WO2022014066A1 - 無線通信モジュール - Google Patents

無線通信モジュール Download PDF

Info

Publication number
WO2022014066A1
WO2022014066A1 PCT/JP2020/046499 JP2020046499W WO2022014066A1 WO 2022014066 A1 WO2022014066 A1 WO 2022014066A1 JP 2020046499 W JP2020046499 W JP 2020046499W WO 2022014066 A1 WO2022014066 A1 WO 2022014066A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
wireless
communication
frequency converter
phase shifter
Prior art date
Application number
PCT/JP2020/046499
Other languages
English (en)
French (fr)
Inventor
雄大 長谷川
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2021504849A priority Critical patent/JP7098820B2/ja
Priority to EP20842544.7A priority patent/EP3965303A4/en
Priority to CN202080004163.0A priority patent/CN114208044B/zh
Priority to US17/263,623 priority patent/US11245177B1/en
Publication of WO2022014066A1 publication Critical patent/WO2022014066A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving

Definitions

  • the present invention relates to a wireless communication module.
  • This application claims priority based on Japanese Patent Application No. 2020-12202 filed in Japan on July 16, 2020, the contents of which are incorporated herein by reference.
  • Non-Patent Document 1 a wireless module board having an antenna formed on one surface and an IC chip mounted on the other surface is mounted on a mounting surface of another board (communication board) by a connecting member (bump).
  • the wireless communication module is disclosed.
  • the other surface of the wireless module board on which the IC chip is mounted faces the mounting surface of another board.
  • a filter for example, a bandpass filter for removing unnecessary radiation may be provided.
  • the IC chip (especially the frequency converter that changes the frequency of the wireless signal, the amplifier phase shifter that changes the phase and intensity of the wireless signal, etc.) is covered by another substrate, so the IC
  • the heat generated in the chip tends to be trapped between the wireless module board and another board.
  • the wiring layout of another board constituting the circuit of the wireless communication module becomes complicated, and as a result, another board is used. The wiring for the circuit on the board becomes long.
  • the present invention has been made in view of the above circumstances, and provides a wireless communication module capable of simplifying the wiring layout on another substrate while improving the heat dissipation of the IC chip.
  • the wireless communication module is mounted on a wireless module board having an antenna formed on a first surface or an internal layer and a second surface of the wireless module board, and has a frequency that changes the frequency of a wireless signal.
  • the communication board is provided with a communication board electrically connected to the wireless module board by the connection member, and at least one IC chip of the frequency converter and the amplifier phase shifter faces the communication board.
  • a through hole is formed through the wireless module board and the communication board in the line-up direction, and the bandpass filter is covered with the communication board.
  • the heat generated in the frequency converter and the amplifier phase shifter (IC chip) can be released to the outside of the wireless communication module through the through hole of the communication board through the gap between the wireless module board and the communication board. can. Further, since the formation of the through hole for heat dissipation is limited to the portion of the communication board facing the frequency converter and the amplifier phase shifter (IC chip), the number and size of the through hole in the communication board can be suppressed. can. As a result, the layout of the wiring on the communication board can be simplified, and the wiring for the circuit on the communication board can be suppressed from becoming long.
  • the thickness dimension of the bandpass filter may be smaller than the distance between the wireless module board and the communication board.
  • heat dissipation having higher thermal conductivity than the dielectric material of the communication substrate is radiated on the upper surface of the IC chip facing the through hole.
  • a sheet may be placed.
  • the dielectric loss tangent of the heat dissipation sheet at the radio frequency may be larger than that of the communication board.
  • FIG. 2 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 2 is a cross-sectional view taken along the line IV-IV in FIG.
  • the wireless communication module 1 includes a wireless module board 2, a frequency converter 3, an amplifier phase shifter 4, a bandpass filter 5, and a communication board 6. To prepare for.
  • a wiring pattern (not shown) is formed on the wireless module board 2.
  • the wiring pattern is made of a conductor such as copper (Cu), and the frequency converter 3, the amplifier phase shifter 4, and the bandpass filter 5, which will be described later, are electrically connected to each other.
  • the wiring pattern is formed on both sides 2a, 2b (lower surface and upper surface in FIGS. 3 and 4), the inside, and the like of the wireless module board 2.
  • An antenna 21 is formed on the wireless module board 2. The antenna 21 is connected to the wiring pattern of the wireless module board 2.
  • the antenna 21 is formed so as to radiate a wireless signal from one surface (first surface) 2a (lower surface in FIGS. 3 and 4) of the wireless module substrate 2.
  • the antenna 21 may not be formed at least on the other surface (second surface) 2b (upper surface in FIGS. 3 and 4) of the wireless module substrate 2.
  • the antenna 21 may be formed on one surface 2a of the wireless module substrate 2 or may be formed on an inner layer of the wireless module substrate 2. Further, the antenna 21 may be formed on one surface 2a of the wireless module substrate 2 and then covered with a dielectric layer.
  • the frequency converter 3 is an IC chip that changes the frequency of the wireless signal, and is mounted on the other surface 2b of the wireless module board 2. As a result, the frequency converter 3 is connected to the wiring pattern of the wireless module board 2. In the present embodiment, one frequency converter 3 is mounted on the wireless module board 2.
  • the amplifier phase shifter 4 is an IC chip that changes the phase and intensity of a wireless signal, and is mounted on the other surface 2b of the wireless module board 2. As a result, the amplifier phase shifter 4 is connected to the wiring pattern of the wireless module board 2. In this embodiment, eight amplifier phase shifters 4 are mounted on the wireless module board 2. Each amplifier phase shifter 4 mounted on the wireless module board 2 is connected to the frequency converter 3 via the wiring pattern of the wireless module board 2. Further, each amplifier phase shifter 4 is connected to the antenna 21 via the wiring pattern of the wireless module board 2. That is, each amplifier phase shifter 4 is provided between the frequency converter 3 and the antenna 21.
