WO2022013997A1 - Vibration-state display device, vibration detection device, and vibration-state display method - Google Patents

Vibration-state display device, vibration detection device, and vibration-state display method Download PDF

Info

Publication number
WO2022013997A1
WO2022013997A1 PCT/JP2020/027604 JP2020027604W WO2022013997A1 WO 2022013997 A1 WO2022013997 A1 WO 2022013997A1 JP 2020027604 W JP2020027604 W JP 2020027604W WO 2022013997 A1 WO2022013997 A1 WO 2022013997A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pointer
vibration
display
pointer image
Prior art date
Application number
PCT/JP2020/027604
Other languages
French (fr)
Japanese (ja)
Inventor
慎二 篠原
遼太 森岡
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to PCT/JP2020/027604 priority Critical patent/WO2022013997A1/en
Publication of WO2022013997A1 publication Critical patent/WO2022013997A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • This disclosure relates to a vibration state display device, a vibration detection device, and a vibration state display method.
  • a technique in which the vibration state of the equipment is detected using a vibration sensor and the abnormality of the equipment is diagnosed based on the result of analyzing the detected vibration state.
  • a vibration sensor is used to sample and analyze the vibration generated in the shaft portion of the rotating machine, and the phase difference between the sampled vibration waveforms or the phase difference between the sampled vibration waveforms.
  • the vibration property of the rotating machine is diagnosed based on the phase difference ratio.
  • the present disclosure solves the above-mentioned problems, and an object of the present invention is to obtain a vibration state display device, a vibration detection device, and a vibration state display method that can intuitively recognize the vibration state of equipment.
  • the vibration state display device is the first guideline in which the detection signal of vibration generated in the equipment acquires the average value, the minimum value and the maximum value of the digital data converted into analog and digital, and associates them with the average value.
  • the first pointer image associated with the average value of the digital data of the detection signal of the vibration generated in the equipment is displayed at the center position of the pointer swing width for each display cycle.
  • the second pointer image associated with the minimum value is displayed at the lower limit position of the pointer swing width
  • the third pointer image associated with the maximum value is displayed at the upper limit position of the pointer swing width.
  • FIG. 7A is a block diagram showing a hardware configuration that realizes the function of the vibration state display device according to the first embodiment, and FIG.
  • FIG. 7B is a software that realizes the function of the vibration state display device according to the first embodiment. It is a block diagram which shows the hardware configuration to execute. It is a block diagram which shows the structure of the vibration detection apparatus which concerns on Embodiment 2. It is a figure which shows the example of the guideline display of the vibration state of the equipment in Embodiment 2. It is a block diagram which shows the structure of the vibration detection apparatus which concerns on Embodiment 3. It is a block diagram which shows the structure of the vibration detection apparatus which concerns on Embodiment 4. FIG.
  • FIG. 1 is a block diagram showing a configuration of a vibration detection device 1 according to a first embodiment.
  • the vibration detection device 1 detects the vibration generated in the equipment 2 by using the vibration sensor 3, and displays the vibration state of the equipment 2 in real time based on the detected vibration detection signal.
  • Equipment 2 is a rotating machine such as a motor, a speed reducer, a cutting machine, a pump and a turbine.
  • the vibration sensor 3 detects the vibration generated according to the operation of the equipment 2.
  • the vibration detection device 1 includes an A / D conversion (analog-digital conversion) unit 11, a data processing unit 12, and a vibration state display device 13.
  • the A / D conversion unit 11 generates digital data of the vibration detection signal by performing A / D conversion of the vibration detection signal detected by the vibration sensor 3.
  • the data processing unit 12 calculates the average value, the minimum value, and the maximum value of the digital data converted from the vibration detection signal by the A / D conversion unit 11.
  • a communication connection is made between the data processing unit 12 and the vibration status display device 13 via a wired or wireless communication line.
  • the data transmitted from the data processing unit 12 is relayed by the communication interface on the data processing unit 12 side and transmitted to the communication line, and the data propagated on the communication line is relayed by the communication interface on the vibration state display device 13 side. Is received by the vibration state display device 13.
  • the AE sensor detects a signal of about 20 kHz. Therefore, the sampling period required for A / D conversion of the 20 kHz detection signal is at least twice the frequency of the detection signal, that is, 40 kHz or more.
  • the resolution of A / D conversion is 8 bits and the digital data A / D converted by the A / D conversion unit 11 is transmitted to the vibration state display device 13 without going through the data processing unit 12, the digital data is transmitted.
  • the data processing unit 12 starts measuring from the time series of digital data obtained by A / D conversion of the vibration detection signal by the A / D conversion unit 11.
  • the digital data for the time of the display cycle is acquired, the average value, the minimum value and the maximum value of the digital data for the time of the display cycle are calculated and transmitted to the vibration state display device 13.
  • the data processing unit 12 acquires a time series of digital data for the time of the data update cycle, calculates the average value, the minimum value, and the maximum value of the digital data within the time of the acquired data update cycle, and vibrates. It is transmitted to the status display device 13.
  • the vibration detection device 1 does not transmit the A / D-converted digital data from the vibration detection signal detected by the vibration sensor 3 to the vibration state display device 13 as it is, but first (at the start of measurement). After transmitting the data for the time of the display cycle (for example, 0.4 seconds), the data is transmitted every data update cycle (for example, 30 seconds). As a result, the communication capacity between the data processing unit 12 and the vibration state display device 13 is compressed.
  • the vibration detection device 1 has a higher communication capacity than the case where the digital data obtained by the A / D conversion is transmitted to the vibration state display device 13 without going through the data processing unit 12 (communication speed is 320 kbps). It is reduced to 0.8 bps / 320 kbps. Further, in the vibration state display device 13, the capacity of the data used for the vibration state display processing of the equipment 2 is compressed, so that the processing load is reduced.
  • the vibration state display device 13 includes an image generation unit 131 and a display processing unit 132.
  • the image generation unit 131 acquires the average value, the minimum value, and the maximum value of the digital data calculated by the data processing unit 12, the first guideline image associated with the average value, and the second pointer image associated with the minimum value.
  • a guideline image of 1 and a third guideline image associated with the maximum value are generated for each display cycle.
  • the display processing unit 132 displays the first pointer image at the center position of the pointer swing width and the second pointer image at the lower limit position of the pointer swing width on the display screen of the display device 4 for each display cycle.
  • the third pointer image is displayed at the upper limit position of the pointer swing width.
  • the pointer swing width is a vibration level range between the minimum value and the maximum value of the vibration level within the time of the display cycle.
  • the vibration state display device 13 does not display the time waveform of the vibration generated in real time on the equipment 2, but switches the first pointer image, the second pointer image, and the third pointer image for each display cycle. indicate.
  • the first pointer image is displayed longer than the second pointer image and the third pointer image.
  • the inspection worker vibrates based on the average value in the vibration generated in the equipment 2. You can easily recognize the fluctuation of the level. As a result, the vibration state display device 13 can intuitively recognize the vibration state of the equipment 2.
  • FIG. 2 is a flowchart showing the vibration state display method according to the first embodiment, and shows the vibration state display processing by the vibration state display device 13.
  • the vibration sensor 3 sequentially detects the vibration generated according to the operation of the equipment 2.
  • the A / D conversion unit 11 A / D converts the vibration detection signal detected in real time by the vibration sensor 3.
  • the data processing unit 12 samples the time series of digital data for the time of the display cycle at the start of measurement from the time series of digital data A / D converted from the vibration detection signal by the A / D conversion unit 11, and digitally.
  • the average value, the minimum value and the maximum value of the data are calculated and transmitted to the vibration state display device 13.
  • the data processing unit 12 digitally performs each data update cycle from the time series of digital data A / D converted from the vibration detection signal by the A / D conversion unit 11.
  • the time series of data is sampled, the average value, the minimum value and the maximum value of the digital data within the time of the data update cycle are calculated and transmitted to the vibration state display device 13.
  • the image generation unit 131 acquires the average value, the minimum value, and the maximum value of the vibration levels (step ST1).
  • the average value, minimum value, and maximum value of the vibration level acquired by the image generation unit 131 are digital data obtained by A / D conversion of the vibration detection signal detected from the equipment 2 by the vibration sensor 3 at the start of measurement. It is the average value, minimum value, and maximum value of the digital data sampled from the time series for the time of the display cycle, and after the time of the display cycle has elapsed from the start of measurement, it is for each data update cycle.
  • the time-series average, minimum, and maximum values of the sampled digital data is 30 seconds and the time of the display cycle is 0.4 seconds.
  • the image generation unit 131 generates a first pointer image associated with the average value of the vibration level, generates a second pointer image associated with the minimum value of the vibration level in the equipment 2, and generates a vibration level in the equipment 2.
  • a third pointer image associated with the maximum value of is generated (step ST2).
  • the first pointer image, the second pointer image and the third pointer image may have the same color, thickness, length and shape, or may have different colors, thicknesses, lengths and shapes from each other. May be good.
  • the display processing unit 132 uses the first pointer image, the second guideline image, and the third pointer image generated by the image generation unit 131 to display the state of vibration generated in the equipment 2 in real time. It is displayed on the display device 4 (step ST3).
  • the display processing unit 132 includes a first index image, a second index image, and a second index image corresponding to the average value, the minimum value, and the maximum value of the digital data sampled for the time of the display cycle.
  • the index image of 3 is displayed on the display device 4 within the time of the display cycle.
  • the display processing unit 132 corresponds to the time-series average value, minimum value, and maximum value of the digital data sampled for the time of the data update cycle.
  • the first index image, the second index image, and the third index image are repeatedly displayed for each display cycle within the time of the data update cycle. That is, the guideline images corresponding to the average value, the minimum value, and the maximum value of the same digital data are repeatedly displayed in each display cycle until the digital data is updated in the next data update cycle.
  • FIG. 3 is a diagram showing an example of a pointer display of a vibration state of the equipment 2.
  • the display processing unit 132 displays the first pointer image A at the center position of the pointer swing width on the display screen 4A of the display device 4 for each display cycle, and the second pointer image B.
  • the pointer swing width is represented by a double-headed arrow between the second pointer image B and the third pointer image C.
  • the display processing unit 132 has a central position for displaying the first pointer image A, a lower limit position for displaying the second pointer image B, and a third position according to the level of the vibration generated in the equipment 2 for each display cycle.
  • the upper limit position for displaying the pointer image C of is changed. For example, when the equipment 2 is a rotary machine, vibration corresponding to the operation is generated in the equipment 2, but when the equipment 2 is stopped, vibration corresponding to the operation is not generated. Therefore, the inspection worker visually recognizes the changes in the positions of the first pointer image A, the second pointer image B, and the third pointer image C on the display screen 4A of the display device 4 for each display cycle. , It can be easily determined that the equipment 2 is in an operating state. Further, if the first pointer image A, the second pointer image B, and the third pointer image C are displayed at the position of the scale 0, it can be determined that the equipment 2 is in the stopped state.
  • the display processing unit 132 displays the first pointer image A longer than the second pointer image B and the third pointer image C within the time of the display cycle. A, the second pointer image B and the third pointer image C are switched and displayed. Further, the display processing unit 132 displays the abnormality determination level images D1 and D2 in addition to the first pointer image A, the second pointer image B, and the third pointer image C on the display screen 4A of the display device 4. ..
  • the abnormality determination level images D1 and D2 are scale images showing the vibration level at which the equipment 2 is determined to be in an abnormal state.
  • the abnormality determination level image D1 shows the vibration level on the high value side for determining that the equipment 2 is in an abnormal state
  • the abnormality determination level image D2 is on the low value side for determining that the equipment 2 is in an abnormal state. It shows the vibration level.
  • the display processing unit 132 has at least one of the first guideline image A, the second guideline image B, and the third guideline image C based on the vibration level indicated by the abnormality determination level image D1 or the abnormality determination level image D2.
  • the corresponding value becomes a value that determines that the equipment 2 is in an abnormal state
  • At least one display mode of the image D1 or the abnormality determination level image D2 is changed.
  • the display processing unit 132 receives either the third pointer image C or the abnormality determination level image D1 or Change both display colors to red, commonly known as the warning color.
  • the inspection worker can easily visually recognize the occurrence of a sudden abnormality such as a chipped cutting blade by the pointer displayed in red.
  • the display processing unit 132 changes the thickness, length, and shape of the pointer in addition to changing the display color of the pointer image or the abnormality determination level image in order to warn of an abnormality that has occurred in the equipment 2.
  • the emission color of the backlight of the display screen 4A of the display device 4 may be changed to red, or the backlight may be blinked.
  • the vibration level indicated by the images D1 and D2 can be set to any value by the user.
  • the vibration state display device 13 is provided with an input device that accepts settings by the user.
  • the input device sets the vibration level of an arbitrary value input by the user in the display processing unit 132 as the vibration level indicated by the abnormality determination level images D1 and D2. Thereby, the user can adjust the vibration level associated with the abnormality determination level images D1 and D2.
  • the vibration level indicating whether or not the equipment 2 is in an abnormal state is, for example, the type of the equipment 2, the type of the parts provided in the equipment 2, the installation location of the equipment 2, the operation pattern of the equipment 2, the type of the workpiece or inspection. It can be a different value depending on various conditions such as the abnormality determination accuracy required for the work. Therefore, the vibration state display device 13 may include a database in which the various conditions described above and the vibration level for abnormality determination corresponding to each condition are registered. The display processing unit 132 reads the vibration level corresponding to the condition specified by the user from the database, and sets the read vibration level to the vibration level corresponding to the abnormality determination level images D1 and D2.
  • the display processing unit 132 has at least one of the first pointer image A, the second guideline image B, the third guideline image C, the abnormality determination level image D1 or the abnormality determination level image D2, depending on the deterioration state of the equipment 2.
  • One display mode may be changed. For example, when the equipment 2 is a cutting machine, the cutting blade whose wear has progressed slides on the surface of the workpiece, so that the level of vibration generated in the cutting machine is lowered as a whole. In this case, when the wear progresses and the cutting blade becomes dull, the pointer swing width, which is the distance between the second pointer image B and the third pointer image C, becomes narrower, and the average vibration level shown by the first pointer image A becomes narrower. The value also gradually decreases. As a result, the display positions of the first pointer image A, the second pointer image B, and the third pointer image C gradually move to the abnormality determination level image D2 side.
  • the display processing unit 132 indicates that the pointer deflection width is less than the permissible value, or the display position of any of the first pointer image A, the second pointer image B, and the third pointer image C is up to the abnormality determination level image D2.
  • the display processing unit 132 indicates that the pointer deflection width is less than the permissible value, or the display position of any of the first pointer image A, the second pointer image B, and the third pointer image C is up to the abnormality determination level image D2.
  • the display processing unit 132 generally pays attention to the display colors of the first pointer image A, the second pointer image B, and the third pointer image C in order to call attention to the progress of wear of the cutting blade. Change to yellow, known as arousing color. The inspection worker can easily see from the yellow pointer that the cutting blade is worn and the replacement time is near.
  • the display processing unit 132 may change the thickness, length, and shape of the pointer in order to call attention to the deterioration of the equipment 2.
  • the emission color of the backlight of the display screen 4A of the display device 4 may be changed to yellow.
  • the data processing unit 12 calculates the average value ⁇ and the standard deviation ⁇ of the vibration level instead of calculating the minimum value and the maximum value of the vibration level.
  • the image generation unit 131 generates a second pointer image B associated with a value ( ⁇ -3 ⁇ ) obtained by subtracting the standard deviation ⁇ from the mean value ⁇ of the vibration level, and sets the standard deviation ⁇ to the mean value ⁇ of the vibration level.
  • a third pointer image C associated with the added value ( ⁇ + 3 ⁇ ) is generated.
  • the display processing unit 132 displays the first pointer image A at the center position, displays the second pointer image B at the lower limit position of the pointer shake width, and displays the third pointer image C at the lower limit position of the pointer shake width for each display cycle. Display at the upper limit of the width.
  • Step ST4 whether or not the operation of the equipment 2 is stopped while the first pointer image A, the second pointer image B, and the third pointer image C are displayed on the display screen 4A in each display cycle.
  • the image generation unit 131 determines that the operation of the equipment 2 has stopped when the maximum value of the vibration level for each display cycle becomes equal to or less than the determination threshold value.
  • the image generation unit 131 determines that the operation of the equipment 2 has stopped (step ST4; YES)
  • the image generation unit 131 notifies the display processing unit 132 that the operation of the equipment 2 has stopped.
  • the display processing unit 132 Upon receiving this notification, the display processing unit 132 displays, for example, the first pointer image A, the second pointer image B, and the third pointer image C at the position of the scale 0 on the display screen 4A. As a result, the process of FIG. 2 is completed.
  • step ST4 When it is determined that the equipment 2 is operating (step ST4; NO), the image generation unit 131 is in the time series of the digital data of the current data update cycle if the time of the current data update cycle has not elapsed. , The average value, the minimum value, and the maximum value of the digital data sampled within the time of the next display cycle are acquired, and a series of processing from step ST1 is performed.
  • the vibration sensor 3 detects the vibration generated in the equipment 2, and the A / D conversion unit 11 uses the vibration detection signal detected by the vibration sensor 3 as A /. It is D-converted. Then, the data processing unit 12 acquires a time series of digital data within the time of the next data update cycle from the time series of digital data obtained by A / D conversion, and from the time series of the acquired digital data, The average value, minimum value, and maximum value of the digital data sampled within the time of the display cycle are sequentially calculated.
  • the image generation unit 131 When the time of the current data update cycle elapses, the image generation unit 131 outputs the digital data sampled within the time of the display cycle calculated by the data processing unit 12 in the time series of the digital data of the next data update cycle. The average value, the minimum value, and the maximum value of are acquired, and a series of processes from step ST1 are performed.
  • FIG. 4 is a time waveform diagram showing an example of the output waveform of the vibration sensor 3.
  • the horizontal axis represents time and the vertical axis represents the output voltage of the vibration sensor 3.
  • the equipment 2 is a machine tool.
  • the machine tool repeats the machining process of machining the workpiece and the preparatory process of preparing for the next machining.
  • the vibration sensor 3 continuously detects the vibration generated in the machine tool throughout the period including the operation period E which is the machining process of the machine tool and the stop period F which is the preparation process.
  • the A / D conversion unit 11 sequentially A / D-converts the vibration detection signals continuously detected by the vibration sensor 3 to generate a time series of digital data.
  • the vibration detection device 1 digitally has a display cycle time (0.4 seconds) at the start of measurement from the time series of the digital data A / D converted by the A / D conversion unit 11.
  • the time series of data is acquired and the time of the display cycle has elapsed from the start of measurement
  • the time series of digital data for each time (30 seconds) of the data update cycle is acquired.
  • various statistics average value, minimum value and maximum value
  • various statistics of the vibration level during the time of the display cycle are calculated at the start of measurement, and when the time of the display cycle elapses from the start of measurement, each data update cycle Various statistics of the vibration level of are calculated.
  • the vibration detection device 1 determines that the operation of the equipment 2 has stopped when the maximum value of the vibration level in the machine tool becomes equal to or less than the determination threshold value.
  • the vibration detection device 1 may determine that the operation of the equipment 2 has started and start the measurement of the vibration level.
  • the vibration state display device 13 displays the first pointer image A, the second pointer image B, and the third pointer image C on the display screen 4A of the display device 4 on the display screen 4A. It is displayed at the position of the scale 0 in. That is, in the vibration state display device 13, when the maximum value of the vibration level in the machine tool becomes equal to or less than the determination threshold value, even if the average value, the minimum value and the maximum value of the vibration level are not 0, these values are set. It is assumed to be 0.
  • the pointer display in which the machine tool is stopped and the pointer image is displayed at the position of the scale 0 is referred to as 0 display.
  • the vibration state display device 13 does not display 0 until digital data having a vibration level of 0 is acquired, the display of 0 is delayed by a maximum of the data update cycle time (30 seconds). For example, when the machine tool switches from the operating state to the stop state, if there is no digital data with a vibration level of 0 in the time series of digital data within the time of the data update cycle, the digital data update cycle from the next time onward will be digital. In the data, 0 is not displayed even in the stop period F until the digital data having the vibration level of 0 is sampled.
  • the vibration state display device 13 displays 0 as the average value, the minimum value, and the maximum value of the vibration levels are 0 when the maximum value of the vibration level in the machine tool becomes equal to or less than the determination threshold value. I do.
  • the vibration state display device 13 can display 0 in real time by selecting an appropriate value as the determination threshold value.
  • FIG. 5 is a flowchart showing the details of the process of step ST3 of FIG.
  • FIG. 6 is a schematic diagram showing an outline of the guideline display according to the first embodiment, and shows a display mode of the guideline image within the time of one display cycle.
  • each image from (1) to (4) is an image when time elapses in the order of (1) to (2), (3) and (4).
  • the display processing unit 132 displays the abnormality determination level images D1 and D2 associated with the vibration level of the abnormality determination standard set in advance on the display screen 4A of the display device 4.
  • the first pointer image A is displayed longer than the second pointer image B and the third pointer image C within the time of the display cycle.
  • the pointer image A, the second pointer image B, and the third pointer image C are switched and displayed. Since the first pointer image A is associated with the average value of the vibration levels within the time of the display cycle, the inspection worker can pay attention to the pointer displayed for the longest time within the time of the display cycle. , The fluctuation of the vibration level based on the average value in the vibration generated in the equipment 2 can be easily recognized.
  • the display processing unit 132 places the first pointer image A associated with the average value of the vibration levels within the time of the display cycle on the display screen 4A of the display device 4 at the scale position corresponding to the average value. Display (step ST1a). As a result, if there is no abnormality in the equipment 2, as shown in the image (1) in FIG. 6, the first pointer image A is displayed between the abnormality determination level image D1 and the abnormality determination level image D2.
  • the display processing unit 132 determines whether or not the pointer display time (0.1 seconds) of the first pointer image A has elapsed (step ST2a). When the guideline display time of the first guideline image A has not elapsed (step ST2a; NO), the display processing unit 132 returns to the processing of step ST1a and continues the display of the first guideline image A.
  • step ST2a When the pointer display time of the first pointer image A has elapsed (step ST2a; YES), the display processing unit 132 has the display screen 4A associated with the minimum value of the vibration level within the time of the display cycle.
  • the pointer image B of the above is displayed at the scale position corresponding to the minimum value (step ST3a).
  • a second pointer image B is displayed between the abnormality determination level image D1 and the abnormality determination level image D2.
  • the display processing unit 132 determines whether or not the pointer display time (0.1 seconds) of the second pointer image B has elapsed (step ST4a). When the pointer display time of the second pointer image B has not elapsed (step ST4a; NO), the display processing unit 132 returns to the processing of step ST3a and continues the display of the second guideline image B.
  • step ST4a When the pointer display time of the second pointer image B has elapsed (step ST4a; YES), the display processing unit 132 has a third display screen 4A associated with the maximum value of the vibration level within the time of the display cycle.
  • the pointer image C of the above is displayed at the scale position corresponding to the maximum value (step ST5a).
  • a third pointer image C is displayed between the abnormality determination level image D1 and the abnormality determination level image D2.
  • the display processing unit 132 determines whether or not the pointer display time (0.1 seconds) of the third pointer image C has elapsed (step ST6a). When the pointer display time of the third pointer image C has not elapsed (step ST6a; NO), the display processing unit 132 returns to the processing of step ST5a and continues the display of the third pointer image C.
  • step ST6a When the pointer display time of the third pointer image C has elapsed (step ST6a; YES), the display processing unit 132 has the display screen 4A associated with the average value of the vibration levels within the time of the display cycle.
  • the pointer image A of the above is displayed at the scale position corresponding to the average value (step ST7a).
  • the display processing unit 132 has the display screen 4A associated with the average value of the vibration levels within the time of the display cycle.
  • the pointer image A of the above is displayed at the scale position corresponding to the average value (step ST7a).
  • step ST8a determines whether or not the pointer display time of the first pointer image A has elapsed. If the pointer display time of the first pointer image A has not elapsed (step ST8a; NO), the process returns to the process of step ST7a, and the display processing unit 132 continues to display the first guideline image A. When the pointer display time of the first pointer image A has elapsed (step ST8a; YES), the process proceeds to the process of step ST4 shown in FIG.
  • the series of processes shown in FIG. 5 is performed for each display cycle.
  • the first pointer image (average value), the second pointer image (minimum value or ⁇ -3 ⁇ ), the third pointer image (maximum value or ⁇ + 3 ⁇ ), and the first pointer image (average value). Is displayed in this order.
  • the first pointer image (mean value) takes twice as long as the second pointer image (minimum value or ⁇ -3 ⁇ ) and the third pointer image (maximum value or ⁇ + 3 ⁇ ) in each display cycle. Is displayed.
  • the inspection worker of the equipment 2 pays attention to the first pointer image A which is displayed for the longest time within the display cycle, and thereby changes the vibration level based on the average value in the vibration generated in the equipment 2. Easy to recognize.
  • the vibration state display device 13 cannot start the pointer display indicating the vibration state of the equipment 2 until the average value, the minimum value and the maximum value, or the standard deviation ⁇ of the vibration levels in the first display cycle are acquired. Therefore, the average value, minimum value and maximum value or standard deviation ⁇ for the display cycle (0.4 seconds) are set so that there is no delay for the data update cycle time (30 seconds) before the first display. It is used for pointer display, and the next data is acquired while the data is displayed for the time of the data update cycle (30 seconds). That is, when the equipment 2 starts operation, the data processing unit 12 calculates the average value, the minimum value and the maximum value, or the standard deviation ⁇ of the vibration levels in the first display cycle, but the vibration state display device 13 is the first.
  • the pointer display is started with a delay of the time of the display cycle. Therefore, in the first embodiment, the time of one display cycle is as short as 0.4 seconds so that the delay of the start time of the pointer display with respect to the operation start time of the equipment 2 does not give a sense of discomfort to the inspection worker.
  • the time is set.
  • FIG. 7A is a block diagram showing a hardware configuration that realizes the function of the vibration state display device 13.
  • FIG. 7B is a block diagram showing a hardware configuration for executing software that realizes the function of the vibration state display device 13.
  • the input interface 100 is an interface that relays the input of data indicating various statistics of the vibration level calculated by the data processing unit 12.
  • the output interface 101 is an interface that relays the output of display data from the display processing unit 132 to the display device 4.
  • the vibration state display device 13 includes a processing circuit for executing the processing of steps ST1 to ST4 shown in FIG.
  • the processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
  • the processing circuit 102 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). ), FPGA (Field-Programmable Gate Array), or a combination of these.
  • the functions of the image generation unit 131 and the display processing unit 132 included in the vibration state display device 13 may be realized by separate processing circuits, or these functions may be collectively realized by one processing circuit.
  • the processing circuit is the processor 103 shown in FIG. 7B
  • the functions of the image generation unit 131 and the display processing unit 132 included in the vibration state display device 13 are realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 104.
  • the processor 103 realizes the functions of the image generation unit 131 and the display processing unit 132 included in the vibration state display device 13 by reading and executing the program stored in the memory 104.
  • the vibration state display device 13 includes a memory 104 that stores a program in which each process from step ST1 to step ST4 shown in FIG. 2 is executed as a result when executed by the processor 103.
  • These programs cause a computer to execute the procedure or method of the image generation unit 131 and the display processing unit 132.
  • the memory 104 may be a computer-readable storage medium in which a program for making the computer function as an image generation unit 131 and a display processing unit 132 is stored.
  • the memory 104 may be, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-volatile), or an EEPROM (Electrically-EMMORY).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrically-volatile
  • EEPROM Electrically-EMMORY
  • a part of the functions of the image generation unit 131 and the display processing unit 132 included in the vibration state display device 13 may be realized by dedicated hardware, and the remaining part may be realized by software or firmware.
  • the function of the image generation unit 131 is realized by the processing circuit 102 which is the dedicated hardware, and the function of the display processing unit 132 is realized by reading and executing the program stored in the memory 104 by the processor 103. ..
  • the processing circuit can realize the above-mentioned functions by hardware, software, firmware or a combination thereof.
  • each display cycle is associated with the average value of the digital data of the vibration detection signal generated in the equipment 2.
  • the first pointer image A is displayed at the center position of the pointer swing width
  • the second pointer image B associated with the minimum value is displayed at the lower limit position of the pointer swing width
  • the third pointer image B associated with the maximum value is displayed.
