WO2022014411A1 - Substrate for light-emitting element - Google Patents

Substrate for light-emitting element Download PDF

Info

Publication number
WO2022014411A1
WO2022014411A1 PCT/JP2021/025474 JP2021025474W WO2022014411A1 WO 2022014411 A1 WO2022014411 A1 WO 2022014411A1 JP 2021025474 W JP2021025474 W JP 2021025474W WO 2022014411 A1 WO2022014411 A1 WO 2022014411A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
emitting element
radiator
glass
Prior art date
Application number
PCT/JP2021/025474
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 田辺
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022536278A priority Critical patent/JPWO2022014411A1/ja
Publication of WO2022014411A1 publication Critical patent/WO2022014411A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present invention relates to a substrate for a light emitting element.
  • Light emitting devices such as light emitting diodes (LEDs) and semiconductor laser diodes (LDs) are widely used in automobile lighting fixtures, displays, street lights, and the like.
  • the light emitting element is installed on the light emitting element substrate and is used as a light emitting device.
  • the light emitting element substrate is provided with a through hole from the upper surface (the surface on which the light emitting element is installed) to the lower surface, and the through hole is filled with a radiator.
  • the radiator By providing the radiator on the light emitting element substrate, the heat generated by the light emitting element can be dissipated to the outside of the device.
  • the wiring length can be shortened as compared with the wire bond type light emitting device, and the light emitting device can be miniaturized and highly efficient.
  • the flip-chip bond type has a problem that it is difficult to increase the area of the radiator filled in the light emitting element substrate. This is because in the case of the flip-chip bond type, it is necessary to embed a plurality of radiators in the light-emitting element substrate, and when the distance between the heat-dissipating bodies is close, cracks are likely to occur in the manufacturing process of the light-emitting element substrate. Is.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a substrate for a light emitting element having better heat dissipation than the conventional one.
  • the present invention is a substrate for a light emitting element.
  • a substrate having a first surface and a second surface facing each other and having a through hole extending from the first surface to the second surface. With the radiator filled in the through hole of the substrate, Have, The first surface of the substrate has a mounting portion on which a light emitting element is mounted.
  • the light emitting element substrate is provided with a light emitting element substrate having an area So of 50% or more of a portion where the radiator overlaps with the mounting portion when viewed from the side of the first surface.
  • FIG. 2 It is sectional drawing which showed the structure of the general flip chip bond type light emitting device roughly. It is a schematic top view of the substrate for a light emitting element according to one Embodiment of this invention. It is a figure which showed schematically the cross section of the substrate for a light emitting element shown in FIG. 2 along the line AA. It is a figure which showed typically the flow of the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention. It is a figure which showed typically one process in the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention. It is a figure which showed typically one process in the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention. It is a figure which showed typically one process in the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention.
  • FIG. 1 schematically shows a cross-sectional configuration of a general flip-chip bond type light emitting device.
  • the light emitting device 1 has a light emitting element substrate 2 and a light emitting element 60.
  • the light emitting element substrate 2 has an upper surface 4 and a lower surface 6, and the light emitting element 60 is installed on the side of the upper surface 4 of the light emitting element substrate 2.
  • the light emitting element substrate 2 has a substrate 10 and a plurality of radiators 18.
  • the substrate 10 has a plurality of through holes penetrating from the upper surface 14 to the lower surface 16, and the radiator 18 is filled in each through hole.
  • the upper surface 14 and the lower surface 16 of the substrate 10 correspond to the upper surface 4 and the lower surface 6 of the light emitting element substrate 2, respectively.
  • the light emitting device 1 further has a plurality of upper electrodes 25 formed on the upper surface 4 of the light emitting element substrate 2 and a lower conductor 35 formed on the lower surface 6.
  • the upper electrode 25 and the lower conductor 35 are arranged so as to be electrically connected to the target radiator 18.
  • the light emitting device 1 has a plurality of electrode bumps 65 on the bottom portion 62 of the light emitting element 60. Each electrode bump 65 is connected to each upper electrode 25.
  • the light emitting device 1 having such a structure can be energized at an arbitrary position of the light emitting element 60. Therefore, in the light emitting device 1, the wiring length can be shortened and the device can be miniaturized.
  • the heat radiating body 18 has a role of dissipating the heat generated by the light emitting element 60 to the outside through the lower conductor 35. Therefore, from the viewpoint of heat dissipation efficiency, when the heat radiating body 18 is viewed from the upper side of the light emitting device 1 (the side of the light emitting element 60) (hereinafter referred to as “top view”), the area of each heat radiating body 18 is made as large as possible. Is desirable.
  • the light emitting element substrate 2 is usually manufactured by heat-treating the green sheet in a state where the through holes provided in the green sheet which is the base of the substrate 10 are filled with the paste for the radiator 18. Since the green sheet (or the substrate 10) and the radiator paste (or the radiator 18) have different coefficients of thermal expansion, stress is generated at the interface between the two during the heat treatment. In particular, when the region of the heat radiating body 18 is expanded, the influence of this stress cannot be ignored, and cracks occur at the interface between the base 10 and the heat radiating body 18 in the step of heating / cooling the base 10.
  • the area of the radiator 18 can be further expanded as will be described in detail below.
  • overlap area the total area of the area where the heat radiating body 18 overlaps with the light emitting element 60
  • FIG. 2 shows a schematic top view of a substrate for a light emitting element according to an embodiment of the present invention. Further, FIG. 3 schematically shows a cross section of the light emitting element substrate shown in FIG. 2 along the line AA.
  • the light emitting device substrate (hereinafter referred to as “first substrate”) 100 has first surfaces 104 and second surfaces facing each other. Has 106. Further, the first substrate 100 has a substrate 130 and a plurality of radiators 158. In the examples shown in FIGS. 2 and 3, two radiator bodies 158 are shown, which are hereinafter represented by 158a and 158b, respectively.
  • the substrate 130 has an upper surface 134 and a lower surface 136 facing each other. Further, the substrate 130 has a plurality of through holes 148a and 148b extending from the upper surface 134 to the lower surface 136.
  • the heat radiating bodies 158a and 158b are filled in the respective through holes 148a and 148b of the substrate 130, and therefore extend from the upper surface 134 to the lower surface 136.
  • the first surface 104 of the first substrate 100 corresponds to the side of the upper surface 134 of the substrate 130, and the second surface 106 of the first substrate 100 corresponds to the side of the lower surface 136 of the substrate 130.
  • the first surface 104 of the first substrate 100 has a mounting portion 165 on which a light emitting element (not shown) is mounted.
  • the mounting portion 165 is indicated by a rectangular broken line.
  • the first substrate 100 is viewed from the side of the first surface 104, that is, the top view of the first substrate 100, the area of the portion where the heat radiating bodies 158a and 158b overlap with the mounting portion 165, that is, over. It has a feature that the lap area So is 50% or more.
  • the overlap area So is, for example, 60% or more, and preferably 65% or more.
  • the first substrate 100 has two rectangular radiator bodies 158a and 158b in a top view.
  • the number of radiators 158 is not particularly limited as long as there are a plurality of radiators.
  • the shape of the radiator body 158 is not particularly limited.
  • the shape of the radiator 158 may be a substantially circular shape, a substantially elliptical shape, or a substantially n-sided polygon (where n is an integer of 3 or more).
  • the heat radiating body 158 may have a shape in which the corner portions are rounded.
  • the heat radiating bodies 158 do not necessarily have to have the same shape, but may have different shapes from each other.
  • the mounting portion 165 has a rectangular shape.
  • the shape of the mounting portion 165 is not particularly limited, and the mounting portion 165 may have, for example, a substantially circular shape, a substantially elliptical shape, or a substantially n-sided polygon (where n is an integer of 3 or more). Further, the mounting portion 165 may have a shape in which the corner portion is rounded.
  • each component included in the light emitting element substrate according to the embodiment of the present invention will be described.
  • the substrate 130 is made of, for example, a material mainly composed of glass.
  • the substrate 130 may be made of a mixed material of glass and ceramics.
  • the composition of the glass is not particularly limited, but a composition containing, for example, SiO 2 , B 2 O 3 , CaO, and Al 2 O 3 is preferable.
  • the glass may further contain at least one of K 2 O and Na 2 O.
  • SiO 2 is a substance that serves as a network former for glass. SiO 2 is preferably contained in the glass in the range of 57 mol% to 65 mol%.
  • the content of SiO 2 is preferably 58 mol% or more, more preferably 59 mol% or more, and particularly preferably 60 mol% or more.
  • the content of SiO 2 is preferably 64 mol% or less, more preferably 63 mol% or less.
  • B 2 O 3 is a substance that serves as a network former for glass.
  • B 2 O 3 is preferably contained in the glass in the range of 13 mol% to 18 mol%.
  • the content of B 2 O 3 is preferably 14 mol% or more, more preferably 15 mol% or more.
  • the content of B 2 O 3 is preferably 17 mol% or less, more preferably 16 mol% or less.
  • CaO is added to enhance the stability of the glass and the precipitateability of crystals, and to lower the glass melting temperature and the glass transition temperature Tg.
  • CaO is preferably contained in the glass in the range of 9 mol% to 23 mol%.
  • the CaO content is preferably 12 mol% or more, more preferably 13 mol% or more, and particularly preferably 14 mol% or more.
  • the CaO content is preferably 22 mol% or less, more preferably 21 mol% or less, and particularly preferably 20 mol% or less.
  • Al 2 O 3 is added to enhance the stability, chemical durability, and strength of the glass.
  • Al 2 O 3 is preferably contained in the glass in the range of 3 mol% to 8 mol%.
  • the content of Al 2 O 3 is preferably 4 mol% or more, more preferably 5 mol% or more.
  • the content of Al 2 O 3 is preferably 7 mol% or less, more preferably 6 mol% or less.
  • K 2 O and Na 2 O lower the glass transition temperature Tg. It is preferable that K 2 O and Na 2 O are contained in the glass in the range of 0.5 mol% to 6 mol% in total.
  • the total content of K 2 O and Na 2 O is preferably 0.8 mol% or more and 5 mol% or less.
  • composition of the glass is not necessarily limited to that consisting only of the above components, and may contain other components. When other components are contained, the total content thereof is preferably 10 mol% or less.
  • the ceramics are not limited to this, and for example, alumina, zirconia, or a mixture of both is used.
  • the amount of glass contained in the substrate 130 is, for example, in the range of 35% by mass to 75% by mass with respect to the entire substrate 130.
  • the amount of glass is preferably in the range of 40% by mass to 70% by mass with respect to the entire substrate 130.
  • the thickness of the substrate 130 is not particularly limited, but is, for example, in the range of 200 ⁇ m to 1200 ⁇ m.
  • the upper surface 134 and / or the lower surface 136 of the substrate 130 preferably has a surface roughness Ra of 0.5 ⁇ m or less. In this case, the concentration of local stress applied to the upper surface 134 and / or the lower surface 136 of the substrate 130 is suppressed, and the occurrence of cracks can be further suppressed.
  • the radiator 158 has thermal and electrical conductivity and contains metal.
  • the radiator 158 may include, for example, at least one of copper, silver, and gold.
  • the total area S h of the radiator 158 is, for example, in the range of 0.5mm 2 ⁇ 1.5mm 2.
  • the total area Sh is represented by the total area of each radiator body 158.
  • the total area S h is a top view of the first substrate 100, and the area of the heat radiating member 158a, represented by the sum of the areas of the heat radiating body 158b.
  • the distance d (see FIG. 2) between the adjacent heat radiating bodies 158 in the top view is, for example, 0.50 mm or less.
  • the distance d is preferably 0.40 mm or less, and more preferably 0.35 mm or less.
  • the distance d is defined as the minimum dimension between adjacent radiators in a top view.
  • the shape of the mounting portion 165 is not particularly limited, and various shapes can be adopted as the mounting portion 165.
  • Area S a of the mounting portion 165 is not particularly limited, for example, in the range of 0.15mm 2 ⁇ 4.00mm 2.
  • Area S a of the mounting portion 165 is preferably in the range of 0.50 mm 2 ⁇ 2.00 mm 2, and more preferably in the range of 0.75mm 2 ⁇ 1.25mm 2.
  • the first substrate 100 is composed of the substrate 130 and the radiator body 158.
  • the first substrate 100 may further have a plurality of upper electrodes 25 as shown in FIG.
  • the upper electrode 25 is installed on the upper surface 134 of the substrate 130 so as to cover the upper part of each radiator body 158a and 158b.
  • the first substrate 100 may further have a plurality of lower conductors 35 as shown in FIG.
  • the lower conductor 35 is installed on the lower surface 136 of the substrate 130 so as to cover the bottom surface of each radiator body 158a and 158b.
  • the upper electrode 25 and the lower conductor 35 may be installed by any conventionally known method.
  • the upper electrode 25 and the lower conductor 35 may be formed by firing the substrate 130 with the conductor paste placed on the upper surface 134 and the lower surface 136 of the substrate 130.
  • the first substrate 100 is provided as a substrate for a single light emitting element. That is, the first substrate 100 has only a set of radiators 158 for one light emitting device.
  • the first substrate 100 may be provided as a substrate for a plurality of light emitting devices.
  • the first substrate 100 may have a substrate 130 portion and a radiator body 158 portion for the first light emitting device, and a substrate 130 portion and a radiator body 158 portion for the second light emitting device.
  • the first substrate 100 is later cut at a predetermined position and used for each light emitting device.
  • the substrate for a light emitting element according to an embodiment of the present invention is used, for example, as a substrate for a light emitting element for a flip-chip bond type light emitting device 1 as shown in FIG.
  • the light emitting element 60 may be of any type.
  • the light emitting element 60 may be, for example, an LED element, an LD, a surface emitting laser diode (VCSEL), or the like.
  • the heat dissipation characteristics can be significantly improved.
  • FIG. 4 schematically shows a flow of a method for manufacturing a substrate for a light emitting element according to an embodiment of the present invention.
  • a method for manufacturing a substrate for a light emitting device is A step of forming a plurality of through holes in a green sheet having an upper surface and a lower surface (S110), and A step (S120) of filling each through hole with a paste for a radiator, The step of installing the relaxation paste layer on the upper surface and the lower surface of the green sheet (S130), The step of heat-treating the green sheet to form a sintered substrate (S140), A step (S150) of polishing the upper and lower surfaces of the sintered substrate to obtain a substrate for a light emitting element.
  • first manufacturing method is A step of forming a plurality of through holes in a green sheet having an upper surface and a lower surface (S110), and A step (S120) of filling each through hole with a paste for a radiator, The step of installing the relaxation paste layer on the upper surface and the lower surface of the green sheet (S130), The step of heat-treating the green sheet to form a sintered substrate (S140), A step (S150)
  • Step S110 First, a green sheet is prepared.
  • the green sheet is composed mainly of glass.
  • the green sheet may further contain ceramics and / or organic binders.
  • the green sheet is produced, for example, through the following steps.
  • the glass powder can be prepared by pulverizing glass having a predetermined composition.
  • the glass powder may have the composition as described above.
  • a dry crushing method or a wet crushing method may be used.
  • the glass is crushed in a solvent. It is preferable to use water as the solvent.
  • a crusher such as a roll mill, a ball mill, or a jet mill can be used.
  • the 50% average particle size (D 50 ) of the glass powder obtained after the pulverization treatment is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the 50% average particle size (D 50 ) refers to a value obtained by a particle size measuring device by a laser diffraction / scattering method.
  • the D 50 of the glass powder When the D 50 of the glass powder is 0.5 ⁇ m or more, the glass powder does not easily aggregate, is easy to handle, and can be uniformly dispersed. On the other hand, when the D 50 of the glass powder is 2 ⁇ m or less, an increase in the glass softening temperature and insufficient sintering are suppressed.
  • the particle size is adjusted by classification or the like.
  • Ceramic powder production As the ceramic powder, those used in the production of general glass ceramics can be used.
  • the ceramic powder for example, alumina powder, zirconia powder, or a mixture of alumina powder and zirconia powder can be preferably used.
  • the D 50 of the ceramic powder is preferably, for example, 0.5 ⁇ m or more and 4 ⁇ m or less.
  • organic binder polyvinyl butyral and / or acrylic resin can be used.
  • a plasticizer, a dispersant, and / or a solvent may be further added to the green sheet slurry.
  • the plasticizer dibutyl phthalate, dioctyl phthalate, and / or butyl benzyl phthalate and the like can be used.
  • the solvent an organic solvent such as toluene, xylene, 2-propanol, and / or 2-butanol can be used.
  • the mass ratio (glass: ceramics) of the glass powder to the ceramic powder is preferably in the range of 35:65 to 75:25.
  • the obtained green sheet slurry is formed into a sheet by the doctor blade method or the like.
  • the slurry for the green sheet is dried to form the green sheet.
  • the green sheet may be subjected to the next through hole forming step in a state where a plurality of sheets are laminated.
  • a single green sheet and a green sheet configured by laminating a plurality of sheets are simply referred to as "green sheets".
  • the method for forming the through hole is not particularly limited, and the through hole may be formed by a conventional general method.
  • FIG. 5 schematically shows a top view of a green sheet in which a through hole is formed. Further, FIG. 6 schematically shows a cross-sectional view of the green sheet shown in FIG. 5 along the line BB.
  • the green sheet 210 has an upper surface 214 and a lower surface 216. Further, the green sheet 210 is provided with through holes 230a and 230b. The through holes 230a and 230b each penetrate from the upper surface 214 to the lower surface 216 of the green sheet 210.
  • the thickness of the green sheet 210 that is, the total length of the through holes 230a and 230b may be in the range of, for example, 200 ⁇ m to 1200 ⁇ m.
  • Step S120 Next, a paste for a radiator is prepared.
  • the radiator paste is prepared, for example, by mixing metal particles and a vehicle.
  • the metal particles may contain at least one of copper, silver, and gold.
  • Metal particles for example, a coarse range D 50 is 2 [mu] m ⁇ 7 [mu] m, D 50 may be composed of a fine particle in the range of 0.02 [mu] m ⁇ 1 [mu] m.
  • the vehicle contains a resin such as acrylic and / or ethyl cellulose and an organic solvent.
  • the organic solvent may be, for example, ⁇ -terepineol.
  • the prepared heat-dissipating body paste may be filled into the through holes in 230a and 230b by, for example, a screen printing method.
  • FIG. 7 schematically shows a state in which the through holes 230a and 230b are filled with the radiator pastes 240a and 240b, respectively.
  • Step S130 a first relaxation paste layer is installed on the upper surface 214 of the green sheet 210 so as to cover the radiator pastes 240a and 240b. Further, a second relaxation paste layer is installed on the lower surface 216 of the green sheet 210 so as to cover the radiator pastes 240a and 240b.
  • the first relaxation paste layer and the second relaxation paste layer have the form of a paste containing glass.
  • the glass contained in the first relaxation paste layer and the second relaxation paste layer has the coefficient of thermal expansion of the glass contained in the green sheet 210 and the coefficient of thermal expansion of the metal contained in the heat-dissipating pastes 240a and 240b. It has a coefficient of thermal expansion belonging to between.
  • the method of installing the first relaxation paste layer and the second relaxation paste layer is not particularly limited.
  • the first relaxation paste layer and the second relaxation paste layer may be installed by a printing method.
  • the first relaxation paste layer 272 is installed on the upper surface 214 of the green sheet 210, and the second relaxation paste layer 274 is installed on the lower surface 216 of the green sheet 210.
  • the cross section is schematically shown.
  • Step S140 Next, the assembly 290 formed in step S130 is heat-treated in the atmosphere.
  • the temperature of the heat treatment varies depending on the components contained in the assembly 290, but is, for example, in the range of 800 ° C to 1000 ° C.
  • FIG. 9 schematically shows a cross section of a sintered member (hereinafter referred to as “sintered substrate 292”) obtained after heat treatment.
  • the powders contained in the green sheet 210 are sintered together to form the substrate 130.
  • the heat-dissipating body pastes 240a and 240b filled in the through holes 230a and 230b are sintered to form heat-dissipating bodies 258a and 258b, respectively.
  • the first relaxation paste layer 272 and the second relaxation paste layer 274 are sintered to form the first relaxation layer 282 and the second relaxation layer 284, respectively.
  • Step S150 Next, the first relaxation layer 282 and the second relaxation layer 284 are removed by polishing the upper and lower surfaces of the sintered substrate 292.
  • the upper and lower surfaces of the sintered substrate 292 preferably have a surface roughness Ra of 0.5 ⁇ m or less.
  • the first substrate 100 as shown in FIGS. 2 and 3 is manufactured.
  • the first relaxation paste layer 272 is installed on the upper surface 214 of the green sheet 210, and the second relaxation paste layer 274 is installed on the lower surface 216 of the green sheet 210.
  • the solid 290 is heat treated.
  • the green sheet 210 (base 130) is arranged in the cooling process of the assembly 290. ) In-plane contraction is hindered. Similarly, the heat-dissipating body pastes 240a and 240b (heat-dissipating bodies 258a and 258b) are prevented from shrinking in the in-plane direction.
  • heat radiator 158a even if the relatively large total area S h of 158b, in the course of cooling assembly 290, the substrate 130 and the heat radiating body 158a, at the interface between 158b, hardly cracks can do.
  • a substrate for a light emitting element provided with a radiator having a large area can be appropriately manufactured.
  • the distance d between the radiator bodies 158a and 158b may be, for example, in the range of 0.35 mm to 0.50 mm.
  • Examples 1 to 13 are examples, and Example 21 is a comparative example.
  • Example 1 A substrate for a light emitting element was manufactured based on the above-mentioned first manufacturing method.
  • the relaxation paste layer was installed by printing a paste containing glass ceramics. The thickness of the relaxation layer was about 10 ⁇ m in each surface.
  • FIG. 10 schematically shows a top view of the manufactured substrate for a light emitting element (hereinafter referred to as “sample 1”).
  • the substrate 310 was a mixed material of glass and ceramics.
  • the substrate 310 had dimensions of 1.95 mm in length (referred to as L 1a ), 1.45 mm in width (referred to as L 1b ), and 0.5 mm in thickness.
  • the coefficient of thermal expansion of the substrate 310 is about 6 ppm / ° C.
  • the mounting portion 365 has dimensions of 1.00 mm in length (referred to as L 2a ) and 1.00 mm in width (referred to as L 2b).
  • each radiator body 358 has a length (L 3a ) of 0.92 mm and a width W of 0.36 mm. The distance d between both radiators 358 was set to 0.38 mm. Further, each radiator 358 is arranged so that the outer side surface protrudes from the mounting portion 365 by 0.05 mm.
  • Total area S h of the radiator 358 is 0.60 mm 2.
  • the area S a of the mounting portion 365 is 1.00 mm 2.
  • Overlap area S o is a 0.57mm 2.
  • Example 2 to 13 A substrate for a light emitting element was produced by the same method as in Example 1. However, in Examples 2 to 13, as in Example 1, the thickness of the relaxation layer, the total area S h of the radiator, the distance d, and was an overlap area S o and the like are changed.
  • the light emitting element substrates manufactured in Examples 2 to 13 are referred to as Samples 2 to 13, respectively.
  • Example 21 A substrate for a light emitting element was produced by the same method as in Example 1. However, in this example 21, unlike the case of example 1, the relaxation paste layer was not installed. Therefore, the sintered substrate obtained after the heat treatment of the assembly was used as it is as a substrate for a light emitting element.
  • Example 21 the overlap area So was set to 35 mm 2 , and the distance between the two radiators was set to 0.55 mm.
  • the substrate for a light emitting element manufactured in Example 21 is referred to as a sample 21.
  • the number of observations was 120 for each sample.
  • the upper electrode was formed by forming a copper film by an electrolytic plating method.
  • the LED element was fixed on the upper electrode of each sample using a die bond material. As a result, a light emitting device was configured.
  • the thermal resistance of each light emitting device was measured using a thermal resistance measuring device (TH-2167; manufactured by Mine Koon Denki Co., Ltd.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

This substrate for a light-emitting element comprises: a base body having a first surface and a second surface opposing each other and a through-hole extending from the first surface to the second surface; and a heat dissipator filled in the through-hole of the base body. The first surface of the base body includes a mounting portion in which the light-emitting element is installed. In the substrate for a light-emitting element, when viewed from the first surface side, the area So in which the heat dissipator overlaps the mounting portion is 50% or more.