  • the bandpass filter 5 is a chip component that passes through the frequency band of a radio signal and attenuates a signal (noise) in a band other than the frequency band.
  • the bandpass filter 5 is mounted on the other surface 2b of the wireless module board 2 and is connected to the wiring pattern of the wireless module board 2. As a result, the bandpass filter 5 is connected to the frequency converter 3 via the wiring pattern. Further, the bandpass filter 5 is connected to the amplifier phase shifter 4 via a wiring pattern. That is, the bandpass filter 5 is provided between the frequency converter 3 and the amplifier phase shifter 4.
  • two bandpass filters 5 are mounted on the wireless module board 2.
  • the same frequency converter 3 is connected to the two bandpass filters 5.
  • four amplifier phase shifters 4 are connected to each of the two bandpass filters 5.
  • one frequency converter 3 is arranged in the central region of the other surface 2b of the wireless module substrate 2.
  • the two bandpass filters 5 are arranged on both sides of the frequency converter 3 in the lateral direction (X direction).
  • the amplifier phase shifters are arranged so as to be arranged four in the horizontal direction on both sides of the frequency converter 3 and the two bandpass filters 5 in the vertical direction (Y direction).
  • four amplifier phase shifters are arranged around each bandpass filter 5.
  • the communication board 6 is formed with a wiring pattern (not shown) formed of conductors. As shown in FIGS. 3 and 4, the communication board 6 is provided on the other surface 2b of the wireless module board 2 at intervals via the connecting member 7. The wiring pattern of the communication board 6 is electrically connected to the wiring pattern of the wireless module board 2 by the connecting member 7.
  • the connecting member 7 is a bump formed of, for example, solder or a conductor such as gold, silver, or copper.
  • the wiring pattern of the communication board 6 constitutes the circuit of the wireless communication module 1 together with the wiring pattern of the wireless module board 2, the frequency converter 3, the amplifier phase shifter 4, and the bandpass filter 5.
  • a plurality of through holes 61 are formed in the communication board 6.
  • the through hole 61 penetrates the communication board 6 in the thickness direction (direction in which the wireless module board 2 and the communication board 6 are arranged; Z direction).
  • the through hole 61 is formed in a portion of the communication board 6 where the frequency converter 3 and the amplifier phase shifter 4 face each other.
  • the through hole 61 corresponds to one frequency converter 3 and eight amplifier phase shifters 4 one by one. That is, nine through holes 61 are formed in the communication board 6 of the present embodiment.
  • Each through hole 61 is formed so that the frequency converter 3 and the amplifier phase shifter 4 fit inside each through hole 61 in the plan view shown in FIG. As a result, the frequency converter 3 and the amplifier phase shifter 4 are exposed to the outside of the wireless communication module 1 through the through holes 61 of the communication board 6.
  • a through hole 61 is not formed in the portion of the communication board 6 where the bandpass filter 5 faces. Therefore, the bandpass filter 5 is covered with the communication board 6.
  • the thickness dimension T1 (see FIG. 3) of the bandpass filter 5 is smaller than the distance D1 (see FIG. 3) between the other surface 2b of the wireless module board 2 by the connecting member 7 and the communication board 6. Therefore, there is a gap between the communication board 6 and the upper surface of the bandpass filter 5 facing the communication board 6. That is, the bandpass filter 5 does not come into contact with or be pressed against the communication board 6.
  • the pitch of the connecting member 7 (solder ball) in the wireless module board 2 and the communication board 6 is increased.
  • the diameter of the connecting member 7 (solder ball) related to the distance D1 between the other surface 2b of the wireless module board 2 and the communication board 6 also changes. Therefore, the thickness dimension T1 of the bandpass filter 5 may be limited according to the pitch of the connecting member 7 (solder balls). For example, when the pitch of the connecting member 7 (solder ball) is 1.27 mm, the diameter of the connecting member 7 (solder ball) is about 0.6 mm to 0.9 mm, so that the thickness dimension T1 of the bandpass filter 5 is set.
  • the connecting member 7 (solder ball) is 1 mm
  • the diameter of the connecting member 7 (solder ball) is about 0.55 mm to 0.65 mm, so that the thickness dimension T1 of the bandpass filter 5 is set. May be 0.5 mm or less.
  • the thickness dimensions of the frequency converter 3 and the amplifier phase shifter 4 may be arbitrary, but in the present embodiment, the other surface 2b of the wireless module board 2 and the communication board 6 are used. Is greater than the interval D1. Therefore, the upper portions of the frequency converter 3 and the amplifier phase shifter 4 enter the inside of the through hole 61.
  • the heat dissipation sheet 8 is placed on the upper surface of the frequency converter 3 and the amplifier phase shifter 4 facing the through hole 61 of the communication board 6.
  • the heat radiating sheet 8 may have elasticity and adhesiveness so as to be in close contact with the upper surfaces of the frequency converter 3 and the amplifier phase shifter 4 without gaps.
  • the thermal conductivity of the heat radiating sheet 8 is higher than the thermal conductivity of the dielectric material (for example, the interlayer insulating film) of the communication substrate 6.
  • the dielectric loss tangent of the heat dissipation sheet 8 at the radio frequency is larger than the dielectric loss tangent of the dielectric material of the communication substrate 6.
  • the frequency converter 3 and the amplifier phase shifter 4 are thermally connected to the heat dissipation member 100.
  • the heat radiating member 100 is made of a material having high thermal conductivity such as aluminum, and has a main body portion 101 and a plurality of connecting protrusions 102 that integrally project from the main body portion 101.
  • the main body 101 is formed in a plate shape or a block shape. For example, heat radiation fins may be formed on the main body 101.
  • connection protrusions 102 are each inserted into the through holes 61 of the communication board 6.
  • the tip of each connection protrusion 102 is connected to the upper surface of the frequency converter 3 and the amplifier phase shifter 4.
