WO2022016866A1 - 离心压气机的喘振检测方法 - Google Patents

离心压气机的喘振检测方法 Download PDF

Info

Publication number
WO2022016866A1
WO2022016866A1 PCT/CN2021/078044 CN2021078044W WO2022016866A1 WO 2022016866 A1 WO2022016866 A1 WO 2022016866A1 CN 2021078044 W CN2021078044 W CN 2021078044W WO 2022016866 A1 WO2022016866 A1 WO 2022016866A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
value
record value
signal record
surge
Prior art date
Application number
PCT/CN2021/078044
Other languages
English (en)
French (fr)
Inventor
诸葛伟林
陈昊翔
张扬军
梁忠锦
Original Assignee
清华大学
势加透博(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 势加透博(北京)科技有限公司 filed Critical 清华大学
Publication of WO2022016866A1 publication Critical patent/WO2022016866A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring

Definitions

  • the present disclosure relates to the technical field of impeller machinery, and in particular, to a surge detection method of a centrifugal compressor.
  • Surge of centrifugal compressor refers to the vibration of centrifugal compressor under abnormal working conditions when the working flow is lower than the threshold of surge flow. Surge is very harmful to centrifugal compressors. Therefore, it is necessary to detect the working state of centrifugal compressors during actual use to prevent them from entering the surge area with small flow.
  • the surge detection method of a centrifugal compressor usually includes: measuring the actual working flow of the centrifugal compressor online, and comparing the measured actual working flow with a surge flow threshold, which is obtained from a pre-experiment. Threshold; if the actual working flow is lower than the surge flow threshold, it is judged that the centrifugal compressor has surge.
  • the above-mentioned surge flow threshold is not fixed.
  • the surge flow threshold will change when the centrifugal compressor is running in the system, and the surge flow threshold will also change after the centrifugal compressor is aged for a long time. Therefore, The detection effect of the above surge detection method is not good.
  • a reasonable and effective surge detection method for a centrifugal compressor has not been provided in the related art.
  • the present disclosure proposes a surge detection method for a centrifugal compressor.
  • the technical solution includes:
  • a surge detection method for a centrifugal compressor which is used in a motor controller, where the motor controller is connected to a drive motor through a wire, and the drive motor is connected to the centrifugal compressor through a rotating shaft
  • the rotor of the driving motor and the impeller of the centrifugal compressor are on the same axis, and the method includes:
  • Whether the centrifugal compressor is surging is determined according to the fluctuation range of the recorded signal value, and the fluctuation range is used to indicate the maximum change range of the recorded signal value during the process of increasing or decreasing.
  • the determining whether surge occurs in the centrifugal compressor according to the fluctuation range of the recorded value of the signal includes:
  • the fluctuation amplitude is used to indicate the fluctuation amplitude of the signal recording value, and the preset surge condition includes that at least two consecutive fluctuation amplitudes are both greater than a surge threshold.
  • the preset surge condition includes a plurality of the fluctuation amplitudes showing an increasing trend in time, and at least two consecutive fluctuation amplitudes are both greater than the surge threshold.
  • the fluctuation amplitude is used to indicate the corresponding fluctuation amplitude of the signal record value before the change trend is changed, and the change trend is used to indicate an increasing trend of the signal record value or decreasing trend.
  • the signal record value of the signal to be detected includes a plurality of signal record values of the signal to be detected obtained according to a preset sampling frequency
  • the method further includes:
  • the j-th fluctuation amplitude value is obtained, and the j-th fluctuation amplitude value is The absolute value of the difference between the currently recorded maximum parameter and the minimum parameter, the maximum parameter is the maximum signal record value in the process of the change trend corresponding to the i-1th signal record value, and the minimum parameter is the ith signal record value - 1 minimum signal record value during the change trend process corresponding to the signal record value;
  • the i is a positive integer with an initial value of 2
  • the j is a positive integer with an initial value of 1.
  • the initial values of the maximum parameter and the minimum parameter are both the first recorded signal values; the method further includes:
  • the method further includes:
  • the minimum parameter is reset to the i-th said signal record value.
  • the acquiring the signal record value of the signal to be detected includes:
  • the estimated rotational speed signal value output by the preset estimation model is collected according to the preset sampling frequency, and the absolute value of the difference between the collected estimated rotational speed signal value and the input target rotational speed signal value is determined as the rotational speed of the drive motor the signal record value of the signal; and/or,
  • the signal record value of the input current signal of the motor controller is collected according to the preset sampling frequency.
  • the embodiment of the present disclosure provides a surge detection method for a centrifugal compressor. Since a motor controller is connected to a drive motor through a wire, the drive motor is connected to the centrifugal compressor through a rotating shaft, and the rotor of the drive motor and the impeller of the centrifugal compressor are in the same On the shaft, the drive motor and the centrifugal compressor share the same shaft, so as to satisfy the basic physical principle of mutual balance between electromagnetic torque and aerodynamic torque.
  • the motor controller can obtain the signal record value of the signal to be detected, and the signal to be detected includes the rotational speed signal of the drive motor.
  • the surge detection method is not limited by the object to be measured, and it can be used in different types of compressors. Rapid and accurate online surge detection can be achieved throughout the entire life cycle of a centrifugal compressor.
  • FIG. 1 shows a schematic structural diagram of an electric centrifugal compressor system provided by an exemplary embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of the principle of a negative feedback regulation loop of a motor controller provided by an exemplary embodiment of the present disclosure
  • FIG. 3 shows a flowchart of a surge detection method for a centrifugal compressor provided by an exemplary embodiment of the present disclosure
  • FIG. 4 shows a flowchart of a surge detection method for a centrifugal compressor provided by another exemplary embodiment of the present disclosure
  • FIG. 5 shows a flowchart of a surge detection method for a centrifugal compressor provided by another exemplary embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of the fluctuation amplitude corresponding to the rotational speed signal involved in the surge detection method for a centrifugal compressor provided by an exemplary embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of the fluctuation amplitude corresponding to the input current signal involved in the surge detection method for a centrifugal compressor provided by an exemplary embodiment of the present disclosure
  • FIG. 8 shows a schematic structural diagram of a surge detection device for a centrifugal compressor provided by an exemplary embodiment of the present disclosure.
  • centrifugal compressor also known as a centrifugal compressor, is a compressor in which the airflow in the impeller flows substantially radially outward.
  • Centrifugal compressors have the advantages of small size, light weight, high efficiency, low noise, and stable operation, and are widely used in transportation power systems, energy systems, and industrial gas compression.
  • the working flow range of centrifugal compressors is limited by the surge boundary and the plugging boundary. When the actual working flow is lower than the surge flow threshold, large-scale flow separation occurs inside the centrifugal compressor and surge occurs. Surge leads to low-frequency and large airflow oscillation in the compression system, which makes the centrifugal compressor unable to work normally, and generates huge noise and mechanical vibration at the same time. Therefore, in the actual use process, it is necessary to detect the working state of the centrifugal compressor to prevent it from entering the surge area with small flow.
  • the main method of centrifugal compressor surge detection is to measure the actual working flow of the centrifugal compressor online, and compare the measured actual working flow with the surge flow threshold, which is the threshold obtained in the pre-test; When the working flow is lower than the surge flow threshold, it is judged that the centrifugal compressor has surge.
  • the above-mentioned surge flow threshold is not fixed. The surge flow threshold will change when the centrifugal compressor is running in the system, and the surge flow threshold will also change after the centrifugal compressor is aged for a long time. Therefore, The above surge detection methods are easy to fail, and the detection effect is not good.
  • the embodiment of the present disclosure provides a surge detection method for a centrifugal compressor, which can be used to solve the above-mentioned technical problems.
  • the motor controller is connected with the drive motor through wires, the drive motor is connected with the centrifugal compressor through the rotating shaft, and the rotor of the drive motor and the impeller of the centrifugal compressor are coaxial, that is, the drive motor and the centrifugal compressor share the same rotating shaft, so as to satisfy the electromagnetic torque
  • the motor controller can obtain the signal record value of the signal to be detected.
  • the signal to be detected includes the speed signal of the driving motor and/or the input current signal of the motor controller; according to the fluctuation of the recorded value of the signal
  • the amplitude is used to determine whether the centrifugal compressor has surge, and the fluctuation amplitude is used to indicate the maximum change amplitude of the signal record value in the process of increasing or decreasing; it avoids the poor surge detection effect caused by the change of the surge flow threshold in the related art.
  • the surge detection method is not limited by the measured object, and can quickly and accurately realize the surge online in the whole life cycle of different types of centrifugal compressors. detection.
  • FIG. 1 shows a schematic structural diagram of an electric centrifugal compressor system provided by an exemplary embodiment of the present disclosure.
  • the electric centrifugal compressor system includes a motor controller 11 , a drive motor 12 and a centrifugal compressor 13 .
  • the motor controller 11 is connected to the centrifugal compressor 13 through the drive motor 12, that is, the motor controller 11 is connected to the drive motor 12 through a wire, and the drive motor 12 is connected to the centrifugal compressor 13 through a rotating shaft.
  • the drive motor 12 is a permanent magnet synchronous motor, which shares a rotor system with the centrifugal compressor 13, that is, the drive motor 12 and the centrifugal compressor 13 share a rotating shaft, that is, the rotor of the drive motor 12 and the impeller of the centrifugal compressor 13 are coaxial. Therefore, the electromagnetic force between the rotors and the aerodynamic force received by the impeller act on the shaft at the same time to achieve dynamic balance.
  • the drive motor 12 is used to drive the impeller of the centrifugal compressor 13 to rotate at a certain speed
  • the motor controller 11 is used to provide a certain amount of current to the drive motor 12 according to its own control logic, so as to adjust the speed and torque of the drive motor 12
  • the control is performed so as to realize the control of the centrifugal compressor 13 . That is, the motor controller 11 is used to invert the DC current input from the outside into a three-phase AC current, and input the inverted Samsung AC current to the drive motor 12 .
  • the motor controller 11 is provided with a closed-loop control algorithm, and through the built-in current observer and a preset estimation model, the output current of the motor controller 11 is adjusted in real time to meet the requirements of the externally input target rotational speed.
  • the motor controller 11 includes a rotational speed regulator 21 , a torque regulator 22 and an inverter 23 , and the motor controller 11 is used for a target rotational speed input from the outside target torque Negative feedback adjustment is performed on the current estimated rotational speed ⁇ m and estimated torque T e of the motor to ensure that the rotational speed of the drive motor 12 and the input target rotational speed are Consistent.
  • the negative feedback regulation includes two regulation loops: the current regulation loop of the inner loop and the rotational speed regulation loop of the outer loop, the rotational speed regulator 21 is located in the rotational speed regulation loop of the outer loop, the torque regulator 22 is located in the current regulation loop of the inner loop, Inverter 23 is used to convert the DC current Inverted to three-phase alternating current.
  • the adjustment loop of the inner loop has a short response time, so the change of the current and the change of the estimated speed are basically synchronous but the change phase is opposite.
  • the changes of speed and current are in opposite phases because when the speed is high, the current is reduced to reduce the electromagnetic torque to slow down the motor, and when the speed is low, the current is increased to increase the electromagnetic torque to speed up the motor.
  • the motor controller 11 changes the magnitude of the output current to change the driving torque received by the rotor of the driving motor 12 to achieve a new torque balance at the target speed.
