WO2022012398A1 - 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉 - Google Patents

一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉 Download PDF

Info

Publication number
WO2022012398A1
WO2022012398A1 PCT/CN2021/105092 CN2021105092W WO2022012398A1 WO 2022012398 A1 WO2022012398 A1 WO 2022012398A1 CN 2021105092 W CN2021105092 W CN 2021105092W WO 2022012398 A1 WO2022012398 A1 WO 2022012398A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ribs
rib
area
pot
Prior art date
Application number
PCT/CN2021/105092
Other languages
English (en)
French (fr)
Inventor
赵钦新
焦健
邵怀爽
王云刚
梁志远
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to EP21843100.5A priority Critical patent/EP4075075A4/en
Publication of WO2022012398A1 publication Critical patent/WO2022012398A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/30Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle being built up from sections
    • F24H1/32Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle being built up from sections with vertical sections arranged side by side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/02Casings; Cover lids; Ornamental panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1832Arrangement or mounting of combustion heating means, e.g. grates or burners
    • F24H9/1836Arrangement or mounting of combustion heating means, e.g. grates or burners using fluid fuel

Definitions

  • the invention belongs to the field of thermal energy engineering, and particularly relates to a single-pot slice series-connected cast aluminum-silicon water heater coupled with premixed water-cooled combustion.
  • the technical field of boiler equipment used to improve production efficiency, reduce costs, save energy and protect the environment, and improve product quality and reliability.
  • the current commercial condensing gas heating furnaces are mostly cast aluminum silicon condensing heating furnaces, which have the advantages of high thermal conductivity, easy installation and maintenance, relatively flexible design, and good corrosion resistance.
  • the furnace occupies a larger share.
  • the vast majority of cast aluminum-silicon condensing heating furnaces on the market now use a modular combined structure of one front boiler, several middle boilers and one rear boiler.
  • the front boiler piece is connected to the burner head
  • the rear boiler piece closes the flow of flue gas and supports the tail of the combustion head
  • the middle boiler piece of the same structure is serially connected in series between the front boiler piece and the rear boiler piece.
  • the difference in non-critical details can be reduced to 1/3 of the original casting mold by using one single pot sheet to simultaneously complete the functions of the above three pot sheets of different structures, thereby effectively reducing production costs, improving production efficiency and reducing waste. It is also beneficial to increase the product series and significantly improve product quality and reliability.
  • the burner head is composed of a water-cooled tube bundle with a high heat transfer coefficient. After premixing, it is ejected through the slit between the water-cooled tube bundles and then ignited and burned.
  • the water-cooled tube bundles quickly take away the high temperature generated by the premixed flame at the root of the flame, effectively reducing the temperature of the combustion zone and further suppressing the generation of thermal NOx.
  • the "cold wall effect" of the water-cooled tube bundle plays the role of flameout protection, which can effectively reduce the risk of tempering of the combustion head.
  • the invention combines the water-cooled combustion head and the axisymmetric heat exchange.
  • the boiler pieces are organically combined to provide a single boiler piece series cast aluminum-silicon water heater coupled with premixed water-cooled combustion.
  • the pin-fin part of the rear boiler is arranged with a lined heat insulation cover 7; the top and bottom ends of the front boiler are provided with a water-side header sealing end cover 8, and the center of the rear boiler is arranged with a refractory heat insulation lined rear cover Plate 12, the bottom and top ends of the rear boiler pieces are respectively provided with a water-side inlet header 13 and a water-side outlet header 14 for realizing water circulation; Sand plug 11; at the bottom end of the main structure, a special-shaped smoke box 9 is arranged;
  • the annular water-cooled combustion head 2 includes an annular water-cooled channel 101, and the surface of the annular water-cooled channel 101 is provided with an anti-tempering rib 102 and a flame stabilization column 103 in a centrally symmetrical form;
  • the outside of the combustion chamber, the convection area and the condensation area are regularly arranged with circular pin ribs 104 and waist pin ribs 106; the bases 108 on both sides of the bottom of the axisymmetric single pot sheet 1 are used to connect with the special-shaped smoke box 9; gas and air are mixed
  • the gas enters the cylindrical equalizing orifice plate 3 from the connecting elbow 6, flows through the annular water-cooled combustion head 2 after equalizing, and is uniformly ejected along the annular gaps of the adjacent axially symmetric single boiler pieces 1, and then ignites.
  • the anti-tempering ribs 102 have a corn kernel cross-sectional structure. After being arranged along the circumference, the distance between two adjacent anti-tempering ribs 102 is equal everywhere in the radial direction, and the spacing is 1-10 mm.
  • the height of the anti-tempering ribs 102 is 6 ⁇ 30mm, the specific value should ensure that the average speed of gas ejection when the mixture passes through the gap is 2 ⁇ 3m/s; Flame, the height of the flame stabilizing rib 103 is consistent with the anti-tempering rib 102; the circumferential base rib 113 is arranged around the wall of the combustion chamber in the radiation area, and 4 to 8 hole seats with threaded holes are evenly arranged on the circumferential base rib 113 111 , the front and rear pot pieces in the axially symmetric single pot piece 1 are respectively connected to the front cover plate 5 and the rear cover plate 12 through the hole seat 111 .
  • the axially symmetric single pot sheet 1 is arranged along the flue gas flow direction, and the arrangement of the circular pin ribs 104 and the waist circular pin ribs 106 is different; the circular pin ribs 104 in the radiation area and the circular pin ribs in the convection area are different
  • the specific height is relatively low, and the diameter and vertical and horizontal intercepts are relatively large; as the flue gas temperature and radiation amount decrease along the flue gas flow direction, the height of the circular pin rib 104 gradually increases, and in the convection area where the flue gas temperature is lower than 500°C It is arranged in a closely staggered equilateral triangle, and the shortest distance between the ribs is 3 to 4 mm; in terms of height, the circular needle ribs 104 are of equal height, or a uniform row or two rows are used as a group of height staggered design, and The height difference is not greater than 1/3 of the average height; in the condensation area where the flue gas temperature is lower than 65 °C, circular pin rib
  • the short diameter is the same as the diameter of the circular pin rib 104 in the condensation area, and the parallel channels between the ribs can provide enough heat exchange area for the condensation of flue gas to ensure the continuous progress of the condensation process; the width of the entire condensation area gradually decreases along the flow direction of the flue gas. Small, so that the entire periphery of the lower half of the axially symmetrical single pot sheet 1 is in the shape of " ⁇ ".
  • each two transverse ribs 116 is 40-120 mm, and from bottom to top, the longitudinal distance between adjacent transverse ribs 116 decreases layer by layer;
  • the corresponding water channel space turns upward along the serpentine bend to the bottom end of the radiation area;
  • the transverse rib 116 in the upper part of the convection area has an inclination angle of 0-10° with the horizontal direction, and a steam release hole 114 is processed at the end;
  • axisymmetric single pot There are two kinds of water channel structures corresponding to the radiation area of sheet 1: one water channel structure is composed of the annular water cooling channel 101 in the center of the furnace in the radiation area and the lateral water channels 112 on the outside of the annular base rib 113, that is, on both sides of the furnace.
  • the bottom end of the radiating area is split, rising in parallel along the annular water cooling channel 101 and the side water channel 112, and finally merges and flows out at the water channel outlet header interface 110; in another water channel structure, the outer water channel 112 of the annular base rib 113 is surrounded by The dividing rib 118 is divided into an ascending water channel 119 and a descending water channel 120, so the entire water channel structure is composed of the annular water cooling channel 101, the ascending water channel 119 and the descending water channel 120. Under this structure, the water flow is not divided at the bottom of the radiation area, but is The left and right flow to the two sides of the furnace and turn 90 degrees into the rising water channel 119.
  • the axisymmetric single pot sheet 1 adopts an integral casting process, and selects ZL101, ZL102, ZL104 or AlSi10Mg grades to cast aluminum-silicon-magnesium alloys. Self-cleaning and corrosion resistance make the side wall surface of the flue gas more resistant to corrosion, improve heat and mass transfer performance, improve surface finish, and prevent dust accumulation;
  • the cover plate 7 is made of stainless steel and is integrally stamped and formed;
  • the special-shaped smoke The box 9 is made of plastic, such as PTFE, PVC, PP or ABS, and is structurally composed of a dew receiving tray 901 and a smoke exhaust outlet 902.
  • the dew receiving tray 901 is a special-shaped polyhedron, and its partial cross-sectional area is along the length direction, width The direction and height direction are gradually reduced to ensure that there is a lowest point on the structure.
  • the annular water-cooled combustion head 2 and the axially symmetric single boiler plate 1 adopt a split structure
  • the annular water-cooled combustion head 2 is assembled by a plurality of water-cooled annular cavities 15 , independent inlet and outlet headers 16 and front-end flanges 17 .
  • the distance between the two symmetrical anti-tempering columns 202 is equal everywhere in the radial direction, and the distance is 1-10 mm; the height of the anti-tempering column 202 is 6-30 mm, and the specific value should ensure that the gas ejection of the mixture when passing through the gap is average.
  • the speed is 2-3 m/s; the combustion stabilization column 203 is located outside the anti-backfire column 202 and is staggered with the anti-backfire column 202 to stabilize the flame.
  • the cross-sectional shape is circular, oval, oval or waist-shaped, and the header header 204 is divided into a water inlet pipe 205 and a water outlet pipe 206 by the middle rib; the working fluid of the annular water-cooled combustion head 2 flows from the water inlet pipe After 205 enters, it is distributed to each annular water-cooling space 201, and is collected in the water outlet pipeline 206 after heat exchange in the circumferential direction to complete the independent water circulation;
  • the opening position of the arc-shaped flow equalizing orifice plate 18 is facing the gap of the anti-tempering column 202, and the shape of the opening is a circle, a waist circle, an ellipse, or an oval; at this time, the mixture of gas and air is fully mixed.
  • the diameter is the same as the diameter of the circular pin fins 1905 in the condensation area.
  • the parallel channels between the ribs can provide enough heat exchange area for the condensation of flue gas to ensure the continuous progress of the condensation process; the width of the entire condensation area gradually decreases along the flow direction of the flue gas. , so that the periphery of the lower half of the entire axially symmetric pot piece 19 is in the shape of " ⁇ " as a whole.
  • the inner hollow cavity of the axisymmetric pot sheet 19 is a water channel space.
  • the water channel space is divided by longitudinal ribs 1916 in the vertical direction and a plurality of transverse ribs 1917 in the horizontal direction.
  • the longitudinal ribs 1916 divide the entire water channel space along the The left and right are divided into two, and the distance between each two transverse ribs 1917 is 40-120 mm, and from bottom to top, the distance between adjacent transverse ribs 1917 decreases layer by layer.
  • the water channel space corresponding to the gas condensation area and the convection area turns upward along the serpentine curve to the bottom end of the radiation area, and then splits at the bottom end of the radiation area.
  • the header interface 1911 merges and flows out; the transverse rib 1917 on the upper part of the convection area has an inclination angle of 0-10° with the horizontal direction, and a steam release hole 1915 is processed at the end.
  • a single boiler piece coupled with premixed water-cooled combustion is connected in series to cast aluminum silicon water heater. Its main structure is formed by 2 to 12 symmetrical single boiler pieces 31, which are sealed in order on the front and rear surfaces and connected in series with bolts according to capacity requirements; There are isobaric air silo distributors 32 installed on both sides of the top of the single pot sheet 31; heat blocking baffles 33 are arranged on the front and rear pot sheet pin-fin parts of the symmetrical single pot sheet 31; in addition, the top and bottom ends of the front pot sheet are provided with There is a header cover 34, and the bottom and top ends of the rear boiler pieces are respectively provided with a water inlet main pipeline 37-1 and a water outlet main pipeline 37-2 for realizing water circulation; on the left and right sides of the main structure, there are ash cleaning cover plates. 35 and a sealing plug 36; at the bottom end of the main structure, a smoke exhaust box 34 is provided;
  • the outer front and rear sides of the symmetrical single pot piece 31 can be divided into a radiation area, a convection area and a condensation area in turn from top to bottom; the gas and air are uniformly and fully mixed from the premixer and then divided into the furnace located in the symmetrical single pot piece 31.
  • the isobaric silo distributors 32 on both sides of the top after equalizing the flow, uniformly ejected and ignited and burned along the gaps of each symmetrical single pot sheet 31; under this structure, the water channels 3101 on both sides of the top of the furnace are used as water-cooled combustion heads, on which are provided with anti-corrosion nozzles.
  • Tempering fins 3102 and flame stabilizing ribs 3103; circular ribs 3104 and waist round ribs 3106 are regularly arranged outside the combustion chamber of the radiation zone, convection zone and condensation zone;
  • the smoke exhaust box 34 is connected; the radiation area of the furnace becomes the radiation space of the flame, and the high-temperature flue gas fills the radiation area of the furnace and then washes down the pin-fin heating surface of the convection area and the condensation area, and is formed from 2 to 12 symmetrical single pot sheets 31.
  • the bottom end of the main structure flows into the smoke exhaust box 34, and the flue gas is collected and discharged upwards;
  • the mixed air is ignited and burned after passing through the anti-tempering fins 3102 and the flame stabilizing ribs 3103; wherein, the anti-tempering fins 3102 have a rectangular or oval cross-sectional structure, and the distance between the adjacent anti-tempering fins 3102 is 1-10 mm.
  • the height is 6-30mm, and the specific value should ensure that the average speed of gas ejection when the mixture passes through the gap is 2-3m/s;
  • the staggered arrangement is used to stabilize the flame, and the height is consistent with the anti-tempering fins 3102; a plurality of support holes 3111 with bolt holes are arranged on both sides of the top of the symmetrical single pot sheet 31, which are used to connect with the isobaric silo distributor 32. connected.
