WO2022011875A1 - 一种边界信号识别方法、机器人套件、设备和存储介质 - Google Patents

一种边界信号识别方法、机器人套件、设备和存储介质 Download PDF

Info

Publication number
WO2022011875A1
WO2022011875A1 PCT/CN2020/123212 CN2020123212W WO2022011875A1 WO 2022011875 A1 WO2022011875 A1 WO 2022011875A1 CN 2020123212 W CN2020123212 W CN 2020123212W WO 2022011875 A1 WO2022011875 A1 WO 2022011875A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
boundary
robot
signals
magnetic field
Prior art date
Application number
PCT/CN2020/123212
Other languages
English (en)
French (fr)
Inventor
朱绍明
袁立超
Original Assignee
苏州科瓴精密机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科瓴精密机械科技有限公司 filed Critical 苏州科瓴精密机械科技有限公司
Publication of WO2022011875A1 publication Critical patent/WO2022011875A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction

Definitions

  • the embodiments of the present invention relate to the technical field of data processing, and in particular, to a boundary signal identification method, a robot kit, a device, and a storage medium.
  • a boundary system is usually used to control the walking path of the automatic walking equipment.
  • the preset boundary signal sent by the boundary system in the prior art is a pulse signal.
  • this kind of boundary signal is easy to identify, there is a boundary system that cannot distinguish the pulse signal from the boundary signal and the interfering pulse signal, especially the adjacent boundary.
  • the problem of the signal makes the boundary system mistakenly think it is the boundary signal when it receives the interfering pulse signal, and controls the walking path of the automatic walking equipment according to the information carried by it, which makes the boundary system easily interfered and makes a wrong judgment. , reducing the anti-interference ability of the boundary system.
  • the present invention provides a boundary signal identification method, robot kit, equipment and storage medium to improve the accuracy of boundary signal identification.
  • an embodiment of the present invention provides a method for identifying a boundary signal, the method comprising:
  • the boundary signal of the working area to which the robot belongs is determined according to the signal strength of the magnetic field signal.
  • the boundary signal generator pre-stores two or more candidate boundary signals and selects one of them as its current output boundary signal according to random rules.
  • boundary signal generator uses one of multiple boundary signals whose parameters are uniformly and randomly distributed as its current output boundary signal.
  • the boundary signal of the working area to which the robot belongs is determined according to the signal strength of the magnetic field signal, including:
  • the processing signal with the strongest magnetic field signal strength is used as the boundary signal of the working area to which the robot belongs;
  • the boundary signal of the working area to which the robot belongs is determined according to the position information of the robot.
  • the acquired processing signal is matched with the pre-stored signal, and the boundary signal is identified in combination with the magnetic field signal strength of the processed signal, thereby further improving the identification accuracy of the boundary signal.
  • the boundary signal of the work area to which the robot belongs is determined according to the position information of the robot, including:
  • the processing signal is used as the boundary signal of the work area to which the robot belongs.
  • the boundary signal of the work area to which the robot belongs is determined according to the position information of the robot, including:
  • an alarm prompt message is generated to prompt the user to re-detect the boundary signal.
  • the position information of the robot itself is further combined to identify the boundary signals, which improves the accuracy of the boundary signal identification.
  • an embodiment of the present invention further provides a robot kit, including a robot and a boundary signal generator used together with the robot, the boundary signal generator being one of a variety of boundary signals whose parameters are uniformly and randomly distributed as its current output boundary signal, wherein different boundary signals have different parameters;
  • the robot includes:
  • the detection device is used to collect the boundary signal during the working process of the robot
  • a controller configured to obtain a corresponding processing signal according to the magnetic field signal, and match the processing signal with a pre-stored signal, wherein the pre-stored signal is the same as the boundary signal currently output by the boundary signal generator, and if If there are at least two processing signals that are the same as the pre-stored signals, the boundary signal of the working area to which the robot belongs is determined according to the signal strength of the magnetic field signal.
  • an embodiment of the present invention further provides a robot kit, including a robot and a boundary signal generator used in conjunction with the robot, wherein the boundary signal generator pre-stores two or more alternative boundary signals and selects them according to random rules. Select a boundary signal as its current output;
  • the robot includes:
  • a detection device for detecting magnetic field signals in the environment around the robot
  • a controller configured to obtain a corresponding processing signal according to the magnetic field signal, and match the processing signal with a pre-stored signal, wherein the pre-stored signal is the same as the boundary signal currently output by the boundary signal generator, and if If there are at least two processing signals that are the same as the pre-stored signals, the boundary signal of the working area to which the robot belongs is determined according to the signal strength of the magnetic field signal.
  • an embodiment of the present invention further provides a device, the device comprising:
  • processors one or more processors
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method for identifying a boundary signal in any one of the embodiments of the present invention.
  • an embodiment of the present invention further provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the method for identifying a boundary signal according to any one of the embodiments of the present invention.
  • the present invention detects the magnetic field signal in the surrounding environment of the robot, obtains the corresponding processing signal according to the magnetic field signal, and then matches the processing signal with the pre-stored signal, wherein the pre-stored signal is matched with the current output of the boundary signal generator used by the robot.
  • the boundary signals are the same. If there are at least two processing signals that are the same as the pre-stored signals, the boundary signal of the working area of the robot is determined according to the signal strength of the magnetic field signal. Matching with the pre-stored signal, and combining the magnetic field signal strength corresponding to the processed signal to identify the boundary signal, improves the identification accuracy of the boundary signal.
  • FIG. 1 is a flowchart of a method for identifying a boundary signal according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a robot working system according to Embodiment 1 of the present invention.
  • 3a-3c are schematic diagrams of three different types of boundary signals generated by the boundary signal generator
  • FIG. 4 is a flowchart of a method for identifying a boundary signal according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a robot working within an adjacent working area according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of another boundary signal identification method provided by Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a boundary signal identification device according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of a device according to Embodiment 4 of the present invention.
  • FIG. 1 is a flowchart of a method for identifying boundary signals according to Embodiment 1 of the present invention. This embodiment can be applied to the situation of identifying boundary signals during robot operation.
  • the method can be executed by a boundary signal identifying device. It can be implemented in software and/or hardware, and the device can be integrated in robotic equipment.
  • the robot is an intelligent device that can walk automatically, such as a lawn mower, a vacuum cleaner or an industrial robot, etc.
  • This type of intelligent device controls the walking path of the robot through the boundary system during normal operation.
  • FIG. 2 is a schematic diagram of a robot working system provided in Embodiment 1 of the present invention, wherein the system includes a robot body 1, two driving wheels 2 and 3 arranged on the robot body, To the wheel 4 , the sensor 5 , the controller 6 , the charging and boundary signal generator 7 and the wire 8 and the lawn 9 .
  • the driving wheels 2 and 3 can be driven by two motors respectively.
  • the driving wheels 2 and 3 can be driven by a brushless motor with a reduction box and a Hall sensor.
