WO2022016765A1 - 一种锂离子电池预制舱用火灾防控***及控制方法 - Google Patents

一种锂离子电池预制舱用火灾防控***及控制方法 Download PDF

Info

Publication number
WO2022016765A1
WO2022016765A1 PCT/CN2020/133309 CN2020133309W WO2022016765A1 WO 2022016765 A1 WO2022016765 A1 WO 2022016765A1 CN 2020133309 W CN2020133309 W CN 2020133309W WO 2022016765 A1 WO2022016765 A1 WO 2022016765A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tank
nitrogen
liquid nitrogen
exhaust
nitrogen storage
Prior art date
Application number
PCT/CN2020/133309
Other languages
English (en)
French (fr)
Inventor
张国维
李政
孙一楠
李华祥
郭栋
张志伟
闫肃
黄俊斌
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2022016765A1 publication Critical patent/WO2022016765A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/023Permanently-installed equipment with containers for delivering the extinguishing substance the extinguishing material being expelled by compressed gas, taken from storage tanks, or by generating a pressure gas
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C5/00Making of fire-extinguishing materials immediately before use
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6564Gases with forced flow, e.g. by blowers using compressed gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of fire extinguishing, in particular to a fire prevention and control system and a control method for a lithium ion battery prefabricated cabin.
  • the existing fire prevention and control is to use external fire protection facilities to extinguish the entire battery energy storage box; Taking the traditional building fire protection system as a model, a small fire protection system is arranged inside the box, and the automatic alarm device and the internal fire extinguishing system are used for the linkage operation to control and extinguish the fire; these two methods also occupy space separately, It cannot be matched with the cooling and heat dissipation of the lithium-ion battery cluster at the same time, resulting in a waste of resources.
  • the traditional water-based fire extinguishing device is used, and the battery may be damaged after the fire is sprayed.
  • the invention provides a fire prevention and control system and a control method for a lithium-ion battery prefabricated cabin, which not only cools and dissipates heat for the operation of the lithium-ion battery cluster, but also performs efficient fire prevention and control. Heat dissipation and fire extinguishing prevention and control work together, the overall footprint is small, the efficiency is higher, and the resources are saved.
  • the fire prevention and control system for a lithium-ion battery prefabricated cabin includes a battery assembly, the battery assembly is arranged in the battery prefabricated cabin body, and includes a plurality of battery energy storage cabinets arranged in a row, each battery The energy storage cabinet is divided into a plurality of grids arranged up and down, and each grid is provided with an air inlet, an exhaust port and a liquid nitrogen injection device, and a lithium ion battery cluster is arranged in it;
  • the device also includes a control assembly, an air intake and exhaust device and a fire extinguishing device;
  • the air intake and exhaust device includes a nitrogen storage tank, an exhaust assembly and an intake assembly. After the output end of the nitrogen storage tank is connected to the intake assembly, it is communicated with each intake port through an intake pipeline.
  • the air port is connected with the exhaust component and the input end of the nitrogen storage tank through the exhaust pipeline;
  • the fire extinguishing device includes a liquid nitrogen storage tank, the output end of the liquid nitrogen storage tank is connected with each liquid nitrogen injection device through a conveying pipeline, and the input end is connected with the nitrogen generator;
  • the control assembly includes a controller and a plurality of detection devices, the plurality of detection devices are all connected to the controller, and each detection device is correspondingly arranged in each grid for monitoring the fire situation in the corresponding battery energy storage cabinet;
  • the controller is connected with the liquid nitrogen storage tank and the liquid nitrogen injection device, which is used to transport the liquid nitrogen from the liquid nitrogen storage tank to the liquid nitrogen injection device and spray fire extinguishing, and is connected with the nitrogen storage tank, the exhaust component and the air intake component.
  • the nitrogen is transported from the nitrogen storage tank to the battery energy storage cabinet for cooling and cooling, and then discharged to the nitrogen storage tank for circulation.
  • the output end of the liquid nitrogen storage tank is connected with the input end of the nitrogen storage tank, and there is a one-way valve between them, the liquid nitrogen storage tank is provided with a first pressure gauge, and the one-way valve is connected to the first pressure gauge. Both are connected to the controller.
  • the controller controls the opening and closing of the nitrogen generator and the opening and closing of the one-way valve.
  • the nitrogen storage tank is provided with a second pressure gauge and an exhaust valve that are both connected to the controller, and when the pressure value exceeds the set value, the controller controls the exhaust valve to open;
  • the output end of the nitrogen storage tank is connected with the input end of the nitrogen generator, and a valve is arranged therebetween, and the controller controls the opening and closing of the valve.
  • each exhaust port is provided with an exhaust shut-off valve
  • each air inlet is provided with an intake shut-off valve
  • the controller controls the opening and closing of the exhaust shut-off valve and the intake shut-off valve.
  • a filtering device and a cooling device are arranged between the exhaust assembly and the nitrogen storage tank in sequence.
  • control assembly also includes a sound and light alarm connected to the controller, and the sound and light alarm is used to issue sound and light alarm signals.
  • the detection device is a temperature sensor and a light sensor, and the exhaust port on each grid is located above the corresponding air intake port.
  • the battery energy storage cabinet and the divided grids all adopt a lightweight fireproof partition structure.
  • a control method for fire prevention and control for a lithium-ion battery prefabricated cabin which specifically includes the following steps:
  • the air intake assembly starts, and the nitrogen in the nitrogen storage tank is transferred to the grid of each battery energy storage cabinet through the air intake pipeline to cool down the lithium-ion battery cluster and absorb the lithium-ion battery cluster operation. heat; the exhaust component is activated, and the nitrogen in the battery energy storage cabinet is re-transported to the nitrogen storage tank through the exhaust pipeline;
  • the controller controls the liquid nitrogen in the liquid nitrogen storage tank to be transported to the nitrogen storage tank, and the liquid nitrogen is converted into nitrogen for filling, so that the pressure in the nitrogen storage tank reaches the set range.
  • the nitrogen in the nitrogen storage tank is converted into liquid nitrogen through the nitrogen generator and sent to the liquid nitrogen storage tank for replenishment of liquid nitrogen, or the nitrogen in the nitrogen storage tank is directly discharged;
  • the corresponding detection device detects the fire signal and feeds it back to the controller.
  • the controller controls the sound and light alarm to send out an alarm signal, exhaust components, inlet
