WO2022012323A1 - Thermal management system and method for a vehicle equipped with an sofc system - Google Patents

Thermal management system and method for a vehicle equipped with an sofc system Download PDF

Info

Publication number
WO2022012323A1
WO2022012323A1 PCT/CN2021/103164 CN2021103164W WO2022012323A1 WO 2022012323 A1 WO2022012323 A1 WO 2022012323A1 CN 2021103164 W CN2021103164 W CN 2021103164W WO 2022012323 A1 WO2022012323 A1 WO 2022012323A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
sofc
cooling line
water pump
heat
Prior art date
Application number
PCT/CN2021/103164
Other languages
French (fr)
Inventor
Hongmin CAO
Chunlei Gao
Tao Dong
Hailiang Liu
Qun Li
Original Assignee
Ceres Intellectual Property Company Limited
Weichai Power Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceres Intellectual Property Company Limited, Weichai Power Co., Ltd. filed Critical Ceres Intellectual Property Company Limited
Publication of WO2022012323A1 publication Critical patent/WO2022012323A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to the technical field of vehicle thermal management, particularly to a thermal management system and method for a vehicle equipped with an SOFC system.
  • SOFC solid oxide fuel cell
  • the operating environment of an SOFC system is 600°C to 800°C in general.
  • the temperature is high.
  • heat insulation is needed for the SOFC system, but as the internal parts of the SOFC system are not regular, it is unlikely that the heat insulation of the SOFC hot box is even and unified.
  • the SOFC hot box is a box in which components such as high-temperature components and heat exchangers relating to the SOFC system are encapsulated and a thermal insulation material is provided.
  • the SOFC hot box is underutilized, resulting in waste of energy.
  • An object of the present invention is to provide a thermal management system and method for a vehicle equipped with an SOFC system, to solve the problem of energy waste caused by insufficient utilization of the SOFC hot box by the vehicle equipment with an SOFC system.
  • the present invention provides a thermal management system for a vehicle equipped with an SOFC system.
  • the thermal management system comprises an SOFC heat-insulating water tank arranged outside an SOFC hot box, and a first cooling line and a second cooling line both connected between a water inlet pipe and a water outlet pipe of the SOFC heat-insulating water tank.
  • a first on-off valve, a first water pump, and a first heat exchanger for cooling a high-voltage battery are arranged on the first cooling line.
  • a first temperature sensor is arranged on the SOFC heat-insulating water tank, and a second temperature sensor is arranged on the high-voltage battery.
  • a second on-off valve, a second water pump, and a second heat exchanger for cooling a motor are arranged on the second cooling line, and a third temperature sensor is arranged on the motor.
  • the first water pump and the first on-off valve will both be on, the second water pump and the second on-off valve will both be off, and the circulating water in the SOFC heat-insulating water tank will flow through the first cooling line;
  • the first on-off valve and the second on-off valve will both be on, at least one of the first water pump and the second water pump will be on, and the circulating water of the second cooling line will flow through the first cooling line.
  • the first on-off valve and the first water pump are both off, the second on-off valve and the second water pump are both on, and the circulating water of the second cooling line flows through the SOFC heat-insulating water tank.
  • the vehicle thermal management system can further comprise an in-vehicle warm air line connected between a water inlet and a water outlet of the SOFC heat-insulating water tank, and a third on-off valve, a third water pump, and a third heat exchanger used for supplying heat to the inside of the vehicle are arranged on the in-vehicle warm air line.
  • the first water pump and the second water pump are both off, the third water pump is on, the first on-off valve is off, the second on-off valve and the third on-off valve are both on, and the circulating water in the SOFC heat-insulating water tank and the circulating water in the second cooling line flow through the in-vehicle warm air line.
  • a four-way control valve can be integrated on the water outlet pipe of the SOFC heat-insulating water tank, three external valves of the four-way control valve are communicated with the first cooling line, the second cooling line and the in-vehicle warm air line, respectively, and four valves of the four-way control valve can be controlled independently.
  • a bypass line for bypassing the second water pump can be further arranged on the second cooling line and a bypass valve arranged on the bypass line, and when the second water pump is off, the bypass valve is open; and when the second water pump is on, the bypass valve is closed.
  • the vehicle thermal management system can further comprise a third cooling line arranged in parallel with the second cooling line, and a radiator with a cooling fan arranged on the third cooling line.
  • the first on-off valve and the first water pump are on, and the circulating water of the first cooling line flows through the third cooling line.
  • the second on-off valve and the second water pump are on, and the circulating water of the second cooling line flows through the third cooling line.
  • the vehicle thermal management system can further comprise an FCU, and the FCU can be used to integrally control electronic control elements of the vehicle thermal management system.
  • Expansion cisterns can be arranged on the first cooling line, the second cooling line, and the water outlet pipe of the SOFC heat-insulating water tank.
  • the SOFC heat-insulating water tank can be made of stainless steel.
  • the SOFC heat-insulating water tank can be located in the upper part of the SOFC hot box.
  • the exterior side of the SOFC heat-insulating water tank can be further provided with an insulating layer.
  • the present invention also provides a method of operating the system defined above.
  • the thermal management system comprises an SOFC heat-insulating water tank arranged outside an SOFC hot box, and a first cooling line and a second cooling line both connected between a water inlet pipe and a water outlet pipe of the SOFC heat-insulating water tank.
  • a first on-off valve, a first water pump, and a first heat exchanger for cooling a high-voltage battery are arranged on the first cooling line.
  • a first temperature sensor is arranged on the SOFC heat-insulating water tank, and a second temperature sensor is arranged on the high-voltage battery.
  • a second on-off valve, a second water pump, and a second heat exchanger for cooling a motor are arranged on the second cooling line, and a third temperature sensor is arranged on the motor.
  • Application of the vehicle thermal management system includes when the vehicle is in a new start cycle. If the temperature value detected by the first temperature sensor is greater than the temperature value detected by the second temperature sensor, and the temperature value detected by the second temperature sensor is lower than the first preset temperature value, it indicates that the vehicle has a short time interval from the last run, for example, the vehicle runs overnight.