  • By controlling the speed and direction of the two wheels it is convenient to It can realize driving actions such as straight forward, turning and straight back, and can also be used to record the running distance and turning angle.
  • acceleration sensors and gyroscopes can also be used to record and optimize the running distance and turning angle.
  • the universal wheel 4 plays a role of supporting and balancing the robot body 1;
  • the number of sensors 5 is one or more, which is used to detect the electronic boundary magnetic field signal;
  • the controller 6 has a data memory such as electrified erasable programmable Read-only memory (Electrically Erasable Programmable read only memory, EEPROM), solid-state memory Flash or SD memory card, etc., are used to control the movement path of the robot according to the detected boundary signal;
  • the charging and boundary signal generator 7 is used to provide the robot with The power supply is used to automatically charge the robot, and it is also used to generate coded pulse signals and transmit along the wire 8 connected to the charging station, thereby generating an alternating magnetic field on both sides of the wire.
  • the sensor 5 is used to continuously collect the surrounding environment of the robot.
  • the wire 8 surrounds the surrounding of the work area 9 and obstacles such as rockery and fountains in the work area.
  • the system also includes other general mechanisms such as mowing mechanisms and dump, ground clearance and crash sensors (not shown).
  • the magnetic field signal can be further processed by the signal processing unit disposed on the robot, so as to obtain the processing signal corresponding to the magnetic field signal.
  • the processed signal may be a signal with certain parameter information, wherein the parameter information may include pulse width, pulse interval and pulse frequency, etc. After different magnetic field signals are processed, a processed signal with the above parameter information will be generated.
  • the boundary signal generator pre-stores two or more candidate boundary signals and selects one of them as its current output boundary signal according to random rules.
  • the boundary signal of the working area to which the robot belongs is determined according to the matching result.
  • the boundary signal generator uses one of multiple boundary signals whose parameters are uniformly and randomly distributed as its current output boundary signal, and different boundary signals have different parameters.
  • the boundary signal generator 7 can generate a series of pulse signals with different parameters but conforming to certain rules.
  • FIGS. 3a-3c are schematic diagrams of three different types of boundary signals generated by the boundary signal generator 7.
  • the boundary signal generator 7 can actually generate 100 or more kinds of boundary signals.
  • the boundary signal generator 7 generates boundary signals with a series of parameters that are uniformly and randomly distributed, and the specific boundary signal generator 7 generates different series of signals by different pulse width i, pulse width b or pulse interval t.
  • the distance satisfies the relationship between the same signal information, the main body of the signal and the distance, and these series of parameter differences can be detected by the robot sensor 5 and identified by the controller 6.
  • the controller controls the boundary signal generator 7 to randomly select and fix one of the pulse signals to send out.
  • the robot initially works, place the robot away from The place in the adjacent work area to prevent interference by the boundary signal in the adjacent work area. If the robot detects the unique signal generated by the boundary signal generator 7 in the work area, it records and stores the unique signal parameters as the preset signal. , and then match the processing signal obtained during the working process of the robot with the pre-stored signal, and further determine the boundary signal of the working area to which the robot belongs according to the matching result.
  • the processed signals acquired at this time may contain signals from other adjacent working areas.
  • the boundary signal of the working area to which the robot belongs may be determined according to the signal strength of the magnetic field signal.
  • the processed signal with the strongest magnetic field signal strength can be used as the boundary signal of the region to which the robot belongs; when the magnetic field signal strengths corresponding to multiple detected boundary signals are approximately the same, it is further determined whether the robot is in the acquired state at this time.
  • the processing signal belongs to the working area to further determine the boundary signal of the area to which the robot belongs.
  • the technical solution of the embodiment of the present invention is to detect the magnetic field signal in the surrounding environment of the robot, obtain the corresponding processing signal according to the magnetic field signal, and then match the processing signal with the pre-stored signal, wherein the pre-stored signal and the robot are matched with the boundary used by the robot.
  • the boundary signals currently output by the signal generator are the same. If there are at least two processing signals that are the same as the pre-stored signals, the boundary signal of the working area of the robot is determined according to the signal strength of the magnetic field signal.
  • the acquired processed signal is matched with the pre-stored signal, and the boundary signal is identified in combination with the magnetic field signal strength corresponding to the processed signal, which improves the identification accuracy of the boundary signal.
  • FIG. 4 is a flowchart of a method for identifying a boundary signal provided in Embodiment 2 of the present invention.
  • the embodiment of the present invention further refines S140. Referring to FIG. 4 , the method specifically includes:
  • the detected magnetic field of the signal in its own work area is The signal strength is greater than the magnetic field signal strength of the detected adjacent boundary signals. Therefore, the signal with the highest magnetic field signal strength among the at least two processed signals may be used as the boundary signal in the working area to which the robot belongs.
  • This embodiment provides a specific method for detecting a boundary signal.
  • the processing signal with the strongest magnetic field signal strength is used as the boundary signal of the working area to which the robot belongs. It is realized that when the type of boundary signal generated by the adjacent work area is the same as the boundary signal of the work area to which the robot belongs, the boundary signal of the adjacent work area can be accurately distinguished, so as to avoid the robot from making a misjudgment and improve the accuracy of boundary signal recognition.
  • the method is simple and convenient, and the cost is low.
  • FIG. 5 includes the boundary signal generator 7 , the wire 8 and the work area 9 in the work area to which the robot belongs, as well as the boundary signal generator 7 ′, the wire 8 ′ and the work area 9 ′ and the adjacent work area.
  • the working area 10 of the close distance between the two working areas.
  • the sensor can not only detect the boundary signal of its own working area, but also receive signals within the boundary of other working areas, and the collected boundary signal of its own area and the magnetic field signal strength of the adjacent working area are roughly the same. If the boundary signal generated by the boundary signal generator in the work area to which the robot belongs is of the same type as the boundary signal generated by the boundary signal generator in the adjacent work area, the target boundary signal needs to be further combined with the position information of the robot.
  • determining the boundary signal of the work area to which the robot belongs according to the position information of the robot including: if the robot is located in the work area to which the acquired processing signal belongs, then the processing signal is used as the boundary of the work area to which the robot belongs. Signal.
  • the robot if the acquired magnetic field strengths corresponding to at least two processing signals matching the preset signals are approximately the same, and the robot is located in the working area to which the acquired processing signals belong, it indicates that the signals collected by the robot at this time are It is the boundary signal sent by the boundary signal generator matched with the robot, so the acquired processing signal is used as the boundary signal of the area described by the robot, and the acquired processing signal is recorded in the memory.
  • determining the boundary signal of the work area to which the robot belongs including: if the robot is located outside the work area to which the acquired processing signal belongs, generating alarm prompt information for prompting the user to re-detect the boundary signal.
  • the signal generated by the boundary signal generator within the boundary of the work area to which the robot belongs is different from the signal generated by the boundary signal generator within the boundary of the adjacent work area in some attributes.