Description

発光素子用基板Substrate for light emitting element
 本発明は、発光素子用基板に関する。 The present invention relates to a substrate for a light emitting element.
 発光ダイオード(LED)および半導体レーザダイオード(LD)のような発光素子は、自動車用灯具、ディスプレイ、および街路灯などに幅広く使用されている。発光素子は、発光素子用基板の上に設置され、発光装置として使用される。 Light emitting devices such as light emitting diodes (LEDs) and semiconductor laser diodes (LDs) are widely used in automobile lighting fixtures, displays, street lights, and the like. The light emitting element is installed on the light emitting element substrate and is used as a light emitting device.
 一般に、発光素子用基板には、上面(発光素子が設置される表面)から下面にわたって貫通孔が設けられ、この貫通孔には放熱体が充填される。発光素子用基板に放熱体を設けることにより、発光素子で発生した熱を装置外部に逸散させることができる。 Generally, the light emitting element substrate is provided with a through hole from the upper surface (the surface on which the light emitting element is installed) to the lower surface, and the through hole is filled with a radiator. By providing the radiator on the light emitting element substrate, the heat generated by the light emitting element can be dissipated to the outside of the device.
特開2009-135538号公報Japanese Unexamined Patent Publication No. 2009-135538
 近年、ワイヤボンド型に代わる発光装置の構成として、フリップチップボンド型と呼ばれる構造が採用されるようになってきた(例えば特許文献1)。 In recent years, a structure called a flip-chip bond type has been adopted as a configuration of a light emitting device instead of the wire bond type (for example, Patent Document 1).
 フリップチップボンド型では、発光素子の底面に設けられた各バンプと、発光素子用基板の上面に設けられた各パッドとにより、電気的接続がなされる。このため、ワイヤボンドタイプの発光装置に比べて、配線長を短くすることができ、発光装置の小型化や高効率化が可能となる。 In the flip-chip bond type, electrical connection is made by each bump provided on the bottom surface of the light emitting element and each pad provided on the upper surface of the light emitting element substrate. Therefore, the wiring length can be shortened as compared with the wire bond type light emitting device, and the light emitting device can be miniaturized and highly efficient.
 しかしながら、フリップチップボンド型では、発光素子用基板に充填される放熱体の面積を高めることが難しいと言う問題がある。これは、フリップチップボンド型の場合、発光素子用基板に複数の放熱体を埋め込む必要があり、各放熱体の間の距離が接近すると、発光素子用基板の製造過程でクラックが生じ易くなるためである。 However, the flip-chip bond type has a problem that it is difficult to increase the area of the radiator filled in the light emitting element substrate. This is because in the case of the flip-chip bond type, it is necessary to embed a plurality of radiators in the light-emitting element substrate, and when the distance between the heat-dissipating bodies is close, cracks are likely to occur in the manufacturing process of the light-emitting element substrate. Is.
 このため、フリップチップボンド型では、発光素子の発熱が改めて問題となる傾向にある。特に、今後、発光装置の小型化がさらに進展すれば、この発熱の問題は、より顕著になることが予想される。 For this reason, in the flip chip bond type, the heat generation of the light emitting element tends to become a problem again. In particular, it is expected that this problem of heat generation will become more prominent as the miniaturization of light emitting devices progresses further in the future.
 本発明は、このような背景に鑑みなされたものであり、本発明では、従来に比べて良好な放熱性を有する発光素子用基板を提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide a substrate for a light emitting element having better heat dissipation than the conventional one.
 本発明では、発光素子用基板であって、
 相互に対向する第1の面および第2の面を有し、前記第1の面から前記第2の面に至る貫通孔を有する基体と、
 前記基体の貫通孔に充填された放熱体と、
 を有し、
 前記基体の第1の面は、発光素子が設置される搭載部を有し、
 当該発光素子用基板は、前記第1の面の側から見たとき、前記放熱体が前記搭載部と重なり合う部分の面積Sが50%以上である、発光素子用基板が提供される。
In the present invention, it is a substrate for a light emitting element.
A substrate having a first surface and a second surface facing each other and having a through hole extending from the first surface to the second surface.
With the radiator filled in the through hole of the substrate,
Have,
The first surface of the substrate has a mounting portion on which a light emitting element is mounted.
The light emitting element substrate is provided with a light emitting element substrate having an area So of 50% or more of a portion where the radiator overlaps with the mounting portion when viewed from the side of the first surface.
 本発明では、従来に比べて良好な放熱性を有する発光素子用基板を提供することができる。 In the present invention, it is possible to provide a substrate for a light emitting element having better heat dissipation than the conventional one.
一般的なフリップチップボンド型の発光装置の構成を概略的に示した断面図である。It is sectional drawing which showed the structure of the general flip chip bond type light emitting device roughly. 本発明の一実施形態による発光素子用基板の模式的な上面図である。It is a schematic top view of the substrate for a light emitting element according to one Embodiment of this invention. 図2に示した発光素子用基板のA-A線に沿った断面を模式的に示した図である。It is a figure which showed schematically the cross section of the substrate for a light emitting element shown in FIG. 2 along the line AA. 本発明の一実施形態による発光素子用基板を製造する方法のフローを模式的に示した図である。It is a figure which showed typically the flow of the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention. 本発明の一実施形態による発光素子用基板を製造する方法における一過程を模式的に示した図である。It is a figure which showed typically one process in the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention. 本発明の一実施形態による発光素子用基板を製造する方法における一過程を模式的に示した図である。It is a figure which showed typically one process in the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention. 本発明の一実施形態による発光素子用基板を製造する方法における一過程を模式的に示した図である。It is a figure which showed typically one process in the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention. 本発明の一実施形態による発光素子用基板を製造する方法における一過程を模式的に示した図である。It is a figure which showed typically one process in the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention. 本発明の一実施形態による発光素子用基板を製造する方法における一過程を模式的に示した図である。It is a figure which showed typically one process in the method of manufacturing the substrate for a light emitting element by one Embodiment of this invention. 本発明の一実施形態による発光素子用基板の上面を模式的に示した図である。It is a figure which shows typically the upper surface of the substrate for a light emitting element by one Embodiment of this invention.
 以下、図面を参照して、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 (フリップチップボンド型の発光装置について)
 まず、本発明の一実施形態による発光素子用基板の構成および特徴をより良く理解するため、一般的なフリップチップボンド型の発光装置について説明する。
(About flip chip bond type light emitting device)
First, a general flip-chip bond type light emitting device will be described in order to better understand the configuration and features of the light emitting element substrate according to the embodiment of the present invention.
 図1には、一般的なフリップチップボンド型の発光装置の断面構成を概略的に示す。 FIG. 1 schematically shows a cross-sectional configuration of a general flip-chip bond type light emitting device.
 図1に示すように、この発光装置1は、発光素子用基板2と、発光素子60とを有する。 As shown in FIG. 1, the light emitting device 1 has a light emitting element substrate 2 and a light emitting element 60.
 発光素子用基板2は、上面4および下面6を有し、発光素子60は、発光素子用基板2の上面4の側に設置される。 The light emitting element substrate 2 has an upper surface 4 and a lower surface 6, and the light emitting element 60 is installed on the side of the upper surface 4 of the light emitting element substrate 2.
 発光素子用基板2は、基体10と、複数の放熱体18とを有する。基体10は、上面14から下面16に貫通する複数の貫通孔を有し、放熱体18は、各貫通孔に充填されている。なお、基体10の上面14および下面16は、それぞれ、発光素子用基板2の上面4および下面6に対応する。 The light emitting element substrate 2 has a substrate 10 and a plurality of radiators 18. The substrate 10 has a plurality of through holes penetrating from the upper surface 14 to the lower surface 16, and the radiator 18 is filled in each through hole. The upper surface 14 and the lower surface 16 of the substrate 10 correspond to the upper surface 4 and the lower surface 6 of the light emitting element substrate 2, respectively.
 発光装置1は、さらに、発光素子用基板2の上面4に形成された複数の上部電極25と、下面6に形成された下部導体35とを有する。上部電極25および下部導体35は、対象の放熱体18と電気的に接続されるように配置される。 The light emitting device 1 further has a plurality of upper electrodes 25 formed on the upper surface 4 of the light emitting element substrate 2 and a lower conductor 35 formed on the lower surface 6. The upper electrode 25 and the lower conductor 35 are arranged so as to be electrically connected to the target radiator 18.
 また、発光装置1は、発光素子60の底部62に、複数の電極バンプ65を有する。各電極バンプ65は、それぞれの上部電極25と接続される。 Further, the light emitting device 1 has a plurality of electrode bumps 65 on the bottom portion 62 of the light emitting element 60. Each electrode bump 65 is connected to each upper electrode 25.
 このような構造を有する発光装置1では、ワイヤボンド型の装置とは異なり、発光素子60の任意の位置で通電を行うことができる。このため、発光装置1では、配線長を短くすることができる上、装置を小型化することができる。 Unlike the wire bond type device, the light emitting device 1 having such a structure can be energized at an arbitrary position of the light emitting element 60. Therefore, in the light emitting device 1, the wiring length can be shortened and the device can be miniaturized.
 ここで、放熱体18は、発光素子60で生じた熱を、下部導体35を介して外部に逸散させる役割を有する。従って、放熱効率の観点から、発光装置1の上側(発光素子60の側)から放熱体18を見た場合(以下、「上面視」と称する)、各放熱体18の面積は、できるだけ大きくすることが望ましい。 Here, the heat radiating body 18 has a role of dissipating the heat generated by the light emitting element 60 to the outside through the lower conductor 35. Therefore, from the viewpoint of heat dissipation efficiency, when the heat radiating body 18 is viewed from the upper side of the light emitting device 1 (the side of the light emitting element 60) (hereinafter referred to as “top view”), the area of each heat radiating body 18 is made as large as possible. Is desirable.
 しかしながら、発光素子用基板2は、通常、基体10のベースとなるグリーンシートに設けられた貫通孔に放熱体18用のペーストを充填した状態で、グリーンシートを熱処理することにより製造される。グリーンシート(または基体10)と放熱体ペースト(または放熱体18)とは熱膨張係数が異なるため、熱処理の際に、両者の界面に応力が生じる。特に、放熱体18の領域を広げた場合、この応力の影響が無視できなくなり、基体10の加熱/冷却の工程で、基体10と放熱体18との界面にクラックが生じてしまう。 However, the light emitting element substrate 2 is usually manufactured by heat-treating the green sheet in a state where the through holes provided in the green sheet which is the base of the substrate 10 are filled with the paste for the radiator 18. Since the green sheet (or the substrate 10) and the radiator paste (or the radiator 18) have different coefficients of thermal expansion, stress is generated at the interface between the two during the heat treatment. In particular, when the region of the heat radiating body 18 is expanded, the influence of this stress cannot be ignored, and cracks occur at the interface between the base 10 and the heat radiating body 18 in the step of heating / cooling the base 10.
