WO2022014127A1 - Electrolyzed water generation device - Google Patents

Electrolyzed water generation device Download PDF

Info

Publication number
WO2022014127A1
WO2022014127A1 PCT/JP2021/017686 JP2021017686W WO2022014127A1 WO 2022014127 A1 WO2022014127 A1 WO 2022014127A1 JP 2021017686 W JP2021017686 W JP 2021017686W WO 2022014127 A1 WO2022014127 A1 WO 2022014127A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
water
electrolyzed water
central
aqueous electrolyte
Prior art date
Application number
PCT/JP2021/017686
Other languages
French (fr)
Japanese (ja)
Inventor
澤田祐一
Original Assignee
アクアフレックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクアフレックス株式会社 filed Critical アクアフレックス株式会社
Publication of WO2022014127A1 publication Critical patent/WO2022014127A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/029Concentration
    • C25B15/031Concentration pH
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • C25B9/15Flow-through cells

Definitions

  • the present invention relates to an electrolyzed water generator.
  • the electrolyzed water generated in the electrolyzed water generator includes alkaline water, weakly acidic water, strongly acidic water and the like.
  • Alkaline water is said to have effects such as degreasing, cleaning, and rust prevention.
  • Hypochlorous acid water is said to have effects such as cleaning, sterilization, and astringent (astringent).
  • Weakly acidic water is said to have effects such as cleaning, sterilization, bleaching, deodorization, and astringent.
  • hypochlorous acid changes depending on the pH. For example, in the region where the pH is about 2.0 to 3.5, a part of hypochlorous acid (HClO) is changed to dissolved chlorine gas (Cl 2) by the reaction of the following formula (1).
  • hypochlorous acid HCIO
  • hypochlorite ion ClO ⁇
  • hydrogen ion H +
  • non-dissociative hypochlorous acid HLO
  • HLO non-dissociative hypochlorous acid
  • hypochlorous acid (HClO), hypochlorous acid ions (ClO -), the the highest bactericidal activity strong safety in the dissolved chlorine gas (Cl 2) is a hypochlorite (HClO)
  • Hypochlorous acid water with a high concentration of hypochlorous acid with a pH of 5.0 to 6.5 is used for cleaning the oral cavity, sterilizing clothes, bleaching, washing and sterilizing vegetables, and tableware such as baby bottles. It has been used for sterilization by washing, sterilization of fingers, and in recent years as sterilizing water for dentistry (for example, Patent Documents 1 and 2).
  • the electrolyzed water generator uses a one-chamber type electrolytic cell without a diaphragm between the anode and the cathode, and a two-chamber type electrolytic cell in which the anode and the cathode are separated by a diaphragm such as an ion exchange membrane. Some are used and some are used in combination.
  • a one-chamber type diaphragmless electrolytic cell is used to electrolyze an aqueous solution obtained by dissolving a predetermined amount of sodium chloride (NaCl) in a predetermined concentration of hydrochloric acid (HCl) aqueous solution to electrolyze pH 3 to 7.
  • An electrolyzed water generator capable of producing an aqueous solution of hypochlorite is disclosed.
  • Patent Document 4 is an electrolyzed water generator using a two-chamber type electrolyzer, which includes a chloride salt such as sodium chloride and potassium chloride, and a compound which is soluble in water and exhibits alkalinity such as sodium metasilicate.
  • the water to which the solution was added was electrolyzed to generate strong alkaline water with a pH of 10 to 12.5 on the cathode side of the electrolytic tank, and hypochlorite sterilized water with a pH of 3 to 7.5 was generated on the anode side.
  • An electrolyzed water generator capable of simultaneously producing strong alkaline water and hypochlorite sterilized water is disclosed.
  • Patent Document 5 water is electrolyzed in a two-chamber type diaphragm electrolyzer, and the obtained alkaline water and acid water are separately discharged from a pair of drain pipes, and chloride is produced in a one-chamber non-diaphragm electrolyzer. Electrolyze the aqueous solution to adjust the water containing hypochlorous acid, and connect the discharge pipe that discharges the water containing hypochlorous acid to the discharge pipe from the diaphragm electrolysis tank to make alkaline water, acidic water, etc.
  • hypochlorite water is appropriately mixed, and soft sterilized water having a pH of about 3 to 7 and containing a large amount of hypochlorite (HClO) and hard sterilizing water having a pH of 3 or less and containing a large amount of chlorine (Cl 2).
  • the device for supplying the device is disclosed.
  • Patent Document 6 an aqueous solution containing a chloride salt such as sodium chloride is electrolyzed in a two-chamber type diaphragm electrolyzer to generate hypochlorous acid water having a pH of 10.5 to 13.5 on the cathode side, and the anode is used.
  • Hypochlorous acid water containing chlorine gas (Cl 2 ) is generated on the side, and this hypochlorous acid water is mixed with water to adjust hypochlorous acid water having a pH of 3 to 7.5.
  • a method for simultaneously producing hypochlorous acid water is disclosed.
  • Patent Document 7 includes a first electrolytic chamber, a second electrolytic chamber, and a central electrolytic chamber partitioned by a diaphragm, and by switching the polarity of the first to fourth electrode pairs provided in these electrolytic chambers.
  • a weakly acidic water, a slightly acidic water, a strongly acidic water, and an electrolyzed water generator capable of arbitrarily selecting and producing alkaline water are disclosed.
  • an object of the present invention is to provide an electrolyzed water generator capable of stably producing alkaline water or acidic water.
  • the electrolyzed water generator of the present invention is as follows. (1) Between the first electrolytic chamber, the second electrolytic chamber, the central electrolytic chamber arranged between the first electrolytic chamber and the second electrolytic chamber, and between the first electrolytic chamber and the central electrolytic chamber. An arranged cation exchange film, an anion exchange film arranged between the second electrolytic chamber and the central electrolytic chamber, a first electrode provided in the first electrolytic chamber, and the central electrolytic chamber. A first electrode pair composed of the second electrode, a second electrode pair composed of a third electrode provided in the second electrolytic chamber and a fourth electrode provided in the central electrolytic chamber, and the first electrode pair.
  • a first power source for applying a voltage to the pair of electrodes for applying a voltage to the pair of electrodes
  • a second power source for applying a voltage to the second pair of electrodes
  • a storage tank for storing an aqueous electrolyte solution
  • the storage tank and the central electrolytic chamber comprising: a circulating means for circulating an aqueous electrolyte solution between the storage tanks and a means for lowering the pH of the aqueous electrolyte circulating between the storage tank and the central electrolytic chamber.
  • an electrolyzed water generator capable of stably producing alkaline water or acidic water.
  • FIG. 1 is a schematic configuration diagram of an electrolyzed water generator according to an embodiment of the present invention.
  • the electrolyzed water generator 10 includes a first electrolysis chamber 12, a second electrolysis chamber 14, and a central electrolysis chamber 16 arranged between the first electrolysis chamber 12 and the second electrolysis chamber 14. I have.
  • a cation exchange membrane 18 is arranged between the first electrolysis chamber 12 and the central electrolysis chamber 16.
  • An anion exchange membrane 20 is arranged between the second electrolysis chamber 14 and the central electrolysis chamber 16.
  • the electrolytic water generator 10 is provided in the first electrode pair 26 composed of the first electrode 22 provided in the first electrolytic chamber 12 and the second electrode 24 provided in the central electrolytic chamber 16, and in the second electrolytic chamber 14. It is provided with a second electrode pair 32 composed of a third electrode 28 and a fourth electrode 30 provided in the central electrolytic chamber 16.
  • the first electrode 22 and the second electrode 24 are arranged so as to sandwich the cation exchange membrane 18, and the third electrode 28 and the fourth electrode 30 are arranged so as to sandwich the anion exchange membrane 20. Has been done.
  • the electrolyzed water generator 10 includes a first power supply PW1 that applies a voltage to the first electrode pair 26 and a second power supply PW2 that applies a voltage to the second electrode pair 32.
  • the electrolyzed water generator 10 has a first current adjusting means 34 capable of adjusting the current flowing through the first electrode pair 26 and a second current capable of adjusting the current flowing through the second electrode pair 32.
  • the adjusting means 36 is provided.
  • the cation exchange membrane 18 is preferably a non-permeable cation exchange membrane, and is composed of a film that selectively permeates cations such as sodium ions.
  • a commercially available cation exchange membrane can be used as the cation exchange membrane 18.
  • the anion exchange membrane 20 is preferably a non-permeable anion exchange membrane, and is composed of a membrane that selectively permeates anions such as chloride ions.
  • a commercially available anion exchange membrane can be used as the anion exchange membrane 20.
  • a known electrode material can be used for the first to fourth electrodes.
  • the shape of the electrode is not particularly limited, and for example, a rectangular plate-shaped electrode can be used.
  • a base material made of, for example, titanium or a titanium alloy is coated with a mixed plating of platinum and iridium.
  • a known DC power supply can be used for the first power supply PW1 and the second power supply PW2, and for example, a constant current or constant voltage switching power supply can be used.
  • any device can be used as long as it is a device capable of adjusting the magnitude of the current flowing through each electrode pair.
  • the electrolyzed water generator 10 includes a storage tank 40 capable of storing an aqueous electrolyte solution. By replenishing the storage tank 40 with the aqueous electrolyte solution, the electrolyte consumed by the generation of alkaline water or acidic water can be replenished.
  • the upper part of the central electrolytic chamber 16 is connected to the storage tank 40 by a circulation pipe 42.
  • the lower part of the central electrolytic chamber 16 is connected to the storage tank 40 by a return pipe 44.
  • the aqueous electrolyte solution stored in the storage tank 40 flows into the lower part of the central electrolytic chamber 16 through the return pipe 44.
  • the aqueous electrolyte solution flowing out from the upper part of the central electrolytic chamber 16 flows into the storage tank 40 through the circulation pipe 42. That is, the aqueous electrolyte solution circulates between the central electrolytic chamber 16 and the storage tank 40 via the circulation pipe 42 and the return pipe 44.
  • the electrolyzed water generating device 10 of the present embodiment includes a pH lowering means for lowering the pH of the aqueous electrolyte solution circulating between the central electrolytic chamber 16 and the storage tank 40.
  • the pH lowering means may be a means for adding an acidic substance to the aqueous electrolyte solution flowing through the circulation pipe 42 or the return pipe 44.
  • an acidic substance capable of lowering the pH of the aqueous electrolyte solution it is preferable to use a weakly acidic substance, for example, carbon dioxide gas (carbon dioxide).
  • the pH lowering means may be a means 90 for blowing carbon dioxide gas into the aqueous electrolyte solution flowing through the circulation pipe 42.
  • the pH lowering means may be a means 92 for blowing carbon dioxide gas into the aqueous electrolyte solution flowing through the return pipe 44.
  • a means for blowing the gas for example, a nozzle can be used.
  • the pH lowering means may be a means 94 for supplying carbon dioxide gas to the aqueous electrolyte solution stored in the storage tank 40.
  • the means 94 for supplying carbon dioxide gas for example, an air diffuser 96 capable of supplying carbon dioxide gas into the storage tank 40 by bubbling can be used.
  • the pH of the aqueous electrolyte solution can be lowered from pH 12.6 to pH 9.6 in about 5 minutes.
  • a pressure adjustment valve 46 is installed in the middle of the circulation pipe 42.
  • the pressure adjusting valve 46 can adjust the pressure in the central electrolytic chamber 16 to be higher than that of the first and second electrolytic chambers 12 and 14.
