WO2022011508A1 - Systems and methods for pressure measurement - Google Patents

Systems and methods for pressure measurement Download PDF

Info

Publication number
WO2022011508A1
WO2022011508A1 PCT/CN2020/101682 CN2020101682W WO2022011508A1 WO 2022011508 A1 WO2022011508 A1 WO 2022011508A1 CN 2020101682 W CN2020101682 W CN 2020101682W WO 2022011508 A1 WO2022011508 A1 WO 2022011508A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fluorescence
data
sensing component
component
Prior art date
Application number
PCT/CN2020/101682
Other languages
French (fr)
Inventor
Shuhe HU
Haiyan Li
Ran Liu
Dong YAO
Tian CUI
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to PCT/CN2020/101682 priority Critical patent/WO2022011508A1/en
Priority to CN202080001240.7A priority patent/CN112088295B/en
Publication of WO2022011508A1 publication Critical patent/WO2022011508A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Definitions

  • the present disclosure generally relates to pressure measurement, and in particular, to systems and methods for pressure measurement based on a fluorescent material containing a derivative of 6-acyl-2-naphthylamine.
  • pressure measurement technology is crucial in various fields, such as aerospace, automotive industries, displaying and imaging, material maintenance, etc.
  • pressure measurement technology based on fluorescent materials is a popular research area. Therefore, it is crucial to provide and/or design systems and methods for pressure measurement based on a fluorescent material with relatively good sensitivity and relatively wide pressure response range.
  • a system for pressure measurement may be provided.
  • the system may include a sensing component, a light source, a fluorescence processing component, and a pressure measurement component.
  • the sensing component may be configured to receive a pressure to be measured.
  • the sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine.
  • the light source may be configured to emit a laser to the sensing component.
  • the fluorescence processing component may be configured to determine fluorescence data associated with a fluorescence generated by the sensing component in response to the laser.
  • the pressure measurement component may be configured to determine pressure data associated with the pressure to be measured based on the fluorescence data.
  • the pressure data associated with the pressure to be measured may include a value of the pressure and/or a value range of the pressure.
  • the fluorescence data may include at least one of a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, and/or a color of the fluorescence.
  • the pressure measurement component may be configured to determine the pressure data based on the color of the fluorescence.
  • the pressure measurement component may be configured to determine the pressure data based on the peak wavelength according to a relationship between pressure data and peak wavelength.
  • the relationship between pressure data and peak wavelength may be determined by: applying a plurality of reference pressures to a reference sensing component; for each of the plurality of reference pressures, emitting a laser to the reference sensing component by a reference light source; and determining reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser; and determining the relationship between pressure data and peak wavelength based on the reference fluorescence data and the plurality of reference pressures. At least part of the reference sensing component may be the same as the sensing component.
  • the reference fluorescence data may correspond to the reference pressure.
  • the reference fluorescence data may include a reference peak wavelength of a reference fluorescence spectrum under the reference pressure.
  • the plurality of reference pressures may be determined based on a calibration object.
  • the plurality of reference pressures may be applied to the reference sensing component by a pressure device.
  • the plurality of reference pressures may range from 0 GPa to 30 GPa.
  • the relationship between pressure data and peak wavelength may be a linear relationship.
  • a sensitivity of the fluorescent material may range from 7 (nm ⁇ GPa -1 ) to 8 (nm ⁇ GPa -1 ) .
  • the derivative of 6-acyl-2-naphthylamine may include at least one of 6-lauroyl-2- (dimethylamino) naphthalene (laurdan) , 6-lauroyl-2- (methylamino) naphthalene (M-laurdan) , 6-lauroyl-2- [N-methyl-N- (methoxycarbonyl) amino] naphthalene (MoC-laurdan) , 6-lauroyl-2- [N-methyl-N- (carboxymethyl) amino] naphthalene (C-laurdan) , 6-formyl-2- (dimethylamino) naphthalene, 6-acetyl-2- (dimethylamino) naphthalene, and/or 6-propionyl-2- (dimethylamino) naphthalene.