  • the value of the processed signal at this time is positive; when the acquired processed signal is the boundary signal generator of the adjacent work area When the processing signal is generated, the value of the processing signal at this time is negative.
  • whether the acquired processed signal is a boundary signal of the work area to which the robot belongs is determined according to the difference in the positive and negative attributes of the processed signals generated by the above-mentioned different work areas.
  • the value of the acquired processing signal is negative, it indicates that the robot is located outside the boundary of the work area to which the acquired processing signal belongs, that is, at this time, what the robot detects is the occurrence of a boundary signal within the boundary of the adjacent work area.
  • the signal generated by the robot is not its own real boundary signal. At this time, the robot will generate corresponding alarm prompt information to prompt the user to re-detect and match the boundary signal.
  • the embodiment of the present invention further includes: if no boundary signal is collected during the working process of the robot, generating alarm prompt information for prompting the user to re-detect the boundary signal.
  • the boundary signal generator in the adjacent work area is exactly opposite to the signal sent by the boundary signal generator in the work area to which the robot belongs, when the robot detects these two signals at the same time, the two The signal will be superimposed and canceled as no signal, so that the sensor cannot detect the real boundary signal. In this case, a corresponding alarm message will be generated to prompt the user to re-detect and match the boundary signal.
  • an alarm prompt may be performed on a human-computer interaction interface or an application program by means of a sound prompt, lighting, or the like.
  • FIG. 7 is a schematic structural diagram of a robot kit provided in Embodiment 3 of the present invention.
  • the robot kit provided in this embodiment can execute a boundary signal identification method provided by the foregoing embodiment.
  • the robot kit 300 It includes a robot 310 and a boundary signal generator 320 matched with the robot 310 .
  • the boundary signal generator 320 uses one of multiple boundary signals whose parameters are uniformly and randomly distributed as its current output boundary signal, wherein different boundary signals have different parameters.
  • the boundary signal generator 320 pre-stores two or more alternative boundary signals and selects one of them as its current output boundary signal according to random rules.
  • the robot 310 includes:
  • the detection device 311 is used to detect the magnetic field signal in the surrounding environment of the robot;
  • a controller 312 configured to obtain a corresponding processing signal according to the magnetic field signal, and match the processing signal with a pre-stored signal, wherein the pre-stored signal is the same as the boundary signal currently output by the boundary signal generator, and If there are at least two processing signals that are the same as the pre-stored signals, the boundary signal of the working area to which the robot belongs is determined according to the signal strength of the magnetic field signal.
  • the boundary signal generator pre-stores two or more candidate boundary signals and selects one of them as its current output boundary signal according to random rules.
  • boundary signal generator uses one of multiple boundary signals whose parameters are uniformly and randomly distributed as its current output boundary signal.
  • controller 312 is specifically configured to: if the signal strengths of the magnetic field signals corresponding to the at least two processing signals that are the same as the pre-stored signals are different, the processing signal with the strongest magnetic field signal strength is used as the working area to which the robot belongs. the boundary signal;
  • the boundary signal of the working area to which the robot belongs is determined according to the position information of the robot.
  • the above-mentioned controller 312 is also specifically configured to: if the robot is located in the working area to which the detected magnetic field signal belongs, the processing signal corresponding to the detected magnetic field signal is used as the target boundary signal.
  • the above-mentioned controller 312 is also specifically configured to: if the robot is located outside the work area to which the detected magnetic field signal belongs, generate alarm prompt information for prompting the user to re-detect the boundary signal.
  • the robot kit provided by the embodiment of the present invention can execute the boundary signal identification method provided by any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method, which will not be described again.
  • FIG. 8 is a schematic structural diagram of a device according to Embodiment 4 of the present invention.
  • FIG. 8 shows a block diagram of an exemplary apparatus 12 suitable for use in implementing embodiments of the present invention.
  • the device 12 shown in FIG. 8 is only an example, and should not impose any limitation on the function and scope of use of the embodiments of the present invention.
  • device 12 takes the form of a general-purpose computing device.
  • Components of device 12 may include, but are not limited to, one or more processors or processing units 16, system memory 28, and a bus 18 connecting various system components including system memory 28 and processing unit 16.
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect ( PCI) bus.
  • Device 12 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by device 12, including both volatile and non-volatile media, removable and non-removable media.
  • System memory 28 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory 32 .
  • Device 12 may further include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 34 may be used to read and write to non-removable, non-volatile magnetic media (not shown in FIG. 8, commonly referred to as a "hard disk drive”).
  • a disk drive may be provided for reading and writing to removable non-volatile magnetic disks (eg "floppy disks"), as well as removable non-volatile optical disks (eg CD-ROM, DVD-ROM) or other optical media) to read and write optical drives.
  • each drive may be connected to bus 18 through one or more data media interfaces.
  • Memory 28 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present invention.
  • a program/utility 40 having a set (at least one) of program modules 42, which may be stored, for example, in memory 28, such program modules 42 including, but not limited to, an operating system, one or more application programs, other program modules, and program data , each or some combination of these examples may include an implementation of a network environment.
  • Program modules 42 generally perform the functions and/or methods of the described embodiments of the present invention.
  • Device 12 may also communicate with one or more external devices 14 (eg, keyboards, pointing devices, display 24, etc.), may also communicate with one or more devices that enable a user to interact with device 12, and/or communicate with Device 12 can communicate with any device (eg, network card, modem, etc.) that communicates with one or more other computing devices. Such communication may take place through input/output (I/O) interface 22 . Also, device 12 may also communicate with one or more networks, such as a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet, through network adapter 20. As shown, network adapter 20 communicates with other modules of device 12 via bus 18 . It should be understood that, although not shown, other hardware and/or software modules may be used in conjunction with device 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and Data backup storage system, etc.
  • I/O input/output
  • network adapter 20 communicates with other modules of
  • the processing unit 16 executes various functional applications and data processing by running the programs stored in the system memory 28, for example, to implement the boundary signal identification method provided by the embodiments of the present invention.
  • Embodiment 5 of the present invention further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, implements the method for identifying a boundary signal as described in any of the foregoing embodiments of the present invention, wherein, The method includes:
  • the boundary signal of the working area to which the robot belongs is determined according to the signal strength of the magnetic field signal.
  • the computer storage medium in the embodiments of the present invention may adopt any combination of one or more computer-readable mediums.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted using any suitable medium, including - but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out operations of the present invention may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, but also conventional Procedural programming language - such as "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)