  • the pressure in the central electrolytic chamber 16 is even slightly lower than that of the first and second electrolytic chambers 12 and 14, the chlorine concentration decreases and the concentration and pH become unstable, so that the electrolytic efficiency deteriorates.
  • any kind of valve can be used as long as it can adjust the pressure of the aqueous electrolyte solution to a constant level.
  • the pressure adjusting valve 46 corresponds to the "pressure adjusting means" of the present invention.
  • a circulation pump 48 for circulating the aqueous electrolyte solution between the central electrolytic chamber 16 and the storage tank 40 is installed in the middle of the return pipe 44. Any kind of pump may be used for the circulation pump 48, and for example, a tube pump can be used. By using a tube pump, the aqueous electrolyte solution can be stably circulated at a constant flow rate.
  • the circulation pump 48 corresponds to the "circulation means" of the present invention.
  • the aqueous electrolyte solution it is preferable to fill the inside of the storage tank 40 with an aqueous electrolyte solution.
  • the aqueous electrolyte solution it is preferable to use a saturated aqueous sodium chloride solution or a saturated aqueous solution of potassium chloride.
  • the aqueous electrolyte solution inside the storage tank 40 may be replaced with a new aqueous electrolyte solution (for example, a saturated aqueous solution of sodium chloride or a saturated aqueous solution of potassium chloride) every time a certain period of time elapses. preferable.
  • the electrolyzed water generator 10 includes a raw water supply pipe 50 for supplying raw water to the first electrolytic chamber 12.
  • a valve 50a for stopping or starting the supply of raw water is installed in the middle of the raw water supply pipe 50. It is preferable to use a solenoid valve as the valve 50a.
  • the raw water supplied to the first electrolysis chamber 12 for example, tap water, soft water, or pure water can be used.
  • the raw water supply pipe 50 is branched into a first flow path 52 and a second flow path 54.
  • An on-off valve 52a and a flow rate adjusting valve 52b are installed in the first flow path 52.
  • An on-off valve 54a and a flow rate adjusting valve 54b are also installed in the second flow path 54. It is preferable to use a solenoid valve for the on-off valves 52a and 54a. It is preferable to use a manual valve for the flow rate adjusting valves 52b and 54b.
  • the electrolyzed water generator 10 When the electrolyzed water generator 10 generates acidic water, it is preferable to open both the two on-off valves 52a and 54a. This makes it possible to easily adjust the flow rate when switching the operation mode from alkaline water to acidic water (or from acidic water to alkaline water).
  • the flow rate of each of the first flow path 52 and the second flow path 54 can be adjusted by the flow rate adjusting valves 52b and 54b.
  • the number of on-off valves 52a and 54a (for example, solenoid valves) may be two or more, and the number is not particularly limited.
  • a check valve 58 is installed in the middle of the pipe 56 after the first flow path 52 and the second flow path 54 are merged, and an aqueous solution containing cations or anions flows back into the raw water supply pipe 50. It prevents you from doing so. Further, a drain valve 60 is installed in the middle of the pipe 56, and the water in the pipe 56 can be discharged by opening the drain valve 60.
  • a bubble removing means 70 for removing bubbles generated in the aqueous electrolyte solution circulating between the central electrolytic chamber 16 and the storage tank 40 is arranged.
  • the bubble removing means 70 for example, a resin sponge or a filter made of an inorganic substance can be used, but since it does not easily deteriorate even if it comes into contact with an aqueous electrolyte solution having a high pH, a filter made of an inorganic substance is used. Is preferable.
  • the filter made of an inorganic substance it is preferable to use a granular inorganic substance, and for example, it is preferable to use granular ceramics or river sand. Further, a ceramic block can also be used as the bubble removing means 70.
  • the inside of the storage tank 40 is divided into two rooms (first room 74 and second room 76) by a partition wall 72.
  • the bubble removing means 70 is arranged in the first room 74.
  • the lower part of the partition wall 72 is mesh-like and allows water to pass through, and the aqueous electrolyte solution after the bubbles have been removed by the bubble removing means 70 can flow from the first room 74 to the second room 76. It has become.
  • the aqueous electrolyte solution flowing into the second chamber 76 is sent to the central electrolytic chamber 16 by the circulation pump 48.
  • a float switch 73 is installed in the second room 76, and when the water level in the second room 76 becomes equal to or lower than a predetermined value, the electrolytic power supplies PW1 and PW2 and the circulation pump 48 are stopped, and the second room 76 is second. When the water level in the room 76 exceeds a predetermined value, the electrolytic power supplies PW1 and PW2 and the circulation pump 48 are started.
  • an air diffuser 96 for supplying carbon dioxide gas into the electrolyte aqueous solution stored in the storage tank 40 by bubbling is installed.
  • the air diffuser 96 for example, a pipe having a structure having a large number of holes or a pipe having a mesh attached to the pipe can be used. Further, for example, an air diffuser made of a porous ceramic capable of forming fine bubbles can also be used.
  • a drain valve 71 for discharging the aqueous electrolyte solution is installed at the bottom of the storage tank 40.
  • a new aqueous electrolyte solution for example, a saturated aqueous solution of sodium chloride or a saturated aqueous solution of potassium chloride.
  • the first electrolytic chamber 12 and the second electrolytic chamber 14 are connected by a pipe 78, and the electrolyzed water generated in the first electrolytic chamber 12 passes through the pipe 78 to the second electrolytic chamber 14. It is possible to flow into. Therefore, the electrolyzed water generated in the first electrolyzed chamber 12 is mixed with the electrolyzed water generated in the second electrolyzed chamber 14, and then passed through the electrolyzed water discharge pipe 80 provided in the upper part of the second electrolyzed chamber 14. It is discharged to the outside.
  • a pH measuring device 82 is installed in the middle of the electrolyzed water discharge pipe 80, and it is possible to measure the pH of the electrolyzed water (alkaline water or acidic water) discharged from the electrolyzed water discharge pipe 80.
  • the first and second power supplies PW1 and PW2, and the first and second current adjusting means 34 and 36 may be electrically connected to a control means (not shown) for controlling them. ..
  • a control means for example, a control panel provided with a sequence control circuit, a personal computer, or the like can be used.
  • the operation method of the electrolyzed water generator 10 configured as described above will be described in detail.
  • the first electrode 22 is the cathode
  • the second electrode 24 is the anode
  • the third electrode 28 is the anode
  • the fourth electrode 30 is the cathode
  • the storage tank 40 is filled with the saturated sodium chloride aqueous solution at the start of operation.
  • the present invention is not limited to the following examples.
  • raw water is introduced from the raw water supply pipe 50 into the first electrolyzed chamber 12. Further, by starting the circulation pump 48, the aqueous electrolyte solution (saturated sodium chloride aqueous solution) is circulated between the storage tank 40 and the central electrolytic chamber 16. Then, by applying a voltage to the first and second electrode pairs 26 and 32, the electrolysis of water in each electrolytic chamber is started. As a result, acidic water (slightly acidic water or weakly acidic water) or alkaline water is taken out from the electrolytic water discharge pipe 80 at the upper part of the second electrolytic chamber 14.
  • aqueous electrolyte solution saturated sodium chloride aqueous solution
  • Electrolyzed water (acidic water or alkaline water) having the pH of can be taken out from the electrolyzed water discharge pipe 80.
  • the current flowing through the second electrode pair 32 is adjusted to be larger than the current flowing through the first electrode pair 26, slightly acidic water or weakly acidic water can be taken out from the electrolyzed water discharge pipe 80. ..
  • a voltage is applied only to the first electrode pair 26, alkaline water can be taken out from the electrolyzed water discharge pipe 80.
  • the electrolyzed water generator 10 of the present embodiment it is possible to arbitrarily select and generate slightly acidic water, weakly acidic water, or alkaline water, so that the electrolyzed water generating apparatus is extremely convenient. Can be realized.
  • the electrolyzed water can be generated by circulating the aqueous electrolyte solution in the central electrolyzing chamber 16. At this time, since it is not necessary to circulate the aqueous electrolyte solution in the first electrolytic chamber 12 and the second electrolytic chamber 14, it is possible to generate electrolyzed water (acidic water or alkaline water) that does not contain an electrolyte (for example, sodium chloride). Is. Therefore, according to the electrolyzed water generator 10 of the present embodiment, it is possible to generate electrolyzed hypochlorite water containing no salt.
  • the electrolyzed water generator 10 of the present embodiment it is possible to obtain sterilized water containing no salt (sodium chloride), for example.
  • salt-free sterilizing water can be used for cleaning machines and buildings that may cause salt damage, and for sterilizing foodstuffs, cooking utensils, fingers, etc., and is extremely useful.
  • salt-free sterilized water is extremely useful because it can be used for the purpose of reducing pesticides in vegetable cultivation.
  • the electrolyzed water generating device 10 of the present embodiment it is possible to remove bubbles made of hydrogen gas or the like generated in the aqueous electrolyte solution circulating in the central electrolytic chamber 16 by the bubble removing means 70. This makes it possible to prevent bubbles from adhering to the surface of the electrode pair and reducing the electrolysis efficiency, and it is possible to stably generate electrolyzed water having a constant pH and hypochlorite water. Is.
  • the pressure in the central electrolysis chamber 16 can be adjusted by the pressure adjusting valve 46. This makes it possible to stably generate electrolyzed water having a constant pH and hypochlorite water.
  • the conventional electrolyzed water generator has a structure in which an aqueous electrolyte solution (for example, salt water) is supplied to the electrolyzed side, the generated electrolyzed water contains the aqueous electrolyte solution. In this case, there is a problem that the running cost becomes high because a larger amount of electrolyte is consumed than the amount theoretically required for producing electrolyzed water.
  • the electrolyzed water generating device 10 of the present embodiment has a structure in which the aqueous electrolyte is circulated in the central electrolyzing chamber 16, the electrolyzed water is generated by consuming the electrolyte that has passed through the ion exchange membrane. Will be done. Therefore, the generated electrolyzed water does not contain the aqueous electrolyte solution, and the running cost can be reduced as compared with the conventional electrolyzed water generator.
  • the electrolyzed water generator 10 When the electrolyzed water generator 10 continuously generates hypochlorite water, the pH of the aqueous electrolyte solution circulating between the central electrolysis chamber 16 and the storage tank 40 rises, so that the acid water (hypochlorite water) There is a problem that the production efficiency of the water gradually decreases.
  • the pH of the aqueous electrolyte solution circulating between the central electrolytic chamber 16 and the storage tank 40 can be lowered by the pH lowering means. Therefore, even when the electrolyzed water generator 10 continuously generates hypochlorite water for a long period of time, it is possible to prevent the efficiency of hypochlorite water generation from gradually decreasing.
  • Electrolyzed water generator 12 1st electrolysis chamber 14 2nd electrolysis chamber 16 Central electrolysis chamber 18 Cyan ion exchange membrane 20 Anion exchange membrane 22 1st electrode 24 2nd electrode 26 1st electrode pair 28 3rd electrode 30 4th Electrode 32 Second electrode pair 40 Storage tank 42 Circulation pipe 44 Return pipe 46 Pressure adjustment valve 48 Circulation pump 50 Raw water supply pipe 70 Bubble removal means 78 Pipe 80 Electrolyzed water discharge pipe 90, 92, 94 pH lowering means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