  • each two straight ribs 3115 is 40-120mm, and with the increase of the overall height, the section height decreases layer by layer, and it is ensured that the section height around the radiation area is about the largest About 1/2 of the section height, the central rib 3114 and the straight rib 3115 form a left and right symmetrical serpentine water channel 3112; the straight rib 3115 in the upper part of the convection zone has an inclination angle of 0-10°, and its end is processed with steam discharge holes 3113 Under this structure, after the system return water enters each symmetrical single pot piece 31, it turns and rises along the left and right symmetrical serpentine water channels 3112, and finally turns to the water channels 3101 on both sides of the top of the furnace until it converges at the top outlet 3110 and flows out. .
  • the heat exchange structure acts as the combustion head of the fully premixed water-cooled burner, which integrates the burner and the cast aluminum-silicon body heat exchanger. There is a heat exchanger in the burner and a burner in the heat exchanger.
  • the structure of the main part of the present invention is symmetrical. Based on a set of symmetrical molds, the traditional cast aluminum-silicon condensing heating furnace requires front, middle and rear heating plates to form a complete furnace design, and is optimized to only need one general mold to complete, which not only simplifies the production process, but also At the same time, it can effectively control the casting cost
  • the present invention adopts the design of the left and right split water channels, so the heat exchange unit is wider, and the maximum capacity of the condensing boiler can be increased by about 30% compared with the traditional design.
  • the working medium does not drop during the entire flow, which ensures that the molding sand can be poured out and the flow distribution is uniform, and at the same time, the deterioration of heat transfer caused by supercooled boiling is eliminated, and the non-heating period needs to be long.
  • the corrosion problem caused by the time dry protection and the cold working medium is difficult to eliminate.
  • the header is built in instead of an external water tank, which further streamlines the assembly process, reduces the workload of sealing, improves production efficiency, and makes the condensing boiler overall more compact.
  • the present invention adopts the double " ⁇ " character outlet design that locally tapers and extends the mainstream area on the flue gas convection heating surface, which improves the heat exchange intensity per unit area and effectively reduces the heat exchange area while ensuring the uniform change of the flow rate. Redundancy, thereby reducing the weight and cost of condensing boilers.
  • the flue gas side adopts uniform staggered fins in one to three rows, and in the second half of the convection heating surface (condensation heat exchange area)
  • the parallel channels between the ribs can provide sufficient and continuous condensation space for the flue gas, so that the condensate can be more easily discharged under the carrying of the mainstream flue gas, thereby improving the overall heat and mass transfer performance.
  • Figure 2b is a front view of the axially symmetric single pot sheet of the present invention.
  • Figure 2c is a right side view of the axisymmetric single pot slice of the present invention.
  • Fig. 2d is a full cross-sectional view of the axially symmetric single pot sheet of the present invention.
  • Fig. 4a is an isometric view of the downstream waist circular pin-fin structure in the axisymmetric single-pot condensing heat exchange zone.
  • Fig. 4b is a front view of the axially symmetric single-pot condensing heat exchange area with a circular pin-fin structure with a downstream waist.
  • Figure 5a is a front view of the front cover.
  • Figure 5b is a rear view of the front cover.
  • Figure 6a is a front view of the rear cover.
  • Figure 6b is a rear view of the rear cover
  • Figure 7a is a front view of a special-shaped smoke box.
  • Figure 7b is a right side view of the special-shaped smoke box.
  • Figure 8a is an axonometric view of a water-cooled combustion head assembled from a water-cooled annular cavity.
  • Figure 8b is a front view of a water-cooled combustion head assembled from a water-cooled annular cavity.
  • Figure 8c is an A-A sectional view of a water-cooled combustion head assembled from a water-cooled annular cavity
  • Figure 9a is a front view of the water-cooled annular cavity
  • Figure 9b is a right side view of the water-cooled annular cavity.
  • FIG. 9c is a schematic diagram of the water flow of the water-cooled annular cavity based on the cross-sectional view A-A.
  • Figure 10a is an axonometric view of the annular water-cooled annular combustion head of the present invention.
  • Figure 10b is a front view of the annular water-cooled annular combustion head of the present invention.
  • Figure 10c is a left side view of the annular water-cooled annular combustion head of the present invention.
  • Figure 10d is an A-A sectional view of the annular water-cooled annular combustion head of the present invention.
  • Fig. 10e is a B-B cross-sectional view of the annular water-cooled annular combustion head of the present invention reflecting the water flow process.
  • Fig. 11a is an isometric view of a single boiler-piece series-connected cast aluminum-silicon water heater coupled with premixed water-cooled combustion according to the present invention.
  • Fig. 11b is a front view of a single boiler-piece series-connected cast aluminum-silicon water heater coupled with premixed water-cooled combustion according to the present invention.
  • Fig. 12a is a front view of the axisymmetric pot slice of the present invention.
  • Figure 12b is a left side view of the axisymmetric pot slice of the present invention.
  • Figure 12c is a cross-sectional view of the axially symmetric pot piece of the present invention.
  • Figure 13 is a schematic diagram of the water cooling channel of the axisymmetric pot piece.
  • Figure 14a is a front view of the front end cover.
  • Figure 14b is a rear view of the front end cover.
  • Figure 15a is a front view of the rear end cover.
  • Figure 15b is a rear view of the rear end cover
  • Fig. 16a is an axonometric view of a single-pot, series-connected cast aluminum-silicon water heater with coupled premixed water-cooled combustion assembled by a symmetrical single-pot and an isobaric silo distributor in the present invention.
  • Figure 16b is a front view of the above-mentioned series-connected cast aluminum-silicon water heater
  • Figure 17a is a front view of a symmetrical single pot sheet.
  • Figure 17b is a right side view of a symmetrical single pot slice.
  • Figure 17c is a full cross-sectional view of a symmetrical single pot sheet.
  • the X-axis is the first direction
  • the Y-axis is the second direction
  • the front and rear in this text refer to the front and rear along the first direction.
  • the main structure of the cast aluminum-silicon water heater is connected in series. According to its capacity requirements, the main structure is composed of 2 to 12 axially symmetric single-pot slices 1.
  • the front and rear faces are sealed in sequence and then connected in series with bolts 4;
  • a front cover plate 5 is arranged in the center of the furnace of the front boiler plate.
  • the inside of the front cover plate 5 is connected with a cylindrical flow equalizing orifice 3, which is arranged on the annular inner wall surface of the annular water-cooled combustion head 2.
  • the flow-equalizing orifice plate 3 passes through the annular water-cooled combustion head 2 of each axisymmetric single boiler piece 1, and the front cover plate 5 is connected to the premixer through a connecting elbow 6 outwards.
  • the first single boiler piece along the first direction is: The front pot sheet, the last single pot sheet along the first direction is the rear pot sheet, and the pin-fin parts of the front pot sheet and the rear pot sheet in the axially symmetric single pot sheet 1 are arranged with lined heat insulation cover plates 7;
  • the top and bottom ends of the boiler are provided with a water-side header sealing end cover 8, the center of the rear boiler piece is arranged with a refractory and heat-insulating lined rear cover plate 12, and the bottom end of the rear boiler piece is provided with a water-side inlet header 13,
  • the top of the rear boiler is provided with a water-side outlet header 14, and the water-side inlet header 13 and the water-side outlet header 14 can cooperate to realize water circulation; on both sides of the main structure along the second direction are det
  • the front and rear sides of the axisymmetric single pot sheet 1 are divided into a radiation area, a convection area and a condensation area in turn from top to bottom.
  • the center of the combustion chamber in the radiation area is arranged in the center
  • There is an annular water-cooled combustion head 2 and the annular water-cooled combustion head 2 and the symmetrical single pot sheet 1 are integrated or separated.
  • the annular water-cooled combustion head 2 includes an annular water-cooled channel 101, and the surface of the annular water-cooled channel 101 is provided with anti-reflection ribs 102 and the flame stabilization column 103, the anti-tempering ribs 102 and the flame stabilization column 103 are arranged symmetrically in the center; the outer side of the combustion chamber in the radiation area, the convection area and the condensation area of the axisymmetric single pot sheet 1 are arranged with circular pin ribs 104 and waist circular pin ribs 106; the bases 108 located on both sides of the bottom of the axisymmetric single pot sheet 1 are connected to the special-shaped smoke box 9; the gas and air mixture enters the cylindrical equalizing orifice 3 from the connecting elbow 6, and flows through the annular water cooling after equalizing
  • the combustion head 2 is uniformly ejected along the gaps of the adjacent axially symmetrical single boiler sheets 1 and then ignited, and burns at an axial interval along the annular cylindrical surface; the high-temperature flue gas fills
  • the return water enters from the water channel inlet header interface 109 at the bottom end of the single boiler piece 1 and flows out from the water channel outlet header interface 110 located at the top of the single boiler piece 1 .
  • Pairs of bolt connection holes 105, ash cleaning ports 107 and sand discharge ports 117 are arranged on both sides of the axis-symmetric single pot sheet 1; The front and rear faces of the sheet 1 are aligned and connected in series; the opening of the ash cleaning port 107 ensures that it can be cleaned to 1/3 to 1/2 of the convection area, so as to avoid unsealing the sealed furnace body when cleaning is required in the heating season, and cleaning
  • the ash port 107 is assembled with the detachable ash cleaning baffle 10; the sand discharge port 117 is directly opposite to the transverse rib 116 in position, and the sand discharge port 117 penetrates directly into the water channel in depth, and is assembled with the sand discharge plug 11 .
  • the anti-tempering ribs 102 have a corn kernel cross-sectional structure and are arranged along the circumference.
  • the distance between two adjacent anti-tempering ribs 102 is equal to the radial direction, and the distance is 1-10 mm.
  • the height of the anti-tempering rib 102 is 6 to 30 mm, and the specific value should ensure that the average speed of gas ejection when the gas and air mixture passes through the gap is 2 to 3 m/s;
  • the outer side is staggered with the anti-tempering ribs 102 to stabilize the flame.
  • the height of the flame-stabilizing ribs 103 is the same as the height of the anti-tempering ribs 102;
  • Four to eight hole seats 111 with threaded holes are evenly arranged, and the front and rear pot pieces in the axially symmetric single pot piece 1 are respectively connected to the front cover plate 5 and the rear cover plate 12 through the hole seats 111 .
  • the inner hollow cavity of the axially symmetric single pot sheet 1 is a water channel space, and the water channel space is divided as a whole by longitudinal ribs 115 along the vertical direction and a plurality of transverse ribs 116 along the horizontal direction.
  • the longitudinal ribs 115 divide the entire The water channel space is divided into two parts along the left and right sides, and the distance between each adjacent two transverse ribs 116 is 40-120 mm, and from bottom to top, the longitudinal distance between adjacent transverse ribs 116 decreases layer by layer;
  • the water channel space corresponding to the convection area turns upward along the serpentine curve until the bottom end of the radiation area;
  • the transverse rib 116 in the upper part of the convection area has an inclination angle of 0-10° relative to the horizontal direction, and the end of the transverse rib 116 is processed to release steam Hole 114;
  • the water channel structure corresponding to the radiation area of the axially symmetric single pot sheet 1 is composed of the annular water cooling channel 101 in the center of the furnace in the radiation area and the outer side of the annular base rib 113, that is, the side water channels 112 on both sides of the furnace.
  • the diversion of the water flow at the bottom of the radiation area rises in parallel along the annul
  • the axially symmetric single pot sheet 1 is arranged along the flue gas flow direction, and the arrangement of the circular needle ribs 104 and the waist circular needle ribs 106 are different;
  • the height is lower than the height of the circular pin rib in the convection area, and the diameter and transverse and longitudinal intercept of the circular pin rib 104 in the radiation area are larger than those in the convection area;
  • the temperature and the amount of radiation decrease along the flow direction of the flue gas, and the height of the circular pin ribs 104 gradually increases.
  • the shape of the circular pin ribs 104 is: Regular triangle, the shortest distance between the adjacent circular pin ribs 104 is 3-4mm; in terms of height, the circular pin ribs 104 are of the same height, or a uniform row or two rows are used as a group of height staggered design , and the height difference is not greater than 1/3 of the average height; in the condensation area where the flue gas temperature is lower than 65 °C, circular pin rib 104 and waist pin rib 106 whose long diameter is consistent with the flue gas flow direction are used.
  • the short diameter of 106 is the same as the diameter of the circular pin rib 104 in the condensation area, and the parallel channels between the ribs can provide sufficient heat exchange area for the condensation of flue gas to ensure the continuous process of condensation.
  • the overall structure of the front cover 5 and the rear cover 12 is similar, made by a set of molds, and the molding method adopts casting or stamping; the front cover 5 and The rear cover plate 12 is of a disc-like structure.
  • the peripheral boundary of the front cover plate 5 is provided with a circumferential opening 501.
  • the circumferential opening 501 is used to connect with the annular base rib 113 of the axially symmetric single pot sheet 1;
  • the inner side of 5 is arranged with four centripetal support ribs 504, and the support ribs 504 are used to support the cylindrical equalizing orifice plate 3;
  • the method of processing the front cover plate 5 from the rear cover plate 12 is specifically: After the cover plate 12 , the center of the rear cover plate 12 is opened to insert the cylindrical equalizing orifice plate 3 .
  • a threaded hole 502 is added at the outer end surface of the front cover plate 5 , and the outer end surface of the front cover plate 5 is added.
  • Process or add an integrated monitoring system 503 including ignition holes, flame monitoring holes, and pressure monitoring holes.
  • the special-shaped smoke box 9 is made of plastic, such as PTFE, PVC, PP or ABS, etc.
  • the dew plate 901 is a special-shaped polyhedron, and its partial cross-sectional area gradually decreases along the length, width and height directions to ensure that there is a lowest point in the structure.
  • Figures 2d and 2e show another water channel structure in the radiation area of the axially symmetric single pot sheet 1: the outer water channel 112 of the annular base rib 113 is divided into an ascending water channel 119 and a down water channel 120 by the dividing rib 118, so the entire water channel structure is cooled by annular water.
  • the channel 101, the ascending water channel 119 and the descending water channel 120 are formed together. Under this structure, the water flow is not divided at the bottom end of the radiation area, but flows left and right to the sides of the furnace and turns 90 degrees into the ascending water channel 119, and ascends to the outlet of the water channel.
  • Figures 8a, 8b, 8c, 9a, 9b and 9c collectively show the split structure between the annular water-cooled combustion head 2 and the axisymmetric single boiler plate 1:
  • the annular water-cooled combustion head 2 consists of a plurality of water-cooled annular cavities 15, inlet The outlet independent header 16 and the front-end flange 17 are assembled together;
  • the water-cooled annular cavity 15 includes an annular water-cooled channel 1501, an anti-backlash fin 1502 and a flame stabilizing rib 1503;
  • the number of the water-cooled annular cavity 15 is the same as that of the axis-symmetric single pot sheet
  • the number of 1 is the same, the water inlet and outlet holes 1504 are respectively opened on both sides of the annular inner wall surface of the water-cooled annular cavity 15, and the inlet and outlet holes 1504 are assembled with the inlet and outlet independent header 16, so as to realize the annular water-cooled combustion head 2 and the axisymmetric unit.
  • the water circulation inside the split structure between the boiler pieces 1 is independent; the front end of the water-cooled annular cavity 15 matched with the front boiler piece of the axially symmetric single boiler piece 1 is connected with an end flange 17, and the end flange 17 is used to connect with the boiler.
  • the front cover plate 5 and the connecting elbow 6 are connected together; at the same time, the annular inner wall surface of the water-cooled annular cavity 15 is equipped with two arc-shaped flow-equalizing orifices 18, and the openings of the arc-shaped flow-equalizing orifices 18 are opposite to the adjacent ones.
  • the gap between the anti-tempering fins 1502, the shape of the opening is a circle, a waist circle, an ellipse or an oval, and the edges of the two arc-shaped flow-equalizing orifice plates 18 are located on the upper and lower sides of the inlet and outlet independent headers 16 two sides; at this time, the mixture of gas and air is fully mixed and firstly flows through the arc-shaped flow-equalizing orifice 18, and then passes through the anti-reflection fins 1502 and flame-stabilizing ribs 1503 between the water-cooled annular cavities 15, and finally After evenly spraying, the ignition is fired at intervals along the circumferential gap of the cylindrical surface.
  • Figures 10a, 10b, 10c, 10d and 10e show another split structure between the annular water-cooled combustion head 2 and the axisymmetric cast aluminum-silicon single boiler sheet 1: the annular water-cooled combustion head 2 is cast as a whole, and the annular The water-cooled combustion head 2 includes an annular water-cooled space 201, an anti-backfire column 202, a stable combustion column 203 and a header header 204; wherein, the anti-backfire column 202 and the stable combustion column 203 are all distributed on the surface of the annular water-cooled space 201, and the anti-backfire column 202 The anti-tempering column 203 and the combustion-stabilizing column 203 are arranged symmetrically in the center.
  • the anti-tempering column 202 has a corn kernel cross-sectional structure. After the anti-tempering column 202 is arranged along the circumference, it should be ensured that the distance between the two symmetrical anti-tempering columns 202 is equal in the radial direction, and the spacing is 1 to 10 mm; the height of the anti-tempering column 202 is 6 to 30 mm, and the specific value should ensure that the average speed of gas ejection when the mixture passes through the gap is 2 to 3 m/s; It is arranged alternately with the anti-backfire column 202 to stabilize the flame.
  • the height of the stable combustion column 203 is the same as the height of the anti-backfire column 202; Ribs divide the header pipe 204 into a water inlet pipe 205 and a water outlet pipe 206; after the working fluid water of the annular water-cooled combustion head 2 enters from the water inlet pipe 205, it is distributed to each annular water-cooling space 201, and after heat exchange through circumferential flow At the same time, the inner wall of the annular water-cooled combustion head 2 is equipped with an arc-shaped flow-equalizing orifice 18, and the opening position of the arc-shaped flow-equalizing orifice plate 18 is opposite to the adjacent anti-backlash column 202
  • the shape of the opening is a circle, a waist circle, an ellipse or an oval; at this time, after the gas and air mixture is fully mixed, it firstly flows through the arc-shaped flow-equalizing orifice 18, Then, after passing through the anti-backlash column 202 and the stabilizing combustion column 203 of the annul
  • a single boiler plate coupled with premixed water-cooled combustion is connected in series to cast alumino-silicon water heaters.
  • the main structure of the boiler is sealed by 2 to 12 axisymmetric boiler plates 19 in turn according to the capacity requirements. It is connected in series with bolts; the front-end cover plate 22 is arranged in front of the front boiler of the axially symmetric boiler piece 19, which is connected inwardly with a rectangular equalizing orifice plate 21, and the rectangular equalizing orifice plate 21 is supported on the parallel water-cooled combustion head.
  • the rectangular flow equalizing orifice plate 21 passes through the parallel water-cooled combustion head 20 of each axisymmetric pot piece 19, and the front end cover plate 22 is connected to the premixer through an elbow 23 outwards.
  • the top and bottom ends of the front boiler pieces are provided with inlet and outlet header sealing end covers 25, and the center of the furnace hearth of the rear boiler pieces is arranged with refractory heat insulation
  • the rear end cover plate 29 of the inner lining, the bottom end and the top end of the rear boiler piece are respectively provided with a water inlet main pipe 30-1 and a water outlet main pipe 30-2 for realizing water circulation; Ash baffle 27 and plug 28; a smoke box 26 is provided at the bottom end of the main structure.
  • the front and rear sides of the axisymmetric pot sheet 19 are divided into a radiation area, a convection area and a condensation area in turn from top to bottom.
  • the parallel water-cooled combustion head 20 with the pot pieces 19 as a whole, the parallel water-cooled combustion head 20 includes parallel water-cooling channels 1901 on both sides of the central rectangular section cavity 1904, anti-tempering ribs 1902 and flame-stabilizing fins 1903 arranged on the surface of the parallel water-cooling channel 1901 , the anti-tempering ribs 1902 and the flame-stabilizing fins 1903 are arranged axially symmetrically;
  • the axisymmetric pot pieces 19 are arranged with circular pin fins 1905 and waist circular pin fins 1907 on the outside of the combustion chamber of the radiation area, the convection area and the condensation area;
  • the axisymmetric pot pieces 19 The bases 1909 on both sides of the bottom are connected to the smoke box 26; the gas and air mixture enters the rectangular equalizing orifice plate 21 from the
  • Ignition burns at intervals along the plane; the high-temperature flue gas fills the radiation area around the hearth of the water heater and then washes down the pin-fin heating surfaces of the convection area and the condensation area, and flows into the bottom end of the main structure formed by 2 to 12 axisymmetric pot pieces 19.
  • Smoke box 26 the flue gas is collected and discharged upwards; the interior of the axisymmetric pot piece 19 is a hollow cavity, and the return water enters from the water channel inlet interface 1910 at the bottom end of the axisymmetric pot piece 19, and from the top of the axisymmetric pot piece 19.
  • the water outlet port 1911 flows out.
  • the inner hollow cavity of the axisymmetric pot sheet 19 is a water channel space.
  • the water channel space is divided by longitudinal ribs 1916 in the vertical direction and a plurality of transverse ribs 1917 in the horizontal direction.
  • the longitudinal ribs 1916 divide the entire water channel space along the The left and right are divided into two, the spacing between each two transverse ribs 1917 is 40-120 mm, and the spacing between adjacent transverse ribs 1917 from bottom to top decreases layer by layer, and the periphery of the furnace in the radiation area is the outer water channel 1912; the water flow condenses in the flue gas
  • the water channel space corresponding to the water channel area and the convection area turns upward along the serpentine bend to the bottom end of the radiation area, and then splits at the bottom end of the radiation area.
  • the interface 1911 merges and flows out; the transverse rib 1917 in the upper part of the convection area has an inclination angle of 0-10° with respect to the horizontal direction, and a vent hole 1915 is processed at the
  • the two sides of the axisymmetric pot pieces 19 along the second direction are arranged with pairs of connecting holes 1906, ash cleaning grooves 1908 and sand discharge holes 1918; Aligned and connected in series; the opening of the ash cleaning slot 1908 ensures that it can be cleaned to 1/3 to 1/2 of the convection area, so as to avoid unpacking the sealed furnace body when it is necessary to clean the ash in the heating season.
  • the anti-tempering ribs 1902 and the flame-stabilizing fins 1903 are evenly distributed on the surfaces of the two parallel water-cooling channels 1901 in an axisymmetric manner.
  • the distance between adjacent anti-tempering ribs is 1-10mm, and the height of the anti-tempering ribs is 6-30mm.
  • the specific value should ensure that the average speed of gas ejection when the gas and air mixture passes through the gap is 2-3m/s;
  • the flame fins 1903 are located on the outside of the anti-tempering ribs 1902 and are alternately arranged with the anti-tempering ribs 1902 to stabilize the flame;
  • annular ribs 1913 are arranged around the furnace wall of the combustion chamber in the radiation area, and 4 to 8 screws are evenly arranged on the annular ribs 1913.
  • the hole seat 1914 , the front pot sheet and the rear pot sheet in the axially symmetrical pot sheet 19 are respectively connected to the front cover plate 22 and the rear end cover plate 29 through the screw hole seat 1914 .
  • the front end cover plate 22 and the rear end cover plate 29 are similar in overall structure, made by a set of molds, and the molding method is casting or stamping; the front end cover plate 22 Both the rear end cover plate 29 and the rear end cover plate 29 are disc-like structures, and a circumferential hole 2201 is provided at the outer boundary of the front end cover plate 22.
  • the circumferential hole 2201 is used to connect with the annular rib 1913 of the axisymmetric pot piece 19;
  • a reinforcing rib 2204 is arranged on the inner side of the plate 22, and the reinforcing rib 2204 is used to support the rectangular equalizing orifice 21; After 29, a rectangular hole is opened at the center of the rear end cover 29, and a screw hole 2202 is added at the outer end face of the rear end cover 29, and is positioned on the reinforcing rib 2204, and the outer end face of the rear end cover 29 is added.
  • Surface processing or adding a monitoring system integration seat 2203 including ignition holes, flame monitoring holes, and pressure monitoring holes.
  • a single boiler plate coupled with premixed water-cooled combustion is connected in series to cast alumino-silicon water heater, and its main structure is sealed by 2 to 12 symmetrical single boiler plates 31 in sequence on the front and rear surfaces according to the capacity requirements.
  • the isobaric silo distributor 32 is installed on both sides of the top of the symmetrical single pot sheet 31; the front pot sheet and the rear pot sheet pin-fin part of the symmetrical single pot sheet 31 are arranged with heat-resistant baffles 33 ;
  • the top and bottom ends of the front pot pieces are provided with a header cover 34, and the bottom and top ends of the rear pot pieces are respectively provided with a main water inlet pipe 37-1 and a water outlet main pipe 37-2 for realizing water circulation;
  • the two sides of the structure along the second direction are provided with a dust cleaning cover plate 35 and a sealing plug 36; a smoke exhaust box 34 is provided at the bottom end of the main structure;
  • the front and rear sides of the symmetrical single boiler plate 31 can be divided into a radiation area, a convection area and a condensing area in turn from top to bottom; the gas and air mixture is uniformly and fully mixed from the premixer.
  • the water-cooled combustion head is provided with anti-tempering fins 3102 and flame stabilizing ribs 3103; circular ribs 3104 and waist circular ribs 3106 are arranged on the outside of the combustion chamber in the radiation area, in the convection area and in the condensation area;
  • the base 3108 is connected to the smoke exhaust box 34; the radiation area of the furnace becomes the radiation space of the flame, and the high-temperature flue gas fills the radiation area of the furnace and washes down the pin-fin heating surface of the convection area and the condensation area.
  • the bottom end of the main structure formed by the sheet 31 flows into the smoke exhaust box 34, and the flue gas is collected and discharged upwards;
  • the mixed air is ignited and burned after passing through the anti-tempering fins 3102 and the flame stabilizing ribs 3103; wherein, the cross-sectional structure of the anti-tempering fins 3102 is rectangular or oval, and the distance between the adjacent anti-tempering fins 3102 is 1 ⁇ 10mm, the height of the anti-tempering fins 3102 is 6-30mm, and the specific value should ensure that the average speed of gas ejection when the gas and air mixture passes through the gap is 2-3m/s; The outer side of the sheet 3102 is staggered with the anti-tempering fins 3102 to stabilize the flame.
  • the height of the flame-stabilizing ribs 3103 is the same as the height of the anti-tempering fins 3102; the top of the symmetrical single pot sheet 31 is arranged on both sides of the second direction.
  • the symmetrical single pot sheet 31 is arranged along the flue gas flow direction, the circular ribs 3104 and the waist circular ribs 3106 are arranged in different ways, and the height of the circular ribs 3104 in the radiation area is lower than that of the circular needle ribs in the convection area, The diameter and transverse and longitudinal intercepts of the circular rib 3104 in the radiation area are larger than those of the circular pin rib in the convection area. The height of the 3104 is gradually increased.
  • the circular ribs 3104 are closely arranged in a staggered arrangement, and the circular ribs 3104 are arranged in a regular triangle shape, and the adjacent circular ribs 3104 The shortest distance between them is 3-4mm; in terms of height, the circular ribs are of the same height, or a uniform row or two rows are used as a group of height staggered design, and the height difference should not be greater than 1/3 of the average height; In the condensation zone where the flue gas temperature is lower than 65°C, circular rib 3104 and waist-round rib 3106 whose long diameter is consistent with the flue gas flow direction are used.
  • two sides of the symmetrical single pot sheet 31 are provided with pairs of front and rear connection holes 3105, dust cleaning ports 3107 and casting sand discharge ports 3116;
  • the front and rear faces of 2 to 12 symmetrical single pot pieces 31 are aligned and connected in series; the opening of the dust cleaning port 3107 ensures that 1/3 to 1/2 of the convection area can be cleaned, avoiding the need to clean the dust in the heating season.
  • the sealed furnace body is unsealed, and the ash cleaning port 3107 is assembled with the ash cleaning cover plate 35; the casting sand discharge port 3116 is directly opposite to the straight rib 3115 in position, and penetrates directly into the water channel in depth, and is connected with the The sealing plug 36 is assembled.
  • the central rib 3114 and the straight rib 3115 form a left and right symmetrical serpentine channel 3112; the straight rib 3115 in the upper part of the convection area With an inclination angle of 0 to 10° in the horizontal direction, steam discharge holes 3113 are processed at the end; under this structure, after the system return water enters each symmetrical single boiler plate 31, it turns and rises along the left and right symmetrical serpentine water channels 3112. , and finally turn to the water channels 3101 on both sides of the top of the furnace until they converge at the top outlet 3110 and flow out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本发明公开了一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其本体由轴对称单锅片替代三种不锅片串接而成,上部由水冷燃烧头和前、后盖板封闭而成的燃烧室辐射区、中部对流区和冷凝区以及下部的异形烟箱构成。轴对称单锅片的燃烧室中心设置有一个环形、两根平行上升或炉膛顶部两侧设置的水冷通道构成水冷燃烧头,混合气经其上设置的防回火肋和稳焰柱喷出后点火燃烧,高温烟气从炉膛辐射区依次向下冲刷对流区和冷凝区的针翅受热面,汇集于异形烟箱转弯后向上排出。水道通过内置集箱而非外接,减少密封工作量,提高生产效率,使整体更加紧凑。本发明实现水冷燃烧与水冷换热一体化,降低燃烧区温度,抑制NOx产生,使氮氧化物进一步降低。

