum of Form G of the compound of formula (VI).
  • Figure 24 is a TGA spectrum of the compound of formula (VI), Form G.
  • Figure 25 is a comparative diagram of the crystal form stability study of the compound of formula (II) form B under high pressure.
  • Figure 26 is a comparative diagram of the crystal form stability study of the compound of formula (II) form B in different solvents.
  • Step A Compound 1-1 (10 g, 99.88 mmol, 1 equiv) was dissolved in methanol (150 mL), tert-butylcarbazate (13.20 g, 99.88 mmol, 1 equiv) was added, and the reaction was carried out at 25 degrees Celsius 10 hours. Concentration gave compound 1-2.
  • Step B Compound 1-2 (8 g, 37.34 mmol, 1 equiv) was dissolved in a mixed solvent of acetic acid (50 mL) and water (50 mL), stirred at 25°C for 1 hour, and added cyanoborohydride in batches Sodium (2.58 g, 41.07 mmol, 1.1 equiv) was reacted at 20 degrees Celsius for 2 hours. Adjust pH to 7 with 1 mol/L aqueous sodium hydroxide solution, extract with dichloromethane (100 mL ⁇ 3), wash with saturated aqueous sodium bicarbonate solution (100 mL ⁇ 2), dry over anhydrous sodium sulfate, filter, and concentrate to obtain compound 1 -3.
  • Step C Compound 1-3 (7.2 g, 33.29 mmol, 1 equiv) was dissolved in methanol (10 mL), methanol hydrochloric acid (4 mol/L, 40 mL) was added, and the reaction was carried out at 20 degrees Celsius for 4 hours. Concentration gave compound 1-4.
  • Step D Compound 1-4 (4.1 g, 35.30 mmol, 1 equiv, 2 HCl) and ethyl acetoacetate (9.19 g, 70.59 mmol, 2 equiv) were dissolved in acetic acid (40 mL) under nitrogen The reaction was carried out at 90 degrees Celsius for 10 hours in an atmosphere. Cool, concentrate, and purify by preparative high performance liquid chromatography (trifluoroacetic acid condition) to obtain compound 1-5. MS (ESI) m/z: 183.1 [M+H + ].
  • Step E Compound 1-5 (1.1 g, 6.04 mmol, 1 equiv) and compound 1-6 (873.44 mg, 6.64 mmol, 1.1 equiv) were dissolved in N,N-dimethylformamide (20 mL) In the solution, potassium carbonate (2.5 g, 18.11 mmol, 3 equiv.) was added, and the reaction was carried out at 90 degrees Celsius for 12 hours. Add water (50 mL) to dilute, and extract with ethyl acetate (100 mL ⁇ 3). The organic phases were combined, washed with saturated brine (100 mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column separation to obtain compound 1-7. MS (ESI) m/z: 294.1 [M+H+].
  • Step F Compound 1-7 (300 mg, 1.02 mmol, 1 equiv), 1-8 (144.78 mg, 1.23 mmol, 1.2 equiv), 4,5-bis(diphenylphosphine)-9,9 - Dimethylxanthene (118.19 mg, 204.26 ⁇ mol, 0.2 equiv), cesium carbonate (998.26 mg, 3.06 mmol, 3 equiv) and tris(dibenzylideneacetone)dipalladium (187.04 mg, 204.26 ⁇ mol , 0.2 equiv.) was dissolved in dioxane (10 mL) and reacted at 100 degrees Celsius for 12 hours under nitrogen atmosphere.
  • Step G Compound 1-9 (270 mg, 718.19 ⁇ mol, 1 equiv), sodium hydroxide (719.19 ⁇ l, 2 mol per L, 2 equiv) and dimethyl sulfoxide (112.39 mg, 1.44 mmol, 2 equiv) was dissolved in ethanol (5 mL). Hydrogen peroxide (163.09 mg, 1.44 mmol, 138.21 ⁇ l, purity 30%, 2 equivalents) was slowly added to the reaction solution at room temperature, and the reaction was carried out at 25 degrees Celsius for 2 hours. Add water (10 mL) to dilute, and extract with ethyl acetate (10 mL ⁇ 3).
  • the compound crystal form B of formula (II), microcrystalline cellulose, mannitol, colloidal silicon dioxide and croscarmellose sodium are respectively weighed according to the recipe amount, mixed evenly, and set aside.
  • the wet granules are dried at 60°C and the moisture content is controlled below 3%.
  • the tablet weight was within the qualified range, the hardness was 5-9 Kp, and the tablet was completely disintegrated within 10 minutes.
  • the compound crystal form B of the formula (II), microcrystalline cellulose, lactose, colloidal silicon dioxide and croscarmellose sodium are respectively weighed according to the recipe amount, mixed evenly, and set aside.
  • Step (1) premixing, step (2) hypromellose solution configuration, step (3) granulation, step (4) drying, step (5) dry granulation and total mixing, step (6) tableting, Similar to Example 10.
  • Step (1) premixing, step (2) hypromellose solution configuration, step (3) granulation, step (4) drying, step (5) dry granulation and total mixing, step (6) tabletting, Similar to Example 10. Replace croscarmellose sodium with sodium starch glycolate.
  • the compound crystal form B of formula (II), microcrystalline cellulose, lactose, colloidal silicon dioxide, croscarmellose sodium and magnesium stearate are respectively weighed according to the recipe amount, mixed uniformly, and set aside.
  • the tablet weight is within the qualified range, the hardness is 5-9 Kp, and the tablet is completely disintegrated within 10 minutes.
  • the concentration of the hypromellose solution was changed from 6% to 4.5%, and it was compressed into a tablet using a tablet press with a die of 11 mm.
  • the raw material drug, lactose, microcrystalline cellulose, colloidal silicon dioxide, and croscarmellose sodium were weighed and added to the wet mixing granulator according to the recipe amount, and were stirred and mixed. Mix for 10 min with stirring speed of 370 rpm and shear speed of 1500 rpm.
  • Drying was carried out using a fluid granulation coater.
  • the inlet air temperature is set to 60°C, the moisture at the drying end is controlled at ⁇ 3.0%, and the drying time is determined according to the moisture measurement results.
  • the fixed hopper of the universal mixer is used for mixing, and the dry granules and the croscarmellose sodium (additional) are placed in the mixing hopper and mixed.
  • the mixing speed was 20 rpm, and the mixing time was 20 min; then magnesium stearate was added for total mixing, the mixing speed was 20 rpm, and the total mixing time was 3 min.
  • the quality of the intermediate is controlled after mixing is complete.
  • the standard tablet weight is converted, and a single punch tablet machine is used for tableting.
  • Die 6mm shallow arc circular punch, tablet weight: 100mg, tablet weight difference: ⁇ 7.5%, controlled tablet hardness: 6-9Kp (1Kp ⁇ 10N), tablet completely disintegrated within 10min.
  • Configuration of coating liquid configure the coating liquid according to the proportion of solid content of 12%
  • the coating powder is weighed according to the film coating premix with a weight gain of 3.0% to 6.0% of the weight of the plain tablet, stirred and dissolved in water to prepare a 12% film coating liquid, and the film coating is carried out by a high-efficiency coating machine.
  • the main machine speed of the coating pot is controlled at 8-10rpm, the main machine speed is 1200rpm, the inlet air temperature is set at 68°C, and the outlet air temperature is controlled between 40 and 50°C.
  • the atomization pressure is 0.17Mpa, and the fan pressure is 0.15Mpa.
  • Tablets and solid pharmaceutical high-density polyethylene non-woven fabric (Tyvec) bag desiccant were put into oral solid pharmaceutical high-density polyethylene plastic bottles (40 mL) together, and sealed with a hand-held induction sealing machine.
  • Power size 1000W; sealing time: 1.6s; packaging specification: 30 pieces/bottle.
  • Step (1) premix, step (2) hypromellose solution configuration, similar to Example 15.
  • Step (4) drying, step (5) granulation, step (6) blending, intermediate detection, are similar to Example 15.
  • the standard tablet weight is converted, and a single punch tablet machine is used for tableting.
  • the pre-stability study of the crystal form D of the compound of formula (IV) shows that the crystal form has no change in impurity content for 10 days under the conditions of 40°C/75% RH and light, which proves that it has good stability.
  • Solubility experiment of compound crystal form B of formula (II) in different pH buffers and biological media Weigh 2mg of the compound, weigh it into a 2mL glass bottle, add 1mL of medium, and add a magnet at 37°C and 700rpm. Stir on a magnetic stirrer.
  • the buffers were pH1.0, pH2.0, SGF and water, and the target concentration was 10 mg/mL. If it is in a clear state, continue to add the compound and continue to stir until the solution no longer becomes clear, until the sample is measured after stirring for 24 hours.
  • SGF simulates the gastric juice of empty stomach in human starvation state.
  • the thickness of the test sample is generally about 1 mm, and the total weight is accurately weighed in m2.
  • the weighing bottle is opened and placed in the above stability test box together with the bottle cap. Place in the stability test chamber for 24 hours. Close the lid of the weighing bottle, and accurately weigh the total weight m 3 .
  • weight gain percentage 100% ⁇ (m 3 -m 2 )/(m 2 -m 1 )
  • HEK293 cells 100 microliters of growth medium without gene protein
  • 35,000 HEK293 cells 100 microliters of growth medium without gene protein
  • the medium was removed the next day, 0.5% fetal bovine serum without genetic protein, 90 microliters of compound solutions (different concentration gradients) were added, and the cells were incubated for 4-5 hours at 37 degrees Celsius in a 5% carbon dioxide atmosphere.
  • Add 10 microliters of TGF ⁇ 1 (the final concentration of TGF ⁇ 1 is 20 ng/mL), add 10 microliters of culture medium to the control wells, and treat overnight. After cleavage, fluorescence was detected using a one-step luciferase assay.
  • the crystal form B of the compound of formula (II) has excellent pSmad inhibitory activity. It is proved that the crystalline form B of the compound of formula (II) can inhibit the TGF- ⁇ /SMAD signaling pathway.
  • Example 21 In vivo antitumor efficacy of mouse colon cancer CT-26 cells BALB/c mouse subcutaneous allograft model
  • the main purpose of this study is to study the antitumor efficacy of the tested compounds in the CT26 mouse allograft tumor model.
  • cell culture mouse colon cancer CT-26 cells were cultured in vitro in monolayer, culture conditions were RPMI-1640 medium plus 10% fetal bovine serum, 37 degrees Celsius and 5% carbon dioxide incubator. Conventional digestion treatments were passaged with trypsin-ethylenediaminetetraacetic acid (EDTA) twice a week. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and seeded.
  • EDTA trypsin-ethylenediaminetetraacetic acid
  • Tumor inoculation 0.1 ml of DPBS cell suspension containing 3 ⁇ 10 5 CT26 cells was subcutaneously inoculated into the right groin of each mouse, and the administration started on the day of inoculation.
  • the compound of formula (I) has obvious antitumor efficacy in vivo in the mouse colon cancer CT-26 cell BALB/c mouse subcutaneous allograft tumor model.
  • the purpose of this experiment is to evaluate the pharmacokinetic behavior of the compound after single intravenous injection and intragastric administration, and to investigate the bioavailability after intragastric administration.
  • mice 24 (12/sex) male and female beagle dogs were divided into 4 groups.
  • Group 1 animals were dosed with a single intravenous injection of 1 mg/kg of the test article.
  • Groups 2 and 4 animals were given a single oral dose of 5 and 50 mg/kg of the test article, respectively.
  • the animals in the third group were orally administered once a day for 7 consecutive days, and each dose of the test substance was administered at a dose of 15 mg/kg.
  • Animals in groups 1, 2 and 4 were treated at 0.0833 (5 minutes), 0.25 (15 minutes), 0.5 (30 minutes), 1, 2, 4, 6, 8, Plasma samples were collected at 12 and 24 hours.
  • T 1/2 half-life
  • Vd ss volume of distribution
  • Cl clearance
  • AUC 0-last area under the curve
  • C 0 initial concentration
  • C max maximum concentration
  • T max time to peak concentration.