  • the connection protrusion 102 may be directly connected to, for example, the upper surface of the frequency converter 3 and the amplifier phase shifter 4, but in the present embodiment, the connection protrusion 102 may be directly connected to the upper surface of the frequency converter 3 and the amplifier phase shifter 4 via the heat dissipation sheet 8. Connected to.
  • the heat radiating sheet 8 By interposing the heat radiating sheet 8, the adhesion between the frequency converter 3 and the amplifier phase shifter 4 and the connecting protrusion 102 is improved. As a result, the heat of the frequency converter 3 and the amplifier phase shifter 4 can be efficiently transferred to the heat dissipation member 100.
  • the heat dissipation member 100 described above may be, for example, a housing for accommodating the wireless communication module 1.
  • the wireless communication module 1 In the wireless communication module 1, first, a wireless signal is input to the frequency converter 3, so that the frequency converter 3 changes the frequency of the wireless signal. Next, the radio signal output from the frequency converter 3 is distributed and input to the two bandpass filters 5. Each bandpass filter 5 attenuates or removes noise (a signal in a band other than the frequency band of the radio signal) superimposed on the radio signal.
  • the noise superimposed on the radio signal includes, for example, unnecessary radiation generated in the frequency converter 3 and the amplifier phase shifter 4.
  • each bandpass filter 5 The radio signal output from each bandpass filter 5 is distributed and input to each of the four amplifier phase shifters 4. In each amplifier phase shifter 4, the phase and intensity of the radio signal are changed. Finally, the radio signals output from the eight amplifier phase shifters 4 are radiated from the antenna 21.
  • the antenna 21 is formed on one surface 2a of the wireless module board 2, the wireless signal output from the amplifier phase shifter 4 is radiated from one surface 2a of the wireless module board 2.
  • the bandpass filter 5 is composed of chip components separate from the wireless module board 2 and the communication board 6. Therefore, the characteristics of the bandpass filter 5 can be sufficiently obtained as compared with the case where the bandpass filter 5 is formed by the wiring pattern of the wireless module board 2 and the communication board 6.
  • a through hole 61 is formed in a portion of the communication board 6 where the frequency converter 3 and the amplifier phase shifter 4 face each other. Therefore, the heat generated in the frequency converter and the amplifier phase shifter can be released to the outside of the wireless communication module 1 through the through hole 61 of the communication board 6 through the gap between the wireless module board 2 and the communication board 6. Further, by connecting the heat dissipation member 100 to the frequency converter 3 and the amplifier phase shifter 4 facing the outside of the wireless module board 2 through the through hole 61, the heat of the frequency converter 3 and the amplifier phase shifter 4 can be transferred more efficiently. It can be released to the outside of the wireless communication module 1.
  • the formation of the through hole 61 for heat dissipation is limited to the portion of the communication board 6 facing the frequency converter 3 and the amplifier phase shifter 4, the number and size of the through hole 61 formed in the communication board 6 are large. It can be suppressed. As a result, it is possible to prevent the wiring layout of the communication board 6 based on the formation of the through hole 61 from becoming complicated, and to prevent the wiring for the circuit in the communication board 6 from becoming long. Therefore, in the wireless communication module 1 of the present embodiment, the layout of the wiring on the communication board 6 can be simplified while improving the heat dissipation of the frequency converter 3 and the amplifier phase shifter 4.
  • the thickness dimension T1 of the bandpass filter 5 is smaller than the distance D1 between the wireless module board 2 and the communication board 6.
  • the bandpass filter 5 can be arranged in the gap between the wireless module board 2 and the communication board 6 even if the other surface 2b of the wireless module board 2 is formed flat.
  • a heat dissipation sheet having a higher thermal conductivity than the communication board 6 is placed on the upper surface of the frequency converter 3 and the amplifier phase shifter 4 facing the through hole 61 of the communication board 6. 8 is placed.
  • the heat of the frequency converter 3 and the amplifier phase shifter 4 can be transferred to the heat dissipation sheet 8 more efficiently than the communication board 6. That is, it is possible to suppress the heat of the frequency converter 3 and the amplifier phase shifter 4 from being transferred to the communication board 6, and to prevent the temperature of the communication board 6 from rising.
  • the dielectric loss tangent of the heat dissipation sheet 8 at the radio frequency is larger than that of the communication board 6.
  • the through hole 61 of the communication board 6 may be formed at the portion of the communication board 6 facing at least one IC chip of the frequency converter 3 and the amplifier phase shifter 4.
  • the through hole 61 may be formed only in the portion of the communication board 6 facing one of the plurality of amplifier phase shifters 4, for example.
  • the through holes 61 may be formed only in the portion of the communication board 6 facing one of the plurality of frequency converters 3, for example, or the plurality of frequencies may be formed. It may be formed at a portion of the communication board 6 facing all the converters 3. Further, the through hole 61 may be formed only in the portion of the communication board 6 facing the IC chip having the largest heat generation among the frequency converter 3 and the amplifier phase shifter 4, for example.
  • a concave portion recessed from the other surface 2b may be formed on the wireless module substrate 2, and a bandpass filter 5 may be mounted on the bottom surface of the concave portion.
  • the bandpass filter 5 communicates with the wireless module board 2. It can be arranged in the gap with the substrate 6.
  • the number of the frequency converter 3, the amplifier phase shifter 4, and the bandpass filter 5 is not limited to the number shown in the above embodiment and may be arbitrary.
  • the number of the frequency converter 3, the bandpass filter 5, and the amplifier phase shifter 4 may be one each.
  • the number of the frequency converter 3 and the number of the bandpass filter 5 may be one, and the number of the amplifier phase shifters 4 may be a plurality.
  • the radio signal output from the bandpass filter 5 through the frequency converter 3 can be distributed to the plurality of amplifier phase shifters 4 and then output to the antenna 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transceivers (AREA)