  • laurdan 6-lauroyl-2- (dimethylamino) naphthalene
  • a method for pressure measurement may be provided.
  • the method may include causing a sensing component to receive a pressure to be measured.
  • the sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine.
  • the method may also include causing a light source to emit a laser to the sensing component; obtaining, from a fluorescence processing component, fluorescence data associated with a fluorescence generated by the sensing component in response to the laser; and determining pressure data associated with the pressure to be measured based on the fluorescence data.
  • the pressure data associated with the pressure to be measured may include a value of the pressure and/or a value range of the pressure.
  • the fluorescence data may include at least one of a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, and/or a color of the fluorescence.
  • the determining the pressure data associated with the pressure to be measured based on the fluorescence data may include determining the pressure data based on the color of the fluorescence.
  • the determining the pressure data associated with the pressure to be measured based on the fluorescence data may include determining the pressure data based on the peak wavelength according to a relationship between pressure data and peak wavelength.
  • the relationship between pressure data and peak wavelength may be determined by: applying a plurality of reference pressures to a reference sensing component; for each of the plurality of reference pressures, emitting a laser to the reference sensing component by a reference light source; and determining reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser; and determining the relationship between pressure data and peak wavelength based on the reference fluorescence data and the plurality of reference pressures.
  • at least part of the reference sensing component may be the same as the sensing component.
  • the reference fluorescence data may correspond to the reference pressure.
  • the reference fluorescence data may include a reference peak wavelength of a reference fluorescence spectrum under the reference pressure.
  • the plurality of reference pressures may range from 0 GPa to 30 GPa.
  • the relationship between pressure data and peak wavelength may be a linear relationship.
  • a sensitivity of the fluorescent material may range from 7 (nm ⁇ GPa -1 ) to 8 (nm ⁇ GPa -1 ) .
  • the derivative of 6-acyl-2-naphthylamine may include at least one of 6-lauroyl-2- (dimethylamino) naphthalene (laurdan) , 6-lauroyl-2- (methylamino) naphthalene (M-laurdan) , 6-lauroyl-2- [N-methyl-N- (methoxycarbonyl) amino] naphthalene (MoC-laurdan) , 6-lauroyl-2- [N-methyl-N- (carboxymethyl) amino] naphthalene (C-laurdan) , 6-formyl-2- (dimethylamino) naphthalene, 6-acetyl-2- (dimethylamino) naphthalene, and/or 6-propionyl-2- (dimethylamino) naphthalene.
  • laurdan 6-lauroyl-2- (dimethylamino) naphthalene
  • the method may include receiving, by a sensing component, a pressure to be measured; emitting, by a light source, a laser to the sensing component; determining, by a fluorescence processing component, fluorescence data associated with a fluorescence generated by the sensing component in response to the laser; and determining, by a pressure measurement component, pressure data associated with the pressure to be measured based on the fluorescence data.
  • the sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine.
  • FIG. 1 is a schematic diagram illustrating an exemplary pressure measurement system according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device according to some embodiments of the present disclosure
  • FIG. 3 is a block diagram illustrating an exemplary pressure measurement component according to some embodiments of the present disclosure
  • FIG. 4 is a flowchart illustrating an exemplary process for pressure measurement according to some embodiments of the present disclosure
  • FIG. 5 is a flowchart illustrating an exemplary process for determining a relationship between pressure data and peak wavelength according to some embodiments of the present disclosure
  • FIG. 6 illustrates exemplary formulas of fluorescent materials according to some embodiments of the present disclosure
  • FIG. 7 is a schematic diagram illustrating exemplary reference fluorescence spectra of a reference sensing component under a plurality of reference pressures according to some embodiments of the present disclosure
  • FIG. 8 is a schematic diagram illustrating exemplary absorption spectra of a reference sensing component under a plurality of reference pressures according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating an exemplary relationship between pressure data and peak wavelength according to some embodiments of the present disclosure.