Description

一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉 技术领域
本发明属于热能工程领域,具体涉及一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉。用于提高生产效率、降低成本、节能环保和提高产品质量和可靠性的锅炉设备技术领域。
背景技术
根据《2020中国能源化工产业发展报告》,2020年我国天然气需求将达3290亿立方米,同比增长8.8%,天然气已然成为我国能源结构调整的重要方向性能源以及改善居民生活质量的关键替代性能源。于是,在节能减排、可再生能源利用、“煤改气”等政策的多重影响下,整个燃气采暖炉行业也迎来了崭新的发展机遇和更加激烈的行业竞争。而对于被逐渐应用于学校、酒店、医院、社区的商用燃气采暖炉,如何更加有效地控制成本,以及如何更加高效地节能降耗,是其在技术与发展上必须面对的两个问题。
在控制成本方面,目前商用冷凝燃气采暖炉多以铸铝硅冷凝采暖炉为主,其兼具高热导率,易于安装维护,设计相对灵活,且耐蚀性较好等优点,因此在燃气采暖炉中占有较大份额。然而,现在市场上绝大多数的铸铝硅冷凝采暖炉采用1个前锅片、若干个中锅片以及1个后锅片模块式的组合结构。其中前锅片连接燃烧器头部,后锅片封闭烟气流动兼支撑燃烧头尾部,而前锅片和后锅片的中间依次串接串接1~12个相同结构的中锅片。因此,要想制造生产某功率范围的铸铝硅燃气采暖炉,至少需要3套不同模具分别生产前锅片、中锅片和后锅片,致使铸造模具成本极高。尤其对于大功率、大尺寸的铸铝硅商用燃气采暖炉,每一级锅片的重量约为70~100kg,其对应的模具费用更加昂贵。然而,连接燃烧器的前锅片和后锅片,其实际生产数量一般仅为中锅片的10~20%,因此如果能够实现上述三种锅片铸件在结构上的相对统一,模糊其在非关键细节上的区别,以1种单锅片同时完成上述3种不同结构锅片的功能,就能将铸造模具缩减为原来的1/3,从而有效降低生产成本,提高生产效率,减少废品率,也利于增多产品系列,显著提高产品质量和可靠性。
而在节能降耗方面,由于铸铝硅商用燃气采暖炉结构非常紧凑,因此目前燃气燃烧器普遍选用火焰长度较短的全预混金属纤维表面燃烧器,但较小的炉膛尺寸使全预混燃烧器的容积热负荷极高,额定负荷下,氮氧化物排放往往超过30mg/m3,不能满足全国主要城市污染物排放指标要求,将造成锅炉降低负荷运行。然而表面全预混燃烧技术也存在着一 些难题,一方面随着空燃预混比例的增大,火焰的稳定燃烧范围变小,这就限制了全预混燃烧器的大型化;另一方面,全预混燃烧由于已完成精确比例混合,燃烧完全,燃烧速度快,火焰温度高,因此常规的全预混表面燃烧技术往往需要大量的过量空气来冷却燃烧区温度,从而减少燃烧过程中氮氧化物的生成,然而较高的过量空气系数导致排烟热损失增加,直接降低锅炉热效率。
为改善高过量空气系数燃烧与易回火的问题,国内外技术人员在全预混表面燃烧技术的基础上研发出全预混水冷燃烧技术,通过采用高传热系数的水冷管束组成燃烧器头部,预混后通过水冷管束间的狭缝喷出后点火燃烧,水冷管束在火焰根部将预混火焰产生的高温迅速带走,有效降低燃烧区温度,进一步抑制了热力型NOx的产生。同时水冷管束的“冷壁效应”起到熄火保护作用,能有效地降低燃烧头的回火风险。因此,全预混水冷燃烧技术也成为很多冷凝锅炉的首选。另外目前市场上的铸铝硅冷凝燃气锅炉几乎全部都选配全预混金属纤维表面燃烧器,这种燃烧器所配风机需要防静电风机,功率较小,若有突破功率限制,在技术上自主突破,减少对国外技术的依赖,也必须选用全预混水冷燃烧器。目前还没有先例把全预混水冷燃烧器和铸铝硅组合在一起,更不用说将全预混水冷燃烧器和铸铝硅一体化的产品了。
发明内容
为了同时实现成本控制和节能降耗、降低烟气氮氧化物排放的三重目的,降低铸铝硅冷凝采暖热水炉在生产过程中的非必要投入,本发明将水冷燃烧头和轴对称换热锅片有机地结合在一起,从而提供了一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉。
本发明通过以下技术方案予以实现:
一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其主体结构根据容量需求,由2~12个轴对称单锅片1前后端面依次密封后用螺栓4串接而成;轴对称单锅片1中的前锅片炉膛中心布置有前盖板5,前盖板5向内连接圆柱形均流孔板3,且支撑在环形水冷燃烧头2的环形内壁面上,圆柱形均流孔板3穿过每个轴对称单锅片1的环形水冷燃烧头2,前盖板5向外通过连接弯头6与预混器相连,轴对称单锅片1中的前、后锅片针翅部分布置有内衬隔热盖板7;前锅片顶端和底端设置有水侧集箱密封端盖8,后锅片炉膛中心布置有耐火隔热内衬的后盖板12,后锅片的底端和顶端分别设置有用来实现水循环的水侧进口集箱13和水侧出口集箱14;在主体结构左右两侧,设置有可拆卸清灰挡板10和排沙堵头11;在主体结构底端,设置有异形烟箱9;
所述轴对称单锅片1的外部前后两侧自上而下依次分为辐射区、对流区和冷凝区,其中辐射区燃烧室中心布置有与轴对称单锅片1同为一体或分体的环形水冷燃烧头2,环形水冷燃烧头2包括一个环形水冷通道101,环形水冷通道101表面以中心对称的形式设置有防回火肋102和稳焰柱103;轴对称单锅片1辐射区燃烧室外侧、对流区和冷凝区按规律布置圆形针肋104和腰圆针肋106;轴对称单锅片1底部两侧的基座108用来与异形烟箱9连接;燃气和空气混合气从连接弯头6进入圆柱形均流孔板3,经过均流后流经环形水冷燃烧头2,并沿相邻各轴对称单锅片1的环形间隙均匀喷出后点火,沿环形圆柱面轴向间隔燃烧;高温烟气充盈热水炉炉膛周围辐射区后向下冲刷对流区和冷凝区的针翅受热面,并从2~12个轴对称单锅片1形成的主体结构底端流入异形烟箱9,烟气汇集转弯向上排出;轴对称单锅片1的内部为中空腔体,回水从底端的水道进口集箱接口109进入,从位于顶端的水道出口集箱接口110流出。
所述防回火肋102呈玉米粒截面结构,沿圆周排布后相邻两个防回火肋102的间距沿径向处处相等,且间距为1~10mm,防回火肋102的高度为6~30mm,具体取值应保证混合气经过间隙时的气体喷出平均速度为2~3m/s;稳焰肋103位于防回火肋102的外侧且与防回火肋102交错布置以稳定火焰,稳焰肋103的高度与防回火肋102保持一致;辐射区燃烧室壁面四周布置有环向基肋113,环向基肋113上均匀布置4~8个开设有螺纹孔的孔座111,轴对称单锅片1中的前、后锅片通过孔座111分别与前盖板5和后盖板12相连。
所述轴对称单锅片1沿烟气流动方向,圆形针肋104和腰圆针肋106的排布方式并不相同;辐射区的圆形针肋104与对流区的圆形针肋相比高度较低,直径及横纵截距较大;随着烟气温度与辐射量沿烟气流动方向降低,圆形针肋104的高度逐步提高,在烟温低于500℃的对流区上呈紧密错列正三角形排布,肋间最短距离为3~4mm;在高度上,圆形针肋104为等高,或采用均匀的一排或两排为一组的高低错列设计,且高度差不大于平均高度的1/3;在烟温低于65℃的冷凝区,采用圆形针肋104以及长径与烟气流动方向一致的腰圆针肋106,腰圆针肋106的短径与冷凝区的圆形针肋104的直径相同,肋间的平行通道能够为烟气冷凝提供足够的换热面积,保证冷凝过程的连续进行;整个冷凝区沿烟气流动方向宽度逐渐减小,使整个轴对称单锅片1的下半部分***整体呈“∪”形。
所述轴对称单锅片1的内部中空腔体为水道空间,水道空间整体由沿竖直方向的纵肋115以及多个沿水平方向的横肋116划分而成,纵肋115将整个水道空间沿左右一分为二,每两个横肋116的间距为40~120mm不等,且从下至上,相邻横肋116间的纵向距离逐层减小;水流在烟气冷凝区和对流区对应的水道空间内沿蛇形弯转向上直至辐射区底端;对 流区上部的横肋116与水平方向存在0~10°的倾斜角,并在端部加工放汽孔114;轴对称单锅片1辐射区对应的水道结构有两种:一种水道结构由辐射区炉膛中心的环形水冷通道101以及环向基肋113外侧即炉膛两侧的侧面水道112共同构成,这种结构下水流在辐射区底端分流,分别沿环形水冷通道101和侧面水道112两路并行上升,最后在水道出口集箱接口110处汇合流出;另一种水道结构中,环向基肋113的外侧水道112被分割肋118分为上升水道119和下降水道120,因此整个水道结构由环形水冷通道101、上升水道119以及下降水道120共同构成,这种结构下水流在辐射区底端并不分流,而是向左右流动到炉膛两侧面折转90度进入上升水道119,上行至水道出口集箱接口110附近时向内折转180度向下进入下降水道120,并至炉膛底部后向内折转90度流动至轴对称单锅片1的纵肋115处再折转90度向上汇合并入环形水冷通道101上升,最终在水道出口集箱接口110处汇合流出。
所述轴对称单锅片1的两侧布置有成对的螺栓连接孔105、清灰口107和排沙口117;螺栓孔105将2~12个轴对称单锅片1的前后端面对齐串接后用螺栓4连接起来;清灰口107的开度保证能够清扫到对流区的1/3~1/2,避免采暖季中需要清灰时将已密封好的炉体拆封,并与可拆卸清灰挡板10进行装配;排沙口117在位置上与横肋116正对,在深度上直接贯穿至水道内部,并与排沙堵头11进行装配。
所述前盖板5和后盖板12整体结构相似,通过一套模具制成,其成型方法采用铸造或冲压;前盖板5和后盖板12均为类圆盘结构,***边界处存在周向开孔501,用来与轴对称单锅片1的环向基肋113相连接;在类圆盘结构的内侧布置四个向心的支撑肋504,用来支撑圆柱形均流孔板3;由后盖板12加工为前盖板5的方法具体为:在经过铸造或冲压得到后盖板12后,将后盖板12的中心开孔以便置入圆柱形均流孔板3,同时在类圆盘结构的外侧端面处增设螺纹孔502,并在外侧端面表面加工或增设包括点火孔、火焰监测孔、压力监测孔在内的集成监测***503。
所述轴对称单锅片1采用整体铸造工艺,选用ZL101、ZL102、ZL104或AlSi10Mg牌号铸铝硅镁合金,轴对称单锅片1的冷凝区能够构建超疏水膜,使之具有超疏水性、自清洁性和耐腐蚀性,使烟气侧壁面耐腐蚀、传热传质性能提高,表面光洁度提高,防积灰;所述盖板7在材料上选用不锈钢,整体冲压成型;所述异形烟箱9在材料上选用塑料,如PTFE、PVC、PP或ABS等,在结构上由承露盘901及排烟出口902构成,承露盘901为异形多面体,其局部截面积沿长度方向、宽度方向及高度方向均逐渐减小,确保结构上存在最低点。
当所述的环形水冷燃烧头2和轴对称单锅片1间采用分体式结构时,环形水冷燃烧头2由多个水冷环形腔15,进出口独立集箱16以及前端法兰盘17共同装配而成;,水冷环形腔15的主体结构包括环形的水冷通道1501,防回火翅1502和稳焰肋1503;水冷环形腔15的数量与轴对称单锅片1的数量相同,水冷环形腔15的环形内壁面两侧分别开有进出水孔1504,用来与进出口独立集箱16对接装配,从而实现分体式结构内部的水循环独立;与轴对称单锅片1的前锅片匹配的水冷环形腔15的前端连接有端部法兰盘17,用来与铸铝硅热水炉的前盖板5以及连接弯头6相连;同时,水冷环形腔15内壁面装有两块圆弧形均流孔板18,圆弧形均流孔板18的开孔位置正对于防回火翅1502间隙,开孔形状为圆形、腰圆形、椭圆形或长圆形,两块圆弧形均流孔板18的边缘位于进出口独立集箱16的上下两侧;此时,燃气和空气的混合气充分混合后首先经均圆弧形均流孔板18均流,然后经过各水冷环形腔15间的防回火翅1502和稳焰肋1503,最后均匀喷出后点火沿圆柱面周向缝隙间隔燃烧。
当所述的环形水冷燃烧头2和轴对称铸铝硅单锅片1间采用分体式结构时,环形水冷燃烧头2为整体单独浇铸而成,主体包括,环形水冷空间201、防回火柱202、稳燃柱203以及集箱总管204;其中,防回火柱202和稳燃柱203以中心对称均布于环形水冷空间201表面,防回火柱202呈玉米粒截面结构,沿圆周排布后应确保两个对称的防回火柱202的间距沿径向处处相等,且间距为1~10mm;防回火柱202的高度为6~30mm,具体取值应保证混合气经过间隙时的气体喷出平均速度为2~3m/s;稳燃柱203位于防回火柱202的外侧且与防回火柱202交错布置以稳定火焰,稳燃柱203高度与防回火柱202保持一致;集箱总管204的外截面形状为圆形、长圆形、椭圆形或腰圆形,由中间肋将集箱总管204分为进水管路205和出水管路206;环形水冷燃烧头2的工质水从进水管路205进入后,分配至各个环形水冷空间201,经周向流动换热后在出水管路206汇集,完成独立水循环;同时,环形水冷燃烧头2内壁装有圆弧形均流孔板18,圆弧形均流孔板18的开孔位置正对于防回火柱202间隙,开孔形状为圆形、腰圆形、椭圆形和或长圆形;此时,燃气和空气的混合气充分混合后首先经均圆弧形均流孔板18均流,然后经过环形水冷燃烧头2的防回火柱202和稳燃柱203,最后均匀喷出后点火沿圆柱面周向缝隙间隔燃烧。
一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其主体结构根据容量需求,由2~12个轴对称锅片19前后端面依次密封后用螺栓串接而成;轴对称锅片19的前锅片炉膛前布置有前端盖板22,其向内连接有矩形均流孔板21,且支撑在平行水冷燃烧头20的内壁面上,矩形均流孔板21穿过每个轴对称锅片19的平行水冷燃烧头20,前端盖板22向外 通过弯头23与预混器相连,轴对称锅片19中的前、后锅片针翅部分布置有隔热板24;此外,前锅片顶端和底端设置有进出口集箱密封端盖25,后锅片炉膛中心布置有耐火隔热内衬的后端盖板29,后锅片的底端和顶端分别设置有用来实现水循环的进水总管30-1和出水总管30-2;在主体结构左右两侧,设置有清灰挡板27和堵头28;在主体结构底端,设置有烟箱26;所述轴对称锅片19的外部前后两侧自上而下依次分为辐射区、对流区和冷凝区,其中辐射区燃烧室中心布置有与轴对称锅片19同为一体的平行水冷燃烧头20,平行水冷燃烧头20包括中心矩形截面腔体1904两边的平行水冷通道1901,平行水冷通道1901表面以轴对称的形式设置有防回火筋1902和稳焰翅1903;轴对称锅片19辐射区燃烧室外侧、对流区和冷凝区按规律布置圆形针翅1905和腰圆针翅1907;轴对称锅片19底部两侧的底座1909用来与烟箱26连接;燃气和空气混合气从弯头23进入矩形均流孔板21,均流后经中心矩形截面腔体1904沿锅片间隙向两侧均匀喷出后点火沿平面间隔燃烧;高温烟气充盈热水炉炉膛周围辐射区后向下冲刷对流区和冷凝区的针翅受热面,并从2~12个轴对称锅片19形成的主体结构底端流入烟箱26,烟气汇集转弯向上排出;轴对称锅片19的内部为中空腔体,回水从底端的水道进口接口1910进入,从位于顶端的水道出口接口1911流出。
所述防回火筋1902和稳焰翅1903以轴对称的方式均布于两个平行水冷通道1901表面,防回火筋1902呈长圆形或矩形截面结构,相邻防回火筋间距为1~10mm,高度为6~30mm,具体取值应保证混合气经过间隙时的气体喷出平均速度为2~3m/s;稳焰翅1903位于防回火筋1902的外侧且与防回火筋1902交错布置以稳定火焰;辐射区燃烧室炉膛壁面四周布置有环向肋1913,环向肋1913上均匀布置4~8个螺孔座1914,轴对称锅片19中的前、后锅片通过螺孔座1914分别与前端盖板22和后端盖板29相连。