  • the SOFC heat-insulating water tank temporarily stores the heat energy of the SOFC hot box absorbed during the last run, by controlling the first water pump and the first on-off valve both to be on, and the second water pump and the second on-off valve both to be off, the circulating water in the SOFC heat-insulating water tank will flow through the first cooling line, thereby preheating and maintaining the temperature of the high-voltage battery and effectively utilizing the heat energy of the SOFC hot box. If the temperature values detected by the first temperature sensor and the second temperature sensor are both lower than a second preset temperature value, it indicates that the vehicle has a long time interval from the last run and is in a fully cold start state.
  • the first on-off valve and the second on-off valve are controlled to be on, and at least one of the first water pump and the second water pump is controlled to be on, so that the circulating water of the second cooling line will flow through the first cooling line, thereby utilizing the heat energy of the motor to preheat and maintain the temperature of the high-voltage battery and improving the performance of the cold start of the high-voltage battery.
  • the first on-off valve and the first water pump are controlled to be off, and the second on-off valve and the second water pump are controlled to be on, so that the circulating water of the second cooling line will flow through the SOFC heat-insulating water tank, thereby absorbing surplus heat by means of the SOFC heat-insulating water tank to maintain the temperature of the SOFC hot box, reducing heat loss and radiation of the SOFC hot box and increasing the fuel utilization efficiency of the SOFC system.
  • the vehicle thermal management system can not only utilize the heat energy of the SOFC hot box to assist the cold start of the vehicle, but also recover the heat energy generated by the motor to maintain the temperature of the SOFC hot box.
  • the vehicle thermal management system can make the high-voltage battery be in an efficient operating state, and significantly improve the energy utilization rate of the vehicle without an additional battery heating device.
  • Fig. 1 is a schematic diagram of the general layout of a vehicle thermal management system equipped with an SOFC system.
  • Fig. 2 is a schematic diagram of an FCU for a vehicle thermal management system equipped.
  • Fig. 3 is a schematic diagram of a vehicle thermal management system equipped with an SOFC system.
  • Fig. 4 is a schematic diagram of a vehicle thermal management system in a further management mode.
  • Fig. 5 is a schematic diagram of a vehicle thermal management system in a still further management mode.
  • SOFC hot box 1 SOFC heat-insulating water tank 2, first on-off valve 3, first water pump 4, high-voltage battery 5, first heat exchanger 6, first temperature sensor 7, second temperature sensor 8, second on-off valve 9, second water pump 10, second heat exchanger 11, third temperature sensor 12, third on-off valve 13, third water pump 14, third heat exchanger 15, four-way control valve 16, bypass valve 17, cooling fan 18, radiator 19, FCU 20, expansion cistern 21, insulating layer 22.
  • the present invention is centered on providing a thermal management system for a vehicle equipped with an SOFC system, to address the problem of energy waste caused by insufficient utilization of the SOFC hot box by a vehicle equipped with an SOFC system.
  • the terms indicating directional or positional relations such as “over, ” “on, ” “above, ” “below, ” “under, ” “front, ” “rear, ” “left” and “right” are based on the directional or positional relations shown in the drawings. They are only for facilitating and simplifying the description of the present invention, and do not indicate or imply that the devices or elements in question must possess specific directions or be constructed and operated in specific directions, so they cannot be understood as limitations to the present invention. Further, the terms “first” and “second” are for description only and cannot be understood to indicate or imply relative importance.
  • an embodiment of the present invention provides a thermal management system for a vehicle equipped with an SOFC system.
  • the thermal management system comprises an SOFC heat-insulating water tank 2 arranged outside an SOFC hot box 1, and a first cooling line and a second cooling line both connected between a water inlet pipe and a water outlet pipe of the SOFC heat-insulating water tank 2.
  • a first on-off valve 3, a first water pump 4, and a first heat exchanger 6 for cooling a high-voltage battery 5 are arranged on the first cooling line.
  • a first temperature sensor 7 is arranged on the SOFC heat-insulating water tank 2, and a second temperature sensor 8 is arranged on the high-voltage battery 5.
  • a second on-off valve 9, a second water pump 10, and a second heat exchanger 11 for cooling a motor are arranged on the second cooling line, and a third temperature sensor 12 is arranged on the motor.
  • the first on-off valve 3 and the first water pump 4 are both off, the second on-off valve 9 and the second water pump 10 are both on, and the circulating water of the second cooling line flows through the SOFC heat-insulating water tank 2.
  • the vehicle thermal management system when the vehicle is in a new start cycle: if the temperature value detected by the first temperature sensor is greater than the temperature value detected by the second temperature sensor, and the temperature value detected by the second temperature sensor is lower than the first preset temperature value (e.g., the temperature is lower than 5°C) , it indicates that the vehicle has a short time interval from the last run, for example, the vehicle runs overnight.
  • the first preset temperature value e.g., the temperature is lower than 5°C
  • the SOFC heat-insulating water tank temporarily stores the heat energy of the SOFC hot box absorbed during the last run, by controlling the first water pump and the first on-off valve both to be on, and the second water pump and the second on-off valve both to be off, the circulating water in the SOFC heat-insulating water tank will flow through the first cooling line, thereby preheating and maintaining the temperature of the high-voltage battery and effectively utilizing the heat energy of the SOFC hot box. If the temperature values detected by the first temperature sensor and the second temperature sensor are both lower than the second preset temperature value (e.g., the temperature is lower than 10°C) , it indicates that the vehicle has a long time interval from the last run and is in a fully cold start state.
  • the second preset temperature value e.g., the temperature is lower than 10°C
  • the first on-off valve and the second on-off valve are controlled to be on, and at least one of the first water pump and the second water pump is controlled to be on, so that the circulating water of the second cooling line will flow through the first cooling line, thereby utilizing the heat energy of the motor to preheat and maintain the temperature of the high-voltage battery and improving the performance of the cold start of the high-voltage battery.
  • the precondition is that the motor runs without over-temperature
  • the first on-off valve and the first water pump are controlled to be off
  • the second on-off valve and the second water pump are controlled to be on, so that the circulating water of the second cooling line will flow through the SOFC heat-insulating water tank, thereby absorbing surplus heat by means of the SOFC heat-insulating water tank to maintain the temperature of the SOFC hot box, reducing heat loss and radiation of the SOFC hot box and increasing the fuel utilization efficiency of the SOFC system.