  • the pointer image C is displayed at the upper limit position of the pointer swing width.
  • the display processing unit 132 has the display processing unit 132 so that the first pointer image A is displayed longer than the second pointer image B and the third pointer image C.
  • the pointer image of 1, the second pointer image B, and the third pointer image C are switched and displayed. Since the inspection worker pays attention to the first pointer image A displayed on the display screen 4A for the longest time within the display cycle time, the fluctuation of the vibration level based on the average value in the vibration generated in the equipment 2 can be seen. Easy to recognize. As a result, the vibration state display device 13 can intuitively recognize the vibration state of the equipment 2.
  • FIG. 8 is a block diagram showing the configuration of the vibration detection device 1A according to the second embodiment.
  • the vibration detection device 1A is generated in each of a plurality of equipments 2 (three equipments 2 in FIG. 8) by using a plurality of vibration sensors 3 (three vibration sensors 3 in FIG. 8). Vibration is detected, and the state of vibration generated in each facility 2 is displayed on the display device 4 based on the detected vibration detection signal.
  • the plurality of equipments 2 are, for example, a plurality of machine tools installed in a factory.
  • the vibration sensor 3 mounted on each of the plurality of equipment 2 detects the vibration generated according to the operation of each equipment 2.
  • the plurality of vibration sensors 3 may be provided in a plurality of parts in one facility 2. In this case, the plurality of vibration sensors 3 detect the vibration of each part of the equipment 2.
  • the vibration detection device 1A displays the vibration state of the A / D conversion unit 11A connected to the plurality of vibration sensors 3, the data processing unit 12A for processing digital data, and the equipment 2 on the display device 4.
  • a vibration state display device 13A is provided.
  • the A / D conversion unit 11A A / D-converts each detection signal of the vibration detected by the plurality of vibration sensors 3 to generate a time series of a plurality of digital data.
  • the data processing unit 12A uses the time series of digital data within the time of the data update cycle (for example, 30 seconds) converted by the A / D conversion unit 11A to display the time of the display cycle (for example, 30 seconds) at the start of measurement.
  • the average value, minimum value and maximum value of the digital data sampled are calculated, and when the time of the display cycle elapses from the start of measurement, the average of the digital data sampled for each data update cycle Calculate the value, minimum and maximum values. Further, the data processing unit 12A may calculate the standard deviation ⁇ instead of the minimum value and the maximum value.
  • a communication connection is made between the data processing unit 12A and the vibration status display device 13A via a wired or wireless communication line.
  • the data transmitted from the data processing unit 12A is relayed by the communication interface on the data processing unit 12A side and transmitted to the communication line, and the data propagated on the communication line is relayed by the communication interface on the vibration state display device 13A side. Is received by the vibration state display device 13A.
  • the vibration state display device 13A includes an image generation unit 131A and a display processing unit 132A.
  • the image generation unit 131A acquires the average value ⁇ , the minimum value and the maximum value (or standard deviation ⁇ ) of the digital data indicating the vibration level calculated for each vibration sensor 3 by the data processing unit 12A, and corresponds to the average value ⁇ .
  • a first pointer image attached, a second pointer image associated with the minimum value (or ⁇ -3 ⁇ ), and a third pointer image associated with the maximum value (or ⁇ + 3 ⁇ ) are generated for each vibration sensor 3. do.
  • the display processing unit 132A displays the first pointer image at the center position of the pointer swing width in the display area of each vibration sensor 3 on the display screen of the display device 4 for each display cycle, and displays the second pointer image as the pointer. It is displayed at the lower limit position of the runout width, and the third pointer image is displayed at the upper limit position of the guideline runout width.
  • FIG. 9 is a diagram showing an example of a guideline display of the vibration state of the equipment 2 in the second embodiment, and is a guideline display showing the vibration state detected from the three equipments 2 by the three vibration sensors 3.
  • the display processing unit 132A displays the display areas (1), (2), and (3) for each vibration sensor 3 on the display screen 4B of the display device 4. For example, as shown in FIG. 9, on the display screen 4B, the display area (1) is displayed on the outermost side, the display area (2) is displayed on the inner side of the display area (1), and the display area (3) is the most. Displayed inside
  • the display processing unit 132A displays the first pointer image A (1) at the center position of the pointer swing width in the display area (1) of the display screen 4B for each display cycle, and the second pointer image B (1). ) Is displayed at the lower limit position of the pointer swing width, and the third pointer image C (1) is displayed at the upper limit position of the pointer swing width. Further, the display processing unit 132A adds the first pointer image A (1), the second pointer image B (1), and the third pointer image C (1) in the display area (1) of the display screen 4B. , Abnormality determination level images D1 (1) and D2 (1) are displayed.
  • Abnormality determination level images D1 (1) and D2 (1) are scale images showing the vibration level at which the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (1) is determined to be in an abnormal state. be.
  • the pointer swing width is represented by a double-headed arrow between the second pointer image B (1) and the third pointer image C (1).
  • the display processing unit 132A has a center position for displaying the first pointer image A (1) and a second pointer image B according to the level of vibration detected by the vibration sensor 3 corresponding to the display area (1).
  • the lower limit position for displaying (1) and the upper limit position for displaying the third pointer image C (1) are changed.
  • the inspection worker visually recognizes the change in the positions of the first pointer image A (1), the second pointer image B (1), and the third pointer image C (1) for each display cycle. It can be easily determined that the equipment 2 is in an operating state. Further, if the first pointer image A (1), the second pointer image B (1), and the third pointer image C (1) are displayed as 0, the inspection worker indicates that the equipment 2 is stopped. I can judge.
  • the display processing unit 132A has a first pointer image A (1) and a second pointer image B (1) based on the vibration level indicated by the abnormality determination level image D1 (1) or the abnormality determination level image D2 (1).
  • the value corresponding to at least one of the 1) or the third guideline image C (1) becomes a value at which the equipment 2 is determined to be in an abnormal state
  • the procedure and contents are the same as those in the first embodiment.
  • the first pointer image A (1), the second pointer image B (1), the third pointer image C (1), the abnormality determination level image D1 (1) or the abnormality determination level image D2 (1) At least one of them is changed in the display mode.
  • the inspection worker of the equipment 2 is equipped with the vibration sensor 3 corresponding to the display area (1) by visually recognizing the change in the display mode of the pointer image or the abnormality determination level image in the display area (1) of the display screen 4B. Even if there is little specialized knowledge or inspection experience regarding the equipment 2, it is possible to easily determine whether or not the equipment 2 is in an abnormal state.
  • the first pointer image A (1) is the second pointer image B (1) and the third pointer within the time of the display cycle.
  • the first pointer image A (1), the second pointer image B (1), and the third pointer image C (1) are switched and displayed so that they are displayed longer than the image C (1).
  • the inspection worker By paying attention to the first pointer image A (1) that is displayed for the longest time within the display cycle, the inspection worker generates the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (1). It is possible to easily recognize the fluctuation of the vibration level based on the average value in the vibration.
  • the display processing unit 132A displays the first pointer image A (2) at the center position of the pointer swing width in the display area (2) of the display screen 4B for each display cycle, and the second pointer image B (2). ) Is displayed at the lower limit position of the pointer swing width, and the third pointer image C (2) is displayed at the upper limit position of the pointer swing width. Further, the display processing unit 132A adds the first pointer image A (2), the second pointer image B (2), and the third pointer image C (2) in the display area (2) of the display screen 4B. , Abnormality determination level images D1 (2) and D2 (2) are displayed.
  • Abnormality determination level images D1 (2) and D2 (2) are scale images showing the vibration level at which the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (2) is determined to be in an abnormal state. be.
  • the double-headed arrow between the second pointer image B (2) and the third pointer image C (2) indicates the pointer swing width.
  • the display processing unit 132A has the first pointer image A (2) according to the level of the vibration detected by the vibration sensor 3 corresponding to the display area (2) for each display cycle.
  • the center position for displaying the second pointer image B (2), the lower limit position for displaying the second pointer image B (2), and the upper limit position for displaying the third pointer image C (2) are changed.
  • the inspection worker visually recognizes the change in the position of the first pointer image A (2), the second pointer image B (2), and the third pointer image C (2) for each display cycle, so that the equipment 2 can perform the equipment 2. It can be easily determined that it is in an operating state. Further, when the first pointer image A (2), the second pointer image B (2), and the third pointer image C (2) are displayed as 0, the inspection worker can see that the equipment 2 is stopped. It can be judged that there is.
  • the display processing unit 132A has a first pointer image A (2) and a second pointer image B (2) based on the vibration level indicated by the abnormality determination level image D1 (2) or the abnormality determination level image D2 (2).
  • the value corresponding to at least one of the 2) or the third guideline image C (2) becomes a value at which the equipment 2 is determined to be in an abnormal state
  • the procedure and contents are the same as those in the first embodiment.
  • the first pointer image A (2), the second pointer image B (2), the third pointer image C (2), the abnormality determination level image D1 (2) or the abnormality determination level image D2 (2) At least one of them is changed in the display mode.
  • the inspection worker of the equipment 2 is equipped with the vibration sensor 3 corresponding to the display area (2) by visually recognizing the change in the display mode of the pointer image or the abnormality determination level image in the display area (2) of the display screen 4B. Even if there is little specialized knowledge or inspection experience regarding the equipment 2, it is possible to easily determine whether or not the equipment 2 is in an abnormal state.
  • the first pointer image A (2) is the second pointer image B (2) and the third pointer within the time of the display cycle.
  • the first pointer image A (2), the second pointer image B (2), and the third pointer image C (2) are switched and displayed so that they are displayed longer than the image C (2).
  • the inspection worker pays attention to the first pointer image A (2) that is displayed for the longest time within the display cycle, so that the inspection worker generates the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (2). It is possible to easily recognize the fluctuation of the vibration level based on the average value in the vibration.
  • the display processing unit 132A displays the first pointer image A (3) at the center position of the pointer swing width in the display area (3) of the display screen 4B for each display cycle, and the second pointer image B (3). ) Is displayed at the lower limit position of the pointer swing width, and the third pointer image C (3) is displayed at the upper limit position of the pointer swing width. Further, the display processing unit 132A adds the first pointer image A (3), the second pointer image B (3), and the third pointer image C (3) in the display area (3) of the display screen 4B. , Abnormality determination level images D1 (3) and D2 (3) are displayed.
  • Abnormality determination level images D1 (3) and D2 (3) are scale images showing the vibration level at which the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (3) is determined to be in an abnormal state. be.
  • the double-headed arrow between the second pointer image B (3) and the third pointer image C (3) indicates the pointer swing width.
  • the display processing unit 132A has the first pointer image A (1) according to the level of vibration detected by the vibration sensor 3 corresponding to the display area (3).
  • the center position for displaying 3), the lower limit position for displaying the second pointer image B (3), and the upper limit position for displaying the third pointer image C (3) are changed.
  • the inspection worker visually recognizes the change in the positions of the first pointer image A (3), the second pointer image B (3), and the third pointer image C (3) for each display cycle, so that the equipment 2 can perform the equipment 2. It can be easily determined that it is in an operating state. Further, when the first pointer image A (3), the second pointer image B (3), and the third pointer image C (3) are displayed as 0, the inspection worker has stopped the equipment 2. Can be judged.
  • the display processing unit 132A has a first pointer image A (3) and a second pointer image B (3) based on the vibration level indicated by the abnormality determination level image D1 (3) or the abnormality determination level image D2 (3).
  • the value corresponding to at least one of the 3) or the third guideline image C (3) becomes a value at which the equipment 2 is determined to be in an abnormal state, the procedure and contents are the same as those in the first embodiment.
  • the first pointer image A (3), the second pointer image B (3), the third pointer image C (3), the abnormality determination level image D1 (3), or the abnormality determination level image D2 (3) At least one of them is changed in the display mode.
  • the inspection worker of the equipment 2 is equipped with the vibration sensor 3 corresponding to the display area (3) by visually recognizing the change in the display mode of the pointer image or the abnormality determination level image in the display area (3) of the display screen 4B. Even if there is little specialized knowledge or inspection experience regarding the equipment 2, it is possible to easily determine whether or not the equipment 2 is in an abnormal state.
  • the display mode of the pointer image may be changed in the display area (1), the display area (2), and the display area (3) by different procedures and contents. This makes it easier to visually recognize the change in the vibration state of each equipment 2 and the result of the abnormality determination.
  • the first pointer image A (3) is the second pointer image B (3) and the third pointer within the time of the display cycle.
  • the first pointer image A (3), the second pointer image B (3), and the third pointer image C (3) are switched and displayed so that they are displayed longer than the image C (3).
  • the inspection worker pays attention to the first pointer image A (3), which is displayed for the longest time within the display cycle, and is generated in the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (3). It is possible to easily recognize the fluctuation of the vibration level based on the average value in the vibration.
  • the vibration state display device 13A includes a processing circuit for executing a series of processing shown in FIG. 2 for each vibration sensor 3.
  • the processing circuit may be the hardware processing circuit 102 shown in FIG. 7A, or may be the processor 103 that executes the program stored in the memory 104 shown in FIG. 7B.
  • the detection signal of the vibration generated in one or a plurality of equipments 2 detected by the plurality of vibration sensors 3 is analog digital.
  • the first pointer image associated with the average value, the second pointer image associated with the minimum value, and the third pointer image associated with the maximum value obtained by acquiring the average value, the minimum value, and the maximum value of the converted digital data.
  • the pointer image of is generated for each vibration sensor 3.
  • the display processing unit 132A displays the first pointer image at the center position of the pointer swing width for each display cycle in the display areas (1) to (3) for each vibration sensor 3 on the display screen 4B of the display device 4.
  • the second pointer image is displayed at the lower limit position of the pointer swing width
  • the third pointer image is displayed at the upper limit position of the pointer swing width.
  • the display processing unit 132A displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle. As described above, the first pointer image, the second pointer image, and the third pointer image are switched and displayed. By paying attention to the first pointer image displayed for the longest time in the display cycle, the inspection worker can change the vibration level based on the average value in the vibration generated in one or more equipments 2. Easy to recognize. Thereby, the vibration state display device 13A can intuitively recognize the vibration state of one or a plurality of equipments 2.
  • FIG. 10 is a block diagram showing the configuration of the vibration detection device 1B according to the third embodiment.
  • the vibration detection device 1B detects the vibration generated in the equipment 2 by using the vibration sensor 3, and based on the detected vibration detection signal, the vibration of various resonance frequencies generated in the equipment 2 The status is displayed on the display device 4.
  • the vibration detection device 1B includes an A / D conversion unit 11, a data processing unit 12B, a vibration state display device 13B, and an FFT unit 14.
  • the A / D conversion unit 11 A / D converts the vibration detection signal detected by the vibration sensor 3 to generate a time series of digital data.
  • the FFT unit 14 generates signals in all frequency regions covered by the vibration sensor 3 by performing a fast Fourier transform (FFT) on digital data indicating the A / D converted vibration level by the A / D conversion unit 11. It is a Fourier transform part.
  • FFT fast Fourier transform
  • the data processing unit 12B extracts a signal for each resonance frequency from the signal in the frequency domain, and among the extracted signals for each resonance frequency, the average of the signals sampled within the display cycle time (for example, 0.4 seconds). Calculate the value, minimum and maximum values, and after the time of the first display cycle has elapsed, calculate the average, minimum and maximum values of the signals sampled for each data update cycle (eg, 30 seconds). ..
  • the data processing unit 12B may calculate the standard deviation ⁇ instead of the minimum value and the maximum value.
  • a communication connection is made between the data processing unit 12B and the vibration status display device 13B via a wired or wireless communication line.
  • the data transmitted from the data processing unit 12B is relayed by the communication interface on the data processing unit 12B side and transmitted to the communication line, and the data propagated on the communication line is relayed by the communication interface on the vibration state display device 13B side. Is received by the vibration status display device 13B.
  • the vibration state display device 13B includes an image generation unit 131B and a display processing unit 132B.
  • the image generation unit 131B acquires the average value ⁇ , the minimum value, and the maximum value (or standard deviation ⁇ ) of the signal for each resonance frequency calculated by the data processing unit 12B, and the first guideline associated with the average value ⁇ .
  • An image, a second pointer image associated with the minimum value (or ⁇ -3 ⁇ ), and a third pointer image associated with the maximum value (or ⁇ + 3 ⁇ ) are generated.
  • the display processing unit 132B displays the first pointer image at the center position of the pointer shake width in each display cycle in the display area of each resonance frequency on the display screen of the display device 4, and displays the second pointer image at the center position of the pointer shake width. It is displayed at the lower limit position of the width, and the third pointer image is displayed at the upper limit position of the pointer swing width.
  • the display processing unit 132B displays an abnormality determination level image in addition to the first pointer image, the second pointer image, and the third pointer image in the display area of each resonance frequency on the display screen of the display device 4. May be good.
  • the abnormality determination level image is a scale image showing the vibration level at which the equipment 2 is determined to be in an abnormal state.
  • the display processing unit 132B displays the center position for displaying the first pointer image, the lower limit position for displaying the second pointer image, and the third pointer image according to the level of vibration detected by the vibration sensor 3. Change the upper limit position.
  • the inspection worker can easily determine that the equipment 2 is in an operating state by visually recognizing the changes in the positions of the first pointer image, the second pointer image, and the third pointer image. Further, if the first pointer image, the second pointer image, and the third pointer image are displayed as 0, the inspection worker can determine that the equipment 2 is in the stopped state.
  • the value corresponding to at least one of the first pointer image, the second pointer image, and the third pointer image is set based on the vibration level indicated by the abnormality determination level image.
  • the procedure and contents are the same as those in the first embodiment, and the first guideline image, the second guideline image, the third guideline image, or the abnormality determination level is used.
  • the display mode of at least one of the images is changed.
  • the vibration state display device 13B displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle in the display area of each resonance frequency.
  • the first pointer image, the second pointer image, and the third pointer image are switched and displayed.
  • the vibration state display device 13B may be provided with a plurality of vibration sensors 3.
  • a / D conversion and FFT are performed on the vibration detection signals output from the individual vibration sensors 3, and the average value ⁇ , minimum value and maximum value (or standard deviation ⁇ ) of the signals for each resonance frequency are calculated. Will be done.
  • this configuration it is possible to determine the abnormality based on the strength (vibration level) and frequency (resonance frequency) of the vibration generated in the plurality of equipment 2.
  • the vibration state display device 13B includes a processing circuit for executing a series of processing shown in FIG. 2 for each resonance frequency.
  • the processing circuit may be the hardware processing circuit 102 shown in FIG. 7A, or may be the processor 103 that executes the program stored in the memory 104 shown in FIG. 7B.
  • the image generation unit 131B acquires the average value ⁇ , the minimum value and the maximum value (or standard deviation ⁇ ) of the signals for each resonance frequency, and averages them.
  • a first pointer image associated with the value ⁇ , a second pointer image associated with the minimum value (or ⁇ -3 ⁇ ), and a third pointer image associated with the maximum value (or ⁇ + 3 ⁇ ) are generated.
  • the display processing unit 132B displays the first pointer image at the center position of the pointer swing width and the second pointer image at the lower limit position of the pointer swing width in the display area for each resonance frequency for each display cycle.
  • the third pointer image is displayed at the upper limit position of the pointer swing width.
  • the inspection worker can easily recognize the fluctuation of the average value, the minimum value, and the maximum value of the vibration level for each resonance frequency and each display cycle.
  • the vibration state display device 13B can intuitively recognize the vibration state of the equipment 2.
  • the display processing unit 132B displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle. As described above, the first pointer image, the second pointer image, and the third pointer image are switched and displayed. By paying attention to the first pointer image displayed for the longest time in the display cycle, the inspection worker can change the vibration level based on the average value of the vibration for each resonance frequency generated in the equipment 2. It can be easily recognized. As a result, the vibration state display device 13B can intuitively recognize the vibration state of the equipment 2.
  • FIG. 11 is a block diagram showing the configuration of the vibration detection device 1C according to the fourth embodiment.
  • the vibration detection device 1C detects the vibration generated in the equipment 2 by using the AE sensor 3A, and displays the vibration state of the equipment 2 on the display device 4 based on the detected vibration detection signal.
  • AE is a phenomenon in which elastic energy stored inside a solid is released as an elastic wave (AE wave) when the solid is deformed or destroyed.
  • the AE sensor 3A has a cantilever structure for detecting a sine wave signal of the AE wave emitted from the equipment 2.
  • the cantilever structure is an oscillation structure having a plurality of cantilever made of a piezoelectric material having a high Q value.
  • the AE sensor 3A includes cantilever 3a, 3b, and 3c having individual resonance frequencies in the frequency band of the AE wave.
  • the vibration detection device 1C includes A / D conversion units 11a, 11b and 11c, a data processing unit 12C, a vibration state display device 13C and a BPF (bandpass filter) 15a, 15b and 15c.
  • the vibration state display device 13C includes an image generation unit 131C and a display processing unit 132C.
  • the BPF15a removes a frequency band other than the sinusoidal signal of the resonance frequency of the cantilever 3a from the signal of the frequency band including the sinusoidal signal of the resonance frequency of the cantilever 3a.
  • the BPF15b removes a frequency band other than the sinusoidal signal of the resonance frequency of the cantilever 3b from the frequency band signal including the sinusoidal signal of the resonance frequency of the cantilever 3b
  • the BPF15c is a sinusoidal of the resonance frequency of the cantilever 3c.
  • a signal having a frequency other than the sinusoidal signal having the resonance frequency of the cantilever 3c is removed from the signal in the frequency band including the wave signal.
  • the A / D conversion unit 11a generates a time series of digital data of vibration level by A / D conversion of a sinusoidal signal having a resonance frequency of the cantilever 3a that has passed through the BPF15a.
  • the A / D conversion unit 11b generates a time series of digital data of vibration level by A / D conversion of a sinusoidal signal of the resonance frequency of the cantilever 3b that has passed through the BPF15b, and the A / D conversion unit 11c generates a time series of vibration level digital data.
  • a / D conversion of the sinusoidal signal of the resonance frequency of the cantilever 3c that has passed through the BPF15c a time series of digital data of the vibration level is generated.
  • the data processing unit 12C has the average value, the minimum value, and the maximum value of the digital data sampled within the time of the display cycle (for example, 0.4 seconds) among the digital data A / D converted by the A / D conversion unit 11a. The value is calculated, and the average value, the minimum value, and the maximum value of the digital data sampled within the time of the data update cycle (for example, 30 seconds) are calculated. Similarly, the data processing unit 12C calculates the average value, the minimum value, and the maximum value of the digital data sampled within the time of the display cycle among the digital data A / D converted by the A / D conversion unit 11b. , Calculates the average, minimum and maximum values of digital data sampled within the time of the data update cycle.
  • the data processing unit 12C calculates the average value, the minimum value, and the maximum value of the digital data sampled within the time of the display cycle among the digital data A / D converted by the A / D conversion unit 11c, and updates the data. Calculate the average, minimum and maximum values of digital data sampled within the time of the cycle. Further, the data processing unit 12C may calculate the standard deviation ⁇ instead of the minimum value and the maximum value.
  • the data processing unit 12C and the vibration status display device 13C are communicated and connected via a wired or wireless communication line.
  • the data processing unit 12C multiplexers the average value, the minimum value and the maximum value (or standard deviation ⁇ ) of the vibration level calculated from the digital data A / D converted by the A / D conversion units 11a, 11b and 11c, and the data.
  • the communication interface on the processing unit 12C side relays and transmits to the communication line.
  • the vibration state display device 13C relays and receives the data propagated through the communication line by the communication interface on the vibration state display device 13C side.
  • the vibration state display device 13C demultiplexes the data received from the data processing unit 12C, so that the mean value ⁇ , the minimum value and the maximum value (or standard) of the vibration level for each display cycle for the vibration detected by the cantilever 3a are standard. Deviation ⁇ ) and the mean ⁇ , minimum and maximum (or standard deviation ⁇ ) of the vibration level for each display cycle for the vibration detected by the cantilever 3b, and for each display cycle for the vibration detected by the cantilever 3c. The vibration level is separated into the mean value ⁇ , the minimum value and the maximum value (or standard deviation ⁇ ).
  • the image generation unit 131C acquires the average value ⁇ , the minimum value and the maximum value (or standard deviation ⁇ ) of the vibration level for each display cycle for the vibration detected by the cantilever 3a, 3b and 3c, respectively, and sets the average value ⁇ .
  • a first pointer image associated with the minimum value (or ⁇ -3 ⁇ ), a second pointer image associated with the minimum value (or ⁇ -3 ⁇ ), and a third pointer image associated with the maximum value (or ⁇ + 3 ⁇ ) are generated for each display cycle. do.
  • the display processing unit 132C displays the first pointer image at the center position of the pointer swing width for each display cycle in the display area corresponding to the individual resonance frequencies of the cantilever 3a, 3b, and 3c of the display screen of the display device 4. Then, the second pointer image is displayed at the lower limit position of the pointer swing width, and the third pointer image is displayed at the upper limit position of the pointer swing width. In addition, the display processing unit 132C adds the first pointer image, the second pointer image and the third pointer image for each resonance frequency of the cantilever 3a, 3b and 3c, and adds the abnormality determination level image to the cantilever 3a, 3b and 3c. It may be displayed in the display area for each resonance frequency of.
  • the abnormality determination level image is a scale image showing the vibration level at which the equipment 2 is determined to be in an abnormal state.
  • the display processing unit 132C has a center position for displaying the first pointer image and a lower limit position for displaying the second pointer image according to the level of the vibration detected by the cantilever 3a, 3b and 3c for each display cycle. And change the upper limit position to display the third pointer image.
  • the inspection worker can easily determine that the equipment 2 is in the operating state by visually recognizing the change in the positions of the first pointer image, the second pointer image, and the third pointer image for each display cycle. Further, if the first pointer image, the second pointer image, and the third pointer image are displayed as 0, the inspection worker can determine that the equipment 2 is in the stopped state.
  • the equipment 2 has a value corresponding to at least one of the first pointer image, the second pointer image, and the third pointer image based on the vibration level indicated by the abnormality determination level image.
  • the value is determined to be an abnormal state
  • the procedure and contents of the first guideline image, the second guideline image, the third guideline image, or the abnormality determination level image are the same as those in the first embodiment. At least one of them is changed in the display mode.
  • the inspection worker has little specialized knowledge or inspection experience regarding the equipment 2 by visually recognizing the change in the display mode of the pointer image or the abnormality determination level image in the display area for each cantilever 3a, 3b and 3c resonance frequency. Even so, it is possible to easily determine whether or not the equipment 2 is in an abnormal state.
  • the first pointer image is longer than the second pointer image and the third pointer image within the time of the display cycle.
  • the first pointer image, the second pointer image, and the third pointer image are switched and displayed so as to be displayed.
  • the vibration state display device 13C may be provided with a plurality of AE sensors 3A.
  • a / D conversion is performed on the vibration detection signals output from the individual AE sensors 3A, and the mean value ⁇ , minimum value and maximum value (or standard) of the signals for each resonance frequency of the cantilever levers 3a, 3b and 3c are performed. Deviation ⁇ ) is calculated. With this configuration, it is possible to determine the abnormality based on the strength (vibration level) and frequency (resonance frequency) of the vibration generated in the plurality of equipment 2.
  • the vibration state display device 13C includes a processing circuit for executing a series of processing shown in FIG. 2 for each resonance frequency of the cantilever.
  • the processing circuit may be the hardware processing circuit 102 shown in FIG. 7A, or may be the processor 103 that executes the program stored in the memory 104 shown in FIG. 7B.
  • the vibration sensor is an AE sensor 3A that detects an AE wave corresponding to the vibration generated in the equipment 2.
  • the image generation unit 131C acquires the average value ⁇ , the minimum value, and the maximum value (or standard deviation ⁇ ) of the signal for each resonance frequency of the cantilever included in the AE sensor 3A, and associates the first pointer image with the average value ⁇ . , Generates a second pointer image associated with the minimum value (or ⁇ -3 ⁇ ) and a third pointer image associated with the maximum value (or ⁇ + 3 ⁇ ).
  • the display processing unit 132C displays the first pointer image at the center position of the pointer swing width and the second pointer image at the lower limit position of the pointer swing width for each display cycle. It is displayed, and the third pointer image is displayed at the upper limit position of the pointer swing width.
  • the inspection worker can easily recognize the fluctuation of the average value, the minimum value, and the maximum value of the vibration level for each resonance frequency and each display cycle of the cantilever.
  • the vibration state display device 13C can intuitively recognize the vibration state of the equipment 2.
  • the display processing unit 132C displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle. As described above, the first pointer image, the second pointer image, and the third pointer image are switched and displayed. By paying attention to the first pointer image displayed for the longest time in the display cycle, the inspection worker can change the vibration level based on the average value of the vibration for each resonance frequency generated in the equipment 2. It can be easily recognized. As a result, the vibration state display device 13C can intuitively recognize the vibration state of the equipment 2.
  • the vibration state display device can be used, for example, in an abnormality determination system for determining deterioration or abnormality from the vibration state of a rotating machine.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