Abstract

無線通信モジュールは、無線モジュール基板と、周波数変換器と、アンプ移相器と、バンドパスフィルタと、通信基板と、を備え、周波数変換器及びアンプ移相器のうち少なくとも一つのICチップが対向する通信基板の部位に、無線モジュール基板及び通信基板が並ぶ方向に貫通する貫通孔が形成され、バンドパスフィルタは、通信基板によって覆われている。

Description

無線通信モジュール
 本発明は、無線通信モジュールに関する。
 本願は、2020年7月16日に日本に出願された特願2020-122027号に基づき優先権を主張し、その内容をここに援用する。
 非特許文献1には、一方の面にアンテナを形成し、他方の面にICチップを実装した無線モジュール基板を、接続部材(バンプ)によって別の基板(通信基板)の実装面に重ねて実装した無線通信モジュールが開示されている。この無線通信モジュールでは、ICチップを実装した無線モジュール基板の他方の面が別の基板の実装面に対向している。この種の無線通信モジュールにおいては、不要な輻射を除去するフィルタ(例えばバンドパスフィルタ)を設ける場合がある。
Albert Chee, et al, ‘Integrated Antenna Module for Broadband Wireless Applications’, Electronics Packaging Technology Conference, 2004
 この種の無線通信モジュールでは、ICチップ(特に無線信号の周波数を変化させる周波数変換器、無線信号の位相と強度を変化させるアンプ移相器など)が別の基板によって覆われているため、ICチップにおいて生じた熱が無線モジュール基板と別の基板との間に籠りやすい。しかしながら、ICチップの熱を逃がすために別の基板に多数の貫通孔を無策に形成すると、無線通信モジュールの回路を構成する別の基板の配線のレイアウトが複雑になり、その結果として、別の基板における回路用の配線が長くなる。
 本発明は、上述した事情に鑑みてなされたものであって、ICチップの放熱性を向上させながら、別の基板における配線のレイアウトを単純にすることが可能な無線通信モジュールを提供する。
 本発明の第1態様に係る無線通信モジュールは、第1面又は内部の層にアンテナを形成した無線モジュール基板と、前記無線モジュール基板の第2面に実装され、無線信号の周波数を変化させる周波数変換器と、前記無線モジュール基板の前記第2面に実装され、前記無線信号の位相及び強度を変化させるアンプ移相器と、前記周波数変換器及び前記アンプ移相器に接続され、かつ、前記周波数変換器と前記アンプ移相器との間に設けられるように前記無線モジュール基板の前記第2面に実装されたバンドパスフィルタと、接続部材を介して前記第2面に間隔をあけて設けられ、前記接続部材によって前記無線モジュール基板に電気的に接続された通信基板と、を備え、前記周波数変換器及び前記アンプ移相器のうち少なくとも一つのICチップが対向する前記通信基板の部位に、前記無線モジュール基板及び前記通信基板が並ぶ方向に貫通する貫通孔が形成され、前記バンドパスフィルタは、前記通信基板によって覆われている。
 上記の無線通信モジュールでは、周波数変換器及びアンプ移相器(ICチップ)において生じた熱を、無線モジュール基板と通信基板との隙間から通信基板の貫通孔を通して無線通信モジュールの外側に逃がすことができる。
 また、放熱用の貫通孔の形成は、通信基板のうち周波数変換器及びアンプ移相器(ICチップ)に対向する部位に限られるため、通信基板における貫通孔の数及び大きさを抑えることができる。これにより、通信基板における配線のレイアウトを単純にし、通信基板における回路用の配線が長くなることを抑制することができる。
 本発明の第2態様に係る無線通信モジュールでは、上記第1態様において、前記バンドパスフィルタの厚さ寸法は、前記無線モジュール基板と前記通信基板との間隔よりも小さくてもよい。
 本発明の第3態様に係る無線通信モジュールでは、上記第1又は第2態様において、前記貫通孔に臨む前記ICチップの上面には、前記通信基板の誘電体材料よりも熱伝導率の高い放熱シートが載置されてもよい。
 本発明の第4態様に係る無線通信モジュールでは、上記第3態様において、無線周波数における前記放熱シートの誘電正接は、前記通信基板よりも大きくてもよい。
 上記本発明の態様によれば、ICチップ(周波数変換器及びアンプ移相器)の放熱性を向上させながら、通信基板における配線のレイアウトを単純にすることができる。
本発明の一実施形態に係る無線通信モジュールのブロック図である。 本発明の一実施形態に係る無線通信モジュールの平面図である。 図2のIII-III矢視断面図である。 図2のIV-IV矢視断面図である。
 以下、本発明の一実施形態について、図1~4を参照して説明する。
 図1~4に示すように、本実施形態に係る無線通信モジュール1は、無線モジュール基板2と、周波数変換器3と、アンプ移相器4と、バンドパスフィルタ5と、通信基板6と、を備える。