 このように、放熱体18の面積の拡張には限界があり、その結果、発光装置1の放熱特性のいっそうの向上は難しいという問題がある。 As described above, there is a limit to the expansion of the area of the heat radiating body 18, and as a result, there is a problem that it is difficult to further improve the heat radiating characteristics of the light emitting device 1.
 これに対して、本発明の一実施形態では、以降に詳しく示すように、放熱体18の面積をより拡張することができる。例えば、本発明の一実施形態では、上面視、放熱体18が発光素子60と重なり合う面積の総和(以下、「オーバーラップ面積」と称する)Sを、50%以上にすることができる。 On the other hand, in one embodiment of the present invention, the area of the radiator 18 can be further expanded as will be described in detail below. For example, in one embodiment of the present invention, the total area of the area where the heat radiating body 18 overlaps with the light emitting element 60 (hereinafter referred to as “overlap area”) So can be set to 50% or more.
 従って、本発明の一実施形態では、発光装置1の放熱特性を有意に高めることが可能となる。 Therefore, in one embodiment of the present invention, it is possible to significantly improve the heat dissipation characteristics of the light emitting device 1.
 (本発明の一実施形態による発光素子用基板)
 次に、図2~図3を参照して、本発明の一実施形態による発光素子用基板の構成例について説明する。
(Substrate for light emitting element according to one embodiment of the present invention)
Next, a configuration example of the light emitting element substrate according to the embodiment of the present invention will be described with reference to FIGS. 2 to 3.
 図2には、本発明の一実施形態による発光素子用基板の模式的な上面図を示す。また、図3には、図2に示した発光素子用基板のA-A線に沿った断面を模式的に示す。 FIG. 2 shows a schematic top view of a substrate for a light emitting element according to an embodiment of the present invention. Further, FIG. 3 schematically shows a cross section of the light emitting element substrate shown in FIG. 2 along the line AA.
 図2および図3に示すように、本発明の一実施形態による発光素子用基板(以下、「第1の基板」と称する)100は、相互に対向する第1の面104および第2の面106を有する。また、第1の基板100は、基体130と、複数の放熱体158とを有する。なお、図2および図3に示した例では、2つの放熱体158が示されており、以降、これらを、それぞれ、158aおよび158bで表す。 As shown in FIGS. 2 and 3, the light emitting device substrate (hereinafter referred to as “first substrate”) 100 according to the embodiment of the present invention has first surfaces 104 and second surfaces facing each other. Has 106. Further, the first substrate 100 has a substrate 130 and a plurality of radiators 158. In the examples shown in FIGS. 2 and 3, two radiator bodies 158 are shown, which are hereinafter represented by 158a and 158b, respectively.
 基体130は、相互に対向する上面134および下面136を有する。また、基体130は、上面134から下面136に至る複数の貫通孔148a、148bを有する。 The substrate 130 has an upper surface 134 and a lower surface 136 facing each other. Further, the substrate 130 has a plurality of through holes 148a and 148b extending from the upper surface 134 to the lower surface 136.
 放熱体158a、158bは、基体130のそれぞれの貫通孔148a、148bに充填されており、従って、上面134から下面136まで延伸する。 The heat radiating bodies 158a and 158b are filled in the respective through holes 148a and 148b of the substrate 130, and therefore extend from the upper surface 134 to the lower surface 136.
 第1の基板100の第1の面104は、基体130の上面134の側に対応し、第1の基板100の第2の面106は、基体130の下面136の側に対応する。 The first surface 104 of the first substrate 100 corresponds to the side of the upper surface 134 of the substrate 130, and the second surface 106 of the first substrate 100 corresponds to the side of the lower surface 136 of the substrate 130.
 第1の基板100の第1の面104は、発光素子(図示されていない)が設置される搭載部165を有する。図2において、搭載部165は、四角形状の破線で示されている。 The first surface 104 of the first substrate 100 has a mounting portion 165 on which a light emitting element (not shown) is mounted. In FIG. 2, the mounting portion 165 is indicated by a rectangular broken line.
 ここで、第1の基板100は、第1の面104の側から見たとき、すなわち、第1の基板100の上面視、放熱体158a、158bが搭載部165と重なり合う部分の面積、すなわちオーバーラップ面積Sが50%以上であるという特徴を有する。 Here, the first substrate 100 is viewed from the side of the first surface 104, that is, the top view of the first substrate 100, the area of the portion where the heat radiating bodies 158a and 158b overlap with the mounting portion 165, that is, over. It has a feature that the lap area So is 50% or more.
 オーバーラップ面積Sは、例えば、60%以上であり、65%以上であることが好ましい。 The overlap area So is, for example, 60% or more, and preferably 65% or more.
 このような特徴を有する第1の基板100の上に発光素子を設置して発光装置を構成した場合、発光素子で生じた熱を、放熱体158a、158bを介して外部に有効に逸散させることが可能となる。 When a light emitting element is installed on the first substrate 100 having such characteristics to form a light emitting device, the heat generated by the light emitting element is effectively dissipated to the outside via the radiator bodies 158a and 158b. It becomes possible.
 従って、そのような発光装置では、従来に比べて放熱特性を高めることが可能となる。 Therefore, in such a light emitting device, it is possible to improve the heat dissipation characteristics as compared with the conventional case.
 なお、図2および図3に示した例では、第1の基板100は、上面視、2つの矩形状の放熱体158a、158bを有する。しかしながら、これは単なる一例であって、放熱体158の数は、複数である限り、特に限られない。また、放熱体158の形状は、特に限られない。 In the example shown in FIGS. 2 and 3, the first substrate 100 has two rectangular radiator bodies 158a and 158b in a top view. However, this is only an example, and the number of radiators 158 is not particularly limited as long as there are a plurality of radiators. Further, the shape of the radiator body 158 is not particularly limited.
 例えば、放熱体158の形状は、略円形、略楕円形、または略n角形(ただしnは、3以上の整数)であってもよい。また、放熱体158は、コーナー部がラウンドされた形状を有してもよい。さらに、各放熱体158は、必ずしも同一の形状である必要はなく、相互に異なる形状を有してもよい。 For example, the shape of the radiator 158 may be a substantially circular shape, a substantially elliptical shape, or a substantially n-sided polygon (where n is an integer of 3 or more). Further, the heat radiating body 158 may have a shape in which the corner portions are rounded. Further, the heat radiating bodies 158 do not necessarily have to have the same shape, but may have different shapes from each other.
 同様に、図2に示した例では、搭載部165は、矩形状の形態を有する。しかしながら、搭載部165の形状は、特に限られず、搭載部165は、例えば、略円形、略楕円形、または略n角形(ただしnは、3以上の整数)の形状を有してもよい。また、搭載部165は、コーナー部がラウンドされた形状を有してもよい。 Similarly, in the example shown in FIG. 2, the mounting portion 165 has a rectangular shape. However, the shape of the mounting portion 165 is not particularly limited, and the mounting portion 165 may have, for example, a substantially circular shape, a substantially elliptical shape, or a substantially n-sided polygon (where n is an integer of 3 or more). Further, the mounting portion 165 may have a shape in which the corner portion is rounded.
 (各構成部材)
 次に、本発明の一実施形態による発光素子用基板に含まれる各構成部材について説明する。
(Each component)
Next, each component included in the light emitting element substrate according to the embodiment of the present invention will be described.
 なお、ここでは明確化のため、図2および図3に示した第1の基板100を例に、その構成部材について説明する。従って、各部材を表す際には、図2および図3に示した参照符号を使用する。 Here, for the sake of clarification, the constituent members thereof will be described by taking the first substrate 100 shown in FIGS. 2 and 3 as an example. Therefore, when representing each member, the reference numerals shown in FIGS. 2 and 3 are used.
 (基体130)
 基体130は、例えば、ガラスを主体とした材料で構成される。基体130は、ガラスとセラミックスの混合材料で構成されてもよい。
(Hypokeimenon 130)
The substrate 130 is made of, for example, a material mainly composed of glass. The substrate 130 may be made of a mixed material of glass and ceramics.
 ガラスの組成は、特に限られないが、例えば、SiO、B、CaO、およびAlを含む組成が好ましい。ガラスは、さらに、KOおよびNaOの少なくとも一方を含んでも良い。 The composition of the glass is not particularly limited, but a composition containing, for example, SiO 2 , B 2 O 3 , CaO, and Al 2 O 3 is preferable. The glass may further contain at least one of K 2 O and Na 2 O.
 このような組成とすることにより、基体130と放熱体158との密着性が向上する。 With such a composition, the adhesion between the substrate 130 and the radiator body 158 is improved.
 このうち、SiOは、ガラスのネットワークフォーマとなる物質である。SiOは、ガラス中に、57mol%~65mol%の範囲で含まれることが好ましい。 Of these, SiO 2 is a substance that serves as a network former for glass. SiO 2 is preferably contained in the glass in the range of 57 mol% to 65 mol%.
 SiOの含有量が57mol%未満の場合、安定なガラスを得ることが難しくなるとともに、化学的耐久性が低下するおそれがある。一方、SiOの含有量が65mol%を超えると、ガラス溶融温度およびガラス転移温度Tgが過度に高くなるおそれある。SiOの含有量は、好ましくは58mol%以上、より好ましくは59mol%以上、特に好ましくは60mol%以上である。また、SiOの含有量は、好ましくは64mol%以下、より好ましくは63mol%以下である。 If the content of SiO 2 is less than 57 mol%, it becomes difficult to obtain stable glass and the chemical durability may decrease. On the other hand, if the content of SiO 2 exceeds 65 mol%, the glass melting temperature and the glass transition temperature Tg may become excessively high. The content of SiO 2 is preferably 58 mol% or more, more preferably 59 mol% or more, and particularly preferably 60 mol% or more. The content of SiO 2 is preferably 64 mol% or less, more preferably 63 mol% or less.
 Bは、ガラスのネットワークフォーマとなる物質である。Bは、ガラス中に、13mol%~18mol%の範囲で含まれることが好ましい。 B 2 O 3 is a substance that serves as a network former for glass. B 2 O 3 is preferably contained in the glass in the range of 13 mol% to 18 mol%.
 Bの含有量が13mol%未満の場合、ガラス溶融温度およびガラス転移温度Tgが過度に高くなるおそれがある。一方、Bの含有量が18mol%を超えると、安定なガラスを得ることが難しくなるとともに、化学的耐久性が低下するおそれがある。Bの含有量は、好ましくは14mol%以上、より好ましくは15mol%以上である。また、Bの含有量は、好ましくは17mol%以下、より好ましくは16mol%以下である。 If the content of B 2 O 3 is less than 13 mol%, the glass melting temperature and the glass transition temperature Tg may become excessively high. On the other hand, if the content of B 2 O 3 exceeds 18 mol%, it becomes difficult to obtain stable glass and the chemical durability may decrease. The content of B 2 O 3 is preferably 14 mol% or more, more preferably 15 mol% or more. The content of B 2 O 3 is preferably 17 mol% or less, more preferably 16 mol% or less.
 CaOは、ガラスの安定性や結晶の析出性を高めるとともに、ガラス溶融温度およびガラス転移温度Tgを低下させるために添加される。CaOは、ガラス中に、9mol%~23mol%の範囲で含まれることが好ましい。 CaO is added to enhance the stability of the glass and the precipitateability of crystals, and to lower the glass melting temperature and the glass transition temperature Tg. CaO is preferably contained in the glass in the range of 9 mol% to 23 mol%.
 CaOの含有量が9mol%未満の場合、ガラス溶融温度が過度に高くなるおそれがある。一方、CaOの含有量が23mol%を超えると、ガラスが不安定となるおそれがある。CaOの含有量は、好ましくは12mol%以上、より好ましくは13mol%以上、特に好ましくは14mol%以上である。また、CaOの含有量は、好ましくは22mol%以下、より好ましくは21mol%以下、特に好ましくは20mol%以下である。 If the CaO content is less than 9 mol%, the glass melting temperature may become excessively high. On the other hand, if the CaO content exceeds 23 mol%, the glass may become unstable. The CaO content is preferably 12 mol% or more, more preferably 13 mol% or more, and particularly preferably 14 mol% or more. The CaO content is preferably 22 mol% or less, more preferably 21 mol% or less, and particularly preferably 20 mol% or less.