A vibration-state display device (13) displays, on a display screen (4A) of a display device (4), for each display cycle: a first pointer image (A), which corresponds to an average value of digital data for detection signals of vibrations that have occurred in equipment (2), at a center position of a pointer amplitude; a second pointer image (B), which corresponds to a minimum value, at a lower limit position of the pointer amplitude; and a third pointer image (C), which corresponds to a maximum value, at an upper limit position of the pointer amplitude.

Description

振動状態表示装置、振動検出装置および振動状態表示方法Vibration status display device, vibration detection device and vibration status display method
 本開示は、振動状態表示装置、振動検出装置および振動状態表示方法に関する。 This disclosure relates to a vibration state display device, a vibration detection device, and a vibration state display method.
 設備に発生した異常を発見するために、振動センサを用いて設備の振動状態を検出し、検出した振動状態を解析した結果に基づいて設備の異常を診断する技術が知られている。例えば、特許文献1に記載された回転機の振動診断方法は、振動センサを用いて回転機の軸部に生じた振動をサンプリングして振動分析し、サンプリングした振動波形の相互間の位相差または位相差比に基づいて回転機の振動性状を診断するものである。 In order to detect an abnormality that has occurred in the equipment, a technique is known in which the vibration state of the equipment is detected using a vibration sensor and the abnormality of the equipment is diagnosed based on the result of analyzing the detected vibration state. For example, in the vibration diagnosis method for a rotating machine described in Patent Document 1, a vibration sensor is used to sample and analyze the vibration generated in the shaft portion of the rotating machine, and the phase difference between the sampled vibration waveforms or the phase difference between the sampled vibration waveforms. The vibration property of the rotating machine is diagnosed based on the phase difference ratio.
特開昭57-179625号公報Japanese Unexamined Patent Publication No. 57-179625
 特許文献1に記載された従来の方法では、複数の振動波形をサンプリングして回転機の振動性状を診断しているので、個々の振動波形が測定される間に時々刻々と変化する振動状態を、点検作業者が直感的に認識できないという課題があった。 In the conventional method described in Patent Document 1, since a plurality of vibration waveforms are sampled to diagnose the vibration properties of the rotating machine, the vibration state that changes from moment to moment while each vibration waveform is measured is determined. There was a problem that the inspection worker could not recognize it intuitively.
 本開示は上記課題を解決するものであり、設備の振動状態を直感的に認識することができる振動状態表示装置、振動検出装置および振動状態表示方法を得ることを目的とする。 The present disclosure solves the above-mentioned problems, and an object of the present invention is to obtain a vibration state display device, a vibration detection device, and a vibration state display method that can intuitively recognize the vibration state of equipment.
 本開示に係る振動状態表示装置は、設備に発生した振動の検出信号がアナログデジタル変換されたデジタルデータの平均値、最小値および最大値を取得して、平均値に対応付けた第1の指針画像、最小値に対応付けた第2の指針画像および最大値に対応付けた第3の指針画像を生成する画像生成部と、表示装置の表示画面において、表示周期ごとに、第1の指針画像を指針振れ幅の中央位置に表示し、第2の指針画像を指針振れ幅の下限位置に表示し、第3の指針画像を指針振れ幅の上限位置に表示する表示処理部を備える。 The vibration state display device according to the present disclosure is the first guideline in which the detection signal of vibration generated in the equipment acquires the average value, the minimum value and the maximum value of the digital data converted into analog and digital, and associates them with the average value. An image, a second pointer image associated with a minimum value, an image generator that generates a third pointer image associated with a maximum value, and a first pointer image for each display cycle on the display screen of the display device. Is displayed at the center position of the pointer swing width, the second pointer image is displayed at the lower limit position of the pointer swing width, and the third pointer image is displayed at the upper limit position of the pointer swing width.
 本開示によれば、表示装置の表示画面において、表示周期ごとに、設備に発生した振動の検出信号のデジタルデータの平均値に対応付けた第1の指針画像が指針振れ幅の中央位置に表示され、最小値に対応付けた第2の指針画像が指針振れ幅の下限位置に表示され、最大値に対応付けた第3の指針画像が指針振れ幅の上限位置に表示される。設備の点検作業者は、表示装置の表示画面を参照することによって、表示周期ごとの振動レベルの平均値、最小値および最大値の変動を容易に認識できる。これにより、本開示に係る振動状態表示装置は、設備の振動状態を直感的に認識することが可能である。 According to the present disclosure, on the display screen of the display device, the first pointer image associated with the average value of the digital data of the detection signal of the vibration generated in the equipment is displayed at the center position of the pointer swing width for each display cycle. The second pointer image associated with the minimum value is displayed at the lower limit position of the pointer swing width, and the third pointer image associated with the maximum value is displayed at the upper limit position of the pointer swing width. The equipment inspection worker can easily recognize the fluctuation of the average value, the minimum value, and the maximum value of the vibration level in each display cycle by referring to the display screen of the display device. Thereby, the vibration state display device according to the present disclosure can intuitively recognize the vibration state of the equipment.
実施の形態1に係る振動検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vibration detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る振動状態表示方法を示すフローチャートである。It is a flowchart which shows the vibration state display method which concerns on Embodiment 1. 実施の形態1における設備の振動状態の指針表示の例を示す図である。It is a figure which shows the example of the guideline display of the vibration state of the equipment in Embodiment 1. FIG. 振動センサの出力波形の例を示す時間波形図である。It is a time waveform diagram which shows the example of the output waveform of a vibration sensor. 図2のステップST3の処理の詳細を示すフローチャートである。It is a flowchart which shows the details of the process of step ST3 of FIG. 実施の形態1における指針表示の概要を示す概要図である。It is a schematic diagram which shows the outline of the guideline display in Embodiment 1. FIG. 図7Aは、実施の形態1に係る振動状態表示装置の機能を実現するハードウェア構成を示すブロック図であり、図7Bは、実施の形態1に係る振動状態表示装置の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。FIG. 7A is a block diagram showing a hardware configuration that realizes the function of the vibration state display device according to the first embodiment, and FIG. 7B is a software that realizes the function of the vibration state display device according to the first embodiment. It is a block diagram which shows the hardware configuration to execute. 実施の形態2に係る振動検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vibration detection apparatus which concerns on Embodiment 2. 実施の形態2における設備の振動状態の指針表示の例を示す図である。It is a figure which shows the example of the guideline display of the vibration state of the equipment in Embodiment 2. 実施の形態3に係る振動検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vibration detection apparatus which concerns on Embodiment 3. 実施の形態4に係る振動検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vibration detection apparatus which concerns on Embodiment 4. FIG.
実施の形態1.
 図1は、実施の形態1に係る振動検出装置1の構成を示すブロック図である。図1において、振動検出装置1は、設備2に発生した振動を、振動センサ3を用いて検出し、検出した振動の検出信号に基づいて、設備2の振動状態を、実時間で表示装置4に表示する。設備2は、例えば、モータ、減速機、切削器、ポンプおよびタービンといった回転機械である。振動センサ3は、設備2の動作に応じて発生した振動を検出する。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of a vibration detection device 1 according to a first embodiment. In FIG. 1, the vibration detection device 1 detects the vibration generated in the equipment 2 by using the vibration sensor 3, and displays the vibration state of the equipment 2 in real time based on the detected vibration detection signal. Display on. Equipment 2 is a rotating machine such as a motor, a speed reducer, a cutting machine, a pump and a turbine. The vibration sensor 3 detects the vibration generated according to the operation of the equipment 2.
 振動検出装置1は、図1に示すように、A/D変換(アナログデジタル変換)部11、データ処理部12および振動状態表示装置13を備える。A/D変換部11は、振動センサ3によって検出された振動の検出信号をA/D変換することにより、振動の検出信号のデジタルデータを生成する。データ処理部12は、A/D変換部11によって振動の検出信号から変換されたデジタルデータの平均値、最小値および最大値を算出する。 As shown in FIG. 1, the vibration detection device 1 includes an A / D conversion (analog-digital conversion) unit 11, a data processing unit 12, and a vibration state display device 13. The A / D conversion unit 11 generates digital data of the vibration detection signal by performing A / D conversion of the vibration detection signal detected by the vibration sensor 3. The data processing unit 12 calculates the average value, the minimum value, and the maximum value of the digital data converted from the vibration detection signal by the A / D conversion unit 11.
 データ処理部12と振動状態表示装置13との間は、有線または無線の通信回線を介して通信接続されている。データ処理部12から送信されたデータは、データ処理部12側の通信インタフェースによって中継されて通信回線へ送信され、当該通信回線を伝搬したデータは、振動状態表示装置13側の通信インタフェースによって中継されて振動状態表示装置13に受信される。 A communication connection is made between the data processing unit 12 and the vibration status display device 13 via a wired or wireless communication line. The data transmitted from the data processing unit 12 is relayed by the communication interface on the data processing unit 12 side and transmitted to the communication line, and the data propagated on the communication line is relayed by the communication interface on the vibration state display device 13 side. Is received by the vibration state display device 13.
 例えば、振動センサ3として、AE(アコースティックエミッション)センサを用いた場合、AEセンサは、約20kHzの信号を検出する。このため、20kHzの検出信号をA/D変換するために必要なサンプリング周期は、検出信号の周波数の少なくとも2倍以上、すなわち、40kHz以上必要である。例えば、A/D変換の分解能が8bitであり、A/D変換部11によってA/D変換されたデジタルデータを、データ処理部12を介すことなく振動状態表示装置13へ送信する場合、その通信速度は、8bit×40kbps=320kbps以上である。 For example, when an AE (acoustic emission) sensor is used as the vibration sensor 3, the AE sensor detects a signal of about 20 kHz. Therefore, the sampling period required for A / D conversion of the 20 kHz detection signal is at least twice the frequency of the detection signal, that is, 40 kHz or more. For example, when the resolution of A / D conversion is 8 bits and the digital data A / D converted by the A / D conversion unit 11 is transmitted to the vibration state display device 13 without going through the data processing unit 12, the digital data is transmitted. The communication speed is 8 bits × 40 kbps = 320 kbps or more.
 これに対して、振動検出装置1においては、データ処理部12が、A/D変換部11によって振動の検出信号がA/D変換されて得られたデジタルデータの時系列から、測定開始時に、表示周期の時間分のデジタルデータを取得し、表示周期の時間分のデジタルデータの平均値、最小値および最大値を算出して振動状態表示装置13へ送信する。続いて、データ処理部12は、データ更新周期の時間分のデジタルデータの時系列を取得し、取得したデータ更新周期の時間内のデジタルデータの平均値、最小値および最大値を算出して振動状態表示装置13へ送信する。 On the other hand, in the vibration detection device 1, the data processing unit 12 starts measuring from the time series of digital data obtained by A / D conversion of the vibration detection signal by the A / D conversion unit 11. The digital data for the time of the display cycle is acquired, the average value, the minimum value and the maximum value of the digital data for the time of the display cycle are calculated and transmitted to the vibration state display device 13. Subsequently, the data processing unit 12 acquires a time series of digital data for the time of the data update cycle, calculates the average value, the minimum value, and the maximum value of the digital data within the time of the acquired data update cycle, and vibrates. It is transmitted to the status display device 13.
 このように、振動検出装置1は、振動センサ3によって検出された振動の検出信号からA/D変換されたデジタルデータを、そのまま振動状態表示装置13へ送信せず、最初に(測定開始時)表示周期の時間分(例えば0.4秒)のデータを送信した後には、データ更新周期ごと(例えば、30秒)にデータを送信する。これにより、データ処理部12と振動状態表示装置13との間の通信容量が圧縮される。 As described above, the vibration detection device 1 does not transmit the A / D-converted digital data from the vibration detection signal detected by the vibration sensor 3 to the vibration state display device 13 as it is, but first (at the start of measurement). After transmitting the data for the time of the display cycle (for example, 0.4 seconds), the data is transmitted every data update cycle (for example, 30 seconds). As a result, the communication capacity between the data processing unit 12 and the vibration state display device 13 is compressed.
 例えば、A/D変換部11の分解能が8bitであり、データ更新周期が30秒、表示周期が0.4秒とし、平均値、最小値および最大値を表示する場合、8bit×3×(1/30)=0.8bpsである。すなわち、振動検出装置1は、A/D変換によって得られたデジタルデータを、データ処理部12を介さずに振動状態表示装置13へ送信する場合(通信速度が320kbps)に比べて、通信容量が0.8bps/320kbpsに低減される。また、振動状態表示装置13では、設備2の振動状態の表示処理に用いるデータの容量が圧縮されるので、処理負荷が軽減される。 For example, when the resolution of the A / D conversion unit 11 is 8 bits, the data update cycle is 30 seconds, the display cycle is 0.4 seconds, and the average value, the minimum value, and the maximum value are displayed, 8 bits × 3 × (1). / 30) = 0.8 bps. That is, the vibration detection device 1 has a higher communication capacity than the case where the digital data obtained by the A / D conversion is transmitted to the vibration state display device 13 without going through the data processing unit 12 (communication speed is 320 kbps). It is reduced to 0.8 bps / 320 kbps. Further, in the vibration state display device 13, the capacity of the data used for the vibration state display processing of the equipment 2 is compressed, so that the processing load is reduced.
 振動状態表示装置13は、画像生成部131および表示処理部132を備える。画像生成部131は、データ処理部12によって算出された上記デジタルデータの平均値、最小値および最大値を取得し、平均値に対応付けた第1の指針画像、最小値に対応付けた第2の指針画像および最大値に対応付けた第3の指針画像を、表示周期ごとに生成する。表示処理部132は、表示装置4の表示画面において、表示周期ごとに、第1の指針画像を指針振れ幅の中央位置に表示し、第2の指針画像を指針振れ幅の下限位置に表示し、第3の指針画像を指針振れ幅の上限位置に表示する。なお、指針振れ幅は、表示周期の時間内の振動レベルの最小値と最大値との間の振動レベル範囲である。 The vibration state display device 13 includes an image generation unit 131 and a display processing unit 132. The image generation unit 131 acquires the average value, the minimum value, and the maximum value of the digital data calculated by the data processing unit 12, the first guideline image associated with the average value, and the second pointer image associated with the minimum value. A guideline image of 1 and a third guideline image associated with the maximum value are generated for each display cycle. The display processing unit 132 displays the first pointer image at the center position of the pointer swing width and the second pointer image at the lower limit position of the pointer swing width on the display screen of the display device 4 for each display cycle. , The third pointer image is displayed at the upper limit position of the pointer swing width. The pointer swing width is a vibration level range between the minimum value and the maximum value of the vibration level within the time of the display cycle.
 振動状態表示装置13は、設備2に実時間で発生した振動の時間波形を表示するのではなく、表示周期ごとに第1の指針画像、第2の指針画像および第3の指針画像を切り替えて表示する。特に、第1の指針画像が、第2の指針画像および第3の指針画像よりも長く表示される。点検作業者は、表示周期の時間内で最も長く表示される、平均値に対応付けられた第1の指針画像に注目することによって、設備2に発生する振動における、平均値を基準とした振動レベルの変動を容易に認識できる。これにより、振動状態表示装置13は、設備2の振動状態を直感的に認識することが可能である。 The vibration state display device 13 does not display the time waveform of the vibration generated in real time on the equipment 2, but switches the first pointer image, the second pointer image, and the third pointer image for each display cycle. indicate. In particular, the first pointer image is displayed longer than the second pointer image and the third pointer image. By paying attention to the first pointer image associated with the average value, which is displayed for the longest time in the display cycle, the inspection worker vibrates based on the average value in the vibration generated in the equipment 2. You can easily recognize the fluctuation of the level. As a result, the vibration state display device 13 can intuitively recognize the vibration state of the equipment 2.
 実施の形態1に係る振動状態表示装置13の動作は、以下の通りである。
 図2は、実施の形態1に係る振動状態表示方法を示すフローチャートであり、振動状態表示装置13による振動状態の表示処理を示している。図2に示す一連の処理が行われる際に、振動センサ3は、設備2の動作に応じて発生した振動を順次検出する。A/D変換部11は、振動センサ3によって実時間に検出された振動の検出信号をA/D変換する。
 データ処理部12は、A/D変換部11によって振動の検出信号からA/D変換されたデジタルデータの時系列から、測定開始時に表示周期の時間分のデジタルデータの時系列をサンプリングし、デジタルデータの平均値、最小値および最大値を算出して振動状態表示装置13に送信する。測定開始時から表示周期の時間が経過した後、データ処理部12は、A/D変換部11によって振動の検出信号からA/D変換されたデジタルデータの時系列から、データ更新周期ごとにデジタルデータの時系列をサンプリングし、データ更新周期の時間内のデジタルデータの平均値、最小値および最大値を算出して振動状態表示装置13に送信する。
The operation of the vibration state display device 13 according to the first embodiment is as follows.
FIG. 2 is a flowchart showing the vibration state display method according to the first embodiment, and shows the vibration state display processing by the vibration state display device 13. When the series of processes shown in FIG. 2 is performed, the vibration sensor 3 sequentially detects the vibration generated according to the operation of the equipment 2. The A / D conversion unit 11 A / D converts the vibration detection signal detected in real time by the vibration sensor 3.
The data processing unit 12 samples the time series of digital data for the time of the display cycle at the start of measurement from the time series of digital data A / D converted from the vibration detection signal by the A / D conversion unit 11, and digitally. The average value, the minimum value and the maximum value of the data are calculated and transmitted to the vibration state display device 13. After the time of the display cycle has elapsed from the start of measurement, the data processing unit 12 digitally performs each data update cycle from the time series of digital data A / D converted from the vibration detection signal by the A / D conversion unit 11. The time series of data is sampled, the average value, the minimum value and the maximum value of the digital data within the time of the data update cycle are calculated and transmitted to the vibration state display device 13.
 振動状態表示装置13において、画像生成部131は、振動レベルの平均値、最小値および最大値を取得する(ステップST1)。画像生成部131によって取得される振動レベルの平均値、最小値および最大値は、測定開始時において、振動センサ3によって設備2から検出された振動の検出信号がA/D変換されたデジタルデータの時系列から、表示周期の時間分だけサンプリングされたデジタルデータの時系列の平均値、最小値および最大値であり、測定開始時から表示周期の時間が経過した後においては、データ更新周期ごとにサンプリングされたデジタルデータの時系列の平均値、最小値および最大値である。
 以下、データ更新周期の時間は30秒であり、表示周期の時間は0.4秒であるものとする。
In the vibration state display device 13, the image generation unit 131 acquires the average value, the minimum value, and the maximum value of the vibration levels (step ST1). The average value, minimum value, and maximum value of the vibration level acquired by the image generation unit 131 are digital data obtained by A / D conversion of the vibration detection signal detected from the equipment 2 by the vibration sensor 3 at the start of measurement. It is the average value, minimum value, and maximum value of the digital data sampled from the time series for the time of the display cycle, and after the time of the display cycle has elapsed from the start of measurement, it is for each data update cycle. The time-series average, minimum, and maximum values of the sampled digital data.
Hereinafter, it is assumed that the time of the data update cycle is 30 seconds and the time of the display cycle is 0.4 seconds.
 画像生成部131は、振動レベルの平均値に対応付けた第1の指針画像を生成し、設備2における振動レベルの最小値に対応付けた第2の指針画像を生成し、設備2における振動レベルの最大値に対応付けた第3の指針画像を生成する(ステップST2)。第1の指針画像、第2の指針画像および第3の指針画像は、同じ色、太さ、長さおよび形状であってもよいし、互いに異なる色、太さ、長さおよび形状であってもよい。 The image generation unit 131 generates a first pointer image associated with the average value of the vibration level, generates a second pointer image associated with the minimum value of the vibration level in the equipment 2, and generates a vibration level in the equipment 2. A third pointer image associated with the maximum value of is generated (step ST2). The first pointer image, the second pointer image and the third pointer image may have the same color, thickness, length and shape, or may have different colors, thicknesses, lengths and shapes from each other. May be good.
 続いて、表示処理部132は、画像生成部131によって生成された第1の指針画像、第2の指針画像および第3の指針画像を用いて、設備2に実時間で発生する振動の状態を表示装置4に表示する(ステップST3)。測定開始時において、表示処理部132は、表示周期の時間分だけサンプリングされたデジタルデータの時系列の平均値、最小値および最大値に対応する第1の指標画像、第2の指標画像および第3の指標画像を、表示周期の時間内に表示装置4に表示する。続いて、測定開始時から表示周期の時間が経過した後において、表示処理部132は、データ更新周期の時間分だけサンプリングされたデジタルデータの時系列の平均値、最小値および最大値に対応する第1の指標画像、第2の指標画像および第3の指標画像を、データ更新周期の時間内で表示周期ごとに繰り返し表示する。すなわち、次回のデータ更新周期でデジタルデータが更新されるまで、同じデジタルデータの平均値、最小値および最大値に対応する指針画像が表示周期ごとに繰り返し表示される。点検作業者は、突然の故障が多く、短期間での振動レベルの変化が激しい設備2については、振動状態表示装置13に短いデータ更新周期を設定して監視を実施し、故障が少なく、摩耗などの振動レベルの変化が緩やかな劣化が生じる設備2については、振動状態表示装置13に長いデータ更新周期を設定して監視を実施する。これにより、多種多様な設備2に対する監視が可能である。図3は、設備2の振動状態の指針表示の例を示す図である。図3に示すように、表示処理部132は、表示装置4の表示画面4Aにおいて、表示周期ごとに、第1の指針画像Aを指針振れ幅の中央位置に表示し、第2の指針画像Bを指針振れ幅の下限位置に表示し、第3の指針画像Cを指針振れ幅の上限位置に表示する。なお、図3において、指針振れ幅は、第2の指針画像Bと第3の指針画像Cとの間の両矢印で表現されている。 Subsequently, the display processing unit 132 uses the first pointer image, the second guideline image, and the third pointer image generated by the image generation unit 131 to display the state of vibration generated in the equipment 2 in real time. It is displayed on the display device 4 (step ST3). At the start of measurement, the display processing unit 132 includes a first index image, a second index image, and a second index image corresponding to the average value, the minimum value, and the maximum value of the digital data sampled for the time of the display cycle. The index image of 3 is displayed on the display device 4 within the time of the display cycle. Subsequently, after the time of the display cycle has elapsed from the start of measurement, the display processing unit 132 corresponds to the time-series average value, minimum value, and maximum value of the digital data sampled for the time of the data update cycle. The first index image, the second index image, and the third index image are repeatedly displayed for each display cycle within the time of the data update cycle. That is, the guideline images corresponding to the average value, the minimum value, and the maximum value of the same digital data are repeatedly displayed in each display cycle until the digital data is updated in the next data update cycle. For equipment 2 where there are many sudden failures and the vibration level changes drastically in a short period of time, the inspection worker sets a short data update cycle in the vibration status display device 13 and monitors it, and there are few failures and wear. For the equipment 2 in which the change in the vibration level gradually deteriorates, a long data update cycle is set in the vibration state display device 13 and monitoring is performed. This makes it possible to monitor a wide variety of equipment 2. FIG. 3 is a diagram showing an example of a pointer display of a vibration state of the equipment 2. As shown in FIG. 3, the display processing unit 132 displays the first pointer image A at the center position of the pointer swing width on the display screen 4A of the display device 4 for each display cycle, and the second pointer image B. Is displayed at the lower limit position of the pointer swing width, and the third pointer image C is displayed at the upper limit position of the pointer swing width. In FIG. 3, the pointer swing width is represented by a double-headed arrow between the second pointer image B and the third pointer image C.
 表示処理部132は、設備2に発生した振動の表示周期ごとのレベルに応じて、第1の指針画像Aを表示する中央位置と、第2の指針画像Bを表示する下限位置と、第3の指針画像Cを表示する上限位置を変更する。例えば、設備2が回転機械である場合、設備2には、その動作に応じた振動が発生するが、設備2が停止状態であれば、その動作に応じた振動も発生しない。このため、点検作業者は、表示装置4の表示画面4Aにおける、表示周期ごとの第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cの位置の変化を視認することにより、設備2が稼働状態であると容易に判断できる。また、第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cが目盛り0の位置に表示されていれば、設備2が停止状態であると判断できる。 The display processing unit 132 has a central position for displaying the first pointer image A, a lower limit position for displaying the second pointer image B, and a third position according to the level of the vibration generated in the equipment 2 for each display cycle. The upper limit position for displaying the pointer image C of is changed. For example, when the equipment 2 is a rotary machine, vibration corresponding to the operation is generated in the equipment 2, but when the equipment 2 is stopped, vibration corresponding to the operation is not generated. Therefore, the inspection worker visually recognizes the changes in the positions of the first pointer image A, the second pointer image B, and the third pointer image C on the display screen 4A of the display device 4 for each display cycle. , It can be easily determined that the equipment 2 is in an operating state. Further, if the first pointer image A, the second pointer image B, and the third pointer image C are displayed at the position of the scale 0, it can be determined that the equipment 2 is in the stopped state.
 また、表示処理部132は、表示周期の時間内で、第1の指針画像Aが、第2の指針画像Bおよび第3の指針画像Cよりも長く表示されるように、第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cを切り替えて表示する。さらに、表示処理部132は、表示装置4の表示画面4Aにおいて、第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cに加え、異常判定レベル画像D1およびD2を表示する。異常判定レベル画像D1およびD2は、設備2が異常な状態であると判定される振動レベルを示す目盛り画像である。 Further, the display processing unit 132 displays the first pointer image A longer than the second pointer image B and the third pointer image C within the time of the display cycle. A, the second pointer image B and the third pointer image C are switched and displayed. Further, the display processing unit 132 displays the abnormality determination level images D1 and D2 in addition to the first pointer image A, the second pointer image B, and the third pointer image C on the display screen 4A of the display device 4. .. The abnormality determination level images D1 and D2 are scale images showing the vibration level at which the equipment 2 is determined to be in an abnormal state.
 異常判定レベル画像D1は、設備2が異常な状態であると判定する高値側の振動レベルを示しており、異常判定レベル画像D2は、設備2が異常な状態であると判定する低値側の振動レベルを示している。表示画面4Aにおいて、第3の指針画像Cが異常判定レベル画像D1を超えた位置に表示された場合に、設備2は、異常な状態であると判断される。第2の指針画像Bが異常判定レベル画像D2を下回る位置に表示された場合においても、設備2は、異常な状態であると判断される。 The abnormality determination level image D1 shows the vibration level on the high value side for determining that the equipment 2 is in an abnormal state, and the abnormality determination level image D2 is on the low value side for determining that the equipment 2 is in an abnormal state. It shows the vibration level. When the third pointer image C is displayed at a position exceeding the abnormality determination level image D1 on the display screen 4A, the equipment 2 is determined to be in an abnormal state. Even when the second pointer image B is displayed at a position lower than the abnormality determination level image D2, the equipment 2 is determined to be in an abnormal state.
 また、表示処理部132は、異常判定レベル画像D1または異常判定レベル画像D2が示す振動レベルに基づいて、第1の指針画像A、第2の指針画像Bまたは第3の指針画像Cの少なくとも一つに対応する値が、設備2が異常な状態であると判定される値になった場合に、第1の指針画像A、第2の指針画像B、第3の指針画像C、異常判定レベル画像D1または異常判定レベル画像D2の少なくとも一つの表示態様を変化させる。点検作業者は、表示画面4Aにおける指針画像または異常判定レベル画像の表示態様の変化を視認することにより、設備2に関する専門的な知識または点検経験が少ない場合であっても、設備2が異常状態であるか否かを容易に判断することが可能である。 Further, the display processing unit 132 has at least one of the first guideline image A, the second guideline image B, and the third guideline image C based on the vibration level indicated by the abnormality determination level image D1 or the abnormality determination level image D2. When the corresponding value becomes a value that determines that the equipment 2 is in an abnormal state, the first guideline image A, the second guideline image B, the third guideline image C, and the abnormality determination level. At least one display mode of the image D1 or the abnormality determination level image D2 is changed. By visually recognizing the change in the display mode of the pointer image or the abnormality determination level image on the display screen 4A, the inspection worker is in an abnormal state of the equipment 2 even if he / she has little specialized knowledge or inspection experience regarding the equipment 2. It is possible to easily determine whether or not it is.
 例えば、設備2が切削加工機である場合、被加工物を加工中の切削刃が欠けると、切削加工機には、大きな振動が発生する。この場合、第3の指針画像Cが示す最大値は、異常判定レベル画像D1が示す振動レベルを超えるので、表示処理部132は、第3の指針画像Cまたは異常判定レベル画像D1のいずれかまたは両方の表示色を、一般的に警告色として知られている赤色に変化させる。 For example, when the equipment 2 is a cutting machine, if the cutting blade that is processing the workpiece is chipped, the cutting machine will generate a large vibration. In this case, since the maximum value indicated by the third pointer image C exceeds the vibration level indicated by the abnormality determination level image D1, the display processing unit 132 receives either the third pointer image C or the abnormality determination level image D1 or Change both display colors to red, commonly known as the warning color.
 点検作業者は、切削刃の欠けのような突発的な異常の発生を、赤色で表示された指針によって容易に視認できる。なお、表示処理部132は、設備2に発生した異常を警告するために、指針画像または異常判定レベル画像の表示色を変化させることに加えて、指針の太さ、長さおよび形状を変化させてもよいし、表示装置4の表示画面4Aのバックライトの発光色を赤色に変化させてもよいし、バックライトを点滅させてもよい。 The inspection worker can easily visually recognize the occurrence of a sudden abnormality such as a chipped cutting blade by the pointer displayed in red. The display processing unit 132 changes the thickness, length, and shape of the pointer in addition to changing the display color of the pointer image or the abnormality determination level image in order to warn of an abnormality that has occurred in the equipment 2. Alternatively, the emission color of the backlight of the display screen 4A of the display device 4 may be changed to red, or the backlight may be blinked.
 異常判定レベル画像D1およびD2が示す振動レベルは、ユーザが任意の値を設定可能である。例えば、振動状態表示装置13には、ユーザによる設定を受け付ける入力装置が設けられる。入力装置は、ユーザによって入力された任意の値の振動レベルを、異常判定レベル画像D1およびD2が示す振動レベルとして表示処理部132に設定する。これにより、ユーザが、異常判定レベル画像D1およびD2に対応付けられた振動レベルを調整することができる。 Abnormality determination level The vibration level indicated by the images D1 and D2 can be set to any value by the user. For example, the vibration state display device 13 is provided with an input device that accepts settings by the user. The input device sets the vibration level of an arbitrary value input by the user in the display processing unit 132 as the vibration level indicated by the abnormality determination level images D1 and D2. Thereby, the user can adjust the vibration level associated with the abnormality determination level images D1 and D2.