Abstract

本发明公开了作为TGF-βR1抑制剂药物的5-(4-吡啶氧基)吡唑类化合物的盐型、晶型、其制备方法以及药物组合物及其制备方法,具体公开了式(I)化合物的晶型、盐型及其晶型,还具体公开了包含式(I)化合物或其药学上可接受盐的药物组合物。

Description

作为TGF-βR1抑制剂的吡啶氧基连吡唑类化合物的盐型、晶型以及其药物组合物
本申请要求申请日为2020/7/23的中国专利申请202010717761.4的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一类作为TGF-βR1抑制剂的5-(4-吡啶氧基)吡唑类化合物的盐型、晶型、其制备方法以及药物组合物及其制备方法。
背景技术
转化生长因子β(Transforming growth factor-β,TGF-β)是一个多功能生长因子超家族,具有广泛的生物学活性,参与早期胚胎发育,软骨和骨的形成,包外基质的合成,炎症,间质纤维化,免疫和内分泌功能的调节,肿瘤的形成和发展。
TGF-β超家族由一类结构和功能相关的多肽生长因子组成,TGF-β是该家族的重要成员之一。在哺乳动物中TGF-β主要以TGF-β1、TGF-β2和TGF-β3三种形式存在,它们位于不同的染色体上,其中TGF-β1在体细胞中所占比例最高(>90%),它活性最强、功能最多,分布也最广泛。
TGF-β信号分子通过跨膜的受体复合物进行信号转导。TGF-β受体是存在于细胞表面的跨膜蛋白,分为I型受体(TGF-βR1)、II型受体(TGF-βR2)和III型受体(TGF-βR3),其中TGF-βR1又被称作活化素样受体5(activin receptor-like kinase 5,ALK5)。TGF-βR3缺乏内在活性,主要与TGF-β的储存有关。TGF-βR1和TGF-βR2属于丝氨酸/苏氨酸激酶家族,II型受体能以较高的亲和力与TGF-β配体结合,并与I型受体形成异源受体复合物,将I型受体近膜的一段富含甘氨酸、丝氨酸残基的区域(GS结构域)磷酸化,启动细胞内信号联级反应。
Smads是细胞内重要的TGF-β信号转导和调节分子,可以将TGF-β信号直接由细胞膜转导如细胞核内,TGF-β/Smads信号通路在肿瘤的发生和发展中起到重要的作用。在TGF-β/Smads信号转导中,活化的TGF-β首先与细胞膜表面的TGF-βR2结合,形成异源二聚体复合物,TGF-βR1识别并结合该二元复合物。
TGF-βR2将TGF-βR1胞浆区GS结构域的丝氨酸/苏氨酸磷酸化,从而激活TGF-βR1;活化的TGF-βR1进一步磷酸化R-Smads(Smad2/Smad3)蛋白,后者再与Co-Smad(Smad4)结合成为异三聚体复合物,这一复合物进入细胞核内,与其他辅助活化因子(co-activator)和辅助抑制因子(co-inhibitor)协同作用,调节靶基因的转录。在TGF-β/Smads信号通路中任何一个环节发生改变,都会导致信号转导通路的异常。
目前的研究表明,在肿瘤细胞中,TGF-β能直接影响肿瘤的生长(TGF-β信号的非固有影响),或者通过诱导上皮间质转化、阻断抗肿瘤免疫应答、增加肿瘤相关纤维化和强化血管再生间接地影响肿瘤生长(TGF-β的固有影响)。同时,TGF-β具有很强的纤维化诱导作用,它是与肿瘤相关的成纤维细胞的激活剂。这些成纤维细胞是胶原I型和其他纤维化因子的主要来源。成纤维细胞和其他纤维化因子的诱导产物可能继续培育出一个微环境,这个环境会减少免疫应答,增加抗药性和强化肿瘤血管生成另外,在个体发育和肿瘤生长过程中,TGF-β影响血管生再生。例如,TGF-βR1型缺陷的小鼠胚胎显示出了严重的血管发育缺陷,证明TGF-β信号通道是血管内皮及平滑肌细胞发育中的关键调节器。
近期的研究报道同时指出,TGF-β明显与免疫逃逸相关,对CD8+T细胞介导的抗肿瘤免疫反应影响较大。在针对转移型泌尿上皮癌的临床试验中,TGF-β基因高表达的患者对PD-L1单抗响应及模拟生存率低。TGF-β单抗的基础研究也证明,当其与PD-L1单抗协同使用时,更多CD8+T细胞浸润并发挥作用,揭示了阻断TGF-β对免疫的激活作用及其机理。由于TGF-β的免疫调节作用,小分子TGF-βR1抑制剂单药或与PD-(L)1单抗联用在多种实体瘤治疗上具有极大的应用前景。
发明内容
本发明提供式(I)化合物的晶型A,其CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:15.96±0.20°、18.65±0.20°、20.94±0.20°和23.57±0.20°,
Figure PCTCN2021105662-appb-000001
本发明的一些方案中,上述晶型A的CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.97±0.20°、13.21±0.20°、14.17±0.20°、15.96±0.20°、18.65±0.20°、20.94±0.20°、21.52±0.20°和23.57±0.20°。
本发明的一些方案中,上述晶型A的CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.97±0.20°、12.20±0.20°、12.78±0.20°、13.21±0.20°、14.17±0.20°、15.96±0.20°、18.65±0.20°、20.94±0.20°、21.52±0.20°、22.05±0.20°、23.57±0.20°和25.01±0.20°。
本发明的一些方案中,上述晶型A的CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.84°、7.97°、9.30°、11.69°、12.20°、12.78°、13.21°、14.17°、14.86°、15.52°、15.96°、16.60°、16.91°、17.58°、18.25°、18.65°、19.21°、19.50°、20.11°、20.94°、21.52°、22.05°、22.80°、23.05°、 23.57°、24.06°、25.01°、25.33°、26.49°、26.93°、27.36°、28.09°、28.54°和29.96°。
本发明的一些方案中,上述晶型A的XRPD图谱如图1所示。
本发明的一些方案中,上述晶型A的XRPD图谱衍射峰数据如表1所示。
表1 式(I)化合物晶型A的XRPD衍射峰数据
Figure PCTCN2021105662-appb-000002
本发明的一些方案中,上述晶型A的差示扫描量热曲线(DSC)在192.6℃处有吸热峰。
本发明的一些方案中,上述晶型A的DSC图谱如图2所示。
本发明的一些方案中,上述晶型A的热重分析(TGA)曲线在180.0℃±3℃时,失重为1.40%。
本发明的一些方案中,上述晶型A的TGA图谱如图3所示。
本发明的一些方案中,上述晶型A的DVS图谱如图4所示。
本发明还提供了式(I)化合物药学上可接受的盐。
本发明的一些方案中,式(I)化合物药学上可接受的盐选自氢溴酸盐、甲磺酸盐、草酸盐或磷酸盐。
本发明还提供了式(I)化合物氢溴酸盐的水合物,其结构如式(I-1)所示,
Figure PCTCN2021105662-appb-000003
其中,x为0.9~1.1,y为0.9~1.1。
本发明的一些方案中,上述式(I)化合物氢溴酸盐的水合物的结构如式(II)所示,
Figure PCTCN2021105662-appb-000004
本发明还提供了式(II)化合物的晶型B,其CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.98±0.20°、19.53±0.20°、24.37±0.20°和25.32±0.20°,
Figure PCTCN2021105662-appb-000005
本发明的一些方案中,上述晶型B的CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.27±0.20°、10.98±0.20°、13.99±0.20°、19.53±0.20°、22.01±0.20°、24.37±0.20°、25.32±0.20°和26.90±0.20°。
本发明的一些方案中,上述晶型B的CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.27±0.20°、10.98±0.20°、13.99±0.20°、14.83±0.20°、17.50±0.20°、19.53±0.20°、20.37±0.20°、22.01±0.20°、24.37±0.20°、24.78±0.20°、25.32±0.20°和26.90±0.20°。
本发明的一些方案中,上述晶型B的CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.41°、9.27°、10.98°、11.64°、13.99°、14.44°、14.83°、17.50°、18.55°、19.53°、19.78°、20.37°、21.08°、21.48°、22.01°、22.76°、23.41°、23.84°、24.37°、24.78°、25.32°、26.90°、27.34°、28.15°、 29.29°、29.96°、30.36°、31.23°、32.70°、33.25°、34.17°、35.50°和38.32°。
本发明的一些方案中,上述晶型B的XRPD图谱如图5所示。
本发明的一些方案中,上述晶型B的XRPD图谱衍射峰数据如表2所示。
表2 式(II)化合物晶型B的XRPD衍射峰数据
Figure PCTCN2021105662-appb-000006
本发明的一些方案中,上述晶型B的差示扫描量热曲线(DSC)在130.7℃和181.8℃处有吸热峰。
本发明的一些方案中,上述晶型B的DSC图谱如图6所示。
本发明的一些方案中,上述晶型B的热重分析(TGA)曲线在160.0℃±3℃时,失重为4.22%。
本发明的一些方案中,上述晶型B的TGA图谱如图7所示。
本发明的一些方案中,上述晶型B的DVS图谱如图8所示。
本发明还提供了上述晶型B的制备方法,其包括如下步骤:
1)将式(I)化合物加入溶剂中溶解,再加入氢溴酸水溶液在一定温度下搅拌;
2)反应液降至室温,过滤,滤饼真空干燥;
其中所述溶剂为异丙醇。
本发明还提供了式(I)化合物的氢溴酸盐,其结构如式(III)所示,
Figure PCTCN2021105662-appb-000007
本发明还提供了式(III)化合物的晶型C,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.21±0.20°、18.69±0.20°、22.47±0.20°和25.60±0.20°,
Figure PCTCN2021105662-appb-000008
本发明的一些方案中,上述晶型C的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.38±0.20°、11.21±0.20°、16.64±0.20°、18.69±0.20°、21.25±0.20°、22.47±0.20°、25.60±0.20°和29.98±0.20°。
本发明的一些方案中,上述晶型C的CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.38±0.20°、11.21±0.20°、16.64±0.20°、18.69±0.20°、20.57±0.20°、21.25±0.20°、21.80±0.20°、22.47±0.20°、25.60±0.20°、26.27±0.20°、28.50±0.20°和29.98±0.20°。
本发明的一些方案中,上述晶型C的CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.38°、10.33°、11.21°、14.75°、16.64°、17.84°、18.69°、19.41°、20.57°、21.25°、21.80°、22.47°、22.81°、23.12°、25.24°、25.60°、26.27°、27.61°、28.50°、28.76°、29.64°、29.98°、31.65°和32.94°。
本发明的一些方案中,上述晶型C的XRPD图谱如图9所示。
本发明的一些方案中,上述晶型C的XRPD图谱衍射峰数据如表3所示。
表3 式(III)化合物晶型C的XRPD衍射峰数据
Figure PCTCN2021105662-appb-000009
Figure PCTCN2021105662-appb-000010
本发明的一些方案中,上述晶型C的差示扫描量热曲线(DSC)在232.4℃处有吸热峰。
本发明的一些方案中,上述晶型C的DSC图谱如图10所示。
本发明的一些方案中,上述晶型C的热重分析(TGA)曲线在200.0℃±3℃时,失重为1.18%。
本发明的一些方案中,上述晶型C的TGA图谱如图11所示。
本发明还提供了式(I)化合物的甲磺酸盐,其结构如式(IV)所示,
Figure PCTCN2021105662-appb-000011
本发明还提供了式(IV)化合物的晶型D,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.74±0.20°、8.84±0.20°、11.91±0.20°、16.70±0.20°、17.61±0.20°、18.45±0.20°、19.09±0.20°、20.46±0.20°、22.98±0.20°、25.35±0.20°、25.81±0.20°和27.22±0.20°,