Abstract

一种边界信号识别方法、机器人套件、设备和存储介质。其中,该方法包括:检测机器人周围环境中的磁场信号(S110);根据所述磁场信号获得对应的处理信号(S120);将所述处理信号与预存信号进行匹配,其中,所述预存信号与机器人配套使用的边界信号发生器当前输出的边界信号相同(S130);若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号(S140)。该方法通过将获取到的处理信号与预存信号进行匹配,并且结合处理信号对应的磁场信号强度来进行边界信号的识别,提高了边界信号的识别准确度。

Description

一种边界信号识别方法、机器人套件、设备和存储介质 技术领域
本发明实施例涉及数据处理技术领域,尤其涉及一种边界信号识别方法、机器人套件、设备和存储介质。
背景技术
为保证自动行走设备在预设的工作范围内工作,通常采用边界***对自动行走设备的行走路径进行控制。
现有技术中的边界***发送的预设的边界信号为脉冲信号,此种边界信号虽然在于识别容易,但存在边界***无法区分来自边界信号的脉冲信号与干扰的脉冲信号尤其是相邻的边界信号的问题,使得边界***在接收到干扰的脉冲信号时,误以为是边界信号而根据其携带的信息对自动行走设备的行走路径进行控制,使得边界***很容易受到干扰,而做出错误判断,降低了边界***的抗干扰能力。
发明内容
本发明提供一种边界信号识别方法、机器人套件、设备和存储介质,以提高边界信号识别的准确性。
第一方面,本发明实施例提供了一种边界信号识别方法,所述方法包括:
检测机器人周围环境中的磁场信号;
根据所述磁场信号获得对应的处理信号;
将所述处理信号与预存信号进行匹配,其中,所述预存信号与机器人配套使用的边界信号发生器当前输出的边界信号相同;
若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。
可选的,所述边界信号发生器预存两种以上备选边界信号并根据随机规则从中选择一种作为其当前输出的边界信号。
可选的,不同的所述边界信号具有不同的参数,所述边界信号发生器以参数呈均匀随机分布的多种边界信号中的一种作为其当前输出的边界信号。
可选的,若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号,包括:
若所述至少两个与所述预存信号相同的处理信号对应的磁场信号的信号强度不同,则将磁场信号强度最强的处理信号作为机器人所属工作区域的边界信号;
若所述至少两个与所述预存信号相同的处理信号对应的磁场信号的信号强度相同,则根据机器人的位置信息确定机器人所属工作区域的边界信号。
上述实施例中通过将采集到的处理信号与预存信号进行匹配,并结合处理信号的磁场信号强度来进行边界信号的识别,从而进一步提高了边界信号的识别准确度。
可选的,根据机器人的位置信息确定机器人所属工作区域的边界信号,包括:
根据机器人的位置信息确定机器人所属工作区域的边界信号,包括:
若机器人位于获取到的处理信号所属工作区域内,则将所述处理信号作为 机器人所属工作区域的边界信号。
可选的,根据机器人的位置信息确定机器人所属工作区域的边界信号,包括:
若机器人位于获取到的处理信号所属工作区域外,则生成报警提示信息,用于提示用户重新检测边界信号。
上述实施例在采集到多个与预存信号相同并且强度相同的边界信号时,进一步结合机器人自身的位置信息来进行边界信号的识别,提高了边界信号识别的准确性。
第二方面,本发明实施例还提供了机器人套件,包括机器人以及与所述机器人配套使用的边界信号发生器,所述边界信号发生器以参数呈均匀随机分布的多种边界信号中的一种作为其当前输出的边界信号,其中,不同的边界信号具有不同的参数;
所述机器人包括:
检测装置,用于采集机器人工作过程中的边界信号;
控制器,用于根据所述磁场信号获得对应的处理信号,以及将所述处理信号与预存信号进行匹配,其中,所述预存信号与所述边界信号发生器当前输出的边界信号相同,以及若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。
第三方面,本发明实施例还提供了一种机器人套件,包括机器人以及与所述机器人配套使用的边界信号发生器,所述边界信号发生器预存两种以上备选边界信号并根据随机规则从中选择一种作为其当前输出的边界信号;
所述机器人包括:
检测装置,用于检测机器人周围环境中的磁场信号;
控制器,用于根据所述磁场信号获得对应的处理信号,以及将所述处理信号与预存信号进行匹配,其中,所述预存信号与所述边界信号发生器当前输出的边界信号相同,以及若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。
第四方面,本发明实施例还提供了一种设备,所述设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本发明实施例中任一所述的边界信号识别方法。
第五方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本发明实施例中任一所述的边界信号识别方法。
本发明通过检测机器人周围环境中的磁场信号,并根据磁场信号获得对应的处理信号,进而将处理信号与预存信号进行匹配,其中,所述预存信号与机器人配套使用的边界信号发生器当前输出的边界信号相同,若存在至少两个与预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所述工作区域的边界信号,本发明实施例的技术方案,通过将采集到的处理信号与预存信号进行匹配,并且结合处理信号对应的磁场信号强度来进行边界信号的识别,提高了边界信号的识别准确度。
附图说明
图1为本发明实施例一提供的一种边界信号识别方法的流程图;
图2为本发明实施例一提供的一种机器人工作***的示意图;
图3a-3c为边界信号发生器产生的三种不同类型的边界信号示意图;
图4为本发明实施例二提供的一种边界信号识别方法的流程图;
图5为本发明实施例二提供的一种机器人工作在相邻工作区域范围内的示意图;
图6为本发明实施例二提供的另一种边界信号识别方法的流程图;
图7为本发明实施例三提供的一种边界信号识别装置的结构示意图;
图8为本发明实施例四提供的一种设备的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
图1为本发明实施例一提供的一种边界信号识别方法的流程图,本实施例可适用于机器人工作过程中进行边界信号识别的情况,该方法可以由边界信号识别装置来执行,该装置可以由软件和/或硬件的方式实现,该装置可以集成在机器人设备中。
参见图1,具体包括如下步骤:
S110、检测机器人周围环境中的磁场信号。
其中,机器人为可以自动行走的智能设备,例如割草机、吸尘器或者工业 机器人等,该类智能设备在正常工作的过程中通过边界***对机器人的行走路径进行控制。
示例性的,参见图2,图2为本发明实施例一提供的一种机器人工作***的示意图,其中,该***包括机器人本体1、设置在机器人本体上的两个主动轮2和3、万向轮4、传感器5、控制器6、充电及边界信号发生器7以及导线8和草坪9。