[Problem] To provide an electrolyzed water generation device with which it is possible to stably generate alkaline water or acidic water. [Solution] This electrolyzed water generation device 10 comprises a first electrolysis chamber 12, a second electrolysis chamber 14, a central electrolysis chamber 16, a cation exchange membrane 18, an anion exchange membrane 20, a first electrode pair 26 formed from a first electrode 22 and a second electrode 24, a second electrode pair 32 formed from a third electrode 28 and a fourth electrode 30, a first power supply PW1 that applies a voltage to the first electrode pair 26, and a second power supply PW2 that applies a voltage to the second electrode pair 32. The electrolyzed water generation device 10 also comprises a retention tank 40 that retains an electrolyte aqueous solution, a circulation pump 48 that circulates the electrolyte aqueous solution between the retention tank 40 and the central electrolysis tank 16, and a pH reduction means 90, 92, 94 that reduces the pH of the electrolyte aqueous solution circulating between the retention tank 40 and the central electrolysis tank 16.

Description

電解水生成装置Electrolyzed water generator
 本発明は、電解水生成装置に関する。 The present invention relates to an electrolyzed water generator.
 一般に、電解水生成装置において生成される電解水には、アルカリ水、弱酸性水、強酸性水等がある。アルカリ水は、脱脂、洗浄、防錆等の効果を有するといわれている。強酸性水は、洗浄、殺菌、アストリンゼント(収れん)等の効果を有するといわれている。弱酸性水は、洗浄、殺菌、漂白、脱臭、アストリンゼント等の効果を有するといわれている。 Generally, the electrolyzed water generated in the electrolyzed water generator includes alkaline water, weakly acidic water, strongly acidic water and the like. Alkaline water is said to have effects such as degreasing, cleaning, and rust prevention. Hypochlorous acid water is said to have effects such as cleaning, sterilization, and astringent (astringent). Weakly acidic water is said to have effects such as cleaning, sterilization, bleaching, deodorization, and astringent.
 次亜塩素酸は、pHによって状態が変化することが知られている。例えば、pHが2.0~3.5程度の領域では、下記式(1)の反応によって、次亜塩素酸(HClO)の一部が溶存塩素ガス(Cl)に変化する。
Figure JPOXMLDOC01-appb-C000001
It is known that the state of hypochlorous acid changes depending on the pH. For example, in the region where the pH is about 2.0 to 3.5, a part of hypochlorous acid (HClO) is changed to dissolved chlorine gas (Cl 2) by the reaction of the following formula (1).
Figure JPOXMLDOC01-appb-C000001
 pHが8~9程度の領域では、下記式(2)の反応によって、次亜塩素酸(HCIO)の一部が次亜塩素酸イオン(ClO)と水素イオン(H)に解離する。
Figure JPOXMLDOC01-appb-C000002
In the region where the pH is about 8 to 9, a part of hypochlorous acid (HCIO) is dissociated into hypochlorite ion (ClO − ) and hydrogen ion (H +) by the reaction of the following formula (2).
Figure JPOXMLDOC01-appb-C000002
 pHが5.0~6.5程度の領域では、非解離型の次亜塩素酸(HClO)が高比率(約90%以上)で存在する。 In the region where the pH is about 5.0 to 6.5, non-dissociative hypochlorous acid (HClO) is present in a high ratio (about 90% or more).
 水中の次亜塩素酸(HClO)、次亜塩素酸イオン(ClO)、溶存塩素ガス(Cl)の中で最も殺菌力が強く安全性が高いのは、次亜塩素酸(HClO)であり、次亜塩素酸の濃度の高いpH5.0~6.5の次亜塩素酸水は、口腔内の洗浄、衣類の洗浄殺菌、漂白、野菜類等の洗浄殺菌、哺乳瓶等の食器の洗浄殺菌、手指の除菌、近年においては歯科用殺菌水(例えば、特許文献1、2)として使用されている。 Water hypochlorous acid (HClO), hypochlorous acid ions (ClO -), the the highest bactericidal activity strong safety in the dissolved chlorine gas (Cl 2) is a hypochlorite (HClO) Hypochlorous acid water with a high concentration of hypochlorous acid with a pH of 5.0 to 6.5 is used for cleaning the oral cavity, sterilizing clothes, bleaching, washing and sterilizing vegetables, and tableware such as baby bottles. It has been used for sterilization by washing, sterilization of fingers, and in recent years as sterilizing water for dentistry (for example, Patent Documents 1 and 2).
 一般的に、電解水生成装置には、陽極と陰極の間に隔膜のない一室型電解槽を用いるものと、陽極と陰極がイオン交換膜等の隔膜で仕切られた二室型電解槽を用いるものと、両方を併用するものとがある。例えば、特許文献3には、一室型の無隔膜電解槽を用いて、所定濃度の塩酸(HCl)水溶液に所定量の食塩(NaCl)を溶解させてなる水溶液を電解して、pH3~7の次亜塩素酸水を生成することのできる電解水生成装置が開示されている。 Generally, the electrolyzed water generator uses a one-chamber type electrolytic cell without a diaphragm between the anode and the cathode, and a two-chamber type electrolytic cell in which the anode and the cathode are separated by a diaphragm such as an ion exchange membrane. Some are used and some are used in combination. For example, in Patent Document 3, a one-chamber type diaphragmless electrolytic cell is used to electrolyze an aqueous solution obtained by dissolving a predetermined amount of sodium chloride (NaCl) in a predetermined concentration of hydrochloric acid (HCl) aqueous solution to electrolyze pH 3 to 7. An electrolyzed water generator capable of producing an aqueous solution of hypochlorite is disclosed.
 特許文献4には、二室型電解槽を用いた電解水生成装置であって、塩化ナトリウム、塩化カリウム等の塩化物塩と、メタケイ酸ナトリウム等の水に溶けてアルカリ性を示す化合物とを含む溶液を添加した水を電気分解し、電解槽の陰極側にpH10~12.5の強アルカリ水を生成させるとともに、陽極側にpH3~7.5の次亜塩素酸殺菌水を生成させて、強アルカリ水と次亜塩素酸殺菌水を同時に生成することのできる電解水生成装置が開示されている。 Patent Document 4 is an electrolyzed water generator using a two-chamber type electrolyzer, which includes a chloride salt such as sodium chloride and potassium chloride, and a compound which is soluble in water and exhibits alkalinity such as sodium metasilicate. The water to which the solution was added was electrolyzed to generate strong alkaline water with a pH of 10 to 12.5 on the cathode side of the electrolytic tank, and hypochlorite sterilized water with a pH of 3 to 7.5 was generated on the anode side. An electrolyzed water generator capable of simultaneously producing strong alkaline water and hypochlorite sterilized water is disclosed.
 特許文献5には、二室型の有隔膜電解槽で水を電解し、得られたアルカリ水と酸性水を一対の排水管から各別に排出し、一室型の無隔膜電解槽で塩化物水溶液を電解して次亜塩素酸を含む水を調整し、この次亜塩素酸を含む水を排出する排出管を、有隔膜電解槽からの排出管に接続して、アルカリ水、酸性水、及び次亜塩素酸水を適宜混合し、pHが3~7程度で次亜塩素酸(HClO)を多く含むソフト殺菌水と、pHが3以下で塩素(Cl)を多く含むハード殺菌水とを供給する装置が開示されている。 In Patent Document 5, water is electrolyzed in a two-chamber type diaphragm electrolyzer, and the obtained alkaline water and acid water are separately discharged from a pair of drain pipes, and chloride is produced in a one-chamber non-diaphragm electrolyzer. Electrolyze the aqueous solution to adjust the water containing hypochlorous acid, and connect the discharge pipe that discharges the water containing hypochlorous acid to the discharge pipe from the diaphragm electrolysis tank to make alkaline water, acidic water, etc. And hypochlorite water is appropriately mixed, and soft sterilized water having a pH of about 3 to 7 and containing a large amount of hypochlorite (HClO) and hard sterilizing water having a pH of 3 or less and containing a large amount of chlorine (Cl 2). The device for supplying the device is disclosed.
 特許文献6には、二室型の有隔膜電解槽で、塩化ナトリウム等の塩化物塩を含む水溶液を電解して、陰極側でpH10.5~13.5の強アルカリ水を生成し、陽極側で塩素ガス(Cl)を含む強酸性水を生成して、この強酸性水を水と混合してpH3~7.5の次亜塩素酸水を調整する、強アルカリ水、強酸性水、次亜塩素酸水の同時生成方法が開示されている。 In Patent Document 6, an aqueous solution containing a chloride salt such as sodium chloride is electrolyzed in a two-chamber type diaphragm electrolyzer to generate hypochlorous acid water having a pH of 10.5 to 13.5 on the cathode side, and the anode is used. Hypochlorous acid water containing chlorine gas (Cl 2 ) is generated on the side, and this hypochlorous acid water is mixed with water to adjust hypochlorous acid water having a pH of 3 to 7.5. , A method for simultaneously producing hypochlorous acid water is disclosed.
 特許文献7には、隔膜によって仕切られた第1電解室、第2電解室、及び中央電解室を備え、それらの電解室内に設けられた第1~第4の電極対の極性を切り替えることによって、弱酸性水、微酸性水、強酸性水、及びアルカリ水を任意に選択して生成することのできる電解水生成装置が開示されている。 Patent Document 7 includes a first electrolytic chamber, a second electrolytic chamber, and a central electrolytic chamber partitioned by a diaphragm, and by switching the polarity of the first to fourth electrode pairs provided in these electrolytic chambers. , A weakly acidic water, a slightly acidic water, a strongly acidic water, and an electrolyzed water generator capable of arbitrarily selecting and producing alkaline water are disclosed.
国際公開WO2009/098870International release WO2009 / 09870 国際公開WO2007/072697International release WO2007 / 072697 特開平4-131184号公報Japanese Unexamined Patent Publication No. 4-131184 特開平9-262587号公報Japanese Unexamined Patent Publication No. 9-262587 特開平6-312189号公報Japanese Unexamined Patent Publication No. 6-31189 特開平10-76270号公報Japanese Unexamined Patent Publication No. 10-76270 特開2015-112570号公報JP-A-2015-112570
 例えば特許文献7に開示された電解水生成装置では、中央電解室に循環させている電解質水溶液の濃度及びpHが安定しないため、アルカリ水あるいは酸性水を安定的に生成することが困難であるという問題があった。また、中央電解室に循環させている電解質水溶液中に気泡が発生し、この気泡が電極に付着して電解効率を低下させてしまうという問題があった。 For example, in the electrolyzed water generator disclosed in Patent Document 7, it is difficult to stably generate alkaline water or acidic water because the concentration and pH of the aqueous electrolyte solution circulating in the central electrolytic chamber are not stable. There was a problem. Further, there is a problem that bubbles are generated in the aqueous electrolyte solution circulating in the central electrolytic chamber, and the bubbles adhere to the electrodes to reduce the electrolysis efficiency.
 そこで、本発明は、アルカリ水あるいは酸性水を安定的に生成することのできる電解水生成装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an electrolyzed water generator capable of stably producing alkaline water or acidic water.
 本発明の電解水生成装置は、以下の通りである。
(1)第1電解室と、第2電解室と、前記第1電解室と前記第2電解室の間に配置された中央電解室と、前記第1電解室と前記中央電解室の間に配置された陽イオン交換膜と、前記第2電解室と前記中央電解室の間に配置された陰イオン交換膜と、前記第1電解室に設けられた第1電極及び前記中央電解室に設けられた第2電極からなる第1の電極対と、前記第2電解室に設けられた第3電極及び前記中央電解室に設けられた第4電極からなる第2の電極対と、前記第1の電極対に電圧を印加する第1の電源と、前記第2の電極対に電圧を印加する第2の電源と、電解質水溶液を貯留する貯留タンクと、前記貯留タンクと前記中央電解室との間で電解質水溶液を循環させる循環手段と、前記貯留タンクと前記中央電解室との間を循環する電解質水溶液のpHを降下させるpH降下手段と、を備えることを特徴とする電解水生成装置。
The electrolyzed water generator of the present invention is as follows.
(1) Between the first electrolytic chamber, the second electrolytic chamber, the central electrolytic chamber arranged between the first electrolytic chamber and the second electrolytic chamber, and between the first electrolytic chamber and the central electrolytic chamber. An arranged cation exchange film, an anion exchange film arranged between the second electrolytic chamber and the central electrolytic chamber, a first electrode provided in the first electrolytic chamber, and the central electrolytic chamber. A first electrode pair composed of the second electrode, a second electrode pair composed of a third electrode provided in the second electrolytic chamber and a fourth electrode provided in the central electrolytic chamber, and the first electrode pair. A first power source for applying a voltage to the pair of electrodes, a second power source for applying a voltage to the second pair of electrodes, a storage tank for storing an aqueous electrolyte solution, and the storage tank and the central electrolytic chamber. An electrolytic water generating apparatus comprising: a circulating means for circulating an aqueous electrolyte solution between the storage tanks and a means for lowering the pH of the aqueous electrolyte circulating between the storage tank and the central electrolytic chamber.