Figure PCTCN2021105662-appb-000012
本发明的一些方案中,上述晶型D的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.74°、8.84°、11.91°、13.28°、13.88°、15.00°、16.70°、17.61°、18.21°、18.45°、19.09°、20.46°、21.76°、22.98°、23.94°、25.35°、25.81°、26.64°、27.22°、27.82°、29.04°、30.64°、31.11°、33.24°、33.80°、35.94°和39.19°。
本发明的一些方案中,上述晶型D的XRPD图谱如图12所示。
本发明的一些方案中,上述晶型D的XRPD图谱衍射峰数据如表4所示。
表4 式(IV)化合物晶型D的XRPD衍射峰数据
Figure PCTCN2021105662-appb-000013
本发明的一些方案中,上述晶型D的差示扫描量热曲线(DSC)在204.4℃处有吸热峰。
本发明的一些方案中,上述晶型D的DSC图谱如图13所示。
本发明的一些方案中,上述晶型D的热重分析(TGA)曲线在180.0℃±3℃时,失重为0.58%。
本发明的一些方案中,上述晶型D的TGA图谱如图14所示。
本发明的一些方案中,上述晶型D的DVS图谱如图15所示。
本发明还提供了式(I)化合物的草酸盐,其结构如式(V)所示,
Figure PCTCN2021105662-appb-000014
本发明还提供了式(V)化合物的晶型E,其CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.83±0.20°、7.25±0.20°、10.56±0.20°、13.18±0.20°、18.10±0.20°、19.00±0.20°、19.77±0.20°、20.20±0.20°、22.16±0.20°、23.90±0.20°、24.37±0.20°和25.58±0.20°,
Figure PCTCN2021105662-appb-000015
本发明的一些方案中,上述晶型E的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.12°、6.39°、6.83°、7.25°、9.96°、10.56°、12.75°、13.18°、13.60°、14.56°、14.95°、15.66°、16.76°、17.17°、18.10°、19.00°、19.36°、19.77°、20.20°、20.80°、21.80°、22.16°、22.53°、23.90°、24.37°、25.00°、25.58°、26.01°、26.93°、27.66°、28.36°、29.27°、32.17°、32.68°和36.51°。
本发明的一些方案中,上述晶型E的XRPD图谱如图16所示。
本发明的一些方案中,上述晶型E的XRPD图谱衍射峰数据如表5所示。
表5 式(V)化合物晶型E的XRPD衍射峰数据
Figure PCTCN2021105662-appb-000016
Figure PCTCN2021105662-appb-000017
本发明的一些方案中,上述晶型E的差示扫描量热曲线(DSC)在82.1℃、129.3℃、145.6℃和168.3℃处有吸热峰。
本发明的一些方案中,上述晶型E的DSC图谱如图17所示。
本发明的一些方案中,上述晶型E的热重分析(TGA)曲线在110.0℃±3℃时,失重为1.16%,在150.0℃±3℃时,再次失重2.30%。
本发明的一些方案中,上述晶型E的TGA图谱如图18所示。
本发明还提供了式(V)化合物的晶型F,其CuKα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.15±0.20°、7.93±0.20°、10.56±0.20°、15.40±0.20°、16.79±0.20°、17.98±0.20°、19.33±0.20°、20.20±0.20°、21.11±0.20°、22.49±0.20°、23.84±0.20°和26.63±0.20°,
Figure PCTCN2021105662-appb-000018
本发明的一些方案中,上述晶型F的Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.15°、6.44°、7.93°、10.56°、11.69°、12.82°、13.45°、15.40°、16.26°、16.79°、17.98°、19.33°、20.20°、21.11°、22.04°、22.49°、23.49°、23.84°、24.32°、25.80°、26.63°、27.39°、28.47°、34.57°和36.44°。
本发明的一些方案中,上述晶型F的XRPD图谱如图19所示。
本发明的一些方案中,上述晶型F的XRPD图谱衍射峰数据如表6所示。
表6 式(V)化合物晶型F的XRPD衍射峰数据
Figure PCTCN2021105662-appb-000019
本发明的一些方案中,上述晶型F的差示扫描量热曲线(DSC)在97.6℃、145.3℃和211.5℃处有吸热峰。
本发明的一些方案中,上述晶型F的DSC图谱如图20所示。
本发明的一些方案中,上述晶型F的热重分析(TGA)曲线在120.0℃±3℃时,失重为4.19%。
本发明的一些方案中,上述晶型F的TGA图谱如图21所示。
本发明还提供了式(I)化合物的磷酸盐,其结构如式(VI)所示,
Figure PCTCN2021105662-appb-000020
本发明还提供了式(VI)化合物的晶型G,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.94°±0.20°、9.84°±0.20°、10.60°±0.20°、14.75°±0.20°、15.72°±0.20°、16.85°±0.20°、18.04°±0.20°、18.99°±0.20°、20.37°±0.20°、21.20°±0.20°、21.75°±0.20°、22.32°±0.20°、23.51°±0.20°、24.70°±0.20°、26.73°±0.20°和29.12°±0.20°,
Figure PCTCN2021105662-appb-000021
本发明的一些方案中,上述晶型G的XRPD图谱如图22所示。
本发明的一些方案中,上述晶型G的XRPD图谱衍射峰数据如表7所示。
表7 式(VI)化合物晶型G的XRPD衍射峰数据
Figure PCTCN2021105662-appb-000022
本发明的一些方案中,上述晶型G的差示扫描量热曲线(DSC)在62.4℃、98.4℃、110.7℃和158.0℃处有吸热峰。
本发明的一些方案中,上述晶型G的DSC图谱如图23所示。
本发明的一些方案中,上述晶型G的热重分析(TGA)曲线在120.0℃±3℃时,失重为3.79%。
本发明的一些方案中,上述晶型G的TGA图谱如图24所示。
本发明还提供了一种药物组合物,其包含活性成分、填充剂、粘合剂、崩解剂和润滑剂,所述活性成分为式(I)化合物或其药学上可接受盐。
本发明的一些方案中,上述药物组合物中式(I)化合物药学上可接受的盐选自氢溴酸盐、甲磺酸盐、草酸盐和磷酸盐。
本发明的一些方案中,上述药物组合物中活性成分选自:式(I)化合物的晶型A,式(II)化合物氢溴酸盐的水合物的晶型B,式(III)化合物氢溴酸盐的晶型C,式(IV)化合物甲磺酸盐的晶型D,式(V)化合物草酸盐的晶型E和晶型F,式(VI)化合物磷酸盐的晶型G。
本发明的一些方案中,上述药物组合物的剂型为片剂。
本发明的一些方案中,上述片剂的特征在于,每片由以下质量分数的成分组成:活性成分 10%~15%、填充剂75%~82%、粘合剂1%~3%、崩解剂4%~10%和润滑剂1%~3%。
本发明的一些方案中,上述片剂的特征在于,每片由以下质量分数的成分组成:活性成分12.06%、填充剂78.94%、粘合剂1.5%、崩解剂6.0%和润滑剂1.5%。
本发明的一些方案中,上述药物组合物中的填充剂选自微晶纤维素、甘露醇、乳糖、淀粉、蔗糖或预胶化淀粉中一种或多种。
本发明的一些方案中,上述药物组合物中的粘合剂选自羟丙甲纤维素、聚维酮、羟丙基纤维素、甲基纤维素、乙基纤维素或羧甲基纤维素钠中一种或多种。
本发明的一些方案中,上述药物组合物中的崩解剂选自交联羧甲纤维素钠、羧甲淀粉钠、羟丙基淀粉、低取代羟丙纤维素或交联聚维酮中一种或多种。
本发明的一些方案中,上述药物组合物中的润滑剂选自胶态二氧化硅、硬脂酸镁、硬脂酸、滑石粉或硬脂富马酸钠中一种或多种。
本发明的一些方案中,上述片剂的特征在于,每片由以下质量分数的成分组成:式(I)化合物氢溴酸盐12.06%、微晶纤维素58.94%、甘露醇20%、胶态二氧化硅0.5%、羟丙甲纤维素1.5%、交联羧甲纤维素钠6.0%和硬脂酸镁1.0%。优选地,式(I)化合物的氢溴酸盐为式(II)化合物的晶型B或式(III)化合物的晶型C。
本发明的一些方案中,上述片剂的特征在于,每片由以下质量分数的成分组成:式(I)化合物氢溴酸盐12.06%、微晶纤维素58.94%、乳糖20%、胶态二氧化硅0.5%、羟丙甲纤维素1.5%、交联羧甲纤维素钠6.0%和硬脂酸镁1.0%。优选地,式(I)化合物氢溴酸盐为式(II)化合物的晶型B或式(III)化合物的晶型C。
本发明的一些方案中,上述片剂的特征在于,每片由以下质量分数的成分组成:式(I)化合物氢溴酸盐12.06%、微晶纤维素20%、乳糖58.94%、胶态二氧化硅0.5%、羟丙甲纤维素1.5%、交联羧甲纤维素钠6.0%和硬脂酸镁1.0%。优选地,式(I)化合物氢溴酸盐为式(II)化合物的晶型B或式(III)化合物的晶型C。
本发明的一些方案中,上述片剂的特征在于,每片由以下质量分数的成分组成:式(I)化合物氢溴酸盐12.06%、微晶纤维素58.94%、乳糖20%、胶态二氧化硅0.5%、羟丙甲纤维素1.5%、羧甲淀粉钠6.0%和硬脂酸镁1.0%。优选地,式(I)化合物氢溴酸盐为式(II)化合物的晶型B或式(III)化合物的晶型C。
本发明还提供了一种制备上述药物组合物的方法,其包括以下步骤:准确称取处方量的活性成分、填充剂、润滑剂和崩解剂,混匀后,加入粘合剂溶液,制粒,湿颗粒用筛网湿整粒(优选为20目筛网),然后干燥(优选为60℃以下),干颗粒过筛网整粒(优选为20目筛网),加入崩解剂混匀,再加入润滑剂混匀后压片,即得。
技术效果
本发明的盐型、晶型制备工艺简单,并且所述盐型及晶型稳定、受热、湿度、和光照影响小,便于制剂。本申请的晶型具有良好的药代动力学性质,适合作为药物使用。
本发明的制剂组成简单,制剂性能稳定,制备工艺简单,适合大规模生产研发。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
术语“药学上可接受的盐”是指式(I)化合物的盐,由式(I)化合物与相对无毒的酸或碱制备;基于式(I)化合物的性质,优选为与相对无毒的酸制备。可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与式(I)化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸、碳酸氢根、磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如草酸、乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的一些方案中,示例性提供了氢溴酸盐、甲磺酸盐、草酸盐、磷酸盐等式(I)化合物药学上可接受的盐。
本发明中式(I)化合物、式(I)化合物药学上可接受的盐(包括但不限于氢溴酸盐、甲磺酸盐、草酸盐、磷酸盐),可以为晶体形式、也可以为无定形;当为晶体形式时,可以为溶剂合物、也可以为非溶剂合物。本发明中水合物是溶剂合物的一种情形。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:
N2:氮气;RH:相对湿度;mL:毫升;L:升;min:分钟;℃:摄氏度;μm:微米;mm:毫 米;μL:微升;moL/L:摩尔每升;mg:毫克;s:秒;nm:纳米;MPa:兆帕;lux:勒克斯;μw/cm 2:微瓦每平方厘米;h:小时;Kg:千克;nM:纳摩尔,RRT:相对保留时间;rpm:转速。
本发明化合物依据本领域常规命名原则命名,市售化合物采用供应商目录名称。
仪器及分析方法
1.本发明X-射线粉末衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:PANalytical X′Pert 3型X-射线衍射仪
测试方法:大约10mg样品用于XRPD检测。
详细的XRPD参数如下:
X射线类型:Cu,Kα
Figure PCTCN2021105662-appb-000023
1.540598;
Figure PCTCN2021105662-appb-000024
1.544426
Kα2/Kα1强度比例:0.50
电压:45仟伏特(kV)
电流:40毫安培(mA)
发散狭缝:1/16度
扫描模式:连续
扫描范围:自3.0至40.0度