  • the liquid nitrogen in the liquid nitrogen storage tank is transported to the liquid nitrogen injection device through the conveying pipeline, and the liquid nitrogen injection device releases the liquid nitrogen to the corresponding battery In the energy storage cabinet, quickly extinguish the lithium-ion battery cluster;
  • the controller controls the nitrogen generator to start, and the nitrogen generator directly generates nitrogen from the air through the compressor, or receives nitrogen from the nitrogen storage tank to liquefy it into liquid nitrogen.
  • the liquid nitrogen storage tank automatically replenishes liquid nitrogen.
  • the controller controls the liquid nitrogen in the liquid nitrogen storage tank to be transported to the nitrogen storage tank;
  • the controller controls the liquid nitrogen storage tank to stop delivering liquid nitrogen, and when the detection device detects that no fire has occurred, the controller continues to open the intake components, exhaust components, exhaust shut-off valves, and intake shut-off valves. Return to the normal state, and the nitrogen formed after the liquid nitrogen is used is transported to the nitrogen storage tank through the filtering device and the cooling device.
  • the fire prevention and control system and control method for a lithium-ion battery prefabricated cabin have the following advantages:
  • the present invention is provided with an air intake and exhaust device, in a normal state, the air intake assembly is activated, and the nitrogen in the nitrogen storage tank is transferred to each battery energy storage cabinet through the air intake pipeline to cool the lithium-ion battery cluster. , absorb the heat generated by the operation of the lithium-ion battery cluster, and the exhaust component is activated, and the nitrogen in the battery energy storage cabinet is re-transported to the nitrogen storage tank through the exhaust pipeline, so the intake of the battery energy storage cabinet is realized through the nitrogen cycle.
  • the gas and exhaust are carried out at the same time, so that the lithium-ion battery cluster inside can quickly cool down and dissipate heat, which is more efficient;
  • the corresponding detection device monitors the fire signal and feeds it back to the controller.
  • the controller controls the sound and light alarm to send out an alarm signal, and the intake and exhaust devices are closed
  • the liquid nitrogen in the liquid nitrogen storage tank is transported to the liquid nitrogen injection device, and the liquid nitrogen is released into the corresponding battery energy storage cabinet. Therefore, the rapid heat absorption of liquid nitrogen is used to quickly extinguish the lithium-ion battery cluster. And the liquid nitrogen will not cause damage to the battery body after the fire is completed;
  • the controller controls the liquid nitrogen The liquid nitrogen in the nitrogen storage tank is transported to the nitrogen storage tank, and the liquid nitrogen is converted into nitrogen for filling.
  • the controller controls the nitrogen generator to convert the nitrogen into liquid nitrogen and transport it to the liquid nitrogen.
  • Nitrogen is replenished in the nitrogen storage tank or discharged directly, and the liquid nitrogen pressure in the liquid nitrogen storage tank can also be adjusted by the nitrogen in the nitrogen storage tank, so the mutual conversion and recycling of nitrogen and liquid nitrogen are realized, so that the lithium ion
  • the overall footprint is small, the efficiency is higher, and the resources are saved.
  • Fig. 1 is the overall schematic diagram of the present invention
  • Fig. 2 is the principle structure diagram of the present invention
  • the fire prevention and control system for a lithium-ion battery prefabricated cabin includes a battery assembly, a control assembly, an air intake and exhaust device, and a fire extinguishing device;
  • the battery assembly is arranged in the battery prefabricated cabin body 11, and includes a plurality of battery energy storage cabinets 12 arranged in rows.
  • Each battery energy storage cabinet 12 is divided into a plurality of grids arranged up and down, and each grid is provided with an air inlet 15, an air outlet 14 and a liquid nitrogen injection device 16, in which a lithium-ion battery cluster 13 is arranged;
  • the air intake and exhaust device includes a nitrogen storage tank 21, an exhaust assembly 25 and an intake assembly 24. After the output end of the nitrogen storage tank 21 is connected to the intake assembly 24, it is connected to each intake through the intake pipeline 34.
  • the ports 15 are connected, and each exhaust port 14 is connected to the exhaust assembly 25 and the input end of the nitrogen storage tank 21 after being communicated through the exhaust pipeline 32;
  • the fire extinguishing device includes a liquid nitrogen storage tank 23, the output end of the liquid nitrogen storage tank 23 is connected with each liquid nitrogen injection device 16 through the conveying pipeline 31, and the input end is connected with the nitrogen generator 22;
  • the control assembly includes a controller 41 and a plurality of detection devices 45, the plurality of detection devices 45 are all connected to the controller 41, and each detection device 45 is correspondingly disposed in each grid for monitoring the corresponding battery energy storage cabinet 12. fire in the
  • the controller 41 is respectively connected with the liquid nitrogen storage tank 23 and the liquid nitrogen injection device 16, and is used to transport the liquid nitrogen from the liquid nitrogen storage tank 23 to the liquid nitrogen injection device 16 and spray to extinguish the fire; it is connected with the nitrogen storage tank 21 and the exhaust assembly. 25.
  • the air intake assembly 24 is connected to transport nitrogen from the nitrogen storage tank 21 to the battery energy storage cabinet 12 for cooling and cooling, and then discharged to the nitrogen storage tank 21 for circulation;
  • the output end of the liquid nitrogen storage tank 23 is connected to the input end of the nitrogen storage tank 21, and there is a one-way valve therebetween.
  • the liquid nitrogen storage tank 23 is provided with a first pressure gauge, and the one-way valve is connected to the A pressure gauge is connected to the controller 41.
  • the controller 41 controls the opening and closing of the nitrogen generator 22 and the opening and closing of the one-way valve;
  • the first pressure gauge in the liquid nitrogen storage tank 23 monitors the pressure in the liquid nitrogen storage tank 23 in real time.
  • the pressure value is lower than the set interval, it means that the amount of liquid nitrogen in the liquid nitrogen storage tank 23 is less, and the controller 41
  • the nitrogen generator 22 is controlled to start, and the liquid nitrogen storage tank 23 is automatically replenished with liquid nitrogen.
  • the pressure value is higher than the set interval, it means that the amount of liquid nitrogen in the liquid nitrogen storage tank 23 is large, and the controller 41 controls the one-way valve. Open, so that the liquid nitrogen enters the nitrogen storage tank 21;
  • the nitrogen storage tank 21 is provided with a second pressure gauge and an exhaust valve that are both connected to the controller 41, and when the pressure value exceeds the set value, the controller 41 controls the exhaust valve to open;
  • the output end of the nitrogen storage tank 21 is connected with the input end of the nitrogen generator 22, and a valve is arranged therebetween, and the controller 41 controls the opening and closing of the valve;
  • the pressure in the nitrogen storage tank 21 is monitored in real time through the second pressure gauge.