  • the mass flow of air passing through the centrifugal compressor 13 is reduced to a certain value, the flow field inside the centrifugal compressor 13 deteriorates rapidly, and surge occurs, so that the airflow in the centrifugal compressor 13 presents a low-frequency "suction-reverse flow" cycle.
  • the aerodynamic force on the centrifugal impeller is the same as when the compressor is working normally, and the aerodynamic force is the resistance in the direction of rotation of the impeller; while in the process of airflow "reverse flow”, the aerodynamic force acting on the centrifugal impeller at this time is the driving force in the direction of rotation of the impeller. Therefore, when the surge occurs, since the torque balance is continuously broken, the rotor of the centrifugal compressor 13 will have a large fluctuation in the rotational speed, and the fluctuation range of the rotational speed becomes the identification signal of the occurrence of the surge.
  • the motor controller 11 controls the input current of the driving motor 12 according to the target rotational speed input from the outside, the input current of the driving motor 12 is proportional to the input current of the motor controller 11;
  • the input current of the motor controller 11 also fluctuates correspondingly, and the fluctuation range of the input current of the motor controller 11 also becomes the identification signal for the occurrence of surge.
  • the motor controller 11 is used to obtain the signal record value of the signal to be detected, and the signal to be detected includes the rotational speed signal of the driving motor 12 and/or the input current signal of the motor controller 11; according to the signal record value
  • the fluctuation amplitude is determined to determine whether the centrifugal compressor 13 is surging.
  • FIG. 3 shows a flowchart of a surge detection method for a centrifugal compressor 13 provided by an exemplary embodiment of the present disclosure, which is used in the motor controller shown in FIG. 1 or FIG. 2 in this embodiment. to illustrate with an example.
  • the method includes the following steps.
  • a signal record value of a signal to be detected is acquired, and the signal to be detected includes a rotational speed signal of a driving motor and/or an input current signal of a motor controller.
  • the motor controller obtains the signal record value of the signal to be detected in real time or according to the preset sampling frequency.
  • the preset sampling frequency is a default setting, or a custom setting. This embodiment does not limit this.
  • the following description will only take the example that the motor controller obtains the signal record value of the signal to be detected according to the preset sampling frequency, that is, the signal record value of the signal to be detected includes multiple signal record values of the signal to be detected obtained according to the preset sampling frequency. .
  • the signal to be detected includes the rotational speed signal of the driving motor and/or the input current signal of the motor controller. That is, the signal record value of the signal to be detected includes multiple signal record values of the rotational speed signal of the driving motor, and/or multiple signal record values of the input current signal of the motor controller.
  • the motor controller is connected with the drive motor through the wire, the drive motor is connected with the centrifugal compressor through the rotating shaft, and the rotor of the drive motor and the impeller of the centrifugal compressor are coaxial. Therefore, the rotational speed signal of the drive motor is the rotational speed signal of the centrifugal compressor.
  • the input current signal of the motor controller is positively correlated with the input current signal of the driving motor. In a possible implementation manner, the input current signal of the motor controller in the signal to be detected can be replaced by the input current signal of the driving motor, and the input current signal of the driving motor is the output current signal of the motor controller.
  • the signal to be detected includes the rotational speed signal of the driving motor and/or the input current signal of the driving motor, and the motor controller determines whether the centrifugal compressor is surging according to the fluctuation amplitude of the recorded signal value of the signal to be detected.
  • the signal to be detected includes the rotational speed signal of the driving motor and/or the input current signal of the motor controller as an example for description, which is not limited in the embodiments of the present disclosure.
  • Step 302 Determine whether the centrifugal compressor has a surge according to the fluctuation range of the signal record value, and the fluctuation range is used to indicate the maximum change range of the signal record value in the process of increasing or decreasing.
  • the motor controller determines whether the centrifugal compressor is surging according to the fluctuation range of the signal record value of the signal to be detected.
  • the fluctuation range is used to indicate the maximum change range of the recorded value of the signal in the process of increasing or decreasing. For example, in a certain period of time, the collected signal record value continues to increase, the difference between the maximum signal record value and the minimum signal record value recorded in this period is the fluctuation range of this period, and In the next period, the collected signal record value continues to decrease, and the difference between the maximum signal record value and the minimum signal record value recorded in this period is the fluctuation range of this period. Therefore, the difference between the signal record value and the Each increase or decrease process can correspond to its own fluctuation range.
  • the motor controller determines the fluctuation range corresponding to the signal to be detected according to the acquired signal record value of the signal to be detected, and when the fluctuation range meets the preset surge condition, it is determined that the centrifugal compressor has surge; When the preset surge condition is not met, it is determined that the centrifugal compressor does not surge.
  • the signal record value of the signal to be detected includes multiple signal record values of the rotational speed signal of the driving motor, and the motor controller determines the rotational speed signal according to the acquired multiple signal record values of the rotational speed signal of the driving motor Corresponding fluctuation amplitude, when the fluctuation amplitude satisfies the preset surge condition, it is determined that the centrifugal compressor has surge; otherwise, it is determined that the centrifugal compressor does not surge.
  • the signal record value of the signal to be detected includes a plurality of signal record values of the input current signal of the motor controller, and the motor controller obtains the plurality of signals of the input current signal of the motor controller according to The recorded value determines the fluctuation amplitude corresponding to the input current signal, and when the fluctuation amplitude satisfies the preset surge condition, it is determined that the centrifugal compressor has surged. Otherwise, make sure that the centrifugal compressor does not surge.
  • the signal record value of the signal to be detected includes multiple signal record values of the rotational speed signal of the driving motor and multiple signal record values of the input current signal of the motor controller.
  • the obtained multiple signal record values of the rotational speed signal of the driving motor determine the corresponding fluctuation amplitude of the rotational speed signal, and determine the corresponding fluctuation amplitude of the input current signal according to the acquired multiple signal recorded values of the input current signal of the motor controller.
  • the motor controller determines whether the centrifugal compressor has surge according to the rotational speed signal of the driving motor and/or the corresponding fluctuation amplitude of the input current signal of the motor controller; the surge in the related art is avoided.
  • the change of the flow threshold value leads to a poor surge detection effect, which ensures the surge detection effect of the centrifugal compressor; and the surge detection method is not limited by the measured object, and can be used in the whole life of different types of centrifugal compressors.
  • the online detection of surge can be realized quickly and accurately during the cycle.
  • FIG. 4 shows a flowchart of a surge detection method for a centrifugal compressor provided by another exemplary embodiment of the present disclosure.
  • This embodiment uses the method for the motor controller shown in FIG. 1 or FIG. 2 . to illustrate with an example. The method includes the following steps.
  • step 401 a signal record value of a signal to be detected is obtained, and the signal to be detected includes a rotational speed signal of a driving motor and/or an input current signal of a motor controller.
  • the motor controller obtains the signal record value of the signal to be detected, including: collecting the estimated speed signal value output by the preset estimation model according to the preset sampling frequency, and combining the collected estimated speed signal value with the input target speed signal.
  • the absolute value of the difference between the values is determined as the signal record value of the rotational speed signal of the driving motor; and/or the signal record value of the input current signal of the motor controller is collected according to the preset sampling frequency.
  • the motor controller collects the estimated rotational speed signal value output by the preset estimation model according to the preset sampling frequency, and compares the collected estimated rotational speed signal value with the input target rotational speed signal value. The absolute value of the difference is determined as the signal record value of the rotational speed signal of the drive motor.
  • the preset estimation model is a model preset in the motor controller, and the preset estimation model is used to output the estimated rotational speed signal value of the drive motor, that is, the estimated rotational speed signal value.
  • the motor controller collects the estimated rotational speed signal value output by the preset estimation model according to the preset sampling frequency
  • the collected estimated rotational speed signal value is determined as the signal record value of the rotational speed signal of the driving motor, or, the collected estimated rotational speed signal value is determined as the signal record value of the rotational speed signal of the driving motor.
  • the absolute value of the difference between the estimated rotational speed signal value and the input target rotational speed signal value, that is, the relative rotational speed signal value is determined as the signal record value of the rotational speed signal of the drive motor.
  • the following description only takes the determination of the relative rotational speed signal value as the signal record value of the rotational speed signal of the driving motor as an example for description.
  • the motor controller collects the signal record value of the input current signal of the motor controller according to the preset sampling frequency.
  • Step 402 when the multiple fluctuation amplitudes corresponding to the recorded signal values satisfy the preset surge condition, it is determined that the centrifugal compressor has surge.
  • the fluctuation amplitude is used to indicate the fluctuation amplitude of the recorded value of the signal
  • the preset surge condition includes that at least two consecutive fluctuation amplitudes are both greater than the surge threshold
  • the preset surge condition includes a plurality of fluctuation amplitudes showing an increasing trend in time, and at least two consecutive fluctuation amplitudes are both greater than the surge threshold.
  • the surge threshold is a default setting or a custom setting. This embodiment does not limit this.
  • the corresponding surge threshold value is the product of the target rotational speed signal value and a first preset percentage, for example, the first preset percentage is 0.15%. This embodiment of the present disclosure does not limit this.
  • the corresponding surge threshold is the product of the sampling value of the drive motor and a second preset percentage, for example, the second preset percentage is 50%. This embodiment of the present disclosure does not limit this.
  • the fluctuation amplitude is used to indicate the fluctuation amplitude of the signal recording value when the change trend is changed, and the change trend is used to indicate the increasing trend or the decreasing trend of the signal recording value.
  • the i-2th signal record value is less than the i-1th signal record value
  • the i-1th signal record value is less than the ith signal record value
  • the i+1th signal record value is less than the ith signal record value 1 signal record value
  • the i-1 th signal record value and the i th signal record value correspond to an increasing trend
  • the i+1 th signal record value corresponds to a decreasing trend.
  • the signal record value of the signal to be detected includes a plurality of signal record values of the to-be-detected signal obtained according to the preset sampling frequency; when the multiple fluctuation amplitude values corresponding to the signal record value meet the preset surge condition, it is determined.
  • the method further includes: when the multiple fluctuation amplitudes corresponding to the signal record values meet the preset surge conditions, determining that the centrifugal compressor has surge before the surge occurs, and further includes: corresponding to the i-th signal record value.
  • the jth fluctuation amplitude is obtained, and the jth fluctuation amplitude is the absolute value of the difference between the currently recorded maximum parameter and the minimum parameter