  • system, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, sections or assemblies of different levels in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
  • the modules (or units, blocks) described in the present disclosure may be implemented as software and/or hardware modules and may be stored in any type of non-transitory computer-readable medium or other storage devices.
  • a software module may be compiled and linked into an executable program. It will be appreciated that software modules can be callable from other modules or from themselves, and/or can be invoked in response to detected events or interrupts.
  • Software modules configured for execution on computing devices can be provided on a computer-readable medium, such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that requires installation, decompression, or decryption prior to execution) .
  • Such software code can be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device.
  • Software instructions can be embedded in a firmware, such as an EPROM.
  • hardware modules e.g., circuits
  • circuits can be included of connected or coupled logic units, such as gates and flip-flops, and/or can be included of programmable units, such as programmable gate arrays or processors.
  • the modules or computing device functionality described herein are preferably implemented as hardware modules, but can be software modules as well. In general, the modules described herein refer to logical modules that can be combined with other modules or divided into units despite their physical organization or storage.
  • the flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments of the present disclosure. It is to be expressly understood, the operations of the flowcharts may be implemented not in order. Conversely, the operations may be implemented in inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
  • the systems may implement the pressure measurement based on a fluorescence response of a fluorescent material under a pressure in response to a laser.
  • the systems may include a sensing component, a light source, a fluorescence processing component, and a pressure measurement component.
  • the sensing component may be configured to receive a pressure to be measured.
  • the sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine.
  • the light source may be configured to emit a laser to the sensing component.
  • the fluorescence processing component may be configured to determine fluorescence data associated with a fluorescence generated by the sensing component under the pressure to be measured in response to the laser.
  • the fluorescence data may include a peak wavelength of a fluorescence spectrum of the fluorescence, a color of the fluorescence, etc.
  • the pressure measurement component may be configured to determine pressure data (e.g., a value or a value range of the pressure to be measured) associated with the pressure to be measured based on the fluorescence data.
  • the pressure measurement component may determine the pressure data according to a relationship (e.g., a linear relationship) between pressure data and peak wavelength.
  • a fluorescent material containing a derivative of 6-acyl-2-naphthylamine is used in pressure measurement with a higher pressure measurement sensitivity (e.g., 7 (nm ⁇ GPa -1 ) to 8 (nm ⁇ GPa -1 ) ) and an improved pressure measurement range (e.g., 0-30 Gpa) .
  • the fluorescent material may include laurdan with a pressure measurement sensitivity of 7.742 nm ⁇ GPa -1 and a pressure measurement range from 0 GPa to 22.79 GPa.
  • FIG. 1 is a schematic diagram illustrating an exemplary pressure measurement system according to some embodiments of the present disclosure.
  • the pressure measurement system 100 may be applied in various scenarios, for example, aerospace, automotive industry, displaying and imaging, material maintenance, etc.
  • the pressure measurement system 100 may include a sensing component 110, a light source 120, a fluorescence processing component 130, a pressure measurement component 140, and a storage device 150.
  • the sensing component 110 may be configured to receive a pressure to be measured and/or receive a laser emitted by the light source 120.
  • the pressure to be measured may include a pressure applied to the sensing component 110.
  • the pressure may refer to a force or a force per unit area (i.e., pressure intensity) applied to the sensing component 110.
  • the sensing component 110 may include a fluorescent material which can generate a fluorescence (also referred to as a “fluorescence response” ) in response to the laser received from the light source 120.
  • the fluorescent material may contain a derivative of 6-acyl-2-naphthylamine, for example, formula (1) illustrated in FIG. 6, wherein R 1 , R 2 , and R 3 may refer to discretionary substituent groups.
  • R 1 may include an alkyl group, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, etc.
  • the butyl group may include an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, etc.
  • the pentyl group may include an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an active pentyl group, etc.
  • R 2 or R 3 may include an alkyl group, a hydroxyl group, a carbonyl group, an aldehyde group, a haloformyl group, a carbonate ester group, a carboxyl group, a carboalkoxy group, a methoxy group, a hydroperoxy group, a peroxy group, an ether group, or the like, or any combination thereof.