  • the vehicle thermal management system can not only utilize the heat energy of the SOFC hot box to assist the cold start of the vehicle, but also recover the heat energy generated by the motor to maintain the temperature of the SOFC hot box.
  • the vehicle thermal management system can make the high-voltage battery be in an efficient operating state, and significantly improve the energy utilization rate of the vehicle without an additional battery heating device.
  • the SOFC hot box is a box in which components such as high-temperature components and heat exchangers relating to the SOFC system are encapsulated, and is filled with a thermal insulation material.
  • the vehicle thermal management system may further comprise an in-vehicle warm air line connected between a water inlet and a water outlet of the SOFC heat-insulating water tank 2.
  • a third on-off valve 13, a third water pump 14, and a third heat exchanger 15 for supplying heat to the inside of the vehicle are arranged on the in-vehicle warm air line.
  • the first water pump 4 and the second water pump 10 are both off, the third water pump 14 is on, the first on-off valve 3 is off, the second on-off valve 9 and the third on-off valve 13 are both on, and the circulating water in the SOFC heat-insulating water tank 2 and the circulating water in the second cooling line flow through the in-vehicle warm air line.
  • the water inlet and outlet of the SOFC heat-insulating water tank 2 are connected to the in-vehicle warm air line.
  • the third water pump on the in-vehicle warm air line may cause the heat energy of the SOFC heat-insulating water tank and the second cooler to flow through the in-vehicle warm air line in the form of circulating water, thereby achieving the goal of heat supply in the vehicle.
  • the heat sources are the heat energy generated by the motor and the heat energy collected by the SOFC heat-insulating water tank, the heat energy of the vehicle can be utilized sufficiently, and energy waste can be reduced.
  • a four-way control valve 16 may be integrated on the water outlet pipe for the way of communication of the water outlet pipe of the foregoing SOFC heat-insulating water tank 2 with other cooling lines and the in-vehicle warm air line, specifically.
  • Three external valves of the four-way control valve 16 are communicated with the first cooling line, the second cooling line and the in-vehicle warm air line, respectively, and four valves of the four-way control valve can be controlled independently.
  • This form of the four-way control valve is only one example of the embodiment of the present invention. It can also be selectively designed that the cooling lines are connected to the SOFC heat-insulating water tank, respectively according to actual needs. In this case, the layout of the lines may be more complex.
  • a bypass line for bypassing the second water pump 10 may further be arranged on the foregoing second cooling line.
  • a bypass valve 17 is arranged on the bypass line, and when the second water pump 10 is off, the bypass valve 17 is open. When the second water pump 10 is on, the bypass valve 17 is closed. When operation of the second water pump is not needed, the bypass line and the bypass valve are designed such that the second water pump can be short-circuited directly through the bypass line, thereby reducing the flow resistance caused by the second water pump itself.
  • the vehicle thermal management system may further comprise a third cooling line arranged in parallel with the second cooling line.
  • a radiator 19 with a cooling fan 18 is arranged on the third cooling line.
  • the second on-off valve 9 and the second water pump 10 are on, and the circulating water of the second cooling line flows through the third cooling line, thereby rapidly cooling the motor that reaches a certain temperature.
  • the cooling of the high-voltage battery and the cooling of the motor do not affect each other and can be operated separately, or simultaneously.
  • the thermal management system in order to control the vehicle thermal management system in a centralized way and make the control more convenient, is further provided with an FCU 20.
  • the FCU 20 is used to integrally control electronic control elements of the vehicle thermal management system.
  • the electronic control elements may specifically comprise the sensors, motors, cooling fans, on-off valves and water pumps, and other components that need to be controlled electronically.
  • expansion cisterns 21 are arranged on the first cooling line, the second cooling line, and the water outlet pipe of the SOFC heat-insulating water tank 2 in general.
  • the expansion cisterns can avoid pressure instability.
  • the foregoing SOFC heat-insulating water tank 2 is made of stainless steel, SS316 for example.
  • the selection of stainless steel is only one example of the embodiment of the present invention and other materials suitable to make the heat-insulating water tank can be selected.
  • the SOFC heat-insulating water tank 2 can be designed to be located in the upper part of the SOFC hot box 1.
  • the cavity shape of the SOFC heat-insulating water tank is determined based on the relatively high temperature area of the surface layer of the SOFC hot box (for example, the temperature of the surface layer is higher than 50°C) .
  • a flat shape is one option, which can increase the contact area with the SOFC hot box. Reinforcing ribs are provided appropriately, thereby increasing the strength of the box body.
  • the SOFC heat-insulating water tank is arranged in the upper part of the SOFC hot box and can be connected and fixed to the framework of the SOFC hot box.
  • the coolant in the cavity can be selected according to actual requirements (for example, it may be water, or may be a mixture of glycol and water) .
  • the exterior side of the SOFC heat-insulating water tank 2 may further be provided with an insulating layer 22.
  • the insulating layer may be made of a suitable insulating material.
  • the insulating layer on the one hand prevents secondary emission and radiation of the heat collected by the water tank from the SOFC hot box, causing waste; on the other hand, prevents the low ambient temperature from affecting the SOFC heat-insulating water tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention discloses a vehicle thermal management system equipped with an SOFC system. The vehicle thermal management system comprises an SOFC heat-insulating water tank arranged outside an SOFC hot box, and a first cooling line and a second cooling line both connected between a water inlet pipe and a water outlet pipe of the SOFC heat-insulating water tank. A first on-off valve, a first water pump, and a first heat exchanger used for cooling a high-voltage battery are arranged on the first cooling line, a first temperature sensor is arranged on the SOFC heat-insulating water tank, and a second temperature sensor is arranged on the high-voltage battery; a second on-off valve, a second water pump, and a second heat exchanger used for cooling a motor are arranged on the second cooling line, and a third temperature sensor is arranged on the motor. By means of the SOFC heat-insulating water tank, the vehicle thermal management system can not only use the heat energy of the SOFC hot box to assist the cold start of the vehicle, but also recover the heat energy generated by the motor and use the heat energy to maintain the temperature of the SOFC hot box, thereby significantly increasing the energy utilization rate of the vehicle.