  • the controller 41 controls the exhaust valve to open to discharge the excess nitrogen for pressure relief.
  • the controller 41 controls the one-way valve to open, so that the liquid nitrogen in the liquid nitrogen storage tank 23 enters the nitrogen storage tank 21 to supplement nitrogen;
  • the controller 41 controls the start-up of the nitrogen generator 22 to replenish liquid nitrogen in the liquid nitrogen storage tank 23, and the controller 41 controls the valve to open, and the nitrogen generator 21 in the nitrogen storage tank 21 is opened.
  • Nitrogen is delivered to the nitrogen generator 22, so the nitrogen generator 22 can directly generate nitrogen from the air through the compressor, or can directly receive nitrogen from the nitrogen storage tank 21 to liquefy it into liquid nitrogen, so the overall realization of nitrogen to liquid nitrogen is realized. Nitrogen, the mutual conversion of liquid nitrogen to nitrogen, realize recycling, and the efficiency is higher.
  • a filter device 26 and a cooling device 27 are arranged between the exhaust assembly 25 and the input end of the nitrogen storage tank 21 in sequence;
  • the discharged nitrogen is filtered by the filtering device 26 to remove impurities therein, and the nitrogen is cooled by the cooling device 27, which is more convenient for the storage of the nitrogen storage tank 21;
  • control assembly also includes an acousto-optic alarm 42 connected to the controller 41, and the acousto-optic alarm 42 is used to issue alarm signals of sound and light;
  • the detection device 45 When the high temperature of the lithium-ion battery cluster 13 is too high or an open fire occurs, the detection device 45 is activated to transmit the fire signal to the controller 41, and the controller 41 controls the sound and light alarm 42 to issue alarm signals such as sound and light to remind personnel to check or For fire extinguishing treatment, the sound and light alarm 42 is set in a position that is obvious and convenient for personnel to observe.
  • the detection device 45 is a temperature sensor and a light sensor; the temperature sensor monitors the temperature of the battery energy storage cabinet 12, and the light sensor monitors the light and flame of the battery energy storage cabinet 12;
  • each exhaust port 14 is provided with an exhaust shut-off valve 43
  • each air inlet 15 is provided with an intake shut-off valve 44
  • the controller 41 controls the exhaust shut-off valve 43 and the intake shut-off valve 44. opening and closing;
  • the exhaust port 14 is opened and closed by the exhaust shut-off valve 43, and the exhaust port 14 is opened and closed by the intake shut-off valve 44, and the intake and exhaust system is closed in real time according to the usage;
  • the battery energy storage cabinet 12 adopts a lightweight fireproof partition structure, and is divided into a plurality of grids arranged up and down by using the fireproof partition structure, and the lithium ion battery clusters 13 are placed on the grids in the battery energy storage cabinet 12 .
  • the fire prevention and heat insulation treatment is effectively carried out to avoid the mutual influence between the grids in the event of a fire, which is safer and more reliable.
  • each battery energy storage cabinet 12 is located above the corresponding air inlet 15;
  • the air intake assembly 24 is activated, and the nitrogen in the nitrogen storage tank 21 is transmitted to each battery storage tank through the air intake pipeline 34
  • the lithium-ion battery cluster 13 is cooled and cooled to absorb the heat generated by the operation of the lithium-ion battery cluster 13, and the excess nitrogen gas is re-transported from the exhaust pipe 32 to the nitrogen storage tank 21 through the gas outlet device. Therefore, the cycle is realized, and the cooling and cooling of the lithium-ion battery cluster 13 is guaranteed;
  • the controller 41 controls the liquid nitrogen in the liquid nitrogen storage tank 23 to be transported into the nitrogen storage tank 21, and the liquid nitrogen is converted into nitrogen for filling, so that the pressure in the nitrogen storage tank 21 reaches In the setting interval, when the nitrogen pressure in the nitrogen storage tank 21 is too high, the nitrogen in the nitrogen storage tank 21 can be transferred to the nitrogen generator 22 first, and then the nitrogen can be converted into liquid nitrogen through the nitrogen generator 22 and transported to the liquid nitrogen. Nitrogen is replenished in the nitrogen storage tank 23. Since the liquid nitrogen storage tank 23 is provided with a first pressure gauge, when the pressure monitored by the first pressure gauge also exceeds the set interval at the same time, the controller 41 controls the discharge on the nitrogen storage tank 21. The air valve is opened to release pressure, so the device realizes the mutual conversion of nitrogen to liquid nitrogen and liquid nitrogen to nitrogen, and the recycling is more efficient;
  • the corresponding detection device 45 monitors the fire signal.
  • the controller 41 receives the fire signal by means of temperature, light sensing, etc.
  • the light alarm 42 sends out an alarm signal to remind personnel that there is a fire inside.
  • the exhaust assembly 25 and the intake assembly 24 are controlled to close, the intake cut-off valve 44 at the intake port 15 and the exhaust at the exhaust port 14 are cut off.
  • the valve 43 is closed, that is, the entire air intake and exhaust device is closed, and the liquid nitrogen fire extinguishing device is activated;
  • the liquid nitrogen storage tank 23 in the liquid nitrogen fire extinguishing device transports the liquid nitrogen to the liquid nitrogen injection device 16 of the corresponding grid through the conveying pipeline 31 and releases it, and the liquid nitrogen will permeate the lithium-ion battery cluster. 13, that is to achieve rapid fire extinguishing through the characteristics of liquid nitrogen low temperature absorption and other characteristics, and because the battery energy storage cabinet 12 and the grid are both light-weight fireproof baffle structures, the heat is effectively prevented from spreading to the adjacent lithium-ion battery clusters 13. Therefore, Achieve targeted rapid fire extinguishing of multi-lithium-ion battery clusters 13;
  • the controller 41 controls the liquid nitrogen storage tank 23 to stop delivering liquid nitrogen.
  • the controller 41 continues to open the air intake assembly 24 and the exhaust assembly. 25.
  • the exhaust shut-off valve 43 and the intake shut-off valve 44 are opened to realize the startup of the intake and exhaust system; and the nitrogen formed after the liquid nitrogen is used is transported to the nitrogen storage tank 21 through the filter device 26 and the cooling device 27.
  • the first pressure gauge in the liquid nitrogen storage tank 23 monitors the pressure in the liquid nitrogen storage tank 23 in real time. When the pressure value is lower than the set interval, it means that the amount of liquid nitrogen in the liquid nitrogen storage tank 23 is less, and the controller 41 Control the start of the nitrogen generator 22 to automatically replenish liquid nitrogen in the liquid nitrogen storage tank 23. When the pressure value is higher than the set interval, it means that the amount of liquid nitrogen in the liquid nitrogen storage tank 23 is large, and the controller 41 controls the one-way The valve opens, allowing liquid nitrogen to enter the nitrogen storage tank 21 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Emergency Management (AREA)
  • Secondary Cells (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