  • the derivative of 6-acyl-2-naphthylamine may include 6-lauroyl-2- (dimethylamino) naphthalene (i.e., laurdan (e.g., formula (3) illustrated in FIG. 6) ) , 6-lauroyl-2- (methylamino) naphthalene (i.e., M-laurdan (e.g., formula (4) illustrated in FIG. 6) ) , 6-lauroyl-2- [N-methyl-N- (methoxycarbonyl) amino] naphthalene (i.e., MoC-laurdan (e.g., formula (5) illustrated in FIG.
  • 6-lauroyl-2- (dimethylamino) naphthalene i.e., laurdan (e.g., formula (3) illustrated in FIG. 6)
  • 6-lauroyl-2- (methylamino) naphthalene i.e., M-laurdan (e.g.,
  • 6-propionyl-2- (dimethylamino) naphthalene 6-butyryl-2- (dimethylamino) naphthalene, 6-valeryl-2- (dimethylamino) naphthalene, 6-caproyl-2- (dimethylamino) naphthalene, 6-heptanoyl-2- (dimethylamino) naphthalene, 6-octanoyl-2- (dimethylamino) naphthalene, 6-nonanoyl-2- (dimethylamino) naphthalene, 6-decanoyl-2- (dimethylamino) naphthalene, 6-undecanoyl-2- (dimethylamino) naphthalene, 6-lauroyl-2- (dimethylamino) naphthalene, etc.
  • the fluorescent material may also include one or more substances (of which transmittance to laser should be relatively good (e.g., a transmittance larger than 90%) ) doped with the derivative of 6-acyl-2-naphthylamine.
  • exemplary substances may include a polymer, a metallic substance, a ceramic substance, a semiconductor substance, or the like, or any combination thereof.
  • the polymer may include polyethylene, polypropylene, polystyrene, polyvinyl chloride, synthetic rubber, phenol formaldehyde resin, epoxy resin, neoprene, nylon, polyacrylonitrile, etc.
  • the metallic substance may include silver, copper, gold, iron, tin, tantalum, platinum, palladium, zinc, cobalt, etc.
  • the ceramic substance may include barium titanate, boron oxide, magnesium diboride, silicon carbide, zinc oxide, zirconium dioxide, uranium oxide, titanium carbide, etc.
  • the semiconductor substance may include silicon, germanium, gray tin, silicon carbide, boron nitride, aluminum nitride, gallium phosphide, indium arsenide, cadmium sulfide, zinc oxide, copper sulfide, etc.
  • the sensitivity (also referred to as a “pressure sensitivity” ) of the fluorescent material may satisfy a preset condition.
  • the sensitivity of the fluorescent material may indicate the easiness of a material’s fluorescence change induced by an applied pressure.
  • the higher the sensitivity is, the more obvious the change (e.g., a peak wavelength of a fluorescence spectrum) of the fluorescence generated by the fluorescent material among different fluorescent materials under a same pressure may be.
  • the sensitivity of the fluorescent material may range from 7 (nm ⁇ GPa -1 ) to 8 (nm ⁇ GPa -1 ) .
  • the sensitivity of the fluorescent material may range from 7.1 (nm ⁇ GPa -1 ) to 7.9 (nm ⁇ GPa -1 ) .
  • the sensitivity of the fluorescent material may range from 7.2 (nm ⁇ GPa -1 ) to 7.8 (nm ⁇ GPa -1 ) .
  • the sensitivity of the fluorescent material may range from 7.3 (nm ⁇ GPa -1 ) to 7.7 (nm ⁇ GPa -1 ) .
  • the sensitivity of the fluorescent material may be from 7.4 (nm ⁇ GPa -1 ) to 7.6 (nm ⁇ GPa -1 ) .
  • a pressure response range of the fluorescent material may satisfy a preset condition.
  • the pressure response range may refer to a pressure range that the fluorescent material can withstand and within which the fluorescent material can generate a corresponding fluorescence.
  • the pressure response range of the fluorescent material may range from 0 GPa to 30 GPa.