(2)前記pH降下手段は、電解質水溶液中に酸性物質を添加する手段である、(1)に記載の電解水生成装置。 (2) The electrolyzed water generating apparatus according to (1), wherein the pH lowering means is a means for adding an acidic substance to an aqueous electrolyte solution.
(3)前記pH降下手段は、電解質水溶液中に炭酸ガスを吹き込む手段である、(1)に記載の電解水生成装置。 (3) The electrolyzed water generating apparatus according to (1), wherein the pH lowering means is a means for blowing carbon dioxide gas into an aqueous electrolyte solution.
(4)前記第1電解室と前記第2電解室とを接続する配管を備える、(1)から(3)のうちいずれかに記載の電解水生成装置。 (4) The electrolyzed water generator according to any one of (1) to (3), comprising a pipe connecting the first electrolysis chamber and the second electrolysis chamber.
(5)前記中央電解室内の圧力を調整する圧力調整手段を備える、(1)から(4)のうちいずれかに記載の電解水生成装置。 (5) The electrolyzed water generator according to any one of (1) to (4), comprising a pressure adjusting means for adjusting the pressure in the central electrolytic chamber.
(6)電解質水溶液中に含まれる気泡を除去する気泡除去手段を備える、(1)から(5)のうちいずれかに記載の電解水生成装置。 (6) The electrolyzed water generator according to any one of (1) to (5), comprising a bubble removing means for removing bubbles contained in the aqueous electrolyte solution.
 本発明によれば、アルカリ水あるいは酸性水を安定的に生成することのできる電解水生成装置を提供することができる。 According to the present invention, it is possible to provide an electrolyzed water generator capable of stably producing alkaline water or acidic water.
本発明の実施形態に係る電解水生成装置の概略構成図である。It is a schematic block diagram of the electrolyzed water generation apparatus which concerns on embodiment of this invention.
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。
 図1は、本発明の実施形態に係る電解水生成装置の概略構成図である。
 図1に示すように、電解水生成装置10は、第1電解室12と、第2電解室14と、第1電解室12と第2電解室14の間に配置された中央電解室16を備えている。第1電解室12と中央電解室16の間には、陽イオン交換膜18が配置されている。第2電解室14と中央電解室16の間には、陰イオン交換膜20が配置されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an electrolyzed water generator according to an embodiment of the present invention.
As shown in FIG. 1, the electrolyzed water generator 10 includes a first electrolysis chamber 12, a second electrolysis chamber 14, and a central electrolysis chamber 16 arranged between the first electrolysis chamber 12 and the second electrolysis chamber 14. I have. A cation exchange membrane 18 is arranged between the first electrolysis chamber 12 and the central electrolysis chamber 16. An anion exchange membrane 20 is arranged between the second electrolysis chamber 14 and the central electrolysis chamber 16.
 電解水生成装置10は、第1電解室12に設けられた第1電極22及び中央電解室16に設けられた第2電極24からなる第1の電極対26と、第2電解室14に設けられた第3電極28及び中央電解室16に設けられた第4電極30からなる第2の電極対32とを備えている。第1電極22及び第2電極24は、陽イオン交換膜18を間に挟むように配置されており、第3電極28及び第4電極30は、陰イオン交換膜20を間に挟むように配置されている。 The electrolytic water generator 10 is provided in the first electrode pair 26 composed of the first electrode 22 provided in the first electrolytic chamber 12 and the second electrode 24 provided in the central electrolytic chamber 16, and in the second electrolytic chamber 14. It is provided with a second electrode pair 32 composed of a third electrode 28 and a fourth electrode 30 provided in the central electrolytic chamber 16. The first electrode 22 and the second electrode 24 are arranged so as to sandwich the cation exchange membrane 18, and the third electrode 28 and the fourth electrode 30 are arranged so as to sandwich the anion exchange membrane 20. Has been done.
 電解水生成装置10は、第1の電極対26に電圧を印加する第1の電源PW1と、第2の電極対32に電圧を印加する第2の電源PW2を備えている。 The electrolyzed water generator 10 includes a first power supply PW1 that applies a voltage to the first electrode pair 26 and a second power supply PW2 that applies a voltage to the second electrode pair 32.
 電解水生成装置10は、第1の電極対26に流れる電流を調整することのできる第1の電流調整手段34と、第2の電極対32に流れる電流を調整することのできる第2の電流調整手段36を備えている。 The electrolyzed water generator 10 has a first current adjusting means 34 capable of adjusting the current flowing through the first electrode pair 26 and a second current capable of adjusting the current flowing through the second electrode pair 32. The adjusting means 36 is provided.
 陽イオン交換膜18は、好ましくは非透水性の陽イオン交換膜であり、ナトリウムイオン等の陽イオンを選択的に透過させる膜によって構成される。陽イオン交換膜18としては、例えば市販の陽イオン交換膜を使用することができる。 The cation exchange membrane 18 is preferably a non-permeable cation exchange membrane, and is composed of a film that selectively permeates cations such as sodium ions. As the cation exchange membrane 18, for example, a commercially available cation exchange membrane can be used.
 陰イオン交換膜20は、好ましくは非透水性の陰イオン交換膜であり、塩化物イオン等の陰イオンを選択的に透過させる膜によって構成される。陰イオン交換膜20としては、例えば市販の陰イオン交換膜を使用することができる。 The anion exchange membrane 20 is preferably a non-permeable anion exchange membrane, and is composed of a membrane that selectively permeates anions such as chloride ions. As the anion exchange membrane 20, for example, a commercially available anion exchange membrane can be used.
 第1~第4電極には、公知の電極材料を用いることが可能である。例えば、チタン又はチタン合金からなる基材に、白金、イリジウム、パラジウム及びタンタルからなる群より選ばれる1種又は2種以上の金属を含む膜を被覆した電極を用いることが可能である。電極の形状は特に制限するものではなく、例えば長方形の板状の電極を用いることが可能である。次亜塩素酸の生成効率を考慮した場合、例えばチタン又はチタン合金からなる基材に、白金とイリジウムの混合メッキを被覆した電極を用いることが好ましい。 A known electrode material can be used for the first to fourth electrodes. For example, it is possible to use an electrode in which a substrate made of titanium or a titanium alloy is coated with a film containing one or more metals selected from the group consisting of platinum, iridium, palladium and tantalum. The shape of the electrode is not particularly limited, and for example, a rectangular plate-shaped electrode can be used. When considering the production efficiency of hypochlorous acid, it is preferable to use an electrode in which a base material made of, for example, titanium or a titanium alloy is coated with a mixed plating of platinum and iridium.
 第1の電源PW1及び第2の電源PW2には、公知の直流電源を用いることが可能であり、例えば、定電流又は定電圧スイッチング電源を用いることが可能である。 A known DC power supply can be used for the first power supply PW1 and the second power supply PW2, and for example, a constant current or constant voltage switching power supply can be used.
 第1の電流調整手段34及び第2の電流調整手段36には、各電極対に流れる電流の大きさを調整することのできる機器であれば、どのような機器を用いることも可能である。 As the first current adjusting means 34 and the second current adjusting means 36, any device can be used as long as it is a device capable of adjusting the magnitude of the current flowing through each electrode pair.
 図1に示すように、電解水生成装置10は、電解質水溶液を貯留することのできる貯留タンク40を備えている。貯留タンク40に電解質水溶液を補充することによって、アルカリ水あるいは酸性水の生成によって消費された電解質を補充することができる。中央電解室16の上部は、循環用配管42によって貯留タンク40に接続されている。中央電解室16の下部は、返流用配管44によって貯留タンク40に接続されている。 As shown in FIG. 1, the electrolyzed water generator 10 includes a storage tank 40 capable of storing an aqueous electrolyte solution. By replenishing the storage tank 40 with the aqueous electrolyte solution, the electrolyte consumed by the generation of alkaline water or acidic water can be replenished. The upper part of the central electrolytic chamber 16 is connected to the storage tank 40 by a circulation pipe 42. The lower part of the central electrolytic chamber 16 is connected to the storage tank 40 by a return pipe 44.
 貯留タンク40に貯留されている電解質水溶液は、返流用配管44を通って中央電解室16の下部に流入する。中央電解室16の上部から流出した電解質水溶液は、循環用配管42を通って貯留タンク40に流入する。つまり、電解質水溶液は、循環用配管42及び返流用配管44を介して、中央電解室16と貯留タンク40の間を循環する。 The aqueous electrolyte solution stored in the storage tank 40 flows into the lower part of the central electrolytic chamber 16 through the return pipe 44. The aqueous electrolyte solution flowing out from the upper part of the central electrolytic chamber 16 flows into the storage tank 40 through the circulation pipe 42. That is, the aqueous electrolyte solution circulates between the central electrolytic chamber 16 and the storage tank 40 via the circulation pipe 42 and the return pipe 44.
 本実施形態の電解水生成装置10は、中央電解室16と貯留タンク40の間を循環する電解質水溶液のpHを降下させるためのpH降下手段を備えている。 The electrolyzed water generating device 10 of the present embodiment includes a pH lowering means for lowering the pH of the aqueous electrolyte solution circulating between the central electrolytic chamber 16 and the storage tank 40.
 pH降下手段は、循環用配管42あるいは返流用配管44を流れる電解質水溶液中に酸性物質を添加する手段であってもよい。電解質水溶液のpHを降下させることのできる酸性物質としては、弱酸性の物質、例えば、炭酸ガス(二酸化炭素)を用いることが好ましい。 The pH lowering means may be a means for adding an acidic substance to the aqueous electrolyte solution flowing through the circulation pipe 42 or the return pipe 44. As the acidic substance capable of lowering the pH of the aqueous electrolyte solution, it is preferable to use a weakly acidic substance, for example, carbon dioxide gas (carbon dioxide).
 例えば、pH降下手段は、循環用配管42を流れる電解質水溶液に炭酸ガスを吹き込む手段90であってもよい。あるいは、pH降下手段は、返流用配管44を流れる電解質水溶液に炭酸ガスを吹き込む手段92であってもよい。ガスを吹き込む手段としては、例えばノズルを用いることができる。 For example, the pH lowering means may be a means 90 for blowing carbon dioxide gas into the aqueous electrolyte solution flowing through the circulation pipe 42. Alternatively, the pH lowering means may be a means 92 for blowing carbon dioxide gas into the aqueous electrolyte solution flowing through the return pipe 44. As a means for blowing the gas, for example, a nozzle can be used.
 pH降下手段は、貯留タンク40に貯留されている電解質水溶液に炭酸ガスを供給する手段94であってもよい。炭酸ガスを供給する手段94としては、例えば、貯留タンク40中に炭酸ガスをバブリングによって供給することのできる散気管96を用いることができる。例えば、貯留タンク40中に炭酸ガスを散気管96によって供給した場合、電解質水溶液のpHを、約5分間でpH12.6からpH9.6に降下させることが可能である。 The pH lowering means may be a means 94 for supplying carbon dioxide gas to the aqueous electrolyte solution stored in the storage tank 40. As the means 94 for supplying carbon dioxide gas, for example, an air diffuser 96 capable of supplying carbon dioxide gas into the storage tank 40 by bubbling can be used. For example, when carbon dioxide gas is supplied into the storage tank 40 by the air diffuser tube 96, the pH of the aqueous electrolyte solution can be lowered from pH 12.6 to pH 9.6 in about 5 minutes.
 電解水生成装置10を長時間連続的に運転した場合、中央電解室16と貯留タンク40の間を循環する電解質水溶液のpHが上昇し、酸性水(次亜塩素酸水)の生成効率が徐々に低下する。そのため、電解水生成装置10を一定時間運転する毎に、pH降下手段によって電解質水溶液のpHを降下させることによって、酸性水(次亜塩素酸水)の生成効率が低下することを防止することができる。 When the electrolyzed water generator 10 is continuously operated for a long time, the pH of the aqueous electrolyte solution circulating between the central electrolysis chamber 16 and the storage tank 40 rises, and the efficiency of producing acidic water (hypochlorite water) gradually increases. Decreases to. Therefore, it is possible to prevent the production efficiency of acidic water (hypochlorite water) from being lowered by lowering the pH of the aqueous electrolyte solution by the pH lowering means every time the electrolyzed water generation device 10 is operated for a certain period of time. can.