每步扫描时间:46.665秒
步长:0.0263度
2.本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Instruments Discovery DSC 2500及Q200型差示扫描量热仪
测试方法:取1~5毫克的样品放置于加盖的铝坩埚内,以10℃/min的升温速度在50mL/min干燥N2的保护下将样品从室温升至350℃,同时TA软件记录样品在升温过程中的热量变化。
3.本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Instruments Q5000型及Discovery TGA 5500型热重分析仪
测试方法:取2~5毫克的样品放置于铂金坩埚内,采用分段高分辨检测的方式,以10℃/min的升温速度在50mL/min干燥N 2的保护下将样品从室温升至350℃,同时TA软件记录样品在升温过程中的重量变化。
4.本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS(Surface Measurement Systems)公司的DVS Intrinsic仪器
DVS测试参数:
温度:25℃
样品量:10-30毫克
保护气体及流量:N 2,200mL/min
dm/dt:0.002%/min
最小dm/dt平衡时间:10min
最大平衡时间:180min
RH范围:0%RH-95%RH-0%RH
RH梯度:10%(90%RH-0%RH-90%RH),5%(95%RH-90%RH和90%RH-95%RH)
5.本发明溴离子检测分析方法
测试程序:按照电位滴定法,用硝酸银滴定液(0.1moL/L)滴定供试品溶液和空白溶液,每1mL硝酸银滴定液(0.1moL/L)相当于7.990mg的溴(Br)
计算方法:
Figure PCTCN2021105662-appb-000025
其中式中:
F:滴定度,每1mL硝酸银滴定液(0.1mol/L)相当于7.990mg的溴(Br);
W SPL:供试品溶液的称样量(g);
V SPL:供试品溶液消耗硝酸银滴定液(0.1mol/L)的体积(mL)
V 0:空白溶液消耗硝酸银滴定液(0.1mol/L)的体积(mL)
6.本发明水分含量检测分析方法
仪器型号:METTLER TOLEDO V30水分测试仪
测试方法:迅速加入已经精确称量的样品(样品中含水量约为5-25mg),搅拌时间为10s,卡尔费休试剂滴定至终点,得到样品的水分含量
7.本发明稳定性实验有关物质及含量分析方法
表8
Figure PCTCN2021105662-appb-000026
Figure PCTCN2021105662-appb-000027
8.本发明制剂过程所用主要仪器
主要仪器如表9所示:
表9
设备名称 仪器型号
湿法制粒混合机 G10
流化制粒包衣机 Mini-XYT
万向混合机 MD30
单冲压片机 DP30A
高效包衣机 Labcoating III
9.片剂含量、含量均匀的测试:
9.1设备型号:
高效液相检测仪(岛津LC-20A配置PDA/UV检测器或等同)
色谱柱:Agilent Eclipse Plus C18(150*4.6mm,3.5μm)P.N.:959963-902或等同
9.2色谱条件
流动相A:0.05%的三氟乙酸的水溶液;
流动相B:100%的乙腈;
柱温:40℃;
流速:1.0mL/min;
检测波长:220nm;
样品溶液浓度:0.1mg/mL,
进样体积:5μL;
梯度程序如下表10所示:
表10
时间(min) 流动相A(%) 流动相B(%)
0.00 95 5
2.00 95 5
22.00 5 95
27.00 5 95
28.00 95 5
40.00 95 5
10.供试品溶液的制备
10.1含量供试品溶液的制备:
按下表随机选取片子,准确称取所选片子的重量和,使用玛瑙研钵将片子研磨至细粉,按下表称取细粉于相应的棕色容量瓶中,加约量瓶体积的80%稀释剂,超声30min,放至室温,加稀释剂定容,取适量以8000rpm离心10min,取上清液。平行制备2份。
表11
Figure PCTCN2021105662-appb-000028
注:样品溶液在室温条件下可稳定78.0h
10.2含量均匀度供试品溶液的制备:
取本品1片药品(规格:10mg)于100mL棕色量瓶中,加适量稀释剂崩解后,加约80%棕色量瓶体积的稀释剂,超声30min,放至室温,加稀释剂定容,取适量以8000rpm离心10分钟,取上清液。平行制备10份。
取本品1片药品(规格:50mg)于500mL棕色量瓶中,加适量稀释剂崩解后,加约80%棕色量瓶体积的稀释剂,超声30min,放至室温,加稀释剂定容,取适量以8000rpm离心10分钟,取上清液。平行制备10份。
表12
Figure PCTCN2021105662-appb-000029
注:样品溶液在室温条件下可稳定78.0h。
10.3对照品溶液的制备
称取24mg式(II)化合物晶型B的对照品于200mL棕色量瓶中,加稀释剂适量,超声5min左右,溶解后冷至室温,定容,摇匀。平行配制2份,标记为STD#1、STD#2。
注:样品溶液在室温条件下可稳定98.0h。
11.片剂有关物质含量的检测试验方案:
11.1设备型号:
高效液相检测仪(岛津LC-20A配置PDA/UV检测器或等同)
色谱柱:Agilent Eclipse Plus C18(150*4.6mm,3.5μm)P.N.:959963-902或等同
11.2色谱条件
流动相A:0.05%的三氟乙酸的水溶液;
流动相B:100%的乙腈;
柱温:40℃;
流速:1.0mL/min;
检测波长:220nm;
样品溶液浓度:0.3mg/mL,
进样体积:5μL;
梯度程序如下表13所示:
表13
时间(min) 流动相A(%) 流动相B(%)
0.00 95 5
2.00 95 5
22.00 5 95
27.00 5 95
28.00 95 5
40.00 95 5
11.3供试品溶液的制备
11.3.1含量供试品溶液的制备:
按下表随机选取片子,准确称取所选片子的重量和,使用玛瑙研钵将片子研磨至细粉,按下表称取细粉于相应的棕色容量瓶中,加约量瓶体积的80%稀释剂,超声30min,放至室温,加稀释剂定容,取适量以8000rpm离心10分钟,取上清液。平行制备2份。
表14
Figure PCTCN2021105662-appb-000030
注:样品溶液在室温条件下可稳定205.0h。
11.4对照品溶液的制备
11.4.1对照品储备液制备:
称取36mg式(II)化合物晶型B的对照品于100mL棕色量瓶中,加稀释剂适量,超声5min左右溶解后,放置至室温,定容,摇匀。
11.4.21%对照品溶液制备:
用移液管移取1mL对照品储备溶液于100mL棕色量瓶中,加稀释剂至刻度,摇匀。
注:1%对照品溶液在室温下可稳定205.0h。
12.片剂溶出含量的检测试验方案:
12.1设备型号:
高效液相检测仪(Agilent 1260配置DAD检测器或等同)
色谱柱:Agilent Poroshell 120EC-C18(3.0*50mm,2.7μm)P.N.:699975-302或等同
12.2色谱条件
流动相A:0.05%的三氟乙酸的水溶液;
流动相B:100%的乙腈;
柱温:40℃;
流速:0.8mL/min;
检测波长:220nm;
样品溶液浓度:0.3mg/mL,
进样体积:5μL;
梯度程序如下表15所示:
表15
时间(min) 流动相A(%) 流动相B(%)
0.00 90 10
4.0 30 70
4.1 90 10
7.0 90 10
12.3对照品溶液的制备
称取约24mg的式(II)化合物晶型B的对照品于200mL棕色量瓶中,精密称定,加适量稀释剂,超声5分钟左右溶解后,放至室温,定容,摇匀。平行配制2份。分别移取5mL上述溶液分别于25mL棕色量瓶中,加溶媒定容。
注:10mg规格对照品溶液在室温条件下可稳定109.0h,10mg规格样品溶液在室温条件下可稳定108.0h;50mg规格对照品溶液在室温条件下可稳定108.0h,50mg规格样品溶液在室温条件下可稳定108.0h。
12.4溶出程序
(1)按中国药典所述的开始。
(2)溶媒温度平衡在37±0.5℃。
(3)随机取各批次片剂6片,称取每片片重,分别投放到6个溶出杯内(制剂中控实验每批次取3片)。
(4)在每个取样时间点,抽取5mL溶液。
(5)立即通过合格的过滤器过滤一部分样品溶液,弃去4mL初滤液,转移最后的滤液到棕HPLC进样小瓶中。盖紧进样小瓶盖并放置到HPLC***中以备进样。
附图说明
图1为式(I)化合物晶型A的XRPD谱图。
图2为式(I)化合物晶型A的DSC谱图。
图3为式(I)化合物晶型A的TGA谱图。
图4为式(I)化合物晶型A的DVS谱图。
图5为式(II)化合物晶型B的XRPD谱图。
图6为式(II)化合物晶型B的DSC谱图。
图7为式(II)化合物晶型B的TGA谱图。
图8为式(II)化合物晶型B的DVS谱图。
图9为式(III)化合物晶型C的XRPD谱图。
图10为式(III)化合物晶型C的DSC谱图。
图11为式(III)化合物晶型C的TGA谱图。
图12为式(IV)化合物晶型D的XRPD谱图。
图13为式(IV)化合物的晶型D的DSC谱图。
图14为式(IV)化合物晶型D的TGA谱图。
图15为式(IV)化合物晶型D的DVS谱图。
图16为式(V)化合物晶型E的XRPD谱图。
图17为式(V)化合物的晶型E的DSC谱图。
图18为式(V)化合物晶型E的TGA谱图。
图19为式(V)化合物晶型F的XRPD谱图。
图20为式(V)化合物的晶型F的DSC谱图。
图21为式(V)化合物晶型F的TGA谱图。
图22为式(VI)化合物晶型G的XRPD谱图。
图23为式(VI)化合物的晶型G的DSC谱图。
图24为式(VI)化合物晶型G的TGA谱图。
图25式(II)化合物晶型B在高压下的晶型稳定性研究对比图。
图26式(II)化合物晶型B在不同溶剂中的晶型稳定性研究对比图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1:式(I)化合物的制备
Figure PCTCN2021105662-appb-000031
Figure PCTCN2021105662-appb-000032
步骤A:将化合物1-1(10克,99.88毫摩尔,1当量)溶于甲醇(150毫升)中,加入肼基甲酸叔丁酯(13.20克,99.88毫摩尔,1当量),25摄氏度反应10小时。浓缩得到化合物1-2。
步骤B:将化合物1-2(8克,37.34毫摩尔,1当量)溶于醋酸(50毫升)和水(50毫升)的混合溶剂中,25摄氏度搅拌1小时,分批加入氰基硼氢化钠(2.58克,41.07毫摩尔,1.1当量),20摄氏度反应2小时。用1摩尔每升氢氧化钠水溶液调pH至7,二氯甲烷(100毫升×3)萃取,饱和碳酸氢钠水溶液(100毫升×2)洗,无水硫酸钠干燥,过滤,浓缩得到化合物1-3。
步骤C:将化合物1-3(7.2克,33.29毫摩尔,1当量)溶于甲醇(10毫升),加入盐酸甲醇(4摩尔每升,40毫升),20摄氏度反应4小时。浓缩得到化合物1-4。
步骤D:将化合物1-4(4.1克,35.30毫摩尔,1当量,2盐酸盐)和乙酰乙酸乙酯(9.19克,70.59毫摩尔,2当量)溶于醋酸(40毫升)中,氮气气氛下90摄氏度反应10小时。冷却,浓缩,制备级高效液相色谱(三氟乙酸条件)提纯得到化合物1-5。MS(ESI)m/z:183.1[M+H +]。
步骤E:将化合物1-5(1.1克,6.04毫摩尔,1当量)和化合物1-6(873.44毫克,6.64毫摩尔,1.1当量)溶解于N,N-二甲基甲酰胺(20毫升)中,加入碳酸钾(2.5克,18.11毫摩尔,3当量),90摄氏度反应12小时。加水(50毫升)稀释,乙酸乙酯(100毫升×3)萃取。合并有机相,饱和食盐水(100毫升×3)洗,无水硫酸钠干燥,过滤,浓缩,柱分离纯化得到化合物1-7。MS(ESI)m/z:294.1[M+H+]。
步骤F:将化合物1-7(300毫克,1.02毫摩尔,1当量),1-8(144.78毫克,1.23毫摩尔,1.2当量),4,5-双(二苯基膦)-9,9-二甲基氧杂蒽(118.19毫克,204.26微摩尔,0.2当量),碳酸铯(998.26毫克,3.06毫摩尔,3当量)和三(二亚苄基丙酮)二钯(187.04毫克,204.26微摩,0.2当量)溶于二氧六环(10毫升)中,氮气气氛下100摄氏度反应12小时。加水(20毫升)稀释,乙酸乙酯(20毫升×3)萃取。合并有机相,饱和食盐水(20毫升×3)洗,无水硫酸钠干燥,过滤,浓缩,柱分离纯化得到化合物1-9。MS(ESI)m/z:376.1[M+H +]。
步骤G:将化合物1-9(270毫克,718.19微摩尔,1当量),氢氧化钠(719.19微升,2摩尔每升,2当量)和二甲基亚砜(112.39毫克,1.44毫摩尔,2当量)溶于乙醇(5毫升)。室温下将双氧水(163.09毫克,1.44毫摩尔,138.21微升,纯度30%,2当量)缓慢加入反应液,25摄氏度反应2小时。加水(10毫升)稀释,乙酸乙酯(10毫升×3)萃取。合并有机相,饱和食盐水(10毫升×3)洗,无水硫酸钠干 燥,过滤,浓缩,制备级高效液相色谱(甲酸条件)提纯得到式(I)化合物。MS(ESI)m/z:394.2[M+H +]。