其中,主动轮2和3可分别由两个电机驱动,示例性的,主动轮2和3可以由带减速箱以及带霍尔传感器的无刷电机驱动,通过控制两个轮的速度、方向便可以实现准直线向前、转弯及准直线后退等行驶动作,也可以用来记录运行距离和转弯角度。作为另一种可选的实施方式,也可以用加速度传感器以及陀螺仪等来记录和优化运行距离和转弯角度。进一步的,万向轮4对机器人本体1起到支撑平衡的作用;传感器5的数量为1个或者多个,用于探测电子边界磁场信号;控制器6带有数据存储器如带电可擦可编程只读存储器(Electrically Erasable Programmable read only memory,EEPROM)、固态存储器Flash或SD存储卡等,用于根据检测到的边界信号控制机器人的运动路径;充电及边界信号发生器7,用于为机器人提供电源以便机器人进行自动充电,还用于产生编码脉冲信号沿连接充电站的导线8内传输,从而在导线两侧产生交变磁场,在机器人工作的过程中,通过传感器5来持续采集机器人周围环境中的边界信号发生器产生的磁场信号。其中,导线8围住工作区域9四周及工作区域内的假山、喷泉等障碍物。此外,该***还包括其它通用机构如割草机构和倾倒、离地和碰撞传感器等(图中未示出)。
S120、根据所述磁场信号获得对应的处理信号。
本实施例中,在传感器采集到机器人周围环境中的磁场信号之后,进一步可以通过设置在机器人上的信号处理单元对该磁场信号进行处理,从而获得磁场信号对应的处理信号。具体的,该处理信号可以为具有一定参数信息的信号,其中参数信息可以包括脉冲宽度、脉冲间距以及脉冲频率等,不同的磁场信号经过处理之后会生成具有上述参数信息的处理信号。
S130、将所述处理信号与预存信号进行匹配,其中,所述预存信号与机器人配套使用的边界信号发生器当前输出的边界信号相同。
可选的,所述边界信号发生器预存两种以上备选边界信号并根据随机规则从中选择一种作为其当前输出的边界信号。机器人在工作过程中,通过将获取到的处理信号与上述预存信号进行匹配,根据匹配结果确定机器人所属工作区域的边界信号。
可选的,所述边界信号发生器以参数呈均匀随机分布的多种边界信号中的一种作为其当前输出的边界信号,并且不同的所述边界信号具有不同的参数。
具体的,边界信号发生器7可以产生参数不同但符合一定规则的系列脉冲信号,示例性的,图3a-3c为边界信号发生器7产生的三种不同类型的边界信号示意图,图示中为边界信号发生器7产生的三种边界信号的示例,边界信号发生器7实际可以产生100种乃至更多种边界信号。边界信号发生器7产生呈均匀随机分布的系列参数的边界信号,具体的边界信号发生器7通过脉冲宽度i、脉冲宽度b或者脉冲间距t的不同来产生不同的系列信号,上述脉冲宽度和脉冲间距满足相同的信号信息与信号主体以及间距之间的关系式,且这些系列参数差异能被机器人传感器5检测并被控制器6识别,产生的系列信号越多抗 干扰能力越强。本实施例中边界信号发生器7在第一次上电时,控制器控制边界信号发生器7随机选择并固定其中一种脉冲信号向外发射,在机器人初始工作的时候,将机器人放置到远离相邻工作区域的的地方,以防止被相邻工作区域中的边界信号干扰,机器人若检测到所属工作区域的边界信号发生器7产生的唯一信号,记录并存储该唯一信号参数作为预设信号,进而将机器人工作过程中获取到的处理信号与预存信号进行匹配,根据匹配结果进一步的确定机器人所属工作区域的边界信号。
S140、若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。
具体的,本实施例中,将获取的处理信号与预存信号进行匹配后,若存在至少两个与预存信号相同的处理信号,则表明此时获取的处理信号可能包含有其他相邻工作区域的边界信号,可以进一步根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。示例性的,可以将磁场信号强度最强的处理信号作为机器人所属区域的边界信号;当多个检测到的边界信号对应的磁场信号强度大致相同时,则进一步判断此时机器人是否在获取到的处理信号所属工作区域内,来进一步判断机器人所属区域的边界信号。
本发明实施例的技术方案,通过检测机器人周围环境中的磁场信号,并根据磁场信号获得对应的处理信号,进而将处理信号与预存信号进行匹配,其中,所述预存信号与机器人配套使用的边界信号发生器当前输出的边界信号相同,若存在至少两个与预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所述工作区域的边界信号,本发明实施例的技术方案,通过将获取的处理信号与预存信号进行匹配,并且结合处理信号对应的磁场信号强度来进行 边界信号的识别,提高了边界信号的识别准确度。
实施例二
图4为本发明实施例二提供的一种边界信号识别方法的流程图,本发明实施例在上述实施例的基础上,对S140进行进一步细化,参见图4,该方法具体包括:
S210、检测机器人周围环境中的磁场信号。
S220、根据所述磁场信号获得对应的处理信号。
S230、将所述处理信号与预存信号进行匹配,其中,所述预存信号与机器人配套使用的边界信号发生器当前输出的边界信号相同。
S240、若所述至少两个与所述预存信号相同的处理信号对应的磁场信号的信号强度不同,则将磁场信号强度最强的处理信号作为机器人所属工作区域的边界信号。
本实施中,当采集到至少两个与预设信号匹配的处理信号时,且上述处理信号对应的磁场信号强度不同,机器人在所属工作区域进行工作时,检测到的自身工作区域的信号的磁场信号强度要大于检测到的相邻边界信号的磁场信号强度,因此,可以将上述至少两个处理信号中磁场信号强度最大的信号作为机器人所属工作区域内的边界信号。
本实施例提供了一种边界信号的具体检测方法,当至少两个与预存信号类型相同的处理信号的磁场信号强度不同,将磁场信号强度最强的处理信号作为机器人所属工作区域的边界信号,实现了当相邻工作区域所产生的边界信号类型与机器人所属工作区域的边界信号相同时,能够准确的区分相邻工区区域的边界信号,以避免机器人作出误判,提高了边界信号识别的准确性,方法简单 方便,成本低。
S250、若所述至少两个与所述预存信号相同的处理信号对应的磁场信号的信号强度相同,则根据机器人的位置信息确定机器人所属工作区域的边界信号。
本实施例中,机器人在工作的过程中,有时候会处于两个相邻的工作区域的边界区域里。具体参见图5,图5中包括机器人所属工作区域中的边界信号发生器7、导线8以及工作区域9,以及相邻工作区域的边界信号发生器7’、导线8’以及工作区域9’和两个工作区域的相近距离工作区域10。当机器人处于虚线框中的区域10时。此时传感器既能够检测到自身所属工作区域的边界信号,也会接收到别的工作区域的边界内信号,且采集到的自身所属区域的边界信号以及相邻工作区域的磁场信号强度大致相同,若机器人所属工作区域内的边界信号发生器所产生的边界信号与相邻工作区域的边界信号发生器所产生的边界信号类型相同,则需要进一步的结合机器人的位置信息来确定目标边界信号。
进一步参见图6,具体的,根据机器人的位置信息确定机器人所属工作区域的边界信号,包括:若机器人位于获取到的处理信号所属工作区域内,则将所述处理信号作为机器人所属工作区域的边界信号。
本实施例中,若获取到与预设信号相匹配的至少两个处理信号对应的磁场强度大致相同,并且此时机器人位于获取到的处理信号所属工作区域内,表明机器人此时采集到的信号为与机器人配套的边界信号发生器发出的边界信号,因此将获取到的处理信号作为机器人所述区域的边界信号,并将获取到的处理信号记录入存储器中。