 また、循環用配管42の途中には、圧力調整バルブ46が設置されている。圧力調整バルブ46によって、中央電解室16内の圧力を第1及び第2電解室12、14より高くなるように調整することができる。中央電解室16内の圧力が第1及び第2電解室12、14より僅かでも低くなった場合、塩素濃度が低下し、濃度およびpHが不安定となるため、電解効率が悪化する。圧力調整バルブ46としては、電解質水溶液の圧力を一定に調整できるバルブであれば、どのような種類のバルブを用いることも可能である。圧力調整バルブ46が、本発明の「圧力調整手段」に対応する。 In addition, a pressure adjustment valve 46 is installed in the middle of the circulation pipe 42. The pressure adjusting valve 46 can adjust the pressure in the central electrolytic chamber 16 to be higher than that of the first and second electrolytic chambers 12 and 14. When the pressure in the central electrolytic chamber 16 is even slightly lower than that of the first and second electrolytic chambers 12 and 14, the chlorine concentration decreases and the concentration and pH become unstable, so that the electrolytic efficiency deteriorates. As the pressure adjusting valve 46, any kind of valve can be used as long as it can adjust the pressure of the aqueous electrolyte solution to a constant level. The pressure adjusting valve 46 corresponds to the "pressure adjusting means" of the present invention.
 返流用配管44の途中には、中央電解室16と貯留タンク40の間で電解質水溶液を循環させるための循環ポンプ48が設置されている。循環ポンプ48には、どのような種類のポンプを用いてもよいが、例えばチューブポンプを用いることができる。チューブポンプを用いることによって、電解質水溶液を一定の流量で安定的に循環させることができる。循環ポンプ48が、本発明の「循環手段」に対応する。 A circulation pump 48 for circulating the aqueous electrolyte solution between the central electrolytic chamber 16 and the storage tank 40 is installed in the middle of the return pipe 44. Any kind of pump may be used for the circulation pump 48, and for example, a tube pump can be used. By using a tube pump, the aqueous electrolyte solution can be stably circulated at a constant flow rate. The circulation pump 48 corresponds to the "circulation means" of the present invention.
 電解水生成装置10の運転開始時において、貯留タンク40の内部には電解質水溶液を充填しておくことが好ましい。電解質水溶液としては、飽和塩化ナトリウム水溶液又は飽和塩化カリウム水溶液を用いることが好ましい。また、電解水生成装置10の運転開始後、一定の時間が経過する毎に貯留タンク40の内部の電解質水溶液を、新しい電解質水溶液(例えば飽和塩化ナトリウム水溶液又は飽和塩化カリウム水溶液)に交換することが好ましい。 At the start of operation of the electrolyzed water generator 10, it is preferable to fill the inside of the storage tank 40 with an aqueous electrolyte solution. As the aqueous electrolyte solution, it is preferable to use a saturated aqueous sodium chloride solution or a saturated aqueous solution of potassium chloride. Further, after the start of operation of the electrolyzed water generator 10, the aqueous electrolyte solution inside the storage tank 40 may be replaced with a new aqueous electrolyte solution (for example, a saturated aqueous solution of sodium chloride or a saturated aqueous solution of potassium chloride) every time a certain period of time elapses. preferable.
 電解水生成装置10は、第1電解室12に原水を供給するための原水供給配管50を備えている。原水供給配管50の途中には、原水の供給を停止あるいは開始するためのバルブ50aが設置されている。バルブ50aとしては、電磁弁を用いることが好ましい。第1電解室12に供給する原水としては、例えば、水道水、軟水、あるいは純水を用いることができる。 The electrolyzed water generator 10 includes a raw water supply pipe 50 for supplying raw water to the first electrolytic chamber 12. A valve 50a for stopping or starting the supply of raw water is installed in the middle of the raw water supply pipe 50. It is preferable to use a solenoid valve as the valve 50a. As the raw water supplied to the first electrolysis chamber 12, for example, tap water, soft water, or pure water can be used.
 原水供給配管50は、第1の流路52と、第2の流路54に分岐している。第1の流路52には、開閉バルブ52aと、流量調整弁52bが設置されている。第2の流路54にも、開閉バルブ54aと、流量調整弁54bが設置されている。開閉バルブ52a、54aには、電磁弁を用いることが好ましい。流量調整弁52b、54bには、手動弁を用いることが好ましい。 The raw water supply pipe 50 is branched into a first flow path 52 and a second flow path 54. An on-off valve 52a and a flow rate adjusting valve 52b are installed in the first flow path 52. An on-off valve 54a and a flow rate adjusting valve 54b are also installed in the second flow path 54. It is preferable to use a solenoid valve for the on-off valves 52a and 54a. It is preferable to use a manual valve for the flow rate adjusting valves 52b and 54b.
 電解水生成装置10によってアルカリ水を生成する場合には、第1電解室12に供給する原水の流量が少ない方が、洗浄力の高い「高pH値」を有するアルカリ水を安定的に生成することができる。一方、電解水生成装置10によって酸性水を生成する場合には、第1電解室12に供給する原水の流量を多くし、厚生労働省ならびに農林水産省が指定している次亜塩素酸水を生成することができる。このため、電解水生成装置10によってアルカリ水を生成する場合には、2つの開閉バルブ52a、54aのうち一方のバルブを閉じておくことが好ましい。電解水生成装置10によって酸性水を生成する場合には、2つの開閉バルブ52a、54aの両方を開いておくことが好ましい。これにより、アルカリ水から酸性水(あるいは酸性水からアルカリ水)の生成へ運転モードを切り替える際の流量調整を容易に行うことができる。第1の流路52と第2の流路54それぞれの流量調整は、流量調整弁52b、54bによって行うことができる。なお、開閉バルブ52a、54a(例えば電磁弁)の個数は、2個以上であればよく、その個数に特に制限はない。 When alkaline water is generated by the electrolyzed water generator 10, the smaller the flow rate of the raw water supplied to the first electrolytic chamber 12, the more stably the alkaline water having a high detergency "high pH value" is generated. be able to. On the other hand, when acidic water is generated by the electrolyzed water generator 10, the flow rate of raw water supplied to the first electrolyzed chamber 12 is increased to generate hypochlorite water designated by the Ministry of Health, Labor and Welfare and the Ministry of Agriculture, Forestry and Fisheries. can do. Therefore, when the electrolyzed water generator 10 generates alkaline water, it is preferable to close one of the two on-off valves 52a and 54a. When the electrolyzed water generator 10 generates acidic water, it is preferable to open both the two on-off valves 52a and 54a. This makes it possible to easily adjust the flow rate when switching the operation mode from alkaline water to acidic water (or from acidic water to alkaline water). The flow rate of each of the first flow path 52 and the second flow path 54 can be adjusted by the flow rate adjusting valves 52b and 54b. The number of on-off valves 52a and 54a (for example, solenoid valves) may be two or more, and the number is not particularly limited.
 第1の流路52と第2の流路54が合流した後の配管56の途中には、逆止弁58が設置されており、陽イオンあるいは陰イオンを含む水溶液が原水供給配管50に逆流することを防止している。また、配管56の途中にはドレン弁60が設置されており、ドレン弁60を開くことによって配管56内の水を排出することができる。 A check valve 58 is installed in the middle of the pipe 56 after the first flow path 52 and the second flow path 54 are merged, and an aqueous solution containing cations or anions flows back into the raw water supply pipe 50. It prevents you from doing so. Further, a drain valve 60 is installed in the middle of the pipe 56, and the water in the pipe 56 can be discharged by opening the drain valve 60.
 貯留タンク40の内部には、中央電解室16と貯留タンク40との間を循環する電解質水溶液中に発生する気泡を除去するための気泡除去手段70が配置されている。気泡除去手段70としては、例えば、樹脂製のスポンジや無機物質からなるフィルターを用いることができるが、高いpHの電解質水溶液と接触しても容易に変質しないことから、無機物質からなるフィルターを用いることが好ましい。無機物質からなるフィルターとしては、粒状の無機物質を用いることが好ましく、例えば、粒状セラミックスや川砂を用いることが好ましい。また、気泡除去手段70として、セラミック製ブロックを用いることもできる。 Inside the storage tank 40, a bubble removing means 70 for removing bubbles generated in the aqueous electrolyte solution circulating between the central electrolytic chamber 16 and the storage tank 40 is arranged. As the bubble removing means 70, for example, a resin sponge or a filter made of an inorganic substance can be used, but since it does not easily deteriorate even if it comes into contact with an aqueous electrolyte solution having a high pH, a filter made of an inorganic substance is used. Is preferable. As the filter made of an inorganic substance, it is preferable to use a granular inorganic substance, and for example, it is preferable to use granular ceramics or river sand. Further, a ceramic block can also be used as the bubble removing means 70.
 貯留タンク40の内部は仕切壁72によって2つの部屋(第1の部屋74及び第2の部屋76)に仕切られている。このうち第1の部屋74には、気泡除去手段70が配置されている。仕切壁72の下部はメッシュ状で通水可能となっており、気泡除去手段70によって気泡が除去された後の電解質水溶液は、第1の部屋74から第2の部屋76へ流入することが可能となっている。第2の部屋76へ流入した電解質水溶液は、循環ポンプ48によって中央電解室16に送液される。第2の部屋76にはフロートスイッチ73が設置されており、第2の部屋76の水位が所定値以下となった場合には電解用電源PW1,PW2及び循環ポンプ48が停止し、第2の部屋76の水位が所定値を超えた場合には電解用電源PW1,PW2及び循環ポンプ48が起動するようになっている。 The inside of the storage tank 40 is divided into two rooms (first room 74 and second room 76) by a partition wall 72. Of these, the bubble removing means 70 is arranged in the first room 74. The lower part of the partition wall 72 is mesh-like and allows water to pass through, and the aqueous electrolyte solution after the bubbles have been removed by the bubble removing means 70 can flow from the first room 74 to the second room 76. It has become. The aqueous electrolyte solution flowing into the second chamber 76 is sent to the central electrolytic chamber 16 by the circulation pump 48. A float switch 73 is installed in the second room 76, and when the water level in the second room 76 becomes equal to or lower than a predetermined value, the electrolytic power supplies PW1 and PW2 and the circulation pump 48 are stopped, and the second room 76 is second. When the water level in the room 76 exceeds a predetermined value, the electrolytic power supplies PW1 and PW2 and the circulation pump 48 are started.
 また、第1の部屋74の下部には、貯留タンク40に貯留されている電解質水溶液中に炭酸ガスをバブリングによって供給するための散気管96が設置されている。散気管96としては、例えば、パイプに多数の孔を設けた構造のものや、パイプにメッシュを取り付けた構造のものを使用することができる。また、例えば、微細な気泡を形成することのできる多孔質セラミック製の散気管を用いることもできる。 Further, in the lower part of the first room 74, an air diffuser 96 for supplying carbon dioxide gas into the electrolyte aqueous solution stored in the storage tank 40 by bubbling is installed. As the air diffuser 96, for example, a pipe having a structure having a large number of holes or a pipe having a mesh attached to the pipe can be used. Further, for example, an air diffuser made of a porous ceramic capable of forming fine bubbles can also be used.
 貯留タンク40の下部には、電解質水溶液を排出するためのドレン弁71が設置されている。電解水生成装置10を所定時間運転した後に電解質水溶液を交換する際には、ドレン弁71を開いて貯留タンク40内の電解質水溶液をすべて排出することが好ましい。その後、新しい電解質水溶液(例えば飽和塩化ナトリウム水溶液又は飽和塩化カリウム水溶液)を貯留タンク40に充填することが好ましい。 A drain valve 71 for discharging the aqueous electrolyte solution is installed at the bottom of the storage tank 40. When exchanging the aqueous electrolyte solution after operating the electrolyzed water generator 10 for a predetermined time, it is preferable to open the drain valve 71 to drain all the aqueous electrolyte solution in the storage tank 40. After that, it is preferable to fill the storage tank 40 with a new aqueous electrolyte solution (for example, a saturated aqueous solution of sodium chloride or a saturated aqueous solution of potassium chloride).
 図1に示すように、第1電解室12と第2電解室14は配管78によって接続されており、第1電解室12で生成された電解水は、配管78を通って第2電解室14に流入することが可能となっている。したがって、第1電解室12で生成された電解水は、第2電解室14で生成された電解水と混合した後、第2電解室14の上部に設けられた電解水排出配管80を通って外部に排出される。電解水排出配管80の途中にはpH測定器82が設置されており、電解水排出配管80から排出される電解水(アルカリ水又は酸性水)のpHを測定することが可能となっている。 As shown in FIG. 1, the first electrolytic chamber 12 and the second electrolytic chamber 14 are connected by a pipe 78, and the electrolyzed water generated in the first electrolytic chamber 12 passes through the pipe 78 to the second electrolytic chamber 14. It is possible to flow into. Therefore, the electrolyzed water generated in the first electrolyzed chamber 12 is mixed with the electrolyzed water generated in the second electrolyzed chamber 14, and then passed through the electrolyzed water discharge pipe 80 provided in the upper part of the second electrolyzed chamber 14. It is discharged to the outside. A pH measuring device 82 is installed in the middle of the electrolyzed water discharge pipe 80, and it is possible to measure the pH of the electrolyzed water (alkaline water or acidic water) discharged from the electrolyzed water discharge pipe 80.