所述轴对称锅片19沿烟气流动方向,圆形针翅1905和腰圆针翅1907的排布方式并不相同;辐射区的圆形针翅1905与对流区的圆形针翅相比高度较低,直径及横纵截距较大;随着烟气温度与辐射量沿烟气流动方向降低,圆形针翅1905的高度逐步提高,在烟温低于500℃的对流区上呈紧密错列正三角形排布,肋间最短距离为3~4mm;在高度上,圆形针翅1905为等高,或采用均匀的一排或两排为一组的高低错列设计,且高度差不大于平均高度的1/3;在烟温低于65℃的冷凝区,采用圆形针翅1905以及长径与烟气流动方向一致的腰圆针翅1907,腰圆针翅1907的短径与冷凝区的圆形针翅1905的直径相同,肋间的平行通道能够为烟气冷凝提供足够的换热面积,保证冷凝过程的连续进行;整个冷凝区沿烟气流动方向宽度逐渐减小,使整个轴对称锅片19的下半部分***整体呈“∪” 形。
所述轴对称锅片19的内部中空腔体为水道空间,水道空间整体由沿竖直方向的纵向肋1916以及多个沿水平方向的横向肋1917划分而成,纵向肋1916将整个水道空间沿左右一分为二,每两个横向肋1917的间距为40~120mm不等,且从下至上,相邻横向肋1917的间距逐层减小,辐射区炉膛***为外侧水道1912;水流在烟气冷凝区和对流区对应的水道空间内沿蛇形弯转向上直至辐射区底端,然后在辐射区底端分流,分别沿平行水冷通道1901和外侧水道1912两路并行上升后,在水道出口集箱接口1911处汇合流出;对流区上部的横向肋1917与水平方向存在0~10°的倾斜角,并在端部加工放汽孔1915。
所述轴对称锅片19的两侧布置有成对的连接孔1906、清灰槽1908和排沙孔1918;连接孔1906将2~12个轴对称锅片19的前后端面对齐串接起来;清灰槽1908的开度保证能够清扫到对流区的1/3~1/2,避免采暖季中需要清灰时将已密封好的炉体拆封,并与清灰挡板27进行装配;排沙孔1918在位置上与横向肋1917正对,在深度上直接贯穿至水道内部,并与堵头28进行装配。
所述前端盖板22和后端盖板29整体结构相似,通过一套模具制成,其成型方法采用铸造或冲压;前端盖板22和后端盖板29均为类盘状结构,***边界处存在周向孔2201,用来与轴对称锅片19的环向肋1913相连接;在类圆盘结构的内侧布置有加强肋2204,用来支撑矩形均流孔板21;由后端盖板29加工为前端盖板22的方法具体为:在经过铸造或冲压得到后端盖板29后,在后端盖板29中心处开设矩形孔,同时在类圆盘结构的外侧端面处增设螺孔2202,并使其定位于加强肋2204上,并在外侧端面表面加工或增设包括点火孔、火焰监测孔、压力监测孔在内的监测***集成座2203
一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其主体结构根据容量需求,由2~12个对称单锅片31前后端面依次密封后用螺栓串接而成;对称单锅片31的顶部两侧安装有等压风仓分配器32;对称单锅片31的前、后锅片针翅部分布置有阻热隔板33;此外,前锅片顶端和底端设置有集箱封盖34,后锅片的底端和顶端分别设置有用来实现水循环的进水总管路37-1和出水总管路37-2;在主体结构左右两侧,设置有清灰盖板35和密封堵头36;在主体结构底端,设置有排烟箱34;
所述对称单锅片31的外部前后两侧自上而下可依次分为辐射区、对流区和冷凝区;燃气和空气从预混器统一充分混合后分流送入位于对称单锅片31炉膛顶部两侧的等压风仓分配器32中,均流后沿各对称单锅片31的间隙均匀喷出点火燃烧;这种结构下炉膛顶部两侧水道3101作为水冷燃烧头,其上设置防回火鳍片3102和稳焰筋3103;辐射区燃烧 室外侧、对流区和冷凝区按规律布置圆形肋3104和腰圆肋3106;对称单锅片31底部两侧的基座3108用来与排烟箱34连接;炉膛辐射区成为火焰的辐射空间,高温烟气充盈炉膛辐射区后向下冲刷对流区和冷凝区的针翅受热面,并从2~12个对称单锅片31形成的主体结构底端流入排烟箱34,烟气汇集转弯向上排出;对称单锅片31的内部为中空腔体,回水从底端进口3109进入,从顶端出口3110流出。
混合气流经防回火鳍片3102和稳焰筋3103后点火燃烧;其中,防回火鳍片3102呈矩形或长圆形截面结构,相邻防回火鳍片3102的间距为1~10mm,高度为6~30mm,具体取值应保证混合气经过间隙时的气体喷出平均速度为2~3m/s;稳焰筋3103位于防回火鳍片3102的外侧且与防回火鳍片3102交错布置以稳定火焰,高度与防回火鳍片3102保持一致;对称单锅片31的顶端两侧布置有多个带有螺栓孔的支撑孔座3111,用来与等压风仓分配器32相连接。
所述对称单锅片31沿烟气流动方向,圆形肋3104和腰圆肋3106的排布方式并不相同,辐射区的圆形肋3104与对流区的圆形针肋相比,高度较低,直径及横纵截距则较大,而随着烟气温度与辐射量沿烟气流动方向降低,圆形肋3104的高度逐步提高,在烟温低于500℃的对流区上,圆形肋3104呈紧密错列正三角形排布,圆形肋3104间的最短距离为3~4mm;在高度上,圆形肋3104等高,或采用均匀的一排或两排为一组的高低错列设计,且高度差不应大于平均高度的1/3;在烟温低于65℃的冷凝区,采用圆形肋3104以及长径与烟气流动方向一致的腰圆肋3106,腰圆肋3106短径与冷凝区的圆形肋3104相同,肋间的平行通道能够为烟气冷凝提供足够的换热面积,保证冷凝过程的连续进行;冷凝区沿烟气流动方向,宽度逐渐减小,使整个对称单锅片31的下半部分***呈“∪”形。
所述对称单锅片31的内部中空腔体为水通道,水通道是由沿竖直方向的中心肋3114以及多个沿水平方向的平直肋3115划分而成,中心肋3114将整个水道空间沿左右一分为二,每两个平直肋3115的间距为40~120mm不等,且随着整体高度的增加,截面高度逐层减小,并保证在辐射区周围的截面高度约为最大截面高度的1/2左右,中心肋3114和平直肋3115形成左右的对称蛇形水道3112;对流区上部的的平直肋3115存在0~10°的倾斜角,其端部加工卸汽孔3113;在这种结构下,***回水进入各对称单锅片31后,沿左右的对称蛇形水道3112一路弯转上升,最终折转至炉膛顶部两侧水道3101,直至在顶端出口3110汇合流出。
所述对称单锅片31的两侧布置有成对的前后连接孔3105、积灰清扫口3107和铸造排沙口3116;前后连接孔3105将2~12个对称单锅片31的前后端面对齐串接连接起来;积 灰清扫口3107的开度保证能够清扫到对流区的1/3~1/2,避免采暖季中需要清灰时将已密封好的炉体拆封,并与清灰盖板35进行装配;铸造排沙口3116在位置上与平直肋3115正对,在深度上直接贯穿至水道内部,并与密封堵头36进行装配。
与现有技术相比较,本发明具有如下优点:
1、将水冷预混燃烧技术和单锅片串接结构应用于铸铝硅冷凝采暖热水炉,产生能够精简铸造模具、减低成本和提高产品质量和可靠性的设计方案;以锅片的部分换热结构充当全预混水冷燃烧器的燃烧头,使燃烧器和铸铝硅本体换热器实现一体化,燃烧器中有换热器,换热器中有燃烧器。
2、本发明基于水冷预混燃烧原理,在燃烧室中以不同形式增加了水冷通道,可以使全预混燃烧器产生的火焰高温被迅速带走,从而有效抑制热力型NOx的产生,配合全预混燃烧器抑制燃料型、快速型NOx的技术特点,能够使氮氧化物进一步降低。
3、本发明的主体部分结构对称。基于一套对称模具,将传统铸铝硅冷凝采暖炉需要前、中后三部分加热片才能形成一个完整炉体的设计,优化为仅需一件通用模具即可完成,不仅简化了生产流程,同时能够有效控制铸造成本
4、本发明为满足大容量需求,采用左右分流水道设计,因此换热单元更宽,冷凝式锅炉的最大容量较传统设计能够提高30%左右。此外,对于每一个独立水道,工质在流动中全程无下降,在保证型砂能够倒出且流量分布均匀的同时杜绝了由于过冷沸腾导致的传热恶化现象,并解决了非供暖期需长时间干法保护而冷工质难以排除导致的腐蚀问题。集箱内置而非外接水箱,则进一步精简装配工序,减少密封工作量,提高生产效率,使冷凝式锅炉整体更加紧凑。
5、本发明在烟气对流受热面采用局部渐缩和延长主流区域的双“∪”字出口设计,在保证流速均匀变化的同时,提高了单位面积的换热强度,有效减少了换热面积冗余,从而降低了冷凝式锅炉重量和成本。另外,烟气侧采用均匀的一至三排为一组的高低错列的组合型翅片,在对流受热面后半段(冷凝换热区)以顺流腰圆针翅为主,两腰圆肋间的平行通道能够为烟气提供足够且连续的冷凝空间,使冷凝液可以在主流烟气的携带下更容易被排出,从而提高整体传热传质性能。
附图说明
图1a为本发明的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉轴侧图。
图1b为本发明的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉前视图。
图2a为本发明的轴对称单锅片的轴侧图。
图2b为本发明的轴对称单锅片的前视图。
图2c为本发明的轴对称单锅片的右视图。
图2d为本发明的轴对称单锅片的全剖图。
图2e为另一种方案的轴对称单锅片的全剖图。
图3为一体式轴对称单锅片的水冷通道示意图。
图4a为轴对称单锅片冷凝换热区顺流腰圆针翅结构的轴侧图。
图4b为轴对称单锅片冷凝换热区顺流腰圆针翅结构的前视图。
图5a为前盖板的前视图。
图5b为前盖板的后视图。
图6a为后盖板的前视图。
图6b为后盖板的后视图
图7a为异形烟箱的前视图。
图7b为异形烟箱的右视图。
图8a为由水冷环形腔装配而成的水冷燃烧头轴测图。
图8b为由水冷环形腔装配而成的水冷燃烧头前视图。
图8c为由水冷环形腔装配而成的水冷燃烧头的A-A剖视图
图9a为水冷环形腔的前视图
图9b为水冷环形腔的右视图。
图9c为水冷环形腔基于A-A剖视图的水流示意图。
图10a为本发明的环形水冷环形燃烧头的轴测图。
图10b为本发明的环形水冷环形燃烧头的前视图。
图10c为本发明的环形水冷环形燃烧头的左视图。
图10d为本发明的环形水冷环形燃烧头的A-A剖视图。
图10e为本发明的环形水冷环形燃烧头为反映水流过程的B-B剖视图。
图11a为本发明的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉的轴侧图。图11b为本发明的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉的前视图。图12a为本发明的轴对称锅片的前视图。
图12b为本发明的轴对称锅片的左视图。
图12c为本发明的轴对称锅片的剖视图。
图13为轴对称锅片的水冷通道示意图。
图14a为前端盖板的前视图。
图14b为前端盖板的后视图。
图15a为后端盖板的前视图。
图15b为后端盖板的后视图
图16a为本发明中,由对称单锅片与等压风仓分配器组合装配而成的耦合预混水冷燃烧的单锅片串接铸铝硅热水炉轴测图。
图16b为上述串接铸铝硅热水炉的前视图
图17a为对称单锅片的前视图。
图17b为对称单锅片的右视图。
图17c为对称单锅片的全剖图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步地详细描述:
实施案例一
如图1a和图1b所示,X轴为第一方向,Y轴为第二方向,本文的前后是指沿第一方向的前后,本发明所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其主体结构根据其容量需求,由2~12个轴对称单锅片1前后端面依次密封后用螺栓4串接而成;轴对称单锅片1中的前锅片的炉膛中心布置有前盖板5,前盖板5的内部连接圆柱形均流孔板3,圆柱形均流孔板3设置在环形水冷燃烧头2的环形内壁面上,圆柱形均流孔板3穿过每个轴对称单锅片1的环形水冷燃烧头2,前盖板5向外通过连接弯头6与预混器相连,沿第一方向第一个单锅片为前锅片,沿第一方向最后一个单锅片为后锅片,轴对称单锅片1中的前锅片和后锅片的针翅部分布置有内衬隔热盖板7;前锅片的顶端和底端均设置有水侧集箱密封端盖8,后锅片炉膛中心布置有耐火隔热内衬的后盖板12,后锅片的底端设置有水侧进口集箱13,后锅片的顶端设置有水侧出口集箱14,水侧进口集箱13和水侧出口集箱14能够配合,以实现水循环;在主体结构沿第二方向的两侧设置有可拆卸清灰挡板10和排沙堵头11;在主体结构的底端设置有异形烟箱9。
如图2a,图2b,图2c所示,所述轴对称单锅片1的外部前后两侧自上而下依次分为辐射区、对流区和冷凝区,其中,辐射区的燃烧室中心布置有环形水冷燃烧头2,且环形水冷燃烧头2与对称单锅片1同为一体或分体,环形水冷燃烧头2包括一个环形水冷通道 101,环形水冷通道101表面设置有防回火肋102和稳焰柱103,防回火肋102和稳焰柱103中心对称设置;轴对称单锅片1辐射区燃烧室的外侧、对流区和冷凝区均布置圆形针肋104和腰圆针肋106;位于轴对称单锅片1底部两侧的基座108与异形烟箱9连接;燃气和空气混合气从连接弯头6进入圆柱形均流孔板3,经过均流后流经环形水冷燃烧头2,并沿相邻各轴对称单锅片1的间隙均匀喷出后点火,沿环形圆柱面轴向间隔燃烧;高温的烟气充盈热水炉炉膛周围辐射区后向下冲刷对流区和冷凝区的针翅受热面,并从2~12个轴对称单锅片1形成的主体结构的底端流入异形烟箱9,烟气汇集转弯向上排出;轴对称单锅片1的内部为中空腔体,回水从单锅片1的底端的水道进口集箱接口109进入,从位于单锅片1的顶端的水道出口集箱接口110流出。
所述轴对称单锅片1的两侧布置有成对的螺栓连接孔105、清灰口107和排沙口117;通过螺栓4与螺栓连接孔105配合,将2~12个轴对称单锅片1的前后端面对齐串接;清灰口107的开度保证能够清扫到对流区的1/3~1/2,避免采暖季中需要清灰时将已密封好的炉体拆封,清灰口107与可拆卸清灰挡板10进行装配;排沙口117在位置上与横肋116正对,排沙口117在深度上直接贯穿至水道内部,并与排沙堵头11进行装配。
如图2d和图3所示,所述防回火肋102呈玉米粒截面结构,沿圆周排布,相邻两个防回火肋102的间距沿径向处处相等,且间距为1~10mm,防回火肋102的高度为6~30mm,具体取值应保证燃气和空气混合气经过间隙时的气体喷出平均速度为2~3m/s;稳焰肋103位于防回火肋102的外侧且与防回火肋102交错布置以稳定火焰,稳焰肋103的高度与防回火肋102的高度相同;辐射区燃烧室壁面四周布置有环向基肋113,环向基肋113上均匀布置4~8个开设有螺纹孔的孔座111,轴对称单锅片1中的前锅片和后锅片通过孔座111分别与前盖板5和后盖板12相连。
此外,所述轴对称单锅片1的内部中空腔体为水道空间,水道空间整体由沿竖直方向的纵肋115以及多个沿水平方向的横肋116划分而成,纵肋115将整个水道空间沿左右一分为二,每相邻的两个横肋116的间距为40~120mm,且从下至上,相邻横肋116间的纵向距离逐层减小;水流在烟气冷凝区和对流区对应的水道空间内沿蛇形弯转向上直至辐射区底端;对流区上部的横肋116相对水平方向存在0~10°的倾斜角,并在横肋116的端部加工放汽孔114;轴对称单锅片1辐射区对应的水道结构由辐射区炉膛中心的环形水冷通道101以及环向基肋113的外侧,即是炉膛两侧的侧面水道112共同构成,这种结构下水流在辐射区底端的分流,分别沿环形水冷通道101和侧面水道112两路并行上升,最后水流在水道出口集箱接口110处汇合流出。