一种锂离子电池预制舱用火灾防控***及控制方法,包括控制组件、进排风装置和灭火装置;每个电池储能柜(12)设有进气口(15)、排气口(14)和液氮喷射装置(16),其内设有锂离子电池簇(13);进排风装置包括氮气储罐(21),氮气储罐(21)的输出端与每个进气口(15)连通,每个排气口(14)与氮气储罐(21)的输入端连接;灭火装置包括液氮储罐(23),液氮储罐(23)的输出端与每个液氮喷射装置(16)连接、输入端与制氮器(22)连接;控制组件包括控制器(41)和多个探测装置(45),每个探测装置(45)对应设置在电池储能柜(12)内,用于监测火灾情况;控制器与液氮储罐(23)、液氮喷射装置(16)、氮气储罐(21)、排气组件(25)、进气组件(24)连接。该***不仅对锂离子电池簇(13)的正常运行进行降温冷却,而且对其进行高效灭火防控,氮气与液氮的相互转化,使其效率更高。

Description

一种锂离子电池预制舱用火灾防控***及控制方法 技术领域
本发明涉及灭火领域,具体涉及一种锂离子电池预制舱用火灾防控***及控制方法。
背景技术
为推动我国能源消费产业结构转型升级,提高能源利用率,目前以锂离子电池为基础结构的锂电池储能电站的规划与建设得到大力发展。
由于锂离子电池本质上的储能特性,当储能站内大量的锂离子电池持续运行时,将产生大量热量,使得温度升高,并且锂离子电池储能***多为狭小封闭的空间,无法及时散热,因此存在很大的危险性;
国内外对于锂离子电池火灾的研究均处于探索阶段,对锂离子电池火灾的防控措施亦未建立起一套较为完善的技术体系。目前,对于锂电池预制舱电池簇采取的冷却散热措施多是在锂电池组外部设置附加的散热装置,一定程度上增加了锂电池组的体积,相同设置条件下使得电池预制舱空间更加狭小受限,并且锂离子电池簇之间的防火分隔都没有采取较为有效的措施,单个锂离子电池簇发生热失控后的链式传播无法及时得到有效的制止;
另外在考虑对锂离子电池簇冷却散热的同时,也要对锂离子电池储能电站进行火灾防控,现有火灾防控一是利用外部消防设施对整个电池储能箱体进行灭火处理;二是以传统的建筑消防***为模型,在箱体内部布置一套小型的消防***,利用自动报警装置和内部灭火***的联动运行,从而控制并扑灭火灾;此两种方式也均单独占用空间,无法与锂离子电池簇冷却散热同时匹配进行,造成资源的浪费,另外采用传统水基型灭火装置,灭火喷射完毕后可能会对电池造成损伤。
发明内容
本发明提供一种锂离子电池预制舱用火灾防控***及控制方法,不仅对锂离子电池簇运行的冷却散热,而且对其进行高效灭火防控,通过氮气与液氮的相互转化,使得冷却散热和灭火防控相互配合作用,整体占用空间小,效率更高,更加节省资源。
为实现上述目的,本一种锂离子电池预制舱用火灾防控***,包括电池组件,所述电池组件设置在电池预制舱本体内,包括成排设置的多个电池储能柜,每个电池储能柜内划分多个上下排列的网格,每个网格上设有进气口、排气口和液氮喷射装置,其内设有锂离子电池簇;
本装置还包括控制组件、进排风装置和灭火装置;
所述进排风装置包括氮气储罐、排气组件和进气组件,所述氮气储罐的输出端与进气组件连接后,再通过进气管路与每个进气口连通,每个排气口通过排气管路与排气组件、氮气储罐的输入端连接;
所述灭火装置包括液氮储罐,液氮储罐的输出端通过输送管路与每个液氮喷射装置连接、输入端与制氮器连接;
所述控制组件包括控制器和多个探测装置,多个探测装置均与控制器连接,每个探测装置对应设置在每个网格内,用于监测相应电池储能柜内的火灾情况;
控制器与液氮储罐、液氮喷射装置连接,用于将液氮从液氮储罐输送至液氮喷射装置内并喷射灭火,与氮气储罐、排气组件、进气组件连接,用于将氮气从氮气储罐输送至电池储能柜内降温冷却,再排出至氮气储罐内进行循环。
进一步的,所述液氮储罐的输出端与氮气储罐输入端连接,并且其之间设有单向阀,液氮储罐上设有第一压力表,单向阀与第一压力表均与控制器连接,当第一压力表数值未位于设定数值区间时,控制器控制制氮器的开闭、单向阀的开闭。
进一步的,所述氮气储罐上设有均与控制器连接的第二压力表和排气阀,当压力数值超出设定数值时,控制器控制排气阀打开;
所述氮气储罐的输出端与制氮器输入端连接,并且其之间设有阀门,控制器 控制阀门的开闭。
进一步的,每个排气口处设有排气截止阀,每个进气口处设有进气截止阀,所述控制器控制排气截止阀和进气截止阀的开闭。
进一步的,所述排气组件与氮气储罐之间依次设有过滤装置、冷却装置。
进一步的,所述控制组件还包括与控制器连接的声光报警器,声光报警器用于发出声音、光线的报警信号。
进一步的,所述探测装置为温度感应器和光感感应器,每个网格上的排气口位于相应的进气口的上方。
进一步的,所述电池储能柜和划分的网格均采用轻质防火隔板结构。
一种锂离子电池预制舱用火灾防控的控制方法,具体包括以下步骤:
a.正常状态时,进气组件启动,将氮气储罐内的氮气通过进气管路传输至各个电池储能柜的网格中,对锂离子电池簇进行冷却降温,吸收锂离子电池簇运行产生的热量;排气组件启动,将电池储能柜内的氮气通过排气管路重新输送至氮气储罐内;