1H NMR(400MHz,DMSO-d 6)δ=9.26(s,1H),8.13(d,J=6.0Hz,1H),8.04(t,J=2.0Hz,1H),7.89-7.79(m,2H),7.39-7.35(m,1H),7.33-7.24(m,2H),6.57(dd,J=2.4,6.0Hz,1H),6.42(d,J=2.4Hz,1H),5.84(s,1H),4.20(tt,J=4.0,11.6Hz,1H),3.90(br dd,J=4.0,11.6Hz,2H),3.35(br s,2H),2.17(s,3H),1.99(dq,J=4.4,12.3Hz,2H),1.76-1.67(m,2H)。
实施例2:式(I)化合物晶型A的制备
称取式(I)化合物(500.65毫克)置于40毫升透明玻璃瓶中,加入7毫升乙醇,加热回流使完全溶解,关闭加热自然降温到25摄氏度后继续在25摄氏度下搅拌24小时,过滤,滤饼减压干燥(45摄氏度,≤-0.1MPa)得到式(I)化合物的晶型A,其XRPD、DSC、TGA和DVS谱图如图1-4所示。
实施例3:式(II)化合物晶型B的制备
依次将异丙醇(1154毫升)和式(I)化合物(57.7克)加入到3升的三口瓶中,开启加热至內温为80摄氏度,加入异丙醇(230.8毫升),体系变为澄清,再加入氢溴酸水溶液(29.67克),在回流状态下搅拌30分钟,关闭加热使体系自然降温到25摄氏度后继续在25摄氏度下搅拌16小时,过滤,滤饼用异丙醇淋洗两次(115.4毫升×2),滤饼真空干燥(45摄氏度,≤-0.1MPa)得到式(II)化合物的晶型B,其溴离子含量检测值是16.1%,水分含量检测值是3.77%,其XRPD、DSC、TGA和DVS谱图如图5-8所示。 1H NMR(400MHz,DMSO-d 6)δppm 10.34(brs,1H),8.09(d,J=6.8Hz,1H),8.01(brs,1H),7.91(t,J=1.6Hz,1H),7.73(d,J=7.6Hz,1H),7.58(dd,J=8.0Hz,J=1.20Hz,1H),7.51(t,J=8.0Hz,1H),7.46(brs,1H),6.85(dd,J=6.8Hz,J=2.4Hz,1H),6.64(d,J=2.4Hz,1H),5.96(s,1H),4.28-4.20(m,1H),3.91(dd,J=11.2Hz,J=3.6Hz,2H),3.42-3.36(m,2H),2.17(s,3H),2.03-1.92(m,2H),1.72(dd,J=12.4,J=2.4Hz,2H)。
实施例4:式(III)化合物晶型C的制备
称取式(II)化合物晶型B样品(50.18毫克)加入4毫升透明玻璃瓶中,再加入甲苯(0.5毫升),加热到105摄氏度搅拌16小时,自然降温到25摄氏度后过滤,滤饼减压旋干(45摄氏度,≤-0.1MPa)得到式(III)化合物的晶型C,其XRPD、DSC和TGA谱图如图9-11所示。 1H NMR(400MHz,DMSO-d 6)δppm 10.08(brs,1H),8.08(d,J=6.4Hz,1H),7.97(brs,1H),7.93(s,1H),7.64(t,J=8.4Hz,2H),7.47(t,J=8.0Hz,1H),7.43(brs,1H),6.80(dd,J=6.4Hz,J=1.6Hz,1H),6.57(d,J=2.0Hz,1H),5.94(s,1H),4.27-4.19(m,1H),3.91(dd,J=11.2Hz,J=3.6Hz,2H),3.39(t,J=12.0Hz,2H),2.17(s,3H),2.03-1.93(m,2H),1.72(dd,J=12.4,J=2.0Hz,2H)。
实施例5:式(IV)化合物晶型D的制备
称取式(I)化合物(约100.00毫克)加入8毫升玻璃瓶中,再加入丙酮(4.5毫升),加热到60摄氏度使溶解,再加入甲磺酸(1.05当量,19.0微升),60摄氏度搅拌1小时后关闭加热自然降温到室温,继 续在室温下搅拌12小时,过滤,滤饼减压干燥(50摄氏度)得到式(IV)化合物的晶型D,其XRPD、DSC、TGA和DVS谱图如图12-15所示。 1H NMR(400MHz,DMSO-d 6)δppm 9.99(brs,1H),8.08(d,J=6.4Hz,1H),7.96(brs,1H),7.94(s,1H),7.64(t,J=10.0Hz,2H),7.45(t,J=7.6Hz,1H),7.42(brs,1H),6.77(dd,J=6.4Hz,J=2.0Hz,1H),6.54(d,J=2.4Hz,1H),5.93(s,1H),4.27-4.19(m,1H),3.91(dd,J=11.6Hz,J=4.0Hz,2H),3.39(t,J=12.0Hz,2H),2.35(s,3H),2.18(s,3H),2.03-1.93(m,2H),1.72(dd,J=12.4,J=2.4Hz,2H)。
实施例6:式(V)化合物晶型E的制备
称取式(I)化合物(约100.00毫克)加入8毫升玻璃瓶中,再加入异丙醇(2毫升),加热到80摄氏度使溶解,再加入草酸(1.05当量,25.0毫克),80摄氏度搅拌1小时后关闭加热自然降温到室温,继续在室温下搅拌12小时,过滤,滤饼减压干燥(50摄氏度)得到式(V)化合物的晶型E,其XRPD、DSC和TGA谱图如图16-18所示。1H NMR(400MHz,DMSO-d 6)δppm 9.29(s,1H),8.13(d,J=6.0Hz,1H),8.04(t,J=1.6Hz,1H),7.85-7.82(m,2H),7.37(d,J=8.0Hz,1H),7.30(t,J=8.0Hz,1H),7.28(brs,1H),6.58(dd,J=6.0Hz,J=2.4Hz,1H),6.41(d,J=2.4Hz,1H),5.85(s,1H),4.23-4.17(m,1H),3.90(dd,J=11.6Hz,J=4.0Hz,2H),3.38(t,J=12.0Hz,2H),2.17(s,3H),2.05-1.94(m,2H),1.72(dd,J=12.4,J=2.0Hz,2H)。
实施例7:式(V)化合物晶型F的制备
称取式(I)化合物(约100.00毫克)加入8毫升玻璃瓶中,再加入乙腈(4毫升),加热到80摄氏度使溶解,再加入草酸(1.05当量,25.0毫克),80摄氏度搅拌1小时后关闭加热自然降温到室温,继续在室温下搅拌12小时,过滤,滤饼减压干燥(50摄氏度)得到式(V)化合物的晶型F,其XRPD、DSC和TGA谱图如图19-21所示。1H NMR(400MHz,DMSO-d 6)δppm 9.28(s,1H),8.13(d,J=5.6Hz,1H),8.04(t,J=2.0Hz,1H),7.86-7.82(m,2H),7.37(d,J=7.6Hz,1H),7.31(t,J=7.6Hz,1H),7.28(brs,1H),6.58(dd,J=6.0Hz,J=2.4Hz,1H),6.42(d,J=2.4Hz,1H),5.85(s,1H),4.24-4.16(m,1H),3.90(dd,J=11.6Hz,J=3.6Hz,2H),3.38(t,J=12.0Hz,2H),2.17(s,3H),2.05-1.94(m,2H),1.72(dd,J=12.0,J=2.0Hz,2H)。
实施例8:式(VI)化合物晶型G的制备
称取式(I)化合物(约100.00毫克)加入8毫升玻璃瓶中,再加入丙酮(4.5毫升),加热到60摄氏度使溶解,再加入磷酸(1.05当量,16.0微升),60摄氏度搅拌1小时后关闭加热自然降温到室温,继续在室温下搅拌12小时,过滤,滤饼减压干燥(50摄氏度)得到式(VI)化合物的晶型G,其XRPD、DSC和TGA谱图如图22-24所示。1H NMR(400MHz,DMSO-d 6)δppm 9.28(s,1H),8.13(d,J=5.6Hz,1H),8.04(t,J=1.6Hz,1H),7.85-7.83(m,2H),7.37(d,J=8.0Hz,1H),7.30(t,J=8.0Hz,1H),7.28(brs,1H),6.58(dd,J=5.6Hz,J=2.0Hz,1H),6.41(d,J=2.4Hz,1H),5.85(s,1H),4.24-4.16(m,1H),3.90(dd,J=11.6Hz, J=3.6Hz,2H),3.38(t,J=12.0Hz,2H),2.17(s,3H),2.05-1.94(m,2H),1.72(dd,J=12.8,J=2.4Hz,2H)。
实施例9
表16 10mg规格片剂的配方
材料 量(%) 量(g)
式(II)化合物晶型B 12.06 2.412
微晶纤维素 58.94 11.788
甘露醇 20.0 4.0
胶态二氧化硅 0.5 0.1
羟丙甲纤维素 1.5 0.3
交联羧甲纤维素钠(内加) 3.0 0.6
交联羧甲纤维素钠(外加) 3.0 0.6
硬脂酸镁 1.0 0.2
总量 100.0 20.0
共制成(片) -- 200
工艺步骤:
(1)预混
将式(II)化合物晶型B、微晶纤维素、甘露醇、胶态二氧化硅和交联羧甲纤维素钠分别按处方量称取,混合均匀,备用。
(2)羟丙甲纤维素溶液配置
称取羟丙甲纤维素适量,用水溶液配置成含6%的羟丙甲纤维素溶液,备用。
(3)制粒
将预混料按处方量加入6%的羟丙甲纤维素溶液约5mL制粒,根据制粒情况适当调整水的用量。制粒完成后将湿颗粒用20目筛网湿整粒。
(4)干燥
湿颗粒在60℃干燥,控制水分在3%以下。
(5)干整粒、总混
用20目筛网干整粒,颗粒加入处方量的交联羧甲纤维素钠混合均匀后,再加入处方量的硬脂酸镁混合均匀,备用。
(6)压片
采用冲模为6mm的压片机压制成片,压片中控制片重在合格范围内,硬度在5-9Kp,片子在10min内完全崩解。
实施例10
表17 10mg规格片剂的配方
材料 量(%) 量(g)
式(II)化合物晶型B 12.06 2.412
微晶纤维素 58.94 11.788
乳糖 20 4.0
胶态二氧化硅 0.5 0.1
羟丙甲纤维素 1.5 0.3
交联羧甲纤维素钠(内加) 3.0 0.6
交联羧甲纤维素钠(外加) 3.0 0.6
硬脂酸镁 1.0 0.2
总量 100.0 20.0
共制成(片) -- 200
工艺步骤:
(1)预混
将式(II)化合物晶型B、微晶纤维素、乳糖、胶态二氧化硅和交联羧甲纤维素钠分别按处方量称取,混合均匀,备用。
步骤(2)羟丙甲纤维素溶液配置,步骤(3)制粒,步骤(4)干燥,步骤(5)干整粒、总混,步骤(6)压片,与实施例9相似。
实施例11
表18 10mg规格片剂的配方
材料 量(%) 量(g)
式(II)化合物晶型 12.06 2.412
微晶纤维素 20 4.0
乳糖 58.94 11.788
胶态二氧化硅 0.5 0.1
羟丙甲纤维素 1.5 0.3
交联羧甲纤维素钠(内加) 3.0 0.6
交联羧甲纤维素钠(外加) 3.0 0.6
硬脂酸镁 1.0 0.2
总量 100.0 20.0
材料 量(%) 量(g)
共制成(片) -- 200
工艺步骤:
步骤(1)预混,步骤(2)羟丙甲纤维素溶液配置,步骤(3)制粒,步骤(4)干燥,步骤(5)干整粒、总混,步骤(6)压片,与实施例10相似。
实施例12
表19 10mg规格片剂的配方
材料 量(%) 量(g)
式(II)化合物晶型B 12.06 2.412
微晶纤维素 58.94 11.788
乳糖 20 4.0
胶态二氧化硅 0.5 0.1
羟丙甲纤维素 1.5 0.3
羧甲淀粉钠(内加) 3.0 0.6
羧甲淀粉钠(外加) 3.0 0.6
硬脂酸镁 1.0 0.2
总量 100.0 20.0
共制成(片) -- 200
工艺步骤:
步骤(1)预混,步骤(2)羟丙甲纤维素溶液配置,步骤(3)制粒,步骤(4)干燥,步骤(5)干整粒、总混,步骤(6)压片,与实施例10相似。将交联羧甲纤维素钠替换为羧甲淀粉钠。
实施例13
表20 10mg规格片剂的配方
材料 量(%) 量(g)
式(II)化合物晶型B 12.06 2.412
微晶纤维素 58.94 11.788
乳糖 20 4.0
胶态二氧化硅 0.5 0.1
羟丙甲纤维素 1.5 0.3
交联羧甲纤维素钠 6.0 1.2
硬脂酸镁 1.0 0.2
总量 100.0 20.0
共制成(片) -- 200
工艺步骤:
(1)混合
将式(II)化合物晶型B、微晶纤维素、乳糖、胶态二氧化硅、交联羧甲纤维素钠和硬脂酸镁分别按处方量称取,混合均匀,备用。
(2)压片
采用冲模为6mm的压片机压制成片,压片中控制片重在合格范围内,硬度在5-9Kp,片子在10min内完全崩解。
实施例14
表21 50mg规格片剂的配方
材料 量(%) 量(g)
式(II)化合物晶型B 12.06 12.06
微晶纤维素 20 20
乳糖 58.94 58.94
胶态二氧化硅 0.5 0.5
羟丙甲纤维素 1.5 1.5
交联羧甲纤维素钠(内加) 3.0 3.0
交联羧甲纤维素钠(外加) 3.0 3.0
硬脂酸镁 1.0 1.0
总量 100.0 100.0
共制成(片) -- 200
工艺步骤:
步骤(1)预混,步骤(2)羟丙甲纤维素溶液配置,步骤(3)制粒,步骤(4)干燥,步骤(5)干整粒、总混,步骤(6)压片,与实施例11相似。羟丙甲纤维素溶液浓度由6%变更为4.5%,采用冲模为11mm的压片机压制成片。
实施例15
表22 10mg规格片剂的配方
Figure PCTCN2021105662-appb-000033
Figure PCTCN2021105662-appb-000034
工艺步骤:
(1)预混
将原料药、乳糖、微晶纤维素、胶态二氧化硅、交联羧甲纤维素钠分别按处方量称取加入到湿法混合制粒机中进行搅拌混合。以370rpm的搅拌速度和1500rpm的剪切速度混合10min。