Description

THERMAL MANAGEMENT SYSTEM AND METHOD FOR A VEHICLE EQUIPPED WITH AN SOFC SYSTEM TECHNICAL FIELD
The present invention relates to the technical field of vehicle thermal management, particularly to a thermal management system and method for a vehicle equipped with an SOFC system.
BACKGROUND ART
With the development of society and the ever-increasing requirements for energy conservation and emission reduction, electric vehicles have become an area of research interest. Vehicles equipped with solid oxide fuel cell (hereinafter referred to as “SOFC” ) systems are one type of electric vehicle, and their characteristics of high efficiency and low emissions make them the central focus of attention in the industry.
The operating environment of an SOFC system is 600℃ to 800℃ in general. The temperature is high. Generally speaking, heat insulation is needed for the SOFC system, but as the internal parts of the SOFC system are not regular, it is unlikely that the heat insulation of the SOFC hot box is even and unified. The SOFC hot box is a box in which components such as high-temperature components and heat exchangers relating to the SOFC system are encapsulated and a thermal insulation material is provided. In view of the limits of the installation space on the vehicle, it is impossible to increase the thickness of the insulating layer of the SOFC hot box without limit. Therefore, no desirable method is available currently to effectively utilize the temperature of the surface layer of the SOFC hot box. The SOFC hot box is underutilized, resulting in waste of energy.
How to solve the problem of energy waste caused by insufficient utilization of the SOFC hot box by a vehicle equipped with an SOFC system has become a technical problem to be solved.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a thermal management system and method for a vehicle equipped with an SOFC system, to solve the problem of energy waste caused by insufficient utilization of the SOFC hot box by the vehicle equipment with an SOFC system.
The present invention provides a thermal management system for a vehicle equipped with an SOFC system. The thermal management system comprises an SOFC heat-insulating water tank arranged outside an SOFC hot box, and a first cooling line and a second cooling line both connected between a water inlet pipe and a water outlet pipe of the SOFC heat-insulating water tank.
A first on-off valve, a first water pump, and a first heat exchanger for cooling a high-voltage battery are arranged on the first cooling line. A first temperature sensor is arranged on the SOFC heat-insulating water tank, and a second temperature sensor is arranged on the high-voltage battery. A second on-off valve, a second water pump, and a second heat exchanger for cooling a motor are arranged on the second cooling line, and a third temperature sensor is arranged on the motor.
When the vehicle is in a new start cycle:
if the temperature value detected by the first temperature sensor is greater than the temperature value detected by the second temperature sensor, and the temperature value detected by the second temperature sensor is lower than a first preset temperature value, the first water pump and the first on-off valve will both be on, the second water pump and the second on-off valve will both be off, and the circulating water in the SOFC heat-insulating water tank will flow through the first cooling line;
if the temperature values detected by the first temperature sensor and the second temperature sensor are both lower than a second preset temperature value, the first on-off valve and the second on-off valve will both be on, at least one of the first water pump and the second water pump will be on, and the circulating water of the second cooling line will flow through the first cooling line.
When the vehicle has been started and the temperature value detected by the third temperature sensor is within a preset temperature threshold, the first on-off valve and the first water pump are both off, the second on-off valve and the second water pump are both on, and the circulating water of the second cooling line flows through the SOFC  heat-insulating water tank.
The vehicle thermal management system can further comprise an in-vehicle warm air line connected between a water inlet and a water outlet of the SOFC heat-insulating water tank, and a third on-off valve, a third water pump, and a third heat exchanger used for supplying heat to the inside of the vehicle are arranged on the in-vehicle warm air line.
When the temperature value detected by the third temperature sensor is within a preset temperature threshold and heat supply is needed inside the vehicle, the first water pump and the second water pump are both off, the third water pump is on, the first on-off valve is off, the second on-off valve and the third on-off valve are both on, and the circulating water in the SOFC heat-insulating water tank and the circulating water in the second cooling line flow through the in-vehicle warm air line.
A four-way control valve can be integrated on the water outlet pipe of the SOFC heat-insulating water tank, three external valves of the four-way control valve are communicated with the first cooling line, the second cooling line and the in-vehicle warm air line, respectively, and four valves of the four-way control valve can be controlled independently.
A bypass line for bypassing the second water pump can be further arranged on the second cooling line and a bypass valve arranged on the bypass line, and when the second water pump is off, the bypass valve is open; and when the second water pump is on, the bypass valve is closed.
The vehicle thermal management system can further comprise a third cooling line arranged in parallel with the second cooling line, and a radiator with a cooling fan arranged on the third cooling line.
When the vehicle has been started and the temperature value detected by the second temperature sensor is higher than a third preset temperature value, the first on-off valve and the first water pump are on, and the circulating water of the first cooling line flows through the third cooling line.
When the temperature value detected by the third temperature sensor exceeds the upper limit of a preset temperature threshold, the second on-off valve and the second water pump are on, and the circulating water of the second cooling line flows through the third cooling line.
The vehicle thermal management system can further comprise an FCU, and the FCU can be used to integrally control electronic control elements of the vehicle thermal management system.
Expansion cisterns can be arranged on the first cooling line, the second cooling line, and the water outlet pipe of the SOFC heat-insulating water tank.
The SOFC heat-insulating water tank can be made of stainless steel.
The SOFC heat-insulating water tank can be located in the upper part of the SOFC hot box.
The exterior side of the SOFC heat-insulating water tank can be further provided with an insulating layer.
The present invention also provides a method of operating the system defined above.
The thermal management system comprises an SOFC heat-insulating water tank arranged outside an SOFC hot box, and a first cooling line and a second cooling line both connected between a water inlet pipe and a water outlet pipe of the SOFC heat-insulating water tank. A first on-off valve, a first water pump, and a first heat exchanger for cooling a high-voltage battery are arranged on the first cooling line. A first temperature sensor is arranged on the SOFC heat-insulating water tank, and a second temperature sensor is arranged on the high-voltage battery. A second on-off valve, a second water pump, and a second heat exchanger for cooling a motor are arranged on the second cooling line, and a third temperature sensor is arranged on the motor. Application of the vehicle thermal management system includes when the vehicle is in a new start cycle. If the temperature value detected by the first temperature sensor is greater than the temperature value detected by the second temperature sensor, and the temperature value detected by the second temperature sensor is lower than the first preset temperature value, it indicates that the vehicle has a short time interval from the last run, for example, the vehicle runs overnight. As the SOFC heat-insulating water tank temporarily stores the heat energy of the SOFC hot box absorbed during the last run, by controlling the first water pump and the first on-off valve both to be on, and the second water pump and the second on-off valve both to be off, the circulating water in the SOFC heat-insulating water tank will flow through the first cooling line, thereby preheating and maintaining the temperature of the high-voltage battery and effectively utilizing the heat energy of the SOFC hot box. If the  temperature values detected by the first temperature sensor and the second temperature sensor are both lower than a second preset temperature value, it