 Alは、ガラスの安定性、化学的耐久性、および強度を高めるために添加される。Alは、ガラス中に、3mol%~8mol%の範囲で含まれることが好ましい。 Al 2 O 3 is added to enhance the stability, chemical durability, and strength of the glass. Al 2 O 3 is preferably contained in the glass in the range of 3 mol% to 8 mol%.
 Alの含有量が3mol%未満の場合、ガラスが不安定となるおそれがある。一方、Alの含有量が8mol%を超える場合、ガラス溶融温度およびガラス転移温度Tgが過度に高くなるおそれがある。Alの含有量は、好ましくは4mol%以上、より好ましくは5mol%以上である。また、Alの含有量は、好ましくは7mol%以下、より好ましくは6mol%以下である。 If the content of Al 2 O 3 is less than 3 mol%, the glass may become unstable. On the other hand, when the content of Al 2 O 3 exceeds 8 mol%, the glass melting temperature and the glass transition temperature Tg may become excessively high. The content of Al 2 O 3 is preferably 4 mol% or more, more preferably 5 mol% or more. The content of Al 2 O 3 is preferably 7 mol% or less, more preferably 6 mol% or less.
 KO、NaOは、ガラス転移温度Tgを低下させる。KOおよびNaOは、ガラス中に、合計で0.5mol%~6mol%の範囲で含まれることが好ましい。 K 2 O and Na 2 O lower the glass transition temperature Tg. It is preferable that K 2 O and Na 2 O are contained in the glass in the range of 0.5 mol% to 6 mol% in total.
 KOおよびNaOの合計含有量が0.5mol%未満の場合、ガラス溶融温度およびガラス転移温度Tgが過度に高くなるおそれがある。一方、KOおよびNaOの合計含有量が6mol%を超える場合、化学的耐久性、特に耐酸性が低下するおそれがあり、電気的絶縁性も低下するおそれがある。KOおよびNaOの合計含有量は、0.8mol%以上5mol%以下が好ましい。 If the total content of K 2 O and Na 2 O is less than 0.5 mol%, the glass melting temperature and the glass transition temperature Tg may become excessively high. On the other hand, when the total content of K 2 O and Na 2 O exceeds 6 mol%, the chemical durability, particularly the acid resistance, may decrease, and the electrical insulation may also decrease. The total content of K 2 O and Na 2 O is preferably 0.8 mol% or more and 5 mol% or less.
 なお、ガラスの組成は、必ずしも上記成分のみからなるものに限定されず、他の成分を含有してもよい。他の成分を含有する場合、その合計した含有量は10mol%以下が好ましい。 The composition of the glass is not necessarily limited to that consisting only of the above components, and may contain other components. When other components are contained, the total content thereof is preferably 10 mol% or less.
 基体130がセラミックスを含む場合、セラミックスとしては、これに限られるものではないが、例えば、アルミナ、ジルコニア、または両者の混合物などが使用される。 When the substrate 130 contains ceramics, the ceramics are not limited to this, and for example, alumina, zirconia, or a mixture of both is used.
 基体130に含まれるガラスの量は、例えば、基体130全体に対して35質量%~75質量%の範囲である。ガラスの量は、基体130全体に対して40質量%~70質量%の範囲であることが好ましい。 The amount of glass contained in the substrate 130 is, for example, in the range of 35% by mass to 75% by mass with respect to the entire substrate 130. The amount of glass is preferably in the range of 40% by mass to 70% by mass with respect to the entire substrate 130.
 基体130の厚さは、特に限られないが、例えば、200μm~1200μmの範囲である。 The thickness of the substrate 130 is not particularly limited, but is, for example, in the range of 200 μm to 1200 μm.
 基体130の上面134および/または下面136は、表面粗さRaが0.5μm以下であることが好ましい。この場合、基体130の上面134および/または下面136に加わる局部的な応力の集中が抑制され、クラックの発生をより抑制することが可能となる。 The upper surface 134 and / or the lower surface 136 of the substrate 130 preferably has a surface roughness Ra of 0.5 μm or less. In this case, the concentration of local stress applied to the upper surface 134 and / or the lower surface 136 of the substrate 130 is suppressed, and the occurrence of cracks can be further suppressed.
 (放熱体158)
 放熱体158は、熱伝導性および電気伝導性を有し、金属を含む。放熱体158は、例えば、銅、銀、および金の少なくとも一つを含んでもよい。
(Heat radiator 158)
The radiator 158 has thermal and electrical conductivity and contains metal. The radiator 158 may include, for example, at least one of copper, silver, and gold.
 第1の基板100の上面視、放熱体158の総面積Sは、例えば、0.5mm~1.5mmの範囲である。 Top view of the first substrate 100, the total area S h of the radiator 158 is, for example, in the range of 0.5mm 2 ~ 1.5mm 2.
 ここで、総面積Sは、それぞれの放熱体158の面積の合計で表される。例えば、図2および図3に示した例では、総面積Sは、第1の基板100の上面視、放熱体158aの面積と、放熱体158bの面積との和で表される。 Here, the total area Sh is represented by the total area of each radiator body 158. For example, in the example shown in FIGS. 2 and 3, the total area S h is a top view of the first substrate 100, and the area of the heat radiating member 158a, represented by the sum of the areas of the heat radiating body 158b.
 第1の基板100が複数の放熱体158を有する場合、上面視、隣接する放熱体158同士の距離d(図2参照)は、例えば、0.50mm以下である。距離dは、0.40mm以下であることが好ましく、0.35mm以下であることがより好ましい。 When the first substrate 100 has a plurality of heat radiating bodies 158, the distance d (see FIG. 2) between the adjacent heat radiating bodies 158 in the top view is, for example, 0.50 mm or less. The distance d is preferably 0.40 mm or less, and more preferably 0.35 mm or less.
 なお、本願において、距離dは、上面視、隣り合う放熱体の間の最小寸法として定められる。 In the present application, the distance d is defined as the minimum dimension between adjacent radiators in a top view.
 (搭載部165)
 前述のように、搭載部165の形状は特に限られず、搭載部165として、各種形状を採用することができる。
(Mounting unit 165)
As described above, the shape of the mounting portion 165 is not particularly limited, and various shapes can be adopted as the mounting portion 165.
 搭載部165の面積Sは、特に限られないが、例えば、0.15mm~4.00mmの範囲である。搭載部165の面積Sは、0.50mm~2.00mmの範囲であることが好ましく、0.75mm~1.25mmの範囲であることがより好ましい。 Area S a of the mounting portion 165 is not particularly limited, for example, in the range of 0.15mm 2 ~ 4.00mm 2. Area S a of the mounting portion 165 is preferably in the range of 0.50 mm 2 ~ 2.00 mm 2, and more preferably in the range of 0.75mm 2 ~ 1.25mm 2.
 (第1の基板100)
 上記説明では、第1の基板100は、基体130と放熱体158とで構成される。
(First substrate 100)
In the above description, the first substrate 100 is composed of the substrate 130 and the radiator body 158.
 しかしながら、第1の基板100は、さらに、図1に示したような、複数の上部電極25を有してもよい。上部電極25は、各放熱体158a、158bの上部を覆うようにして、基体130の上面134に設置される。 However, the first substrate 100 may further have a plurality of upper electrodes 25 as shown in FIG. The upper electrode 25 is installed on the upper surface 134 of the substrate 130 so as to cover the upper part of each radiator body 158a and 158b.
 また、第1の基板100は、さらに、図1に示したような、複数の下部導体35を有してもよい。下部導体35は、各放熱体158a、158bの底面を覆うようにして、基体130の下面136に設置される。 Further, the first substrate 100 may further have a plurality of lower conductors 35 as shown in FIG. The lower conductor 35 is installed on the lower surface 136 of the substrate 130 so as to cover the bottom surface of each radiator body 158a and 158b.
 上部電極25および下部導体35は、従来から知られている、いかなる方法で設置されてもよい。例えば、上部電極25および下部導体35は、基体130の上面134および下面136に導体ペーストを設置した状態で、基体130を焼成することにより形成されてもよい。 The upper electrode 25 and the lower conductor 35 may be installed by any conventionally known method. For example, the upper electrode 25 and the lower conductor 35 may be formed by firing the substrate 130 with the conductor paste placed on the upper surface 134 and the lower surface 136 of the substrate 130.
 また、上記説明では、第1の基板100は、単一の発光素子用の基板として提供される。すなわち、第1の基板100は、一つの発光装置用の放熱体158の組のみを有する。 Further, in the above description, the first substrate 100 is provided as a substrate for a single light emitting element. That is, the first substrate 100 has only a set of radiators 158 for one light emitting device.
 しかしながら、これとは別に、第1の基板100は、複数の発光装置用の基板として、提供されてもよい。例えば、第1の基板100は、第1の発光装置用の基体130部分および放熱体158部分と、第2の発光装置用の基体130部分および放熱体158部分とを有してもよい。この場合、第1の基板100は、後に所定の位置で切断して、それぞれの発光装置用に利用される。 However, apart from this, the first substrate 100 may be provided as a substrate for a plurality of light emitting devices. For example, the first substrate 100 may have a substrate 130 portion and a radiator body 158 portion for the first light emitting device, and a substrate 130 portion and a radiator body 158 portion for the second light emitting device. In this case, the first substrate 100 is later cut at a predetermined position and used for each light emitting device.
 この他にも、当業者には各種変更および追加が想定され得る。 In addition to this, various changes and additions can be expected to those skilled in the art.
 (本発明の一実施形態による発光素子用基板の適用例)
 本発明の一実施形態による発光素子用基板は、例えば、図1に示したようなフリップチップボンド型の発光装置1用の発光素子用基板として使用される。
(Application example of a substrate for a light emitting element according to an embodiment of the present invention)
The substrate for a light emitting element according to an embodiment of the present invention is used, for example, as a substrate for a light emitting element for a flip-chip bond type light emitting device 1 as shown in FIG.
 係る発光装置1において、発光素子60は、いかなるタイプであってもよい。発光素子60は、例えば、LED素子、LD、または面発光レーザダイオード(VCSEL)等であってもよい。 In the light emitting device 1, the light emitting element 60 may be of any type. The light emitting element 60 may be, for example, an LED element, an LD, a surface emitting laser diode (VCSEL), or the like.
 本発明の一実施形態による発光素子用基板を備える発光装置1では、放熱特性を有意に高めることができる。 In the light emitting device 1 provided with the light emitting element substrate according to the embodiment of the present invention, the heat dissipation characteristics can be significantly improved.
 (本発明の一実施形態による発光素子用基板の製造方法)
 次に、図4~図9を参照して、本発明の一実施形態による発光素子用基板の製造方法の一例について説明する。
(Method for manufacturing a substrate for a light emitting element according to an embodiment of the present invention)
Next, an example of a method for manufacturing a substrate for a light emitting element according to an embodiment of the present invention will be described with reference to FIGS. 4 to 9.
 図4には、本発明の一実施形態による発光素子用基板を製造する方法のフローを模式的に示す。 FIG. 4 schematically shows a flow of a method for manufacturing a substrate for a light emitting element according to an embodiment of the present invention.
 図4に示すように、本発明の一実施形態による発光素子用基板を製造する方法(以下、「第1の製造方法」と称する)は、
 上面および下面を有するグリーンシートに複数の貫通孔を形成する工程(S110)と、
 各貫通孔に、放熱体用ペーストを充填する工程(S120)と、
 グリーンシートの上面および下面に、緩和ペースト層を設置する工程(S130)と、
 グリーンシートを熱処理して、焼結基板を形成する工程(S140)と、
 前記焼結基板の上下面を研磨して、発光素子用基板を得る工程(S150)と、
 を有する。
As shown in FIG. 4, a method for manufacturing a substrate for a light emitting device according to an embodiment of the present invention (hereinafter, referred to as “first manufacturing method”) is
A step of forming a plurality of through holes in a green sheet having an upper surface and a lower surface (S110), and
A step (S120) of filling each through hole with a paste for a radiator,
The step of installing the relaxation paste layer on the upper surface and the lower surface of the green sheet (S130),
The step of heat-treating the green sheet to form a sintered substrate (S140),
A step (S150) of polishing the upper and lower surfaces of the sintered substrate to obtain a substrate for a light emitting element.