 無線モジュール基板2には、配線パターン(不図示)が形成されている。配線パターンは、例えば銅(Cu)などの導体からなり、後述する周波数変換器3、アンプ移相器4及びバンドパスフィルタ5を相互に電気接続する。配線パターンは、無線モジュール基板2の両面2a,2b(図3,4おいて下面及び上面)、内部などに形成されている。無線モジュール基板2にはアンテナ21が形成されている。アンテナ21は、無線モジュール基板2の配線パターンに接続されている。
 アンテナ21は、無線モジュール基板2の一方の面(第1面)2a(図3,4において下面)から無線信号を放射するように形成されている。アンテナ21は、少なくとも無線モジュール基板2の他方の面(第2面)2b(図3,4において上面)に形成されなければよい。図3,4では示さないが、アンテナ21は無線モジュール基板2の一方の面2aに形成されてもよいし、無線モジュール基板2の内部の層に形成されてもよい。また、アンテナ21は、無線モジュール基板2の一方の面2aに形成された上で、誘電体層によって覆われてもよい。
 周波数変換器3は、無線信号の周波数を変化させるICチップであり、無線モジュール基板2の他方の面2bに実装されている。これにより、周波数変換器3は、無線モジュール基板2の配線パターンに接続されている。本実施形態において、無線モジュール基板2には、一つの周波数変換器3が実装されている。
 アンプ移相器4は、無線信号の位相及び強度を変化させるICチップであり、無線モジュール基板2の他方の面2bに実装されている。これにより、アンプ移相器4は、無線モジュール基板2の配線パターンに接続されている。本実施形態において、無線モジュール基板2には、八つのアンプ移相器4が実装されている。無線モジュール基板2に実装された各アンプ移相器4は、無線モジュール基板2の配線パターンを介して周波数変換器3に接続されている。また、各アンプ移相器4は、無線モジュール基板2の配線パターンを介してアンテナ21に接続されている。すなわち、各アンプ移相器4は、周波数変換器3とアンテナ21との間に設けられている。
 バンドパスフィルタ5は、無線信号の周波数帯域を通過させ、当該周波数帯域を除く帯域の信号(ノイズ)を減衰させるチップ部品である。バンドパスフィルタ5は、無線モジュール基板2の他方の面2bに実装され、無線モジュール基板2の配線パターンに接続されている。これにより、バンドパスフィルタ5は、配線パターンを介して周波数変換器3に接続されている。また、バンドパスフィルタ5は、配線パターンを介してアンプ移相器4に接続されている。すなわち、バンドパスフィルタ5は、周波数変換器3とアンプ移相器4との間に設けられている。
 本実施形態において、無線モジュール基板2には、二つのバンドパスフィルタ5が実装されている。二つのバンドパスフィルタ5には、同一の周波数変換器3が接続されている。また、二つのバンドパスフィルタ5には、それぞれ四つのアンプ移相器4が接続されている。
 本実施形態では、図2に示す平面視で、一つの周波数変換器3が、無線モジュール基板2の他方の面2bの中央領域に配置されている。二つのバンドパスフィルタ5は、横方向(X方向)において周波数変換器3の両側に配置されている。アンプ移相器は、縦方向(Y方向)における周波数変換器3及び二つのバンドパスフィルタ5の両側で、横方向に四つ並ぶように配置されている。これにより、アンプ移相器は、各バンドパスフィルタ5の周囲に四つずつ配置されている。
 一つの周波数変換器3、二つのバンドパスフィルタ5及び八つのアンプ移相器4が上記のように配置されていることで、周波数変換器3とバンドパスフィルタ5とを接続する無線モジュール基板2の配線パターンの長さ、及び、バンドパスフィルタ5とアンプ移相器4とを接続する無線モジュール基板2の配線パターンの長さをそれぞれ短くすることができる。
 通信基板6には、無線モジュール基板2と同様に、導体で形成される配線パターン(不図示)が形成されている。通信基板6は、図3,4に示すように、接続部材7を介して無線モジュール基板2の他方の面2bに間隔をあけて設けられる。通信基板6の配線パターンは、接続部材7によって無線モジュール基板2の配線パターンに電気的に接続されている。接続部材7は、例えば半田、又は金、銀、銅などの導体から形成されるバンプである。通信基板6の配線パターンは、無線モジュール基板2の配線パターン、周波数変換器3、アンプ移相器4、バンドパスフィルタ5と共に、無線通信モジュール1の回路を構成する。
 図2~4に示すように、通信基板6には、複数の貫通孔61が形成されている。貫通孔61は、通信基板6をその板厚方向(無線モジュール基板2及び通信基板6が並ぶ方向;Z方向)に貫通している。貫通孔61は、通信基板6のうち周波数変換器3及びアンプ移相器4が対向する部位に形成されている。