indicates that the vehicle has a long time interval from the last run and is in a fully cold start state. As the motor will generate heat once it is operated, the first on-off valve and the second on-off valve are controlled to be on, and at least one of the first water pump and the second water pump is controlled to be on, so that the circulating water of the second cooling line will flow through the first cooling line, thereby utilizing the heat energy of the motor to preheat and maintain the temperature of the high-voltage battery and improving the performance of the cold start of the high-voltage battery. When the vehicle has been started and the temperature value detected by the third temperature sensor is within a preset temperature threshold, the first on-off valve and the first water pump are controlled to be off, and the second on-off valve and the second water pump are controlled to be on, so that the circulating water of the second cooling line will flow through the SOFC heat-insulating water tank, thereby absorbing surplus heat by means of the SOFC heat-insulating water tank to maintain the temperature of the SOFC hot box, reducing heat loss and radiation of the SOFC hot box and increasing the fuel utilization efficiency of the SOFC system. By means of the SOFC heat-insulating water tank, the vehicle thermal management system can not only utilize the heat energy of the SOFC hot box to assist the cold start of the vehicle, but also recover the heat energy generated by the motor to maintain the temperature of the SOFC hot box. The vehicle thermal management system can make the high-voltage battery be in an efficient operating state, and significantly improve the energy utilization rate of the vehicle without an additional battery heating device.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings used in the description of the embodiments are briefly described below. These are just some embodiments of the present invention.
Fig. 1 is a schematic diagram of the general layout of a vehicle thermal management system equipped with an SOFC system.
Fig. 2 is a schematic diagram of an FCU for a vehicle thermal management system equipped.
Fig. 3 is a schematic diagram of a vehicle thermal management system equipped with an  SOFC system.
Fig. 4 is a schematic diagram of a vehicle thermal management system in a further management mode.
Fig. 5 is a schematic diagram of a vehicle thermal management system in a still further management mode.
In Fig. 1 to Fig. 5, the following reference numerals are used,
SOFC hot box 1, SOFC heat-insulating water tank 2, first on-off valve 3, first water pump 4, high-voltage battery 5, first heat exchanger 6, first temperature sensor 7, second temperature sensor 8, second on-off valve 9, second water pump 10, second heat exchanger 11, third temperature sensor 12, third on-off valve 13, third water pump 14, third heat exchanger 15, four-way control valve 16, bypass valve 17, cooling fan 18, radiator 19, FCU 20, expansion cistern 21, insulating layer 22.
DETAILED DESCRIPTION
The present invention is centered on providing a thermal management system for a vehicle equipped with an SOFC system, to address the problem of energy waste caused by insufficient utilization of the SOFC hot box by a vehicle equipped with an SOFC system.
Embodiments of the present invention will be described below in conjunction with the drawings. The described embodiments are only some of the embodiments of the present invention.
In the description of the present invention, the terms indicating directional or positional relations such as “over, ” “on, ” “above, ” “below, ” “under, ” “front, ” “rear, ” “left” and “right” are based on the directional or positional relations shown in the drawings. They are only for facilitating and simplifying the description of the present invention, and do not indicate or imply that the devices or elements in question must possess specific directions or be constructed and operated in specific directions, so they cannot be understood as limitations to the present invention. Further, the terms “first” and “second” are for description only and cannot be understood to indicate or imply relative importance.
As shown in Fig. 1 to Fig. 5, an embodiment of the present invention provides a thermal management system for a vehicle equipped with an SOFC system. The thermal  management system comprises an SOFC heat-insulating water tank 2 arranged outside an SOFC hot box 1, and a first cooling line and a second cooling line both connected between a water inlet pipe and a water outlet pipe of the SOFC heat-insulating water tank 2. A first on-off valve 3, a first water pump 4, and a first heat exchanger 6 for cooling a high-voltage battery 5 are arranged on the first cooling line. A first temperature sensor 7 is arranged on the SOFC heat-insulating water tank 2, and a second temperature sensor 8 is arranged on the high-voltage battery 5. A second on-off valve 9, a second water pump 10, and a second heat exchanger 11 for cooling a motor are arranged on the second cooling line, and a third temperature sensor 12 is arranged on the motor. When the vehicle is in a new start cycle: if the temperature value detected by the first temperature sensor 7 is greater than the temperature value detected by the second temperature sensor 8, and the temperature value detected by the second temperature sensor 8 is lower than a first preset temperature value, the first water pump 4 and the first on-off valve 3 will both be on, the second water pump 10 and the second on-off valve 9 will both be off, and the circulating water in the SOFC heat-insulating water tank 2 will flow through the first cooling line; if the temperature values detected by the first temperature sensor 7 and the second temperature sensor 8 are both lower than a second preset temperature value, the first on-off valve 3 and the second on-off valve 9 will both be on, at least one of the first water pump 4 and the second water pump 10 will be on, and the circulating water of the second cooling line will flow through the first cooling line. When the vehicle has been started and the temperature value detected by the third temperature sensor 12 is within a preset temperature threshold, the first on-off valve 3 and the first water pump 4 are both off, the second on-off valve 9 and the second water pump 10 are both on, and the circulating water of the second cooling line flows through the SOFC heat-insulating water tank 2.
In applications of the vehicle thermal management system, when the vehicle is in a new start cycle: if the temperature value detected by the first temperature sensor is greater than the temperature value detected by the second temperature sensor, and the temperature value detected by the second temperature sensor is lower than the first preset temperature value (e.g., the temperature is lower than 5℃) , it indicates that the vehicle has a short time interval from the last run, for example, the vehicle runs overnight. As the SOFC heat-insulating water tank temporarily stores the heat energy of the SOFC hot box absorbed during the last run, by controlling the first water pump and the first on-off valve both to be on, and the second water pump and the second on-off valve both to be off, the  circulating water in the SOFC heat-insulating water tank will flow through the first cooling line, thereby preheating and maintaining the temperature of the high-voltage battery and effectively utilizing the heat energy of the SOFC hot box. If the temperature values detected by the first temperature sensor and the second temperature sensor are both lower than the second preset temperature value (e.g., the temperature is lower than 10℃) , it indicates that the vehicle has a long time interval from the last run and is in a fully cold start state. As the motor will generate heat once it is operated, the first on-off valve and the second on-off valve are controlled to be on, and at least one of the first water pump and the second water pump is controlled to be on, so that the circulating water of the second cooling line will flow through the first cooling line, thereby utilizing the heat energy of the motor to preheat and maintain the temperature of the high-voltage battery and improving the performance of the cold start of the high-voltage battery.
When the vehicle has been started and the temperature value detected by the third temperature sensor is within a preset temperature threshold (here, the precondition is that the motor runs without over-temperature) , the first on-off valve and the first water pump are controlled to be off, and the second on-off valve and the second water pump are controlled to be on, so that the circulating water of the second cooling line will flow through the SOFC heat-insulating water tank, thereby absorbing surplus heat by means of the SOFC heat-insulating water tank to maintain the temperature of the SOFC hot box, reducing heat loss and radiation of the SOFC hot box and increasing the fuel utilization efficiency of the SOFC system. By means of the SOFC heat-insulating water tank, the vehicle thermal management system can not only utilize the heat energy of the SOFC hot box to assist the cold start of the vehicle, but also recover the heat energy generated by the motor to maintain the temperature of the SOFC hot box. The vehicle thermal management system can make the high-voltage battery be in an efficient operating state, and significantly improve the energy utilization rate of the vehicle without an additional battery heating device.