  • the maximum parameter is the maximum signal record value in the change trend process corresponding to the i-1th signal record value
  • the minimum parameter is the minimum signal record value in the change trend process corresponding to the i-1th signal record value; where, i is A positive integer with an initial value of 2, and j is a positive integer with an initial value of 1.
  • the initial values of the maximum parameter and the minimum parameter are both the first signal record value; the method further includes: the change trend corresponding to the ith signal record value is an increasing trend, and the ith signal record value corresponds to an increasing trend.
  • the change trend corresponding to the i-1 signal record value is a decreasing trend, after obtaining the jth fluctuation amplitude, the maximum parameter is reset to the ith signal record value; in the corresponding change of the ith signal record value
  • the trend is a decreasing trend
  • the change trend corresponding to the i-1 th signal record value is an increasing trend
  • after obtaining the j th fluctuation amplitude reset the minimum parameter to the ith signal record value.
  • the initial values of the maximum parameter and the minimum parameter are both the first signal recorded value; the method further includes: the change trend corresponding to the i-th signal recorded value and the i-1-th signal When the corresponding trend of the recorded value is the same, when the i-th signal record value is greater than or equal to the i-1th signal record value, reset the maximum parameter to the i-th signal record value; when the i-th signal record value is less than At the ith signal record value, reset the minimum parameter to the ith signal record value.
  • the i-th signal record value when the i-th signal record value is greater than or equal to the i-1th signal record value, it is determined that the change trend corresponding to the i-th signal record value is an increasing trend; when the i-th signal record value is smaller than the i-th signal record value. When there is -1 signal record value, it is determined that the change trend corresponding to the i-th signal record value is a decreasing trend.
  • the motor controller obtains the first signal record value and assigns the first signal record value to the maximum parameter and the minimum parameter.
  • the change trend corresponding to the i-th signal record value is the same as the change trend corresponding to the i-1th signal record value
  • the maximum parameter Reset is the maximum parameter Reset to the i-th signal record value
  • the i-th signal record value is less than the i-1th signal record value, reset the minimum parameter to the i-th signal record value.
  • the j-th fluctuation amplitude value is obtained, and the j-th fluctuation amplitude value is the maximum parameter and the minimum parameter currently recorded.
  • the motor controller determines that the centrifugal compressor has surge.
  • the motor controller adjusts the operating conditions after determining that the centrifugal compressor has surge, such as increasing the opening of the back pressure valve until the amplitude of the surge is less than the surge threshold.
  • This embodiment of the present disclosure does not limit this.
  • Step 403 when the multiple fluctuation amplitudes corresponding to the recorded signal values do not meet the preset surge condition, it is determined that the centrifugal compressor does not surge.
  • the motor controller determines that the centrifugal compressor does not surge.
  • the surge detection method of the centrifugal compressor includes but is not limited to the following steps, which are used in the motor controller, as shown in FIG. 5 . Show:
  • Step 501 Obtain the input target rotational speed signal value.
  • the motor controller obtains the input target speed signal value, and starts the centrifugal motor, that is, the centrifugal motor starts to run.
  • Step 502 acquiring the first signal record value v 1 of the rotational speed signal of the driving motor.
  • the motor controller collects the estimated rotational speed signal value output by the preset estimation model, and determines the absolute value of the difference between the collected estimated rotational speed signal value and the target rotational speed signal value as the first signal record value of the rotational speed signal of the drive motor v 1 .
  • Step 503 the first recording a signal value v 1 simultaneously assigned to the maximum and minimum parameter parameter.
  • Step 504 acquiring the signal value v i record drive motor speed signal, i is the initial value of a positive integer.
  • the motor controller collects the estimated speed signal value output by the preset estimation model according to the preset sampling frequency, and determines the absolute value of the difference between the collected estimated speed signal value and the target speed signal value as the signal record of the speed signal of the driving motor value v i , record the signal record value v i .
  • the motor controller obtains a signal recording values v i, where i is the initial value is a positive integer.
  • the preset sampling frequency is a sampling frequency greater than or equal to 10 Hz.
  • Step 505 it is determined whether the signal is recorded values v i is greater than or equal to a recorded value signal v i-1.
  • the motor controller determines the value of the recording signal v i is greater than or equal to a recorded value signal v i-1, if greater than or equal to v i v i-1, indicating the change of the recording signal corresponding to the value of v i is used to increase the If the trend is not changed, go to step 506 ; if v i is smaller than v i-1 , it is used to indicate that the change trend corresponding to the signal record value v i is a decreasing trend, and go to step 507 .
  • Step 506 the value of a i is set to 1.
  • a first recording signal corresponding to the value of a 1 v 1 is set to 0 by default.
  • Step 507 Set the value of a i to -1.
  • v i When v i is less than v i-1 , the value of a i is set to -1, which is used to indicate that the change trend corresponding to the signal record value v i is a decreasing trend.
  • Step 508 determine whether a i *a i-1 is less than 0, and the initial value of a i is 0.
  • the initial value of a i is 0, that is, the a 1 corresponding to the first signal record value v 1 is 0.
  • the motor controller judges whether a i *a i-1 is less than 0, if a i *a i-1 is less than 0, it is used to indicate that the change trend corresponding to the i-th signal record value corresponds to the i-1th signal record value.
  • the change trend is opposite, and step 511 is executed. If a i *a i-1 is greater than or equal to 0, it is used to indicate that the change trend corresponding to the i-th signal record value is not opposite to the change trend corresponding to the i-1th signal record value. , go to step 509.
  • Step 509 when the value of a i is 1, the maximum parameters to the v i; a i when the value is -1, the minimum parameters back to v i.
  • Step 510 increment i by 1, and continue to step 504.
  • Step 511 subtract the current maximum parameter from the minimum parameter to obtain the jth fluctuation amplitude dif j , where j is a positive integer with an initial value of 1.
  • j is a positive integer whose initial value is 1.
  • Step 512 when the value of a i is 1, the maximum parameters to the v i; a i when the value is -1, the minimum parameters back to v i.
  • Step 513 when j is greater than 2, determine whether it is satisfied that dif j is greater than dif j-1 and dif j-1 is greater than dif j-2 .
  • the motor controller determines whether dif j is greater than dif j-1 and whether dif j-1 is greater than dif j-2 .
  • step 514 is performed; if it is not satisfied that dif j is greater than dif j-1 and dif j-1 is greater than dif j-2 , step 516 is performed.
  • Step 514 determine whether dif j-1 is greater than the surge threshold.
  • the motor controller determines whether dif j-1 is greater than the surge threshold. If dif j-1 is greater than the surge threshold, it is used to indicate that dif j-1 is greater than the surge threshold and dif j is greater than the surge threshold, and step 515 is performed; if dif j-1 is less than the surge threshold, step 516 is performed.
  • the surge threshold is the product of the target rotational speed signal value and a preset percentage, for example, the preset percentage is 0.15%. This embodiment of the present disclosure does not limit this.
  • step 513 and step 514 can be executed sequentially, or can be combined into one step for execution, that is, when j is greater than 2, it is determined whether dif j is greater than dif j-1 and dif j-1 is greater than dif j- 2 and whether dif j-1 is greater than the surge threshold. This embodiment of the present disclosure does not limit this.
  • Step 515 it is determined that the centrifugal compressor has surge.
  • dif j is greater than dif j-1 and dif j-1 is greater than dif j-2, and dif j-1 is greater than the surge threshold, it means that the fluctuation amplitudes dif j , dif j+1 and dif j+2 are in a time-dependent manner Increase trend, dif j-1 is greater than the surge threshold and dif j is greater than the surge threshold, that is, multiple fluctuation amplitudes meet the preset surge conditions, it is determined that the centrifugal compressor has surge, and the process ends.
  • Step 516 add 1 to i, add 1 to j, and continue to step 504.
  • the surge detection method of the centrifugal compressor can be analogously referred to the relevant details in the above-mentioned embodiments, which will not be repeated here.
  • the target rotational speed signal value obtained by continuously reducing the air mass flow rate of the centrifugal compressor when the drive motor is at 70,000 rpm.
  • the motor controller determines the absolute value of the difference between the collected estimated rotational speed signal value and the target rotational speed signal value of 70000 rpm, that is, the relative rotational speed signal value as the signal record value of the rotational speed signal of the drive motor.
  • the speed signal jumps in the process of increasing the fluctuation amplitude which is a normal phenomenon in the feedback control of the motor controller
  • this relatively large speed signal jump has the characteristic of unidirectionality , that is, it will only increase or decrease without showing the fluctuation during surge.
  • the surge detection method provided by the embodiments of the present disclosure utilizes this characteristic of the normal speed signal jump to distinguish it from the real surge signal.
  • the input current signal is obtained by continuously reducing the air mass flow of the centrifugal compressor when the drive motor is at 70,000 rpm.
  • FIG. 8 shows a schematic structural diagram of a surge detection device for a centrifugal compressor provided by an exemplary embodiment of the present disclosure.
  • the surge detection device of the centrifugal compressor can be realized by software, hardware and a combination of the two as all or a part of a motor controller, the motor controller is connected with a drive motor through a wire, and the drive motor is connected with the drive motor through a rotating shaft
  • the centrifugal compressor is connected, and the rotor of the driving motor and the impeller of the centrifugal compressor are coaxial.
  • the apparatus includes: an acquisition module 810 and a determination module 820 .
  • an acquisition module 810 configured to acquire a signal record value of a signal to be detected, where the signal to be detected includes a rotational speed signal of the driving motor and/or an input current signal of the motor controller;
  • the determination module 820 is configured to determine whether the centrifugal compressor is surging according to the fluctuation range of the recorded value of the signal, where the fluctuation range is used to indicate the maximum change range of the recorded value of the signal during the process of increasing or decreasing.
  • the determining module 820 is further configured to:
  • the fluctuation amplitude is used to indicate the fluctuation amplitude of the signal recording value, and the preset surge condition includes that at least two consecutive fluctuation amplitudes are both greater than a surge threshold.
  • the preset surge condition includes a plurality of the fluctuation amplitudes showing an increasing trend in time, and at least two consecutive fluctuation amplitudes are both greater than the surge threshold.
  • the fluctuation amplitude is used to indicate the corresponding fluctuation amplitude of the signal record value before the change trend is changed, and the change trend is used to indicate an increasing trend of the signal record value or decreasing trend.
  • the initial values of the maximum parameter and the minimum parameter are both the first recorded signal values; the apparatus further includes: a first setting module; the first setting module Used for:
  • the apparatus further includes: a second setting module; the second setting module is used for:
  • the minimum parameter is reset to the i-th said signal record value.
  • the obtaining module 810 is further configured to:
  • the estimated rotational speed signal value output by the preset estimation model is collected according to the preset sampling frequency, and the absolute value of the difference between the collected estimated rotational speed signal value and the input target rotational speed signal value is determined as the rotational speed of the drive motor the signal record value of the signal; and/or,
  • the signal record value of the input current signal of the motor controller is collected according to the preset sampling frequency.
  • An embodiment of the present disclosure also provides a motor controller, the motor controller is connected to a drive motor through a wire, the drive motor is connected to a centrifugal compressor through a rotating shaft, the rotor of the drive motor and the impeller of the centrifugal compressor are coaxial, and the motor controls
  • the processor includes: a processor; a memory for storing instructions executable by the processor; wherein the processor is configured to: implement the steps performed by the motor controller in each of the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