 貫通孔61は、一つの周波数変換器3及び八つのアンプ移相器4に対して一つずつ対応している。すなわち、本実施形態の通信基板6には、九つの貫通孔61が形成されている。各貫通孔61は、図2に示す平面視で、周波数変換器3、アンプ移相器4が各貫通孔61の内側に収まるように形成されている。これにより、周波数変換器3及びアンプ移相器4は、通信基板6の各貫通孔61を通して、無線通信モジュール1の外側に露出する。
 通信基板6のうちバンドパスフィルタ5が対向する部位には、貫通孔61が形成されていない。このため、バンドパスフィルタ5は、通信基板6によって覆われている。ここで、バンドパスフィルタ5の厚さ寸法T1(図3参照)は、接続部材7による無線モジュール基板2の他方の面2bと通信基板6との間隔D1(図3参照)よりも小さい。このため、通信基板6とこれに対向するバンドパスフィルタ5の上面との間には、隙間がある。すなわち、バンドパスフィルタ5は、通信基板6に接触したり、押し付けられたりしない。
 無線モジュール基板2及び通信基板6が半田ボールである接続部材7を含むBGA(Ball Grid Array)である場合、無線モジュール基板2及び通信基板6における接続部材7(半田ボール)のピッチに応じて、無線モジュール基板2の他方の面2bと通信基板6との間隔D1に関係する接続部材7(半田ボール)の直径も変わる。このため、接続部材7(半田ボール)のピッチに応じてバンドパスフィルタ5の厚さ寸法T1を制限してもよい。
 例えば、接続部材7(半田ボール)のピッチが1.27mmであるときには、接続部材7(半田ボール)の直径が0.6mm~0.9mm程度となるため、バンドパスフィルタ5の厚さ寸法T1を0.6mm以下としてよい。また、例えば、接続部材7(半田ボール)のピッチが1mmであるときには、接続部材7(半田ボール)の直径が0.55mm~0.65mm程度となるため、バンドパスフィルタ5の厚さ寸法T1を0.5mm以下としてよい。
 図3,4に示すように、周波数変換器3及びアンプ移相器4の厚さ寸法は、任意であってよいが、本実施形態では無線モジュール基板2の他方の面2bと通信基板6との間隔D1よりも大きい。このため、周波数変換器3及びアンプ移相器4の上部は、貫通孔61の内側に入り込んでいる。
 本実施形態では、通信基板6の貫通孔61に臨む周波数変換器3及びアンプ移相器4の上面に、放熱シート8が載置されている。放熱シート8は、周波数変換器3及びアンプ移相器4の上面に隙間なく密着する弾力性及び粘着性などを有しているとよい。放熱シート8の熱伝導率は、通信基板6の誘電体材料(例えば層間絶縁膜)の熱伝導率よりも高い。また、本実施形態では、無線周波数(無線通信モジュール1で扱う無線信号の周波数)における放熱シート8の誘電正接が、通信基板6の誘電体材料の誘電正接よりも大きい。
 以上のように構成される本実施形態の無線通信モジュール1では、図3,4に例示するように、周波数変換器3及びアンプ移相器4を放熱部材100に対して熱的に接続することができる。放熱部材100は、アルミニウム等のように熱伝導率が高い材料から形成され、本体部101と、本体部101から一体に突出する複数の接続突起102と、を有する。
 本体部101は、板状又はブロック状に形成されている。本体部101には、例えば放熱フィンが形成されてもよい。
 複数の接続突起102は、それぞれ通信基板6の貫通孔61に挿入される。各接続突起102の先端は、周波数変換器3及びアンプ移相器4の上面に接続される。接続突起102は、例えば周波数変換器3及びアンプ移相器4の上面に直接接続してもよいが、本実施形態では、放熱シート8を介して周波数変換器3及びアンプ移相器4の上面に接続される。放熱シート8が介在していることで、周波数変換器3及びアンプ移相器4と接続突起102との密着性を向上する。これにより、周波数変換器3及びアンプ移相器4の熱を放熱部材100に効率よく伝えることができる。
 上記した放熱部材100は、例えば無線通信モジュール1を収容する筐体であってもよい。
 次に、本実施形態の無線通信モジュール1の動作の一例について説明する。
 無線通信モジュール1では、まず、無線信号が周波数変換器3に入力されることで、周波数変換器3が当該無線信号の周波数を変化させる。次いで、周波数変換器3から出力された無線信号は、二つのバンドパスフィルタ5に分配して入力される。各バンドパスフィルタ5では、無線信号に重畳しているノイズ(無線信号の周波数帯域を除く帯域の信号)を減衰又は除去する。無線信号に重畳するノイズには、例えば周波数変換器3及びアンプ移相器4において発生する不要な輻射などが含まれる。
 各バンドパスフィルタ5から出力された無線信号は、それぞれ四つのアンプ移相器4に分配して入力される。各アンプ移相器4では、無線信号の位相及び強度を変化させる。最後に、八つのアンプ移相器4から出力された無線信号は、アンテナ21から放射される。
 ここで、アンテナ21は無線モジュール基板2の一方の面2aに形成されているため、アンプ移相器4から出力された無線信号は、無線モジュール基板2の一方の面2aから放射される。