当氮气储罐内的氮气压力不足时,控制器控制液氮储罐内的液氮输送至氮气储罐内,液氮转化为氮气进行充装,使得氮气储罐内压力达到设定区间,当氮气储罐内的氮气压力过高时,将氮气储罐内的氮气通过制氮器转化为液氮输送至液氮储罐中进行补充液氮,或者直接将氮气储罐内的氮气排出;
b.当电池储能柜内的锂离子电池簇发生火灾时,相应的探测装置监测到火灾信号并反馈至控制器中,控制器一方面控制声光报警器发出报警信号,排气组件、进气组件、进气截止阀、排气截止阀进行关闭,另一方面将液氮储罐内的液氮通过输送管路输送至液氮喷射装置,液氮喷射装置将液氮释放至相应的电池储能柜内,对锂离子电池簇快速灭火;
当液氮储罐内液氮压力不足时,控制器控制制氮器启动,制氮器通过压缩机直接从空气中进行制氮,或者从氮气储罐中接收氮气将其液化为液氮,对液氮储罐自动补充液氮,当压力高于设定区间时,控制器控制将液氮储罐内的液氮输送 至氮气储罐内;
c.当灭火完毕后,控制器控制液氮储罐停止输送液氮,待探测装置监测未发生火灾时,控制器继续打开进气组件、排气组件、排气截止阀、进气截止阀,恢复至正常状态,液氮作用完毕后形成的氮气经过过滤装置和冷却装置输送至氮气储罐内。
与现有技术相比,本一种锂离子电池预制舱用火灾防控***及控制方法具有以下优点:
(1)本发明由于设置进排风装置,正常状态时,通过进气组件启动,将氮气储罐内的氮气通过进气管路传输至各个电池储能柜中,对锂离子电池簇进行冷却降温,吸收锂离子电池簇运行产生的热量,并且排气组件启动,将电池储能柜内的氮气通过排气管路重新输送至氮气储罐内,因此通过氮气循环实现对电池储能柜的进气、排气的同时进行,使其内的锂离子电池簇快速冷却散热,更加高效;
(2)本发明由于灭火装置和控制组件,当发生火灾时,相应的探测装置监测到火灾信号并反馈至控制器中,控制器一方面控制声光报警器发出报警信号,进排气装置关闭,另一方面将液氮储罐内的液氮输送至液氮喷射装置,将液氮释放至相应的电池储能柜内,因此利用液氮的快速吸热实现对锂离子电池簇快速灭火,并且液氮灭火完毕后不会对电池本体造成损伤;
(3)本发明由于氮气储罐的输出端与制氮器输入端连接,液氮储罐的输出端与氮气储罐输入端连接,当氮气储罐内的氮气压力不足时,控制器控制液氮储罐内的液氮输送至氮气储罐内,液氮转化为氮气进行充装,当氮气储罐内的氮气压力过高时,控制器控制制氮器将氮气转化为液氮输送至液氮储罐中进行补氮或者直接排出,同时液氮储罐内的液氮压力也可通过氮气储罐内的氮气进行调节,因此实现氮气和液氮的相互转化,循环利用,使得对锂离子电池簇的冷却散热和灭火防控相互配合作用,整体占用空间小,效率更高,更加节省资源。
附图说明
图1是本发明的整体示意图;
图2是本发明的原理结构图;
图中:11、电池预制舱本体,12、电池储能柜,13、锂离子电池簇,14、排气口,15、进气口,16、液氮喷射装置,21、氮气储罐,22、制氮器,23、液氮储罐,24、进气组件,25、排气组件,26、过滤装置,27、冷却装置,31、输送管路,32、排气管路,33、控制线路,34、进气管路,41、控制器,42、声光报警器,43、排气截止阀,44、进气截止阀,45、探测装置。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,本一种锂离子电池预制舱用火灾防控***包括电池组件、控制组件、进排风装置和灭火装置;
所述电池组件设置在电池预制舱本体11内,包括成排设置的多个电池储能柜12,每个电池储能柜12内划分多个上下排列的网格,每个网格上设有进气口15、排气口14和液氮喷射装置16,其内设有锂离子电池簇13;
所述进排风装置包括氮气储罐21、排气组件25和进气组件24,所述氮气储罐21的输出端与进气组件24连接后,再通过进气管路34与每个进气口15连通,每个排气口14通过排气管路32连通后,再与排气组件25、氮气储罐21的输入端连接;
所述灭火装置包括液氮储罐23,液氮储罐23的输出端通过输送管路31与每个液氮喷射装置16连接、输入端与制氮器22连接;
所述控制组件包括控制器41和多个探测装置45,多个探测装置45均与控制器41连接,每个探测装置45对应设置在每个网格内,用于监测相应电池储能柜12内的火灾情况;
控制器41分别与液氮储罐23、液氮喷射装置16连接,用于将液氮从液氮储罐23输送至液氮喷射装置16并喷射进行灭火;与氮气储罐21、排气组件25、进气组件24连接,用于将氮气从氮气储罐21输送至电池储能柜12内降温冷却,再排出至氮气储罐21内进行循环;
进一步的,所述液氮储罐23的输出端与氮气储罐21输入端连接,并且其之间设有单向阀,液氮储罐23上设有第一压力表,单向阀与第一压力表均与控制器41连接,当第一压力表数值未位于设定数值区间时,控制器41控制制氮器22的开闭、单向阀的开闭;
液氮储罐23内的第一压力表实时监测液氮储罐23内的压力,当压力数值低于设定区间时,即表明液氮储罐23内的液氮量较少,控制器41控制制氮器22启动,为液氮储罐23自动补充液氮,当压力数值高于设定区间时,即表明液氮储罐23内的液氮量较多,控制器41控制单向阀打开,使得液氮进入氮气储罐21内;