一种离心压气机的喘振检测方法,方法用于电机控制器(11)中,电机控制器(11)通过电线与驱动电机(12)相连,驱动电机(12)通过转轴与离心压气机(13)相连,驱动电机(12)的转子和离心压气机(13)的叶轮在同轴上,方法包括:获取待检测信号的信号记录值,待检测信号包括驱动电机(12)的转速信号和/或电机控制器(11)的输入电流信号;根据信号记录值的波动幅度,确定离心压气机(13)是否发生喘振。电机控制器(11)根据驱动电机(12)的转速信号和/或电机控制器(11)的输入电流信号对应的波动幅度,确定离心压气机(13)是否发生喘振;驱动电机(12)的转速信号和输入电流信号是易于检测的,为离心压气机(13)的喘振检测提供了新的手段,保证了离心压气机(13)的喘振检测效果。

Description

离心压气机的喘振检测方法 技术领域
本公开涉及叶轮机械技术领域,尤其涉及一种离心压气机的喘振检测方法。
背景技术
离心压气机的喘振是指离心压气机在工作流量低于喘振流量阈值时所发生的一种非正常工况下的振动。喘振对于离心压气机有着很严重的危害,因此,实际使用过程中需要对离心压气机的工作状态进行检测,防止其进入小流量的喘振区。
相关技术中,离心压气机的喘振检测方法通常包括:在线测量离心压气机的实际工作流量,将测量到的实际工作流量与喘振流量阈值进行比较,该喘振流量阈值是预先试验得到的阈值;若实际工作流量低于喘振流量阈值,则判断离心压气机发生喘振。
但是,上述的喘振流量阈值并非是固定不变的,离心压气机在***中运行时喘振流量阈值会发生变化,且离心压气机长时间运行发生老化后喘振流量阈值也会变化,因此上述喘振检测方法的检测效果不佳。相关技术中尚未提供一种合理且有效的离心压气机的喘振检测方法。
发明内容
有鉴于此,本公开提出了一种离心压气机的喘振检测方法。所述技术方案包括:
根据本公开的一方面,提供了一种离心压气机的喘振检测方法,用于电机控制器中,所述电机控制器通过电线与驱动电机相连,所述驱动电机通过转轴与所述离心压气机相连,所述驱动电机的转子和所述离心压气机的叶轮在同轴上,所述方法包括:
获取待检测信号的信号记录值,所述待检测信号包括所述驱动电机的转速信号和/或所述电机控制器的输入电流信号;
根据所述信号记录值的波动幅度,确定所述离心压气机是否发生喘振,所述波动幅度用于指示所述信号记录值在增大或减小过程中的最大变化幅度。
在一种可能的实现方式中,所述根据所述信号记录值的波动幅度,确定所述离心压气机是否发生喘振,包括:
当所述信号记录值对应的多个波动幅值满足预设喘振条件时,确定所述离心压气机发生喘振;
其中,所述波动幅值用于指示所述信号记录值的波动幅度,所述预设喘振条件包括连续的至少两个所述波动幅值均大于喘振阈值。
在另一种可能的实现方式中,所述预设喘振条件包括多个所述波动幅值在时间上呈增大趋势,且连续的至少两个所述波动幅值均大于所述喘振阈值。
在另一种可能的实现方式中,所述波动幅值用于指示所述信号记录值在变化趋势改变前对应的波动幅度,所述变化趋势用于指示所述信号记录值的增大趋势或者减小趋势。
在另一种可能的实现方式中,所述待检测信号的所述信号记录值包括按照预设采样频率获取到的所述待检测信号的多个信号记录值;
所述当所述信号记录值对应的多个波动幅值满足预设喘振条件时,确定所述离心压气机发生喘振之前,还包括:
在第i个所述信号记录值对应的变化趋势与第i-1个所述信号记录值对应的变化趋势相反时,获取第j个所述波动幅值,第j个所述波动幅值为当前记录的最大参数与最小参数之间的差值绝对值,所述最大参数为第i-1个所述信号记录值对应的变化趋势过程中的最大信号记录值,所述最小参数为第i-1个所述信号记录值对应的变化趋势过程中的最小信号记录值;
其中,所述i为初始值为2的正整数,所述j为初始值为1的正整数。
在另一种可能的实现方式中,所述最大参数和所述最小参数的初始值均为第一个所述信号记录值;所述方法还包括:
在第i个所述信号记录值对应的变化趋势为增大趋势,且第i-1个所述信号记录值对应的变化趋势为减小趋势时,在获取第j个所述波动幅值后,将所述最大参数重新设置为第i个所述信号记录值;
在第i个所述信号记录值对应的变化趋势为减小趋势,且第i-1个所述信号记录值对应的变化趋势为增大趋势时,在获取第j个所述波动幅值后,将所述最小参数重新设置为第i个所述信号记录值。
在另一种可能的实现方式中,所述方法还包括:
在第i个所述信号记录值对应的变化趋势与第i-1个所述信号记录值对应的变化趋势相同时,当第i个所述信号记录值大于或者等于第i-1个所述信号记录值时,将所述最大参数重新设置为第i个所述信号记录值;
当第i个所述信号记录值小于第i-1个所述信号记录值时,将所述最小参数重新设置为第i个所述信号记录值。
在另一种可能的实现方式中,所述获取待检测信号的信号记录值,包括:
按照预设采样频率采集预设估算模型输出的估计转速信号值,并将采集到的所述估计转速信号值与输入的目标转速信号值之间的差值绝对值确定为所述驱动电机的转速信号的信号记录值;和/或,
按照所述预设采样频率采集所述电机控制器的输入电流信号的信号记录值。
本公开实施例提供了一种离心压气机的喘振检测方法,由于电机控制器通过电线与驱动电机相连,驱动电机通过转轴与离心压气机相连,驱动电机的转子和离心压气机的叶轮在同轴上即驱动电机与离心压气机共用同一转轴,从而满足电磁力矩和气动力矩互相平衡的基本物理原理,电机控制器可以通过获取待检测信号的信号记录值,待检测信号包括驱动电机的转速信号和/或电机控制器的输入电流信号;根据信号记录值的波动幅度,确定离心压气机是否发生喘振,波动幅度用于指示信号记录值在增大或减小过程中的最大变化幅度;避免了相关技术中喘振流量阈值发生变化导致喘振检测效果不佳的情 况,保证了离心压气机的喘振检测效果;并且,该喘振检测方法不受被测对象的限制,在不同型号的离心压气机的全生命周期内均可以快速准确地实现喘振在线检测。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出了本公开一个示例性实施例提供的电动离心压气机***的结构示意图;
图2示出了本公开一个示例性实施例提供的电机控制器的负反馈调节回路的原理示意图;
图3示出了本公开一个示例性实施例提供的离心压气机的喘振检测方法的流程图;
图4示出了本公开另一个示例性实施例提供的离心压气机的喘振检测方法的流程图;
图5示出了本公开另一个示例性实施例提供的离心压气机的喘振检测方法的流程图;
图6示出了本公开一个示例性实施例提供的离心压气机的喘振检测方法涉及的转速信号对应的波动幅度的示意图;
图7示出了本公开一个示例性实施例提供的离心压气机的喘振检测方法涉及的输入电流信号对应的波动幅度的示意图;
图8示出了本公开一个示例性实施例提供的离心压气机的喘振检测装置的结构示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
离心压气机也称离心式压气机,为在叶轮内气流基本沿着径向向外流动的压气机。离心压气机具有体积小、重量轻、效率高、噪声小、运行平稳等优势,被广泛用于交通动力***、能源***及工业气体压缩等领域。离心压气机的工作流量范围受到喘振边界和堵塞边界的限制。实际工作流量低于喘振流量阈值时,离心压气机内部出现大尺度的流动分离,发生喘振。喘振导致压缩***内出现低频的大幅气流振荡,使得离心压气机无法正常工作,同时产生巨大的噪音和机械振动,严重时破坏压气机的叶轮和轴系的轴 承***。因此,实际使用过程中,需要对离心压气机的工作状态进行检测,防止其进入小流量的喘振区。
目前离心压气机喘振检测的主要方法是在线测量离心压气机的实际工作流量,将测量到的实际工作流量与喘振流量阈值进行比较,该喘振流量阈值是预先试验得到的阈值;若实际工作流量低于喘振流量阈值,则判断离心压气机发生喘振。但是,上述的喘振流量阈值并非是固定不变的,离心压气机在***中运行时喘振流量阈值会发生变化,且离心压气机长时间运行发生老化后喘振流量阈值也会变化,因此上述喘振检测方法容易失效,检测效果不佳。
而本公开实施例提供了一种离心压气机的喘振检测方法,可以用于解决上述的技术问题。由于电机控制器通过电线与驱动电机相连,驱动电机通过转轴与离心压气机相连,驱动电机的转子和离心压气机的叶轮在同轴上即驱动电机与离心压气机共用同一转轴,从而满足电磁力矩和气动力矩互相平衡的基本物理原理,电机控制器可以通过获取待检测信号的信号记录值,待检测信号包括驱动电机的转速信号和/或电机控制器的输入电流信号;根据信号记录值的波动幅度,确定离心压气机是否发生喘振,波动幅度用于指示信号记录值在增大或减小过程中的最大变化幅度;避免了相关技术中喘振流量阈值发生变化导致喘振检测效果不佳的情况,保证了离心压气机的喘振检测效果;并且,该喘振检测方法不受被测对象的限制,在不同型号的离心压气机的全生命周期内均可以快速准确地实现喘振在线检测。
首先,对本公开涉及的应用场景进行介绍。
请参考图1,其示出了本公开一个示例性实施例提供的电动离心压气机***的结构示意图。
该电动离心压气机***包括电机控制器11、驱动电机12和离心压气机13。
电机控制器11通过驱动电机12与离心压气机13相连,即电机控制器11通过电线与驱动电机12相连,驱动电机12通过转轴与离心压气机13相连。
驱动电机12为永磁同步电机,其与离心压气机13共用一套转子***,即驱动电机12与离心压气机13共用一根转轴即驱动电机12的转子和离心压气机13的叶轮在同轴上,因此转子间的电磁力和叶轮受到的气动力同时作用在该轴上达到动态平衡。
驱动电机12用于驱动离心压气机13的叶轮以一定的转速转动,电机控制器11用于根据自身的控制逻辑向驱动电机12提供一定大小的电流,以此对驱动电机12的转速和转矩进行控制,从而实现对离心压气机13的控制。即电机控制器11用于将外界输入的直流电流逆变为三相交流电流,并将逆变后的三星交流电输入至驱动电机12。
可选的,电机控制器11设置有闭环的控制算法,通过内设的电流观测器和预设估算模型,实时调整电机控制器11的输出电流,以满足外界输入的目标转速的要求。
在一种可能的实现方式中,如图2所示,电机控制器11包括转速调节器21、转矩调节器22和逆变器23,电机控制器11用于根据外界输入的目标转速
Figure PCTCN2021078044-appb-000001
目标转矩
Figure PCTCN2021078044-appb-000002
电机当 前的估计转速ω m和估计转矩T e进行负反馈调节,保证驱动电机12的转速与输入的目标转速
Figure PCTCN2021078044-appb-000003
一致。其中,负反馈调节包含两条调节回路:内环的电流调节环和外环的转速调节环,转速调节器21位于外环的转速调节环,转矩调节器22位于内环的电流调节环,逆变器23用于将直流电流
Figure PCTCN2021078044-appb-000004
逆变为三相交流电流。内环的调节环反应时间短,因此,电流的变化和估计转速的变化基本同步但变化相位相反。转速和电流的变化相位相反是因为转速高时要减小电流以减小电磁转矩以使电机减速,而转速低时则增大电流以增大电磁转矩以使电机增速。