 本実施形態の無線通信モジュール1では、上記したように複数のアンプ移相器4において無線信号の位相及び強度を変化させるため、高出力、高利得を得ることができる。
 また、本実施形態の無線通信モジュール1では、バンドパスフィルタ5が無線モジュール基板2及び通信基板6とは別個のチップ部品で構成されている。そのため、バンドパスフィルタ5が無線モジュール基板2及び通信基板6の配線パターンで形成される場合と比較して、バンドパスフィルタ5の特性を十分に得ることができる。
 本実施形態の無線通信モジュール1では、通信基板6のうち周波数変換器3及びアンプ移相器4が対向する部位に貫通孔61が形成されている。このため、周波数変換器及びアンプ移相器において生じた熱を、無線モジュール基板2と通信基板6との隙間から通信基板6の貫通孔61を通して無線通信モジュール1の外側に逃がすことができる。さらに、貫通孔61を通して無線モジュール基板2の外側に臨む周波数変換器3及びアンプ移相器4に放熱部材100を接続することで、周波数変換器3及びアンプ移相器4の熱をより効率よく無線通信モジュール1の外側に逃がすことができる。
 また、放熱用の貫通孔61の形成は、通信基板6のうち周波数変換器3及びアンプ移相器4に対向する部位に限られるため、通信基板6に形成される貫通孔61の数及び大きさを抑えることができる。これにより、貫通孔61の形成に基づく通信基板6の配線レイアウトが複雑になることを防ぎ、通信基板6における回路用の配線が長くなることを抑制することができる。
 したがって、本実施形態の無線通信モジュール1では、周波数変換器3及びアンプ移相器4の放熱性を向上させながら、通信基板6における配線のレイアウトを単純にすることができる。
 また、本実施形態の無線通信モジュール1によれば、バンドパスフィルタ5の厚さ寸法T1が、無線モジュール基板2と通信基板6との間隔D1よりも小さい。これにより、無線モジュール基板2の他方の面2bが平坦に形成されていても、バンドパスフィルタ5を無線モジュール基板2と通信基板6との隙間に配置することができる。
 また、本実施形態の無線通信モジュール1によれば、通信基板6の貫通孔61に臨む周波数変換器3及びアンプ移相器4の上面には、通信基板6よりも熱伝導率の高い放熱シート8が載置されている。これにより、周波数変換器3及びアンプ移相器4の熱を通信基板6よりも放熱シート8に効率よく伝えることができる。すなわち、周波数変換器3及びアンプ移相器4の熱が通信基板6に伝わることを抑えて、通信基板6の温度が上昇することを抑制することができる。
 また、本実施形態の無線通信モジュール1によれば、無線周波数における放熱シート8の誘電正接が通信基板6よりも大きい。これにより、周波数変換器3及びアンプ移相器4の上面に載置された放熱シート8に基づいてノイズが発生することを抑制することができる。
 以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲において種々の変更を加えることができる。
 本発明の無線通信モジュール1において、通信基板6の貫通孔61は、周波数変換器3及びアンプ移相器4のうち少なくとも一つのICチップに対向する通信基板6の部位に形成されればよい。貫通孔61は、例えば複数のアンプ移相器4のうち一つに対向する通信基板6の部位にだけ形成されてもよい。また、周波数変換器3の数が複数である場合、貫通孔61は、例えば複数の周波数変換器3のうち一つに対向する通信基板6の部位にだけ形成されてもよいし、複数の周波数変換器3全てに対向する通信基板6の部位に形成されてもよい。また、貫通孔61は、例えば、周波数変換器3及びアンプ移相器4のうち最も発熱が大きいICチップに対向する通信基板6の部位にのみ形成されてもよい。
 本発明の無線通信モジュール1において、無線モジュール基板2には、例えば他方の面2bから窪む凹部が形成され、凹部の底面にバンドパスフィルタ5が実装されてもよい。この場合には、バンドパスフィルタ5の厚さ寸法T1が、無線モジュール基板2の他方の面2bと通信基板6との間隔D1以上であっても、バンドパスフィルタ5を無線モジュール基板2と通信基板6との隙間に配置することができる。
 本発明の無線通信モジュール1において、周波数変換器3、アンプ移相器4、バンドパスフィルタ5の数は、上記実施形態で示した数に限らず任意であってよい。例えば、周波数変換器3、バンドパスフィルタ5、アンプ移相器4の数が一つずつであってもよい。また、例えば、周波数変換器3、バンドパスフィルタ5の数が一つずつであり、アンプ移相器4の数が複数であってよい。この場合には、周波数変換器3を通ってバンドパスフィルタ5から出力された無線信号を複数のアンプ移相器4に分配した上でアンテナ21に出力することができる。
1…無線通信モジュール、2…無線モジュール基板、2a…一方の面、2b…他方の面、3…周波数変換器(ICチップ)、4…アンプ移相器(ICチップ)、5…バンドパスフィルタ、6…通信基板、7…接続部材、8…放熱シート、21…アンテナ、61…貫通孔