  • the fluorescent material may include laurdan with a pressure measurement sensitivity of 7.742 nm ⁇ GPa -1 and a pressure measurement range from 0 GPa to 22.79 GPa.
  • the sensing component 110 may include a sensor.
  • the sensor may include a sensor matrix and a plurality of particles (e.g., quantum dots) containing the fluorescent material.
  • the plurality of particles may be embedded in the sensor matrix, for example, in a homogenous manner.
  • the plurality of particles may be directly dispersed in the sensor matrix.
  • the plurality of particles may be dispersed in a transparent component and then the transparent component may be dispersed in the sensor matrix, thus the plurality of particles may be protected from chemical deterioration.
  • the sensor matrix may be made of a material (e.g., a polymer (e.g., epoxy) ) with a good transmittance (e.g., larger than 90%) to laser.
  • the shape of the sensor may include a prism, a cube, a cylinder, a pyramid, a cone, a disk, a sphere, or the like, or any combination thereof.
  • the light source 120 may be configured to emit a laser to the sensing component 110.
  • the light source 120 may include a laser diode, a light-emitting diode (LED) , a filament, an arc lamp, a flash tube, etc.
  • one or more properties e.g., a pulse length, a frequency, a power, a wavelength
  • the light source 120 may be any source that can excite the fluorescence response of the fluorescent material, for example, an electron beam, a neutron beam, an ion beam, etc.
  • the fluorescence processing component 130 may be configured to determine fluorescence data associated with the fluorescence generated by the sensing component 110 in response to the laser emitted by the light source 120.
  • the fluorescence data may include a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, a color of the fluorescence, or the like, or any combination thereof.
  • the fluorescence processing component 130 may include a gated photosensitive device (e.g., a photomultiplier tube, an avalanche photodiode, a silicon photodiode, an intensified charge-coupled device (ICCD) ) , a spectrometer (e.g., a wide-spectrum spectrometer) , an optical bandpass detector, a digital microscope camera, a charge-coupled detector, etc.
  • a gated photosensitive device e.g., a photomultiplier tube, an avalanche photodiode, a silicon photodiode, an intensified charge-coupled device (ICCD)
  • ICCD intensified charge-coupled device
  • a spectrometer e.g., a wide-spectrum spectrometer
  • an optical bandpass detector e.g., a digital microscope camera, a charge-coupled detector, etc.
  • the pressure measurement component 140 may be configured to determine pressure data (e.g., a value of the pressure, a value range of the pressure) associated with the pressure received by the sensing component 110 based on the fluorescence data.
  • pressure data e.g., a value of the pressure, a value range of the pressure
  • the fluorescence generated by the fluorescent material included in the sensing component 110 may be associated with the pressure received by the sensing component 110.
  • the pressure may be applied to the sensing component 110, then the sensing component 110 under pressure may receive the laser emitted by the light source 120 and generate a fluorescence (which is different from a fluorescence generated by the sensing component 110 without pressure) .
  • the pressure measurement component 140 may determine the pressure data associated with the pressure based on the fluorescence data.
  • the peak wavelength of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure measurement component 140 may determine the pressure data based on the peak wavelength of the fluorescence according to a relationship between pressure data and peak wavelength. In some embodiments, the relationship between pressure data and peak wavelength may be a linear relationship. In some embodiments, the pressure measurement component 140 may access the relationship between pressure data and peak wavelength from the storage device 150 or an external device (e.g., an external database) . In some embodiments, the relationship between pressure data and peak wavelength may be pre-determined based on sample data (e.g., experimental data) .
  • the relationship between pressure data and peak wavelength may be pre-determined based on a plurality of reference pressures applied to a reference sensing component and reference fluorescence data corresponding thereto.
  • the relationship between pressure data and peak wavelength may be pre-determined by the pressure measurement component 140 or a device (e.g., an experimental device, a research device) independent from the pressure measurement component 140. More descriptions of the relationship between pressure data and peak wavelength may be found elsewhere in the present disclosure (e.g., FIG. 5, FIGs. 7-9, and the descriptions thereof) .