(2)羟丙甲纤维素溶液配置
称取羟丙甲纤维素适量,用水溶液配置成含3.9%的羟丙甲纤维素溶液,备用。
(3)制粒
将预混料按处方量加入3.9%的羟丙甲纤维素溶液约230.77mL,以150rpm的搅拌速度,1200rpm的剪切速度继续搅拌,总制粒时间控制在4min内。制粒完成后将湿颗粒转出湿法混合制粒机,选用20目筛网湿整粒。
(4)干燥
采用流化制粒包衣机进行干燥。进风温度设定为60℃,干燥终点水分控制在≤3.0%,干燥时间根据水分测定结果确定。
(5)整粒
干燥后选用20目筛网进行手工整粒。
(6)总混,中间体检测
采用万向混合机固定料斗进行混合,先将干颗粒和交联羧甲纤维素钠(外加)置于混合料斗中混合。混合速度为20rpm,混合时间为20min;再加入硬脂酸镁进行总混,混合速度为20rpm,总混时间为3min。混合完成后控制中间体的质量。
(7)压片
根据中间体含量,折算标准片重,采用单冲压片机压片。
冲模:6mm浅弧形圆冲,片重:100mg,片重差异:±7.5%,控制片子硬度为:6~9Kp(1Kp≈10N),片子在10min内完全崩解。
(8)包衣
包衣液的配置:按固含量12%的比例配置包衣液
按素片重量增重3.0%~6.0%的薄膜包衣预混剂称取包衣粉,搅拌溶于水中配制成12%的薄膜包衣液,采用高效包衣机进行薄膜包衣。包衣锅主机转速控制在8-10rpm,主机转速1200rpm,进风温度设定为68℃,出风温度控制在40~50℃之间。雾化压力为0.17Mpa,扇面压力为0.15Mpa。
在片剂达到要求的增重后,关闭加热***,继续烘约15min左右后取出包衣片剂。
(9)包装
将药片和固体药用高密度聚乙烯非织造布(泰维克)袋装干燥剂一起装入口服固体药用高度密聚乙烯塑料瓶(40mL)中,使用手持式感应封口机封口。
功率大小:1000W;封口时间:1.6s;包装规格:30片/瓶。
(10)成品检测
(11)入库
实施例16
表23 50mg规格药片的配方
Figure PCTCN2021105662-appb-000035
工艺步骤:
步骤(1)预混,步骤(2)羟丙甲纤维素溶液配置,与实施例15相似。
(3)制粒
将预混料按处方量加入3.9%的羟丙甲纤维素溶液约769.23mL,以200rpm的搅拌速度,1800rpm的剪切速度继续搅拌,总制粒时间控制在4min内。制粒完成后将湿颗粒转出湿法混合制粒机,选用20目筛网湿整粒。
步骤(4)干燥,步骤(5)整粒,步骤(6)总混、中间体检测,与实施例15相似。
(7)压片
根据中间体含量,折算标准片重,采用单冲压片机压片。
冲模:11mm浅弧形圆冲,片重:500mg,片重差异:±5%,控制片子硬度为:10~14Kp(1Kp≈10N),片子在10min内完全崩解。
步骤(8)包衣,步骤(9)包装,步骤(10)成品检测,步骤(11)入库,与实施例15相似。
实施例17 式(IV)化合物晶型D、式(II)化合物晶型B及其制剂的稳定性研究
式(IV)化合物晶型D的预稳定性研究表明,该晶型在40℃/75%RH及光照条件下,10天未见杂质含量的变化,证明其具有较好的稳定性。
式(II)化合物晶型B在高压下的晶型稳定性研究:将式(II)化合物晶型B的粉末加入圆形模具(直径6mm)中,加压直至压力达到350MPa左右,再取压片后的样品直接平铺在XRPD盘上测试,检测结果见图25结果显示式(II)化合物晶型B未变化,说明式(II)化合物晶型B对高压稳定。
式(II)化合物晶型B在溶剂中的晶型稳定性研究:将4份式(II)化合物晶型B(50.98毫克,51.25毫克,52.11毫克,49.23毫克)分别加入到4个透明玻璃瓶中,然后分别加入乙醇、乙腈、丙酮和乙酸乙酯,在25摄氏度搅拌16小时后过滤,滤饼减压旋干(45摄氏度,≤-0.1MPa)得到的固体检测XRPD,检测结果见图26。实验结果如下表24:式(II)化合物晶型B未变化,说明式(II)化合物晶型B对常见溶剂中是稳定。
表24
编号 溶剂 晶型 对应XRPD谱图编号
1 乙醇 B P12310-059-P1D
2 乙腈 B P12310-059-P2D
3 丙酮 B P12310-059-P3D
4 乙酸乙酯 B P12310-059-P4D
式(II)化合物晶型B在影响因素实验中的稳定性研究:每份样品称取1.5g,25℃/92.5%RH条件样品放入敞口的扁形称量瓶(70*35mm),60℃条件下的样品放入敞口的表面皿中,然后分别放入不同的保干器和鼓风干燥箱中考察;光照样品放入干净的表面皿中,铺成薄层,盖上石英玻璃盖,放入5000±500lux(可见光)与90μw/cm 2(紫外)条件下照射。实验结果如下表:
表25
Figure PCTCN2021105662-appb-000036
结果表明:式(II)化合物晶型B在高温、高湿及光照条件下稳定。
式(II)化合物晶型B在稳定性加速实验中的研究:稳定性加速实验:每份样品称取1.5g分别装入双层低密度聚乙烯(LDPE)袋,每层低密度聚乙烯袋分别扎扣密封,再将低密度聚乙烯袋子放入铝箔袋中并热封,分别放入40℃/75%RH条件下考察,实验结果如下表:
表26
Figure PCTCN2021105662-appb-000037
结果表明:式(II)化合物晶型B在长期放置条件下是稳定的。
包含式(II)化合物晶型B的片剂产品的稳定性:
加速实验:将下列各样品在40℃,75%RH条件下分别放置1、2、3、6个月取样,检测各样品中化合物的含量、有关物质和溶出情况。
表27 加速实验各样品的含量、有关物质和溶出
Figure PCTCN2021105662-appb-000038
Figure PCTCN2021105662-appb-000039
*溶出检测时间T=30min,n=6
从实验中可以观察到,本发明提供的片剂中的杂质在2个月的调查期间范围内保持相对稳定。片型的性能也在2个月的调查时间期限内保持。这些结果表明,本发明提供的制剂对于临床和其它用途投足够的稳定性。
实施例18 式(II)化合物晶型B的溶解度实验
式(II)化合物晶型B在不同pH缓冲液和生物媒介中的溶解度实验:称取2mg化合物,称量到2mL的玻璃瓶中,加入1mL的媒介,加上磁子于37℃、700rpm条件下在磁力搅拌器上搅拌。其中,缓冲液为pH1.0、pH2.0、SGF和水,目标浓度为10mg/mL。如遇澄清状态,则持续加化合物,继续搅拌,直至溶液不再有变澄清状况,直至搅拌24小时后取样测定。
表28
Figure PCTCN2021105662-appb-000040
注:SGF:模拟人类饥饿状态下空胃时的胃液。
结果表明:式(II)化合物晶型B在纯水、酸性溶液及胃模拟液中溶解度佳。
实施例19 式(II)化合物晶型B的引湿性实验
取两个干燥的具塞玻璃称量瓶(50×30mm)放置25/80%RH稳定性试验箱中平衡,精密称取平衡后称量瓶的重量m1,取供试品适量,分别平铺于上述两个称量瓶中,供试品厚度一般约为1mm,精密称量总重m2,将称量瓶敞口,并与瓶盖同置于上述稳定性试验箱中,于25℃药品稳定性试验箱中放置24小时。盖好称量瓶盖子,精密称定总重m 3
引湿性增重计算公式如下:增重百分率=100%×(m 3-m 2)/(m 2-m 1)
表29 式(II)化合物晶型B的引湿情况表
Figure PCTCN2021105662-appb-000041
吸湿性评价标准见下表30:
吸湿性分类 吸湿增重*(ΔW%)
潮解 吸收足量水分形成液体
极具吸湿性 ΔW%≥15%
有吸湿性 15%>ΔW%≥2%
略有吸湿性 2%>ΔW%≥0.2%
无或几乎无吸湿性 ΔW%<0.2%
注:*在25±1℃和80±2%RH下的吸湿增重
实施例20 Smad磷酸化抑制活性实验
实验方法:在白色透明底96孔微板中每孔加入35000个HEK293细胞(100微升不含基因蛋白的生长培养基)。5%二氧化碳气氛中37摄氏度孵化过夜。第二天除去培养基,加入不含基因蛋白的0.5%胚胎牛血清,90微升化合物溶液(不同浓度梯度),5%二氧化碳气氛中37摄氏度孵化4-5小时。加入10微升TGFβ1(TGFβ1最终浓度为20ng/mL),对照孔中加入10微升培养液,处理过夜。之后裂解,采用一步荧光素酶检测法检测荧光。
数据分析:原始数据换算成抑制率,曲线拟合得出IC 50值。表31提供了本发明化合物对Smad磷酸化的抑制活性。
实验结果:见表31:
表31
化合物 pSmad抑制IC 50(纳摩尔每升)
式(II)化合物晶型B 63.2
结论:式(II)化合物晶型B具有优异的pSmad抑制活性。证明式(II)化合物晶型B能够起到抑制TGF-β/SMAD信号通路的作用。
实施例21 小鼠结肠癌CT-26细胞BALB/c小鼠皮下同种移植瘤模型的体内抗肿瘤药效研究
实验目的:本研究主要的目的是在CT26小鼠同种移植瘤模型上研究受测化合物的抗肿瘤药效。
实验操作:细胞培养:小鼠结肠癌CT-26细胞体外单层培养,培养条件为RPMI-1640培养基中加10%胎牛血清,37摄氏度5%二氧化碳孵箱培养。一周两次用胰酶-乙二胺四乙酸(EDTA)进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
动物:BALB/c小鼠,雌性,6~8周龄。
肿瘤接种:将0.1毫升含3×10 5个CT26细胞的DPBS细胞悬液皮下接种于每只小鼠的右侧腹股沟处,接种当天开始给药。
实验指标:实验指标是考察肿瘤生长是否被抑制、延缓或治愈。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5L×W 2,L和W分别表示肿瘤的长径和短径。
实验结果:化合物肿瘤抑制效果见表32。
实验结论:式(I)化合物在小鼠结肠癌CT-26细胞BALB/c小鼠皮下同种移植瘤模型中具有明显的体内抗肿瘤药效。
表32 CT26同种异位移植实验结果
Figure PCTCN2021105662-appb-000042
实施例22 体内药代动力学研究
式(II)化合物晶型B的体内药代动力学研究
实验目的:本实验目的是评价化合物单次静脉注射和灌胃给药后的药代动力学行为,考察灌胃给药后的生物利用度。
实验操作:24只(12/性别)雌雄比格犬被分成4组。第1组动物单次静脉注射给药1mg/kg的测试物。第2组和第4组动物分别单次口服给予5和50mg/kg的测试物。第3组动物每天1次,连续7天口服给药,每次给药15mg/kg剂量的测试物。第1、2组和第4组的动物于给药前(0)和给药后0.0833(5分钟)、0.25(15分钟)、0.5(30分钟)、1、2、4、6、8、12和24小时采集血浆样品。第3组动物于第1天和第7天的给药前(0)和给药后0.0833(5分钟)、0.25(15分钟)、0.5(30分钟)、1、2、4、6、8、12和24小时,和第3、4、5和第6天的给药前(0)采集血浆样品。应用LC-MS/MS方法测定血浆样本中测试物的浓度。实验结果:PK性质评价结果见表33。
实验结论:式(II)化合物晶型B在犬体内有极佳的PK性质,口服生物利用度高。
表33 式(II)化合物晶型B的体内PK性质评价结果
组别 1 2 3(第1天) 3(第7天) 4
给药途径 静脉注射 口服 口服 口服 口服
剂量(mg/kg) 1 5 15 15 50
药动学参数 均值 均值 均值 均值 均值
C 0(nM) 1510 -- -- -- --
组别 1 2 3(第1天) 3(第7天) 4
给药途径 静脉注射 口服 口服 口服 口服
剂量(mg/kg) 1 5 15 15 50
药动学参数 均值 均值 均值 均值 均值
C max(nM) -- 3150 9410 10900 57900
T max(h) -- 1 0.583 0.75 0.542
T 1/2(h) 1.03 2.23 2.45 2.81 2.73
Vd ss(L/kg) 1.59 -- -- -- --
CL(mL/min/kg) 17.1 -- -- -- --
AUC 0-last(nM·h) 2490 8630 26200 25700 160000
生物利用度(%) -- 69.8 69.8 -- 127
T 1/2:半衰期;Vd ss:分布容积;Cl:清除率;AUC 0-last:曲线下面积;C 0:起始浓度;C max:最大浓度;T max:浓度达峰时间。
实施例23 包含式(II)化合物晶型B的片剂产品的体内药4代动力学研究
口服给药组3只比格犬(雄性),通过口服给予实施例14所得包含式(II)化合物晶型B的片剂产品。口服给药片剂产品组动物于给药前(0)和给药后0.25、0.50、1.0、2.0、4.0、8.0和24.0小时采集血浆样品。经乙腈沉淀蛋白后,取上清进样,采用LC-MS/MS法测定血药浓度,使用WinNonlin Version 6.3(Pharsight,Mountain View,CA)药动学软件,以非房室模型线性对数梯形法计算包含式(II)化合物晶型B的片剂产品的相关药代动力学参数。
药代动力学研究结果显示,与静脉注射相比(见表33所示静脉注射数据),口服给药后的片剂产品(表34)在犬体内具有极佳的PK性质,口服生物利用度高。
表34 实施例14所得片剂产品在比格犬体内的药代动力学评价结果
给药方式 口服给药
给药量 150mg/动物
C max(nM) 18967
T max(h) 0.500
T 1/2(h) 2.53
AμC 0-last(nM·h) 43751
AμC 0-inf(nM·h) 44485
F% 83.67