进一步的,所述氮气储罐21上设有均与控制器41连接的第二压力表和排气阀,当压力数值超出设定数值时,控制器41控制排气阀打开;
所述氮气储罐21的输出端与制氮器22输入端连接,并且其之间设有阀门,控制器41控制阀门的开闭;
通过第二压力表对氮气储罐21内的压力进行实时监测,当压力数值超出设定区间时,控制器41控制排气阀打开将多余的氮气排出进行泄压,当压力数值位于设定区间时,控制器41控制排气阀关闭,当压力数值低于设定区间时,控制器41控制单向阀打开,使得液氮储罐23内的液氮进入氮气储罐21内补充氮气;
当液氮储罐23内的液氮量较少时,控制器41控制制氮器22启动,为液氮储罐23内补充液氮,控制器41控制阀门打开,将氮气储罐21内的氮气输送至制氮器22中,因此制氮器22可通过压缩机直接从空气中进行制氮,也可以直接从氮气储罐21中接收氮气将其液化为液氮,因此整体实现氮气至液氮,液氮至氮气的相互转化,实现循环利用,效率更高。
进一步的,所述排气组件25与氮气储罐21的输入端之间依次设有过滤装置26、冷却装置27;
通过过滤装置26对排出的氮气进行过滤,去除其内的杂质,通过冷却装置27对氮气进行降温,更方便氮气储罐21的储存;
进一步的,所述控制组件还包括与控制器41连接的声光报警器42,声光报警器42用于发出声音、光线的报警信号;
当锂离子电池簇13高温过高或发生明火时,探测装置45启动,将火灾信号传递至控制器41中,控制器41控制声光报警器42发出声音、光线等报警信号,提醒人员查看或灭火处理,声光报警器42设置在明显、方便人员观察的位置。
进一步的,所述探测装置45为温度感应器和光感感应器;温度感应器对电池储能柜12的温度进行监测,光感感应器对电池储能柜12的光线明火进行监测;
进一步的,每个排气口14处设有排气截止阀43,每个进气口15处设有进气截止阀44,所述控制器41控制排气截止阀43和进气截止阀44的开闭;
通过排气截止阀43对排气口14进行开闭、进气截止阀44对排气口14进行开闭,根据使用情况,实时关闭进排气***;
进一步的,所述电池储能柜12采用轻质防火隔板结构,并利用防火隔板结构划分为多个上下排列的网格,将锂离子电池簇13放置在电池储能柜12内的网格中,有效进行防火隔热处理,避免产生火灾时网格之间相互影响,更加安全可靠。
进一步的,每个电池储能柜12上的排气口14位于相应的进气口15的上方;
如图2所示,本一种锂离子电池预制舱用火灾防控***及控制方法正常状态时,进气组件24启动,将氮气储罐21内的氮气通过进气管路34传输至各个电池储能柜12的网格中,对锂离子电池簇13进行冷却降温,吸收锂离子电池簇13运行产生的热量,并且多余的氮气通过出气装置,从排气管路32重新输送至氮气储罐21内,因此实现循环,保障对锂离子电池簇13的冷却降温;
当氮气储罐21内的氮气压力不足时,控制器41控制液氮储罐23内的液氮输送至氮气储罐21内,液氮转化为氮气进行充装,使得氮气储罐21内压力达到设定区间,当氮气储罐21内的氮气压力过高时,可将氮气储罐21内的氮气先传输至制氮器22内,再通过制氮器22将氮气转化为液氮输送至液氮储罐23中进行补氮,由于液氮储罐23上设有第一压力表,当第一压力表监测的压力也同时超出设定区间时,控制器41控制氮气储罐21上的排气阀打开进行泄压,因此本 装置实现氮气至液氮,液氮至氮气的相互转化,循环利用,效率更高;
当电池储能柜12网格内的锂离子电池簇13发生火灾时,相应的探测装置45监测到火灾信号,比如通过温度、光感等方式,控制器41接收到火灾信号,一方面控制声光报警器42发出报警信号,提醒人员内部发生火灾,另一方面控制排气组件25、进气组件24关闭,进气口15处的进气截止阀44、排气口14处的排气截止阀43进行关闭,即实现整个进排气装置的关闭,并且启动液氮灭火装置;
液氮灭火装置中液氮储罐23在控制器41的控制下,将液氮通过输送管路31输送到相应网格的液氮喷射装置16并进行释放,液氮将弥漫于锂离子电池簇13,即通过液氮低温吸热等特性,实现快速灭火,并且由于电池储能柜12和网格均采用轻质防火隔板结构,有效阻止热量向相邻锂离子电池簇13的传播,因此实现对多锂离子电池簇13针对性的快速灭火;
当灭火完毕后,控制器41控制液氮储罐23停止输送液氮,待温度下降至一定程度时,即探测装置45监测未发生火灾时,控制器41继续打开进气组件24、排气组件25、排气截止阀43、进气截止阀44打开,实现进排气***的启动;并且液氮作用完毕后形成的氮气经过过滤装置26和冷却装置27输送至氮气储罐21内。
液氮储罐23内的第一压力表实时监测液氮储罐23内的压力,当压力数值低于设定区间时,即表明液氮储罐23内的液氮量较少,控制器41控制制氮器22启动,为液氮储罐23内自动补充液氮,当压力数值高于设定区间时,即表明液氮储罐23内的液氮量较多,控制器41控制单向阀打开,使得液氮进入氮气储罐21内。