Claims (4)

  1.  第1面又は内部の層にアンテナを形成した無線モジュール基板と、
     前記無線モジュール基板の第2面に実装され、無線信号の周波数を変化させる周波数変換器と、
     前記無線モジュール基板の前記第2面に実装され、前記無線信号の位相及び強度を変化させるアンプ移相器と、
     前記周波数変換器及び前記アンプ移相器に接続され、かつ、前記周波数変換器と前記アンプ移相器との間に設けられるように前記無線モジュール基板の前記第2面に実装されたバンドパスフィルタと、
     接続部材を介して前記第2面に間隔をあけて設けられ、前記接続部材によって前記無線モジュール基板に電気的に接続された通信基板と、を備え、
     前記周波数変換器及び前記アンプ移相器のうち少なくとも一つのICチップが対向する前記通信基板の部位に、前記無線モジュール基板及び前記通信基板が並ぶ方向に貫通する貫通孔が形成され、
     前記バンドパスフィルタは、前記通信基板によって覆われている無線通信モジュール。
  2.  前記バンドパスフィルタの厚さ寸法は、前記無線モジュール基板と前記通信基板との間隔よりも小さい請求項1に記載の無線通信モジュール。
  3.  前記貫通孔に臨む前記ICチップの上面には、前記通信基板の誘電体材料よりも熱伝導率の高い放熱シートが載置されている請求項1又は請求項2に記載の無線通信モジュール。
  4.  無線周波数における前記放熱シートの誘電正接が、前記通信基板よりも大きい請求項3に記載の無線通信モジュール。
PCT/JP2020/046499 2020-07-16 2020-12-14 無線通信モジュール WO2022014066A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021504849A JP7098820B2 (ja) 2020-07-16 2020-12-14 無線通信モジュール
EP20842544.7A EP3965303A4 (en) 2020-07-16 2020-12-14 WIRELESS COMMUNICATION MODULE
CN202080004163.0A CN114208044B (zh) 2020-07-16 2020-12-14 无线通信模块
US17/263,623 US11245177B1 (en) 2020-07-16 2020-12-14 Wireless communication module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020122027 2020-07-16
JP2020-122027 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022014066A1 true WO2022014066A1 (ja) 2022-01-20

Family

ID=78080109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046499 WO2022014066A1 (ja) 2020-07-16 2020-12-14 無線通信モジュール

Country Status (1)

Country Link
WO (1) WO2022014066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312306B1 (ja) 2022-11-15 2023-07-20 株式会社フジクラ 無線通信モジュール

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026368A (ja) * 2003-06-30 2005-01-27 Tdk Corp 放熱用ビアホールを備えた積層基板および該基板を用いたパワーアンプモジュール
JP2013229861A (ja) * 2012-03-27 2013-11-07 Rohm Co Ltd 無線通信モジュール、led照明装置、太陽光発電システム、自動作動システム、及び検知装置
WO2020022180A1 (ja) * 2018-07-23 2020-01-30 株式会社村田製作所 高周波モジュール
JP2020122027A (ja) 2016-07-28 2020-08-13 アサヌマ コーポレーション株式会社 水中油型メイクアップ化粧料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026368A (ja) * 2003-06-30 2005-01-27 Tdk Corp 放熱用ビアホールを備えた積層基板および該基板を用いたパワーアンプモジュール
JP2013229861A (ja) * 2012-03-27 2013-11-07 Rohm Co Ltd 無線通信モジュール、led照明装置、太陽光発電システム、自動作動システム、及び検知装置
JP2020122027A (ja) 2016-07-28 2020-08-13 アサヌマ コーポレーション株式会社 水中油型メイクアップ化粧料
WO2020022180A1 (ja) * 2018-07-23 2020-01-30 株式会社村田製作所 高周波モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALBERT CHEE ET AL.: "Integrated Antenna Module for Broadband Wireless Applications", ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE, 2004

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312306B1 (ja) 2022-11-15 2023-07-20 株式会社フジクラ 無線通信モジュール
WO2024105912A1 (ja) * 2022-11-15 2024-05-23 株式会社フジクラ フィルタ群及び無線通信モジュール
JP2024072159A (ja) * 2022-11-15 2024-05-27 株式会社フジクラ 無線通信モジュール

Similar Documents

Publication Publication Date Title
US8729680B2 (en) Semiconductor device
US7239222B2 (en) High frequency circuit module
US10512153B2 (en) High frequency circuit
JP2006073651A (ja) 半導体装置
US11328987B2 (en) Waver-level packaging based module and method for producing the same
JPWO2020054004A1 (ja) マイクロ波デバイス及び空中線
JP6516011B2 (ja) 無線機
US11984380B2 (en) Semiconductor package, semiconductor device, semiconductor package-mounted apparatus, and semiconductor device-mounted apparatus
WO2020017582A1 (ja) モジュール
JP5577694B2 (ja) 部品内蔵モジュール
US20110174526A1 (en) Circuit module
KR20050002659A (ko) 혼성집적회로
WO2022014066A1 (ja) 無線通信モジュール
JP7098820B2 (ja) 無線通信モジュール
WO2021225116A1 (ja) 回路モジュール及び通信装置
JP2006120996A (ja) 回路モジュール
KR20180023488A (ko) 반도체 패키지 및 반도체 패키지 제조방법
JP2012209527A (ja) 部品内蔵基板及びその製造方法
US7361982B2 (en) Bumpless chip package
JP2015201538A (ja) 高周波モジュール
JP2008198785A (ja) 高周波ユニット
JP2001308235A (ja) 半導体モジュール
JP2002329803A (ja) 電子回路モジュールおよびその製造方法
JP3438715B2 (ja) マイクロ波回路基板
JP2005340713A (ja) マルチチップモジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021504849

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020842544

Country of ref document: EP

Effective date: 20210128

NENP Non-entry into the national phase

Ref country code: DE