Claims (21)

  1. 式(I)化合物的晶型A,其Cu Kα辐射的X射线粉末衍射图谱在下列任意一组2θ角处具有特征衍射峰:
    (1)15.96±0.20°、18.65±0.20°、20.94±0.20°和23.57±0.20°;
    (2)7.97±0.20°、13.21±0.20°、14.17±0.20°、15.96±0.20°、18.65±0.20°、20.94±0.20°、21.52±0.20°和23.57±0.20°;
    (3)7.97±0.20°、12.20±0.20°、12.78±0.20°、13.21±0.20°、14.17±0.20°、15.96±0.20°、18.65±0.20°、20.94±0.20°、21.52±0.20°、22.05±0.20°、23.57±0.20°和25.01±0.20°;
    (4)5.84°、7.97°、9.30°、11.69°、12.20°、12.78°、13.21°、14.17°、14.86°、15.52°、15.96°、16.60°、16.91°、17.58°、18.25°、18.65°、19.21°、19.50°、20.11°、20.94°、21.52°、22.05°、22.80°、23.05°、23.57°、24.06°、25.01°、25.33°、26.49°、26.93°、27.36°、28.09°、28.54°和29.96°;
    Figure PCTCN2021105662-appb-100001
  2. 根据权利要求1所述的晶型A,其特征在于,具备下列任意一项特征:
    (1)其XRPD图谱如图1所示;
    (2)其差示扫描量热曲线在192.6℃处有吸热峰;
    (3)其DSC图谱如图2所示。
  3. 式(I)化合物药学上可接受的盐,其特征在于,所述药学上可接受的盐为氢溴酸盐、甲磺酸盐、草酸盐或磷酸盐,
    Figure PCTCN2021105662-appb-100002
  4. 根据权利要求3所述的药学上可接受的盐,其特征在于,所述药学上可接受的盐为如式(I-1)所示的水合物、如式(II)所示的水合物、如式(III)所示的化合物、如式(IV)所示的化合物、如式(V)所示的化合物或如式(VI)所示的化合物,
    Figure PCTCN2021105662-appb-100003
    其中,x为0.9~1.1,y为0.9~1.1。
  5. 如权利要求4中所述式(II)化合物的晶型B,其Cu Kα辐射的X射线粉末衍射图谱在下列任意一组2θ角处具有特征衍射峰:
    Figure PCTCN2021105662-appb-100004
    (1)10.98±0.20°、19.53±0.20°、24.37±0.20°和25.32±0.20°;
    (2)9.27±0.20°、10.98±0.20°、13.99±0.20°、19.53±0.20°、22.01±0.20°、24.37±0.20°、25.32±0.20°和26.90±0.20°;
    (3)9.27±0.20°、10.98±0.20°、13.99±0.20°、14.83±0.20°、17.50±0.20°、19.53±0.20°、20.37±0.20°、22.01±0.20°、24.37±0.20°、24.78±0.20°、25.32±0.20°和26.90±0.20°;
    (4)8.41°、9.27°、10.98°、11.64°、13.99°、14.44°、14.83°、17.50°、18.55°、19.53°、19.78°、 20.37°、21.08°、21.48°、22.01°、22.76°、23.41°、23.84°、24.37°、24.78°、25.32°、26.90°、27.34°、28.15°、29.29°、29.96°、30.36°、31.23°、32.70°、33.25°、34.17°、35.50°和38.32°。
  6. 根据权利要求5所述的晶型B,其特征在于,具备下列任意一项特征:
    (1)其XRPD图谱如图5所示;
    (2)其差示扫描量热曲线在130.7℃和181.8℃处有吸热峰;
    (3)其DSC图谱如图6所示。
  7. 如权利要求4中所述式(III)化合物的晶型C,其Cu Kα辐射的X射线粉末衍射图谱在下列任意一组2θ角处具有特征衍射峰:
    Figure PCTCN2021105662-appb-100005
    (1)11.21±0.20°、18.69±0.20°、22.47±0.20°和25.60±0.20°;
    (2)7.38±0.20°、11.21±0.20°、16.64±0.20°、18.69±0.20°、21.25±0.20°、22.47±0.20°、25.60±0.20°和29.98±0.20°;
    (3)7.38±0.20°、11.21±0.20°、16.64±0.20°、18.69±0.20°、20.57±0.20°、21.25±0.20°、21.80±0.20°、22.47±0.20°、25.60±0.20°、26.27±0.20°、28.50±0.20°和29.98±0.20°;
    (4)7.38°、10.33°、11.21°、14.75°、16.64°、17.84°、18.69°、19.41°、20.57°、21.25°、21.80°、22.47°、22.81°、23.12°、25.24°、25.60°、26.27°、27.61°、28.50°、28.76°、29.64°、29.98°、31.65°和32.94°。
  8. 根据权利要求7所述的晶型C,其特征在于,具备下列任意一项特征:
    (1)其XRPD图谱如图9所示;
    (2)其差示扫描量热曲线在232.4℃处有吸热峰;
    (3)其DSC图谱如图10所示。
  9. 如权利要求4中所述式(IV)化合物的晶型D,其Cu Kα辐射的X射线粉末衍射图谱在下列任意一组2θ角处具有特征衍射峰:
    Figure PCTCN2021105662-appb-100006
    (1)5.74±0.20°、8.84±0.20°、11.91±0.20°、16.70±0.20°、17.61±0.20°、18.45±0.20°、19.09±0.20°、20.46±0.20°、22.98±0.20°、25.35±0.20°、25.81±0.20°和27.22±0.20°;
    (2)5.74°、8.84°、11.91°、13.28°、13.88°、15.00°、16.70°、17.61°、18.21°、18.45°、19.09°、20.46°、21.76°、22.98°、23.94°、25.35°、25.81°、26.64°、27.22°、27.82°、29.04°、30.64°、31.11°、33.24°、33.80°、35.94°和39.19°。
  10. 根据权利要求9所述的晶型D,其特征在于,具备下列任意一项特征:
    (1)其XRPD图谱如图12所示;
    (2)其差示扫描量热曲线在204.4℃处有吸热峰;
    (3)其DSC图谱如图13所示。
  11. 如权利要求4中式(V)化合物的晶型E或晶型F,其中,
    所述晶型E在Cu Kα辐射的X射线粉末衍射图谱在下列任意一组2θ角处具有特征衍射峰:
    Figure PCTCN2021105662-appb-100007
    (1)6.83±0.20°、7.25±0.20°、10.56±0.20°、13.18±0.20°、18.10±0.20°、19.00±0.20°、19.77±0.20°、20.20±0.20°、22.16±0.20°、23.90±0.20°、24.37±0.20°和25.58±0.20°;
    (2)5.12°、6.39°、6.83°、7.25°、9.96°、10.56°、12.75°、13.18°、13.60°、14.56°、14.95°、15.66°、16.76°、17.17°、18.10°、19.00°、19.36°、19.77°、20.20°、20.80°、21.80°、22.16°、22.53°、23.90°、24.37°、25.00°、25.58°、26.01°、26.93°、27.66°、28.36°、29.27°、32.17°、32.68°和36.51°;
    所述晶型F在Cu Kα辐射的X射线粉末衍射图谱在下列任意一组2θ角处具有特征衍射峰:
    (1)5.15±0.20°、7.93±0.20°、10.56±0.20°、15.40±0.20°、16.79±0.20°、17.98±0.20°、19.33±0.20°、20.20±0.20°、21.11±0.20°、22.49±0.20°、23.84±0.20°和26.63±0.20°;
    (2)5.15°、6.44°、7.93°、10.56°、11.69°、12.82°、13.45°、15.40°、16.26°、16.79°、17.98°、19.33°、20.20°、21.11°、22.04°、22.49°、23.49°、23.84°、24.32°、25.80°、26.63°、27.39°、28.47°、34.57°和 36.44°。
  12. 根据权利要求11所述的晶型E或晶型F,其特征在于,
    所述晶型E具备下列任意一项特征:
    (1)其XRPD图谱如图16所示;
    (2)其差示扫描量热曲线在82.1℃、129.3℃、145.6℃、168.3℃处有吸热峰;
    (3)其DSC图谱如图17所示;
    所述晶型F具备下列任意一项特征:
    (1)其XRPD图谱如图19所示;
    (2)其差示扫描量热曲线在97.6℃、145.3℃、211.5℃处有吸热峰;
    (3)其DSC图谱如图20所示。
  13. 如权利要求4中所述式(VI)化合物的晶型G,其Cu Kα辐射的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:
    Figure PCTCN2021105662-appb-100008
    4.94°±0.20°、9.84°±0.20°、10.60°±0.20°、14.75°±0.20°、15.72°±0.20°、16.85°±0.20°、18.04°±0.20°、18.99°±0.20°、20.37°±0.20°、21.20°±0.20°、21.75°±0.20°、22.32°±0.20°、23.51°±0.20°、24.70°±0.20°、26.73°±0.20°和29.12°±0.20°。
  14. 根据权利要求13所述的晶型G,其特征在于,具备下列任意一项特征:
    (1)其XRPD图谱如图22所示;
    (2)其差示扫描量热曲线在62.4℃、98.4℃、110.7℃、158.0℃处有吸热峰;
    (3)其DSC图谱如图23所示。
  15. 一种药物组合物,其包含活性成分、填充剂、粘合剂、崩解剂和润滑剂,
    Figure PCTCN2021105662-appb-100009
    所述活性成分为式(I)化合物或其药学上可接受盐。
  16. 根据权利要求15所述的药物组合物,其特征在于,所述药物组合物的剂型为片剂。
  17. 根据权利要求16所述的药物组合物,其特征在于,所述片剂每片由以下质量分数的成分组成:活性成分10%~15%、填充剂75%~82%、粘合剂1%~3%、崩解剂4%~10%和润滑剂1%~3%。
  18. 根据权利要求17所述的药物组合物,其特征在于,所述片剂每片由以下质量分数的成分组成:活性成分12.06%、填充剂78.94%、粘合剂1.5%、崩解剂6.0%和润滑剂1.5%。
  19. 根据权利要求15-18任一项所述的药物组合物,其特征在于,所述填充剂选自微晶纤维素、甘露醇、乳糖、淀粉、蔗糖或预胶化淀粉中一种或多种;
    所述粘合剂选自羟丙甲纤维素、聚维酮、羟丙基纤维素、甲基纤维素、乙基纤维素或羧甲基纤维素钠中一种或多种;
    所述崩解剂选自交联羧甲纤维素钠、羧甲淀粉钠、羟丙基淀粉、低取代羟丙纤维素或交联聚维酮中一种或多种;
    所述润滑剂选自胶态二氧化硅、硬脂酸镁、硬脂酸、滑石粉或硬脂富马酸钠中一种或多种。
  20. 根据权利要求16所述的药物组合物,其特征在于,所述片剂每片由选自以下任意一组质量分数的成分组成:
    (1)活性成分12.06%、微晶纤维素58.94%、甘露醇20%、胶态二氧化硅0.5%、羟丙甲纤维素1.5%、交联羧甲纤维素钠6.0%和硬脂酸镁1.0%;
    (2)活性成分12.06%、微晶纤维素58.94%、乳糖20%、胶态二氧化硅0.5%、羟丙甲纤维素1.5%、交联羧甲纤维素钠6.0%和硬脂酸镁1.0%;
    (3)活性成分12.06%、微晶纤维素20%、乳糖58.94%、胶态二氧化硅0.5%、羟丙甲纤维素1.5%、交联羧甲纤维素钠6.0%和硬脂酸镁1.0%;
    (4)活性成分12.06%、微晶纤维素58.94%、乳糖20%、胶态二氧化硅0.5%、羟丙甲纤维素1.5%、羧甲淀粉钠6.0%和硬脂酸镁1.0%;
    所述活性成分为权利要求3所述的如式(I-1)所示的水合物、如式(II)所示的水合物、如式(III)所示的化合物、权利要求5或6所述的式(II)化合物的晶型B或权利要求7或8所述的式(III)化合物的晶型C。
  21. 根据权利要求15-18或20任一项所述的药物组合物,其特征在于,所述活性成分为式(II)化合物的晶型B。
PCT/CN2021/105662 2020-07-23 2021-07-12 作为TGF-βR1抑制剂的吡啶氧基连吡唑类化合物的盐型、晶型以及其药物组合物 WO2022017208A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180007608.5A CN114867723B (zh) 2020-07-23 2021-07-12 作为TGF-βR1抑制剂的吡啶氧基连吡唑类化合物的盐型、晶型以及其药物组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010717761.4 2020-07-23
CN202010717761 2020-07-23