 設備2が異常状態であるか否かを示す振動レベルは、例えば、設備2の種類、設備2が備える部品の種類、設備2の設置場所、設備2の動作パターン、被加工物の種類あるいは点検作業に要求される異常判定精度といった、様々な条件に応じて異なる値となり得る。そこで、振動状態表示装置13は、前述した様々な条件と各条件に対応した異常判定用の振動レベルとが登録されたデータベースを備えてもよい。表示処理部132は、ユーザにより指定された条件に対応する振動レベルを上記データベースから読み出し、読み出した振動レベルを、異常判定レベル画像D1およびD2に対応付ける振動レベルに設定する。 The vibration level indicating whether or not the equipment 2 is in an abnormal state is, for example, the type of the equipment 2, the type of the parts provided in the equipment 2, the installation location of the equipment 2, the operation pattern of the equipment 2, the type of the workpiece or inspection. It can be a different value depending on various conditions such as the abnormality determination accuracy required for the work. Therefore, the vibration state display device 13 may include a database in which the various conditions described above and the vibration level for abnormality determination corresponding to each condition are registered. The display processing unit 132 reads the vibration level corresponding to the condition specified by the user from the database, and sets the read vibration level to the vibration level corresponding to the abnormality determination level images D1 and D2.
 表示処理部132は、設備2の劣化状態に応じて、第1の指針画像A、第2の指針画像B、第3の指針画像C、異常判定レベル画像D1または異常判定レベル画像D2の少なくとも一つの表示態様を変化させてもよい。例えば、設備2が切削加工機である場合、摩耗が進行した切削刃は被加工物の表面を滑るようになるので、切削加工機に発生する振動のレベルは、全体的に低下する。この場合、摩耗が進んで切削刃が鈍ると、第2の指針画像Bと第3の指針画像Cとの間隔である指針振れ幅が狭くなり、第1の指針画像Aが示す振動レベルの平均値も徐々に低下する。これにより、第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cのそれぞれの表示位置が徐々に異常判定レベル画像D2側に移動する。 The display processing unit 132 has at least one of the first pointer image A, the second guideline image B, the third guideline image C, the abnormality determination level image D1 or the abnormality determination level image D2, depending on the deterioration state of the equipment 2. One display mode may be changed. For example, when the equipment 2 is a cutting machine, the cutting blade whose wear has progressed slides on the surface of the workpiece, so that the level of vibration generated in the cutting machine is lowered as a whole. In this case, when the wear progresses and the cutting blade becomes dull, the pointer swing width, which is the distance between the second pointer image B and the third pointer image C, becomes narrower, and the average vibration level shown by the first pointer image A becomes narrower. The value also gradually decreases. As a result, the display positions of the first pointer image A, the second pointer image B, and the third pointer image C gradually move to the abnormality determination level image D2 side.
 表示処理部132は、指針振れ幅が許容値を下回るか、第1の指針画像A、第2の指針画像Bまたは第3の指針画像Cのいずれかの表示位置が、異常判定レベル画像D2までに設定された注意喚起範囲内に移動すると、第1の指針画像A、第2の指針画像B、第3の指針画像C、異常判定レベル画像D1または異常判定レベル画像D2の少なくとも一つの表示態様を変化させる。 The display processing unit 132 indicates that the pointer deflection width is less than the permissible value, or the display position of any of the first pointer image A, the second pointer image B, and the third pointer image C is up to the abnormality determination level image D2. When moving within the alert range set in, at least one display mode of the first pointer image A, the second pointer image B, the third pointer image C, the abnormality determination level image D1 or the abnormality determination level image D2 is displayed. To change.
 例えば、表示処理部132は、切削刃の摩耗の進行を注意喚起するために、第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cの表示色を、一般的に注意喚起色として知られている黄色に変化させる。点検作業者は、切削刃の摩耗が進行して交換時期が近いことを、黄色の指針によって容易に視認できる。なお、表示処理部132は、設備2の劣化を注意喚起するために、指針画像または異常判定レベル画像の表示色を変化させることに加え、指針の太さ、長さおよび形状を変更してもよいし、表示装置4の表示画面4Aのバックライトの発光色を黄色に変化させてもよい。 For example, the display processing unit 132 generally pays attention to the display colors of the first pointer image A, the second pointer image B, and the third pointer image C in order to call attention to the progress of wear of the cutting blade. Change to yellow, known as arousing color. The inspection worker can easily see from the yellow pointer that the cutting blade is worn and the replacement time is near. In addition to changing the display color of the pointer image or the abnormality determination level image, the display processing unit 132 may change the thickness, length, and shape of the pointer in order to call attention to the deterioration of the equipment 2. Alternatively, the emission color of the backlight of the display screen 4A of the display device 4 may be changed to yellow.
 設備2に発生する振動のレベルは、設備2が正常な状態であっても、例えば、設備2が設置された環境または設備2によって加工される被加工物の材料によって突発的に大きく変化することがある。この現象は、振動レベルの最小値および最大値のばらつきの要因となり、設備2の異常判定を誤らせる要因ともなり得る。そこで、表示周期ごとの振動レベルの標準偏差σを用いて設備2の振動状態を表示することで、表示周期ごとの振動レベルの最小値および最大値のばらつきが抑圧される。 Even if the equipment 2 is in a normal state, the level of vibration generated in the equipment 2 suddenly changes greatly depending on, for example, the environment in which the equipment 2 is installed or the material of the work piece processed by the equipment 2. There is. This phenomenon causes variations in the minimum and maximum values of the vibration level, and can also be a factor in misleading the abnormality determination of the equipment 2. Therefore, by displaying the vibration state of the equipment 2 using the standard deviation σ of the vibration level for each display cycle, the variation of the minimum value and the maximum value of the vibration level for each display cycle is suppressed.
 例えば、データ処理部12が、振動レベルの最小値および最大値を算出する代わりに、振動レベルの平均値μと標準偏差σを算出する。画像生成部131は、振動レベルの平均値μから標準偏差σを減じた値(μ-3σ)に対応付けた第2の指針画像Bを生成し、振動レベルの平均値μに標準偏差σを加えた値(μ+3σ)に対応付けた第3の指針画像Cを生成する。表示処理部132は、表示周期ごとに、第1の指針画像Aを中央位置に表示し、第2の指針画像Bを指針振れ幅の下限位置に表示し、第3の指針画像Cを指針振れ幅の上限位置に表示する。標準偏差σを用いて振動レベルの平均値μからのばらつきを指定範囲に収めることにより、設備2の異常が誤判定される頻度を低減できる。 For example, the data processing unit 12 calculates the average value μ and the standard deviation σ of the vibration level instead of calculating the minimum value and the maximum value of the vibration level. The image generation unit 131 generates a second pointer image B associated with a value (μ-3σ) obtained by subtracting the standard deviation σ from the mean value μ of the vibration level, and sets the standard deviation σ to the mean value μ of the vibration level. A third pointer image C associated with the added value (μ + 3σ) is generated. The display processing unit 132 displays the first pointer image A at the center position, displays the second pointer image B at the lower limit position of the pointer shake width, and displays the third pointer image C at the lower limit position of the pointer shake width for each display cycle. Display at the upper limit of the width. By using the standard deviation σ to keep the variation of the vibration level from the average value μ within the specified range, the frequency of erroneous determination of the abnormality of the equipment 2 can be reduced.
 画像生成部131は、表示周期ごとに、第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cが表示画面4Aに表示される間、設備2の動作が停止されたか否かを確認する(ステップST4)。例えば、画像生成部131は、表示周期ごとの振動レベルの最大値が判定閾値以下になった場合、設備2の動作が停止したと判断する。画像生成部131は、設備2の動作が停止したと判断すると(ステップST4;YES)、設備2の動作が停止したことを表示処理部132に通知する。表示処理部132は、この通知を受けると、例えば、第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cを、表示画面4Aにおける目盛り0の位置に表示する。これにより、図2の処理が終了する。 In the image generation unit 131, whether or not the operation of the equipment 2 is stopped while the first pointer image A, the second pointer image B, and the third pointer image C are displayed on the display screen 4A in each display cycle. (Step ST4). For example, the image generation unit 131 determines that the operation of the equipment 2 has stopped when the maximum value of the vibration level for each display cycle becomes equal to or less than the determination threshold value. When the image generation unit 131 determines that the operation of the equipment 2 has stopped (step ST4; YES), the image generation unit 131 notifies the display processing unit 132 that the operation of the equipment 2 has stopped. Upon receiving this notification, the display processing unit 132 displays, for example, the first pointer image A, the second pointer image B, and the third pointer image C at the position of the scale 0 on the display screen 4A. As a result, the process of FIG. 2 is completed.
 設備2が動作していると判断すると(ステップST4;NO)、画像生成部131は、今回のデータ更新周期の時間が経過していなければ、今回のデータ更新周期のデジタルデータの時系列のうち、次の表示周期の時間内にサンプリングされたデジタルデータの平均値、最小値および最大値を取得し、ステップST1からの一連の処理を行う。 When it is determined that the equipment 2 is operating (step ST4; NO), the image generation unit 131 is in the time series of the digital data of the current data update cycle if the time of the current data update cycle has not elapsed. , The average value, the minimum value, and the maximum value of the digital data sampled within the time of the next display cycle are acquired, and a series of processing from step ST1 is performed.
 図2の一連の処理が実行されている間、振動センサ3は、設備2に発生した振動を検出し、A/D変換部11は、振動センサ3によって検出された振動の検出信号をA/D変換している。そして、データ処理部12は、A/D変換によって得られたデジタルデータの時系列から、次のデータ更新周期の時間内のデジタルデータの時系列を取得し、取得したデジタルデータの時系列から、表示周期の時間内にサンプリングされたデジタルデータの平均値、最小値および最大値を順次算出する。 While the series of processes shown in FIG. 2 is being executed, the vibration sensor 3 detects the vibration generated in the equipment 2, and the A / D conversion unit 11 uses the vibration detection signal detected by the vibration sensor 3 as A /. It is D-converted. Then, the data processing unit 12 acquires a time series of digital data within the time of the next data update cycle from the time series of digital data obtained by A / D conversion, and from the time series of the acquired digital data, The average value, minimum value, and maximum value of the digital data sampled within the time of the display cycle are sequentially calculated.
 今回のデータ更新周期の時間が経過すると、画像生成部131は、次のデータ更新周期のデジタルデータの時系列のうち、データ処理部12によって算出された表示周期の時間内にサンプリングされたデジタルデータの平均値、最小値および最大値を取得し、ステップST1からの一連の処理を行う。 When the time of the current data update cycle elapses, the image generation unit 131 outputs the digital data sampled within the time of the display cycle calculated by the data processing unit 12 in the time series of the digital data of the next data update cycle. The average value, the minimum value, and the maximum value of are acquired, and a series of processes from step ST1 are performed.
 図4は、振動センサ3の出力波形の例を示す時間波形図である。図4において、横軸は時間、縦軸は振動センサ3の出力電圧を示している。また、設備2は、工作機械である。工作機械は、被加工物を加工する加工過程と次の加工を準備する準備過程とを繰り返す。振動センサ3は、工作機械の加工過程である動作期間Eと準備過程である停止期間Fとを含む期間を通して、工作機械に発生した振動を連続的に検出する。A/D変換部11は、振動センサ3によって連続的に検出された振動の検出信号を順次A/D変換してデジタルデータの時系列を生成する。 FIG. 4 is a time waveform diagram showing an example of the output waveform of the vibration sensor 3. In FIG. 4, the horizontal axis represents time and the vertical axis represents the output voltage of the vibration sensor 3. Further, the equipment 2 is a machine tool. The machine tool repeats the machining process of machining the workpiece and the preparatory process of preparing for the next machining. The vibration sensor 3 continuously detects the vibration generated in the machine tool throughout the period including the operation period E which is the machining process of the machine tool and the stop period F which is the preparation process. The A / D conversion unit 11 sequentially A / D-converts the vibration detection signals continuously detected by the vibration sensor 3 to generate a time series of digital data.
 工作機械の動作期間Eにおいて、振動検出装置1は、A/D変換部11によってA/D変換されたデジタルデータの時系列から、測定開始時に、表示周期の時間(0.4秒)のデジタルデータの時系列を取得し、測定開始時から表示周期の時間が経過した場合、データ更新周期の時間(30秒)ごとのデジタルデータの時系列を取得する。これにより、測定開始時においては、表示周期の時間の振動レベルの各種統計量(平均値、最小値および最大値)が算出され、測定開始時から表示周期の時間が経過すると、データ更新周期ごとの振動レベルの各種統計量が算出される。工作機械の停止期間Fにおいて、振動検出装置1は、工作機械における振動レベルの最大値が判定閾値以下になると、設備2の動作が停止したと判断する。なお、振動検出装置1は、工作機械における振動レベルの最大値が判定閾値を超えると、設備2の動作が開始されたと判断して、振動レベルの測定を開始してもよい。 In the operation period E of the machine tool, the vibration detection device 1 digitally has a display cycle time (0.4 seconds) at the start of measurement from the time series of the digital data A / D converted by the A / D conversion unit 11. When the time series of data is acquired and the time of the display cycle has elapsed from the start of measurement, the time series of digital data for each time (30 seconds) of the data update cycle is acquired. As a result, various statistics (average value, minimum value and maximum value) of the vibration level during the time of the display cycle are calculated at the start of measurement, and when the time of the display cycle elapses from the start of measurement, each data update cycle Various statistics of the vibration level of are calculated. In the machine tool stop period F, the vibration detection device 1 determines that the operation of the equipment 2 has stopped when the maximum value of the vibration level in the machine tool becomes equal to or less than the determination threshold value. When the maximum value of the vibration level in the machine tool exceeds the determination threshold value, the vibration detection device 1 may determine that the operation of the equipment 2 has started and start the measurement of the vibration level.
 設備2の動作が停止した場合、振動状態表示装置13は、表示装置4の表示画面4Aにおいて、第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cを、表示画面4Aにおける目盛り0の位置に表示させる。すなわち、振動状態表示装置13は、工作機械における振動レベルの最大値が判定閾値以下になった時点で、振動レベルの平均値、最小値および最大値が0ではなかったとしても、これらの値が0であるものとする。なお、工作機械が停止して指針画像を目盛り0の位置に表示する指針表示を、0表示と呼称する。 When the operation of the equipment 2 is stopped, the vibration state display device 13 displays the first pointer image A, the second pointer image B, and the third pointer image C on the display screen 4A of the display device 4 on the display screen 4A. It is displayed at the position of the scale 0 in. That is, in the vibration state display device 13, when the maximum value of the vibration level in the machine tool becomes equal to or less than the determination threshold value, even if the average value, the minimum value and the maximum value of the vibration level are not 0, these values are set. It is assumed to be 0. The pointer display in which the machine tool is stopped and the pointer image is displayed at the position of the scale 0 is referred to as 0 display.
 なお、振動状態表示装置13が、振動レベルが0のデジタルデータが取得されるまで、0表示を行わなかった場合、0表示は、最大でデータ更新周期の時間(30秒)だけ遅延する。例えば、工作機械が動作状態から停止へ切り替わる際に、データ更新周期の時間内のデジタルデータの時系列の中に、振動レベルが0のデジタルデータが存在しない場合、次回以降のデータ更新周期のデジタルデータにおいて、振動レベルが0のデジタルデータがサンプリングされるまで、停止期間Fになっても0表示が行われない。 If the vibration state display device 13 does not display 0 until digital data having a vibration level of 0 is acquired, the display of 0 is delayed by a maximum of the data update cycle time (30 seconds). For example, when the machine tool switches from the operating state to the stop state, if there is no digital data with a vibration level of 0 in the time series of digital data within the time of the data update cycle, the digital data update cycle from the next time onward will be digital. In the data, 0 is not displayed even in the stop period F until the digital data having the vibration level of 0 is sampled.
 これに対して、振動状態表示装置13は、工作機械における振動レベルの最大値が判定閾値以下になった時点で、振動レベルの平均値、最小値および最大値がそれぞれ0であるものとして0表示を行う。これにより、振動状態表示装置13は、判定閾値として適切な値を選択すれば、実時間で0表示を行うことが可能である。 On the other hand, the vibration state display device 13 displays 0 as the average value, the minimum value, and the maximum value of the vibration levels are 0 when the maximum value of the vibration level in the machine tool becomes equal to or less than the determination threshold value. I do. As a result, the vibration state display device 13 can display 0 in real time by selecting an appropriate value as the determination threshold value.
 実施の形態1における指針表示の詳細は、以下の通りである。
 図5は、図2のステップST3の処理の詳細を示すフローチャートである。また、図6は、実施の形態1における指針表示の概要を示す概要図であり、1表示周期の時間内での指針画像の表示態様を示している。図6において、(1)から(4)までの各画像は、(1)から、(2)、(3)および(4)の順で時間が経過したときの画像である。また、表示処理部132は、事前に設定された異常判定基準の振動レベルが対応付けられた異常判定レベル画像D1およびD2を、表示装置4の表示画面4Aに表示している。
The details of the guideline display in the first embodiment are as follows.
FIG. 5 is a flowchart showing the details of the process of step ST3 of FIG. Further, FIG. 6 is a schematic diagram showing an outline of the guideline display according to the first embodiment, and shows a display mode of the guideline image within the time of one display cycle. In FIG. 6, each image from (1) to (4) is an image when time elapses in the order of (1) to (2), (3) and (4). Further, the display processing unit 132 displays the abnormality determination level images D1 and D2 associated with the vibration level of the abnormality determination standard set in advance on the display screen 4A of the display device 4.
 一般に、連続して撮影されたフレーム画像が0.1秒程度の間隔で再生されると、フレーム画像内の被写体が滑らかに動いて見えることが知られている。振動状態表示装置13においても、表示周期の時間内の各指針画像の表示時間が0.1秒間に設定されている。すなわち、表示画面4Aにおいて各指針画像が0.1秒ごとに表示される。これにより、指針画像が滑らかに切り替わる表示が実現される。 It is generally known that when frame images taken continuously are played back at intervals of about 0.1 seconds, the subject in the frame image appears to move smoothly. Also in the vibration state display device 13, the display time of each pointer image within the time of the display cycle is set to 0.1 seconds. That is, each pointer image is displayed every 0.1 seconds on the display screen 4A. As a result, a display in which the pointer image is smoothly switched is realized.
 特に、振動状態表示装置13においては、表示周期の時間内で、第1の指針画像Aが、第2の指針画像Bおよび第3の指針画像Cよりも長く表示されるように、第1の指針画像A、第2の指針画像Bおよび第3の指針画像Cが切り替えて表示される。第1の指針画像Aには、表示周期の時間内の振動レベルの平均値が対応付けられているので、点検作業者は、表示周期の時間内で最も長く表示される指針に注目することにより、設備2に発生する振動における、平均値を基準とした振動レベルの変動を容易に認識できる。 In particular, in the vibration state display device 13, the first pointer image A is displayed longer than the second pointer image B and the third pointer image C within the time of the display cycle. The pointer image A, the second pointer image B, and the third pointer image C are switched and displayed. Since the first pointer image A is associated with the average value of the vibration levels within the time of the display cycle, the inspection worker can pay attention to the pointer displayed for the longest time within the time of the display cycle. , The fluctuation of the vibration level based on the average value in the vibration generated in the equipment 2 can be easily recognized.
 まず、表示処理部132は、表示装置4の表示画面4Aにおいて、表示周期の時間内の振動レベルの平均値が対応付けられた第1の指針画像Aを、当該平均値に対応する目盛り位置に表示する(ステップST1a)。これにより、設備2に異常がなければ、図6において画像(1)に示すように、異常判定レベル画像D1と異常判定レベル画像D2との間に第1の指針画像Aが表示される。 First, the display processing unit 132 places the first pointer image A associated with the average value of the vibration levels within the time of the display cycle on the display screen 4A of the display device 4 at the scale position corresponding to the average value. Display (step ST1a). As a result, if there is no abnormality in the equipment 2, as shown in the image (1) in FIG. 6, the first pointer image A is displayed between the abnormality determination level image D1 and the abnormality determination level image D2.
 第1の指針画像Aを表示すると、表示処理部132は、第1の指針画像Aの指針表示時間(0.1秒)が経過したか否かを判定する(ステップST2a)。第1の指針画像Aの指針表示時間が経過していない場合(ステップST2a;NO)、表示処理部132は、ステップST1aの処理に戻り、第1の指針画像Aの表示を継続する。 When the first pointer image A is displayed, the display processing unit 132 determines whether or not the pointer display time (0.1 seconds) of the first pointer image A has elapsed (step ST2a). When the guideline display time of the first guideline image A has not elapsed (step ST2a; NO), the display processing unit 132 returns to the processing of step ST1a and continues the display of the first guideline image A.
 第1の指針画像Aの指針表示時間が経過した場合(ステップST2a;YES)、表示処理部132は、表示画面4Aにおいて、表示周期の時間内の振動レベルの最小値が対応付けられた第2の指針画像Bを、当該最小値に対応する目盛り位置に表示する(ステップST3a)。これにより、設備2に異常がなければ、図6において画像(2)に示すように、異常判定レベル画像D1と異常判定レベル画像D2との間に第2の指針画像Bが表示される。 When the pointer display time of the first pointer image A has elapsed (step ST2a; YES), the display processing unit 132 has the display screen 4A associated with the minimum value of the vibration level within the time of the display cycle. The pointer image B of the above is displayed at the scale position corresponding to the minimum value (step ST3a). As a result, if there is no abnormality in the equipment 2, as shown in the image (2) in FIG. 6, a second pointer image B is displayed between the abnormality determination level image D1 and the abnormality determination level image D2.
 第2の指針画像Bを表示すると、表示処理部132は、第2の指針画像Bの指針表示時間(0.1秒)が経過したか否かを判定する(ステップST4a)。第2の指針画像Bの指針表示時間が経過していない場合(ステップST4a;NO)、表示処理部132は、ステップST3aの処理に戻り、第2の指針画像Bの表示を継続する。 When the second pointer image B is displayed, the display processing unit 132 determines whether or not the pointer display time (0.1 seconds) of the second pointer image B has elapsed (step ST4a). When the pointer display time of the second pointer image B has not elapsed (step ST4a; NO), the display processing unit 132 returns to the processing of step ST3a and continues the display of the second guideline image B.
 第2の指針画像Bの指針表示時間が経過した場合(ステップST4a;YES)、表示処理部132は、表示画面4Aにおいて、表示周期の時間内の振動レベルの最大値が対応付けられた第3の指針画像Cを、当該最大値に対応する目盛り位置に表示する(ステップST5a)。これにより、設備2に異常がなければ、図6において画像(3)に示すように、異常判定レベル画像D1と異常判定レベル画像D2との間に第3の指針画像Cが表示される。 When the pointer display time of the second pointer image B has elapsed (step ST4a; YES), the display processing unit 132 has a third display screen 4A associated with the maximum value of the vibration level within the time of the display cycle. The pointer image C of the above is displayed at the scale position corresponding to the maximum value (step ST5a). As a result, if there is no abnormality in the equipment 2, as shown in the image (3) in FIG. 6, a third pointer image C is displayed between the abnormality determination level image D1 and the abnormality determination level image D2.
 第3の指針画像Cを表示すると、表示処理部132は、第3の指針画像Cの指針表示時間(0.1秒)が経過したか否かを判定する(ステップST6a)。第3の指針画像Cの指針表示時間が経過していない場合(ステップST6a;NO)、表示処理部132は、ステップST5aの処理に戻り、第3の指針画像Cの表示を継続する。 When the third pointer image C is displayed, the display processing unit 132 determines whether or not the pointer display time (0.1 seconds) of the third pointer image C has elapsed (step ST6a). When the pointer display time of the third pointer image C has not elapsed (step ST6a; NO), the display processing unit 132 returns to the processing of step ST5a and continues the display of the third pointer image C.
 第3の指針画像Cの指針表示時間が経過した場合(ステップST6a;YES)、表示処理部132は、表示画面4Aにおいて、表示周期の時間内の振動レベルの平均値が対応付けられた第1の指針画像Aを、当該平均値に対応する目盛り位置に表示する(ステップST7a)。これにより、設備2に異常がなければ、図6において画像(4)に示すように、異常判定レベル画像D1と異常判定レベル画像D2との間に、今回の表示周期で2回目の第1の指針画像Aが表示される。 When the pointer display time of the third pointer image C has elapsed (step ST6a; YES), the display processing unit 132 has the display screen 4A associated with the average value of the vibration levels within the time of the display cycle. The pointer image A of the above is displayed at the scale position corresponding to the average value (step ST7a). As a result, if there is no abnormality in the equipment 2, as shown in the image (4) in FIG. 6, between the abnormality determination level image D1 and the abnormality determination level image D2, the first first in the display cycle this time. The pointer image A is displayed.
 表示処理部132は、今回の表示周期で2回目の第1の指針画像Aを表示すると、第1の指針画像Aの指針表示時間が経過したか否かを判定する(ステップST8a)。第1の指針画像Aの指針表示時間が経過していない場合(ステップST8a;NO)、ステップST7aの処理に戻り、表示処理部132は、第1の指針画像Aの表示を継続する。第1の指針画像Aの指針表示時間が経過した場合(ステップST8a;YES)、図2に示すステップST4の処理に移行する。 When the display processing unit 132 displays the first pointer image A for the second time in the current display cycle, the display processing unit 132 determines whether or not the pointer display time of the first pointer image A has elapsed (step ST8a). If the pointer display time of the first pointer image A has not elapsed (step ST8a; NO), the process returns to the process of step ST7a, and the display processing unit 132 continues to display the first guideline image A. When the pointer display time of the first pointer image A has elapsed (step ST8a; YES), the process proceeds to the process of step ST4 shown in FIG.
 図5に示す一連の処理は、表示周期ごとに行われる。各表示周期において、第1の指針画像(平均値)、第2の指針画像(最小値またはμ-3σ)、第3の指針画像(最大値またはμ+3σ)および第1の指針画像(平均値)が、この順で表示される。また、第1の指針画像(平均値)は、各表示周期において、第2の指針画像(最小値またはμ-3σ)および第3の指針画像(最大値またはμ+3σ)よりも二倍の時間で表示される。設備2の点検作業者は、表示周期の時間内で最も長く表示される第1の指針画像Aに注目することにより、設備2に発生する振動における、平均値を基準とした振動レベルの変動を容易に認識できる。 The series of processes shown in FIG. 5 is performed for each display cycle. In each display cycle, the first pointer image (average value), the second pointer image (minimum value or μ-3σ), the third pointer image (maximum value or μ + 3σ), and the first pointer image (average value). Is displayed in this order. Also, the first pointer image (mean value) takes twice as long as the second pointer image (minimum value or μ-3σ) and the third pointer image (maximum value or μ + 3σ) in each display cycle. Is displayed. The inspection worker of the equipment 2 pays attention to the first pointer image A which is displayed for the longest time within the display cycle, and thereby changes the vibration level based on the average value in the vibration generated in the equipment 2. Easy to recognize.
 なお、振動状態表示装置13は、最初の表示周期における振動レベルの平均値、最小値および最大値または標準偏差σを取得するまで、設備2の振動状態を示す指針表示を開始できない。そのため、最初の表示をするまでにデータ更新周期の時間(30秒)分の遅れが生じないように、表示周期(0.4秒)分の平均値、最小値および最大値または標準偏差σを指針表示に使用し、そのデータをデータ更新周期の時間(30秒)表示している間に、次のデータを取得する。すなわち、データ処理部12は、設備2が動作を開始すると、最初の表示周期における振動レベルの平均値、最小値および最大値または標準偏差σを算出するが、振動状態表示装置13は、最初の表示周期の時間分だけ遅れて指針表示を開始する。そこで、実施の形態1では、設備2の動作開始時刻に対する指針表示の開始時刻の遅れが点検作業者に違和感を与えないように、1表示周期の時間には、0.4秒という非常に短い時間が設定されている。 Note that the vibration state display device 13 cannot start the pointer display indicating the vibration state of the equipment 2 until the average value, the minimum value and the maximum value, or the standard deviation σ of the vibration levels in the first display cycle are acquired. Therefore, the average value, minimum value and maximum value or standard deviation σ for the display cycle (0.4 seconds) are set so that there is no delay for the data update cycle time (30 seconds) before the first display. It is used for pointer display, and the next data is acquired while the data is displayed for the time of the data update cycle (30 seconds). That is, when the equipment 2 starts operation, the data processing unit 12 calculates the average value, the minimum value and the maximum value, or the standard deviation σ of the vibration levels in the first display cycle, but the vibration state display device 13 is the first. The pointer display is started with a delay of the time of the display cycle. Therefore, in the first embodiment, the time of one display cycle is as short as 0.4 seconds so that the delay of the start time of the pointer display with respect to the operation start time of the equipment 2 does not give a sense of discomfort to the inspection worker. The time is set.
 振動状態表示装置13の機能を実現するハードウェア構成は、以下の通りである。
 図7Aは、振動状態表示装置13の機能を実現するハードウェア構成を示すブロック図である。図7Bは、振動状態表示装置13の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図7Aおよび図7Bにおいて、入力インタフェース100は、データ処理部12によって算出された振動レベルの各種統計量を示すデータの入力を中継するインタフェースである。出力インタフェース101は、表示処理部132から表示装置4への表示データの出力を中継するインタフェースである。
The hardware configuration that realizes the function of the vibration state display device 13 is as follows.
FIG. 7A is a block diagram showing a hardware configuration that realizes the function of the vibration state display device 13. FIG. 7B is a block diagram showing a hardware configuration for executing software that realizes the function of the vibration state display device 13. In FIGS. 7A and 7B, the input interface 100 is an interface that relays the input of data indicating various statistics of the vibration level calculated by the data processing unit 12. The output interface 101 is an interface that relays the output of display data from the display processing unit 132 to the display device 4.
 振動状態表示装置13が備える画像生成部131および表示処理部132の機能は、処理回路によって実現される。すなわち、振動状態表示装置13は、図2に示したステップST1からステップST4の処理を実行するための処理回路を備える。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。 The functions of the image generation unit 131 and the display processing unit 132 included in the vibration state display device 13 are realized by the processing circuit. That is, the vibration state display device 13 includes a processing circuit for executing the processing of steps ST1 to ST4 shown in FIG. The processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
 処理回路が図7Aに示す専用のハードウェアの処理回路102である場合、処理回路102は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。振動状態表示装置13が備える画像生成部131および表示処理部132の機能は、別々の処理回路で実現されてもよく、これらの機能がまとめて1つの処理回路で実現されてもよい。 When the processing circuit is the processing circuit 102 of the dedicated hardware shown in FIG. 7A, the processing circuit 102 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). ), FPGA (Field-Programmable Gate Array), or a combination of these. The functions of the image generation unit 131 and the display processing unit 132 included in the vibration state display device 13 may be realized by separate processing circuits, or these functions may be collectively realized by one processing circuit.
 処理回路が図7Bに示すプロセッサ103である場合、振動状態表示装置13が備える画像生成部131および表示処理部132の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアの組み合わせによって実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ104に記憶される。 When the processing circuit is the processor 103 shown in FIG. 7B, the functions of the image generation unit 131 and the display processing unit 132 included in the vibration state display device 13 are realized by software, firmware, or a combination of software and firmware. The software or firmware is described as a program and stored in the memory 104.
 プロセッサ103は、メモリ104に記憶されたプログラムを読み出して実行することにより、振動状態表示装置13が備える画像生成部131および表示処理部132の機能を実現する。例えば、振動状態表示装置13は、プロセッサ103によって実行されるときに図2に示したステップST1からステップST4までの各処理が結果的に実行されるプログラムを記憶するメモリ104を備える。これらのプログラムは、画像生成部131および表示処理部132の手順または方法を、コンピュータに実行させる。メモリ104は、コンピュータを、画像生成部131および表示処理部132として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。 The processor 103 realizes the functions of the image generation unit 131 and the display processing unit 132 included in the vibration state display device 13 by reading and executing the program stored in the memory 104. For example, the vibration state display device 13 includes a memory 104 that stores a program in which each process from step ST1 to step ST4 shown in FIG. 2 is executed as a result when executed by the processor 103. These programs cause a computer to execute the procedure or method of the image generation unit 131 and the display processing unit 132. The memory 104 may be a computer-readable storage medium in which a program for making the computer function as an image generation unit 131 and a display processing unit 132 is stored.