 第1及び第2の電源PW1、PW2、並びに、第1及び第2の電流調整手段34、36は、これらを制御するための制御手段(図示せず)に電気的に接続されていてもよい。制御手段としては、例えば、シーケンス制御回路を備えた制御盤やパーソナルコンピュータ等を使用することができる。 The first and second power supplies PW1 and PW2, and the first and second current adjusting means 34 and 36 may be electrically connected to a control means (not shown) for controlling them. .. As the control means, for example, a control panel provided with a sequence control circuit, a personal computer, or the like can be used.
 次に、上記のように構成された電解水生成装置10の運転方法について詳しく説明する。なお、以下の説明では、第1電極22が陰極であり、第2電極24が陽極であり、第3電極28が陽極であり、第4電極30が陰極である例について説明する。また、運転開始時において、貯留タンク40には飽和塩化ナトリウム水溶液が充填されている例について説明する。ただし、本発明は、以下の例に限定されない。 Next, the operation method of the electrolyzed water generator 10 configured as described above will be described in detail. In the following description, an example in which the first electrode 22 is the cathode, the second electrode 24 is the anode, the third electrode 28 is the anode, and the fourth electrode 30 is the cathode will be described. Further, an example in which the storage tank 40 is filled with the saturated sodium chloride aqueous solution at the start of operation will be described. However, the present invention is not limited to the following examples.
 電解水生成装置10によって電解水を生成するために、まず、原水供給配管50から第1電解室12に原水を導入する。また、循環ポンプ48を起動することによって、貯留タンク40及び中央電解室16の間で電解質水溶液(飽和塩化ナトリウム水溶液)を循環させる。そして、第1及び第2の電極対26、32に電圧を印加することによって、各電解室内の水の電気分解を開始する。これにより、第2電解室14の上部の電解水排出配管80からは、酸性水(微酸性水又は弱酸性水)、又は、アルカリ水が取り出される。 In order to generate electrolyzed water by the electrolyzed water generator 10, first, raw water is introduced from the raw water supply pipe 50 into the first electrolyzed chamber 12. Further, by starting the circulation pump 48, the aqueous electrolyte solution (saturated sodium chloride aqueous solution) is circulated between the storage tank 40 and the central electrolytic chamber 16. Then, by applying a voltage to the first and second electrode pairs 26 and 32, the electrolysis of water in each electrolytic chamber is started. As a result, acidic water (slightly acidic water or weakly acidic water) or alkaline water is taken out from the electrolytic water discharge pipe 80 at the upper part of the second electrolytic chamber 14.
 第1電解室12、第2電解室14、及び中央電解室16では、各電極の極性に応じて、例えば以下の反応が発生する。
(陰極での反応)
  水素の生成  2HO + 2e → H + 2OH
  アルカリ水の生成  Na + OH ⇔ NaOH
(陽極での反応)
  酸素の生成  2HO → O + 4H + 4e (酸性水の生成)
  塩素の生成  2Cl → Cl + 2e
  次亜塩素酸の生成  Cl + HO → HCl + HClO
In the first electrolytic chamber 12, the second electrolytic chamber 14, and the central electrolytic chamber 16, for example, the following reactions occur depending on the polarity of each electrode.
(Reaction at the cathode)
Generating 2H 2 O + 2e hydrogen - → H 2 + 2OH -
Generation of alkaline water Na + + OH ⇔ NaOH
(Reaction at anode)
Generating 2H 2 O → O 2 + 4H + + 4e oxygen - (generation of acidic water)
Generation of chlorine 2Cl - → Cl 2 + 2e -
Formation of hypochlorous acid Cl 2 + H 2 O → HCl + HClO
 第1の電極対26に流れる電流の大きさを第1の電流調整手段34によって調整し、第2の電極対32に流れる電流の大きさを第2の電流調整手段36によって調整すれば、任意のpHを有する電解水(酸性水あるいはアルカリ水)を電解水排出配管80から取り出すことができる。例えば、第2の電極対32に流れる電流を、第1の電極対26に流れる電流よりも大きくなるように調整すれば、電解水排出配管80から微酸性水あるいは弱酸性水を取り出すことができる。また、第1の電極対26にのみ電圧を印加すれば、電解水排出配管80からアルカリ水を取り出すことができる。 Arbitrary if the magnitude of the current flowing through the first electrode pair 26 is adjusted by the first current adjusting means 34 and the magnitude of the current flowing through the second electrode pair 32 is adjusted by the second current adjusting means 36. Electrolyzed water (acidic water or alkaline water) having the pH of can be taken out from the electrolyzed water discharge pipe 80. For example, if the current flowing through the second electrode pair 32 is adjusted to be larger than the current flowing through the first electrode pair 26, slightly acidic water or weakly acidic water can be taken out from the electrolyzed water discharge pipe 80. .. Further, if a voltage is applied only to the first electrode pair 26, alkaline water can be taken out from the electrolyzed water discharge pipe 80.
 このように、本実施形態の電解水生成装置10によれば、微酸性水、弱酸性水、あるいはアルカリ水を任意に選択して生成することができるため、極めて利便性の高い電解水生成装置を実現することができる。 As described above, according to the electrolyzed water generator 10 of the present embodiment, it is possible to arbitrarily select and generate slightly acidic water, weakly acidic water, or alkaline water, so that the electrolyzed water generating apparatus is extremely convenient. Can be realized.
 本実施形態の電解水生成装置10によれば、電解質水溶液を中央電解室16に循環させることで電解水を生成することができる。このとき、第1電解室12及び第2電解室14には電解質水溶液を循環させる必要がないため、電解質(例えば塩化ナトリウム)を含まない電解水(酸性水あるいはアルカリ水)を生成することが可能である。したがって、本実施形態の電解水生成装置10によれば、塩分が全く含まれない電解次亜塩素酸水を生成することが可能である。 According to the electrolyzed water generating device 10 of the present embodiment, the electrolyzed water can be generated by circulating the aqueous electrolyte solution in the central electrolyzing chamber 16. At this time, since it is not necessary to circulate the aqueous electrolyte solution in the first electrolytic chamber 12 and the second electrolytic chamber 14, it is possible to generate electrolyzed water (acidic water or alkaline water) that does not contain an electrolyte (for example, sodium chloride). Is. Therefore, according to the electrolyzed water generator 10 of the present embodiment, it is possible to generate electrolyzed hypochlorite water containing no salt.
 本実施形態の電解水生成装置10によれば、例えば食塩(塩化ナトリウム)を含まない殺菌水を得ることが可能である。このような食塩を含まない殺菌水は、塩害が生じる恐れがある機械や建造物の洗浄や、食材、調理器具、手指などの殺菌に用いることが可能であり、極めて有用である。特に、このような食塩を含まない殺菌水は、野菜栽培の農薬を減少させる目的で使用できるため、極めて有用である。 According to the electrolyzed water generator 10 of the present embodiment, it is possible to obtain sterilized water containing no salt (sodium chloride), for example. Such salt-free sterilizing water can be used for cleaning machines and buildings that may cause salt damage, and for sterilizing foodstuffs, cooking utensils, fingers, etc., and is extremely useful. In particular, such salt-free sterilized water is extremely useful because it can be used for the purpose of reducing pesticides in vegetable cultivation.
 本実施形態の電解水生成装置10によれば、中央電解室16に循環させている電解質水溶液中に発生した水素ガス等からなる気泡を、気泡除去手段70によって除去することが可能である。これにより、電極対の表面に気泡が付着して電解効率が低下することを防止することが可能であり、一定のpHおよび次亜塩素酸水を有する電解水を安定して生成することが可能である。 According to the electrolyzed water generating device 10 of the present embodiment, it is possible to remove bubbles made of hydrogen gas or the like generated in the aqueous electrolyte solution circulating in the central electrolytic chamber 16 by the bubble removing means 70. This makes it possible to prevent bubbles from adhering to the surface of the electrode pair and reducing the electrolysis efficiency, and it is possible to stably generate electrolyzed water having a constant pH and hypochlorite water. Is.
 本実施形態の電解水生成装置10によれば、中央電解室16内の圧力を圧力調整バルブ46によって調整することが可能である。これにより、一定のpHおよび次亜塩素酸水を有する電解水を安定して生成することが可能である。 According to the electrolyzed water generator 10 of the present embodiment, the pressure in the central electrolysis chamber 16 can be adjusted by the pressure adjusting valve 46. This makes it possible to stably generate electrolyzed water having a constant pH and hypochlorite water.
 従来の電解水生成装置は、電解側に電解質水溶液(例えば塩水)を供給する構造を有しているため、生成した電解水に電解質水溶液が含まれてしまう。この場合、電解水の生成に理論上必要な量よりも多くの量の電解質を消費してしまうため、ランニングコストが高くなるという問題があった。
 これに対し、本実施形態の電解水生成装置10は、中央電解室16に電解質水溶液を循環させる構造を有しているため、イオン交換膜を透過した電解質が消費されることで電解水が生成される。このため、生成した電解水に電解質水溶液が含まれてしまうことがなく、従来の電解水生成装置よりもランニングコストを軽減することが可能である。
Since the conventional electrolyzed water generator has a structure in which an aqueous electrolyte solution (for example, salt water) is supplied to the electrolyzed side, the generated electrolyzed water contains the aqueous electrolyte solution. In this case, there is a problem that the running cost becomes high because a larger amount of electrolyte is consumed than the amount theoretically required for producing electrolyzed water.
On the other hand, since the electrolyzed water generating device 10 of the present embodiment has a structure in which the aqueous electrolyte is circulated in the central electrolyzing chamber 16, the electrolyzed water is generated by consuming the electrolyte that has passed through the ion exchange membrane. Will be done. Therefore, the generated electrolyzed water does not contain the aqueous electrolyte solution, and the running cost can be reduced as compared with the conventional electrolyzed water generator.
 電解水生成装置10で次亜塩素酸水を連続的に生成した場合、中央電解室16と貯留タンク40の間を循環する電解質水溶液のpHが上昇するため、酸性水(次亜塩素酸水)の生成効率が徐々に低下するという問題がある。
 本実施形態の電解水生成装置10によれば、pH降下手段によって、中央電解室16と貯留タンク40の間を循環する電解質水溶液のpHを降下させることができる。このため、電解水生成装置10で次亜塩素酸水を長時間連続的に生成した場合でも、次亜塩素酸水の生成効率が徐々に低下することを防止することができる。
When the electrolyzed water generator 10 continuously generates hypochlorite water, the pH of the aqueous electrolyte solution circulating between the central electrolysis chamber 16 and the storage tank 40 rises, so that the acid water (hypochlorite water) There is a problem that the production efficiency of the water gradually decreases.
According to the electrolyzed water generating device 10 of the present embodiment, the pH of the aqueous electrolyte solution circulating between the central electrolytic chamber 16 and the storage tank 40 can be lowered by the pH lowering means. Therefore, even when the electrolyzed water generator 10 continuously generates hypochlorite water for a long period of time, it is possible to prevent the efficiency of hypochlorite water generation from gradually decreasing.
 10  電解水生成装置
12  第1電解室
14  第2電解室
16  中央電解室
18  陽イオン交換膜
20  陰イオン交換膜
22  第1電極
24  第2電極
26  第1の電極対
28  第3電極
30  第4電極
32  第2の電極対
40  貯留タンク
42  循環用配管
44  返流用配管
46  圧力調整バルブ
48  循環ポンプ
50  原水供給配管
70  気泡除去手段
78  配管
80  電解水排出配管
90、92、94 pH降下手段
10 Electrolyzed water generator 12 1st electrolysis chamber 14 2nd electrolysis chamber 16 Central electrolysis chamber 18 Cyan ion exchange membrane 20 Anion exchange membrane 22 1st electrode 24 2nd electrode 26 1st electrode pair 28 3rd electrode 30 4th Electrode 32 Second electrode pair 40 Storage tank 42 Circulation pipe 44 Return pipe 46 Pressure adjustment valve 48 Circulation pump 50 Raw water supply pipe 70 Bubble removal means 78 Pipe 80 Electrolyzed water discharge pipe 90, 92, 94 pH lowering means