如图4a和图4b所示,所述轴对称单锅片1沿烟气流动方向,圆形针肋104和腰圆针肋106的排布方式不相同;辐射区的圆形针肋104的高度比对流区的圆形针肋的高度较低,辐射区的圆形针肋104直径和横纵截距比对流区的圆形针肋的直径和横纵截距较大;随着烟气温度与辐射量沿烟气流动方向降低,圆形针肋104的高度逐步提高,在烟温低于500℃的对流区上呈紧密错列排布,且圆形针肋104排布的形状为正三角形,相邻的圆形针肋104之间最短距离为3~4mm;在高度上,圆形针肋104为等高,或采用均匀的一排或两排为一组的高低错列设计,且高度差不大于平均高度的1/3;在烟温低于65℃的冷凝区,采用圆形针肋104以及长径与烟气流动方向一致的腰圆针肋106,腰圆针肋106的短径与冷凝区的圆形针肋104的直径相同,肋间的平行通道能够为烟气冷凝提供足够的换热面积,保证冷凝过程的连续进行。
如图5a,图5b,图6a和图6b所示,所述前盖板5和后盖板12整体结构相似,通过一套模具制成,其成型方法采用铸造或冲压;前盖板5和后盖板12均为类圆盘结构,前盖板5的***边界处设置有周向开孔501,周向开孔501用来与轴对称单锅片1的环向基肋113相连接;在前盖板5的内侧布置四个向心的支撑肋504,支撑肋504用来支撑圆柱形均流孔板3;由后盖板12加工为前盖板5的方法具体为:在经过铸造或冲压得到后盖板12后,将后盖板12的中心开孔以便置入圆柱形均流孔板3,同时在前盖板5的外侧端面处增设螺纹孔502,并在前盖板5的外侧端面表面加工或增设包括点火孔、火焰监测孔、压力监测孔在内的集成监测***503。
如图7a和图7b所示,所述异形烟箱9在材料上选用塑料,如PTFE、PVC、PP或ABS等,所述异形烟箱9由承露盘901及排烟出口902构成,承露盘901为异形多面体,其局部截面积沿长度方向、宽度方向及高度方向均逐渐减小,确保结构上存在最低点。
实施案例二
在本实施例中,对于与实施案例一相同的结构,给予相同的符号,并省略相同的说明。
图2d和2e为轴对称单锅片1辐射区的另一种水道结构:环向基肋113的外侧水道112被分割肋118分为上升水道119和下降水道120,因此整个水道结构由环形水冷通道101,上升水道119以及下降水道120共同构成,这种结构下水流在辐射区底端并不分流,而是向左右流动到炉膛两侧面折转90度进入上升水道119,上行至水道出口集箱接口110附近时向内折转180度向下进入下降水道120,并至炉膛底部后向内折转90度流动至轴对称单锅片1的纵肋115处再折转90度向上汇合并入环形水冷通道101上升,最终在水道出口集箱接口110处汇合流出。
实施案例三
在本实施例中,对于与实施案例一和实施案例二相同的结构,给予相同的符号,并省略相同的说明。
图8a,8b,8c,9a,9b和9c共同给出了所述环形水冷燃烧头2和轴对称单锅片1间的分体式结构:环形水冷燃烧头2由多个水冷环形腔15、进出口独立集箱16以及前端法兰盘17共同装配而成;水冷环形腔15包括环形的水冷通道1501、防回火翅1502和稳焰肋1503;水冷环形腔15的数量与轴对称单锅片1的数量相同,水冷环形腔15的环形内壁面两侧分别开有进出水孔1504,进出水孔1504与进出口独立集箱16对接装配,从而实现所述环形水冷燃烧头2和轴对称单锅片1间的分体式结构内部的水循环独立;与轴对称单锅片1的前锅片匹配的水冷环形腔15的前端连接有端部法兰盘17,端部法兰盘17用来与前盖板5以及连接弯头6相连;同时,水冷环形腔15的环形内壁面装有两块圆弧形均流孔板18,圆弧形均流孔板18的开孔位置正对于相邻的防回火翅1502之间的间隙,开孔形状为圆形、腰圆形、椭圆形或长圆形,两块圆弧形均流孔板18的边缘位于进出口独立集箱16的上下两侧;此时,燃气和空气的混合气充分混合后首先经均圆弧形均流孔板18均流,然后经过各水冷环形腔15间的防回火翅1502和稳焰肋1503,最后均匀喷出后点火沿圆柱面周向缝隙间隔燃烧。
实施案例四
在本实施例中,对于与实施案例一至三相同的结构,给予相同的符号,并省略相同的说明。
图10a,10b,10c,10d和10e为所述的环形水冷燃烧头2和轴对称铸铝硅单锅片1间的另一种分体式结构:环形水冷燃烧头2整体单独浇铸而成,环形水冷燃烧头2包括,环形水冷空间201、防回火柱202、稳燃柱203以及集箱总管204;其中,防回火柱202和稳燃柱203均布于环形水冷空间201表面,防回火柱202和稳燃柱203均中心对称设置,防回火柱202呈玉米粒截面结构,防回火柱202沿圆周排布后应确保两个对称的防回火柱202的间距沿径向均相等,且间距为1~10mm;防回火柱202的高度为6~30mm,具体取值应保证混合气经过间隙时的气体喷出平均速度为2~3m/s;稳燃柱203位于防回火柱202的外侧且与防回火柱202交错布置以稳定火焰,稳燃柱203高度与防回火柱202的高度相同;集箱总管204的外截面形状为圆形、长圆形、椭圆形或腰圆形,由中间肋将集箱总管204分为进水管路205和出水管路206;环形水冷燃烧头2的工质水从进水管路205进入后,分配至各个环形水冷空间201,经周向流动换热后在出水管路206汇集,完成独立水 循环;同时,环形水冷燃烧头2内壁装有圆弧形均流孔板18,圆弧形均流孔板18的开孔位置正对于相邻防回火柱202之间的间隙,开孔形状为圆形、腰圆形、椭圆形和或长圆形;此时,燃气和空气的混合气充分混合后首先经均圆弧形均流孔板18均流,然后经过环形水冷燃烧头2的防回火柱202和稳燃柱203,最后均匀喷出后点火沿圆柱面周向缝隙间隔燃烧。
实施案例五
在本实施例中,对于与实施案例一至四相同的结构,给予相同的符号,并省略相同的说明。
如图11a和11b所示,一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其主体结构根据容量需求,由2~12个轴对称锅片19前后端面依次密封后用螺栓串接而成;轴对称锅片19的前锅片炉膛前布置有前端盖板22,其向内连接有矩形均流孔板21,且矩形均流孔板21支撑在平行水冷燃烧头20的内壁面上,矩形均流孔板21穿过每个轴对称锅片19的平行水冷燃烧头20,前端盖板22向外通过弯头23与预混器相连,轴对称锅片19中的前锅片和后锅片的针翅部分布置有隔热板24;此外,前锅片的顶端和底端设置有进出口集箱密封端盖25,后锅片炉膛中心布置有耐火隔热内衬的后端盖板29,后锅片的底端和顶端分别设置有用来实现水循环的进水总管30-1和出水总管30-2;在主体结构沿第二方向的两侧设置有清灰挡板27和堵头28;在主体结构的底端设置有烟箱26。
如图12a,12b和12c共同所示,所述轴对称锅片19的外部前后两侧自上而下依次分为辐射区、对流区和冷凝区,其中辐射区燃烧室中心布置有与轴对称锅片19同为一体的平行水冷燃烧头20,平行水冷燃烧头20包括中心矩形截面腔体1904两边的平行水冷通道1901、设置于平行水冷通道1901表面的防回火筋1902和稳焰翅1903,防回火筋1902和稳焰翅1903轴对称设置;轴对称锅片19辐射区燃烧室外侧、对流区和冷凝区均布置圆形针翅1905和腰圆针翅1907;轴对称锅片19底部两侧的底座1909与烟箱26连接;燃气和空气混合气从弯头23进入矩形均流孔板21,均流后经中心矩形截面腔体1904沿锅片间隙向两侧均匀喷出后点火沿平面间隔燃烧;高温烟气充盈热水炉炉膛周围辐射区后向下冲刷对流区和冷凝区的针翅受热面,并从2~12个轴对称锅片19形成的主体结构底端流入烟箱26,烟气汇集转弯向上排出;轴对称锅片19的内部为中空腔体,回水从轴对称锅片19的底端的水道进口接口1910进入,从位于轴对称锅片19的顶端的水道出口接口1911流出。
所述轴对称锅片19的内部中空腔体为水道空间,水道空间整体由沿竖直方向的纵向 肋1916以及多个沿水平方向的横向肋1917划分而成,纵向肋1916将整个水道空间沿左右一分为二,每两个横向肋1917的间距为40~120mm,且从下至上的相邻横向肋1917的间距逐层减小,辐射区炉膛***为外侧水道1912;水流在烟气冷凝区和对流区对应的水道空间内沿蛇形弯转向上直至辐射区底端,然后在辐射区底端分流,分别沿平行水冷通道1901和外侧水道1912两路并行上升后,在水道出口集箱接口1911处汇合流出;对流区上部的横向肋1917相对水平方向存在0~10°的倾斜角,并在端部加工放汽孔1915。
所述轴对称锅片19沿第二方向的两侧布置有成对的连接孔1906、清灰槽1908和排沙孔1918;通过连接孔1906将2~12个轴对称锅片19的前后端面对齐串接起来;清灰槽1908的开度保证能够清扫到对流区的1/3~1/2,避免采暖季中需要清灰时将已密封好的炉体拆封,清灰槽1908并与清灰挡板27进行装配;排沙孔1918在位置上与横向肋1917正对,在深度上清灰槽1908直接贯穿至水道内部,清灰槽1908并与堵头28进行装配。
如图13所示,所述防回火筋1902和稳焰翅1903以轴对称的方式均布于两个平行水冷通道1901表面,防回火筋1902的截面结构形状呈长圆形或矩形,相邻防回火筋间距为1~10mm,防回火筋的高度为6~30mm,具体取值应保证燃气和空气混合气经过间隙时的气体喷出平均速度为2~3m/s;稳焰翅1903位于防回火筋1902的外侧且与防回火筋1902交错布置以稳定火焰;辐射区燃烧室炉膛壁面四周布置有环向肋1913,环向肋1913上均匀布置4~8个螺孔座1914,轴对称锅片19中的前锅片和后锅片通过螺孔座1914分别与前端盖板22和后端盖板29相连。
如图14a,图14b,图15a和图15b所示,所述前端盖板22和后端盖板29整体结构相似,通过一套模具制成,其成型方法采用铸造或冲压;前端盖板22和后端盖板29均为类盘状结构,前端盖板22的***边界处设置周向孔2201,周向孔2201用来与轴对称锅片19的环向肋1913相连接;在前端盖板22的内侧布置有加强肋2204,加强肋2204用来支撑矩形均流孔板21;由后端盖板29加工为前端盖板22的方法具体为:在经过铸造或冲压得到后端盖板29后,在后端盖板29中心处开设矩形孔,同时在后端盖板29的外侧端面处增设螺孔2202,并使其定位于加强肋2204上,并在后端盖板29外侧端面表面加工或增设包括点火孔、火焰监测孔、压力监测孔在内的监测***集成座2203。
实施案例六
在本实施例中,对于与实施案例一至五相同的结构,给予相同的符号,并省略相同的说明。
如图16a和图16b所示,一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其主体 结构根据容量需求,由2~12个对称单锅片31前后端面依次密封后用螺栓串接而成;对称单锅片31的顶部两侧安装有等压风仓分配器32;对称单锅片31的前锅片和后锅片针翅部分布置有阻热隔板33;此外,前锅片顶端和底端设置有集箱封盖34,后锅片的底端和顶端分别设置有用来实现水循环的进水总管路37-1和出水总管路37-2;在主体结构沿第二方向的两侧设置有清灰盖板35和密封堵头36;在主体结构的底端设置有排烟箱34;
如图17a所示,所述对称单锅片31的外部前后两侧自上而下可依次分为辐射区、对流区和冷凝区;燃气和空气混合气从预混器统一充分混合后分流送入位于对称单锅片31炉膛顶部两侧的等压风仓分配器32中,均流后沿各对称单锅片31的间隙均匀喷出点火燃烧;这种结构下炉膛顶部两侧水道3101作为水冷燃烧头,其上设置防回火鳍片3102和稳焰筋3103;辐射区燃烧室外侧、对流区和冷凝区布置圆形肋3104和腰圆肋3106;对称单锅片31底部两侧的基座3108与排烟箱34连接;炉膛辐射区成为火焰的辐射空间,高温烟气充盈炉膛辐射区后向下冲刷对流区和冷凝区的针翅受热面,并从2~12个对称单锅片31形成的主体结构底端流入排烟箱34,烟气汇集转弯向上排出;对称单锅片31的内部为中空腔体,回水从底端进口3109进入,从顶端出口3110流出。
混合气流经防回火鳍片3102和稳焰筋3103后点火燃烧;其中,防回火鳍片3102的截面结构形状呈矩形或长圆形,相邻防回火鳍片3102的间距为1~10mm,防回火鳍片3102的高度为6~30mm,具体取值应保证燃气和空气混合气经过间隙时的气体喷出平均速度为2~3m/s;稳焰筋3103位于防回火鳍片3102的外侧且与防回火鳍片3102交错布置以稳定火焰,稳焰筋3103的高度与防回火鳍片3102的高度相同;对称单锅片31的顶端沿第二方向的两侧布置有多个带有螺栓孔的支撑孔座3111,支撑孔座3111与等压风仓分配器32相连接。
所述对称单锅片31沿烟气流动方向,圆形肋3104和腰圆肋3106的排布方式不相同,辐射区的圆形肋3104的高度比对流区的圆形针肋的高度低,辐射区的圆形肋3104的直径及横纵截距比对流区的圆形针肋的直径及横纵截距大,而随着烟气温度与辐射量沿烟气流动方向降低,圆形肋3104的高度逐步提高,在烟温低于500℃的对流区上,圆形肋3104呈紧密错列排布,且圆形肋3104排布的形状为正三角形,相邻的圆形肋3104间的最短距离为3~4mm;在高度上,圆形肋3104等高,或采用均匀的一排或两排为一组的高低错列设计,且高度差不应大于平均高度的1/3;在烟温低于65℃的冷凝区,采用圆形肋3104以及长径与烟气流动方向一致的腰圆肋3106,腰圆肋3106短径与冷凝区的圆形肋3104的短径相同,腰圆肋3106与圆形肋3104的平行通道能够为烟气冷凝提供足够的换热面积, 保证冷凝过程的连续进行;冷凝区沿烟气流动方向,宽度逐渐减小,使整个对称单锅片31的下半部分***呈“∪”形。
如图17b所示,所述对称单锅片31的两侧布置有成对的前后连接孔3105、积灰清扫口3107和铸造排沙口3116;通过前后连接孔3105和螺栓4的配合,将2~12个对称单锅片31的前后端面对齐串接连接起来;积灰清扫口3107的开度保证能够清扫到对流区的1/3~1/2,避免采暖季中需要清灰时将已密封好的炉体拆封,积灰清扫口3107与清灰盖板35进行装配;铸造排沙口3116在位置上与平直肋3115正对,在深度上直接贯穿至水道内部,并与密封堵头36进行装配。
如图17c所示,所述对称单锅片31的内部中空腔体为水通道,水通道是由沿竖直方向的中心肋3114以及多个沿水平方向的平直肋3115划分而成,中心肋3114将整个水道空间沿左右一分为二,每两个相邻的平直肋3115的间距为40~120mm,且随着平直肋3115的高度的增加,平直肋3115的截面高度逐层减小,并保证在辐射区周围的截面高度约为最大截面高度的1/2左右,中心肋3114和平直肋3115形成左右的对称蛇形水道3112;对流区上部的的平直肋3115相对水平方向0~10°存在的倾斜角,其端部加工卸汽孔3113;在这种结构下,***回水进入各对称单锅片31后,沿左右的对称蛇形水道3112一路弯转上升,最终折转至炉膛顶部两侧水道3101,直至在顶端出口3110汇合流出。