 メモリ104は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。 The memory 104 may be, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-volatile), or an EEPROM (Electrically-EMMORY). This includes disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like.
 振動状態表示装置13が備える画像生成部131および表示処理部132の機能の一部が専用のハードウェアで実現され、残りの一部がソフトウェアまたはファームウェアで実現されてもよい。例えば、画像生成部131の機能が専用のハードウェアである処理回路102によって実現され、表示処理部132の機能が、プロセッサ103がメモリ104に記憶されたプログラムを読み出して実行することにより実現される。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより、上記機能を実現することができる。 A part of the functions of the image generation unit 131 and the display processing unit 132 included in the vibration state display device 13 may be realized by dedicated hardware, and the remaining part may be realized by software or firmware. For example, the function of the image generation unit 131 is realized by the processing circuit 102 which is the dedicated hardware, and the function of the display processing unit 132 is realized by reading and executing the program stored in the memory 104 by the processor 103. .. As described above, the processing circuit can realize the above-mentioned functions by hardware, software, firmware or a combination thereof.
 以上のように、実施の形態1に係る振動状態表示装置13において、表示装置4の表示画面4Aにおいて、表示周期ごとに、設備2に発生した振動の検出信号のデジタルデータの平均値に対応付けた第1の指針画像Aが指針振れ幅の中央位置に表示され、最小値に対応付けた第2の指針画像Bが指針振れ幅の下限位置に表示され、最大値に対応付けた第3の指針画像Cが指針振れ幅の上限位置に表示される。点検作業者は、表示装置4の表示画面4Aを参照することで、表示周期ごとの振動レベルの平均値、最小値および最大値の変動を容易に認識できる。これにより、振動状態表示装置13は、設備2の振動状態を直感的に認識することが可能である。 As described above, in the vibration state display device 13 according to the first embodiment, on the display screen 4A of the display device 4, each display cycle is associated with the average value of the digital data of the vibration detection signal generated in the equipment 2. The first pointer image A is displayed at the center position of the pointer swing width, the second pointer image B associated with the minimum value is displayed at the lower limit position of the pointer swing width, and the third pointer image B associated with the maximum value is displayed. The pointer image C is displayed at the upper limit position of the pointer swing width. The inspection worker can easily recognize the fluctuation of the average value, the minimum value, and the maximum value of the vibration level for each display cycle by referring to the display screen 4A of the display device 4. As a result, the vibration state display device 13 can intuitively recognize the vibration state of the equipment 2.
 実施の形態1に係る振動状態表示装置13において、表示処理部132は、第1の指針画像Aが、第2の指針画像Bおよび第3の指針画像Cよりも長く表示されるように、第1の指針画像、第2の指針画像Bおよび第3の指針画像Cを切り替えて表示する。点検作業者は、表示画面4Aにおいて表示周期の時間内で最も長く表示される第1の指針画像Aに注目するので、設備2に発生する振動における、平均値を基準とした振動レベルの変動を容易に認識できる。これにより、振動状態表示装置13は、設備2の振動状態を直感的に認識することが可能である。 In the vibration state display device 13 according to the first embodiment, the display processing unit 132 has the display processing unit 132 so that the first pointer image A is displayed longer than the second pointer image B and the third pointer image C. The pointer image of 1, the second pointer image B, and the third pointer image C are switched and displayed. Since the inspection worker pays attention to the first pointer image A displayed on the display screen 4A for the longest time within the display cycle time, the fluctuation of the vibration level based on the average value in the vibration generated in the equipment 2 can be seen. Easy to recognize. As a result, the vibration state display device 13 can intuitively recognize the vibration state of the equipment 2.
実施の形態2.
 図8は、実施の形態2に係る振動検出装置1Aの構成を示すブロック図である。図8において、振動検出装置1Aは、複数の振動センサ3(図8では、3つの振動センサ3)を用いて、複数の設備2(図8では、3台の設備2)のそれぞれに発生した振動を検出し、検出した振動の検出信号に基づいて、各設備2に発生した振動の状態を表示装置4に表示する。複数の設備2は、例えば、工場に設置された複数の工作機械である。複数の設備2にそれぞれ装着される振動センサ3は、個々の設備2の動作に応じて発生した振動を検出する。複数の振動センサ3は、一つの設備2における複数の部分に設けられてもよい。この場合、複数の振動センサ3は、設備2の部分ごとの振動を検出する。
Embodiment 2.
FIG. 8 is a block diagram showing the configuration of the vibration detection device 1A according to the second embodiment. In FIG. 8, the vibration detection device 1A is generated in each of a plurality of equipments 2 (three equipments 2 in FIG. 8) by using a plurality of vibration sensors 3 (three vibration sensors 3 in FIG. 8). Vibration is detected, and the state of vibration generated in each facility 2 is displayed on the display device 4 based on the detected vibration detection signal. The plurality of equipments 2 are, for example, a plurality of machine tools installed in a factory. The vibration sensor 3 mounted on each of the plurality of equipment 2 detects the vibration generated according to the operation of each equipment 2. The plurality of vibration sensors 3 may be provided in a plurality of parts in one facility 2. In this case, the plurality of vibration sensors 3 detect the vibration of each part of the equipment 2.
 図8において、振動検出装置1Aは、複数の振動センサ3と接続しているA/D変換部11A、デジタルデータを処理するデータ処理部12A、および設備2の振動状態を表示装置4に表示する振動状態表示装置13Aを備える。A/D変換部11Aは、複数の振動センサ3によって検出された振動の各検出信号をA/D変換して複数のデジタルデータの時系列を生成する。データ処理部12Aは、A/D変換部11AによってA/D変換された、データ更新周期の時間(例えば、30秒)内のデジタルデータの時系列から、測定開始時に、表示周期の時間(例えば、0.4秒)内にサンプリングされたデジタルデータの平均値、最小値および最大値を算出し、測定開始時から表示周期の時間が経過すると、データ更新周期ごとにサンプリングされたデジタルデータの平均値、最小値および最大値を算出する。また、データ処理部12Aは、最小値および最大値の代わりに、標準偏差σを算出してもよい。 In FIG. 8, the vibration detection device 1A displays the vibration state of the A / D conversion unit 11A connected to the plurality of vibration sensors 3, the data processing unit 12A for processing digital data, and the equipment 2 on the display device 4. A vibration state display device 13A is provided. The A / D conversion unit 11A A / D-converts each detection signal of the vibration detected by the plurality of vibration sensors 3 to generate a time series of a plurality of digital data. The data processing unit 12A uses the time series of digital data within the time of the data update cycle (for example, 30 seconds) converted by the A / D conversion unit 11A to display the time of the display cycle (for example, 30 seconds) at the start of measurement. , 0.4 seconds), the average value, minimum value and maximum value of the digital data sampled are calculated, and when the time of the display cycle elapses from the start of measurement, the average of the digital data sampled for each data update cycle Calculate the value, minimum and maximum values. Further, the data processing unit 12A may calculate the standard deviation σ instead of the minimum value and the maximum value.
 データ処理部12Aと振動状態表示装置13Aとの間は、有線または無線の通信回線を介して通信接続されている。データ処理部12Aから送信されたデータは、データ処理部12A側の通信インタフェースによって中継されて通信回線へ送信され、当該通信回線を伝搬したデータは、振動状態表示装置13A側の通信インタフェースによって中継されて振動状態表示装置13Aに受信される。 A communication connection is made between the data processing unit 12A and the vibration status display device 13A via a wired or wireless communication line. The data transmitted from the data processing unit 12A is relayed by the communication interface on the data processing unit 12A side and transmitted to the communication line, and the data propagated on the communication line is relayed by the communication interface on the vibration state display device 13A side. Is received by the vibration state display device 13A.
 振動状態表示装置13Aは、画像生成部131Aおよび表示処理部132Aを備える。画像生成部131Aは、データ処理部12Aによって振動センサ3ごとに算出された振動レベルを示すデジタルデータの平均値μ、最小値および最大値(または標準偏差σ)を取得し、平均値μに対応付けた第1の指針画像、最小値(またはμ-3σ)に対応付けた第2の指針画像、および最大値(またはμ+3σ)に対応付けた第3の指針画像を、振動センサ3ごとに生成する。表示処理部132Aは、表示装置4の表示画面の振動センサ3ごとの表示エリアにおいて、表示周期ごとに、第1の指針画像を指針振れ幅の中央位置に表示し、第2の指針画像を指針振れ幅の下限位置に表示し、第3の指針画像を指針振れ幅の上限位置に表示する。 The vibration state display device 13A includes an image generation unit 131A and a display processing unit 132A. The image generation unit 131A acquires the average value μ, the minimum value and the maximum value (or standard deviation σ) of the digital data indicating the vibration level calculated for each vibration sensor 3 by the data processing unit 12A, and corresponds to the average value μ. A first pointer image attached, a second pointer image associated with the minimum value (or μ-3σ), and a third pointer image associated with the maximum value (or μ + 3σ) are generated for each vibration sensor 3. do. The display processing unit 132A displays the first pointer image at the center position of the pointer swing width in the display area of each vibration sensor 3 on the display screen of the display device 4 for each display cycle, and displays the second pointer image as the pointer. It is displayed at the lower limit position of the runout width, and the third pointer image is displayed at the upper limit position of the guideline runout width.
 図9は、実施の形態2における設備2の振動状態の指針表示の例を示す図であり、3つの振動センサ3によって3台の設備2から検出された振動の状態を示す指針表示である。表示処理部132Aは、表示装置4の表示画面4Bにおいて、振動センサ3ごとの表示エリア(1)、(2)および(3)を表示する。例えば、図9に示すように、表示画面4Bにおいて、表示エリア(1)が最も外側に表示され、表示エリア(1)の内側に表示エリア(2)が表示され、表示エリア(3)が最も内側に表示される FIG. 9 is a diagram showing an example of a guideline display of the vibration state of the equipment 2 in the second embodiment, and is a guideline display showing the vibration state detected from the three equipments 2 by the three vibration sensors 3. The display processing unit 132A displays the display areas (1), (2), and (3) for each vibration sensor 3 on the display screen 4B of the display device 4. For example, as shown in FIG. 9, on the display screen 4B, the display area (1) is displayed on the outermost side, the display area (2) is displayed on the inner side of the display area (1), and the display area (3) is the most. Displayed inside
 表示処理部132Aは、表示画面4Bの表示エリア(1)において、表示周期ごとに、第1の指針画像A(1)を指針振れ幅の中央位置に表示し、第2の指針画像B(1)を指針振れ幅の下限位置に表示し、第3の指針画像C(1)を指針振れ幅の上限位置に表示する。さらに、表示処理部132Aは、表示画面4Bの表示エリア(1)において、第1の指針画像A(1)、第2の指針画像B(1)および第3の指針画像C(1)に加え、異常判定レベル画像D1(1)およびD2(1)を表示する。異常判定レベル画像D1(1)およびD2(1)は、表示エリア(1)に対応する振動センサ3が装着された設備2が、異常な状態であると判定される振動レベルを示す目盛り画像である。図9において、指針振れ幅は、第2の指針画像B(1)と第3の指針画像C(1)との間の両矢印で表現されている。 The display processing unit 132A displays the first pointer image A (1) at the center position of the pointer swing width in the display area (1) of the display screen 4B for each display cycle, and the second pointer image B (1). ) Is displayed at the lower limit position of the pointer swing width, and the third pointer image C (1) is displayed at the upper limit position of the pointer swing width. Further, the display processing unit 132A adds the first pointer image A (1), the second pointer image B (1), and the third pointer image C (1) in the display area (1) of the display screen 4B. , Abnormality determination level images D1 (1) and D2 (1) are displayed. Abnormality determination level images D1 (1) and D2 (1) are scale images showing the vibration level at which the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (1) is determined to be in an abnormal state. be. In FIG. 9, the pointer swing width is represented by a double-headed arrow between the second pointer image B (1) and the third pointer image C (1).
 表示処理部132Aは、表示エリア(1)に対応する振動センサ3によって検出された振動のレベルに応じて、第1の指針画像A(1)を表示する中央位置と、第2の指針画像B(1)を表示する下限位置と、第3の指針画像C(1)を表示する上限位置とを変更する。例えば、設備2が回転機械である場合、設備2には、その動作に応じた振動が発生するが、設備2が停止状態であれば、その動作に応じた振動も発生しない。これにより、点検作業者は、表示周期ごとの第1の指針画像A(1)、第2の指針画像B(1)および第3の指針画像C(1)の位置の変化を視認ことによって、設備2が稼働状態であると容易に判断できる。また、第1の指針画像A(1)、第2の指針画像B(1)および第3の指針画像C(1)が0表示であれば、点検作業者は設備2が停止状態であると判断できる。 The display processing unit 132A has a center position for displaying the first pointer image A (1) and a second pointer image B according to the level of vibration detected by the vibration sensor 3 corresponding to the display area (1). The lower limit position for displaying (1) and the upper limit position for displaying the third pointer image C (1) are changed. For example, when the equipment 2 is a rotary machine, vibration corresponding to the operation is generated in the equipment 2, but when the equipment 2 is stopped, vibration corresponding to the operation is not generated. As a result, the inspection worker visually recognizes the change in the positions of the first pointer image A (1), the second pointer image B (1), and the third pointer image C (1) for each display cycle. It can be easily determined that the equipment 2 is in an operating state. Further, if the first pointer image A (1), the second pointer image B (1), and the third pointer image C (1) are displayed as 0, the inspection worker indicates that the equipment 2 is stopped. I can judge.
 また、表示処理部132Aは、異常判定レベル画像D1(1)または異常判定レベル画像D2(1)が示す振動レベルに基づいて、第1の指針画像A(1)、第2の指針画像B(1)または第3の指針画像C(1)の少なくとも一つに対応する値が、設備2が異常な状態であると判定される値になった場合、実施の形態1と同様な手順および内容で、第1の指針画像A(1)、第2の指針画像B(1)、第3の指針画像C(1)、異常判定レベル画像D1(1)または異常判定レベル画像D2(1)のうち少なくとも一つの表示態様を変化させる。 Further, the display processing unit 132A has a first pointer image A (1) and a second pointer image B (1) based on the vibration level indicated by the abnormality determination level image D1 (1) or the abnormality determination level image D2 (1). When the value corresponding to at least one of the 1) or the third guideline image C (1) becomes a value at which the equipment 2 is determined to be in an abnormal state, the procedure and contents are the same as those in the first embodiment. Then, of the first pointer image A (1), the second pointer image B (1), the third pointer image C (1), the abnormality determination level image D1 (1) or the abnormality determination level image D2 (1). At least one of them is changed in the display mode.
 設備2の点検作業者は、表示画面4Bの表示エリア(1)における指針画像または異常判定レベル画像の表示態様の変化を視認することによって、表示エリア(1)に対応する振動センサ3が装着された設備2に関する専門的な知識または点検経験が少ない場合であっても、設備2が異常状態であるか否かを容易に判断することが可能である。 The inspection worker of the equipment 2 is equipped with the vibration sensor 3 corresponding to the display area (1) by visually recognizing the change in the display mode of the pointer image or the abnormality determination level image in the display area (1) of the display screen 4B. Even if there is little specialized knowledge or inspection experience regarding the equipment 2, it is possible to easily determine whether or not the equipment 2 is in an abnormal state.
 振動状態表示装置13Aは、表示画面4Bの表示エリア(1)において、表示周期の時間内で、第1の指針画像A(1)が、第2の指針画像B(1)および第3の指針画像C(1)よりも長く表示されるように、第1の指針画像A(1)、第2の指針画像B(1)および第3の指針画像C(1)を切り替えて表示する。点検作業者は、表示周期の時間内で最も長く表示される第1の指針画像A(1)に注目することによって、表示エリア(1)に対応する振動センサ3が装着された設備2に発生する振動における、平均値を基準とした振動レベルの変動を容易に認識できる。 In the vibration state display device 13A, in the display area (1) of the display screen 4B, the first pointer image A (1) is the second pointer image B (1) and the third pointer within the time of the display cycle. The first pointer image A (1), the second pointer image B (1), and the third pointer image C (1) are switched and displayed so that they are displayed longer than the image C (1). By paying attention to the first pointer image A (1) that is displayed for the longest time within the display cycle, the inspection worker generates the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (1). It is possible to easily recognize the fluctuation of the vibration level based on the average value in the vibration.
 表示処理部132Aは、表示画面4Bの表示エリア(2)において、表示周期ごとに、第1の指針画像A(2)を指針振れ幅の中央位置に表示し、第2の指針画像B(2)を指針振れ幅の下限位置に表示し、第3の指針画像C(2)を指針振れ幅の上限位置に表示する。さらに、表示処理部132Aは、表示画面4Bの表示エリア(2)において、第1の指針画像A(2)、第2の指針画像B(2)および第3の指針画像C(2)に加え、異常判定レベル画像D1(2)およびD2(2)を表示する。異常判定レベル画像D1(2)およびD2(2)は、表示エリア(2)に対応する振動センサ3が装着された設備2が、異常な状態であると判定される振動レベルを示す目盛り画像である。なお、第2の指針画像B(2)と第3の指針画像C(2)との間の両矢印が、指針振れ幅を表している。 The display processing unit 132A displays the first pointer image A (2) at the center position of the pointer swing width in the display area (2) of the display screen 4B for each display cycle, and the second pointer image B (2). ) Is displayed at the lower limit position of the pointer swing width, and the third pointer image C (2) is displayed at the upper limit position of the pointer swing width. Further, the display processing unit 132A adds the first pointer image A (2), the second pointer image B (2), and the third pointer image C (2) in the display area (2) of the display screen 4B. , Abnormality determination level images D1 (2) and D2 (2) are displayed. Abnormality determination level images D1 (2) and D2 (2) are scale images showing the vibration level at which the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (2) is determined to be in an abnormal state. be. The double-headed arrow between the second pointer image B (2) and the third pointer image C (2) indicates the pointer swing width.
 表示処理部132Aは、表示エリア(1)と同様に、表示エリア(2)に対応する振動センサ3によって検出された振動の表示周期ごとのレベルに応じて、第1の指針画像A(2)を表示する中央位置と、第2の指針画像B(2)を表示する下限位置と、第3の指針画像C(2)を表示する上限位置を変更する。点検作業者は、表示周期ごとの第1の指針画像A(2)、第2の指針画像B(2)および第3の指針画像C(2)の位置の変化を視認ことによって、設備2が稼働状態であると容易に判断できる。また、第1の指針画像A(2)、第2の指針画像B(2)および第3の指針画像C(2)が0表示である場合に、点検作業者は、設備2が停止状態であると判断できる。 Similar to the display area (1), the display processing unit 132A has the first pointer image A (2) according to the level of the vibration detected by the vibration sensor 3 corresponding to the display area (2) for each display cycle. The center position for displaying the second pointer image B (2), the lower limit position for displaying the second pointer image B (2), and the upper limit position for displaying the third pointer image C (2) are changed. The inspection worker visually recognizes the change in the position of the first pointer image A (2), the second pointer image B (2), and the third pointer image C (2) for each display cycle, so that the equipment 2 can perform the equipment 2. It can be easily determined that it is in an operating state. Further, when the first pointer image A (2), the second pointer image B (2), and the third pointer image C (2) are displayed as 0, the inspection worker can see that the equipment 2 is stopped. It can be judged that there is.
 また、表示処理部132Aは、異常判定レベル画像D1(2)または異常判定レベル画像D2(2)が示す振動レベルに基づいて、第1の指針画像A(2)、第2の指針画像B(2)または第3の指針画像C(2)の少なくとも一つに対応する値が、設備2が異常な状態であると判定される値になった場合、実施の形態1と同様な手順および内容で、第1の指針画像A(2)、第2の指針画像B(2)、第3の指針画像C(2)、異常判定レベル画像D1(2)または異常判定レベル画像D2(2)のうち少なくとも一つの表示態様を変化させる。 Further, the display processing unit 132A has a first pointer image A (2) and a second pointer image B (2) based on the vibration level indicated by the abnormality determination level image D1 (2) or the abnormality determination level image D2 (2). When the value corresponding to at least one of the 2) or the third guideline image C (2) becomes a value at which the equipment 2 is determined to be in an abnormal state, the procedure and contents are the same as those in the first embodiment. Then, of the first pointer image A (2), the second pointer image B (2), the third pointer image C (2), the abnormality determination level image D1 (2) or the abnormality determination level image D2 (2). At least one of them is changed in the display mode.
 設備2の点検作業者は、表示画面4Bの表示エリア(2)における指針画像または異常判定レベル画像の表示態様の変化を視認することによって、表示エリア(2)に対応する振動センサ3が装着された設備2に関する専門的な知識または点検経験が少ない場合であっても、設備2が異常状態であるか否かを容易に判断することが可能である。 The inspection worker of the equipment 2 is equipped with the vibration sensor 3 corresponding to the display area (2) by visually recognizing the change in the display mode of the pointer image or the abnormality determination level image in the display area (2) of the display screen 4B. Even if there is little specialized knowledge or inspection experience regarding the equipment 2, it is possible to easily determine whether or not the equipment 2 is in an abnormal state.
 振動状態表示装置13Aは、表示画面4Bの表示エリア(2)において、表示周期の時間内で、第1の指針画像A(2)が、第2の指針画像B(2)および第3の指針画像C(2)よりも長く表示されるように、第1の指針画像A(2)、第2の指針画像B(2)および第3の指針画像C(2)を切り替えて表示する。点検作業者は、表示周期の時間内で最も長く表示される第1の指針画像A(2)に注目することによって、表示エリア(2)に対応する振動センサ3が装着された設備2に発生する振動における、平均値を基準とした振動レベルの変動を容易に認識できる。 In the vibration state display device 13A, in the display area (2) of the display screen 4B, the first pointer image A (2) is the second pointer image B (2) and the third pointer within the time of the display cycle. The first pointer image A (2), the second pointer image B (2), and the third pointer image C (2) are switched and displayed so that they are displayed longer than the image C (2). The inspection worker pays attention to the first pointer image A (2) that is displayed for the longest time within the display cycle, so that the inspection worker generates the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (2). It is possible to easily recognize the fluctuation of the vibration level based on the average value in the vibration.
 表示処理部132Aは、表示画面4Bの表示エリア(3)において、表示周期ごとに、第1の指針画像A(3)を指針振れ幅の中央位置に表示し、第2の指針画像B(3)を指針振れ幅の下限位置に表示し、第3の指針画像C(3)を指針振れ幅の上限位置に表示する。さらに、表示処理部132Aは、表示画面4Bの表示エリア(3)において、第1の指針画像A(3)、第2の指針画像B(3)および第3の指針画像C(3)に加え、異常判定レベル画像D1(3)およびD2(3)を表示する。異常判定レベル画像D1(3)およびD2(3)は、表示エリア(3)に対応する振動センサ3が装着された設備2が、異常な状態であると判定される振動レベルを示す目盛り画像である。なお、第2の指針画像B(3)と第3の指針画像C(3)との間の両矢印が、指針振れ幅を表している。 The display processing unit 132A displays the first pointer image A (3) at the center position of the pointer swing width in the display area (3) of the display screen 4B for each display cycle, and the second pointer image B (3). ) Is displayed at the lower limit position of the pointer swing width, and the third pointer image C (3) is displayed at the upper limit position of the pointer swing width. Further, the display processing unit 132A adds the first pointer image A (3), the second pointer image B (3), and the third pointer image C (3) in the display area (3) of the display screen 4B. , Abnormality determination level images D1 (3) and D2 (3) are displayed. Abnormality determination level images D1 (3) and D2 (3) are scale images showing the vibration level at which the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (3) is determined to be in an abnormal state. be. The double-headed arrow between the second pointer image B (3) and the third pointer image C (3) indicates the pointer swing width.
 表示処理部132Aは、表示エリア(1)および表示エリア(2)と同様に、表示エリア(3)に対応する振動センサ3によって検出された振動のレベルに応じて、第1の指針画像A(3)を表示する中央位置と、第2の指針画像B(3)を表示する下限位置と、第3の指針画像C(3)を表示する上限位置を変更する。点検作業者は、表示周期ごとの第1の指針画像A(3)、第2の指針画像B(3)および第3の指針画像C(3)の位置の変化を視認ことによって、設備2が稼働状態であると容易に判断できる。また、第1の指針画像A(3)、第2の指針画像B(3)および第3の指針画像C(3)が0表示である場合、点検作業者は、設備2が停止状態であると判断できる。 Similar to the display area (1) and the display area (2), the display processing unit 132A has the first pointer image A (1) according to the level of vibration detected by the vibration sensor 3 corresponding to the display area (3). The center position for displaying 3), the lower limit position for displaying the second pointer image B (3), and the upper limit position for displaying the third pointer image C (3) are changed. The inspection worker visually recognizes the change in the positions of the first pointer image A (3), the second pointer image B (3), and the third pointer image C (3) for each display cycle, so that the equipment 2 can perform the equipment 2. It can be easily determined that it is in an operating state. Further, when the first pointer image A (3), the second pointer image B (3), and the third pointer image C (3) are displayed as 0, the inspection worker has stopped the equipment 2. Can be judged.
 また、表示処理部132Aは、異常判定レベル画像D1(3)または異常判定レベル画像D2(3)が示す振動レベルに基づいて、第1の指針画像A(3)、第2の指針画像B(3)または第3の指針画像C(3)の少なくとも一つに対応する値が、設備2が異常な状態であると判定される値になった場合、実施の形態1と同様な手順および内容で、第1の指針画像A(3)、第2の指針画像B(3)、第3の指針画像C(3)、異常判定レベル画像D1(3)または異常判定レベル画像D2(3)のうち少なくとも一つの表示態様を変化させる。 Further, the display processing unit 132A has a first pointer image A (3) and a second pointer image B (3) based on the vibration level indicated by the abnormality determination level image D1 (3) or the abnormality determination level image D2 (3). When the value corresponding to at least one of the 3) or the third guideline image C (3) becomes a value at which the equipment 2 is determined to be in an abnormal state, the procedure and contents are the same as those in the first embodiment. Then, the first pointer image A (3), the second pointer image B (3), the third pointer image C (3), the abnormality determination level image D1 (3), or the abnormality determination level image D2 (3). At least one of them is changed in the display mode.
 設備2の点検作業者は、表示画面4Bの表示エリア(3)における指針画像または異常判定レベル画像の表示態様の変化を視認することによって、表示エリア(3)に対応する振動センサ3が装着された設備2に関する専門的な知識または点検経験が少ない場合であっても、設備2が異常状態であるか否かを容易に判断することが可能である。なお、指針画像の表示態様は、表示エリア(1)、表示エリア(2)および表示エリア(3)において互いに異なる手順および内容で変化させてもよい。これにより、設備2ごとの振動状態の変化および異常判定の結果が視認しやすくなる。 The inspection worker of the equipment 2 is equipped with the vibration sensor 3 corresponding to the display area (3) by visually recognizing the change in the display mode of the pointer image or the abnormality determination level image in the display area (3) of the display screen 4B. Even if there is little specialized knowledge or inspection experience regarding the equipment 2, it is possible to easily determine whether or not the equipment 2 is in an abnormal state. The display mode of the pointer image may be changed in the display area (1), the display area (2), and the display area (3) by different procedures and contents. This makes it easier to visually recognize the change in the vibration state of each equipment 2 and the result of the abnormality determination.
 振動状態表示装置13Aは、表示画面4Bの表示エリア(3)において、表示周期の時間内で、第1の指針画像A(3)が、第2の指針画像B(3)および第3の指針画像C(3)よりも長く表示されるように、第1の指針画像A(3)、第2の指針画像B(3)および第3の指針画像C(3)を切り替えて表示する。点検作業者は、表示周期の時間内で最も長く表示される第1の指針画像A(3)に注目することによって、表示エリア(3)に対応する振動センサ3が装着された設備2に発生する振動における、平均値を基準とした振動レベルの変動を容易に認識できる。 In the vibration state display device 13A, in the display area (3) of the display screen 4B, the first pointer image A (3) is the second pointer image B (3) and the third pointer within the time of the display cycle. The first pointer image A (3), the second pointer image B (3), and the third pointer image C (3) are switched and displayed so that they are displayed longer than the image C (3). The inspection worker pays attention to the first pointer image A (3), which is displayed for the longest time within the display cycle, and is generated in the equipment 2 equipped with the vibration sensor 3 corresponding to the display area (3). It is possible to easily recognize the fluctuation of the vibration level based on the average value in the vibration.
 振動状態表示装置13Aにおける画像生成部131Aおよび表示処理部132Aの機能は、振動状態表示装置13と同様に、処理回路によって実現される。すなわち、振動状態表示装置13Aは、振動センサ3ごとに、図2に示した一連の処理を実行するための処理回路を備える。処理回路は、図7Aに示したハードウェアの処理回路102であってもよいし、図7Bに示したメモリ104に記憶されたプログラムを実行するプロセッサ103であってもよい。 The functions of the image generation unit 131A and the display processing unit 132A in the vibration state display device 13A are realized by the processing circuit as in the vibration state display device 13. That is, the vibration state display device 13A includes a processing circuit for executing a series of processing shown in FIG. 2 for each vibration sensor 3. The processing circuit may be the hardware processing circuit 102 shown in FIG. 7A, or may be the processor 103 that executes the program stored in the memory 104 shown in FIG. 7B.
 以上のように、実施の形態2に係る振動状態表示装置13Aにおいて、画像生成部131Aは、複数の振動センサ3によって検出された1つまたは複数の設備2に発生した振動の検出信号がアナログデジタル変換されたデジタルデータの平均値、最小値および最大値を取得し、平均値に対応付けた第1の指針画像、最小値に対応付けた第2の指針画像および最大値に対応付けた第3の指針画像を、振動センサ3ごとに生成する。表示処理部132Aは、表示装置4の表示画面4Bの振動センサ3ごとの表示エリア(1)~(3)において、表示周期ごとに、第1の指針画像を指針振れ幅の中央位置に表示し、第2の指針画像を指針振れ幅の下限位置に表示し、第3の指針画像を指針振れ幅の上限位置に表示する。点検作業者は、表示装置4の表示画面4Bを参照することで、振動センサ3ごとおよび表示周期ごとの、振動レベルの平均値、最小値および最大値の変動を容易に認識できる。これにより、振動状態表示装置13Aは、設備2の振動状態を直感的に認識することが可能である。 As described above, in the vibration state display device 13A according to the second embodiment, in the image generation unit 131A, the detection signal of the vibration generated in one or a plurality of equipments 2 detected by the plurality of vibration sensors 3 is analog digital. The first pointer image associated with the average value, the second pointer image associated with the minimum value, and the third pointer image associated with the maximum value obtained by acquiring the average value, the minimum value, and the maximum value of the converted digital data. The pointer image of is generated for each vibration sensor 3. The display processing unit 132A displays the first pointer image at the center position of the pointer swing width for each display cycle in the display areas (1) to (3) for each vibration sensor 3 on the display screen 4B of the display device 4. , The second pointer image is displayed at the lower limit position of the pointer swing width, and the third pointer image is displayed at the upper limit position of the pointer swing width. By referring to the display screen 4B of the display device 4, the inspection worker can easily recognize the fluctuation of the average value, the minimum value, and the maximum value of the vibration level for each vibration sensor 3 and each display cycle. As a result, the vibration state display device 13A can intuitively recognize the vibration state of the equipment 2.
 実施の形態2に係る振動状態表示装置13Aにおいて、表示処理部132Aは、表示周期の時間内で、第1の指針画像が、第2の指針画像および第3の指針画像よりも長く表示されるように、第1の指針画像、第2の指針画像および第3の指針画像を切り替えて表示する。点検作業者は、表示周期の時間内で最も長く表示される第1の指針画像に注目することで、1つまたは複数の設備2に発生する振動における平均値を基準とした振動レベルの変動を容易に認識できる。これにより、振動状態表示装置13Aは、1つまたは複数の設備2の振動状態を直感的に認識することが可能である。 In the vibration state display device 13A according to the second embodiment, the display processing unit 132A displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle. As described above, the first pointer image, the second pointer image, and the third pointer image are switched and displayed. By paying attention to the first pointer image displayed for the longest time in the display cycle, the inspection worker can change the vibration level based on the average value in the vibration generated in one or more equipments 2. Easy to recognize. Thereby, the vibration state display device 13A can intuitively recognize the vibration state of one or a plurality of equipments 2.
実施の形態3.
 図10は、実施の形態3に係る振動検出装置1Bの構成を示すブロック図である。図10において、振動検出装置1Bは、振動センサ3を用いて、設備2に発生した振動を検出し、検出した振動の検出信号に基づいて、設備2に発生した、様々な共振周波数の振動の状態を、表示装置4に表示する。
Embodiment 3.