可选的,根据机器人的位置信息确定机器人所属工作区域的边界信号,包 括:若机器人位于获取到的处理信号所属工作区域外,则生成报警提示信息,用于提示用户重新检测边界信号。本实施例中,机器人所属工作区边界内的边界信号发生器产生的信号与相邻工作区域边界内边界信号发生器产生的信号某些属性上存在不同。示例性的,当获取到的处理信号为机器人所属工作区域的边界信号发生器产生的信号时,此时的处理信号值为正;当获取到的处理信号为相邻工作区域的边界信号发生器所产生的处理信号时,此时的处理信号值为负。本实施例中,根据上述不同工作区域所产生的处理信号的正负属性的不同来判断获取的处理信号是否是机器人所属工作区域的边界信号。示例性的,当获取到的处理信号值为负时,表明机器人此时位于获取到的处理信号所属工作区域的边界外,即此时机器人检测到的是相邻工作区域边界内的边界信号发生器所产生的信号,并不是自身真正的边界信号,此时机器人会对应的生成报警提示信息,以提示用户重新进行边界信号的检测和匹配。
进一步参见图6,在上述实施例的基础上,本发明实施例还包括:若未采集到机器人工作过程中的边界信号,则生成报警提示信息,用于提示用户重新检测边界信号。
具体的,如果相邻工作区域的边界信号发生器发出的信号与机器人所属工作区域中的边界信号发生器所发出的信号正好是相反的,机器人在同时检测到这两个信号时,这两个信号会进行叠加抵消为无信号,从而导致传感器检测不到真实的边界信号,在该情况下,则会对应的生成报警提示信息,以提示用户重新进行边界信号的检测和匹配。
本实施例中,可以通过声音提示、亮灯等方式在人机交互界面或者应用程序上进行报警提示。
实施例三
图7为本发明实施例三提供的一种机器人套件的结构示意图,本实施例提供的一种机器人套件可以执行上述实施例所提供的一种边界信号识别方法,参见图7,该机器人套件300包括包括机器人310以及与所述机器人310配套使用的边界信号发生器320。
作为一种可选的实施方式,所述边界信号发生器320以参数呈均匀随机分布的多种边界信号中的一种作为其当前输出的边界信号,其中,不同的边界信号具有不同的参数。
作为另一种可选的实施方式,所述边界信号发生器320预存两种以上备选边界信号并根据随机规则从中选择一种作为其当前输出的边界信号。
所述机器人310包括:
检测装置311,用于检测机器人周围环境中的磁场信号;
控制器312,用于根据所述磁场信号获得对应的处理信号,以及将所述处理信号与预存信号进行匹配,其中,所述预存信号与所述边界信号发生器当前输出的边界信号相同,以及若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。
其中,所述边界信号发生器预存两种以上备选边界信号并根据随机规则从中选择一种作为其当前输出的边界信号。
可选的,不同的所述边界信号具有不同的参数,所述边界信号发生器以参数呈均匀随机分布的多种边界信号中的一种作为其当前输出的边界信号。
进一步的,上述控制器312具体用于:若所述至少两个与所述预存信号相同的处理信号对应的磁场信号的信号强度不同,则将磁场信号强度最强的处理 信号作为机器人所属工作区域的边界信号;
若所述至少两个与所述预存信号相同的处理信号对应的磁场信号的信号强度相同,则根据机器人的位置信息确定机器人所属工作区域的边界信号。
上述控制器312还具体用于:若机器人位于所检测到的磁场信号所属工作区域内,则将所检测到的磁场信号对应的处理信号作为目标边界信号。
上述控制器312还具体用于:若机器人位于所检测到的磁场信号所属工作区域外,则生成报警提示信息,用于提示用户重新检测边界信号。
本发明实施例所提供的机器人套件可执行本发明任意实施例所提供的边界信号识别方法,具备执行方法相应的功能模块和有益效果,不再进行赘述。
实施例四
图8为本发明实施例四提供的一种设备的结构示意图。图8示出了适于用来实现本发明实施方式的示例性设备12的框图。图8显示的设备12仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图8所示,设备12以通用计算设备的形式表现。设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,***存储器28,连接不同***组件(包括***存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,***总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及***组件互连(PCI)总线。
设备12典型地包括多种计算机***可读介质。这些介质可以是任何能够被 设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
***存储器28可以包括易失性存储器形式的计算机***可读介质,例如随机存取存储器(RAM)30和/或高速缓存存储器32。设备12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机***存储介质。仅作为举例,存储***34可以用于读写不可移动的、非易失性磁介质(图8未显示,通常称为“硬盘驱动器”)。尽管图8中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括但不限于操作***、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本发明所描述的实施例中的功能和/或方法。
设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与一个或者多个使得用户能与该设备12交互的设备通信,和/或与使得该设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,设备12还可以通过网络适配器20与一个或者多个网络(例如局 域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与设备12的其它模块通信。应当明白,尽管图中未示出,可以结合设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID***、磁带驱动器以及数据备份存储***等。
处理单元16通过运行存储在***存储器28中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的边界信号识别方法。
实施例五
本发明实施例五还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本发明上述实施例中任一所述的边界信号识别方法,其中,所述方法包括:
检测机器人周围环境中的磁场信号;
根据所述磁场信号获得对应的处理信号;
将所述处理信号与预存信号进行匹配,其中,所述预存信号与机器人配套使用的边界信号发生器当前输出的边界信号相同;
若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、 便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如”C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (9)