Claims (20)

  1. 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:主体结构根据容量需求,由2~12个轴对称单锅片(1)前后端面依次密封后用螺栓(4)串接而成;轴对称单锅片(1)中的前锅片炉膛中心布置有前盖板(5),前盖板(5)向内连接圆柱形均流孔板(3),且支撑在环形水冷燃烧头(2)的环形内壁面上,圆柱形均流孔板(3)穿过每个轴对称单锅片(1)的环形水冷燃烧头(2),前盖板(5)向外通过连接弯头(6)与预混器相连,轴对称单锅片(1)中的前、后锅片针翅部分布置有内衬隔热盖板(7);前锅片顶端和底端设置有水侧集箱密封端盖(8),后锅片炉膛中心布置有耐火隔热内衬的后盖板(12),后锅片的底端和顶端分别设置有用来实现水循环的水侧进口集箱(13)和水侧出口集箱(14);在主体结构左右两侧,设置有可拆卸清灰挡板(10)和排沙堵头(11);在主体结构底端,设置有异形烟箱(9);
    所述轴对称单锅片(1)的外部前后两侧自上而下依次分为辐射区、对流区和冷凝区,其中辐射区燃烧室中心布置有与轴对称单锅片(1)同为一体或分体的环形水冷燃烧头(2),环形水冷燃烧头(2)包括一个环形水冷通道(101),环形水冷通道(101)表面以中心对称的形式设置有防回火肋(102)和稳焰柱(103);轴对称单锅片(1)辐射区燃烧室外侧、对流区和冷凝区按规律布置圆形针肋(104)和腰圆针肋(106);轴对称单锅片(1)底部两侧的基座(108)用来与异形烟箱(9)连接;燃气和空气混合气从连接弯头(6)进入圆柱形均流孔板(3),经过均流后流经环形水冷燃烧头(2),并沿相邻各轴对称单锅片(1)的环形间隙均匀喷出后点火,沿环形圆柱面轴向间隔燃烧;高温烟气充盈热水炉炉膛周围辐射区后向下冲刷对流区和冷凝区的针翅受热面,并从2~12个轴对称单锅片(1)形成的主体结构底端流入异形烟箱(9),烟气汇集转弯向上排出;轴对称单锅片(1)的内部为中空腔体,回水从底端的水道进口集箱接口(109)进入,从位于顶端的水道出口集箱接口(110)流出。
  2. 根据权利要求1所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述防回火肋(102)呈玉米粒截面结构,沿圆周排布后相邻两个防回火肋(102)的间距沿径向处处相等,且间距为1~10mm,防回火肋(102)的高度为6~30mm,具体取值应保证混合气经过间隙时的气体喷出平均速度为2~3m/s;稳焰肋(103)位于防回火肋(102)的外侧且与防回火肋(102)交错布置以稳定火焰,稳焰肋(103)的高度与防回火肋(102)保持一致;辐射区燃烧室壁面四周布置有环向基肋(113),环向基肋(113)上均匀布置4~8个开设有螺纹孔的孔座(111),轴对称单锅片(1)中的前、后锅片通过孔座(111)分别与前盖板(5)和后盖板(12)相连。
  3. 根据权利要求1所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述轴对称单锅片(1)沿烟气流动方向,圆形针肋(104)和腰圆针肋(106)的排布方 式并不相同;辐射区的圆形针肋(104)与对流区的圆形针肋相比高度较低,直径及横纵截距较大;随着烟气温度与辐射量沿烟气流动方向降低,圆形针肋(104)的高度逐步提高,在烟温低于500℃的对流区上呈紧密错列正三角形排布,肋间最短距离为3~4mm;在高度上,圆形针肋(104)为等高,或采用均匀的一排或两排为一组的高低错列设计,且高度差不大于平均高度的1/3;在烟温低于65℃的冷凝区,采用圆形针肋(104)以及长径与烟气流动方向一致的腰圆针肋(106),腰圆针肋(106)的短径与冷凝区的圆形针肋(104)的直径相同,肋间的平行通道能够为烟气冷凝提供足够的换热面积,保证冷凝过程的连续进行;整个冷凝区沿烟气流动方向宽度逐渐减小,使整个轴对称单锅片(1)的下半部分***整体呈“∪”形。
  4. 根据权利要求1所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述轴对称单锅片(1)的内部中空腔体为水道空间,水道空间整体由沿竖直方向的纵肋(115)以及多个沿水平方向的横肋(116)划分而成,纵肋(115)将整个水道空间沿左右一分为二,每两个横肋(116)的间距为40~120mm不等,且从下至上,相邻横肋(116)间的纵向距离逐层减小;水流在烟气冷凝区和对流区对应的水道空间内沿蛇形弯转向上直至辐射区底端;对流区上部的横肋(116)与水平方向存在0~10°的倾斜角,并在端部加工放汽孔(114);轴对称单锅片(1)辐射区对应的水道结构有两种:一种水道结构由辐射区炉膛中心的环形水冷通道(101)以及环向基肋(113)外侧即炉膛两侧的侧面水道(112)共同构成,这种结构下水流在辐射区底端分流,分别沿环形水冷通道(101)和侧面水道(112)两路并行上升,最后在水道出口集箱接口(110)处汇合流出;另一种水道结构中,环向基肋(113)的外侧水道(112)被分割肋(118)分为上升水道(119)和下降水道(120),因此整个水道结构由环形水冷通道(101)、上升水道(119)以及下降水道(120)共同构成,这种结构下水流在辐射区底端并不分流,而是向左右流动到炉膛两侧面折转90度进入上升水道(119),上行至水道出口集箱接口(110)附近时向内折转180度向下进入下降水道(120),并至炉膛底部后向内折转90度流动至轴对称单锅片(1)的纵肋(115)处再折转90度向上汇合并入环形水冷通道(101)上升,最终在水道出口集箱接口(110)处汇合流出。
  5. 根据权利要求1所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述轴对称单锅片(1)的两侧布置有成对的螺栓连接孔(105)、清灰口(107)和排沙口(117);螺栓孔(105)将2~12个轴对称单锅片(1)的前后端面对齐串接后用螺栓(4)连接起来;清灰口(107)的开度保证能够清扫到对流区的1/3~1/2,避免采暖季中需要清灰时将已密封好的炉体拆封,并与可拆卸清灰挡板(10)进行装配;排沙口(117)在位置上与横 肋(116)正对,在深度上直接贯穿至水道内部,并与排沙堵头(11)进行装配。
  6. 根据权利要求1所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述前盖板(5)和后盖板(12)整体结构相似,通过一套模具制成,其成型方法采用铸造或冲压;前盖板(5)和后盖板(12)均为类圆盘结构,***边界处存在周向开孔(501),用来与轴对称单锅片(1)的环向基肋(113)相连接;在类圆盘结构的内侧布置四个向心的支撑肋(504),用来支撑圆柱形均流孔板(3);由后盖板(12)加工为前盖板(5)的方法具体为:在经过铸造或冲压得到后盖板(12)后,将后盖板(12)的中心开孔以便置入圆柱形均流孔板(3),同时在类圆盘结构的外侧端面处增设螺纹孔(502),并在外侧端面表面加工或增设包括点火孔、火焰监测孔、压力监测孔在内的集成监测***(503)。
  7. 根据权利要求1所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述轴对称单锅片(1)采用整体铸造工艺,选用ZL101、ZL102、ZL104或AlSi10Mg牌号铸铝硅镁合金,轴对称单锅片(1)的冷凝区能够构建超疏水膜,使之具有超疏水性、自清洁性和耐腐蚀性,使烟气侧壁面耐腐蚀、传热传质性能提高,表面光洁度提高,防积灰;所述盖板(7)在材料上选用不锈钢,整体冲压成型;所述异形烟箱(9)在材料上选用塑料,如PTFE、PVC、PP或ABS等,在结构上由承露盘(901)及排烟出口(902)构成,承露盘(901)为异形多面体,其局部截面积沿长度方向、宽度方向及高度方向均逐渐减小,确保结构上存在最低点。
  8. 根据权利要求1所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:当所述的环形水冷燃烧头(2)和轴对称单锅片(1)间采用分体式结构时,环形水冷燃烧头(2)由多个水冷环形腔(15),进出口独立集箱(16)以及前端法兰盘(17)共同装配而成;水冷环形腔(15)的主体结构包括环形的水冷通道(1501),防回火翅(1502)和稳焰肋(1503);水冷环形腔(15)的数量与轴对称单锅片(1)的数量相同,水冷环形腔(15)的环形内壁面两侧分别开有进出水孔(1504),用来与进出口独立集箱(16)对接装配,从而实现分体式结构内部的水循环独立;与轴对称单锅片(1)的前锅片匹配的水冷环形腔(15)的前端连接有端部法兰盘(17),用来与铸铝硅热水炉的前盖板(5)以及连接弯头(6)相连;同时,水冷环形腔(15)内壁面装有两块圆弧形均流孔板(18),圆弧形均流孔板(18)的开孔位置正对于防回火翅(1502)间隙,开孔形状为圆形、腰圆形、椭圆形或长圆形,两块圆弧形均流孔板(18)的边缘位于进出口独立集箱(16)的上下两侧;此时,燃气和空气的混合气充分混合后首先经均圆弧形均流孔板(18)均流,然后经过各水冷环形腔(15)间的防回火翅(1502)和稳焰肋(1503),最后均匀喷出后点火沿圆柱面周向缝隙间隔燃烧。
  9. 根据权利要求1所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:当所述的环形水冷燃烧头(2)和轴对称铸铝硅单锅片(1)间采用分体式结构时,环形水冷燃烧头(2)为整体单独浇铸而成,主体包括,环形水冷空间(201)、防回火柱(202)、稳燃柱(203)以及集箱总管(204);其中,防回火柱(202)和稳燃柱(203)以中心对称均布于环形水冷空间(201)表面,防回火柱(202)呈玉米粒截面结构,沿圆周排布后应确保两个对称的防回火柱(202)的间距沿径向处处相等,且间距为1~10mm;防回火柱(202)的高度为6~30mm,具体取值应保证混合气经过间隙时的气体喷出平均速度为2~3m/s;稳燃柱(203)位于防回火柱(202)的外侧且与防回火柱(202)交错布置以稳定火焰,稳燃柱(203)高度与防回火柱(202)保持一致;集箱总管(204)的外截面形状为圆形、长圆形、椭圆形或腰圆形,由中间肋将集箱总管(204)分为进水管路(205)和出水管路(206);环形水冷燃烧头(2)的工质水从进水管路(205)进入后,分配至各个环形水冷空间(201),经周向流动换热后在出水管路(206)汇集,完成独立水循环;同时,环形水冷燃烧头(2)内壁装有圆弧形均流孔板(18),圆弧形均流孔板(18)的开孔位置正对于防回火柱(202)间隙,开孔形状为圆形、腰圆形、椭圆形和或长圆形;此时,燃气和空气的混合气充分混合后首先经均圆弧形均流孔板(18)均流,然后经过环形水冷燃烧头(2)的防回火柱(202)和稳燃柱(203),最后均匀喷出后点火沿圆柱面周向缝隙间隔燃烧。
  10. 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:主体结构根据容量需求,由2~12个轴对称锅片(19)前后端面依次密封后用螺栓串接而成;轴对称锅片(19)的前锅片炉膛前布置有前端盖板(22),其向内连接有矩形均流孔板(21),且支撑在平行水冷燃烧头(20)的内壁面上,矩形均流孔板(21)穿过每个轴对称锅片(19)的平行水冷燃烧头(20),前端盖板(22)向外通过弯头(23)与预混器相连,轴对称锅片(19)中的前、后锅片针翅部分布置有隔热板(24);此外,前锅片顶端和底端设置有进出口集箱密封端盖(25),后锅片炉膛中心布置有耐火隔热内衬的后端盖板(29),后锅片的底端和顶端分别设置有用来实现水循环的进水总管(30-1)和出水总管(30-2);在主体结构左右两侧,设置有清灰挡板(27)和堵头(28);在主体结构底端,设置有烟箱(26);所述轴对称锅片(19)的外部前后两侧自上而下依次分为辐射区、对流区和冷凝区,其中辐射区燃烧室中心布置有与轴对称锅片(19)同为一体的平行水冷燃烧头(20),平行水冷燃烧头(20)包括中心矩形截面腔体(1904)两边的平行水冷通道(1901),平行水冷通道(1901)表面以轴对称的形式设置有防回火筋(1902)和稳焰翅(1903);轴对称锅片(19)辐射区燃烧室外侧、对流区和冷凝区按规律布置圆形针翅(1905)和腰圆针翅(1907);轴对称锅片(19)底部两侧的底座(1909)用来与烟 箱(26)连接;燃气和空气混合气从弯头(23)进入矩形均流孔板(21),均流后经中心矩形截面腔体(1904)沿锅片间隙向两侧均匀喷出后点火沿平面间隔燃烧;高温烟气充盈热水炉炉膛周围辐射区后向下冲刷对流区和冷凝区的针翅受热面,并从2~12个轴对称锅片(19)形成的主体结构底端流入烟箱(26),烟气汇集转弯向上排出;轴对称锅片(19)的内部为中空腔体,回水从底端的水道进口接口(1910)进入,从位于顶端的水道出口接口(1911)流出。
  11. 根据权利要求10所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述防回火筋(1902)和稳焰翅(1903)以轴对称的方式均布于两个平行水冷通道(1901)表面,防回火筋(1902)呈长圆形或矩形截面结构,相邻防回火筋间距为1~10mm,高度为6~30mm,具体取值应保证混合气经过间隙时的气体喷出平均速度为2~3m/s;稳焰翅(1903)位于防回火筋(1902)的外侧且与防回火筋(1902)交错布置以稳定火焰;辐射区燃烧室炉膛壁面四周布置有环向肋(1913),环向肋(1913)上均匀布置4~8个螺孔座(1914),轴对称锅片(19)中的前、后锅片通过螺孔座(1914)分别与前端盖板(22)和后端盖板(29)相连。
  12. 根据权利要求10所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述轴对称锅片(19)沿烟气流动方向,圆形针翅(1905)和腰圆针翅(1907)的排布方式并不相同;辐射区的圆形针翅(1905)与对流区的圆形针翅相比高度较低,直径及横纵截距较大;随着烟气温度与辐射量沿烟气流动方向降低,圆形针翅(1905)的高度逐步提高,在烟温低于500℃的对流区上呈紧密错列正三角形排布,肋间最短距离为3~4mm;在高度上,圆形针翅(1905)为等高,或采用均匀的一排或两排为一组的高低错列设计,且高度差不大于平均高度的1/3;在烟温低于65℃的冷凝区,采用圆形针翅(1905)以及长径与烟气流动方向一致的腰圆针翅(1907),腰圆针翅(1907)的短径与冷凝区的圆形针翅(1905)的直径相同,肋间的平行通道能够为烟气冷凝提供足够的换热面积,保证冷凝过程的连续进行;整个冷凝区沿烟气流动方向宽度逐渐减小,使整个轴对称锅片(19)的下半部分***整体呈“∪”形。
  13. 根据权利要求10所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述轴对称锅片(19)的内部中空腔体为水道空间,水道空间整体由沿竖直方向的纵向肋(1916)以及多个沿水平方向的横向肋(1917)划分而成,纵向肋(1916)将整个水道空间沿左右一分为二,每两个横向肋(1917)的间距为40~120mm不等,且从下至上,相邻横向肋(1917)的间距逐层减小,辐射区炉膛***为外侧水道(1912);水流在烟气冷凝区和对流区对应的水道空间内沿蛇形弯转向上直至辐射区底端,然后在辐射区底端分流,分别沿 平行水冷通道(1901)和外侧水道(1912)两路并行上升后,在水道出口集箱接口(1911)处汇合流出;对流区上部的横向肋(1917)与水平方向存在0~10°的倾斜角,并在端部加工放汽孔(1915)。
  14. 根据权利要求10所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述轴对称锅片(19)的两侧布置有成对的连接孔(1906)、清灰槽(1908)和排沙孔(1918);连接孔(1906)将2~12个轴对称锅片(19)的前后端面对齐串接起来;清灰槽(1908)的开度保证能够清扫到对流区的1/3~1/2,避免采暖季中需要清灰时将已密封好的炉体拆封,并与清灰挡板(27)进行装配;排沙孔(1918)在位置上与横向肋(1917)正对,在深度上直接贯穿至水道内部,并与堵头(28)进行装配。
  15. 根据权利要求10所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述前端盖板(22)和后端盖板(29)整体结构相似,通过一套模具制成,其成型方法采用铸造或冲压;前端盖板(22)和后端盖板(29)均为类盘状结构,***边界处存在周向孔(2201),用来与轴对称锅片(19)的环向肋(1913)相连接;在类圆盘结构的内侧布置有加强肋(2204),用来支撑矩形均流孔板(21);由后端盖板(29)加工为前端盖板(22)的方法具体为:在经过铸造或冲压得到后端盖板(29)后,在后端盖板(29)中心处开设矩形孔,同时在类圆盘结构的外侧端面处增设螺孔(2202),并使其定位于加强肋(2204)上,并在外侧端面表面加工或增设包括点火孔、火焰监测孔、压力监测孔在内的监测***集成座(2203)。
  16. 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:主体结构根据容量需求,由2~12个对称单锅片(31)前后端面依次密封后用螺栓串接而成;对称单锅片(31)的顶部两侧安装有等压风仓分配器(32);对称单锅片(31)的前、后锅片针翅部分布置有阻热隔板(33);此外,前锅片顶端和底端设置有集箱封盖(34),后锅片的底端和顶端分别设置有用来实现水循环的进水总管路(37-1)和出水总管路(37-2);在主体结构左右两侧,设置有清灰盖板(35)和密封堵头(36);在主体结构底端,设置有排烟箱(34);
    所述对称单锅片(31)的外部前后两侧自上而下可依次分为辐射区、对流区和冷凝区;燃气和空气从预混器统一充分混合后分流送入位于对称单锅片(31)炉膛顶部两侧的等压风仓分配器(32)中,均流后沿各对称单锅片(31)的间隙均匀喷出点火燃烧;这种结构下炉膛顶部两侧水道(3101)作为水冷燃烧头,其上设置防回火鳍片(3102)和稳焰筋(3103);辐射区燃烧室外侧、对流区和冷凝区按规律布置圆形肋(3104)和腰圆肋(3106);对称单锅片(31)底部两侧的基座(3108)用来与排烟箱(34)连接;炉膛辐射区成为火焰的辐射空间,高温烟气充盈炉膛辐射区后向下冲刷对流区和冷凝区的针翅受热面,并从2~12个对称单锅 片(31)形成的主体结构底端流入排烟箱(34),烟气汇集转弯向上排出;对称单锅片(31)的内部为中空腔体,回水从底端进口(3109)进入,从顶端出口(3110)流出。
  17. 根据权利要求16所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:混合气流经防回火鳍片(3102)和稳焰筋(3103)后点火燃烧;其中,防回火鳍片(3102)呈矩形或长圆形截面结构,相邻防回火鳍片(3102)的间距为1~10mm,高度为6~30mm,具体取值应保证混合气经过间隙时的气体喷出平均速度为2~3m/s;稳焰筋(3103)位于防回火鳍片(3102)的外侧且与防回火鳍片(3102)交错布置以稳定火焰,高度与防回火鳍片(3102)保持一致;对称单锅片(31)的顶端两侧布置有多个带有螺栓孔的支撑孔座(3111),用来与等压风仓分配器(32)相连接。
  18. 根据权利要求16所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述对称单锅片(31)沿烟气流动方向,圆形肋(3104)和腰圆肋(3106)的排布方式并不相同,辐射区的圆形肋(3104)与对流区的圆形针肋相比,高度较低,直径及横纵截距则较大,而随着烟气温度与辐射量沿烟气流动方向降低,圆形肋(3104)的高度逐步提高,在烟温低于500℃的对流区上,圆形肋(3104)呈紧密错列正三角形排布,圆形肋(3104)间的最短距离为3~4mm;在高度上,圆形肋(3104)等高,或采用均匀的一排或两排为一组的高低错列设计,且高度差不应大于平均高度的1/3;在烟温低于65℃的冷凝区,采用圆形肋(3104)以及长径与烟气流动方向一致的腰圆肋(3106),腰圆肋(3106)短径与冷凝区的圆形肋(3104)相同,肋间的平行通道能够为烟气冷凝提供足够的换热面积,保证冷凝过程的连续进行;冷凝区沿烟气流动方向,宽度逐渐减小,使整个对称单锅片(31)的下半部分***呈“∪”形。
  19. 根据权利要求16所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特征在于:所述对称单锅片(31)的内部中空腔体为水通道,水通道是由沿竖直方向的中心肋(3114)以及多个沿水平方向的平直肋(3115)划分而成,中心肋(3114)将整个水道空间沿左右一分为二,每两个平直肋(3115)的间距为40~120mm不等,且随着整体高度的增加,截面高度逐层减小,并保证在辐射区周围的截面高度约为最大截面高度的1/2左右,中心肋(3114)和平直肋(3115)形成左右的对称蛇形水道(3112);对流区上部的的平直肋(3115)存在0~10°的倾斜角,其端部加工卸汽孔(3113);在这种结构下,***回水进入各对称单锅片(31)后,沿左右的对称蛇形水道(3112)一路弯转上升,最终折转至炉膛顶部两侧水道(3101),直至在顶端出口(3110)汇合流出。
  20. 根据权利要求16所述的一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉,其特 征在于:所述对称单锅片(31)的两侧布置有成对的前后连接孔(3105)、积灰清扫口(3107)和铸造排沙口(3116);前后连接孔(3105)将2~12个对称单锅片(31)的前后端面对齐串接连接起来;积灰清扫口(3107)的开度保证能够清扫到对流区的1/3~1/2,避免采暖季中需要清灰时将已密封好的炉体拆封,并与清灰盖板(35)进行装配;铸造排沙口(3116)在位置上与平直肋(3115)正对,在深度上直接贯穿至水道内部,并与密封堵头(36)进行装配。
PCT/CN2021/105092 2020-07-16 2021-07-08 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉 WO2022012398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21843100.5A EP4075075A4 (en) 2020-07-16 2021-07-08 SINGLE BOILER SHEET METAL WATER HEATER MADE OF ALUMINUM-SILICON CASTING IN CONNECTION WITH A BURNER WITH PREMIX AND WATER COOLING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010688233.0 2020-07-16
CN202010688233.0A CN111829179A (zh) 2020-07-16 2020-07-16 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉

Publications (1)

Publication Number Publication Date
WO2022012398A1 true WO2022012398A1 (zh) 2022-01-20

Family

ID=72924236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105092 WO2022012398A1 (zh) 2020-07-16 2021-07-08 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉

Country Status (3)

Country Link
EP (1) EP4075075A4 (zh)
CN (1) CN111829179A (zh)
WO (1) WO2022012398A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829179A (zh) * 2020-07-16 2020-10-27 西安交通大学 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉
CN113267152B (zh) * 2021-05-14 2022-11-08 中国核动力研究设计院 一种精确测量壁面活化核心特征参数的实验装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907539B1 (fr) * 2006-10-24 2013-04-26 Dietrich Thermique Echangeur-condenseur pour chaudiere a condensation
CN208058822U (zh) * 2018-03-20 2018-11-06 北京中力创业机电设备有限公司 多回程铸铁锅炉
CN109099588A (zh) * 2018-10-16 2018-12-28 西安交通大学 一种双水道铸铝硅冷凝式锅炉水路***及工作方法
CN109855286A (zh) * 2019-03-21 2019-06-07 西安交通大学 一种多工艺复合成型的燃气采暖壁挂炉
CN109883051A (zh) * 2019-03-21 2019-06-14 西安交通大学 一种模块化商业燃气采暖挤压铝合金辐射炉膛
CN110220305A (zh) * 2018-03-04 2019-09-10 邵龙升 一种全热式燃气常压热水炉
CN210831977U (zh) * 2019-09-10 2020-06-23 杭州卡瓦顿热能科技有限公司 全预混水冷燃烧低氮冷凝不锈钢热水锅炉
CN111829179A (zh) * 2020-07-16 2020-10-27 西安交通大学 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205174823U (zh) * 2015-06-26 2016-04-20 天津城建大学 一种冷凝式铸硅铝换热器
CN106766141A (zh) * 2016-12-31 2017-05-31 浙江音诺伟森热能科技有限公司 一种冷凝式燃气采暖热水炉

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907539B1 (fr) * 2006-10-24 2013-04-26 Dietrich Thermique Echangeur-condenseur pour chaudiere a condensation
CN110220305A (zh) * 2018-03-04 2019-09-10 邵龙升 一种全热式燃气常压热水炉
CN208058822U (zh) * 2018-03-20 2018-11-06 北京中力创业机电设备有限公司 多回程铸铁锅炉
CN109099588A (zh) * 2018-10-16 2018-12-28 西安交通大学 一种双水道铸铝硅冷凝式锅炉水路***及工作方法
CN109855286A (zh) * 2019-03-21 2019-06-07 西安交通大学 一种多工艺复合成型的燃气采暖壁挂炉
CN109883051A (zh) * 2019-03-21 2019-06-14 西安交通大学 一种模块化商业燃气采暖挤压铝合金辐射炉膛
CN210831977U (zh) * 2019-09-10 2020-06-23 杭州卡瓦顿热能科技有限公司 全预混水冷燃烧低氮冷凝不锈钢热水锅炉
CN111829179A (zh) * 2020-07-16 2020-10-27 西安交通大学 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075075A4 *

Also Published As

Publication number Publication date
CN111829179A (zh) 2020-10-27
EP4075075A1 (en) 2022-10-19
EP4075075A4 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2022012398A1 (zh) 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉
CN112460567B (zh) 一种同心单管圈水冷燃烧及换热的燃气锅炉
CN111059759A (zh) 一种全预混冷凝锅炉
CN104359127A (zh) 一种燃气轮机燃烧室火焰筒的通道式冷却结构
CN204254677U (zh) 一种燃气轮机燃烧室火焰筒的通道式冷却结构
CN112856370B (zh) 一种全预混水冷燃烧的锅壳式燃气锅炉
CN104236331A (zh) 列管式喷流翅片空气换热器
CN206247635U (zh) 一种燃气全预混冷凝式壁挂炉的铸铝热交换器
US11859867B2 (en) Premixed low-nitrogen gas boiler
CN117028987A (zh) 一种立式水管内置预混膜式壁冷却燃烧器及燃气锅炉
CN212511815U (zh) 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉结构
CN213713032U (zh) 一种新型低氮排放冷焰燃烧一体化蒸汽锅炉
CN210980368U (zh) 一种倒置式燃烧全预混冷凝换热器
CN113153536A (zh) 一种燃气涡轮用回热器
CN219589168U (zh) 换热器和热水器
CN219589166U (zh) 换热器和热水器
CN216716586U (zh) 热交换结构
CN110926026A (zh) 一种换热器及冷凝锅炉
WO2021057677A1 (zh) 一种冷凝锅炉
CN219589158U (zh) 换热器和热水器
CN218565581U (zh) 一种燃气热水器
CN115235117B (zh) 一种可承压的双螺旋水冷盘管卧式预混燃气锅炉
CN213578094U (zh) 一种管壁式强力锅炉
CN217604373U (zh) 一种换热器及冷凝锅炉
CN216308199U (zh) 一种倒置燃烧式双水道高效热水加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021843100

Country of ref document: EP

Effective date: 20220715

NENP Non-entry into the national phase

Ref country code: DE