FIG. 10 is a block diagram showing the configuration of the vibration detection device 1B according to the third embodiment. In FIG. 10, the vibration detection device 1B detects the vibration generated in the equipment 2 by using the vibration sensor 3, and based on the detected vibration detection signal, the vibration of various resonance frequencies generated in the equipment 2 The status is displayed on the display device 4.
 図10において、振動検出装置1Bは、A/D変換部11、データ処理部12B、振動状態表示装置13BおよびFFT部14を備える。A/D変換部11は、振動センサ3によって検出された振動の検出信号をA/D変換してデジタルデータの時系列を生成する。FFT部14は、A/D変換部11によってA/D変換された振動レベルを示すデジタルデータを高速フーリエ変換(FFT)することにより、振動センサ3がカバーする全ての周波数領域の信号を生成するフーリエ変換部である。 In FIG. 10, the vibration detection device 1B includes an A / D conversion unit 11, a data processing unit 12B, a vibration state display device 13B, and an FFT unit 14. The A / D conversion unit 11 A / D converts the vibration detection signal detected by the vibration sensor 3 to generate a time series of digital data. The FFT unit 14 generates signals in all frequency regions covered by the vibration sensor 3 by performing a fast Fourier transform (FFT) on digital data indicating the A / D converted vibration level by the A / D conversion unit 11. It is a Fourier transform part.
 データ処理部12Bは、周波数領域の信号から、共振周波数ごとの信号を抽出し、抽出した共振周波数ごとの信号のうち、表示周期の時間(例えば0.4秒)内にサンプリングされた信号の平均値、最小値および最大値を算出し、最初の表示周期の時間が経過した後は、データ更新周期(例えば、30秒)ごとにサンプリングされた信号の平均値、最小値および最大値を算出する。なお、データ処理部12Bは、最小値および最大値の代わりに、標準偏差σを算出してもよい。 The data processing unit 12B extracts a signal for each resonance frequency from the signal in the frequency domain, and among the extracted signals for each resonance frequency, the average of the signals sampled within the display cycle time (for example, 0.4 seconds). Calculate the value, minimum and maximum values, and after the time of the first display cycle has elapsed, calculate the average, minimum and maximum values of the signals sampled for each data update cycle (eg, 30 seconds). .. The data processing unit 12B may calculate the standard deviation σ instead of the minimum value and the maximum value.
 データ処理部12Bと振動状態表示装置13Bとの間は、有線または無線の通信回線を介して通信接続されている。データ処理部12Bから送信されたデータは、データ処理部12B側の通信インタフェースによって中継されて通信回線へ送信され、当該通信回線を伝搬したデータは、振動状態表示装置13B側の通信インタフェースによって中継されて振動状態表示装置13Bに受信される。 A communication connection is made between the data processing unit 12B and the vibration status display device 13B via a wired or wireless communication line. The data transmitted from the data processing unit 12B is relayed by the communication interface on the data processing unit 12B side and transmitted to the communication line, and the data propagated on the communication line is relayed by the communication interface on the vibration state display device 13B side. Is received by the vibration status display device 13B.
 振動状態表示装置13Bは、画像生成部131Bおよび表示処理部132Bを備える。画像生成部131Bは、データ処理部12Bによって算出された共振周波数ごとの信号の平均値μ、最小値および最大値(または標準偏差σ)を取得し、平均値μに対応付けた第1の指針画像、最小値(またはμ-3σ)に対応付けた第2の指針画像、および最大値(またはμ+3σ)に対応付けた第3の指針画像を生成する。表示処理部132Bは、表示装置4の表示画面の各共振周波数の表示エリアにおいて、表示周期ごとに、第1の指針画像を指針振れ幅の中央位置に表示し、第2の指針画像を指針振れ幅の下限位置に表示し、第3の指針画像を指針振れ幅の上限位置に表示する。 The vibration state display device 13B includes an image generation unit 131B and a display processing unit 132B. The image generation unit 131B acquires the average value μ, the minimum value, and the maximum value (or standard deviation σ) of the signal for each resonance frequency calculated by the data processing unit 12B, and the first guideline associated with the average value μ. An image, a second pointer image associated with the minimum value (or μ-3σ), and a third pointer image associated with the maximum value (or μ + 3σ) are generated. The display processing unit 132B displays the first pointer image at the center position of the pointer shake width in each display cycle in the display area of each resonance frequency on the display screen of the display device 4, and displays the second pointer image at the center position of the pointer shake width. It is displayed at the lower limit position of the width, and the third pointer image is displayed at the upper limit position of the pointer swing width.
 また、表示処理部132Bは、表示装置4の表示画面の各共振周波数の表示エリアにおいて、第1の指針画像、第2の指針画像および第3の指針画像加え、異常判定レベル画像を表示してもよい。異常判定レベル画像は、設備2が異常な状態であると判定される振動レベルを示す目盛り画像である。 Further, the display processing unit 132B displays an abnormality determination level image in addition to the first pointer image, the second pointer image, and the third pointer image in the display area of each resonance frequency on the display screen of the display device 4. May be good. The abnormality determination level image is a scale image showing the vibration level at which the equipment 2 is determined to be in an abnormal state.
 表示処理部132Bは、振動センサ3によって検出された振動のレベルに応じて、第1の指針画像を表示する中央位置、第2の指針画像を表示する下限位置および第3の指針画像を表示する上限位置を変更する。点検作業者は、第1の指針画像、第2の指針画像および第3の指針画像の位置の変化を視認ことにより、設備2が稼働状態であると容易に判断できる。また、第1の指針画像、第2の指針画像および第3の指針画像が0表示であれば、点検作業者は、設備2が停止状態であると判断できる。 The display processing unit 132B displays the center position for displaying the first pointer image, the lower limit position for displaying the second pointer image, and the third pointer image according to the level of vibration detected by the vibration sensor 3. Change the upper limit position. The inspection worker can easily determine that the equipment 2 is in an operating state by visually recognizing the changes in the positions of the first pointer image, the second pointer image, and the third pointer image. Further, if the first pointer image, the second pointer image, and the third pointer image are displayed as 0, the inspection worker can determine that the equipment 2 is in the stopped state.
 また、表示処理部132Bは、異常判定レベル画像が示す振動レベルに基づいて、第1の指針画像、第2の指針画像または第3の指針画像のうちの少なくとも一つに対応する値が、設備2が異常な状態であると判定される値になった場合、実施の形態1と同様な手順および内容で、第1の指針画像、第2の指針画像、第3の指針画像または異常判定レベル画像のうちの少なくとも一つの表示態様を変化させる。点検作業者は、共振周波数ごとの表示エリアにおいて指針画像または異常判定レベル画像の表示態様の変化を視認することによって、設備2に関する専門的な知識または点検経験が少ない場合であっても、設備2が異常状態であるか否かを容易に判断することが可能である。 Further, in the display processing unit 132B, the value corresponding to at least one of the first pointer image, the second pointer image, and the third pointer image is set based on the vibration level indicated by the abnormality determination level image. When 2 becomes a value determined to be in an abnormal state, the procedure and contents are the same as those in the first embodiment, and the first guideline image, the second guideline image, the third guideline image, or the abnormality determination level is used. The display mode of at least one of the images is changed. By visually recognizing the change in the display mode of the pointer image or the abnormality determination level image in the display area for each resonance frequency, the inspection worker can visually recognize the change in the display mode of the equipment 2 even if he / she has little specialized knowledge or inspection experience regarding the equipment 2. It is possible to easily determine whether or not is in an abnormal state.
 さらに、振動状態表示装置13Bは、各共振周波数の表示エリアにおいて、表示周期の時間内で、第1の指針画像が、第2の指針画像および第3の指針画像よりも長く表示されるように第1の指針画像、第2の指針画像および第3の指針画像を切り替えて表示する。点検作業者は、表示周期の時間内で最も長く表示される第1の指針画像に注目することにより、様々な共振周波数ごとの振動における、平均値を基準とした振動レベルの変動を容易に認識できる。 Further, the vibration state display device 13B displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle in the display area of each resonance frequency. The first pointer image, the second pointer image, and the third pointer image are switched and displayed. By paying attention to the first pointer image displayed for the longest time in the display cycle, the inspection worker can easily recognize the fluctuation of the vibration level based on the average value in the vibration at various resonance frequencies. can.
 なお、振動状態表示装置13Bは複数の振動センサ3を備えてもよい。この場合、個々の振動センサ3から出力された振動の検出信号にA/D変換およびFFTが行われ、共振周波数ごとの信号の平均値μ、最小値および最大値(または標準偏差σ)が算出される。このように構成することで、複数の設備2に発生した振動の強さ(振動レベル)と周波数(共振周波数)に基づいた異常判定が可能である。 The vibration state display device 13B may be provided with a plurality of vibration sensors 3. In this case, A / D conversion and FFT are performed on the vibration detection signals output from the individual vibration sensors 3, and the average value μ, minimum value and maximum value (or standard deviation σ) of the signals for each resonance frequency are calculated. Will be done. With this configuration, it is possible to determine the abnormality based on the strength (vibration level) and frequency (resonance frequency) of the vibration generated in the plurality of equipment 2.
 振動状態表示装置13Bにおける画像生成部131Bおよび表示処理部132Bの機能は、振動状態表示装置13と同様に、処理回路によって実現される。すなわち、振動状態表示装置13Bは、共振周波数ごとに、図2に示した一連の処理を実行するための処理回路を備える。処理回路は、図7Aに示したハードウェアの処理回路102であってもよいし、図7Bに示したメモリ104に記憶されたプログラムを実行するプロセッサ103であってもよい。 The functions of the image generation unit 131B and the display processing unit 132B in the vibration state display device 13B are realized by the processing circuit as in the vibration state display device 13. That is, the vibration state display device 13B includes a processing circuit for executing a series of processing shown in FIG. 2 for each resonance frequency. The processing circuit may be the hardware processing circuit 102 shown in FIG. 7A, or may be the processor 103 that executes the program stored in the memory 104 shown in FIG. 7B.
 以上のように、実施の形態3に係る振動状態表示装置13Bにおいて、画像生成部131Bは、共振周波数ごとの信号の平均値μ、最小値および最大値(または標準偏差σ)を取得し、平均値μに対応付けた第1の指針画像、最小値(またはμ-3σ)に対応付けた第2の指針画像および最大値(またはμ+3σ)に対応付けた第3の指針画像を生成する。表示処理部132Bは、共振周波数ごとの表示エリアにおいて、表示周期ごとに、第1の指針画像を指針振れ幅の中央位置に表示し、第2の指針画像を指針振れ幅の下限位置に表示し、第3の指針画像を指針振れ幅の上限位置に表示する。点検作業者は、表示装置4の表示画面を参照することで、共振周波数ごとおよび表示周期ごとの、振動レベルの平均値、最小値および最大値の変動を容易に認識できる。これにより、振動状態表示装置13Bは、設備2の振動状態を直感的に認識することが可能である。 As described above, in the vibration state display device 13B according to the third embodiment, the image generation unit 131B acquires the average value μ, the minimum value and the maximum value (or standard deviation σ) of the signals for each resonance frequency, and averages them. A first pointer image associated with the value μ, a second pointer image associated with the minimum value (or μ-3σ), and a third pointer image associated with the maximum value (or μ + 3σ) are generated. The display processing unit 132B displays the first pointer image at the center position of the pointer swing width and the second pointer image at the lower limit position of the pointer swing width in the display area for each resonance frequency for each display cycle. , The third pointer image is displayed at the upper limit position of the pointer swing width. By referring to the display screen of the display device 4, the inspection worker can easily recognize the fluctuation of the average value, the minimum value, and the maximum value of the vibration level for each resonance frequency and each display cycle. As a result, the vibration state display device 13B can intuitively recognize the vibration state of the equipment 2.
 実施の形態3に係る振動状態表示装置13Bにおいて、表示処理部132Bは、表示周期の時間内で、第1の指針画像が、第2の指針画像および第3の指針画像よりも長く表示されるように、第1の指針画像、第2の指針画像および第3の指針画像を切り替えて表示する。点検作業者は、表示周期の時間内で最も長く表示される第1の指針画像に注目することで、設備2に発生する共振周波数ごとの振動における平均値を基準とした振動レベルの変動を、容易に認識することができる。これにより、振動状態表示装置13Bは、設備2の振動状態を直感的に認識することが可能である。 In the vibration state display device 13B according to the third embodiment, the display processing unit 132B displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle. As described above, the first pointer image, the second pointer image, and the third pointer image are switched and displayed. By paying attention to the first pointer image displayed for the longest time in the display cycle, the inspection worker can change the vibration level based on the average value of the vibration for each resonance frequency generated in the equipment 2. It can be easily recognized. As a result, the vibration state display device 13B can intuitively recognize the vibration state of the equipment 2.
実施の形態4.
 図11は、実施の形態4に係る振動検出装置1Cの構成を示すブロック図である。図11において、振動検出装置1Cは、AEセンサ3Aを用いて、設備2に発生した振動を検出し、検出した振動の検出信号に基づいて、設備2の振動状態を表示装置4に表示する。AEとは、固体が変形または破壊するときに固体の内部に蓄えられた弾性エネルギーが、弾性波(AE波)として放出される現象である。AEセンサ3Aは、設備2から放出されたAE波の正弦波信号を検出するカンチレバー構造を有する。カンチレバー構造は、Q値が高い圧電材料によって構成された複数のカンチレバーを有した発振構造である。図11において、AEセンサ3Aは、AE波の周波数帯域に個々の共振周波数があるカンチレバー3a、3bおよび3cを備える。
Embodiment 4.
FIG. 11 is a block diagram showing the configuration of the vibration detection device 1C according to the fourth embodiment. In FIG. 11, the vibration detection device 1C detects the vibration generated in the equipment 2 by using the AE sensor 3A, and displays the vibration state of the equipment 2 on the display device 4 based on the detected vibration detection signal. AE is a phenomenon in which elastic energy stored inside a solid is released as an elastic wave (AE wave) when the solid is deformed or destroyed. The AE sensor 3A has a cantilever structure for detecting a sine wave signal of the AE wave emitted from the equipment 2. The cantilever structure is an oscillation structure having a plurality of cantilever made of a piezoelectric material having a high Q value. In FIG. 11, the AE sensor 3A includes cantilever 3a, 3b, and 3c having individual resonance frequencies in the frequency band of the AE wave.
 振動検出装置1Cは、図11に示すようにA/D変換部11a、11bおよび11c、データ処理部12C、振動状態表示装置13CおよびBPF(バンドパスフィルタ)15a、15bおよび15cを備える。振動状態表示装置13Cは、画像生成部131Cおよび表示処理部132Cを備える。BPF15aは、カンチレバー3aの共振周波数の正弦波信号を含む周波数帯域の信号からカンチレバー3aの共振周波数の正弦波信号以外の周波数の信号を除去する。同様に、BPF15bは、カンチレバー3bの共振周波数の正弦波信号を含む周波数帯域の信号からカンチレバー3bの共振周波数の正弦波信号以外の周波数の信号を除去し、BPF15cは、カンチレバー3cの共振周波数の正弦波信号を含む周波数帯域の信号からカンチレバー3cの共振周波数の正弦波信号以外の周波数の信号を除去する。 As shown in FIG. 11, the vibration detection device 1C includes A / D conversion units 11a, 11b and 11c, a data processing unit 12C, a vibration state display device 13C and a BPF (bandpass filter) 15a, 15b and 15c. The vibration state display device 13C includes an image generation unit 131C and a display processing unit 132C. The BPF15a removes a frequency band other than the sinusoidal signal of the resonance frequency of the cantilever 3a from the signal of the frequency band including the sinusoidal signal of the resonance frequency of the cantilever 3a. Similarly, the BPF15b removes a frequency band other than the sinusoidal signal of the resonance frequency of the cantilever 3b from the frequency band signal including the sinusoidal signal of the resonance frequency of the cantilever 3b, and the BPF15c is a sinusoidal of the resonance frequency of the cantilever 3c. A signal having a frequency other than the sinusoidal signal having the resonance frequency of the cantilever 3c is removed from the signal in the frequency band including the wave signal.
 A/D変換部11aは、BPF15aを通過したカンチレバー3aの共振周波数の正弦波信号をA/D変換することにより、振動レベルのデジタルデータの時系列を生成する。A/D変換部11bは、BPF15bを通過したカンチレバー3bの共振周波数の正弦波信号をA/D変換することにより、振動レベルのデジタルデータの時系列を生成し、A/D変換部11cは、BPF15cを通過したカンチレバー3cの共振周波数の正弦波信号をA/D変換することにより、振動レベルのデジタルデータの時系列を生成する。 The A / D conversion unit 11a generates a time series of digital data of vibration level by A / D conversion of a sinusoidal signal having a resonance frequency of the cantilever 3a that has passed through the BPF15a. The A / D conversion unit 11b generates a time series of digital data of vibration level by A / D conversion of a sinusoidal signal of the resonance frequency of the cantilever 3b that has passed through the BPF15b, and the A / D conversion unit 11c generates a time series of vibration level digital data. By A / D conversion of the sinusoidal signal of the resonance frequency of the cantilever 3c that has passed through the BPF15c, a time series of digital data of the vibration level is generated.
 データ処理部12Cは、A/D変換部11aによってA/D変換されたデジタルデータのうち、表示周期の時間(例えば0.4秒)内にサンプリングされたデジタルデータの平均値、最小値および最大値を算出し、データ更新周期の時間(例えば30秒)内にサンプリングされたデジタルデータの平均値、最小値および最大値を算出する。同様に、データ処理部12Cは、A/D変換部11bによってA/D変換されたデジタルデータのうち、表示周期の時間内にサンプリングされたデジタルデータの平均値、最小値および最大値を算出し、データ更新周期の時間内にサンプリングされたデジタルデータの平均値、最小値および最大値を算出する。データ処理部12Cは、A/D変換部11cによってA/D変換されたデジタルデータのうち、表示周期の時間内にサンプリングされたデジタルデータの平均値、最小値および最大値を算出し、データ更新周期の時間内にサンプリングされたデジタルデータの平均値、最小値および最大値を算出する。また、データ処理部12Cは、最小値および最大値の代わりに、標準偏差σを算出してもよい。 The data processing unit 12C has the average value, the minimum value, and the maximum value of the digital data sampled within the time of the display cycle (for example, 0.4 seconds) among the digital data A / D converted by the A / D conversion unit 11a. The value is calculated, and the average value, the minimum value, and the maximum value of the digital data sampled within the time of the data update cycle (for example, 30 seconds) are calculated. Similarly, the data processing unit 12C calculates the average value, the minimum value, and the maximum value of the digital data sampled within the time of the display cycle among the digital data A / D converted by the A / D conversion unit 11b. , Calculates the average, minimum and maximum values of digital data sampled within the time of the data update cycle. The data processing unit 12C calculates the average value, the minimum value, and the maximum value of the digital data sampled within the time of the display cycle among the digital data A / D converted by the A / D conversion unit 11c, and updates the data. Calculate the average, minimum and maximum values of digital data sampled within the time of the cycle. Further, the data processing unit 12C may calculate the standard deviation σ instead of the minimum value and the maximum value.
 データ処理部12Cと振動状態表示装置13Cとの間は、有線または無線の通信回線を介して通信接続されている。データ処理部12Cは、A/D変換部11a、11bおよび11cによってA/D変換されたデジタルデータから算出した振動レベルの平均値、最小値および最大値(または標準偏差σ)をマルチプレクサし、データ処理部12C側の通信インタフェースが中継して通信回線へ送信する。振動状態表示装置13Cは、当該通信回線を伝搬したデータを、振動状態表示装置13C側の通信インタフェースが中継して受信する。 The data processing unit 12C and the vibration status display device 13C are communicated and connected via a wired or wireless communication line. The data processing unit 12C multiplexers the average value, the minimum value and the maximum value (or standard deviation σ) of the vibration level calculated from the digital data A / D converted by the A / D conversion units 11a, 11b and 11c, and the data. The communication interface on the processing unit 12C side relays and transmits to the communication line. The vibration state display device 13C relays and receives the data propagated through the communication line by the communication interface on the vibration state display device 13C side.
 振動状態表示装置13Cは、データ処理部12Cから受信したデータをデマルチプレクサすることにより、カンチレバー3aによって検出された振動についての表示周期ごとの振動レベルの平均値μ、最小値および最大値(または標準偏差σ)と、カンチレバー3bによって検出された振動についての表示周期ごとの振動レベルの平均値μ、最小値および最大値(または標準偏差σ)と、カンチレバー3cによって検出された振動についての表示周期ごとの振動レベルの平均値μ、最小値および最大値(または標準偏差σ)とに分離する。 The vibration state display device 13C demultiplexes the data received from the data processing unit 12C, so that the mean value μ, the minimum value and the maximum value (or standard) of the vibration level for each display cycle for the vibration detected by the cantilever 3a are standard. Deviation σ) and the mean μ, minimum and maximum (or standard deviation σ) of the vibration level for each display cycle for the vibration detected by the cantilever 3b, and for each display cycle for the vibration detected by the cantilever 3c. The vibration level is separated into the mean value μ, the minimum value and the maximum value (or standard deviation σ).
 画像生成部131Cは、カンチレバー3a、3bおよび3cによってそれぞれ検出された振動についての表示周期ごとの振動レベルの平均値μ、最小値および最大値(または標準偏差σ)を取得し、平均値μに対応付けた第1の指針画像、最小値(またはμ-3σ)に対応付けた第2の指針画像、および最大値(またはμ+3σ)に対応付けた第3の指針画像を、表示周期ごとに生成する。 The image generation unit 131C acquires the average value μ, the minimum value and the maximum value (or standard deviation σ) of the vibration level for each display cycle for the vibration detected by the cantilever 3a, 3b and 3c, respectively, and sets the average value μ. A first pointer image associated with the minimum value (or μ-3σ), a second pointer image associated with the minimum value (or μ-3σ), and a third pointer image associated with the maximum value (or μ + 3σ) are generated for each display cycle. do.
 表示処理部132Cは、表示装置4の表示画面のカンチレバー3a、3bおよび3cの個々の共振周波数に対応する表示エリアにおいて、表示周期ごとに、第1の指針画像を指針振れ幅の中央位置に表示し、第2の指針画像を指針振れ幅の下限位置に表示し、第3の指針画像を指針振れ幅の上限位置に表示する。なお、表示処理部132Cは、カンチレバー3a、3bおよび3cの共振周波数ごとの第1の指針画像、第2の指針画像および第3の指針画像加え、異常判定レベル画像を、カンチレバー3a、3bおよび3cの共振周波数ごとの表示エリアに表示してもよい。異常判定レベル画像は、設備2が異常な状態であると判定される振動レベルを示す目盛り画像である。 The display processing unit 132C displays the first pointer image at the center position of the pointer swing width for each display cycle in the display area corresponding to the individual resonance frequencies of the cantilever 3a, 3b, and 3c of the display screen of the display device 4. Then, the second pointer image is displayed at the lower limit position of the pointer swing width, and the third pointer image is displayed at the upper limit position of the pointer swing width. In addition, the display processing unit 132C adds the first pointer image, the second pointer image and the third pointer image for each resonance frequency of the cantilever 3a, 3b and 3c, and adds the abnormality determination level image to the cantilever 3a, 3b and 3c. It may be displayed in the display area for each resonance frequency of. The abnormality determination level image is a scale image showing the vibration level at which the equipment 2 is determined to be in an abnormal state.
 また、表示処理部132Cは、カンチレバー3a、3bおよび3cによって検出された振動の表示周期ごとのレベルに応じて、第1の指針画像を表示する中央位置、第2の指針画像を表示する下限位置および第3の指針画像を表示する上限位置を変更する。点検作業者は、表示周期ごとの第1の指針画像、第2の指針画像および第3の指針画像の位置の変化を視認ことにより、設備2が稼働状態であると容易に判断できる。また、第1の指針画像、第2の指針画像および第3の指針画像が0表示であれば、点検作業者は、設備2が停止状態であると判断できる。 Further, the display processing unit 132C has a center position for displaying the first pointer image and a lower limit position for displaying the second pointer image according to the level of the vibration detected by the cantilever 3a, 3b and 3c for each display cycle. And change the upper limit position to display the third pointer image. The inspection worker can easily determine that the equipment 2 is in the operating state by visually recognizing the change in the positions of the first pointer image, the second pointer image, and the third pointer image for each display cycle. Further, if the first pointer image, the second pointer image, and the third pointer image are displayed as 0, the inspection worker can determine that the equipment 2 is in the stopped state.
 また、表示処理部132Cは、異常判定レベル画像が示す振動レベルに基づいて、第1の指針画像、第2の指針画像または第3の指針画像の少なくとも一つに対応する値が、設備2が異常な状態であると判定される値になった場合、実施の形態1と同様な手順および内容で、第1の指針画像、第2の指針画像、第3の指針画像または異常判定レベル画像のうちの少なくとも一つの表示態様を変化させる。点検作業者は、カンチレバー3a、3bおよび3c共振周波数ごとの表示エリアにおいて、指針画像または異常判定レベル画像の表示態様の変化を視認することで、設備2に関する専門的な知識または点検経験が少ない場合であっても、設備2が異常状態であるか否かを容易に判断することが可能である。 Further, in the display processing unit 132C, the equipment 2 has a value corresponding to at least one of the first pointer image, the second pointer image, and the third pointer image based on the vibration level indicated by the abnormality determination level image. When the value is determined to be an abnormal state, the procedure and contents of the first guideline image, the second guideline image, the third guideline image, or the abnormality determination level image are the same as those in the first embodiment. At least one of them is changed in the display mode. When the inspection worker has little specialized knowledge or inspection experience regarding the equipment 2 by visually recognizing the change in the display mode of the pointer image or the abnormality determination level image in the display area for each cantilever 3a, 3b and 3c resonance frequency. Even so, it is possible to easily determine whether or not the equipment 2 is in an abnormal state.
 振動状態表示装置13Cは、カンチレバー3a、3bおよび3cの共振周波数ごとの表示エリアにおいて、表示周期の時間内で、第1の指針画像が、第2の指針画像および第3の指針画像よりも長く表示されるように、第1の指針画像、第2の指針画像および第3の指針画像を切り替えて表示する。点検作業者は、表示周期の時間内で最も長く表示される第1の指針画像に注目することにより、様々な共振周波数ごとの振動における、平均値を基準とした振動レベルの変動を容易に認識できる。 In the vibration state display device 13C, in the display area for each resonance frequency of the cantilever 3a, 3b and 3c, the first pointer image is longer than the second pointer image and the third pointer image within the time of the display cycle. The first pointer image, the second pointer image, and the third pointer image are switched and displayed so as to be displayed. By paying attention to the first pointer image displayed for the longest time in the display cycle, the inspection worker can easily recognize the fluctuation of the vibration level based on the average value in the vibration at various resonance frequencies. can.
 なお、振動状態表示装置13Cは複数のAEセンサ3Aを備えてもよい。この場合、個々のAEセンサ3Aから出力された振動の検出信号にA/D変換が行われ、カンチレバー3a、3bおよび3cの共振周波数ごとの信号の平均値μ、最小値および最大値(または標準偏差σ)が算出される。このように構成することで、複数の設備2に発生した振動の強さ(振動レベル)と周波数(共振周波数)に基づいた異常判定が可能である。 The vibration state display device 13C may be provided with a plurality of AE sensors 3A. In this case, A / D conversion is performed on the vibration detection signals output from the individual AE sensors 3A, and the mean value μ, minimum value and maximum value (or standard) of the signals for each resonance frequency of the cantilever levers 3a, 3b and 3c are performed. Deviation σ) is calculated. With this configuration, it is possible to determine the abnormality based on the strength (vibration level) and frequency (resonance frequency) of the vibration generated in the plurality of equipment 2.
 振動状態表示装置13Cにおける画像生成部131Cおよび表示処理部132Cの機能は、振動状態表示装置13と同様に、処理回路によって実現される。すなわち、振動状態表示装置13Cは、カンチレバーの共振周波数ごとに、図2に示した一連の処理を実行するための処理回路を備える。処理回路は、図7Aに示したハードウェアの処理回路102であってもよいし、図7Bに示したメモリ104に記憶されたプログラムを実行するプロセッサ103であってもよい。 The functions of the image generation unit 131C and the display processing unit 132C in the vibration state display device 13C are realized by the processing circuit as in the vibration state display device 13. That is, the vibration state display device 13C includes a processing circuit for executing a series of processing shown in FIG. 2 for each resonance frequency of the cantilever. The processing circuit may be the hardware processing circuit 102 shown in FIG. 7A, or may be the processor 103 that executes the program stored in the memory 104 shown in FIG. 7B.
 以上のように、実施の形態4に係る振動状態表示装置13Cにおいて、振動センサは、設備2に発生した振動に応じたAE波を検出するAEセンサ3Aである。画像生成部131Cは、AEセンサ3Aが備えるカンチレバーの共振周波数ごとの信号の平均値μ、最小値および最大値(または標準偏差σ)を取得し、平均値μに対応付けた第1の指針画像、最小値(またはμ-3σ)に対応付けた第2の指針画像および最大値(またはμ+3σ)に対応付けた第3の指針画像を生成する。表示処理部132Cは、カンチレバーの共振周波数ごとの表示エリアにおいて、表示周期ごとに、第1の指針画像を指針振れ幅の中央位置に表示し、第2の指針画像を指針振れ幅の下限位置に表示し、第3の指針画像を指針振れ幅の上限位置に表示する。点検作業者は、表示装置4の表示画面を参照することによって、カンチレバーの共振周波数ごとおよび表示周期ごとの、振動レベルの平均値、最小値および最大値の変動を容易に認識できる。これにより、振動状態表示装置13Cは、設備2の振動状態を直感的に認識することが可能である。 As described above, in the vibration state display device 13C according to the fourth embodiment, the vibration sensor is an AE sensor 3A that detects an AE wave corresponding to the vibration generated in the equipment 2. The image generation unit 131C acquires the average value μ, the minimum value, and the maximum value (or standard deviation σ) of the signal for each resonance frequency of the cantilever included in the AE sensor 3A, and associates the first pointer image with the average value μ. , Generates a second pointer image associated with the minimum value (or μ-3σ) and a third pointer image associated with the maximum value (or μ + 3σ). In the display area for each resonance frequency of the cantilever, the display processing unit 132C displays the first pointer image at the center position of the pointer swing width and the second pointer image at the lower limit position of the pointer swing width for each display cycle. It is displayed, and the third pointer image is displayed at the upper limit position of the pointer swing width. By referring to the display screen of the display device 4, the inspection worker can easily recognize the fluctuation of the average value, the minimum value, and the maximum value of the vibration level for each resonance frequency and each display cycle of the cantilever. As a result, the vibration state display device 13C can intuitively recognize the vibration state of the equipment 2.
 実施の形態4に係る振動状態表示装置13Cにおいて、表示処理部132Cは、表示周期の時間内で、第1の指針画像が、第2の指針画像および第3の指針画像よりも長く表示されるように、第1の指針画像、第2の指針画像および第3の指針画像を切り替えて表示する。点検作業者は、表示周期の時間内で最も長く表示される第1の指針画像に注目することで、設備2に発生する共振周波数ごとの振動における平均値を基準とした振動レベルの変動を、容易に認識することができる。これにより、振動状態表示装置13Cは、設備2の振動状態を直感的に認識することが可能である。 In the vibration state display device 13C according to the fourth embodiment, the display processing unit 132C displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle. As described above, the first pointer image, the second pointer image, and the third pointer image are switched and displayed. By paying attention to the first pointer image displayed for the longest time in the display cycle, the inspection worker can change the vibration level based on the average value of the vibration for each resonance frequency generated in the equipment 2. It can be easily recognized. As a result, the vibration state display device 13C can intuitively recognize the vibration state of the equipment 2.
 なお、各実施の形態の組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。 It should be noted that it is possible to combine each embodiment, modify any arbitrary component of each embodiment, or omit any component in each of the embodiments.
 本開示に係る振動状態表示装置は、例えば、回転機械の振動状態から劣化または異常を判定する異常判定システムに利用可能である。 The vibration state display device according to the present disclosure can be used, for example, in an abnormality determination system for determining deterioration or abnormality from the vibration state of a rotating machine.
 1,1A~1C 振動検出装置、2 設備、3 振動センサ、3A AEセンサ、3a~3c カンチレバー、4 表示装置、4A,4B 表示画面、11,11A,11a~11c A/D変換部、12,12A~12C データ処理部、13,13A~13C 振動状態表示装置、14 FFT部、15a~15c BPF、100 入力インタフェース、101 出力インタフェース、102 処理回路、103 プロセッサ、104 メモリ、131,131A~131C 画像生成部、132,132A~132C 表示処理部。 1,1A-1C vibration detector, 2 equipment, 3 vibration sensor, 3A AE sensor, 3a-3c cantilever, 4 display device, 4A, 4B display screen, 11,11A, 11a-11c A / D converter, 12, 12A-12C data processing unit, 13,13A-13C vibration status display device, 14 FFT unit, 15a-15c BPF, 100 input interface, 101 output interface, 102 processing circuit, 103 processor, 104 memory, 131, 131A-131C image Generation unit, 132,132A-132C display processing unit.