  1. 一种边界信号识别方法,其特征在于,所述方法包括:
    检测机器人周围环境中的磁场信号;
    根据所述磁场信号获得对应的处理信号;
    将所述处理信号与预存信号进行匹配,其中,所述预存信号与机器人配套使用的边界信号发生器当前输出的边界信号相同;
    若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。
  2. 根据权利要求1所述的方法,其特征在于,所述边界信号发生器预存两种以上备选边界信号并根据随机规则从中选择一种作为其当前输出的边界信号。
  3. 根据权利要求1所述的方法,其特征在于,不同的所述边界信号具有不同的参数,所述边界信号发生器以参数呈均匀随机分布的多种边界信号中的一种作为其当前输出的边界信号。
  4. 根据权利要求1所述的方法,其特征在于,若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号,包括:
    若所述至少两个与所述预存信号相同的处理信号对应的磁场信号的信号强度不同,则将磁场信号强度最强的处理信号作为机器人所属工作区域的边界信号;
    若所述至少两个与所述预存信号相同的处理信号对应的磁场信号的信号强度相同,则根据机器人的位置信息确定机器人所属工作区域的边界信号。
  5. 根据权利要求4所述的方法,其特征在于,根据机器人的位置信息确定 机器人所属工作区域的边界信号,包括:
    若机器人位于获取到的处理信号所属工作区域内,则将所述处理信号作为机器人所属工作区域的边界信号。6、根据权利要求4所述的方法,其特征在于,根据机器人的位置信息确定机器人所属工作区域的边界信号,包括:
    若机器人位于获取到的处理信号所属工作区域外,则生成报警提示信息,用于提示用户重新检测边界信号。
  6. 一种机器人套件,包括机器人以及与所述机器人配套使用的边界信号发生器,其特征在于,
    所述边界信号发生器以参数呈均匀随机分布的多种边界信号中的一种作为其当前输出的边界信号,其中,不同的边界信号具有不同的参数;
    所述机器人包括:
    检测装置,用于检测机器人周围环境中的磁场信号;
    控制器,用于根据所述磁场信号获得对应的处理信号,以及将所述处理信号与预存信号进行匹配,其中,所述预存信号与所述边界信号发生器当前输出的边界信号相同,以及若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。
  7. 一种机器人套件,包括机器人以及与所述机器人配套使用的边界信号发生器,其特征在于,
    所述边界信号发生器预存两种以上备选边界信号并根据随机规则从中选择一种作为其当前输出的边界信号;
    所述机器人包括:
    检测装置,用于检测机器人周围环境中的磁场信号;
    控制器,用于根据所述磁场信号获得对应的处理信号,以及将所述处理信号与预存信号进行匹配,其中,所述预存信号与所述边界信号发生器当前输出的边界信号相同,以及若存在至少两个与所述预存信号相同的处理信号,则根据磁场信号的信号强度来确定机器人所属工作区域的边界信号。
  8. 一种设备,其特征在于,所述设备包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-6中任一所述的边界信号识别方法。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-6中任一所述的边界信号识别方法。
PCT/CN2020/123212 2020-07-13 2020-10-23 一种边界信号识别方法、机器人套件、设备和存储介质 WO2022011875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010669666.1A CN111860271A (zh) 2020-07-13 2020-07-13 一种边界信号识别方法、机器人套件、设备和存储介质
CN202010669666.1 2020-07-13