Claims (9)

  1. 一种锂离子电池预制舱用火灾防控***,包括电池组件,所述电池组件设置在电池预制舱本体(11)内,包括成排设置的多个电池储能柜(12),每个电池储能柜(12)内划分多个上下排列的网格,其特征在于,
    还包括控制组件、进排风装置和灭火装置;每个网格上设有进气口(15)、排气口(14)和液氮喷射装置(16),其内设有锂离子电池簇(13);
    所述进排风装置包括氮气储罐(21)、排气组件(25)和进气组件(24),所述氮气储罐(21)的输出端与进气组件(24)连接后,再通过进气管路(34)与每个进气口(15)连通,每个排气口(14)通过排气管路(32)与排气组件(25)、氮气储罐(21)的输入端连接;
    所述灭火装置包括液氮储罐(23),液氮储罐(23)的输出端通过输送管路(31)与每个液氮喷射装置(16)连接、输入端与制氮器(22)连接;
    所述控制组件包括控制器(41)和多个探测装置(45),多个探测装置(45)均与控制器(41)连接,每个探测装置(45)对应设置在每个网格内,用于监测相应电池储能柜(12)内的火灾情况;
    控制器(41)与液氮储罐(23)、液氮喷射装置(16)连接,用于将液氮从液氮储罐(23)输送至液氮喷射装置(16)内并喷射灭火,与氮气储罐(21)、排气组件(25)、进气组件(24)连接,用于将氮气从氮气储罐(21)输送至电池储能柜(12)内降温冷却,再排出至氮气储罐(21)内进行循环。
  2. 根据权利要求1所述的一种锂离子电池预制舱用火灾防控***,其特征在于,所述液氮储罐(23)的输出端与氮气储罐(21)输入端连接,并且其之间设有单向阀,液氮储罐(23)上设有第一压力表,单向阀与第一压力表均与控制器(41)连接,当第一压力表数值未位于设定数值区间时,控制器(41)控制制氮器(22)的开闭、单向阀的开闭。
  3. 根据权利要求2所述的一种锂离子电池预制舱用火灾防控***,其特征在于,所述氮气储罐(21)上设有均与控制器(41)连接的第二压力表和排气阀, 当压力数值超出设定数值时,控制器(41)控制排气阀打开;
    所述氮气储罐(21)的输出端与制氮器(22)输入端连接,并且其之间设有阀门,控制器(41)控制阀门的开闭。
  4. 根据权利要求3所述的一种锂离子电池预制舱用火灾防控***,其特征在于,每个排气口(14)处设有排气截止阀(43),每个进气口(15)处设有进气截止阀(44),所述控制器(41)控制排气截止阀(43)和进气截止阀(44)的开闭。
  5. 根据权利要求1至4任意一项所述的一种锂离子电池预制舱用火灾防控***,其特征在于,所述排气组件(25)与氮气储罐(21)之间依次设有过滤装置(26)、冷却装置(27)。
  6. 根据权利要求5所述的一种锂离子电池预制舱用火灾防控***,其特征在于,所述控制组件还包括与控制器(41)连接的声光报警器(42),声光报警器(42)用于发出声音、光线的报警信号。
  7. 根据权利要求5所述的一种锂离子电池预制舱用火灾防控***,其特征在于,所述探测装置(45)为温度感应器和光感感应器,每个网格上的排气口(14)位于相应的进气口(15)的上方。
  8. 根据权利要求7所述的一种锂离子电池预制舱用火灾防控***,其特征在于,所述电池储能柜(12)和划分的网格均采用轻质防火隔板结构。
  9. 一种锂离子电池预制舱用火灾防控的控制方法,其特征在于,具体包括以下步骤:
    a.正常状态时,进气组件(24)启动,将氮气储罐(21)内的氮气通过进气管路(34)传输至各个电池储能柜(12)的网格中,对锂离子电池簇(13)进行冷却降温,吸收锂离子电池簇(13)运行产生的热量;排气组件(25)启动,将电池储能柜(12)内的氮气通过排气管路(32)重新输送至氮气储罐(21)内;
    当氮气储罐(21)内的氮气压力不足时,控制器(41)控制液氮储罐(23)内的液氮输送至氮气储罐(21)内,液氮转化为氮气进行充装,使得氮气储罐(21) 内压力达到设定区间,当氮气储罐(21)内的氮气压力过高时,将氮气储罐(21)内的氮气通过制氮器(22)转化为液氮输送至液氮储罐(23)中进行补充液氮,或者直接将氮气储罐(21)内的氮气排出;
    b.当电池储能柜(12)内的锂离子电池簇(13)发生火灾时,相应的探测装置(45)监测到火灾信号并反馈至控制器(41)中,控制器(41)一方面控制声光报警器(42)发出报警信号,排气组件(25)、进气组件(24)、进气截止阀(44)、排气截止阀(43)进行关闭,另一方面将液氮储罐(23)内的液氮通过输送管路(31)输送至液氮喷射装置(16),液氮喷射装置(16)将液氮释放至相应的电池储能柜(12)内,对锂离子电池簇(13)快速灭火;
    当液氮储罐(23)内液氮压力不足时,控制器(41)控制制氮器(22)启动,制氮器(22)通过压缩机直接从空气中进行制氮,或者从氮气储罐(21)中接收氮气将其液化为液氮,对液氮储罐(23)自动补充液氮,当压力高于设定区间时,控制器(41)控制将液氮储罐(23)内的液氮输送至氮气储罐(21)内;
    c.当灭火完毕后,控制器(41)控制液氮储罐(23)停止输送液氮,待探测装置(45)监测未发生火灾时,控制器(41)继续打开进气组件(24)、排气组件(25)、排气截止阀(43)、进气截止阀(44),恢复至正常状态,液氮作用完毕后形成的氮气经过过滤装置(26)和冷却装置(27)输送至氮气储罐(21)内。
PCT/CN2020/133309 2020-07-23 2020-12-02 一种锂离子电池预制舱用火灾防控***及控制方法 WO2022016765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010717277.1A CN111803831B (zh) 2020-07-23 2020-07-23 一种锂离子电池预制舱用火灾防控***及控制方法
CN202010717277.1 2020-07-23

Publications (1)

Publication Number Publication Date
WO2022016765A1 true WO2022016765A1 (zh) 2022-01-27

Family

ID=72862425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133309 WO2022016765A1 (zh) 2020-07-23 2020-12-02 一种锂离子电池预制舱用火灾防控***及控制方法

Country Status (3)