Have.
 以下、図5~図9を参照して、各工程について、より詳しく説明する。 Hereinafter, each process will be described in more detail with reference to FIGS. 5 to 9.
 なお、ここでは、前述の第1の基板100を例に、その製造方法について説明する。従って、各部材を表す際には、図2および図3に使用した参照符号を使用する。 Here, the manufacturing method thereof will be described by taking the above-mentioned first substrate 100 as an example. Therefore, the reference numerals used in FIGS. 2 and 3 are used to represent each member.
 (工程S110)
 まず、グリーンシートが準備される。グリーンシートは、ガラスを主体とする材料で構成される。グリーンシートは、さらに、セラミックスおよび/または有機バインダを含んでもよい。
(Step S110)
First, a green sheet is prepared. The green sheet is composed mainly of glass. The green sheet may further contain ceramics and / or organic binders.
 グリーンシートは、例えば、以下の工程を経て作製される。 The green sheet is produced, for example, through the following steps.
 (ガラス粉末の作製)
 ガラス粉末は、所定の組成を有するガラスを粉砕することにより調製できる。ガラス粉末は、前述のような組成を有してもよい。
(Making glass powder)
The glass powder can be prepared by pulverizing glass having a predetermined composition. The glass powder may have the composition as described above.
 ガラスの粉砕には、乾式粉砕法または湿式粉砕法のいずれを使用しても良い。 For crushing the glass, either a dry crushing method or a wet crushing method may be used.
 湿式粉砕法では、溶媒中でガラスが粉砕される。溶媒には、水を用いることが好ましい。粉砕は、例えばロールミル、ボールミル、またはジェットミル等の粉砕機が使用できる。 In the wet crushing method, the glass is crushed in a solvent. It is preferable to use water as the solvent. For crushing, a crusher such as a roll mill, a ball mill, or a jet mill can be used.
 粉砕処理後に得られるガラス粉末の50%平均粒径(D50)は、0.5μm以上2μm以下が好ましい。 The 50% average particle size (D 50 ) of the glass powder obtained after the pulverization treatment is preferably 0.5 μm or more and 2 μm or less.
 なお、本願において、50%平均粒径(D50)は、レーザ回折散乱法による粒子径測定装置により得られる値をいう。 In the present application, the 50% average particle size (D 50 ) refers to a value obtained by a particle size measuring device by a laser diffraction / scattering method.
 ガラス粉末のD50が0.5μm以上の場合、ガラス粉末が凝集しにくく、取り扱いが容易であるとともに、均一に分散させることができる。一方、ガラス粉末のD50が2μm以下の場合、ガラス軟化温度の上昇や焼結不足が抑制される。粒径の調整は、分級等により行われる。 When the D 50 of the glass powder is 0.5 μm or more, the glass powder does not easily aggregate, is easy to handle, and can be uniformly dispersed. On the other hand, when the D 50 of the glass powder is 2 μm or less, an increase in the glass softening temperature and insufficient sintering are suppressed. The particle size is adjusted by classification or the like.
 (セラミックス粉末の作製)
 セラミックス粉末としては、一般的なガラスセラミックスの製造に用いられるものが使用できる。セラミックス粉末としては、例えば、アルミナ粉末、ジルコニア粉末、またはアルミナ粉末とジルコニア粉末との混合物が好適に使用できる。
(Ceramic powder production)
As the ceramic powder, those used in the production of general glass ceramics can be used. As the ceramic powder, for example, alumina powder, zirconia powder, or a mixture of alumina powder and zirconia powder can be preferably used.
 セラミックス粉末のD50は、例えば、0.5μm以上4μm以下が好ましい。 The D 50 of the ceramic powder is preferably, for example, 0.5 μm or more and 4 μm or less.
 (グリーンシートの作製)
 次に、前述のガラス粉末と、セラミックス粉末と、有機バインダとが所定の割合で混合され、グリーンシート用スラリーが調製される。
(Making a green sheet)
Next, the above-mentioned glass powder, ceramic powder, and organic binder are mixed at a predetermined ratio to prepare a slurry for a green sheet.
 有機バインダとしては、ポリビニルブチラール、および/またはアクリル樹脂等が使用できる。 As the organic binder, polyvinyl butyral and / or acrylic resin can be used.
 グリーンシート用スラリーには、さらに、可塑剤、分散剤、および/または溶剤等が添加されても良い。可塑剤としては、フタル酸ジブチル、フタル酸ジオクチル、および/またはフタル酸ブチルベンジル等が使用できる。また、溶剤としては、トルエン、キシレン、2-プロパノール、および/または2-ブタノール等の有機溶剤が使用できる。 A plasticizer, a dispersant, and / or a solvent may be further added to the green sheet slurry. As the plasticizer, dibutyl phthalate, dioctyl phthalate, and / or butyl benzyl phthalate and the like can be used. Further, as the solvent, an organic solvent such as toluene, xylene, 2-propanol, and / or 2-butanol can be used.
 調製されるグリーンシート用スラリーにおいて、ガラス粉末とセラミックス粉末との質量比(ガラス:セラミックス)は、35:65~75:25の範囲であることが好ましい。 In the prepared slurry for green sheet, the mass ratio (glass: ceramics) of the glass powder to the ceramic powder is preferably in the range of 35:65 to 75:25.
 得られたグリーンシート用スラリーは、ドクターブレード法等によりシート状に成形される。 The obtained green sheet slurry is formed into a sheet by the doctor blade method or the like.
 その後、グリーンシート用スラリーが乾燥され、グリーンシートが形成される。グリーンシートは、複数枚を積層した状態で、次の貫通孔形成工程に供されても良い。なお、次の貫通孔形工程以降、単一のグリーンシートも、複数枚積層して構成されたグリーンシートも、単に「グリーンシート」と称する。 After that, the slurry for the green sheet is dried to form the green sheet. The green sheet may be subjected to the next through hole forming step in a state where a plurality of sheets are laminated. In addition, after the next through hole forming step, a single green sheet and a green sheet configured by laminating a plurality of sheets are simply referred to as "green sheets".
 次に、グリーンシートに複数の貫通孔が形成される。貫通孔の形成方法は、特に限られず、従来の一般的な方法により、形成されてもよい。 Next, multiple through holes are formed in the green sheet. The method for forming the through hole is not particularly limited, and the through hole may be formed by a conventional general method.
 図5には、貫通孔が形成されたグリーンシートの上面図を模式的に示す。また、図6には、図5に示したグリーンシートのB-B線に沿った断面図を模式的に示す。 FIG. 5 schematically shows a top view of a green sheet in which a through hole is formed. Further, FIG. 6 schematically shows a cross-sectional view of the green sheet shown in FIG. 5 along the line BB.
 グリーンシート210は、上面214および下面216を有する。また、グリーンシート210には、貫通孔230aおよび230bが設けられる。貫通孔230aおよび230bは、それぞれ、グリーンシート210の上面214から下面216まで貫通する。 The green sheet 210 has an upper surface 214 and a lower surface 216. Further, the green sheet 210 is provided with through holes 230a and 230b. The through holes 230a and 230b each penetrate from the upper surface 214 to the lower surface 216 of the green sheet 210.
 グリーンシート210の厚さ、すなわち貫通孔230aおよび230bの全長は、例えば、200μm~1200μmの範囲であってもよい。 The thickness of the green sheet 210, that is, the total length of the through holes 230a and 230b may be in the range of, for example, 200 μm to 1200 μm.
 (工程S120)
 次に、放熱体用ペーストが調製される。
(Step S120)
Next, a paste for a radiator is prepared.
 放熱体用ペーストは、例えば、金属粒子およびビヒクルを混合することにより調製される。 The radiator paste is prepared, for example, by mixing metal particles and a vehicle.
 金属粒子は、銅、銀、および金の少なくとも一つを含んでもよい。金属粒子は、例えば、D50が2μm~7μmの範囲の粗粒と、D50が0.02μm~1μmの範囲の細粒とで構成されても良い。 The metal particles may contain at least one of copper, silver, and gold. Metal particles, for example, a coarse range D 50 is 2 [mu] m ~ 7 [mu] m, D 50 may be composed of a fine particle in the range of 0.02 [mu] m ~ 1 [mu] m.
 ビヒクルは、アクリルおよび/またはエチルセルロース等の樹脂と、有機溶剤とを含む。有機溶剤は、例えばαテレピネオールであっても良い。 The vehicle contains a resin such as acrylic and / or ethyl cellulose and an organic solvent. The organic solvent may be, for example, α-terepineol.
 調製された放熱体用ペーストは、例えば、スクリーン印刷法により、貫通孔に230a、230bに充填されても良い。 The prepared heat-dissipating body paste may be filled into the through holes in 230a and 230b by, for example, a screen printing method.
 図7には、各貫通孔230aおよび230bに、それぞれ、放熱体用ペースト240aおよび240bが充填された状態を模式的に示す。 FIG. 7 schematically shows a state in which the through holes 230a and 230b are filled with the radiator pastes 240a and 240b, respectively.
 (工程S130)
 次に、グリーンシート210の上面214に、放熱体用ペースト240aおよび240bを覆うように、第1の緩和ペースト層が設置される。また、グリーンシート210の下面216に、放熱体用ペースト240aおよび240bを覆うように、第2の緩和ペースト層が設置される。
(Step S130)
Next, a first relaxation paste layer is installed on the upper surface 214 of the green sheet 210 so as to cover the radiator pastes 240a and 240b. Further, a second relaxation paste layer is installed on the lower surface 216 of the green sheet 210 so as to cover the radiator pastes 240a and 240b.
 第1の緩和ペースト層および第2の緩和ペースト層は、ガラスを含むペーストの形態を有する。 The first relaxation paste layer and the second relaxation paste layer have the form of a paste containing glass.
 なお、第1の緩和ペースト層および第2の緩和ペースト層に含まれるガラスは、グリーンシート210に含まれるガラスの熱膨張係数と、放熱体用ペースト240a、240bに含まれる金属の熱膨張係数との間に属する熱膨張係係数を有する。 The glass contained in the first relaxation paste layer and the second relaxation paste layer has the coefficient of thermal expansion of the glass contained in the green sheet 210 and the coefficient of thermal expansion of the metal contained in the heat-dissipating pastes 240a and 240b. It has a coefficient of thermal expansion belonging to between.
 第1の緩和ペースト層および第2の緩和ペースト層の設置方法は、特に限られない。例えば、第1の緩和ペースト層および第2の緩和ペースト層は、印刷法により設置されてもよい。 The method of installing the first relaxation paste layer and the second relaxation paste layer is not particularly limited. For example, the first relaxation paste layer and the second relaxation paste layer may be installed by a printing method.
 図8には、グリーンシート210の上面214に、第1の緩和ペースト層272が設置され、グリーンシート210の下面216に、第2の緩和ペースト層274が設置されて構成された組立体290の断面を模式的に示す。 In FIG. 8, the first relaxation paste layer 272 is installed on the upper surface 214 of the green sheet 210, and the second relaxation paste layer 274 is installed on the lower surface 216 of the green sheet 210. The cross section is schematically shown.
 (工程S140)
 次に、工程S130で形成された組立体290が、大気中で熱処理される。
(Step S140)
Next, the assembly 290 formed in step S130 is heat-treated in the atmosphere.
 熱処理の温度は、組立体290に含まれる成分によっても変化するが、例えば、800℃~1000℃の範囲である。 The temperature of the heat treatment varies depending on the components contained in the assembly 290, but is, for example, in the range of 800 ° C to 1000 ° C.
 図9には、熱処理後に得られる焼結部材(以下、「焼結基板292」と称する)の断面を模式的に示す。 FIG. 9 schematically shows a cross section of a sintered member (hereinafter referred to as “sintered substrate 292”) obtained after heat treatment.
 熱処理により、グリーンシート210に含まれる粉末同士が焼結し、基体130が形成される。また、貫通孔230a、230bに充填された放熱体用ペースト240aおよび240bが焼結して、それぞれ、放熱体258a、258bが形成される。さらに、第1の緩和ペースト層272および第2の緩和ペースト層274が焼結して、それぞれ、第1の緩和層282および第2の緩和層284が形成される。 By the heat treatment, the powders contained in the green sheet 210 are sintered together to form the substrate 130. Further, the heat-dissipating body pastes 240a and 240b filled in the through holes 230a and 230b are sintered to form heat-dissipating bodies 258a and 258b, respectively. Further, the first relaxation paste layer 272 and the second relaxation paste layer 274 are sintered to form the first relaxation layer 282 and the second relaxation layer 284, respectively.
 (工程S150)
 次に、焼結基板292の上下面を研磨することにより、第1の緩和層282および第2の緩和層284が除去される。
(Step S150)
Next, the first relaxation layer 282 and the second relaxation layer 284 are removed by polishing the upper and lower surfaces of the sintered substrate 292.