Claims (6)

  1.  第1電解室と、
     第2電解室と、
     前記第1電解室と前記第2電解室の間に配置された中央電解室と、
     前記第1電解室と前記中央電解室の間に配置された陽イオン交換膜と、
     前記第2電解室と前記中央電解室の間に配置された陰イオン交換膜と、
     前記第1電解室に設けられた第1電極及び前記中央電解室に設けられた第2電極からなる第1の電極対と、
     前記第2電解室に設けられた第3電極及び前記中央電解室に設けられた第4電極からなる第2の電極対と、
     前記第1の電極対に電圧を印加する第1の電源と、
     前記第2の電極対に電圧を印加する第2の電源と、
     電解質水溶液を貯留する貯留タンクと、
     前記貯留タンクと前記中央電解室との間で電解質水溶液を循環させる循環手段と、
     前記貯留タンクと前記中央電解室との間を循環する電解質水溶液のpHを降下させるpH降下手段と、
     を備えることを特徴とする電解水生成装置。
    The first electrolysis chamber and
    The second electrolysis chamber and
    A central electrolysis chamber arranged between the first electrolysis chamber and the second electrolysis chamber,
    A cation exchange membrane arranged between the first electrolysis chamber and the central electrolysis chamber,
    An anion exchange membrane arranged between the second electrolysis chamber and the central electrolysis chamber,
    A first electrode pair consisting of a first electrode provided in the first electrolysis chamber and a second electrode provided in the central electrolysis chamber, and a pair of electrodes.
    A second electrode pair consisting of a third electrode provided in the second electrolytic chamber and a fourth electrode provided in the central electrolytic chamber, and a second electrode pair.
    A first power supply that applies a voltage to the first electrode pair,
    A second power source that applies a voltage to the second electrode pair,
    A storage tank for storing the aqueous electrolyte solution and
    A circulation means for circulating an aqueous electrolyte solution between the storage tank and the central electrolytic chamber,
    A pH lowering means for lowering the pH of the aqueous electrolyte solution circulating between the storage tank and the central electrolytic chamber,
    An electrolyzed water generator characterized by comprising.
  2.  前記pH降下手段は、電解質水溶液中に酸性物質を添加する手段である、請求項1に記載の電解水生成装置。 The electrolyzed water generating apparatus according to claim 1, wherein the pH lowering means is a means for adding an acidic substance to an aqueous electrolyte solution.
  3.  前記pH降下手段は、電解質水溶液中に炭酸ガスを吹き込む手段である、請求項1に記載の電解水生成装置。 The electrolyzed water generating device according to claim 1, wherein the pH lowering means is a means for blowing carbon dioxide gas into an aqueous electrolyte solution.
  4.  前記第1電解室と前記第2電解室とを接続する配管を備える、請求項1から請求項3のうちいずれか1項に記載の電解水生成装置。 The electrolyzed water generator according to any one of claims 1 to 3, further comprising a pipe connecting the first electrolytic chamber and the second electrolytic chamber.
  5.  前記中央電解室内の圧力を調整する圧力調整手段を備える、請求項1から請求項4のうちいずれか1項に記載の電解水生成装置。 The electrolyzed water generator according to any one of claims 1 to 4, further comprising a pressure adjusting means for adjusting the pressure in the central electrolytic chamber.
  6.  電解質水溶液中に含まれる気泡を除去する気泡除去手段を備える、請求項1から請求項5のうちいずれか1項に記載の電解水生成装置。 The electrolyzed water generator according to any one of claims 1 to 5, further comprising a bubble removing means for removing bubbles contained in the aqueous electrolyte solution.
PCT/JP2021/017686 2020-07-13 2021-05-10 Electrolyzed water generation device WO2022014127A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-119991 2020-07-13
JP2020119991A JP2022016971A (en) 2020-07-13 2020-07-13 Electrolytic water generating apparatus