Claims (21)

  1.  設備に発生した振動の検出信号がアナログデジタル変換されたデジタルデータの平均値、最小値および最大値を取得し、平均値に対応付けた第1の指針画像、最小値に対応付けた第2の指針画像および最大値に対応付けた第3の指針画像を生成する画像生成部と、
     表示装置の表示画面において、表示周期ごとに、前記第1の指針画像を指針振れ幅の中央位置に表示し、前記第2の指針画像を前記指針振れ幅の下限位置に表示し、前記第3の指針画像を前記指針振れ幅の上限位置に表示する表示処理部と、
     を備えたことを特徴とする振動状態表示装置。
    The detection signal of the vibration generated in the equipment acquires the average value, the minimum value and the maximum value of the digital data converted into analog and digital, and the first guideline image associated with the average value and the second pointer image associated with the minimum value. An image generator that generates a pointer image and a third pointer image associated with the maximum value,
    On the display screen of the display device, the first pointer image is displayed at the center position of the pointer swing width, the second pointer image is displayed at the lower limit position of the pointer swing width, and the third pointer image is displayed for each display cycle. A display processing unit that displays the pointer image of the pointer at the upper limit position of the pointer swing width, and
    A vibration status display device characterized by being equipped with.
  2.  前記表示処理部は、前記表示周期の時間内で、前記第1の指針画像が、前記第2の指針画像および前記第3の指針画像よりも長く表示されるように、前記第1の指針画像、前記第2の指針画像および前記第3の指針画像を切り替えて表示すること
     を特徴とする請求項1記載の振動状態表示装置。
    The display processing unit displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle. The vibration state display device according to claim 1, wherein the second pointer image and the third pointer image are switched and displayed.
  3.  前記画像生成部は、前記デジタルデータの平均値および標準偏差を取得し、前記デジタルデータの平均値から標準偏差を減じた値を対応付けた前記第2の指針画像を生成し、前記デジタルデータの平均値に標準偏差を加えた値を対応付けた前記第3の指針画像を生成すること
     を特徴とする請求項1記載の振動状態表示装置。
    The image generation unit acquires the mean value and the standard deviation of the digital data, generates the second guideline image associated with the value obtained by subtracting the standard deviation from the mean value of the digital data, and generates the second guideline image of the digital data. The vibration state display device according to claim 1, wherein the third guideline image associated with a value obtained by adding a standard deviation to an average value is generated.
  4.  前記表示処理部は、前記第1の指針画像、前記第2の指針画像および前記第3の指針画像に加えて、前記設備が異常な状態であると判定される振動レベルを示す異常判定レベル画像を表示すること
     を特徴とする請求項1から請求項3のいずれか1項記載の振動状態表示装置。
    In addition to the first pointer image, the second pointer image, and the third pointer image, the display processing unit has an abnormality determination level image showing a vibration level at which the equipment is determined to be in an abnormal state. The vibration state display device according to any one of claims 1 to 3, wherein the image is displayed.
  5.  前記表示処理部は、前記異常判定レベル画像が示す振動レベルに基づいて、前記第1の指針画像、前記第2の指針画像または前記第3の指針画像の少なくとも一つに対応する値が、前記設備が異常な状態であると判定される値になった場合に、前記第1の指針画像、前記第2の指針画像または前記第3の指針画像の少なくとも一つまたは前記異常判定レベル画像の表示態様を変化させること
     を特徴とする請求項4記載の振動状態表示装置。
    In the display processing unit, the value corresponding to at least one of the first pointer image, the second guideline image, or the third guideline image is set based on the vibration level indicated by the abnormality determination level image. Display of the first pointer image, the second guideline image, at least one of the third guideline images, or the abnormality determination level image when the equipment reaches a value determined to be in an abnormal state. The vibration state display device according to claim 4, wherein the embodiment is changed.
  6.  前記画像生成部は、複数の振動センサによって検出された1つまたは複数の前記設備に発生した振動の検出信号がアナログデジタル変換された前記デジタルデータの平均値、最小値および最大値を取得し、平均値に対応付けた前記第1の指針画像、最小値に対応付けた前記第2の指針画像および最大値に対応付けた前記第3の指針画像を、前記振動センサごとに生成し、
     前記表示処理部は、前記表示装置の表示画面の前記振動センサごとの表示エリアにおいて、前記表示周期ごとに、前記第1の指針画像を前記指針振れ幅の中央位置に表示し、前記第2の指針画像を前記指針振れ幅の下限位置に表示し、前記第3の指針画像を前記指針振れ幅の上限位置に表示すること
     を特徴とする請求項1または請求項2記載の振動状態表示装置。
    The image generation unit acquires the average value, the minimum value, and the maximum value of the digital data obtained by analog-digitally converting the detection signal of the vibration generated in one or a plurality of the equipment detected by the plurality of vibration sensors. The first pointer image associated with the average value, the second pointer image associated with the minimum value, and the third pointer image associated with the maximum value are generated for each vibration sensor.
    The display processing unit displays the first pointer image at the center position of the pointer swing width in the display area of each vibration sensor on the display screen of the display device for each display cycle, and the second pointer image is displayed. The vibration state display device according to claim 1 or 2, wherein the pointer image is displayed at the lower limit position of the pointer swing width, and the third pointer image is displayed at the upper limit position of the pointer swing width.
  7.  前記表示処理部は、前記振動センサごとの、前記第1の指針画像、前記第2の指針画像および前記第3の指針画像に加え、前記設備が異常な状態であると判定される振動レベルを示す異常判定レベル画像を、前記振動センサごとに表示すること
     を特徴とする請求項6記載の振動状態表示装置。
    In addition to the first pointer image, the second pointer image, and the third pointer image for each vibration sensor, the display processing unit determines the vibration level at which the equipment is determined to be in an abnormal state. The vibration state display device according to claim 6, wherein an abnormality determination level image to be shown is displayed for each vibration sensor.
  8.  前記表示処理部は、前記振動センサごとの前記異常判定レベル画像が示す振動レベルに基づいて、前記振動センサごとの、前記第1の指針画像、前記第2の指針画像または前記第3の指針画像の少なくとも一つに対応する値が、前記設備が異常な状態であると判定される値になった場合に、前記第1の指針画像、前記第2の指針画像または前記第3の指針画像の少なくとも一つまたは前記異常判定レベル画像の表示態様を、前記振動センサごとに変化させること
     を特徴とする請求項7記載の振動状態表示装置。
    The display processing unit is based on the vibration level indicated by the abnormality determination level image for each vibration sensor, and the first pointer image, the second guideline image, or the third pointer image for each vibration sensor. When the value corresponding to at least one of the above becomes a value at which it is determined that the equipment is in an abnormal state, the first guideline image, the second guideline image, or the third guideline image The vibration state display device according to claim 7, wherein the display mode of at least one or the abnormality determination level image is changed for each vibration sensor.
  9.  前記画像生成部は、前記デジタルデータがフーリエ変換されて得られた共振周波数ごとの信号の平均値、最小値および最大値を取得して、平均値に対応付けた前記第1の指針画像、最小値に対応付けた前記第2の指針画像および最大値に対応付けた前記第3の指針画像を生成し、
     前記表示処理部は、前記表示装置の表示画面の共振周波数ごとの表示エリアにおいて、前記表示周期ごとに、前記第1の指針画像を前記指針振れ幅の中央位置に表示し、前記第2の指針画像を前記指針振れ幅の下限位置に表示し、前記第3の指針画像を前記指針振れ幅の上限位置に表示すること
     を特徴とする請求項1または請求項2記載の振動状態表示装置。
    The image generation unit acquires the average value, the minimum value, and the maximum value of the signal for each resonance frequency obtained by Fourier transforming the digital data, and associates the digital data with the average value. The second pointer image associated with the value and the third pointer image associated with the maximum value are generated.
    The display processing unit displays the first pointer image at the center position of the pointer swing width in the display area for each resonance frequency of the display screen of the display device for each display cycle, and the second pointer. The vibration state display device according to claim 1 or 2, wherein the image is displayed at the lower limit position of the pointer swing width, and the third pointer image is displayed at the upper limit position of the pointer swing width.
  10.  前記画像生成部は、前記デジタルデータがフーリエ変換されて得られた共振周波数の信号の平均値と標準偏差を取得し、前記デジタルデータの平均値から標準偏差を減じた値に対応付けた前記第2の指針画像を生成し、前記デジタルデータの平均値に標準偏差を加えた値を対応付けた前記第3の指針画像を生成すること
     を特徴とする請求項9記載の振動状態表示装置。
    The image generation unit acquires the average value and standard deviation of the signal of the resonance frequency obtained by Fourier transforming the digital data, and associates the digital data with a value obtained by subtracting the standard deviation from the average value of the digital data. The vibration state display device according to claim 9, wherein the pointer image of 2 is generated, and the third guideline image in which the average value of the digital data is associated with the value obtained by adding the standard deviation is generated.
  11.  設備に発生した振動を検出する振動センサから出力された検出信号をアナログデジタル変換するA/D変換部と、
     前記A/D変換部によって変換されたデジタルデータの平均値、最小値および最大値を算出するデータ処理部と、
     前記デジタルデータの平均値、最小値および最大値を取得し、平均値に対応付けた第1の指針画像、最小値に対応付けた第2の指針画像および最大値に対応付けた第3の指針画像を生成する画像生成部と、
     表示装置の表示画面において、表示周期ごとに、前記第1の指針画像を指針振れ幅の中央位置に表示し、前記第2の指針画像を前記指針振れ幅の下限位置に表示し、前記第3の指針画像を前記指針振れ幅の上限位置に表示する表示処理部と、
     を備え、
     前記表示処理部は、前記表示周期の時間内で、前記第1の指針画像が、前記第2の指針画像および前記第3の指針画像よりも長く表示されるように、前記第1の指針画像、前記第2の指針画像および前記第3の指針画像を切り替えて表示すること
     を特徴とする振動検出装置。
    An A / D converter that converts the detection signal output from the vibration sensor that detects the vibration generated in the equipment into analog-to-digital, and
    A data processing unit that calculates the average value, minimum value, and maximum value of digital data converted by the A / D conversion unit, and
    The first guideline image associated with the average value, the minimum value and the maximum value of the digital data, the second guideline image associated with the minimum value, and the third guideline associated with the maximum value. The image generator that generates the image and the image generator
    On the display screen of the display device, the first pointer image is displayed at the center position of the pointer swing width, the second pointer image is displayed at the lower limit position of the pointer swing width, and the third pointer image is displayed for each display cycle. A display processing unit that displays the pointer image of the pointer at the upper limit position of the pointer swing width, and
    Equipped with
    The display processing unit displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle. , The vibration detection device, characterized in that the second pointer image and the third pointer image are switched and displayed.
  12.  前記データ処理部は、前記デジタルデータの平均値および標準偏差を算出し、
     前記画像生成部は、前記デジタルデータの平均値および標準偏差を取得し、平均値から標準偏差を減じた値に対応付けた前記第2の指針画像を生成し、平均値に標準偏差を加えた値に対応付けた前記第3の指針画像を生成すること
     を特徴とする請求項11記載の振動検出装置。
    The data processing unit calculates the average value and standard deviation of the digital data,
    The image generation unit acquires the mean value and standard deviation of the digital data, generates the second guideline image associated with the value obtained by subtracting the standard deviation from the mean value, and adds the standard deviation to the mean value. The vibration detection device according to claim 11, wherein the third pointer image associated with a value is generated.
  13.  前記表示処理部は、前記第1の指針画像、前記第2の指針画像および前記第3の指針画像に加えて、前記設備が異常な状態であると判定される振動レベルを示す異常判定レベル画像を表示すること
     を特徴とする請求項11または請求項12記載の振動検出装置。
    In addition to the first pointer image, the second pointer image, and the third pointer image, the display processing unit has an abnormality determination level image showing a vibration level at which the equipment is determined to be in an abnormal state. The vibration detection device according to claim 11 or 12, wherein the image is displayed.
  14.  前記表示処理部は、前記異常判定レベル画像が示す振動レベルに基づいて、前記第1の指針画像、前記第2の指針画像または前記第3の指針画像の少なくとも一つに対応する値が、前記設備が異常な状態であると判定される値になった場合に、前記第1の指針画像、前記第2の指針画像または前記第3の指針画像の少なくとも一つまたは前記異常判定レベル画像の表示態様を変化させること
     を特徴とする請求項13記載の振動検出装置。
    In the display processing unit, the value corresponding to at least one of the first pointer image, the second guideline image, or the third guideline image is set based on the vibration level indicated by the abnormality determination level image. Display of the first pointer image, the second guideline image, at least one of the third guideline images, or the abnormality determination level image when the equipment reaches a value determined to be in an abnormal state. 13. The vibration detection device according to claim 13, wherein the embodiment is changed.
  15.  前記A/D変換部は、複数の前記振動センサによって検出された1つまたは複数の前記設備に発生した振動の検出信号をアナログデジタル変換し、
     前記データ処理部は、前記A/D変換部によってアナログデジタル変換された前記デジタルデータの平均値、最小値および最大値を、前記振動センサごとに算出し、
     前記画像生成部は、前記デジタルデータの平均値、最小値および最大値を取得し、平均値に対応付けた前記第1の指針画像、最小値に対応付けた前記第2の指針画像および最大値に対応付けた前記第3の指針画像を、前記振動センサごとに生成し、
     前記表示処理部は、前記表示装置の表示画面の前記振動センサごとの表示エリアにおいて、表示周期ごとに、前記第1の指針画像を前記指針振れ幅の中央位置に表示し、前記第2の指針画像を前記指針振れ幅の下限位置に表示し、前記第3の指針画像を前記指針振れ幅の上限位置に表示すること
     を特徴とする請求項11または請求項12記載の振動検出装置。
    The A / D conversion unit performs analog-to-digital conversion of vibration detection signals generated in one or more of the equipment detected by the plurality of vibration sensors.
    The data processing unit calculates the average value, the minimum value, and the maximum value of the digital data analog-digitally converted by the A / D conversion unit for each vibration sensor.
    The image generation unit acquires the average value, the minimum value, and the maximum value of the digital data, the first guideline image associated with the average value, the second guideline image associated with the minimum value, and the maximum value. The third pointer image associated with the above is generated for each vibration sensor.
    The display processing unit displays the first pointer image at the center position of the pointer swing width in the display area of each vibration sensor on the display screen of the display device for each display cycle, and the second pointer. The vibration detection device according to claim 11 or 12, wherein the image is displayed at the lower limit position of the pointer swing width, and the third guideline image is displayed at the upper limit position of the pointer swing width.
  16.  前記表示処理部は、前記振動センサごとの、前記第1の指針画像、前記第2の指針画像および前記第3の指針画像に加え、前記設備が異常な状態であると判定される振動レベルを示す異常判定レベル画像を、前記振動センサごとに表示すること
     を特徴とする請求項15記載の振動検出装置。
    In addition to the first pointer image, the second pointer image, and the third pointer image for each vibration sensor, the display processing unit determines the vibration level at which the equipment is determined to be in an abnormal state. The vibration detection device according to claim 15, wherein the abnormality determination level image shown is displayed for each vibration sensor.
  17.  前記表示処理部は、前記振動センサごとの前記異常判定レベル画像が示す振動レベルに基づいて、前記振動センサごとの前記第1の指針画像、前記第2の指針画像または前記第3の指針画像の少なくとも一つに対応する値が、前記設備が異常な状態であると判定される値になった場合に、前記第1の指針画像、前記第2の指針画像または前記第3の指針画像の少なくとも一つまたは前記異常判定レベル画像の表示態様を、前記振動センサごとに変化させること
     を特徴とする請求項16記載の振動検出装置。
    The display processing unit is based on the vibration level indicated by the abnormality determination level image for each vibration sensor, that is, the first pointer image, the second guideline image, or the third pointer image for each vibration sensor. At least one of the first guideline image, the second guideline image, or the third guideline image when the value corresponding to at least one becomes a value determined to be in an abnormal state of the equipment. The vibration detection device according to claim 16, wherein the display mode of one or the abnormality determination level image is changed for each vibration sensor.
  18.  前記デジタルデータのフーリエ変換によって周波数領域の信号を生成するフーリエ変換部を備え、
     前記データ処理部は、前記周波数領域の信号のうち、共振周波数ごとの信号の平均値、最小値および最大値を算出し、
     前記画像生成部は、共振周波数ごとの信号の平均値、最小値および最大値を取得して、平均値に対応付けた前記第1の指針画像、最小値に対応付けた前記第2の指針画像および最大値に対応付けた前記第3の指針画像を生成し、
     前記表示処理部は、前記表示装置の表示画面の共振周波数ごとの表示エリアにおいて、前記表示周期ごとに、前記第1の指針画像を前記指針振れ幅の中央位置に表示し、前記第2の指針画像を前記指針振れ幅の下限位置に表示し、前記第3の指針画像を前記指針振れ幅の上限位置に表示すること
     を特徴とする請求項11記載の振動検出装置。
    It is provided with a Fourier transform unit that generates a signal in the frequency domain by the Fourier transform of the digital data.
    The data processing unit calculates the average value, the minimum value, and the maximum value of the signals for each resonance frequency among the signals in the frequency domain.
    The image generation unit acquires the average value, the minimum value, and the maximum value of the signal for each resonance frequency, and the first guideline image associated with the average value and the second pointer image associated with the minimum value. And the third pointer image associated with the maximum value is generated.
    The display processing unit displays the first pointer image at the center position of the pointer swing width in the display area for each resonance frequency of the display screen of the display device for each display cycle, and the second pointer. The vibration detection device according to claim 11, wherein the image is displayed at the lower limit position of the pointer swing width, and the third pointer image is displayed at the upper limit position of the pointer swing width.
  19.  前記データ処理部は、共振周波数ごとの信号の平均値および標準偏差を算出し、
     前記画像生成部は、共振周波数ごとの信号の平均値および標準偏差を取得し、平均値から標準偏差を減じた値に対応付けた前記第2の指針画像を生成し、平均値に標準偏差を加えた値に対応付けた前記第3の指針画像を生成すること
     を特徴とする請求項18記載の振動検出装置。
    The data processing unit calculates the average value and standard deviation of the signal for each resonance frequency.
    The image generation unit acquires the mean value and standard deviation of the signal for each resonance frequency, generates the second guideline image associated with the value obtained by subtracting the standard deviation from the mean value, and calculates the standard deviation in the mean value. The vibration detection device according to claim 18, wherein the third pointer image associated with the added value is generated.
  20.  前記振動センサは、前記設備に発生した振動に応じたアコースティックエミッション波を検出するAEセンサであること
     を特徴とする請求項11記載の振動検出装置。
    The vibration detection device according to claim 11, wherein the vibration sensor is an AE sensor that detects an acoustic emission wave corresponding to the vibration generated in the equipment.
  21.  画像生成部が、設備に発生した振動の検出信号がアナログデジタル変換されたデジタルデータの平均値、最小値および最大値を取得して、平均値に対応付けた第1の指針画像、最小値に対応付けた第2の指針画像および最大値に対応付けた第3の指針画像を生成するステップと、
     表示処理部が、表示装置の表示画面において、表示周期ごとに、前記第1の指針画像を指針振れ幅の中央位置に表示し、前記第2の指針画像を前記指針振れ幅の下限位置に表示し、前記第3の指針画像を前記指針振れ幅の上限位置に表示するステップと、
     を備え、
     前記表示処理部は、前記表示周期の時間内で、前記第1の指針画像が、前記第2の指針画像および前記第3の指針画像よりも長く表示されるように、前記第1の指針画像、前記第2の指針画像および前記第3の指針画像を切り替えて表示すること
     を特徴とする振動状態表示方法。
    The image generation unit acquires the average value, the minimum value, and the maximum value of the digital data in which the detection signal of the vibration generated in the equipment is analog-digitally converted, and sets it as the first guideline image and the minimum value associated with the average value. The step of generating the associated second pointer image and the associated third pointer image associated with the maximum value, and
    The display processing unit displays the first pointer image at the center position of the pointer swing width on the display screen of the display device at each display cycle, and displays the second pointer image at the lower limit position of the pointer swing width. Then, the step of displaying the third pointer image at the upper limit position of the pointer swing width and
    Equipped with
    The display processing unit displays the first pointer image longer than the second pointer image and the third pointer image within the time of the display cycle. , The vibration state display method, characterized in that the second pointer image and the third pointer image are switched and displayed.
PCT/JP2020/027604 2020-07-16 2020-07-16 Vibration-state display device, vibration detection device, and vibration-state display method WO2022013997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027604 WO2022013997A1 (en) 2020-07-16 2020-07-16 Vibration-state display device, vibration detection device, and vibration-state display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027604 WO2022013997A1 (en) 2020-07-16 2020-07-16 Vibration-state display device, vibration detection device, and vibration-state display method