需要说明的是,由于离心压气机13质量流量需求变化,离心压气机13的工况点发生相应变化,与之相应的是离心叶轮上受到的气动力及气动力矩在发生变化,为了保持外界输入的目标转速,电机控制器11改变输出电流的大小以改变驱动电机12的转子所受的驱动力矩,实现目标转速下新的力矩平衡。但当通过离心压气机13的空气质量流量减小到一定值时,离心压气机13内部流场迅速恶化,喘振随之发生,使得离心压气机13内的气流呈现低频的“吸入—倒流”循环。在气流“吸入”过程中,离心叶轮受到的气动力与压气机正常工作时相同,气动力为叶轮旋转方向的阻力;而在气流“倒流”过程中,此时作用在离心叶轮上的气动力为叶轮旋转方向上的驱动力。因此,在喘振发生时,由于转矩平衡被不断打破,离心压气机13的转子会出现转速的大幅波动,转速的波动幅度就成了喘振发生的识别信号。
另外,由于电机控制器11按照外界输入的目标转速控制驱动电机12的输入电流,驱动电机12的输入电流与电机控制器11的输入电流成正比;所以喘振发生时,为了重建被打破的转矩平衡,电机控制器11的输入电流也出现相应的大幅波动,电机控制器11的输入电流的波动幅度也成为了喘振发生的识别信号。
因此,在本公开实施例中,电机控制器11用于获取待检测信号的信号记录值,待检测信号包括驱动电机12的转速信号和/或电机控制器11的输入电流信号;根据信号记录值的波动幅度,确定离心压气机13是否发生喘振。
下面,采用几个示例性实施例对本公开实施例提供的离心压气机的喘振检测方法的进行介绍。
请参考图3,其示出了本公开一个示例性实施例提供的离心压气机13的喘振检测方法的流程图,本实施例以该方法用于图1或图2所示的电机控制器中来举例说明。该方法包括以下几个步骤。
步骤301,获取待检测信号的信号记录值,待检测信号包括驱动电机的转速信号和/或电机控制器的输入电流信号。
电机控制器实时或者按照预设采样频率获取待检测信号的信号记录值。
可选的,预设采样频率是默认设置的,或者是自定义设置的。本实施例对此不加以限定。下面仅以电机控制器按照预设采样频率获取待检测信号的信号记录值,即待检测信号的信号记录值包括按照预设采样频率获取到的待检测信号的多个信号记录值为例进 行说明。
其中,待检测信号包括驱动电机的转速信号和/或电机控制器的输入电流信号。即待检测信号的信号记录值包括驱动电机的转速信号的多个信号记录值,和/或,电机控制器的输入电流信号的多个信号记录值。
电机控制器通过电线与驱动电机相连,驱动电机通过转轴与离心压气机相连,驱动电机的转子和离心压气机的叶轮在同轴上。因此,驱动电机的转速信号即为离心压气机的转速信号。电机控制器的输入电流信号与驱动电机的输入电流信号呈正相关关系。在一种可能的实现方式中,待检测信号中的电机控制器的输入电流信号可以被替代实现成为驱动电机的输入电流信号,驱动电机的输入电流信号即为电机控制器的输出电流信号。此时,待检测信号包括驱动电机的转速信号和/或驱动电机的输入电流信号,电机控制器根据待检测信号的信号记录值的波动幅度,确定离心压气机是否发生喘振。相关细节可类比参考本公开实施例提供的确定离心压气机是否发生喘振的过程,在此不再赘述。下面为了方便说明,仅以待检测信号包括驱动电机的转速信号和/或电机控制器的输入电流信号为例进行介绍,本公开实施例对此不加以限定。
步骤302,根据信号记录值的波动幅度,确定离心压气机是否发生喘振,波动幅度用于指示信号记录值在增大或减小过程中的最大变化幅度。
电机控制器根据待检测信号的信号记录值的波动幅度,确定离心压气机是否发生喘振。
其中,波动幅度用于指示信号记录值在增大或减小过程中的最大变化幅度。举例来说,在某一时段,采集到的信号记录值持续增大,这一时段所记录到的最大信号记录值和最小信号记录值之间的差,即为这一时段的波动幅度,而在下一时段,采集到的信号记录值持续减小,这一时段所记录到的最大信号记录值和最小信号记录值之间的差,即为这一时段的波动幅度,因此,信号记录值的每个增大或减小过程,可分别对应各自的波动幅度。
可选的,电机控制器根据获取到的待检测信号的信号记录值确定信号待检测信号对应的波动幅度,当波动幅度满足预设喘振条件时,确定离心压气机发生喘振;当波动幅度未满足预设喘振条件时,确定离心压气机未发生喘振。
在一种可能的实现方式中,待检测信号的信号记录值包括驱动电机的转速信号的多个信号记录值,电机控制器根据获取到的驱动电机的转速信号的多个信号记录值确定转速信号对应的波动幅度,当波动幅度满足预设喘振条件时,确定离心压气机发生喘振;否则,确定离心压气机未发生喘振。
在另一种可能的实现方式中,待检测信号的信号记录值包括电机控制器的输入电流信号的多个信号记录值,电机控制器根据获取到的电机控制器的输入电流信号的多个信号记录值确定输入电流信号对应的波动幅度,当波动幅度满足预设喘振条件时,确定离心压气机发生喘振。否则,确定离心压气机未发生喘振。
在另一种可能的实现方式中,待检测信号的信号记录值包括驱动电机的转速信号的 多个信号记录值,以及电机控制器的输入电流信号的多个信号记录值,电机控制器根据获取到的驱动电机的转速信号的多个信号记录值确定转速信号对应的波动幅度,并根据获取到的电机控制器的输入电流信号的多个信号记录值确定输入电流信号对应的波动幅度。当转速信号对应的波动幅度满足预设喘振条件且输入电流信号对应的波动幅度满足预设喘振条件时,确定离心压气机发生喘振;否则,确定离心压气机未发生喘振。
综上所述,本公开实施例通过电机控制器根据驱动电机的转速信号和/或电机控制器的输入电流信号对应的波动幅度,确定离心压气机是否发生喘振;避免了相关技术中喘振流量阈值发生变化导致喘振检测效果不佳的情况,保证了离心压气机的喘振检测效果;并且,该喘振检测方法不受被测对象的限制,在不同型号的离心压气机的全生命周期内均可以快速准确地实现喘振在线检测。
请参考图4,其示出了本公开另一个示例性实施例提供的离心压气机的喘振检测方法的流程图,本实施例以该方法用于图1或图2所示的电机控制器中来举例说明。该方法包括以下几个步骤。
步骤401,获取待检测信号的信号记录值,待检测信号包括驱动电机的转速信号和/或电机控制器的输入电流信号。
可选的,电机控制器获取待检测信号的信号记录值,包括:按照预设采样频率采集预设估算模型输出的估计转速信号值,并将采集到的估计转速信号值与输入的目标转速信号值之间的差值绝对值确定为驱动电机的转速信号的信号记录值;和/或,按照预设采样频率采集电机控制器的输入电流信号的信号记录值。
当待检测信号包括驱动电机的转速信号时,电机控制器按照预设采样频率采集预设估算模型输出的估计转速信号值,并将采集到的估计转速信号值与输入的目标转速信号值之间的差值绝对值确定为驱动电机的转速信号的信号记录值。其中,预设估算模型为在电机控制器中预先设置的模型,预设估算模型用于输出估算得到的驱动电机的转速信号值即估计转速信号值。
可选的,电机控制器按照预设采样频率采集预设估算模型输出的估计转速信号值后,将采集到的估计转速信号值确定为驱动电机的转速信号的信号记录值,或者,将采集到的估计转速信号值与输入的目标转速信号值之间的差值绝对值即相对转速信号值确定为驱动电机的转速信号的信号记录值。为了方便说明,下面仅以将相对转速信号值确定为驱动电机的转速信号的信号记录值为例进行说明。
当待检测信号包括电机控制器的输入电流信号时,电机控制器按照预设采样频率采集电机控制器的输入电流信号的信号记录值。
步骤402,当信号记录值对应的多个波动幅值满足预设喘振条件时,确定离心压气机发生喘振。
其中,波动幅值用于指示信号记录值的波动幅度,预设喘振条件包括连续的至少两个波动幅值均大于喘振阈值。
可选地,预设喘振条件包括多个波动幅值在时间上呈增大趋势,且连续的至少两个波动幅值均大于喘振阈值。
其中,喘振阈值为默认设置的,或者是自定义设置的。本实施例对此不加以限定。
可选地,当待检测信号包括驱动电机的转速信号时,对应的喘振阈值为目标转速信号值与第一预设百分比的乘积,比如第一预设百分比为0.15%。本公开实施例对此不加以限定。
可选地,当待检测信号包括电机控制器的输入电流信号时,对应的喘振阈值为驱动电机的采样值与第二预设百分比的乘积,比如第二预设百分比为50%。本公开实施例对此不加以限定。
可选地,波动幅值用于指示信号记录值在变化趋势改变时的波动幅度,变化趋势用于指示信号记录值的增大趋势或者减小趋势。举例来说,如果第i-2个信号记录值小于第i-1个信号记录值,第i-1个信号记录值小于第i个信号记录值,第i+1个信号记录值小于第i个信号记录值,则第i-1个信号记录值和第i个信号记录值对应增大趋势,第i+1个信号记录值对应减小趋势。
可选地,待检测信号的信号记录值包括按照预设采样频率获取到的待检测信号的多个信号记录值;当信号记录值对应的多个波动幅值满足预设喘振条件时,确定离心压气机发生喘振之前,还包括:当信号记录值对应的多个波动幅值满足预设喘振条件时,确定离心压气机发生喘振之前,还包括:在第i个信号记录值对应的变化趋势与第i-1个信号记录值对应的变化趋势相反时,获取第j个波动幅值,第j个波动幅值为当前记录的最大参数与最小参数之间的差值绝对值,最大参数为第i-1个信号记录值对应的变化趋势过程中的最大信号记录值,最小参数为第i-1个信号记录值对应的变化趋势过程中的最小信号记录值;其中,i为初始值为2的正整数,j为初始值为1的正整数。
在另一种可能的实现方式中,最大参数和最小参数的初始值均为第一个信号记录值;该方法还包括:在第i个信号记录值对应的变化趋势为增大趋势,且第i-1个信号记录值对应的变化趋势为减小趋势时,在获取第j个波动幅值后,将最大参数重新设置为第i个信号记录值;在第i个信号记录值对应的变化趋势为减小趋势,且第i-1个信号记录值对应的变化趋势为增大趋势时,在获取第j个波动幅值后,将最小参数重新设置为第i个信号记录值。
在另一种可能的实现方式中,最大参数和最小参数的初始值均为第一个信号记录值;该方法还包括:在第i个信号记录值对应的变化趋势与第i-1个信号记录值对应的变化趋势相同时,当第i个信号记录值大于或者等于第i-1个信号记录值时,将最大参数重新设置为第i个信号记录值;当第i个信号记录值小于第i-1个信号记录值时,将最小参数重新设置为第i个信号记录值。示意性的,当第i个信号记录值大于或者等于第i-1个信号记录值时,确定第i个信号记录值对应的变化趋势为增大趋势;当第i个信号记录值小于第i-1个信号记录值时,确定第i个信号记录值对应的变化趋势为减小趋势。
示意性的,电机控制器获取第一个信号记录值,并将第一个信号记录值赋值给最大参数和最小参数。在第i个信号记录值对应的变化趋势与第i-1个信号记录值对应的变化趋 势相同时,当第i个信号记录值大于或者等于第i-1个信号记录值时,将最大参数重新设置为第i个信号记录值;当第i个信号记录值小于第i-1个信号记录值时,将最小参数重新设置为第i个信号记录值。在第i个信号记录值对应的变化趋势与第i-1个信号记录值对应的变化趋势相反时,获取第j个波动幅值,第j个波动幅值为当前记录的最大参数与最小参数之间的差值绝对值;其中,i为初始值为2的正整数,j为初始值为1的正整数。在获取第j个波动幅值后,当第i个信号记录值大于或者等于第i-1个信号记录值时,将最大参数重新设置为第i个信号记录值;当第i个信号记录值小于第i-1个信号记录值时,将最小参数重新设置为第i个信号记录值。