The SOFC hot box is a box in which components such as high-temperature components and heat exchangers relating to the SOFC system are encapsulated, and is filled with a thermal insulation material.
In some embodiments, the vehicle thermal management system may further comprise an in-vehicle warm air line connected between a water inlet and a water outlet of the SOFC  heat-insulating water tank 2. A third on-off valve 13, a third water pump 14, and a third heat exchanger 15 for supplying heat to the inside of the vehicle are arranged on the in-vehicle warm air line. When the temperature value detected by the third temperature sensor 12 is within a preset temperature threshold and heat supply is needed inside the vehicle, the first water pump 4 and the second water pump 10 are both off, the third water pump 14 is on, the first on-off valve 3 is off, the second on-off valve 9 and the third on-off valve 13 are both on, and the circulating water in the SOFC heat-insulating water tank 2 and the circulating water in the second cooling line flow through the in-vehicle warm air line. The water inlet and outlet of the SOFC heat-insulating water tank 2 are connected to the in-vehicle warm air line. When the vehicle needs heat supply in the vehicle, the third water pump on the in-vehicle warm air line may cause the heat energy of the SOFC heat-insulating water tank and the second cooler to flow through the in-vehicle warm air line in the form of circulating water, thereby achieving the goal of heat supply in the vehicle. As the heat sources are the heat energy generated by the motor and the heat energy collected by the SOFC heat-insulating water tank, the heat energy of the vehicle can be utilized sufficiently, and energy waste can be reduced.
In a further embodiment, a four-way control valve 16 may be integrated on the water outlet pipe for the way of communication of the water outlet pipe of the foregoing SOFC heat-insulating water tank 2 with other cooling lines and the in-vehicle warm air line, specifically. Three external valves of the four-way control valve 16 are communicated with the first cooling line, the second cooling line and the in-vehicle warm air line, respectively, and four valves of the four-way control valve can be controlled independently. By means of the four-way control valve, the communication between the water outlet pipe of the SOFC heat-insulating water tank 2 and other lines can be controlled in a centralized way, making the control more convenient, and the line layout space can be utilized effectively. This form of the four-way control valve is only one example of the embodiment of the present invention. It can also be selectively designed that the cooling lines are connected to the SOFC heat-insulating water tank, respectively according to actual needs. In this case, the layout of the lines may be more complex.
A bypass line for bypassing the second water pump 10 may further be arranged on the foregoing second cooling line. A bypass valve 17 is arranged on the bypass line, and when the second water pump 10 is off, the bypass valve 17 is open. When the second water pump 10 is on, the bypass valve 17 is closed. When operation of the second water pump is  not needed, the bypass line and the bypass valve are designed such that the second water pump can be short-circuited directly through the bypass line, thereby reducing the flow resistance caused by the second water pump itself.
The vehicle thermal management system may further comprise a third cooling line arranged in parallel with the second cooling line. A radiator 19 with a cooling fan 18 is arranged on the third cooling line. When the vehicle has been started and the temperature value detected by the second temperature sensor 8 is higher than a third preset temperature value (the temperature is at 10℃ to 25℃ in general and can be calibrated according to the requirements in actual applications, for example, the temperature exceeds 15℃) , the first on-off valve 3 and the first water pump 4 are on, and the circulating water of the first cooling line flows through the third cooling line, thereby cooling the high-voltage battery that reaches certain temperature by means of self-circulation. When the temperature value detected by the third temperature sensor 8 exceeds the upper limit of a preset temperature threshold (at the moment, the motor is in an over-temperature state) , the second on-off valve 9 and the second water pump 10 are on, and the circulating water of the second cooling line flows through the third cooling line, thereby rapidly cooling the motor that reaches a certain temperature. The cooling of the high-voltage battery and the cooling of the motor do not affect each other and can be operated separately, or simultaneously.
In a still further embodiment, in order to control the vehicle thermal management system in a centralized way and make the control more convenient, the thermal management system is further provided with an FCU 20. The FCU 20 is used to integrally control electronic control elements of the vehicle thermal management system. The electronic control elements may specifically comprise the sensors, motors, cooling fans, on-off valves and water pumps, and other components that need to be controlled electronically.
In order to ensure pressure stability of every line during cycle operation, expansion cisterns 21 are arranged on the first cooling line, the second cooling line, and the water outlet pipe of the SOFC heat-insulating water tank 2 in general. The expansion cisterns can avoid pressure instability.
The foregoing SOFC heat-insulating water tank 2 is made of stainless steel, SS316 for example. The selection of stainless steel is only one example of the embodiment of the present invention and other materials suitable to make the heat-insulating water tank can be selected.
The SOFC heat-insulating water tank 2 can be designed to be located in the upper part of the SOFC hot box 1. The cavity shape of the SOFC heat-insulating water tank is determined based on the relatively high temperature area of the surface layer of the SOFC hot box (for example, the temperature of the surface layer is higher than 50℃) . A flat shape is one option, which can increase the contact area with the SOFC hot box. Reinforcing ribs are provided appropriately, thereby increasing the strength of the box body. The SOFC heat-insulating water tank is arranged in the upper part of the SOFC hot box and can be connected and fixed to the framework of the SOFC hot box. This approach can prevent the performance of the air system and fuel gas system in the upper part of the SOFC box from being affected by temperature radiation, and meanwhile the side faces can be taken into account, too. The coolant in the cavity can be selected according to actual requirements (for example, it may be water, or may be a mixture of glycol and water) .
The exterior side of the SOFC heat-insulating water tank 2 may further be provided with an insulating layer 22. The insulating layer may be made of a suitable insulating material. The insulating layer on the one hand prevents secondary emission and radiation of the heat collected by the water tank from the SOFC hot box, causing waste; on the other hand, prevents the low ambient temperature from affecting the SOFC heat-insulating water tank. The embodiments in the description are all described in a progressive manner, each embodiment focuses on the differences from other embodiments and the same or similar parts among the embodiments can be mutually referred to.
The terms such as “comprise, ” “include” and any other equivalent expressions cover non-exclusive inclusion so that an object or device comprising a series of factors not only includes these factors but also includes other factors not expressly listed, or also includes factors inherent with the object or device. Under the condition of no further limitations, the factors delimited by expression “comprise a…” do not exclude other same factors in the process, method, object or device including said factors.
Specific examples are used herein to illustrate the principle and embodiments of the present invention. The description of the above embodiments is used to help understand the core idea of the present invention. Various changes and modifications can be made without departing from the principle of the present invention and these changes and modifications should also be within the scope of protection of the present invention.