Publications (1)

Publication Number Publication Date
WO2022017208A1 true WO2022017208A1 (zh) 2022-01-27

Family

ID=79728505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105662 WO2022017208A1 (zh) 2020-07-23 2021-07-12 作为TGF-βR1抑制剂的吡啶氧基连吡唑类化合物的盐型、晶型以及其药物组合物

Country Status (2)

Country Link
CN (1) CN114867723B (zh)
WO (1) WO2022017208A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951939A (zh) * 2001-05-24 2007-04-25 伊莱利利公司 作为药物的新的吡唑衍生物
TW201329067A (zh) * 2011-12-08 2013-07-16 Amgen Inc 作為gka活化劑之脲化合物
CN106795139A (zh) * 2014-10-07 2017-05-31 伊莱利利公司 氨基吡啶基氧基吡唑化合物
WO2020151749A1 (zh) * 2019-01-24 2020-07-30 南京明德新药研发有限公司 作为TGF-βR1激酶抑制剂的5-(4-吡啶氧基)吡唑类化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951939A (zh) * 2001-05-24 2007-04-25 伊莱利利公司 作为药物的新的吡唑衍生物
TW201329067A (zh) * 2011-12-08 2013-07-16 Amgen Inc 作為gka活化劑之脲化合物
CN106795139A (zh) * 2014-10-07 2017-05-31 伊莱利利公司 氨基吡啶基氧基吡唑化合物
WO2020151749A1 (zh) * 2019-01-24 2020-07-30 南京明德新药研发有限公司 作为TGF-βR1激酶抑制剂的5-(4-吡啶氧基)吡唑类化合物

Also Published As

Publication number Publication date
CN114867723A (zh) 2022-08-05
CN114867723B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US11753406B2 (en) Salts of a PD-1/PD-L1 inhibitor
EP3390389B1 (en) Polycyclic tlr7/8 antagonists and use thereof in the treatment of immune disorders
TW202126652A (zh) 作為免疫調節劑之吡啶并[3,2—d]嘧啶化合物
EP1557415B1 (en) Heterocyclic compounds and antitumor drugs containing the same as the active ingredient
TR201807311T4 (tr) Dispiropirolidin derivesi.
TW201536779A (zh) 化合物
WO2018018986A1 (zh) 二苯氨基嘧啶及三嗪化合物、其药用组合物及用途
EA012452B1 (ru) Ингибиторы взаимодействия между mdm2 и р53
KR20070032810A (ko) 포스포티딜이노시톨(pi) 3―키나제 저해제로서의2,4,6―삼치환 피리미딘 및 암 치료에서의 그의 용도
WO2018228446A1 (zh) 氨基嘧啶类化合物及其制备方法和应用
TW200800194A (en) Kinase inhibitors
EP3725786B1 (en) Crystal form and salt form of tgf-bri inhibitor and preparation method therefor
WO2022028367A1 (zh) 化合物的固体形式
WO2022017208A1 (zh) 作为TGF-βR1抑制剂的吡啶氧基连吡唑类化合物的盐型、晶型以及其药物组合物
CN102971296A (zh) 包含n-(4-(2-氨基-3-氯吡啶-4-基氧基)-3-氟苯基)-4-乙氧基-1-(4-氟苯基)-2-氧代-1, 2-二氢吡啶-3-羧酰胺的药物组合物
WO2023151559A1 (zh) 杂环化合物、包含其的药物组合物及其抗肿瘤应用
WO2020228729A1 (zh) 喹唑啉酮类化合物的晶型及其制备方法
WO2021197339A1 (zh) 作为atm抑制剂的喹啉并吡咯烷-2-酮类化合物的晶型及其应用
CA3098336A1 (en) Crystal form of c-met inhibitor and salt form thereof and preparation method therefor
JP2008208074A (ja) ピラジン誘導体を有効成分とする抗がん剤
WO2022016420A1 (zh) 一种喹唑啉酮类化合物的晶型、其制备方法及应用
TW201941774A (zh) 二氫唏衍生物
WO2023104107A1 (zh) 3,4-二氢异喹啉类化合物的盐及其应用
WO2022017446A1 (zh) Akt抑制剂的单位剂量组合物
WO2020043078A1 (zh) 新型氮杂三环类化合物的盐型、晶型及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21847111

Country of ref document: EP

Kind code of ref document: A1