Country Link
CN (1) CN111803831B (zh)
LU (1) LU500412B1 (zh)
WO (1) WO2022016765A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597546A (zh) * 2022-03-24 2022-06-07 中国电信股份有限公司 一种蓄电池柜体、蓄电池柜体灭火降温***和方法
CN114709508A (zh) * 2022-03-14 2022-07-05 大连理工大学 控温防火防爆一体化的锂电池储能电站及其控制方法
CN115957463A (zh) * 2022-12-15 2023-04-14 国网新疆电力有限公司电力科学研究院 一种用于电缆沟的移动液氮灭火装置及其使用方法
CN116474293A (zh) * 2023-04-03 2023-07-25 无锡尚尧智控设备有限公司 一种多源检测式新能源车电池箱用智能化灭火装置
CN116979581A (zh) * 2023-07-05 2023-10-31 江苏致能杰能源科技有限公司 一种可以减少弃光的储能***及其运行方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111803831B (zh) * 2020-07-23 2022-01-28 中国矿业大学 一种锂离子电池预制舱用火灾防控***及控制方法
CN112563956B (zh) * 2020-11-28 2022-10-11 安徽信息工程学院 一种基于zigbee变电站保护装置远程监控***
CN113381108A (zh) * 2021-06-21 2021-09-10 南方电网调峰调频发电有限公司 一种锂离子储能***专用的集装箱及使用方法
ES1277734Y (es) * 2021-06-28 2021-12-07 Perez Jose Fernando Minarro Equipo extintor con nitrogeno liquido
CN114053625A (zh) * 2021-09-24 2022-02-18 国网河北省电力有限公司电力科学研究院 一种基于液氮的锂离子电池安全运输车
CN115414620A (zh) * 2022-08-15 2022-12-02 国网河北省电力有限公司电力科学研究院 一种基于预作用***的液氮灭火装置
CN115411436A (zh) * 2022-08-23 2022-11-29 中国电建集团福建省电力勘测设计院有限公司 一种应用于锂电池柜的冷却消防一体***
CN115837134B (zh) * 2022-12-28 2024-06-07 江苏智安行能源科技有限公司 一种储能电站氮气抑制和高压雾化灭火剂的防控方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251263A (ja) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd 電源装置
CN105449307A (zh) * 2015-12-03 2016-03-30 周哲明 一种电池储能***紧急制冷装置
CN205564903U (zh) * 2015-11-15 2016-09-07 深圳市沃特玛电池有限公司 电池箱的防火***
CN206134879U (zh) * 2016-09-22 2017-04-26 河源市新凌嘉新能源材料研究院 一种车用锂电池的热管理***
CN108087721A (zh) * 2017-11-17 2018-05-29 深圳市燃气集团股份有限公司 一种氮气回收***及其回收方法
CN110090374A (zh) * 2019-04-19 2019-08-06 高邮摩世勒公共安全设备有限公司 机车锂电储能装置防灭火装置与方法
CN110270032A (zh) * 2019-07-19 2019-09-24 应急管理部天津消防研究所 一种锂离子电池储能***火灾防控装置及实现方法
CN111803831A (zh) * 2020-07-23 2020-10-23 中国矿业大学 一种锂离子电池预制舱用火灾防控***及控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030995A2 (en) * 2001-10-11 2003-04-17 Life Mist, Llc Apparatus comprising a pneumoacoustic atomizer
CN208889812U (zh) * 2018-10-30 2019-05-21 湖北江为新能源有限公司 一种电池降温装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251263A (ja) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd 電源装置
CN205564903U (zh) * 2015-11-15 2016-09-07 深圳市沃特玛电池有限公司 电池箱的防火***
CN105449307A (zh) * 2015-12-03 2016-03-30 周哲明 一种电池储能***紧急制冷装置
CN206134879U (zh) * 2016-09-22 2017-04-26 河源市新凌嘉新能源材料研究院 一种车用锂电池的热管理***
CN108087721A (zh) * 2017-11-17 2018-05-29 深圳市燃气集团股份有限公司 一种氮气回收***及其回收方法
CN110090374A (zh) * 2019-04-19 2019-08-06 高邮摩世勒公共安全设备有限公司 机车锂电储能装置防灭火装置与方法
CN110270032A (zh) * 2019-07-19 2019-09-24 应急管理部天津消防研究所 一种锂离子电池储能***火灾防控装置及实现方法
CN111803831A (zh) * 2020-07-23 2020-10-23 中国矿业大学 一种锂离子电池预制舱用火灾防控***及控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709508A (zh) * 2022-03-14 2022-07-05 大连理工大学 控温防火防爆一体化的锂电池储能电站及其控制方法
CN114597546A (zh) * 2022-03-24 2022-06-07 中国电信股份有限公司 一种蓄电池柜体、蓄电池柜体灭火降温***和方法
CN115957463A (zh) * 2022-12-15 2023-04-14 国网新疆电力有限公司电力科学研究院 一种用于电缆沟的移动液氮灭火装置及其使用方法
CN116474293A (zh) * 2023-04-03 2023-07-25 无锡尚尧智控设备有限公司 一种多源检测式新能源车电池箱用智能化灭火装置
CN116474293B (zh) * 2023-04-03 2024-01-23 无锡尚尧智控设备有限公司 一种多源检测式新能源车电池箱用智能化灭火装置
CN116979581A (zh) * 2023-07-05 2023-10-31 江苏致能杰能源科技有限公司 一种可以减少弃光的储能***及其运行方法
CN116979581B (zh) * 2023-07-05 2024-05-03 江苏致能杰能源科技有限公司 一种可以减少弃光的储能***及其运行方法

Also Published As

Publication number Publication date
LU500412B1 (fr) 2022-01-10
CN111803831A (zh) 2020-10-23
CN111803831B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2022016765A1 (zh) 一种锂离子电池预制舱用火灾防控***及控制方法
CN109513135B (zh) 储能集装箱消防***及方法
CN109893802A (zh) 一种用于电化学储能方舱热管理和消防的***装备
CN113193261B (zh) 一种锂电池储能***液冷消防联合管控***及管控方法
WO2024002383A1 (zh) 浸没式储能电池热管理***及消防控制方法
CN116864895A (zh) 一种紧凑型集装箱式电池储能***及消防方法
CN114100023A (zh) 一种储能电站热失控三级预警及消防联动***
CN211561654U (zh) 一种电池仓混合灭火***
CN116345002A (zh) 一种基于多级消防部署的集装箱式液冷储能集成***
CN114053632A (zh) 一种储能装置及其控制方法
CN210296562U (zh) 一种储能***的阻燃装置
JP3241259U (ja) 多段エネルギー貯蔵消防システム
CN216653185U (zh) 消防***和储能***
CN215896515U (zh) 一种用于抑制储能电池热失控的联动雾化防控***
CN115770372A (zh) 一种储能电站智能循环探测灭火***及其使用方法
CN202434667U (zh) 一种大型组合锂离子电池用降温及安全保护装置
CN212914288U (zh) 用于充电柜的水消防***和充电柜
CN213941929U (zh) 锂电池储能***的多重防护消防***
CN211659117U (zh) 一种动力电池仓及电动汽车
CN211238342U (zh) 一种锂电池全生命周期的充氮气安全防护***
CN113713297A (zh) 一种锂电池预制舱浸没式灭火及定向泄压防爆装置及其方法
CN112402842A (zh) 一种适用于封闭电池模块的灭火装置及方法
CN117855675A (zh) 基于多能互补的集装箱式储能电站的热管理与消防***
CN218106621U (zh) 一种储能集装箱消防***
CN220513311U (zh) 液冷储能消防管路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946355

Country of ref document: EP

Kind code of ref document: A1