Claims (14)

  1. A thermal management system for a vehicle equipped with an SOFC system, wherein the thermal management system comprises:
    an SOFC heat-insulating water tank (2) arranged outside an SOFC hot box (1) , and a first cooling line and a second cooling line both connected between a water inlet pipe and a water outlet pipe of the SOFC heat-insulating water tank (2) ;
    a first on-off valve (3) , a first water pump (4) , and a first heat exchanger (6) for cooling a high-voltage battery (5) arranged on the first cooling line;
    a first temperature sensor (7) arranged on the SOFC heat-insulating water tank (2) ;
    a second temperature sensor (8) arranged on the high-voltage battery (5) ;
    a second on-off valve (9) , a second water pump (10) , and a second heat exchanger (11) for cooling a motor arranged on the second cooling line; and
    a third temperature sensor (12) arranged on the motor;
    wherein the system is configured so that:
    during a new start cycle:
    if the temperature value detected by the first temperature sensor (7) is greater than the temperature value detected by the second temperature sensor (8) , and the temperature value detected by the second temperature sensor (8) is lower than a first preset temperature value, the first water pump (4) and the first on-off valve (3) are both on; the second water pump (10) and the second on-off valve (9) are both off; and the circulating water in the SOFC heat-insulating water tank (2) is directed to flow through the first cooling line; or
    if the temperature values detected by the first temperature sensor (7) and the second temperature sensor (8) are both lower than a second preset temperature value, the first on-off valve (3) and the second on-off valve (9) are both on; the first water pump (4) and/or the second water pump (10) are on, and the circulating water of the second cooling line is directed to flow through the first cooling line; and
    when the vehicle has been started and the temperature value detected by the third  temperature sensor (12) is within a preset temperature threshold, the first on-off valve (3) and the first water pump (4) are both off, the second on-off valve (9) and the second water pump (10) are both on, and the circulating water of the second cooling line is directed to flow through the SOFC heat-insulating water tank (2) .
  2. The vehicle thermal management system according to claim 1, further comprising an in-vehicle warm air line connected between a water inlet and a water outlet of the SOFC heat-insulating water tank (2) , and a third on-off valve (13) , a third water pump (14) , and a third heat exchanger (15) for supplying heat to the inside of the vehicle are arranged on the in-vehicle warm air line;
    wherein the system is further configured so that:
    when the temperature value detected by the third temperature sensor (12) is within a preset temperature threshold and heat supply is needed inside the vehicle, the first water pump (4) and the second water pump (10) are both off, the third water pump (14) is on, the first on-off valve (3) is off, the second on-off valve (9) and the third on-off valve (13) are both on, and the circulating water in the SOFC heat-insulating water tank (2) and the circulating water in the second cooling line are directed to flow through the in-vehicle warm air line.
  3. The vehicle thermal management system according to claim 2, wherein a four-way control valve (16) is integrated on the water outlet pipe of the SOFC heat-insulating water tank (2) , three external valves of the four-way control valve (16) are communicated with the first cooling line, the second cooling line and the in-vehicle warm air line, respectively, and four valves of the four-way control valve can be controlled independently.
  4. The vehicle thermal management system according to claim 2 or 3, wherein a bypass line for bypassing the second water pump (10) is further arranged on the second cooling line, a bypass valve (17) is arranged on the bypass line, and wherein the system is configured such that, when the second water pump (10) is off, the bypass valve (17) is open; and when the second water pump (10) is on, the bypass valve (17) is closed.
  5. The vehicle thermal management system according to any preceding claim, further comprising a third cooling line arranged in parallel with the second cooling line, and  a radiator (19) with a cooling fan (18) is arranged on the third cooling line;
    wherein the system is configured such that:
    when the vehicle has been started and the temperature value detected by the second temperature sensor (8) is higher than a third preset temperature value, the first on-off valve (3) and the first water pump (4) are on, and the circulating water of the first cooling line is directed to flow through the third cooling line; and
    when the temperature value detected by the third temperature sensor (8) exceeds the upper limit of a preset temperature threshold, the second on-off valve (9) and the second water pump (10) are on, and the circulating water of the second cooling line is directed to flow through the third cooling line.
  6. The vehicle thermal management system according to any preceding claim, further comprising an FCU (20) for integrally controlling electronic control elements of the vehicle thermal management system.
  7. The vehicle thermal management system according to any preceding claim, wherein expansion cisterns (21) are arranged on the first cooling line, the second cooling line, and the water outlet pipe of the SOFC heat-insulating water tank (2) .
  8. The vehicle thermal management system according to any preceding claim, wherein the SOFC heat-insulating water tank (2) is made of stainless steel.
  9. The vehicle thermal management system according to any preceding claim, wherein the SOFC heat-insulating water tank (2) is located in the upper part of the SOFC hot box (1) .
  10. The vehicle thermal management system according to any preceding claim, wherein the exterior side of the SOFC heat-insulating water tank (2) is further provided with an insulating layer (22) .
  11. A method of operating a thermal management system for a vehicle equipped with an SOFC system, wherein the thermal management system comprises:
    an SOFC heat-insulating water tank (2) arranged outside an SOFC hot box (1) , and a first cooling line and a second cooling line both connected between a water inlet pipe and a water outlet pipe of the SOFC heat-insulating water tank (2) ;
    a first on-off valve (3) , a first water pump (4) , and a first heat exchanger (6) for cooling a high-voltage battery (5) arranged on the first cooling line;
    a first temperature sensor (7) arranged on the SOFC heat-insulating water tank (2) ;
    a second temperature sensor (8) arranged on the high-voltage battery (5) ;
    a second on-off valve (9) , a second water pump (10) , and a second heat exchanger (11) for cooling a motor arranged on the second cooling line; and
    a third temperature sensor (12) arranged on the motor;
    wherein the method comprises:
    during a new start cycle:
    detecting temperature with the first temperature sensor (7) and second temperature sensor (8) ; and
    if the temperature value detected by the first temperature sensor (7) is greater than the temperature value detected by the second temperature sensor (8) , and the temperature value detected by the second temperature sensor (8) is lower than a first preset temperature value, configuring the first water pump (4) and the first on-off valve (3) to be on; configuring the second water pump (10) and the second on-off valve (9) to be off; and circulating water in the SOFC heat-insulating water tank (2) is to flow through the first cooling line; or
    if the temperature values detected by the first temperature sensor (7) and the second temperature sensor (8) are both lower than a second preset temperature value, configuring the first on-off valve (3) and the second on-off valve (9) to be on; the first water pump (4) and/or the second water pump (10) to be on, and circulating water of the second cooling line to flow through the first cooling line; and
    detecting temperature with the third temperature sensor (12) ; and
    when the vehicle has been started and the temperature value detected by the third temperature sensor (12) is within a preset temperature threshold, configuring the first on-off valve (3) and the first water pump (4) to be off, the second on-off  valve (9) and the second water pump (10) to be on, and circulating water of the second cooling lines to flow through the SOFC heat-insulating water tank (2) .
  12. The method according to claim 11, wherein the system further comprises an in-vehicle warm air line connected between a water inlet and a water outlet of the SOFC heat-insulating water tank (2) , and a third on-off valve (13) , a third water pump (14) , and a third heat exchanger (15) for supplying heat to the inside of the vehicle are arranged on the in-vehicle warm air line;
    the method further comprising:
    when the temperature value detected by the third temperature sensor (12) is within a preset temperature threshold and heat supply is needed inside the vehicle, configuring the first water pump (4) and the second water pump (10) to be off, the third water pump (14) to be on, the first on-off valve (3) to be off, the second on-off valve (9) and the third on-off valve (13) to be on, and circulating water in the SOFC heat-insulating water tank (2) and water in the second cooling line to flow through the in-vehicle warm air line.
  13. The method according to claim 11 or 12, wherein a bypass line for bypassing the second water pump (10) is further arranged on the second cooling line, a bypass valve (17) is arranged on the bypass line, the method further comprising, when the second water pump (10) is off, opening the bypass valve (17) ; and when the second water pump (10) is on, closing the bypass valve (17) .
  14. The method according to claim 11, 12, or 13, the system further comprising a third cooling line arranged in parallel with the second cooling line, and a radiator (19) with a cooling fan (18) is arranged on the third cooling line;
    wherein the method further comprises:
    when the vehicle has been started and the temperature value detected by the second temperature sensor (8) is higher than a third preset temperature value, configuring the first on-off valve (3) and the first water pump (4) to be on, and circulating water of the first cooling line to flow through the third cooling line; and
    when the temperature value detected by the third temperature sensor (8) exceeds the upper limit of a preset temperature threshold, configuring the second on-off valve (9)  and the second water pump (10) to be on, and circulating water of the second cooling line to flow through the third cooling line.
PCT/CN2021/103164 2020-07-15 2021-06-29 Thermal management system and method for a vehicle equipped with an sofc system WO2022012323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010681064.8 2020-07-15
CN202010681064 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022012323A1 true WO2022012323A1 (en) 2022-01-20