由于第一个信号记录值对应的变化趋势为未变化,第二个信号记录值对应的变化趋势与第一个信号记录值对应的变化趋势默认为相同的。
当信号记录值对应的多个波动幅值满足预设喘振条件时,电机控制器确定离心压气机发生喘振。
可选地,电机控制器在确定出离心压气机发生喘振后对工况进行调整,比如增大背压阀开度,直到波动幅值小于喘振阈值。本公开实施例对此不加以限定。
步骤403,当信号记录值对应的多个波动幅值未满足预设喘振条件时,确定离心压气机未发生喘振。
当信号记录值对应的多个波动幅值未满足预设喘振条件时,电机控制器确定离心压气机未发生喘振。
在一种可能的实现方式中,以待检测信号为驱动电机的转速信号为例,离心压气机的喘振检测方法包括但不限于如下几个步骤,用于电机控制器中,如图5所示:
步骤501,获取输入的目标转速信号值。
电机控制器获取输入的目标转速信号值,启动离心电动机即离心电动机开始运行。
步骤502,获取驱动电机的转速信号的第一个信号记录值v 1
电机控制器采集预设估算模型输出的估计转速信号值,并将采集到的估计转速信号值与目标转速信号值之间的差值绝对值确定为驱动电机的转速信号的第一个信号记录值v 1
步骤503,将第一个信号记录值v 1同时赋值给最大参数和最小参数。
步骤504,获取驱动电机的转速信号的信号记录值v i,i为初始值为2的正整数。
电机控制器按照预设采样频率采集预设估算模型输出的估计转速信号值,将采集到的估计转速信号值与目标转速信号值之间的差值绝对值确定为驱动电机的转速信号的信号记录值v i,记录该信号记录值v i。电机控制器获取记录的信号记录值v i,其中i为初始值为2的正整数。
比如,预设采样频率为大于或者等于10Hz的采样频率。
步骤505,判断信号记录值v i是否大于或者等于上一个信号记录值v i-1
电机控制器判断信号记录值v i是否大于或者等于上一个信号记录值v i-1,若v i大于或者等于v i-1,则用于指示信号记录值v i对应的变化趋势为增大趋势或者未变化,执行步骤506; 若v i小于v i-1,则用于指示信号记录值v i对应的变化趋势为减小趋势,执行步骤507。
步骤506,将a i的取值设置为1。
当v i大于或者等于v i-1时,将a i的取值设置为1。
a i的取值用于指示信号记录值v i对应的变化趋势,当a i的取值为1时用于指示信号记录值v i对应的变化趋势为增大趋势或者未变化;当a i的取值为-1时用于指示信号记录值v i对应的变化趋势为减小趋势。
可选地,第一个信号记录值v 1对应的a 1默认设置为0。
步骤507,将a i的取值设置为-1。
当v i小于v i-1时,将a i的取值设置为-1,用于指示信号记录值v i对应的变化趋势为减小趋势。
步骤508,判断a i*a i-1是否小于0,a i的初始值为0。
其中,a i的初始值为0,即第一个信号记录值v 1对应的a 1为0。电机控制器判断a i*a i-1是否小于0,若a i*a i-1小于0则用于指示第i个信号记录值对应的变化趋势与第i-1个信号记录值对应的变化趋势相反,执行步骤511,若a i*a i-1大于或者等于0时,用于指示第i个信号记录值对应的变化趋势与第i-1个信号记录值对应的变化趋势不是相反的,执行步骤509。
步骤509,当a i的取值为1时,将最大参数重新设置为v i;当a i的取值为-1时,将最小参数重新设置为v i
当a i*a i-1大于或者等于0时,根据信号记录值v i对最大参数或者最小参数进行重新赋值。
步骤510,将i加1,继续执行步骤504。
步骤511,将当前的最大参数与最小参数相减得到第j个波动幅值dif j,j为初始值为1的正整数。
当a i*a i-1小于0时,将当前的最大参数与最小参数相减得到第j个波动幅值dif j。其中,j为初始值为1的正整数。
步骤512,当a i的取值为1时,将最大参数重新设置为v i;当a i的取值为-1时,将最小参数重新设置为v i
在得到第j个波动幅值dif j后,根据信号记录值v i对最大参数或者最小参数进行重新赋值。
步骤513,当j大于2时,判断是否满足dif j大于dif j-1且dif j-1大于dif j-2
电机控制器判断dif j是否大于dif j-1且dif j-1是否大于dif j-2
若满足dif j大于dif j-1且dif j-1大于dif j-2,则用于指示第j-2个波动幅值dif j-2、第j-1个波动幅值dif j-1、第j个波动幅值dif j在时间上呈增大趋势,执行步骤514;若不满足dif j大于dif j-1且dif j-1大于dif j-2,执行步骤516。
步骤514,判断dif j-1是否大于喘振阈值。
电机控制器判断dif j-1是否大于喘振阈值。若dif j-1大于喘振阈值,则用于指示dif j-1大于喘振阈值且dif j大于喘振阈值,执行步骤515;若dif j-1小于喘振阈值,则执行步骤516。
比如,喘振阈值为目标转速信号值与预设百分比的乘积,比如预设百分比为0.15%。 本公开实施例对此不加以限定。
需要说明的是,步骤513和步骤514可以按先后顺序执行,也可以合并为一个步骤执行,即当j大于2时,判断是否满足dif j大于dif j-1且dif j-1大于dif j-2且dif j-1是否大于喘振阈值。本公开实施例对此不加以限定。
步骤515,确定离心压气机发生喘振。
若dif j大于dif j-1且dif j-1大于dif j-2,且dif j-1大于喘振阈值,则表示波动幅值dif j、dif j+1和dif j+2在时间上呈增大趋势、dif j-1大于喘振阈值且dif j大于喘振阈值,即多个波动幅值满足预设喘振条件,确定离心压气机发生喘振,结束进程。
步骤516,将i加1,将j加1,继续执行步骤504。
将i加1,将j加1,继续执行步骤504即继续执行获取驱动电机的转速信号的信号记录值v i的步骤。
需要说明的是,当待检测信号为电机控制器的输入电流信号时,离心压气机的喘振检测方法可类比参考上述实施例中的相关细节,在此不再赘述。
在一个示意性的例子中,如图6所示,驱动电机在70000rpm时不断减小离心压气机的空气质量流量得到的目标转速信号值。电机控制器将采集到的估计转速信号值与目标转速信号值70000rpm之间的差值绝对值即相对转速信号值确定为驱动电机的转速信号的信号记录值。随着空气质量流量的不断减小,转速信号的信号记录值的波动幅度在不断增大,从波动幅值dif=6,到dif=8,再到dif从15增加到dif=31,然后从dif=27增加到dif=52,最后直接从dif=54激增到dif=312,大于喘振阈值即70000*0.15%=105,从而确定离心压气机发生喘振。另外,可以看到在波动幅值不断变大的过程中出现了转速信号的跳跃,这是电机控制器反馈控制时出现的正常现象,而且这种较大幅度的转速信号跳跃具有单向性特点,即只会增大或减小而不会呈现喘振时的波动状。本公开实施例提供的喘振检测方法中利用了这种正常转速信号跳跃的特点将其与真正的喘振信号区别开来。
在另一个示意性的例子中,如图7所示,驱动电机在70000rpm时不断减小离心压气机的空气质量流量得到的输入电流信号。随着空气质量流量的不断减小,电机控制器的输入电流信号的波动幅度在不断增大,从波动幅值dif=0,到dif=1,再到dif=2,最后直接激增到dif=13,大于喘振阈值4.5(输入电流信号的均值为9A,喘振阈值为9*50%=4.5),从而确定离心压气机发生喘振。可以发现,输入电流信号的波动幅度相对于转速信号要稳定,输入电流信号也不存在信号跳跃的现象,因此相较于转速信号,输入电流信号更易判别喘振的发生。
以下为本公开实施例的装置实施例,对于装置实施例中未详细阐述的部分,可以参考上述方法实施例中公开的技术细节。
请参考图8,其示出了本公开一个示例性实施例提供的离心压气机的喘振检测装置的结构示意图。该离心压气机的喘振检测装置可以通过软件、硬件以及两者的组合实现成 为电机控制器的全部或一部分,所述电机控制器通过电线与驱动电机相连,所述驱动电机通过转轴与所述离心压气机相连,所述驱动电机的转子和所述离心压气机的叶轮在同轴上。该装置包括:获取模块810和确定模块820。
获取模块810,用于获取待检测信号的信号记录值,所述待检测信号包括所述驱动电机的转速信号和/或所述电机控制器的输入电流信号;
确定模块820,用于根据所述信号记录值的波动幅度,确定所述离心压气机是否发生喘振,波动幅度用于指示信号记录值在增大或减小过程中的最大变化幅度。
在一种可能的实现方式中,所述确定模块820还用于:
当所述信号记录值对应的多个波动幅值满足预设喘振条件时,确定所述离心压气机发生喘振;
其中,所述波动幅值用于指示所述信号记录值的波动幅度,所述预设喘振条件包括连续的至少两个所述波动幅值均大于喘振阈值。
在另一种可能的实现方式中,所述预设喘振条件包括多个所述波动幅值在时间上呈增大趋势,且连续的至少两个所述波动幅值均大于所述喘振阈值。
在另一种可能的实现方式中,所述波动幅值用于指示所述信号记录值在变化趋势改变前对应的波动幅度,所述变化趋势用于指示所述信号记录值的增大趋势或者减小趋势。
在另一种可能的实现方式中,所述最大参数和所述最小参数的初始值均为第一个所述信号记录值;所述装置还包括:第一设置模块;所述第一设置模块用于:
在第i个所述信号记录值对应的变化趋势为增大趋势,且第i-1个所述信号记录值对应的变化趋势为减小趋势时,在获取第j个所述波动幅值后,将所述最大参数重新设置为第i个所述信号记录值;
在第i个所述信号记录值对应的变化趋势为减小趋势,且第i-1个所述信号记录值对应的变化趋势为增大趋势时,在获取第j个所述波动幅值后,将所述最小参数重新设置为第i个所述信号记录值。
在另一种可能的实现方式中,所述装置还包括:第二设置模块;所述第二设置模块用于:
在第i个所述信号记录值对应的变化趋势与第i-1个所述信号记录值对应的变化趋势相同时,当第i个所述信号记录值大于或者等于第i-1个所述信号记录值时,将所述最大参数重新设置为第i个所述信号记录值;
当第i个所述信号记录值小于第i-1个所述信号记录值时,将所述最小参数重新设置为第i个所述信号记录值。
在另一种可能的实现方式中,所述获取模块810,还用于:
按照预设采样频率采集预设估算模型输出的估计转速信号值,并将采集到的所述估计转速信号值与输入的目标转速信号值之间的差值绝对值确定为所述驱动电机的转速信号的信号记录值;和/或,
按照所述预设采样频率采集所述电机控制器的输入电流信号的信号记录值。
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例还提供了一种电机控制器,电机控制器通过电线与驱动电机相连,驱动电机通过转轴与离心压气机相连,驱动电机的转子和离心压气机的叶轮在同轴上,电机控制器包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:实现上述各个方法实施例中由电机控制器执行的步骤。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (8)