 研磨後に、焼結基板292の上下面は、表面粗さRaが0.5μm以下となることが好ましい。 After polishing, the upper and lower surfaces of the sintered substrate 292 preferably have a surface roughness Ra of 0.5 μm or less.
 以上の工程により、図2および図3に示したような第1の基板100が製造される。 By the above steps, the first substrate 100 as shown in FIGS. 2 and 3 is manufactured.
 ここで、第1の製造方法では、グリーンシート210の上面214に第1の緩和ペースト層272が設置され、グリーンシート210の下面216に第2の緩和ペースト層274が設置された状態で、組立体290が熱処理される。 Here, in the first manufacturing method, the first relaxation paste layer 272 is installed on the upper surface 214 of the green sheet 210, and the second relaxation paste layer 274 is installed on the lower surface 216 of the green sheet 210. The solid 290 is heat treated.
 この場合、第1の緩和ペースト層272および第2の緩和ペースト層274は、グリーンシート210の面内方向に沿って配置されているため、組立体290の冷却過程において、グリーンシート210(基体130)の面内方向の収縮が妨げられる。同様に、放熱体用ペースト240a、240b(放熱体258a、258b)は、面内方向の収縮が妨げられる。 In this case, since the first relaxation paste layer 272 and the second relaxation paste layer 274 are arranged along the in-plane direction of the green sheet 210, the green sheet 210 (base 130) is arranged in the cooling process of the assembly 290. ) In-plane contraction is hindered. Similarly, the heat-dissipating body pastes 240a and 240b (heat-dissipating bodies 258a and 258b) are prevented from shrinking in the in-plane direction.
 従って、上面視、放熱体158a、158bの総面積Sが比較的大きい場合であっても、組立体290の冷却過程において、基体130と放熱体158a、158bとの界面において、クラックを生じ難くすることができる。 Thus, viewed, heat radiator 158a, even if the relatively large total area S h of 158b, in the course of cooling assembly 290, the substrate 130 and the heat radiating body 158a, at the interface between 158b, hardly cracks can do.
 また、放熱体158a、158bの間の距離dを小さくすることも可能となる。 It is also possible to reduce the distance d between the radiator bodies 158a and 158b.
 その結果、第1の製造方法では、大きな面積を有する放熱体を備える発光素子用基板を、適正に製造することができる。 As a result, in the first manufacturing method, a substrate for a light emitting element provided with a radiator having a large area can be appropriately manufactured.
 具体的には、前述のように、上面視、50%以上のオーバーラップ面積Sを有する発光素子用基板を得ることが可能となる。放熱体158a、158bの間の距離dは、例えば、0.35mm~0.50mmの範囲であってもよい。 Specifically, as described above, it is possible to obtain a substrate for a light emitting element having a top view, an overlap area So of 50% or more. The distance d between the radiator bodies 158a and 158b may be, for example, in the range of 0.35 mm to 0.50 mm.
 次に、本発明の具体的な実施例について説明する。なお、以下の説明において、例1~例13は、実施例であり、例21は、比較例である。 Next, specific examples of the present invention will be described. In the following description, Examples 1 to 13 are examples, and Example 21 is a comparative example.
 (例1)
 前述の第1の製造方法に基づいて、発光素子用基板を作製した。
(Example 1)
A substrate for a light emitting element was manufactured based on the above-mentioned first manufacturing method.
 発光素子用基板は、グリーンシート、放熱体用ペースト、および緩和ペースト層を含む組立体を大気中で熱処理して焼結基板を形成した後、両面の緩和層(熱膨張係数=15.0ppm/℃)を除去することにより作製した。なお、緩和ペースト層は、ガラスセラミックスを含むペーストを印刷することにより設置した。緩和層の厚さは、それぞれの面で約10μmであった。 The substrate for the light emitting element is formed by heat-treating an assembly including a green sheet, a paste for a radiator, and a relaxation paste layer in the atmosphere to form a sintered substrate, and then the relaxation layers on both sides (coefficient of thermal expansion = 15.0 ppm /). It was prepared by removing (° C.). The relaxation paste layer was installed by printing a paste containing glass ceramics. The thickness of the relaxation layer was about 10 μm in each surface.
 図10には、作製された発光素子用基板(以下、「サンプル1」と称する)の上面図を模式的に示す。 FIG. 10 schematically shows a top view of the manufactured substrate for a light emitting element (hereinafter referred to as “sample 1”).
 基体310は、ガラスとセラミックスの混合材料とした。基体310は、縦(L1aとする)1.95mm、横(L1bとする)1.45mm、厚さ0.5mmの寸法であった。基体310の熱膨張係数は、約6ppm/℃である。 The substrate 310 was a mixed material of glass and ceramics. The substrate 310 had dimensions of 1.95 mm in length (referred to as L 1a ), 1.45 mm in width (referred to as L 1b ), and 0.5 mm in thickness. The coefficient of thermal expansion of the substrate 310 is about 6 ppm / ° C.
 放熱体358には、銀(熱膨張係数=19.7ppm/℃)を使用した。 Silver (coefficient of thermal expansion = 19.7 ppm / ° C.) was used for the radiator 358.
 図10には、基体310の上面における搭載部365の形状を破線で示した。搭載部365は、縦(L2aとする)1.00mm、横(L2bとする)1.00mmの寸法である。 In FIG. 10, the shape of the mounting portion 365 on the upper surface of the substrate 310 is shown by a broken line. The mounting portion 365 has dimensions of 1.00 mm in length (referred to as L 2a ) and 1.00 mm in width (referred to as L 2b).
 また、各放熱体358は、縦(L3aとする)が0.92mm、幅Wが0.36mmである。なお、両方の放熱体358の間の距離dは、0.38mmとした。また、各放熱体358は、外側の側辺が、搭載部365から0.05mmだけはみ出るように配置した。 Further, each radiator body 358 has a length (L 3a ) of 0.92 mm and a width W of 0.36 mm. The distance d between both radiators 358 was set to 0.38 mm. Further, each radiator 358 is arranged so that the outer side surface protrudes from the mounting portion 365 by 0.05 mm.
 放熱体358の総面積Sは、0.60mmである。一方、搭載部365の面積Sは、1.00mmである。オーバーラップ面積Sは、0.57mmである。 Total area S h of the radiator 358 is 0.60 mm 2. On the other hand, the area S a of the mounting portion 365 is 1.00 mm 2. Overlap area S o is a 0.57mm 2.
 (例2~例13)
 例1と同様の方法により、発光素子用基板を作製した。ただし、例2~例13では、例1の場合とは、緩和層の厚さ、放熱体の総面積S、距離d、およびオーバーラップ面積S等を変化させた。
(Examples 2 to 13)
A substrate for a light emitting element was produced by the same method as in Example 1. However, in Examples 2 to 13, as in Example 1, the thickness of the relaxation layer, the total area S h of the radiator, the distance d, and was an overlap area S o and the like are changed.
 例2~例13において製造された発光素子用基板を、それぞれ、サンプル2~サンプル13と称する。 The light emitting element substrates manufactured in Examples 2 to 13 are referred to as Samples 2 to 13, respectively.
 (例21)
 例1と同様の方法により、発光素子用基板を作製した。ただし、この例21では、例1の場合とは異なり、緩和ペースト層は、設置しなかった。従って、組立体の熱処理後に得られた焼結基板をそのまま、発光素子用基板とした。
(Example 21)
A substrate for a light emitting element was produced by the same method as in Example 1. However, in this example 21, unlike the case of example 1, the relaxation paste layer was not installed. Therefore, the sintered substrate obtained after the heat treatment of the assembly was used as it is as a substrate for a light emitting element.
 また、例21では、オーバーラップ面積Sを35mmするとともに、2つの放熱体の間の距離を、0.55mmとした。 Further, in Example 21, the overlap area So was set to 35 mm 2 , and the distance between the two radiators was set to 0.55 mm.
 例21において製造された発光素子用基板を、サンプル21と称する。 The substrate for a light emitting element manufactured in Example 21 is referred to as a sample 21.
 以下の表1には、各サンプルにおける特徴をまとめて示した。 Table 1 below summarizes the characteristics of each sample.
Figure JPOXMLDOC01-appb-T000001
 (評価)
 各サンプルを用いて、以下の評価を実施した。
Figure JPOXMLDOC01-appb-T000001
(evaluation)
The following evaluations were performed using each sample.
 (クラック発生率の評価)
 目視により、サンプルの上面から下面にわたって延在するクラックの発生率を評価した。
(Evaluation of crack occurrence rate)
The incidence of cracks extending from the upper surface to the lower surface of the sample was visually evaluated.
 観察数は、それぞれのサンプルに対して、120個とした。 The number of observations was 120 for each sample.
 (熱抵抗の測定)
 それぞれのサンプルの搭載部にLED素子を配置して、発光装置を作製した。
(Measurement of thermal resistance)
An LED element was placed on the mounting portion of each sample to produce a light emitting device.
 まず、各サンプルの上面に、それぞれの放熱体を覆うように、2つの上部電極を形成した。上部電極は、電解めっき法により銅を成膜することにより形成した。 First, two upper electrodes were formed on the upper surface of each sample so as to cover each radiator. The upper electrode was formed by forming a copper film by an electrolytic plating method.
 次に、ダイボンド材を用いて、LED素子を、各サンプルの上部電極上に固定した。これにより、発光装置が構成された。 Next, the LED element was fixed on the upper electrode of each sample using a die bond material. As a result, a light emitting device was configured.
 各発光装置の熱抵抗を、熱抵抗測定器(TH-2167;嶺光音電機社製)を用いて測定した。 The thermal resistance of each light emitting device was measured using a thermal resistance measuring device (TH-2167; manufactured by Mine Koon Denki Co., Ltd.).
 以下の表2には、各サンプルにおいて得られた評価結果をまとめて示した。 Table 2 below summarizes the evaluation results obtained for each sample.
Figure JPOXMLDOC01-appb-T000002
 これらの結果から、作製の際に緩和層を利用しなかったサンプル21では、放熱体同士の間の距離が比較的広いにも関わらず、クラック発生率が高いことがわかった。
Figure JPOXMLDOC01-appb-T000002
From these results, it was found that in the sample 21 in which the relaxation layer was not used in the production, the crack generation rate was high even though the distance between the radiators was relatively wide.
 これに対して、作製の際に緩和層を利用したサンプル1~サンプル13では、基体と放熱体との界面でのクラックの発生が有意に抑制されていることが確認された。 On the other hand, it was confirmed that in Samples 1 to 13 in which the relaxation layer was used during the production, the generation of cracks at the interface between the substrate and the radiator was significantly suppressed.
 また、サンプル1~サンプル13では、熱抵抗が有意に低減されることが確認された。 It was also confirmed that the thermal resistance was significantly reduced in Samples 1 to 13.
 本願は、2020年7月15日に出願した日本国特許出願第2020-121684号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2020-121684 filed on July 15, 2020, and the entire contents of the Japanese application are incorporated herein by reference.
 1    フリップチップボンド型の発光装置
 2    発光素子用基板
 4    上面
 6    下面
 10   基体
 14   上面
 16   下面
 18   放熱体
 25   上部電極
 35   下部導体
 60    発光素子
 62    底部
 65    電極バンプ
 100   発光素子用基板(第1の基板)
 104   第1の面
 106   第2の面
 130   基体
 134   上面
 136   下面
 148a、148b 貫通孔
 158、158a、158b 放熱体
 165   搭載部
 210   グリーンシート
 214   上面
 216   下面
 230a、230b 貫通孔
 240a、240b 放熱体用ペースト
 258a、258b 放熱体
 272   第1の緩和ペースト層
 274   第2の緩和ペースト層
 282   第1の緩和層
 284   第2の緩和層
 290   組立体
 292   焼結基板
 310   基体
 358   放熱体
 365   搭載部
1 Flip-chip bond type light emitting device 2 Light emitting element substrate 4 Top surface 6 Bottom surface 10 Substrate 14 Top surface 16 Bottom surface 18 Radiator 25 Top electrode 35 Bottom conductor 60 Light emitting element 62 Bottom 65 Electrode bump 100 Light emitting element substrate (first substrate) )
104 First surface 106 Second surface 130 Base 134 Upper surface 136 Lower surface 148a, 148b Through hole 158, 158a, 158b Heat radiator 165 Mounting part 210 Green sheet 214 Upper surface 216 Lower surface 230a, 230b Through hole 240a, 240b Paste for radiator 258a, 258b radiator 272 first relaxation paste layer 274 second relaxation paste layer 282 first relaxation layer 284 second relaxation layer 290 assembly 292 sintered substrate 310 substrate 358 radiator 365 mounting part