Publications (1)

Publication Number Publication Date
WO2022014127A1 true WO2022014127A1 (en) 2022-01-20

Family

ID=79554729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017686 WO2022014127A1 (en) 2020-07-13 2021-05-10 Electrolyzed water generation device

Country Status (2)

Country Link
JP (1) JP2022016971A (en)
WO (1) WO2022014127A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217185A (en) * 1996-02-14 1997-08-19 Permelec Electrode Ltd Three-chamber based electrolytic cell
JPH10128331A (en) * 1996-11-05 1998-05-19 Coherent Technol:Kk Method and apparatus for producing sterilized water
JP2003311271A (en) * 2002-04-18 2003-11-05 Sanyo Electric Co Ltd Water treatment apparatus
JP2015112570A (en) * 2013-12-13 2015-06-22 千鶴子 澤田 Electrolytic water generator and method of operating the same
WO2016147439A1 (en) * 2015-03-13 2016-09-22 株式会社 東芝 Electrolysis tank and electrolyzed water-generating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217185A (en) * 1996-02-14 1997-08-19 Permelec Electrode Ltd Three-chamber based electrolytic cell
JPH10128331A (en) * 1996-11-05 1998-05-19 Coherent Technol:Kk Method and apparatus for producing sterilized water
JP2003311271A (en) * 2002-04-18 2003-11-05 Sanyo Electric Co Ltd Water treatment apparatus
JP2015112570A (en) * 2013-12-13 2015-06-22 千鶴子 澤田 Electrolytic water generator and method of operating the same
WO2016147439A1 (en) * 2015-03-13 2016-09-22 株式会社 東芝 Electrolysis tank and electrolyzed water-generating method

Also Published As

Publication number Publication date
JP2022016971A (en) 2022-01-25

Similar Documents

Publication Publication Date Title
JP5688103B2 (en) Electrolyzed water production method and apparatus
JP3716042B2 (en) Acid water production method and electrolytic cell
US8262872B2 (en) Cleansing agent generator and dispenser
AU2008276573A1 (en) Cleansing agent generator and dispenser
JP4713537B2 (en) Method for producing electrolyzed water and electrolyzed water
JP6268383B2 (en) ELECTROLYTIC WATER GENERATION DEVICE AND METHOD FOR OPERATING THE SAME
WO2014034329A1 (en) Apparatus for producing electrolyzed water and method for producing electrolyzed water
JP2013071103A (en) Electrolytic water generating device and electrolytic water generating method
JP2013544630A (en) Sterilized electrolyzed water production apparatus, and sterilized electrolyzed water production system and method including the same
JP2009050797A (en) Apparatus and method for generating electrolytic water
JP4705190B1 (en) Electrolyzed water production apparatus and production method thereof
JP2021169084A (en) Electrolytic water generator and electrolytic water generating method
JP4764389B2 (en) Electrolyzed water generator
JP2003024941A (en) Method and apparatus for generating hypochlorous acid
WO2022014127A1 (en) Electrolyzed water generation device
JP4685830B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP2012196643A (en) Apparatus for producing hypochlorous acid water or the like
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
KR200392719Y1 (en) Apparatus for producing sterilized water
JP4685838B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP2021178301A (en) Electrolytic water generator
JP6831570B2 (en) Electrolyzed water generator
JP2008161795A (en) Ozone water generator
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP2001246381A (en) Method and device for manufacturing alkaline ionized water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841648

Country of ref document: EP

Kind code of ref document: A1