  1. 一种离心压气机的喘振检测方法,其特征在于,用于电机控制器中,所述电机控制器通过电线与驱动电机相连,所述驱动电机通过转轴与所述离心压气机相连,所述驱动电机的转子和所述离心压气机的叶轮在同轴上,所述方法包括:
    获取待检测信号的信号记录值,所述待检测信号包括所述驱动电机的转速信号和/或所述电机控制器的输入电流信号;
    根据所述信号记录值的波动幅度,确定所述离心压气机是否发生喘振,所述波动幅度用于指示所述信号记录值在增大或减小过程中的最大变化幅度。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述信号记录值的波动幅度,确定所述离心压气机是否发生喘振,包括:
    当所述信号记录值对应的多个波动幅值满足预设喘振条件时,确定所述离心压气机发生喘振;
    其中,所述波动幅值用于指示所述信号记录值的波动幅度,所述预设喘振条件包括连续的至少两个所述波动幅值均大于喘振阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述预设喘振条件包括多个所述波动幅值在时间上呈增大趋势,且连续的至少两个所述波动幅值均大于所述喘振阈值。
  4. 根据权利要求3所述的方法,其特征在于,所述波动幅值用于指示所述信号记录值在变化趋势改变前对应的波动幅度,所述变化趋势用于指示所述信号记录值的增大趋势或者减小趋势。
  5. 根据权利要求4所述的方法,其特征在于,所述待检测信号的所述信号记录值包括按照预设采样频率获取到的所述待检测信号的多个信号记录值;
    所述当所述信号记录值对应的多个波动幅值满足预设喘振条件时,确定所述离心压气机发生喘振之前,还包括:
    在第i个所述信号记录值对应的变化趋势与第i-1个所述信号记录值对应的变化趋势相反时,获取第j个所述波动幅值,第j个所述波动幅值为当前记录的最大参数与最小参数之间的差值绝对值,所述最大参数为第i-1个所述信号记录值对应的变化趋势过程中的最大信号记录值,所述最小参数为第i-1个所述信号记录值对应的变化趋势过程中的最小信号记录值;
    其中,所述i为初始值为2的正整数,所述j为初始值为1的正整数。
  6. 根据权利要求5所述的方法,其特征在于,所述最大参数和所述最小参数的初始值均为第一个所述信号记录值;所述方法还包括:
    在第i个所述信号记录值对应的变化趋势为增大趋势,且第i-1个所述信号记录值对应 的变化趋势为减小趋势时,在获取第j个所述波动幅值后,将所述最大参数重新设置为第i个所述信号记录值;
    在第i个所述信号记录值对应的变化趋势为减小趋势,且第i-1个所述信号记录值对应的变化趋势为增大趋势时,在获取第j个所述波动幅值后,将所述最小参数重新设置为第i个所述信号记录值。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在第i个所述信号记录值对应的变化趋势与第i-1个所述信号记录值对应的变化趋势相同时,当第i个所述信号记录值大于或者等于第i-1个所述信号记录值时,将所述最大参数重新设置为第i个所述信号记录值;
    当第i个所述信号记录值小于第i-1个所述信号记录值时,将所述最小参数重新设置为第i个所述信号记录值。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述获取待检测信号的信号记录值,包括:
    按照预设采样频率采集预设估算模型输出的估计转速信号值,并将采集到的所述估计转速信号值与输入的目标转速信号值之间的差值绝对值确定为所述驱动电机的转速信号的信号记录值;和/或,
    按照所述预设采样频率采集所述电机控制器的输入电流信号的信号记录值。
PCT/CN2021/078044 2020-07-23 2021-02-26 离心压气机的喘振检测方法 WO2022016866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010717255.5 2020-07-23
CN202010717255.5A CN111828364B (zh) 2020-07-23 2020-07-23 离心压气机的喘振检测方法