Publications (1)

Publication Number Publication Date
WO2022011875A1 true WO2022011875A1 (zh) 2022-01-20

Family

ID=72983970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123212 WO2022011875A1 (zh) 2020-07-13 2020-10-23 一种边界信号识别方法、机器人套件、设备和存储介质

Country Status (2)

Country Link
CN (1) CN111860271A (zh)
WO (1) WO2022011875A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805574B (zh) * 2020-06-01 2023-08-18 上海山科机器人有限公司 识别边界信号的方法和自主作业设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197672A (zh) * 2012-01-05 2013-07-10 苏州宝时得电动工具有限公司 边界信号识别方法及其边界***
CN103543745A (zh) * 2012-07-16 2014-01-29 苏州宝时得电动工具有限公司 导引***及其控制方法
CN103809592A (zh) * 2012-11-09 2014-05-21 苏州宝时得电动工具有限公司 自动工作***及其控制方法
WO2016096279A1 (de) * 2014-12-16 2016-06-23 Robert Bosch Gmbh Verfahren zum erkennen eines arbeitsbereichs eines autonomen arbeitsgeräts sowie ein arbeitsgerät
WO2018182478A1 (en) * 2017-03-28 2018-10-04 Husqvarna Ab Improved perimeter marking for a robotic working tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197672A (zh) * 2012-01-05 2013-07-10 苏州宝时得电动工具有限公司 边界信号识别方法及其边界***
CN103543745A (zh) * 2012-07-16 2014-01-29 苏州宝时得电动工具有限公司 导引***及其控制方法
CN103809592A (zh) * 2012-11-09 2014-05-21 苏州宝时得电动工具有限公司 自动工作***及其控制方法
WO2016096279A1 (de) * 2014-12-16 2016-06-23 Robert Bosch Gmbh Verfahren zum erkennen eines arbeitsbereichs eines autonomen arbeitsgeräts sowie ein arbeitsgerät
WO2018182478A1 (en) * 2017-03-28 2018-10-04 Husqvarna Ab Improved perimeter marking for a robotic working tool

Also Published As

Publication number Publication date
CN111860271A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
EP3650884A2 (en) Method and apparatus for determining relative pose, device and medium
CN109682368B (zh) 机器人及地图构建方法、定位方法、电子设备、存储介质
EP4140381A1 (en) Obstacle avoidance method and apparatus for self-walking robot, robot, and storage medium
EP3108787B1 (en) Robot cleaner equipped with information providing system and associated method for providing information
EP4191358A2 (en) System for spot cleaning by a mobile robot
US9974422B2 (en) Robot cleaner and method for controlling a robot cleaner
US20060259212A1 (en) Mobile robot having obstacle avoidance function and method therefor
TW201824794A (zh) 自行移動式機器人之操作方法
CN110136704B (zh) 机器人语音控制方法、装置、机器人和介质
KR102559985B1 (ko) 자율 이동 디바이스 및 도킹 스테이션
CN110051289A (zh) 机器人语音控制方法、装置、机器人和介质
CN109645892A (zh) 一种障碍物的识别方法及清洁机器人
JP2019109872A (ja) 人工知能に基づくロボット、及びその制御方法
US20110295636A1 (en) Autonomous machine selective consultation
CN111685662A (zh) 一种清扫方法、装置、扫地机器人及存储介质
WO2022011875A1 (zh) 一种边界信号识别方法、机器人套件、设备和存储介质
TWI759760B (zh) 清掃機器人及其控制方法
CN112015178A (zh) 一种控制方法、装置、设备及存储介质
CN108733059A (zh) 一种导览方法及机器人
CN112806912A (zh) 机器人的清洁控制方法、装置及机器人
US20190206211A1 (en) Moving devices and controlling methods, remote controlling systems and computer products thereof
WO2024140195A1 (zh) 基于线激光的自行走设备避障方法及装置、设备和介质
WO2024131138A1 (zh) 智能设备及其控制方法和装置、计算机程序产品
CN110517523A (zh) 停车位置记录方法、装置及存储介质
CN111308994B (zh) 机器人控制方法以及机器人***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945340

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20945340

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.09.2023)