Publications (1)

Publication Number Publication Date
WO2022013997A1 true WO2022013997A1 (en) 2022-01-20

Family

ID=79554602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027604 WO2022013997A1 (en) 2020-07-16 2020-07-16 Vibration-state display device, vibration detection device, and vibration-state display method

Country Status (1)

Country Link
WO (1) WO2022013997A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286893A (en) * 1994-02-22 1995-10-31 Puranetoron:Kk Signal converter and data display system
JP2011059029A (en) * 2009-09-14 2011-03-24 Nippon Seiki Co Ltd Indicator for vehicle
JP2016109620A (en) * 2014-12-09 2016-06-20 日本放送協会 Sound volume monitoring device and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286893A (en) * 1994-02-22 1995-10-31 Puranetoron:Kk Signal converter and data display system
JP2011059029A (en) * 2009-09-14 2011-03-24 Nippon Seiki Co Ltd Indicator for vehicle
JP2016109620A (en) * 2014-12-09 2016-06-20 日本放送協会 Sound volume monitoring device and program

Similar Documents

Publication Publication Date Title
EP3436790B1 (en) Acoustic monitoring of machinery
KR101409986B1 (en) Vibration monitoring fault diagnostic device
JP6508017B2 (en) Evaluation method of machinery and equipment
JP2011027452A (en) Data collecting device and device for diagnosing facility equipment including the same
JP5106329B2 (en) Equipment abnormality diagnosis method and system
KR20110009615A (en) Data collection device, and diagnosis device of facility management with data collection device thereof
KR101167918B1 (en) Diagnosis Apparatus for Partial Discharge of Highvoltage Facility Using Ultrasonic Sensor
KR101663820B1 (en) Method and apparatus of machine diagnosis using sound signal
US8483977B1 (en) Method of laser vibration defect analysis
KR20140037265A (en) Method and device for monitoring vibrations of the winding overhang in a generator
JP5765881B2 (en) Equipment diagnostic equipment
JP2011191181A (en) Abnormality diagnostic system of rotary apparatus, abnormality diagnostic device of the same, and abnormality diagnosis method of the same
WO2022013997A1 (en) Vibration-state display device, vibration detection device, and vibration-state display method
KR101046748B1 (en) Dedicated Vibration Diagnosis Method and Analysis System for Generator Stator Windings
KR100665879B1 (en) Apparatus for finding and processing partial discharge in power equipments
JPH05157662A (en) Failure diagnostic method and device of injection molding machine
EP3015866A1 (en) A method of automatic determination of rotational speed of a shaft in a rotating machine
JPWO2020075296A1 (en) Condition monitoring device
TWI294514B (en)
US11762360B2 (en) Sensor device, data acquisition method, and current monitoring system
JP6234788B2 (en) Ultrasonic diagnostic apparatus and program for ultrasonic diagnostic apparatus
JPH07308847A (en) Method of detecting tool wear/abrasion conditions
JP2004317248A (en) Sound identification method, noise evaluation device, noise evaluation method, noise evaluation program and recording medium
CN112798097A (en) Vibration monitoring system
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP