WO2022012410A1 - 上肢康复训练机器人及单点上肢静态测试方法 - Google Patents

上肢康复训练机器人及单点上肢静态测试方法 Download PDF

Info

Publication number
WO2022012410A1
WO2022012410A1 PCT/CN2021/105264 CN2021105264W WO2022012410A1 WO 2022012410 A1 WO2022012410 A1 WO 2022012410A1 CN 2021105264 W CN2021105264 W CN 2021105264W WO 2022012410 A1 WO2022012410 A1 WO 2022012410A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper limb
force
force measuring
rehabilitation training
rehabilitation
Prior art date
Application number
PCT/CN2021/105264
Other languages
English (en)
French (fr)
Inventor
李琦
Original Assignee
李琦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021368817.1U external-priority patent/CN213099164U/zh
Priority claimed from CN202110014784.3A external-priority patent/CN114712149B/zh
Application filed by 李琦 filed Critical 李琦
Publication of WO2022012410A1 publication Critical patent/WO2022012410A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the invention relates to the technical field of medical equipment, in particular to an upper limb rehabilitation training robot and a single-point upper limb static test method.
  • rehabilitation training robots in clinical practice can make the rehabilitation treatment of patients after nervous system injury more effective and systematic.
  • Traditional therapy requires great effort and long time for patients.
  • most of the developed robotic systems are mainly deployed in rehabilitation centers and hospitals, where patients can only constantly travel between medical institutions and their own homes. , it is not friendly to patients at a long distance.
  • Due to the limited time of each training the physical and mental fatigue caused by the running of the road will also greatly reduce the training effect.
  • Rehabilitation training equipment size and cost constraints make it impossible for patients living in remote areas to have enough time and frequency for rehabilitation training, resulting in slow recovery of patients.
  • the present invention provides an upper limb rehabilitation training robot and a single-point upper limb static testing method, which can effectively solve the above problems.
  • the present invention is realized in this way.
  • An upper limb rehabilitation training robot comprising: a rehabilitation coordination mechanism for placing a forearm and a palm for grasping; a force measuring device arranged under the rehabilitation coordination mechanism for measuring the horizontal resultant force direction of the rehabilitation coordination mechanism , size; connected to the moving mechanism below the force measuring device, the moving mechanism is used to move according to the horizontal resultant force direction of the rehabilitation coordination mechanism, and its movement speed is positively correlated with the horizontal resultant force of the rehabilitation coordination mechanism.
  • the rehabilitation coordination mechanism includes: an upper limb placing piece, the shape of which is suitable for the arc surface of the forearm; a first connecting piece fixed horizontally under the upper limb placing piece; one end is hinged to the first connecting piece a second connecting piece on the upper part; a handle; and a flexible connecting pipe whose two ends are respectively connected to the second connecting piece and the handle.
  • An upper limb rehabilitation training robot comprising: a moving mechanism; a force measuring device, comprising: a base plate fixed on the moving mechanism, a force measuring mechanism arranged on the base plate, and a force measuring mechanism vertically arranged on the force measuring mechanism A force measuring rod; a rehabilitation coordination mechanism, comprising an upper limb placing piece and a grip, wherein the upper limb placing piece or the grip is arranged on the force measuring rod, so that the upper limb placing piece or the grip The force is transmitted to the force-measuring mechanism via the force-measuring rod.
  • the rehabilitation coordination mechanism further includes a fifth connecting piece and an annular sixth connecting piece that is dampedly connected to the fifth connecting piece; the grip and the upper limb placing piece are respectively fixed on the Both ends of the fifth connecting piece; the annular sixth connecting piece is arranged below the upper limb placing piece; the upper limb placing piece is detachably sleeved on the force measuring piece through the annular sixth connecting piece The force of the upper limb placement piece is indirectly transmitted to the force measuring rod through the connecting piece.
  • the robot further includes a force relief mechanism, and the force relief mechanism is fixed on the base plate;
  • the rehabilitation coordination mechanism further includes a force relief mechanism sleeved on the force relief mechanism and connected to the force relief mechanism.
  • a seventh connecting piece connected in rotation by the mechanism, the upper limb placing piece is arranged at one end of the seventh connecting piece away from the force unloading mechanism, and the handle is detachably mounted on the force measuring rod.
  • the force relief mechanism includes a first sleeve and a plurality of fixing feet connected to one end of the first sleeve, the fixing feet are evenly distributed along the circumference of the first sleeve, so The force measuring rod is passed through the first sleeve.
  • a single-point upper limb static test method based on the upper limb rehabilitation training robot, includes the following steps.
  • step S11 it further includes: S12, acquiring historical data of the actual acting force F' i of the multiple standard directions (X i , Y i ), for each standard direction (X i , Y i ) i ) to analyze the historical data to obtain the recovery effect of each standard direction (X i , Y i ).
  • the step of analyzing the historical data of each standard direction (X i , Y i ) is: sorting and comparing the historical data of each standard direction (X i , Y i ) to obtain Whether the historical data increases or decreases, so as to obtain the recovery effect of each standard direction (X i , Y i ).
  • step S12 further comprising: S13, according to each standard recovery effect direction (X i, Y i) of each standard in the training direction (X i, Y i) and a corresponding alert the user Restoration of standard directions (X i ,Y i ).
  • An upper limb rehabilitation training robot provided by the present invention includes a rehabilitation coordination mechanism, a force measuring device, a moving mechanism, a robot with ingenious structural design, small size and low cost, which can realize the leap from clinical to home rehabilitation, and benefit patients.
  • Another upper limb rehabilitation training robot provided by the present invention provides a force measuring device arranged on a moving mechanism, including a force measuring mechanism and a force measuring rod vertically arranged on the force measuring mechanism, through the force transmission of the force measuring rod to the force measuring mechanism for force measurement.
  • a force measuring device arranged on a moving mechanism, including a force measuring mechanism and a force measuring rod vertically arranged on the force measuring mechanism, through the force transmission of the force measuring rod to the force measuring mechanism for force measurement.
  • different force generation methods can be set on the force measurement device, that is, the force is generated by the upper limb placing member or the force is generated by the grip, corresponding to two different structures of rehabilitation coordination mechanisms . That is to say, the force measurement part of the robot has high versatility and is suitable for rehabilitation coordination mechanisms of different structures.
  • the upper limb rehabilitation training robot is small in size, does not occupy space, and is more suitable for home use. For patients whose residence is far from the medical institution, it can greatly facilitate the patients to carry out rehabilitation training anytime and anywhere, and accelerate the progress of the patient's recovery.
  • the rehabilitation coordination mechanism When the rehabilitation coordination mechanism is generated by the upper limb placement member, the source of the force is relatively single, originating from the forearm, corresponding to the arm rehabilitation coordination mechanism, the arm is placed on the upper limb placement member, and when the arm moves When the force is measured, a horizontal component force will be generated on the force measuring rod, and the force measuring mechanism will be driven by the force measuring rod to measure the horizontal component force to study the recovery of the arm.
  • the rehabilitation coordination mechanism When the rehabilitation coordination mechanism generates force from the grip, it corresponds to the wrist rehabilitation coordination mechanism.
  • the hand grasps the grip and moves the force exerted by the wrist is detected, and a force relief mechanism is set at this time. , remove the force of the arm on the force measuring rod, so that the force measuring rod is only subjected to the force generated by the wrist, and will not be affected by the arm force, and the independence of the force measurement is better.
  • the force measuring mechanism is driven by the force measuring rod to measure the component force in the horizontal direction to study the recovery of the wrist.
  • the present invention provides a single-point upper limb static test method, by establishing a plurality of standard standard directions (Xi, Yi) and their corresponding standard acting forces Fi on a plane;
  • the actual acting force F'i of the upper limb rehabilitation training robot along the multiple standard directions (Xi, Yi), the actual acting force F'i and the standard acting force Fi are compared and presented to the user, thereby A quantifiable criterion for recovery of the upper extremity can be provided.
  • FIG. 1 is a schematic diagram of the overall structure of an upper limb rehabilitation training machine provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of positions of a robot and a distance sensor provided by an embodiment of the present invention.
  • FIG. 3 is an overall structural diagram 1 of an upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • FIG. 4 is a first structural schematic diagram of a rehabilitation coordination mechanism provided by an embodiment of the present invention.
  • FIG. 5 is a first structural schematic diagram of a force measuring mechanism provided by an embodiment of the present invention.
  • FIG. 6 is a partial structural schematic diagram 1 of a force measuring mechanism provided by an embodiment of the present invention.
  • FIG. 7 is a second overall structure diagram of an upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • FIG. 8 is an exploded view of FIG. 2 of the overall structure of the upper limb rehabilitation training robot provided by the embodiment of the present invention.
  • FIG. 9 is a partial cross-sectional view of an upper limb rehabilitation training robot provided by an embodiment of the present invention based on the overall structure of FIG. 2 .
  • FIG. 10 is an exploded view of a wrist-based rehabilitation coordination mechanism of an upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view of a wrist-based rehabilitation coordination mechanism of an upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • FIG. 12 is an exploded view of the second structural schematic diagram of the force measuring mechanism provided by the embodiment of the present invention.
  • FIG. 13 is a second structural schematic diagram of a force measuring mechanism provided by an embodiment of the present invention.
  • FIG. 14 is a distance positioning calculation diagram provided by an embodiment of the present invention.
  • FIG. 15 is a flowchart of a single-point upper limb static test method based on an upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • FIG. 16 is a test result diagram of the actual acting force F′ i and the standard acting force F i in the single-point upper limb static test method based on the upper limb rehabilitation training robot provided by the embodiment of the present invention.
  • 17 is a three-dimensional dynamic rendering effect diagram in a single-point upper limb static test method based on an upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • FIG. 18 is a flowchart of a method for statically testing a multi-point upper limb based on the above-mentioned upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a plurality of fixed test points Ln in the multi-point upper limb static test method based on the above-mentioned upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • FIG. 20 is a flowchart of an upper limb dynamic testing method based on the above-mentioned upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • 21 is a schematic diagram of a standard motion range M in the upper limb dynamic testing method based on the above-mentioned upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • FIG. 22 is an effect diagram of a test result in the upper limb dynamic test method based on the above-mentioned upper limb rehabilitation training robot provided by an embodiment of the present invention.
  • first and second are only used for the purpose of description, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • “plurality” means two or more, unless otherwise expressly and specifically defined.
  • an upper limb rehabilitation training robot 2 includes: a rehabilitation coordination mechanism 21, including an upper limb placement member 211 and a handle 214; a gyroscope sensor disposed in the handle 214; a force measuring device 22 , used to measure the direction and size of the horizontal resultant force received by the rehabilitation coordination mechanism 21; a moving mechanism 23 arranged under the force measuring device 22 is used to drive the rehabilitation coordination mechanism 21 to move;
  • the distance sensor on the moving mechanism 23, the rays of the adjacent distance sensors form 90° with each other, and the distance sensor is used to obtain the position and deflection angle of the moving mechanism 23;
  • the control module 24 is respectively connected with the gyroscope sensor,
  • the force measuring device 22 , the moving mechanism 23 and the distance sensor are electrically connected, and the control module 24 is used to control the movement of the moving mechanism 23 according to the signal of each sensor, wherein the movement speed of the moving mechanism 23 It is positively related to the magnitude of the horizontal resultant force received by the rehabilitation coordination mechanism 21 .
  • the rehabilitation coordination mechanism 21 includes: an upper limb placing member 211, the shape of which is suitable for the curved surface of the forearm; a first connecting member 212 fixed horizontally under the upper limb placing member 211; The second connecting member 213 on the first connecting member 212; the handle 214; The upper limb placing member 211 is provided with ventilation holes 2111 at intervals to improve the use comfort of the upper limb placing member 211 . Since the second connecting member 213 is hinged on the first connecting member 212 and adopts a flexible connecting tube 215, the user can hold the handle 214 to realize omnidirectional movement of the wrist joint; Convert the motion information of the 214 into the yaw angle, pitch angle and roll angle data of the gyro sensor.
  • the force measuring device 22 is introduced, the force measuring device 22 includes a base plate 221; the force measuring mechanism 222 disposed on the base plate 221, the force measuring mechanism 222 includes.
  • the first force measuring assembly includes: two first sliding rails 2221, which are arranged on the base plate 221 in parallel and spaced apart; side and parallel to the base plate 221; the first strain sensor 223 is connected to one side of the first moving plate 2222 and fixed on the base plate 221, and is perpendicular to the first slide rail 2221, It is used to detect the displacement of the first moving plate 2222 .
  • the second force measuring assembly includes: two second sliding rails 2223, which are arranged in parallel and spaced apart on the side of the first moving plate 2222 away from the base plate 221, and are perpendicular to the first sliding rail 2221; Two moving plates 2224 are disposed on the side of the second sliding rail 2223 away from the first moving plate 2222, and are parallel to the first moving plate 2222; a second strain sensor 224 is connected to the first moving plate 2222.
  • One side of the two moving plates 2224 is fixed on the base plate 221 and is perpendicular to the second sliding rail 2223 , and is used for detecting the displacement of the second moving plates 2224 .
  • the first strain sensor 223 is connected to the first moving plate 2222 through a third connecting member 225
  • the second strain sensor 224 is connected to the second moving plate 2224 through a fourth connecting member 226 .
  • the first/second strain sensor 223/224 is provided with a through hole, so that the strain sensor can be deformed even when subjected to a small force, and the sensitivity of the strain sensor to the small force is improved.
  • the horizontal movement of the rehabilitation coordination mechanism 21 drives the displacement of the force measuring mechanism 222 in the horizontal position, thereby causing the first strain sensor 223 and the second strain sensor 224 to deform, thereby generating stress data. According to the force of the first strain sensor 223 and the force of the first strain sensor 224 , the magnitude and direction of the resultant force are synthesized, and then sent to the control module 24 to control the movement direction and speed of the moving mechanism 23 .
  • an upper limb rehabilitation training machine with positioning and tracking function includes: a training platform 1 ; an upper limb rehabilitation training robot 2 ; a first distance sensor 3 arranged on the upper limb rehabilitation training robot 2 and a second distance sensor 4; a display module 5; and a positioning module arranged on the upper limb rehabilitation training robot 2.
  • the training platform 1 includes: a horizontal plane 11 , a first baffle 12 perpendicular to the horizontal plane 11 , and a second baffle 13 perpendicular to the horizontal plane 11 and perpendicular to the first baffle 12 .
  • the upper limb rehabilitation training robot 2 moves on the horizontal plane 11 .
  • the rays of the first distance sensor 3 and the rays of the second distance sensor 4 are at right angles to each other, and the first distance sensor 3 is used to measure the upper limb rehabilitation training robot 2 and the first baffle 12
  • the second distance sensor 4 is used to measure the distance between the upper limb rehabilitation training robot 2 and the second baffle 13 .
  • the display module 5 is used to display parameters such as the motion trajectory and speed of the upper limb rehabilitation training robot 2 .
  • the positioning module is respectively electrically connected with the upper limb rehabilitation training robot 2, the first distance sensor 3, the second distance sensor 4 and the display module 5, and the positioning module is used to connect the first distance sensor 3 and the signals of the second distance sensor 4 are converted into position signals and displayed on the display module 5, and the positioning module is used to convert the motion direction and speed of the upper limb rehabilitation training robot 2 into motion parameters and display them on the display module 5. on the display module 5.
  • the number of the first distance sensors 3 is two, and the number of the second distance sensors 4 is one.
  • the vertical distance x between the left end of the upper limb rehabilitation training robot 2 and the second baffle plate 13 can be obtained;
  • the average value of d1 and d2 (d1+d2)/2, the vertical distance y between the front end of the upper limb rehabilitation training robot 2 and the first baffle 12 can be obtained, that is, the positioning position of the upper limb rehabilitation training robot 2 (x, y).
  • the working principle of the upper limb rehabilitation training robot 2 provided in the first embodiment is as follows: by placing the forearm on the upper limb placing member 211, grasping the grip 214 with the hand, the motion data of the wrist is collected by the gyro sensor, and the forearm is placed on the upper limb placement member 211.
  • the movement on the horizontal plane 11 transmits signals to the strain sensors through the rehabilitation coordination mechanism 21, and the direction and magnitude of the resultant force of the first/second strain sensors 223/224 are combined, and the signals are sent to the control module 24 to control the movement direction and speed of the moving mechanism 23. .
  • the upper limb rehabilitation training robot 2 is combined with the use of the training platform 1, and the upper limb rehabilitation training robot 2 is provided with a first distance sensor 3 for measuring the distance with the first baffle 12 and a first distance sensor 3 for measuring the distance with the second
  • the second distance sensor 4 of the distance between the baffles 13 communicates with the background through the positioning module, and displays the running trajectory of the upper limb rehabilitation training robot 2 on the display module 5. Further, it can be compared whether the running trajectory of the upper limb rehabilitation training robot 2 is Carry out according to the target trajectory on the display module 5, and compare the deviation between the running trajectory and the target trajectory, and calculate the forearm rehabilitation training score.
  • the grip 214 is equipped with a gyroscope sensor
  • the activity data of the grip 214 that is, the motion state of the wrist
  • the target action is performed in an orderly manner, and the deviation between the motion state and the target action is compared in real time, and the completion time of each time is calculated, the wrist rotation score is calculated, and the upper limb rehabilitation of the user is known.
  • an upper limb rehabilitation training robot includes: a moving mechanism 23, the moving mechanism 23 includes a casing of the robot, a base, and a control module disposed on the base, and a control module disposed on the base 4 Mecanum wheels; the force measuring device 22 includes: a base plate 221 fixed on the moving mechanism 23, a force measuring mechanism 222 arranged on the base plate 221, and a force measuring mechanism 222 vertically arranged on the The force measuring rod 220 on the upper part; the force measuring mechanism 222 and the moving mechanism 23 are all electrically connected to the control module 24 .
  • the moving mechanism 23 includes four Mecanum wheels 231 , and each Mecanum wheel 231 has a separate motor, which realizes the omnidirectional movement of the moving mechanism 23 on the horizontal plane.
  • the robot further includes a rehabilitation coordination mechanism 21 , including an upper limb placing member 211 and a grip 214 , wherein the upper limb placing member 211 or the grip 214 is disposed on the The force of the upper limb placing member 211 or the grip 214 is transmitted to the force measuring mechanism 222 through the force measuring rod 220 .
  • the load cell 222 includes several strain gauge load cells.
  • the rehabilitation coordination mechanism 21 when the rehabilitation coordination mechanism 21 is an arm rehabilitation coordination mechanism, the upper limb placing member 211 is disposed on the force measuring rod 220 , so that the upper limb placing member 211 is placed on the force measuring rod 220 .
  • the rehabilitation coordination mechanism 21 when the rehabilitation coordination mechanism 21 is a wrist rehabilitation coordination mechanism, the grip 214 is arranged on The force of the handle 214 is transmitted to the force measuring mechanism 222 through the force measuring rod 220 .
  • the force measuring rod 220 includes a conducting portion 2201 and a force measuring portion 2202 in sequence from top to bottom.
  • a first stepped surface 2203 is formed between the conducting portion 2201 and the force measuring portion 2202 .
  • a protrusion 2204 is disposed below the force measuring portion 2202 .
  • the upper limb placing member 211 or the handle 214 being disposed on the force measuring rod 220 means that the upper limb placing member 211 or the handle 214 is placed or received on the first step surface 2203 after being sleeved on the conducting portion 2201 .
  • the rehabilitation coordination mechanism 21 moves with the upper limb, the force of the upper limb placing member 211 or the handle 214 is transmitted from the transmission part 2201 to the force measuring part 2202 , and is driven by the force measuring part 2202
  • the force measuring mechanism 222 has a slight displacement. Since the force measuring mechanism 222 is provided with a strain-type force measuring sensor, the direction and size of the resultant force in the horizontal direction generated by the rehabilitation coordination mechanism 23 can be measured, and sent to The control module further controls the moving direction and speed of the moving mechanism 23, which in turn drives the upper limbs to perform rehabilitation training.
  • the force generated by the forearm is studied when the Arm Rehabilitation Coordination Mechanism is used.
  • the rehabilitation coordination mechanism 21 further includes a fifth connecting piece 216 and an annular sixth connecting piece 217 dampingly connected to the fifth connecting piece 216 ; the handle 214 and the upper limb
  • the placing pieces 211 are respectively fixed on both ends of the fifth connecting piece 216; the annular sixth connecting piece 217 is disposed under the upper limb placing piece 211; the upper limb placing piece 211 passes through the annular sixth connecting piece 217.
  • the six connecting pieces 217 are detachably sleeved on the force measuring rod 220 , so that the force of the upper limb placing piece 211 is indirectly transmitted to the force measuring rod 220 through the connecting piece.
  • the sixth connecting member 217 includes: a second sleeve 2171 , a first bearing 2173 disposed inside the second sleeve 2171 , and a center symmetrically disposed on the second sleeve 2171 .
  • the damping shafts 2172 on both sides of the second sleeve 2171, the first bearing 2173 is sleeved above the force measuring rod 220, specifically, the first bearing 2173 is sleeved on the conduction part 2201 and then placed or received on the first step surface 2203 , so that the force of the upper limb placing member 211 is indirectly transmitted to the force measuring rod 220 through the connecting member.
  • An end of the fifth connecting member 216 close to the sixth connecting member 217 is provided with a rotating shaft seat 2161 that cooperates with the damping shaft 2172 , and the rotating shaft seat 2161 is integrally provided with the fifth connecting member 216 .
  • the upper limb placing member 211 can be rotated in both the horizontal direction and the vertical direction. In the process of rehabilitation training, the arm not only moves with the moving mechanism 23, but also adapts to small movements relative to the moving mechanism 23, thereby increasing the comfort during use.
  • the rehabilitation coordination mechanism 21 is an arm rehabilitation coordination mechanism
  • only the force of the forearm acts on the upper limb placing member 211 , that is to say, only the force of the forearm acts on the measuring rod through the force measuring rod 220 .
  • force mechanism 222 When the arm moves, the force measuring mechanism 222 will generate a force in the horizontal direction and a force in the vertical direction. At this time, the force measuring mechanism 222 only senses the direction and magnitude of the resultant force in the horizontal direction, and sends it to The control module, and then the control module controls the moving direction and speed of the moving mechanism 23 .
  • the stress data corresponding to the rehabilitation condition of the user's arm is generated by the user's arm movement and sent to the control module, and then the control module makes appropriate selection and adjustment according to the stress data to control the moving mechanism
  • the 23 movement in turn drives the user's arm to move, and trains the user's arm to recover.
  • the robot further includes a force relief mechanism 25 , the force relief mechanism 25 is fixed on the base plate 221 ; the rehabilitation coordination mechanism 21 further includes a force relief mechanism sleeved on the force relief mechanism A seventh connecting piece 218 on 25 and rotatably connected with the unloading mechanism 25, the upper limb placing member 211 is arranged at the end of the seventh connecting piece 218 away from the unloading mechanism 25, and the handle 214 can be It is detached and installed on the force measuring rod 220 .
  • a third sleeve 2181 is disposed inside the end of the seventh connecting member 218 away from the upper limb placing member 211 , a second bearing 2182 is disposed in the third sleeve 2181 , and the second bearing 2182 is sleeved above the unloading mechanism 25 .
  • the rehabilitation coordination mechanism 21 is sleeved on the force measuring rod 220 , the force of the arm is unloaded on the unloading mechanism 25 .
  • the wrist is exerting force, due to the provision of the second bearing 2182, the arm can also adaptively drive the rotation of the upper limb placing member 211 on the horizontal plane, which will increase the comfort of use, and the wrist will not move and the arm cannot move. of discomfort.
  • the force relief mechanism 25 includes a first sleeve 251 and a plurality of fixing feet 252 connected to one end of the first sleeve 251 , and the fixing feet 252 are along the first sleeve.
  • the circumference of the 251 is evenly distributed, and the force measuring rod 220 is passed through the first sleeve 251 .
  • a second stepped surface 253 is formed between two adjacent fixing feet 252 .
  • the second bearing 2182 is sleeved on the first sleeve 251 and then placed on the second stepped surface 253 .
  • the first sleeve 251 is disposed lower than the first stepped surface 2203 .
  • the handle 214 is detachably installed on the first step surface 2203 , so that the force of the handle 214 is directly transmitted to the force measuring rod 220 .
  • the rehabilitation coordination mechanism 21 is a wrist rehabilitation coordination mechanism
  • the force measuring mechanism 222 collects only the force generated by the wrist.
  • the force relief mechanism 25 is provided.
  • the rehabilitation coordination mechanism 21 is sleeved on the force relief mechanism 25 through the second bearing 2182 on the seventh connecting member 218 , and then the handle 214 is sleeved on the force measuring rod 220 , the force generated by placing the forearm on the upper limb placing member 211 is completely unloaded to the base plate 221 by the unloading mechanism 25 , and the force on the force measuring rod 220 is all on the handle 214 the force generated by the wrist.
  • the force measuring rod 220 When the wrist moves, the force measuring rod 220 will generate a force in the horizontal direction and a force in the vertical direction to the force measuring mechanism 222. At this time, the force measuring mechanism 222 only senses the resultant force in the horizontal direction.
  • the direction and size of the moving mechanism 23 are sent to the control module, and then the control module controls the moving direction and speed of the moving mechanism 23 .
  • the stress data corresponding to the rehabilitation condition of the user's wrist is generated by the user's wrist movement and sent to the control module, and then the control module makes appropriate selection and adjustment according to the stress data, and then controls the moving mechanism
  • the 23 movement drives the user's wrist to move, and trains the user's wrist to recover.
  • the force measurement part of the rehabilitation training robot has high versatility and is suitable for rehabilitation coordination mechanisms of different structures.
  • the rehabilitation coordination mechanism For rehabilitation training of different parts of the upper limbs, only the rehabilitation coordination mechanism needs to be replaced correspondingly.
  • the upper limb rehabilitation training robot is small in size, does not occupy space, and is more suitable for home use. It can greatly facilitate the patient to carry out rehabilitation training anytime and anywhere, and speed up the progress of the patient's recovery.
  • the rehabilitation coordination mechanism is a wrist rehabilitation coordination mechanism, the force of the arm on the force measuring rod is removed through a force unloading mechanism, so that the force measuring rod is only subjected to the force generated by the wrist, It will not be affected by the arm force, and the independence of the force measurement is better.
  • the force measuring mechanism 222 has the same structure as the force measuring mechanism 222 in the first embodiment Some of the details will not be repeated. The difference is that the second moving plate 2224 is further provided with a plurality of second through holes 22243, and the first moving plate 2222 is further provided with a first through hole 22221. The fixing feet 252 of 25 pass through the second through holes 22243 and the first through holes 22221 in sequence and then are fixed on the substrate 221 .
  • FIG. 13 is a schematic diagram of the force measuring mechanism 222 being installed on the base plate 221 .
  • the third connecting member 225 is integrally formed with the first moving plate 2222
  • the fourth connecting member 226 is integrally formed with the second moving plate 2224 .
  • a protrusion 2204 is provided at the lower end of the force measuring rod 220 , and the outer diameter of the protrusion 2204 is smaller than the outer diameter of the force measuring portion 2202 ;
  • the protrusion 2204 is matched with the groove 22241, and the force measuring rod 220 abuts on the second moving plate 2224 through the cooperation of the protrusion 2204 and the groove 22241.
  • a pin hole 22242 is further provided on the second moving plate 2224 , and a pin is provided to pass through the pin hole 22242 and be pinned and fixed with the force measuring rod 220 .
  • an embodiment of the present invention further provides a single-point upper limb static test method based on the above-mentioned upper limb rehabilitation training robot 2 , which includes the following steps.
  • the number of the standard directions (X i , Y i ) is preferably 4-8.
  • 8 standard directions F 1 to F 8 are included , and the 8 standard directions basically cover all muscles of the upper limbs recovered.
  • only four standard directions F 1 , F 3 , F 5 , and F 7 may be included, namely, the basic movements of the upper limbs forward, backward, left, and right may be included.
  • the size of the standard force F i can be determined according to the attainable standards of normal people of different ages and genders.
  • different levels can be further divided, for example, the first level standard force F iA , the second level standard force F iB , the third level standard force F iB from large to small Force F iC, etc., so as to provide a basis for the degree of recovery.
  • step S11 the tester can place the upper limb on the upper limb rehabilitation training robot 2 according to the direction of force under the prompt of the upper limb rehabilitation training robot 2, and sequentially apply force in different directions according to the prompt direction for testing.
  • the step of presenting the actual force F' i and the standard force F i to the user may further include.
  • S110 during the static test, display the multiple standard directions (X i , Y i ) and their corresponding standard acting forces F i to the tester through the display module 5 .
  • the manner of the display is not limited, and it may be a plane coordinate display as shown in FIG. 16 , or a three-dimensional or animation display, which is not limited here. For example, if the user is an elderly person or a child, some animations can be set up (such as pushing a snowman as shown in Figure 17) to increase the interest.
  • step S11 it may further include.
  • the analysis of the historical data of each standard direction (X i , Y i ) is specifically: sorting and comparing the historical data of each standard direction (X i , Y i ), and obtaining whether the historical data increases or decreases , so as to obtain the restoration effect of each standard direction (X i , Y i ).
  • step S12 it may further include.
  • the doctor can also formulate different recovery plans according to the recovery effect of each standard direction (X i , Y i ), thereby improving the recovery efficiency.
  • an embodiment of the present invention further provides a multi-point upper limb static test method based on the above-mentioned upper limb rehabilitation training robot 2 , including the following steps.
  • the training platform 1 establishes a plurality of fixed test points Ln, and establishes a plurality of standard directions (Xi-n, Yi-n) and their corresponding standard forces Fn based on the coordinate system on each fixed test point Ln -i.
  • each fixed test point Ln includes only four standard directions F1-n, F3-n, F5-n, F7-n, that is, including the basic movements of the upper limbs forward, backward, left and right.
  • the size of the standard force Fi-n can be determined according to the attainable standards of normal people of different ages and genders.
  • the standard force Fi-n of the same age and the same gender different levels can be further divided, for example, from large to small, the first standard force Fi-nA, the second standard force Fi-nB, The three-level standard force Fi-nC, etc., provides a basis for the degree of recovery.
  • step S21 under the prompt of the upper limb rehabilitation training robot 2, the tester can place the upper limb on the upper limb rehabilitation training robot 2 in the direction of exerting force, and sequentially apply force in different directions according to the prompt direction for testing, and Change the fixed test point Ln to test.
  • the step of presenting the actual force F'i-n and the standard force Fi-n to the user may further include.
  • the multiple standard directions (Xi-n, Yi-n) and their corresponding standard acting forces Fi-n are displayed to the tester through the display module 5 .
  • the manner of the display is not limited, and it may be a plane coordinate display as shown in FIG. 10 , or a three-dimensional or animation display, which is not limited here. For example, if the user is an elderly person or a child, some animations can be set up (such as pushing a snowman as shown in Figure 17) to increase the interest.
  • step S21 it may further include.
  • S22 Acquire historical data of the actual acting force F'i-n of the multiple standard directions (Xi-n, Yi-n), and analyze the historical data of each standard direction (Xi-n, Yi-n) , so as to obtain the restoration effect of each standard direction (Xi-n, Yi-n).
  • the analysis of the historical data of each standard direction is specifically: sorting and comparing the historical data of each standard direction (Xi-n, Yi-n) to obtain the historical data Whether to increase or decrease, so as to obtain the recovery effect of each standard direction (Xi-n, Yi-n).
  • step S22 it may further include.
  • the doctor can also formulate different recovery plans according to the recovery effect of each standard direction (Xi-n, Yi-n), thereby improving the recovery efficiency.
  • an embodiment of the present invention further provides an upper limb dynamic testing method based on the above-mentioned upper limb rehabilitation training robot 2, which includes the following steps.
  • the size of the standard range of motion M may be determined according to the attainable standards of normal people of different age groups and different genders.
  • different levels can be further divided, for example, from large to small, the first-level standard motion range MA, the second-level standard motion range MB, and the third-level standard motion range MC and so on, so as to provide a basis for the degree of recovery.
  • the self-care recovery range M1 may be further defined. When this range is reached, it can be judged that the patient has a certain self-care ability.
  • step S31 the tester can place the upper limb on the upper limb rehabilitation training robot 2 in the direction of exerting force under the prompt of the upper limb rehabilitation training robot 2, and start the movement with the fixed position D as the starting point according to the prompt direction .
  • the step of presenting the standard motion range M and the actual motion trajectory M' to the user may further include.
  • the standard motion range M and the actual motion track M′ are displayed to the tester through the display module 5 .
  • the display method is not limited, and may be a plane coordinate display, or a three-dimensional or animation display, which is not limited here. For example, if the user is an elderly person or a child, some animations can be set to increase the interest.
  • step S31 it may further include.
  • S32 Acquire historical data of the actual motion track M', and analyze the historical data of the actual motion track M', so as to obtain recovery effects in various directions.
  • the analysis of the historical data of the actual motion track M' is specifically: sorting and comparing the historical data of the actual motion track M', and obtaining whether the historical data in each direction increases or decreases, so as to obtain the recovery effect in each direction.
  • step S32 it may further include.
  • doctors can also formulate different recovery plans according to the recovery effects in various directions, thereby improving recovery efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

上肢康复训练机器人,包括:移动机构(23);测力装置(22),包括:固定在移动机构(23)上的基板(221)、设置在基板(221)上的测力机构(222)、以及垂直设置在测力机构(222)上的测力杆(220);康复协调机构(21),包括上肢放置件(211)以及握把(214),其中,上肢放置件(211)或者握把(214)设置于测力杆(220)上,从而将上肢放置件(211)或者握把(214)的力通过测力杆(220)传导到测力机构(222)上。对于这种结构的康复训练机器人,测力部分通用性较高,适用于不同结构的康复协调机构(21),对于上肢不同部位的康复训练,只需要对应更换康复协调机构(21)即可,方便切换成不同的康复训练模式。

Description

上肢康复训练机器人及单点上肢静态测试方法 技术领域
本申请要求于2020年7月13日提交中国专利局、申请号为202021368817.1、申请名称为“一种上肢康复训练机器人”的中国专利申请的优先权;以及于2021年1月6日提交中国专利局、申请号为202110014784.3、申请名称为“基于上肢康复训练机器人的单点上肢静态测试方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及医疗设备技术领域,特别涉及一种上肢康复训练机器人及单点上肢静态测试方法。
背景技术
目前,临床上借助康复训练机器人,能使患者神经***损伤后的康复治疗更加有效和***。传统的疗法需要患者付出巨大的努力和长期的时间,由于尺寸和成本的原因,大多数已开发出的机器人***主要部署在康复中心和医院,患者只能时常奔走于医疗机构和自己家之间,对于远距离的患者并不友好。由于每次训练时间有限,路途的奔波造成身心疲惫也会使得训练效果大打折扣。康复训练设备大小和成本限制,使居住偏远的患者无法有足够的时间和频次去进行康复训练,导致患者恢复速度慢。
另外,上肢康复训练器械种类繁多,包括纯机械结构,或电子控制装置加机械结构,其原理基本是以外力性带动上肢运动起来,从而恢复上肢的力量。但是,无论何种结构都没有通过测试上肢施力情况并与正常人的标准施力情况进行比对,从而给恢复者的恢复情况进行标准化量化的相关报道。
 本发明提供了一种上肢康复训练机器人及单点上肢静态测试方法,可以有效解决上述问题。
本发明是这样实现的。
一种上肢康复训练机器人,包括:康复协调机构,其用于放置小臂和手掌抓持;设置于所述康复协调机构下方的测力装置,其用于测算所述康复协调机构的水平合力方向、大小;连接于所述测力装置下方的移动机构,所述移动机构用于根据所述康复协调机构的水平合力方向进行移动,其运动速度和所述康复协调机构的水平合力大小成正相关。
作为进一步改进的,所述康复协调机构包括:上肢放置件,其形状与小臂弧面相适;水平固设于所述上肢放置件下方的第一连接件;一端铰接于所述第一连接件上的第二连接件;握把;以及两端分别连接于所述第二连接件和所述握把的柔性连接管。
一种上肢康复训练机器人,包括:移动机构;测力装置,包括:固定在所述移动机构上的基板、设置在所述基板上的测力机构、以及垂直设置在所述测力机构上的测力杆;康复协调机构,包括上肢放置件以及握把,其中,所述上肢放置件或者所述握把设置于所述测力杆上,从而将所述上肢放置件或者所述握把的力通过所述测力杆传导到所述测力机构上。
作为进一步改进的,所述康复协调机构进一步包括第五连接件以及与所述第五连接件阻尼连接的环状第六连接件;所述握把和所述上肢放置件分别固设于所述第五连接件的两端;所述环状第六连接件设置在所述上肢放置件的下方;所述上肢放置件通过所述环状第六连接件可拆卸的套接在所述测力杆上,从而将所述上肢放置件的力通过连接件间接传导到所述测力杆上。
作为进一步改进的,所述机器人进一步包括一卸力机构,所述卸力机构固设在所述基板上;所述康复协调机构进一步包括套置于所述卸力机构上且与所述卸力机构旋转连接的第七连接件,所述上肢放置件设置在所述第七连接件远离所述卸力机构的一端,所述握把可拆卸的安装在所述测力杆上。
作为进一步改进的,所述卸力机构包括第一套筒以及连接设置在所述第一套筒的一端的若干固定脚,所述固定脚沿着所述第一套筒的圆周均布,所述测力杆穿设于所述第一套筒中。
一种单点上肢静态测试方法,基于所述一种上肢康复训练机器人,包括以下步骤。
S10,以所述上肢康复训练机器人中心为原点O、其前进方向定义为X轴,平行于水平面且垂直于所述X轴的轴线为Y,建立坐标系,进一步的在所述坐标系上建立多个标准方向(Xi,Yi)及其对应的标准作用力Fi。
S11,分别获取上肢作用于固定在单点位置上的上肢康复训练机器人沿所述多个标准方向(Xi,Yi)的实际作用力F'i,将所述实际作用力F'i与所述标准作用力Fi呈现给用户。
作为进一步改进的,在步骤S11之后,进一步包括:S12,获取所述多个标准方向(X i,Y i)的实际作用力F' i的历史数据,对每一标准方向(X i,Y i)的历史数据进行分析,从而获取每一标准方向(X i,Y i)的恢复效果。
作为进一步改进的,所述对每一标准方向(X i,Y i)的历史数据进行分析的步骤为:将每一标准方向(X i,Y i)的历史数据进行整理和比对,获取历史数据是否增加或降低,从而获取每一标准方向(X i,Y i)的恢复效果。
 作为进一步改进的,在步骤S12之后,进一步包括:S13,根据每一标准方向(X i,Y i)的恢复效果,在每一标准方向(X i,Y i)的训练时,提醒用户对应标准方向(X i,Y i)的恢复情况。
本发明的有益效果是。
本发明提供的一种上肢康复训练机器人,包括康复协调机构、测力装置、移动机构,结构设计巧妙,小尺寸和低成本的机器人,可以实现从临床到家庭康复的跨越,使患者得到好处,康复训练强度更高,效果更佳。
本发明提供的另一种上肢康复训练机器人,提供了一种设置在移动机构上的测力装置,包括测力机构以及垂直设置在测力机构上的测力杆,通过测力杆的力传导至测力机构进行测力。对于这种测力方式,可以在所述测力装置上设置不同的力的产生方式,即力由所述上肢放置件产生或者力由所述握把产生,对应两种不同结构的康复协调机构。也就是说所述机器人的测力部分通用性较高,适用于不同结构的康复协调机构,对于上肢不同部位的康复训练,只需要对应更换康复协调机构即可,方便切换成不同的康复训练模式。并且所述上肢康复训练机器人尺寸较小,不占空间,比较适用于家用。对于住所与医疗机构较远的患者,可以极大的方便患者随时随地的进行康复训练,加快患者恢复的进度。
当所述康复协调机构是由所述上肢放置件产生力时,力的来源比较单一,来源于前臂,对应是臂部康复协调机构,臂部放置在所述上肢放置件上,当臂部运动时,会对所述测力杆产生水平方向的分力,由所述测力杆带动所述测力机构测水平方向的分力,研究臂部的恢复情况。
当所述康复协调机构是由所述握把产生力时,对应是腕部康复协调机构,手掌握住所述握把运动时,检测手腕部的发力情况,此时设置了一个卸力机构,卸去手臂部对所述测力杆的力,以使所述测力杆仅仅受到由手腕部产生的力,不会受到臂部力的影响,测力的独立性较好。由所述测力杆带动所述测力机构测水平方向的分力,研究腕部的恢复情况。
本发明提供的一种单点上肢静态测试方法,通过在平面上建立多个标准标准方向(Xi,Yi)及其对应的标准作用力Fi;进一步的通过获取上肢作用于固定在单点位置上的上肢康复训练机器人沿所述多个标准方向(Xi,Yi)的实际作用力F'i,将所述实际作用力F'i与所述标准作用力Fi进行比对并呈现给用户,从而可以对上肢的恢复提供一个可量化的标准。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施例提供的上肢康复训练机的整体结构示意图。
图2是本发明实施例提供的机器人和距离传感器的位置示意图。
图3是本发明实施例提供的上肢康复训练机器人的整体结构图一。
图4是本发明实施例提供的康复协调机构的结构示意图一。
图5是本发明实施例提供的测力机构的结构示意图一。
图6是本发明实施例提供的测力机构的部分结构示意图一。
图7是本发明实施例提供的上肢康复训练机器人的整体结构图二。
图8是本发明实施例提供的上肢康复训练机器人的整体结构图二的***图。
图9是本发明实施例提供的上肢康复训练机器人的基于整体结构图二的局部剖视图。
图10是本发明实施例提供的上肢康复训练机器人的基于腕部康复协调机构的***图。
图11是本发明实施例提供的上肢康复训练机器人的基于腕部康复协调机构的局部剖视图。
图12是本发明实施例提供的测力机构的结构示意图二的***图。
图13是本发明实施例提供的测力机构的结构示意图二。
图14本发明实施例提供的距离定位计算图。
图15是本发明实施例提供的基于上肢康复训练机器人的单点上肢静态测试方法流程图。
图16是本发明实施例提供的基于上肢康复训练机器人的单点上肢静态测试方法中实际作用力F' i与所述标准作用力F i测试结果图。
图17是本发明实施例提供的基于上肢康复训练机器人的单点上肢静态测试方法中三维动态呈现效果图。
图18本发明实施例提供的基于上述上肢康复训练机器人的多点上肢静态测试方法流程图。
图19是本发明实施例提供的基于上述上肢康复训练机器人的多点上肢静态测试方法中多个固定测试点Ln的示意图。
图20是本发明实施例提供的基于上述上肢康复训练机器人的上肢动态测试方法流程图。
图21是本发明实施例提供的基于上述上肢康复训练机器人的上肢动态测试方法中标准运动范围M的示意图。
图22是本发明实施例提供的基于上述上肢康复训练机器人的上肢动态测试方法中测试结果的效果图。
附图中各标记对应的部件名称是。
1-训练平台,11-水平面,12-第一挡板,13-第二挡板,2-上肢康复训练机器人,21-康复协调机构,211-上肢放置件,2111-透气孔,212-第一连接件,213-第二连接件,214-握把,215-柔性连接管,216-第五连接件,2161-转轴座,217-第六连接件,2171-第二套筒,2172-阻尼转轴,2173-第一轴承,218-第七连接件,2181-第三套筒,2182-第二轴承,22-测力装置,220-测力杆,2201-传导部,2202-测力部,2203-第一台阶面,2204-凸起,221-基板,222-测力机构,2221-第一滑轨,2222-第一移动板,22221-第一通孔,2223-第二滑轨,2224-第二移动板,22241-凹槽,22242-销钉孔,22243-第二通孔,223-第一应变传感器,224-第二应变传感器,225-第三连接件,226-第四连接件,23-移动机构,231-麦克纳姆轮,24-控制模块,25-卸力机构,251-第一套筒,252-固定脚,253-第二台阶面,3-第一距离传感器,4-第二距离传感器,5-显示模块。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
实施例一。
参照图3-4所示,一种上肢康复训练机器人2,包括:康复协调机构21,包括上肢放置件211以及握把214;设置于所述握把214内的陀螺仪传感器;测力装置22,用于测量所述康复协调机构21受到的水平合力的方向以及大小;设置于所述测力装置22下方的移动机构23,其用于带动所述康复协调机构21移动;间隔设置于所述移动机构23上的距离传感器,相邻所述距离传感器的射线互成90°,所述距离传感器用于获取所述移动机构23的位置及偏转角;控制模块24分别与所述陀螺仪传感器、所述测力装置22、所述移动机构23以及所述距离传感器电连接,所述控制模块24用于根据各传感器的信号控制所述移动机构23移动,其中,所述移动机构23的运动速度和所述康复协调机构21受到的水平合力的大小成正相关。
参照图4所示,所述康复协调机构21包括:上肢放置件211,其形状与小臂弧面相适;水平固设于所述上肢放置件211下方的第一连接件212;一端铰接于所述第一连接件212上的第二连接件213;握把214;以及两端分别连接于所述第二连接件213和所述握把214的柔性连接管215。所述上肢放置件211上间隔设置有透气孔2111,提升上肢放置件211的使用舒适性。由于第二连接件213铰接于第一连接件212上,且采用柔性连接管215,使得用户握住握把214,实现手腕关节全方位的活动;由于握把214内装有陀螺仪传感器,因此握把214的运动信息转换为陀螺仪传感器的偏航角、俯仰角和翻滚角数据。
参照图5-6所示,对所述测力装置22进行介绍,所述测力装置22包括基板221;设置于所述基板221上的测力机构222,所述测力机构222包括。
第一测力组件,包括:两个第一滑轨2221,平行且间隔设置在所述基板221上;第一移动板2222,设置在所述第一滑轨2221上远离所述基板221的一侧,并平行于所述基板221;第一应变传感器223,连接设置于所述第一移动板2222的一侧边处且固定在所述基板221上,与所述第一滑轨2221垂直,其用于检测所述第一移动板2222的位移量。
第二测力组件,包括:两个第二滑轨2223,平行且间隔设置在所述第一移动板2222上远离所述基板221的一侧,且与所述第一滑轨2221垂直;第二移动板2224,设置在所述第二滑轨2223上远离所述第一移动板2222的一侧,且平行于所述第一移动板2222;第二应变传感器224,连接设置于所述第二移动板2224的一侧边处且固定在所述基板221上,且与所述第二滑轨2223垂直,其用于检测所述第二移动板2224的位移量。
所述第一应变传感器223通过第三连接件225连接于所述第一移动板2222上,所述第二应变传感器224通过第四连接件226连接于所述第二移动板2224上。所述第一/第二应变传感器223/224上设置有通孔,使得应变传感器受到微小力也能产生形变,提升了应变传感器对微小受力的敏感度。通过康复协调机构21的水平运动,带动测力机构222在水平位置的位移,进而使得第一应变传感器223和第二应变传感器224产生形变,从而产生应力数据。根据第一应变传感器223的受力和第一应变传感器224的受力,合成合力大小和方向,进而发送至控制模块24控制移动机构23的移动方向和速度。
实施例二。
参照图1至图2所示,一种带有定位跟踪功能的上肢康复训练机,包括:训练平台1;上肢康复训练机器人2;设置于所述上肢康复训练机器人2上的第一距离传感器3和第二距离传感器4;显示模块5;以及设置于所述上肢康复训练机器人2上的定位模块。训练平台1包括:水平面11、垂直于所述水平面11的第一挡板12、以及垂直于所述水平面11且垂直于所述第一挡板12的第二挡板13。上肢康复训练机器人2在所述水平面11上运动。其中,所述第一距离传感器3的射线和所述第二距离传感器4的射线互成直角,所述第一距离传感器3用于测量所述上肢康复训练机器人2与所述第一挡板12之间的距离,所述第二距离传感器4用于测量所述上肢康复训练机器人2与所述第二挡板13之间的距离。显示模块5用于显示所述上肢康复训练机器人2的运动轨迹、速度等参数。定位模块分别与所述上肢康复训练机器人2、所述第一距离传感器3、所述第二距离传感器4和所述显示模块5电性连接,所述定位模块用于将所述第一距离传感器3和所述第二距离传感器4的信号转换为位置信号展示在所述显示模块5上,所述定位模块用于将所述上肢康复训练机器人2的运动方向和速度转化为运动参数展示在所述显示模块5上。
参照图14所示,第一距离传感器3的数量为2个,第二距离传感器4的数量为1个。第一距离传感器3与第一挡板12之间的距离分别为d1和d2,得到距离d1和d2之差Δd,由于已知两个第一距离传感器3的间距e,根据三角函数公式tan(c)=(Δd)/e,可以求得偏转角c=arctan((Δd)/e)。根据求得的偏转角c,结合第二距离传感器4和第二挡板13之间的距离为a,即可求得上肢康复训练机器人2的左端距离第二挡板13的垂直距离x;结合d1和d2的平均值(d1+d2)/2,即可求得上肢康复训练机器人2的前端距离第一挡板12的垂直距离y,即,得到上肢康复训练机器人2的定位位置(x,y)。
实施例一提供的一种上肢康复训练机器人2的工作原理为:通过将小臂放置至上肢放置件211上,将手掌握住握把214,手腕的运动数据被陀螺仪传感器采集,小臂在水平面11上的移动,通过康复协调机构21传导信号至应变传感器上,第一/第二应变传感器223/224合成合力的方向和大小,发送信号至控制模块24控制移动机构23的移动方向和速度。
另一方面,上肢康复训练机器人2结合训练平台1的使用,通过在上肢康复训练机器人2上设置用于测量与第一挡板12之间距离的第一距离传感器3和用于测量与第二挡板13之间距离的第二距离传感器4,通过定位模块与后台通讯,在显示模块5上显示上肢康复训练机器人2的运行轨迹,进一步的,可以比对上肢康复训练机器人2的运行轨迹是否按显示模块5上的目标轨迹进行,并比对运行轨迹与目标轨迹之间的偏差量,计算出小臂康复训练成绩。相对应的,由于握把214内装备有陀螺仪传感器,在显示模块5上显示握把214的活动数据,即手腕的运动状态,进一步的,可以比对手腕的运动状态是否按显示模块5上的目标动作有序进行,并实时比对运动状态与目标动作之间的偏差量、每次完成时间,计算出手腕转动成绩,得知该用户的上肢康复情况。
实施例三。
参照图8所示,一种上肢康复训练机器人,包括:移动机构23,所述移动机构23包括所述机器人的壳体、底座以及设置在所述底座上的控制模块、设置在所述底座上的4只麦克纳姆轮;测力装置22,包括:固定在所述移动机构23上的基板221、设置在所述基板221上的测力机构222、以及垂直设置在所述测力机构222上的测力杆220;所述测力机构222、所述移动机构23均与所述控制模块24电连接。
参照图8所示,所述移动机构23包括4个麦克纳姆轮231,每个麦克纳姆轮231具有单独的电机,实现了移动机构23在水平面上的全方位移动。
参照图7、图8、图10所示,所述机器人还包括康复协调机构21,包括上肢放置件211以及握把214,其中,所述上肢放置件211或者所述握把214设置于所述测力杆220上,从而将所述上肢放置件211或者所述握把214的力通过所述测力杆220传导到所述测力机构222上。所述测力机构222包括若干应变式测力传感器。
具体的,参照图7-9所示,当所述康复协调机构21是臂部康复协调机构时,所述上肢放置件211设置于所述测力杆220上,从而将所述上肢放置件211的力通过所述测力杆220传导到所述测力机构222上;参照图10-11所示,当所述康复协调机构21是腕部康复协调机构时,所述握把214设置于所述测力杆220上,从而将所述握把214的力通过所述测力杆220传导到所述测力机构222上。
参照图12所示,所述测力杆220从上往下依次包括传导部2201、测力部2202,所述传导部2201与所述测力部2202之间形成第一台阶面2203,所述测力部2202的下方设置一凸起2204。所述上肢放置件211或者所述握把214设置于所述测力杆220上是指套接在所述传导部2201之后放置或者承接在所述第一台阶面2203上。当所述康复协调机构21随着上肢运动时,所述上肢放置件211或者所述握把214的力从所述传导部2201传导至所述测力部2202,由所述测力部2202带动所述测力机构222发生微小位移,由于所述测力机构222里面设置有应变式测力传感器,所以可以测得所述康复协调机构23产生的水平方向上的合力的方向和大小,发送给所述控制模块,进而由所述控制模块控制所述移动机构23的移动方向和速度,反过来带动上肢运动进行康复训练。
实施例四。
臂部康复协调机构时,研究前臂产生的力。
参照图7-8所示,所述康复协调机构21进一步包括第五连接件216以及与所述第五连接件216阻尼连接的环状第六连接件217;所述握把214和所述上肢放置件211分别固设于所述第五连接件216的两端;所述环状第六连接件217设置在所述上肢放置件211的下方;所述上肢放置件211通过所述环状第六连接件217可拆卸的套接在所述测力杆220上,从而将所述上肢放置件211的力通过连接件间接传导到所述测力杆220上。
进一步的,参照图7、图9所示,所述第六连接件217包括:第二套筒2171、设置于所述第二套筒2171内部的第一轴承2173、中心对称设置于所述第二套筒2171两侧的阻尼转轴2172,所述第一轴承2173套接在所述测力杆220上方,具体的,所述第一轴承2173套接在所述传导部2201上后放置或者承接于所述第一台阶面2203上,从而将所述上肢放置件211的力通过连接件间接传导到所述测力杆220上。所述第五连接件216上靠近所述第六连接件217的一端设置有与所述阻尼转轴2172配合的转轴座2161,所述转轴座2161与所述第五连接件216一体设置。当手臂放置在所述上肢放置件211上时,可以使得所述上肢放置件211在水平方向上和竖直方向上均有转动。使得手臂在康复训练的过程中,不仅随着所述移动机构23运动,相对于所述移动机构23也会适应性微小的运动,增加使用过程中的舒适感。
当所述康复协调机构21是臂部康复协调机构时,此时只有前臂的力作用于所述上肢放置件211上,也就是说只有前臂的力通过所述测力杆220作用于所述测力机构222上。当臂部运动时,会对所述测力机构222产生水平方向上的力和竖直方向上的力,此时所述测力机构222只感应水平方向上的合力的方向和大小,发送给所述控制模块,进而由所述控制模块控制所述移动机构23的移动方向和速度。首先由使用者的臂部运动产生与使用者臂部康复情况对应的应力数据发送给所述控制模块,进而所述控制模块根据这一应力数据做出合适的选择和调整,控制所述移动机构23运动从而反过来带动使用者的臂部运动,训练使用者的臂部恢复。
实施例五。
腕部康复协调机构时,研究手腕部产生的力。
参照图10-11所示,所述机器人进一步包括一卸力机构25,所述卸力机构25固设在所述基板221上;所述康复协调机构21进一步包括套置于所述卸力机构25上且与所述卸力机构25旋转连接的第七连接件218,所述上肢放置件211设置在所述第七连接件218远离所述卸力机构25的一端,所述握把214可拆卸的安装在所述测力杆220上。所述第七连接件218上远离所述上肢放置件211的一端的内部设置一第三套筒2181,所述第三套筒2181中设置一第二轴承2182,所述第二轴承2182套接在所述卸力机构25的上方。当所述康复协调机构21套接在所述测力杆220上时,手臂的力卸在了所述卸力机构25上。在手腕用力的时候,由于设置有第二轴承2182,手臂也可以适应性的带动所述上肢放置件211在水平面上的转动,这样会增加使用的舒适性,不会出现手腕运动而手臂不能动的不适感。
参照图12所示,所述卸力机构25包括第一套筒251以及连接设置在所述第一套筒251的一端的若干固定脚252,所述固定脚252沿着所述第一套筒251的圆周均布,所述测力杆220穿设于所述第一套筒251中。相邻两所述固定脚252之间形成第二台阶面253。参照图11所示,所述第二轴承2182套接在所述第一套筒251上后放置在所述第二台阶面253上。所述第一套筒251低于所述第一台阶面2203设置。然后将所述握把214可拆卸的安装在所述第一台阶面2203上,从而将所述握把214的力直接传导到所述测力杆220上。
当所述康复协调机构21是腕部康复协调机构时,此时所述测力机构222采集力的对象只是腕部产生的力,所以为了消除上肢中手臂产生力带来的影响,在测腕部产生力的时候需要卸掉臂部产生的力。所以就设置了所述卸力机构25。所述康复协调机构21通过所述第七连接件218上的所述第二轴承2182套接在所述卸力机构25上,然后所述握把214就套接在所述测力杆220上,小臂放置在所述上肢放置件211产生的力由所述卸力机构25完全卸至所述基板221上了,此时所述测力杆220上的力全部是所述握把214上的手腕产生的力。
当手腕部运动时,会通过所述测力杆220对所述测力机构222产生水平方向上的力和竖直方向上的力,此时所述测力机构222只感应水平方向上的合力的方向和大小,发送给所述控制模块,进而由所述控制模块控制所述移动机构23的移动方向和速度。首先由使用者的手腕运动产生与使用者手腕部康复情况对应的应力数据发送给所述控制模块,进而所述控制模块根据这一应力数据做出合适的选择和调整,进而控制所述移动机构23运动从而反过来带动使用者的手腕运动,训练使用者的手腕部恢复。
所述一种康复训练机器人的测力部分通用性较高,适用于不同结构的康复协调机构,对于上肢不同部位的康复训练,只需要对应更换康复协调机构即可。并且所述上肢康复训练机器人尺寸较小,不占空间,比较适用于家用。可以极大的方便了患者随时随地的进行康复训练,加快患者恢复的进度。并且当所述康复协调机构是腕部康复协调机构时,通过一个卸力机构,卸去手臂部对所述测力杆的力,以使所述测力杆仅仅受到由手腕部产生的力,不会受到臂部力的影响,测力的独立性较好。
实施例六。
参照图12-13所示,对于所述臂部康复协调机构和所述腕部康复协调机构来说,所述测力机构222相对于实施例一中的所述测力机构222的结构的相同部分已不再赘述,不同之处在于,所述第二移动板2224上进一步设置若干第二通孔22243,所述第一移动板2222上进一步设置一第一通孔22221,所述卸力机构25的固定脚252依次穿过所述第二通孔22243、所述第一通孔22221后固定在所述基板221上。图13是所述测力机构222安装在所述基板221上的示意图。在本实施例中,所述第三连接件225与所述第一移动板2222一体设置,所述所述第四连接件226与所述第二移动板2224一体设置。
参照图12所示,所述测力杆220的下端设置一凸起2204,所述凸起2204的外径小于测力部2202的外径;所述第二移动板2224上设置一与所述凸起2204配合的凹槽22241,所述测力杆220通过所述凸起2204与所述凹槽22241的配合抵接在所述第二移动板2224上。所述第二移动板2224上进一步设置一销钉孔22242,设置一销钉穿过所述销钉孔22242并与所述测力杆220销接固定。
实施例七。
请参见图15,本发明实施例进一步提供一种基于上述上肢康复训练机器人2的单点上肢静态测试方法,包括以下步骤。
S10,以所述上肢康复训练机器人2中心为原点O、其前进方向定义为X轴,平行于所述水平面11且垂直于所述X轴的轴线为Y,建立坐标系,进一步的在所述坐标系上建立多个标准方向(X i,Y i)及其对应的标准作用力F i
S11,分别获取上肢作用于固定在单点位置上的上肢康复训练机器人2沿所述多个标准方向(X i,Y i)的实际作用力F' i,将所述实际作用力F' i与所述标准作用力F i呈现给用户。
在步骤S10中,所述标准方向(X i,Y i)的数量优选为4~8个。请一并参见图16,在其中一个实施例中,包括8个标准方向F 1~F 8,该8个标准方向基本涵盖上肢恢复的所有肌肉。在其中另一个实施例中,也可以仅包括4个标准方向F 1、F 3、F 5、F 7,即包括上肢前、后、左、右的基本运动。所述标准作用力F i的大小可以根据不同年龄段、不同性别的正常人的可达到的标准制定。另外,在同一年龄段同一性别的标准作用力F i中,可以进一步划分不同的等级,例如由大到小划分为,一级标准作用力F i-A,二级标准作用力F i-B,三级标准作用力F i-C等,从而为恢复的程度提供依据。
在步骤S11中,测试者可以在所述上肢康复训练机器人2的提示下,按照用力的方向将上肢放置在上肢康复训练机器人2上,并按照提示的方向顺序施加不同方向的力进行测试。另外,在测试的过程中,需要调整座椅、训练平台1以及所述上肢康复训练机器人2的位置相对固定,从而为历史数据的分析提供相对稳定的数据基础。
另外,所述将实际作用力F' i与所述标准作用力F i呈现给用户的步骤可以进一步包括。
S110,在静态测试的过程中,将所述多个标准方向(X i,Y i)及其对应的标准作用力F i通过所述显示模块5展示给测试者。所述展示的方式不限,可以是如图16所示的平面坐标展示,也可以是立体或动画的展示,在此不做限制。例如,如果使用者是老人或小孩时,可以通过设置一些动画展示(图17所示推雪人等),增加趣味性。
在步骤S11之后,可以进一步包括。
S12,获取所述多个标准方向(X i,Y i)的实际作用力F' i的历史数据,对每一标准方向(X i,Y i)的历史数据进行分析,从而获取每一标准方向(X i,Y i)的恢复效果。
所述对每一标准方向(X i,Y i)的历史数据进行分析具体为:将每一标准方向(X i,Y i)的历史数据进行整理和比对,获取历史数据是否增加或降低,从而获取每一标准方向(X i,Y i)的恢复效果。
在步骤S12之后,可以进一步包括。
S13,根据每一标准方向(X i,Y i)的恢复效果,在每一标准方向(X i,Y i)的训练时,提醒用户对应标准方向(X i,Y i)的恢复情况。
当然,医生也可以根据每一标准方向(X i,Y i)的恢复效果,制定不同的恢复方案,从而提高恢复效率。
实施例八。
请参见图18-19,本发明实施例进一步提供一种基于上述上肢康复训练机器人2的多点上肢静态测试方法,包括以下步骤。
S20,以所述上肢康复训练机器人2中心为原点O、其前进方向定义为X轴,平行于所述水平面11且垂直于所述X轴的轴线为Y,建立坐标系,进一步的,在所述训练平台1建立多个固定测试点Ln,且在每一固定测试点Ln上以所述坐标系为基础建立多个标准方向(Xi-n,Yi-n)及其对应的标准作用力Fn-i。
S21,分别获取上肢作用于设置在每一固定测试点Ln上的上肢康复训练机器人2沿所述多个标准方向(Xi-n,Yi-n)的实际作用力F'i-n,将所述实际作用力F'i-n与所述标准作用力Fi-n呈现给用户。
在步骤S20中,在所述训练平台1建立多个固定测试点Ln。每一固定测试点Ln,所述标准方向(Xi-n,Yi-n)的数量优选为4~8个。在其中一个实施例中,每一固定测试点Ln仅包括4个标准方向F1-n、F3-n、F5-n、F7-n,即包括上肢前、后、左、右的基本运动。所述标准作用力Fi-n的大小可以根据不同年龄段、不同性别的正常人的可达到的标准制定。另外,在同一年龄段同一性别的标准作用力Fi-n中,可以进一步划分不同的等级,例如由大到小划分为,一级标准作用力Fi-n-A,二级标准作用力Fi-n-B,三级标准作用力Fi-n-C等,从而为恢复的程度提供依据。
在步骤S21中,测试者可以在所述上肢康复训练机器人2的提示下,按照用力的方向将上肢放置在上肢康复训练机器人2上,并按照提示的方向顺序施加不同方向的力进行测试,并改变固定测试点Ln进行测试。
另外,所述将实际作用力F'i-n与所述标准作用力Fi-n呈现给用户的步骤可以进一步包括。
S210,在静态测试的过程中,将所述多个标准方向(Xi-n,Yi-n)及其对应的标准作用力Fi-n通过所述显示模块5展示给测试者。所述展示的方式不限,可以是如图10所示的平面坐标展示,也可以是立体或动画的展示,在此不做限制。例如,如果使用者是老人或小孩时,可以通过设置一些动画展示(图17所示推雪人等),增加趣味性。
在步骤S21之后,可以进一步包括。
S22,获取所述多个标准方向(Xi-n,Yi-n)的实际作用力F'i-n的历史数据,对每一标准方向(Xi-n,Yi-n)的历史数据进行分析,从而获取每一标准方向(Xi-n,Yi-n)的恢复效果。
所述对每一标准方向(Xi-n,Yi-n)的历史数据进行分析具体为:将每一标准方向(Xi-n,Yi-n)的历史数据进行整理和比对,获取历史数据是否增加或降低,从而获取每一标准方向(Xi-n,Yi-n)的恢复效果。
在步骤S22之后,可以进一步包括。
S23,根据每一标准方向(Xi-n,Yi-n)的恢复效果,在每一标准方向(Xi-n,Yi-n)的训练时,提醒用户对应标准方向(Xi-n,Yi-n)的恢复情况。
当然,医生也可以根据每一标准方向(Xi-n,Yi-n)的恢复效果,制定不同的恢复方案,从而提高恢复效率。
实施例九。
请参见图20-22,本发明实施例进一步提供一种基于上述上肢康复训练机器人2的上肢动态测试方法,包括以下步骤。
S30,在所述训练平台1表面,以固定位置D为坐标原点,建立标准运动范围M。
S31,将所述上肢康复训练机器人2设置在所述固定位置D,获取上肢作用于所述上肢康复训练机器人2绕所述固定位置D运动的实际运动轨迹M',将所述标准运动范围M与所述实际运动轨迹M'呈现给用户。
在步骤S30中,所述标准运动范围M的大小可以根据不同年龄段、不同性别的正常人的可达到的标准制定。另外,在同一年龄段同一性别的标准运动范围M中,可以进一步划分不同的等级,例如由大到小划分为,一级标准运动范围MA,二级标准运动范围MB,三级标准运动范围MC等,从而为恢复的程度提供依据。在其他实施例中,可以进一步定义可自理恢复范围M1。当达到该范围时,可判断患者具有一定的自理能力。
在步骤S31中,测试者可以在所述上肢康复训练机器人2的提示下,按照用力的方向将上肢放置在上肢康复训练机器人2上,并按照提示的方向以所述固定位置D为起点开始运动。
另外,所述将标准运动范围M与所述实际运动轨迹M'呈现给用户的步骤可以进一步包括。
S310,在动态测试的过程中,将所述标准运动范围M与所述实际运动轨迹M'通过所述显示模块5展示给测试者。所述展示的方式不限,可以是平面坐标展示,也可以是立体或动画的展示,在此不做限制。例如,如果使用者是老人或小孩时,可以通过设置一些动画展示,增加趣味性。
在步骤S31之后,可以进一步包括。
S32,获取所述实际运动轨迹M'的历史数据,对实际运动轨迹M'的历史数据进行分析,从而获取各个方向的恢复效果。
所述对实际运动轨迹M'的历史数据进行分析具体为:将实际运动轨迹M'的历史数据进行整理和比对,获取各个方向的历史数据是否增加或降低,从而获取各个方向的恢复效果。
在步骤S32之后,可以进一步包括。
S33,根据各个方向的恢复效果,在各个方向的恢复效果的训练时,提醒用户对应方向的恢复情况。
当然,医生也可以根据各个方向的恢复效果,制定不同的恢复方案,从而提高恢复效率。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种上肢康复训练机器人,其特征在于,包括:
    康复协调机构(21),其用于放置小臂和手掌抓持;
    设置于所述康复协调机构(21)下方的测力装置(22),其用于测算所述康复协调机构(21)的水平合力方向、大小;
    连接于所述测力装置(22)下方的移动机构(23),所述移动机构(23)用于根据所述康复协调机构(21)的水平合力方向进行移动,其运动速度和所述康复协调机构(21)的水平合力大小成正相关。
  2. 根据权利要求1所述一种上肢康复训练机器人,其特征在于,所述康复协调机构(21)包括:
    上肢放置件(211),其形状与小臂弧面相适;
    水平固设于所述上肢放置件(211)下方的第一连接件(212);
    一端铰接于所述第一连接件(212)上的第二连接件(213);
    握把(214);以及
    两端分别连接于所述第二连接件(213)和所述握把(214)的柔性连接管(215)。
  3. 一种上肢康复训练机器人,其特征在于,包括:
    移动机构(23);
    测力装置(22),包括:固定在所述移动机构(23)上的基板(221)、设置在所述基板(221)上的测力机构(222)、以及垂直设置在所述测力机构(222)上的测力杆(220);
    康复协调机构(21),包括上肢放置件(211)以及握把(214),其中,所述上肢放置件(211)或者所述握把(214)设置于所述测力杆(220)上,从而将所述上肢放置件(211)或者所述握把(214)的力通过所述测力杆(220)传导到所述测力机构(222)上。
  4. 根据权利要求3所述一种上肢康复训练机器人,其特征在于,所述康复协调机构(21)进一步包括第五连接件(216)以及与所述第五连接件(216)阻尼连接的环状第六连接件(217);所述握把(214)和所述上肢放置件(211)分别固设于所述第五连接件(216)的两端;所述环状第六连接件(217)设置在所述上肢放置件(211)的下方;所述上肢放置件(211)通过所述环状第六连接件(217)可拆卸的套接在所述测力杆(220)上,从而将所述上肢放置件(211)的力通过连接件间接传导到所述测力杆(220)上。
  5. 根据权利要求3所述一种上肢康复训练机器人,其特征在于,所述机器人进一步包括一卸力机构(25),所述卸力机构(25)固设在所述基板(221)上;所述康复协调机构(21)进一步包括套置于所述卸力机构(25)上且与所述卸力机构(25)旋转连接的第七连接件(218),所述上肢放置件(211)设置在所述第七连接件(218)远离所述卸力机构(25)的一端,所述握把(214)可拆卸的安装在所述测力杆(220)上。
  6. 根据权利要求5所述一种上肢康复训练机器人,其特征在于,所述卸力机构(25)包括第一套筒(251)以及连接设置在所述第一套筒(251)的一端的若干固定脚(252),所述固定脚(252)沿着所述第一套筒(251)的圆周均布,所述测力杆(220)穿设于所述第一套筒(251)中。
  7. 一种单点上肢静态测试方法,基于权利要求1-6任一项所述一种上肢康复训练机器人,其特征在于,包括以下步骤:
    S10,以所述上肢康复训练机器人中心为原点O、其前进方向定义为X轴,平行于水平面且垂直于所述X轴的轴线为Y,建立坐标系,进一步的在所述坐标系上建立多个标准方向(Xi,Yi)及其对应的标准作用力Fi;
    S11,分别获取上肢作用于固定在单点位置上的上肢康复训练机器人沿所述多个标准方向(Xi,Yi)的实际作用力F'i,将所述实际作用力F'i与所述标准作用力Fi呈现给用户。
  8. 根据权利要求7所述的单点上肢静态测试方法,其特征在于,在步骤S11之后,进一步包括:S12,获取所述多个标准方向(X i,Y i)的实际作用力F' i的历史数据,对每一标准方向(X i,Y i)的历史数据进行分析,从而获取每一标准方向(X i,Y i)的恢复效果。
  9. 根据权利要求8所述的单点上肢静态测试方法,其特征在于,所述对每一标准方向(X i,Y i)的历史数据进行分析的步骤为:将每一标准方向(X i,Y i)的历史数据进行整理和比对,获取历史数据是否增加或降低,从而获取每一标准方向(X i,Y i)的恢复效果。
  10. 根据权利要求8所述的单点上肢静态测试方法,其特征在于,在步骤S12之后,进一步包括:
    S13,根据每一标准方向(X i,Y i)的恢复效果,在每一标准方向(X i,Y i)的训练时,提醒用户对应标准方向(X i,Y i)的恢复情况。
PCT/CN2021/105264 2020-07-13 2021-07-08 上肢康复训练机器人及单点上肢静态测试方法 WO2022012410A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021368817.1U CN213099164U (zh) 2020-07-13 2020-07-13 一种上肢康复训练机器人
CN202021368817.1 2020-07-13
CN202110014784.3A CN114712149B (zh) 2021-01-06 2021-01-06 基于上肢康复训练机器人的单点上肢静态测试方法
CN202110014784.3 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022012410A1 true WO2022012410A1 (zh) 2022-01-20

Family

ID=79555002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105264 WO2022012410A1 (zh) 2020-07-13 2021-07-08 上肢康复训练机器人及单点上肢静态测试方法

Country Status (1)

Country Link
WO (1) WO2022012410A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110004126A1 (en) * 2008-02-21 2011-01-06 Motorika Limited System and a method for scoring functional abilities of a patient
CN105476818A (zh) * 2016-01-14 2016-04-13 清华大学 康复训练装置
CN107812360A (zh) * 2017-12-07 2018-03-20 同济大学浙江学院 上肢协调康复训练装置
CN110179629A (zh) * 2019-06-13 2019-08-30 河南省祥和康复产业技术研究院有限责任公司 一种基于麦克纳姆轮的被动式上肢功能康复训练器
CN111297637A (zh) * 2020-03-19 2020-06-19 山东建筑大学 一种用于上肢康复的手臂托架装置
CN213099164U (zh) * 2020-07-13 2021-05-04 厦门威恩科技有限公司 一种上肢康复训练机器人
CN213130613U (zh) * 2020-07-13 2021-05-07 厦门威恩科技有限公司 一种上肢康复协调机构
CN213346649U (zh) * 2020-07-13 2021-06-04 厦门威恩科技有限公司 一种带有定位跟踪功能的上肢康复训练机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110004126A1 (en) * 2008-02-21 2011-01-06 Motorika Limited System and a method for scoring functional abilities of a patient
CN105476818A (zh) * 2016-01-14 2016-04-13 清华大学 康复训练装置
CN107812360A (zh) * 2017-12-07 2018-03-20 同济大学浙江学院 上肢协调康复训练装置
CN110179629A (zh) * 2019-06-13 2019-08-30 河南省祥和康复产业技术研究院有限责任公司 一种基于麦克纳姆轮的被动式上肢功能康复训练器
CN111297637A (zh) * 2020-03-19 2020-06-19 山东建筑大学 一种用于上肢康复的手臂托架装置
CN213099164U (zh) * 2020-07-13 2021-05-04 厦门威恩科技有限公司 一种上肢康复训练机器人
CN213130613U (zh) * 2020-07-13 2021-05-07 厦门威恩科技有限公司 一种上肢康复协调机构
CN213346649U (zh) * 2020-07-13 2021-06-04 厦门威恩科技有限公司 一种带有定位跟踪功能的上肢康复训练机

Similar Documents

Publication Publication Date Title
US8277396B2 (en) Method and apparatus for assessing proprioceptive function
Tao et al. Gait analysis using wearable sensors
AU2009318230B2 (en) Exercise device and system
JP4958128B2 (ja) 筋トーヌス計測装置
CN108095725A (zh) 一种人体运动能力集成测试装置及其使用方法
JP4292247B2 (ja) 動作解析装置およびその利用
Tien et al. Results of using a wireless inertial measuring system to quantify gait motions in control subjects
CN111714334B (zh) 一种上肢康复训练机器人及控制方法
CN111839459A (zh) 一种基于云平台的颈椎评估康复***
CN2841073Y (zh) 具步态侦测功能的跑步机结构
TW201121525A (en) Training system and upper limb exercise function estimation for hemiplegic stroke patient.
TWI505228B (zh) 一種自主復健動作量化評估系統
WO2022012410A1 (zh) 上肢康复训练机器人及单点上肢静态测试方法
CN213099164U (zh) 一种上肢康复训练机器人
CN111419627A (zh) 四自由度的人体电刺激下动态平衡能力测试装置及方法
CN110448867A (zh) 一种上肢训练装置
CN115644877A (zh) 上肢康复训练机器人及单点上肢静态测试方法
CN105527046B (zh) 手臂支撑平台的接触力、压力检测装置及数据分析方法
CN213346649U (zh) 一种带有定位跟踪功能的上肢康复训练机
Zito et al. Development and pilot testing of a novel electromechanical device to measure wrist rigidity in parkinson’s disease
CN202235307U (zh) 平衡功能训练检测***
Hidayat et al. LOVETT scaling with flex sensor and MYO armband for monitoring finger muscles therapy of post-stroke people
CN205795649U (zh) 用于大臂与小臂侧摆的主动动觉方位测试装置
CN114712149B (zh) 基于上肢康复训练机器人的单点上肢静态测试方法
CN205795653U (zh) 一种平行于人体轴线的主动动觉方位测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21841233

Country of ref document: EP

Kind code of ref document: A1