Claims (6)

  1.  発光素子用基板であって、
     相互に対向する第1の面および第2の面を有し、前記第1の面から前記第2の面に至る貫通孔を有する基体と、
     前記基体の貫通孔に充填された放熱体と、
     を有し、
     前記基体の第1の面は、発光素子が設置される搭載部を有し、
     当該発光素子用基板は、前記第1の面の側から見たとき、前記放熱体が前記搭載部と重なり合う部分の面積Sが50%以上である、発光素子用基板。
    A substrate for a light emitting element
    A substrate having a first surface and a second surface facing each other and having a through hole extending from the first surface to the second surface.
    With the radiator filled in the through hole of the substrate,
    Have,
    The first surface of the substrate has a mounting portion on which a light emitting element is mounted.
    The light emitting element substrate is a light emitting element substrate having an area So of 50% or more of a portion where the radiator overlaps with the mounting portion when viewed from the side of the first surface.
  2.  前記放熱体は、第1の放熱体および第2の放熱体を有し、
     第1の放熱体と第2の放熱体の間の距離は、0.5mm以下である、請求項1に記載の発光素子用基板。
    The radiator has a first radiator and a second radiator.
    The substrate for a light emitting element according to claim 1, wherein the distance between the first radiator and the second radiator is 0.5 mm or less.
  3.  前記第1の面および/または前記第2の面は、表面粗さRaが0.5μm以下である、請求項1または2に記載の発光素子用基板。 The substrate for a light emitting element according to claim 1 or 2, wherein the first surface and / or the second surface has a surface roughness Ra of 0.5 μm or less.
  4.  前記基体は、ガラスを含む、請求項1乃至3のいずれか一つに記載の発光素子用基板。 The substrate for a light emitting element according to any one of claims 1 to 3, wherein the substrate contains glass.
  5.  前記基体は、セラミックスを含む、請求項4に記載の発光素子用基板。 The substrate for a light emitting element according to claim 4, wherein the substrate contains ceramics.
  6.  前記放熱体は、金属を含む、請求項1乃至5のいずれか一つに記載の発光素子用基板。 The light emitting element substrate according to any one of claims 1 to 5, wherein the heat radiating body contains a metal.
PCT/JP2021/025474 2020-07-15 2021-07-06 Substrate for light-emitting element WO2022014411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536278A JPWO2022014411A1 (en) 2020-07-15 2021-07-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020121684 2020-07-15
JP2020-121684 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022014411A1 true WO2022014411A1 (en) 2022-01-20