Family

ID=76920461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103164 WO2022012323A1 (en) 2020-07-15 2021-06-29 Thermal management system and method for a vehicle equipped with an sofc system

Country Status (1)

Country Link
WO (1) WO2022012323A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022888A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Fuel cell cooling system with coupling out of heat
US20170365901A1 (en) * 2016-06-17 2017-12-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Warm-up apparatus for fuel cell for vehicle
CN111785992A (en) * 2020-07-22 2020-10-16 吉林大学 Mixed low-temperature cold start control method for fuel cell vehicle
CN112550085A (en) * 2020-12-17 2021-03-26 吉林大学 Multi-energy-source fuel cell automobile thermal management system and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022888A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Fuel cell cooling system with coupling out of heat
US20170365901A1 (en) * 2016-06-17 2017-12-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Warm-up apparatus for fuel cell for vehicle
CN111785992A (en) * 2020-07-22 2020-10-16 吉林大学 Mixed low-temperature cold start control method for fuel cell vehicle
CN112550085A (en) * 2020-12-17 2021-03-26 吉林大学 Multi-energy-source fuel cell automobile thermal management system and control method thereof

Similar Documents

Publication Publication Date Title
CN106299411B (en) Fuel cell thermal management system and vehicle with same
CN110077286B (en) Thermal management system of fuel cell automobile
CN101000972B (en) Thermal control device for battery of mixed power vehicle
US9428032B2 (en) Electric vehicle and thermal management system therefor
KR102373420B1 (en) Hvac system of electric vehicle
CN204885359U (en) Group battery temperature control system
CN109849616A (en) Thermal management system of electric automobile
KR20170067502A (en) Betterly cooling system for vehicle
EP3923398B1 (en) Battery pack thermal management system and thermal management system for electric vehicle
CN102610838A (en) Thermal management system of fuel cell, fuel cell system, and vehicle with the fuel cell system
KR20110134213A (en) Integrated heat management system of clean car
CN113054220B (en) Thermal management system and method for fuel cell of passenger vehicle
CN108232238B (en) Fuel cell system, control method and fuel cell automobile
CN112060981A (en) Thermal management system and control method of fuel cell vehicle
CN206532827U (en) A kind of entire car of fuel cell car temperature management system
CN111231619A (en) Vehicle thermal management system and vehicle
JP2009103419A (en) Cogeneration system
CN105070974A (en) Battery pack temperature regulation system
CN202474108U (en) Fuel cell heat managing system, fuel cell system and vehicle using the same
CN113517454B (en) Thermal management control method and system for fuel cell power generation system
KR20120094567A (en) Heating system for electric vehicles using waste heat
KR101449051B1 (en) Thermal management system for fuel cell vehicle
CN211320221U (en) Thermal management system and fuel cell vehicle with same
WO2022012323A1 (en) Thermal management system and method for a vehicle equipped with an sofc system
CN216659651U (en) Fuel cell automobile thermal management system and fuel cell automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21733704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21733704

Country of ref document: EP

Kind code of ref document: A1