Publications (1)

Publication Number Publication Date
WO2022016866A1 true WO2022016866A1 (zh) 2022-01-27

Family

ID=72925070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078044 WO2022016866A1 (zh) 2020-07-23 2021-02-26 离心压气机的喘振检测方法

Country Status (2)

Country Link
CN (1) CN111828364B (zh)
WO (1) WO2022016866A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828364B (zh) * 2020-07-23 2021-08-20 清华大学 离心压气机的喘振检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092682A (ja) * 2005-09-29 2007-04-12 Mazda Motor Corp エンジンの過給装置
JP2011102668A (ja) * 2009-11-10 2011-05-26 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機のサージング検出装置、及びサージング検出方法
JP2011241760A (ja) * 2010-05-18 2011-12-01 Mitsubishi Heavy Ind Ltd 電動圧縮機、熱源機およびその制御方法
CN103821749A (zh) * 2014-03-05 2014-05-28 北京工业大学 一种轴流式通风机失速和喘振的在线诊断方法
CN103821750A (zh) * 2014-03-05 2014-05-28 北京工业大学 一种基于电流的通风机失速和喘振监测及诊断方法
CN106089786A (zh) * 2016-06-08 2016-11-09 重庆美的通用制冷设备有限公司 压缩机组喘振的控制方法和控制***
CN109654762A (zh) * 2017-10-12 2019-04-19 荏原冷热***株式会社 离心式制冷机
CN111828364A (zh) * 2020-07-23 2020-10-27 清华大学 离心压气机的喘振检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949394A (ja) * 1982-09-13 1984-03-21 Taikisha Ltd 送風機またはポンプの運転制御方法
AT405996B (de) * 1993-07-09 2000-01-25 Rudin Franz Verfahren zur regelung der drehzahl eines elektromotors und vorrichtung zur durchführung des verfahrens
CN104005975B (zh) * 2014-05-20 2016-04-13 北京工业大学 一种轴流式通风机失速和喘振的诊断方法
CN107202028B (zh) * 2017-05-31 2019-03-29 北京理工大学 一种涡轮增压器离心压气机喘振识别方法
CN110242610A (zh) * 2019-06-10 2019-09-17 珠海格力电器股份有限公司 磁悬浮离心式压缩机及其控制方法、装置、介质及空调

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092682A (ja) * 2005-09-29 2007-04-12 Mazda Motor Corp エンジンの過給装置
JP2011102668A (ja) * 2009-11-10 2011-05-26 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機のサージング検出装置、及びサージング検出方法
JP2011241760A (ja) * 2010-05-18 2011-12-01 Mitsubishi Heavy Ind Ltd 電動圧縮機、熱源機およびその制御方法
CN103821749A (zh) * 2014-03-05 2014-05-28 北京工业大学 一种轴流式通风机失速和喘振的在线诊断方法
CN103821750A (zh) * 2014-03-05 2014-05-28 北京工业大学 一种基于电流的通风机失速和喘振监测及诊断方法
CN106089786A (zh) * 2016-06-08 2016-11-09 重庆美的通用制冷设备有限公司 压缩机组喘振的控制方法和控制***
CN109654762A (zh) * 2017-10-12 2019-04-19 荏原冷热***株式会社 离心式制冷机
CN111828364A (zh) * 2020-07-23 2020-10-27 清华大学 离心压气机的喘振检测方法

Also Published As

Publication number Publication date
CN111828364A (zh) 2020-10-27
CN111828364B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
US7112037B2 (en) Centrifugal pump performance degradation detection
TWI386557B (zh) 偵測壓縮機中旋轉失速的方法
JP4017631B2 (ja) 遠心コンプレッサにおける旋回失速を検出するためのシステム及び方法
JP5650204B2 (ja) 制御システム
US10274211B2 (en) Air conditioner
US7677090B2 (en) Method and device for determining the occurrence of rotating stall in a compressor's turbine blade II
CN105716203B (zh) 变频空调最小频率控制方法
US20070039106A1 (en) Method of detecting an off-balance condition of a clothes load in a washing machine
TW201137239A (en) System and method of detecting cavitation in pumps
WO2022016866A1 (zh) 离心压气机的喘振检测方法
US9163849B2 (en) Jitter control and operating profiles for air moving devices
CN106533279B (zh) 一种同步电机失步检测方法及装置
JP2008220156A (ja) 電子制御式モータにおける不均衡状態を検出するためのシステム及び方法
CN113154653A (zh) 一种空调频率和外风机的控制方法、装置及空调器
US8893980B2 (en) Delayed execution and automated model detection for air moving devices
RU2354851C1 (ru) Способ контроля режимов работы компрессора и устройство для его осуществления
CN112653130B (zh) 一种基于惯量比确定电网的频率支撑能力的方法及***
JP6126896B2 (ja) 空気調和装置
US9823005B2 (en) Methods and systems for detecting and recovering from control instability caused by impeller stall
JP2024026362A (ja) 制御装置、電動圧縮機、リップル電圧の検出方法及びプログラム
JP5977503B2 (ja) サージ前兆保護システムおよび方法
CN110486991B (zh) 电子膨胀阀失步的控制方法、装置、设备和存储介质
BR112012024038B1 (pt) Sistema de máquina que tem um acionamento controlado por conversor com uma frequência de rotação variável e método para a operação de um sistema de máquina
JP2005265726A (ja) 風量測定装置及び風量測定方法
KR101304917B1 (ko) 풍력 발전기의 운전 제어 시스템 및 운전 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846507

Country of ref document: EP

Kind code of ref document: A1