Family

ID=79555382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025474 WO2022014411A1 (en) 2020-07-15 2021-07-06 Substrate for light-emitting element

Country Status (3)

Country Link
JP (1) JPWO2022014411A1 (en)
TW (1) TW202205701A (en)
WO (1) WO2022014411A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229151A (en) * 2005-02-21 2006-08-31 Kyocera Corp Wiring board for light-emitting element and light emitting device
JP2010080800A (en) * 2008-09-29 2010-04-08 Seiko Instruments Inc Light emitting device, and manufacturing method thereof
US20100090239A1 (en) * 2008-10-13 2010-04-15 Advanced Optoelectronic Technology Inc. Ceramic package structure of high power light emitting diode and manufacturing method thereof
JP2011060859A (en) * 2009-09-07 2011-03-24 Seiko Instruments Inc Method of manufacturing electronic component, and electronic component
US20120043576A1 (en) * 2010-08-17 2012-02-23 Advanced Optoelectronic Technology, Inc. Led package structure
WO2012086724A1 (en) * 2010-12-24 2012-06-28 旭硝子株式会社 Connected substrate, method of manufacturing thereof, element substrate, and light-emitting apparatus
WO2013002348A1 (en) * 2011-06-30 2013-01-03 旭硝子株式会社 Light-emitting element substrate and light-emitting device
JP2013065793A (en) * 2011-09-20 2013-04-11 Ngk Spark Plug Co Ltd Wiring board
JP2015115532A (en) * 2013-12-13 2015-06-22 京セラ株式会社 Light-emitting element mounting substrate, and light-emitting device with the same
US20180076370A1 (en) * 2015-04-10 2018-03-15 Osram Opto Semiconductors Gmbh Light-emitting component and method of producing a light-emitting component
US20190181314A1 (en) * 2005-10-19 2019-06-13 Lg Innotek Co., Ltd. Light emitting diode package having frame with bottom surface having two surfaces different in height
JP2019114624A (en) * 2017-12-22 2019-07-11 スタンレー電気株式会社 Semiconductor light-emitting device and method of manufacturing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229151A (en) * 2005-02-21 2006-08-31 Kyocera Corp Wiring board for light-emitting element and light emitting device
US20190181314A1 (en) * 2005-10-19 2019-06-13 Lg Innotek Co., Ltd. Light emitting diode package having frame with bottom surface having two surfaces different in height
JP2010080800A (en) * 2008-09-29 2010-04-08 Seiko Instruments Inc Light emitting device, and manufacturing method thereof
US20100090239A1 (en) * 2008-10-13 2010-04-15 Advanced Optoelectronic Technology Inc. Ceramic package structure of high power light emitting diode and manufacturing method thereof
JP2011060859A (en) * 2009-09-07 2011-03-24 Seiko Instruments Inc Method of manufacturing electronic component, and electronic component
US20120043576A1 (en) * 2010-08-17 2012-02-23 Advanced Optoelectronic Technology, Inc. Led package structure
WO2012086724A1 (en) * 2010-12-24 2012-06-28 旭硝子株式会社 Connected substrate, method of manufacturing thereof, element substrate, and light-emitting apparatus
WO2013002348A1 (en) * 2011-06-30 2013-01-03 旭硝子株式会社 Light-emitting element substrate and light-emitting device
JP2013065793A (en) * 2011-09-20 2013-04-11 Ngk Spark Plug Co Ltd Wiring board
JP2015115532A (en) * 2013-12-13 2015-06-22 京セラ株式会社 Light-emitting element mounting substrate, and light-emitting device with the same
US20180076370A1 (en) * 2015-04-10 2018-03-15 Osram Opto Semiconductors Gmbh Light-emitting component and method of producing a light-emitting component
JP2019114624A (en) * 2017-12-22 2019-07-11 スタンレー電気株式会社 Semiconductor light-emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2022014411A1 (en) 2022-01-20
TW202205701A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
KR102163532B1 (en) Semiconductor device, ceramic circuit board, and semiconductor device manufacturing method
US8319240B2 (en) Light-emitting device
JP4915058B2 (en) LED component and manufacturing method thereof
EP2369903A1 (en) Substrate for light-emitting element and light-emitting device
JP6146007B2 (en) Manufacturing method of joined body, manufacturing method of power module, power module substrate and power module
US11114355B2 (en) Power module and method for manufacturing power module
CN1551340A (en) Semiconductor device and its manufacturing method
JP2011507276A (en) Ceramic substrate with thermal vias
WO2012036219A1 (en) Light-emitting element substrate and light-emitting device
WO2022014411A1 (en) Substrate for light-emitting element
JP2011176060A (en) Light-emitting device
JP2006100364A (en) Wiring board for light emitting element, method for manufacturing the same and light emitting element
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP6160037B2 (en) Manufacturing method of joined body, manufacturing method of power module, joined body, power module, and substrate for power module
JP2012209310A (en) Substrate for light-emitting element, and light-emitting device
TWI450425B (en) Die structure, manufacture method thereof and substrate structure thereof
WO2012067204A1 (en) Substrate for light-emitting element, and light-emitting device
WO2013141322A1 (en) Method for manufacturing substrate for light-emitting element, substrate for light-emitting element, and light-emitting device
TWI648884B (en) Substrate for light-emitting element and light-emitting device
JP4459031B2 (en) Electronic component storage package and electronic device
JP2004296726A (en) Heat dissipating member, package for containing semiconductor element, and semiconductor device
WO2020166186A1 (en) Substrate for light-emitting element and method for manufacturing same
JPH0997862A (en) High-strength circuit board and its manufacturing method
JP2004006993A (en) Multilayer substrate
JP4596698B2 (en) Package for housing heat dissipation member and semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536278

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842729

Country of ref document: EP

Kind code of ref document: A1