  • the color of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure measurement component 140 may determine the pressure data based on the color of the fluorescence. For example, if the color of the fluorescence is blue or dark blue, the range of the pressure may be from 1 atm to 4.14 GPa. As another example, if the color of the fluorescence is green, the range of the pressure may be from 6.09 GPa to 11.18 GPa. As a further example, if the color of the fluorescence is yellow, the range of the pressure may be from 12.03 GPa to 16.06 GPa. As a further example, if the color of the fluorescence is orange-red, the range of the pressure may be from 18.38 GPa to 22.79 GPa.
  • different regions of the sensing component 110 may receive different pressures at the same time. Accordingly, the light source 120 may emit laser to the regions and the fluorescence processing component 130 may determine fluorescence data corresponding to the different regions. Further, the pressure measurement component 140 may determine pressure data corresponding to the different regions. For example, the pressure measurement component 140 may determine individual pressure data corresponding to each of the different regions, average pressure data corresponding to the different regions, etc. In some embodiments, the sensing component 110 may receive different pressures at different time points. Accordingly, the pressure measurement component 140 may determine individual pressure data corresponding to each of the different time points, average pressure data corresponding to the different time points, etc.
  • the pressure measurement component 140 may be implemented via a single server or a server group.
  • the server group may be centralized or distributed (e.g., the pressure measurement component 140 may be a distributed system) .
  • the pressure measurement component 140 may include one or more processing engines (e.g., single-core processing engine (s) or multi-core processor (s) ) .
  • the pressure measurement component 140 may include a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , an application-specific instruction-set processor (ASIP) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a controller, a microcontroller unit, a reduced instruction-set computer (RISC) , a microprocessor, or the like, or any combination thereof.
  • the pressure measurement component 140 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
  • the pressure measurement component 140 may be implemented on a computing device 200 including one or more components illustrated in FIG. 2 of the present disclosure.
  • the storage device 150 may store data and/or instructions.
  • the storage device 150 may store data obtained from the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140, an external storage device, etc.
  • the storage device 150 may store a relationship between pressure data and peak wavelength.
  • the storage device 150 may store fluorescence data associated with a fluorescence generated by the sensing component 110 under a pressure in response to a laser.
  • the storage device 150 may store data and/or instructions that the pressure measurement component 140 may execute or use to perform exemplary methods described in the present disclosure.
  • the storage device 150 may store instructions that the pressure measurement component 140 may execute or use to determine pressure data associated with a pressure to be measured based on fluorescence data.
  • the storage device 150 may include a mass storage, a removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof.
  • Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc.
  • Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc.
  • Exemplary volatile read-and-write memory may include a random access memory (RAM) .
  • Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc.
  • Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically-erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc.
  • the storage device 150 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
  • the pressure measurement system 100 may also include a network (not shown) .
  • the network may facilitate exchange of information and/or data.
  • one or more components e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140, the storage device 150
  • the pressure measurement component 140 may obtain a relationship between pressure data and peak wavelength from the storage device 150 via the network.
  • the fluorescence processing component 130 may transmit fluorescence data to the pressure measurement component 140 via the network.
  • the network may be any type of wired or wireless network, or combination thereof.
  • the network may include a cable network, a wireline network, an optical fiber network, a telecommunications network, an intranet, an Internet, a local area network (LAN) , a wide area network (WAN) , a wireless local area network (WLAN) , a metropolitan area network (MAN) , a wide area network (WAN) , a public telephone switched network (PSTN) , a Bluetooth network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof.
  • the network may include one or more network access points.
  • the network may include wired or wireless network access points, through which one or more components of the pressure measurement system 100 may be connected to the network to exchange data and/or information.
  • the pressure measurement component 140 may be local or remote. In some embodiments, the pressure measurement component 140 may be connected to the network to communicate with one or more components (e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the storage device 150) of the pressure measurement system 100. For example, the pressure measurement component 140 may access information and/or data stored in the sensing component 110, the light source 120, the fluorescence processing component 130, and/or the storage device 150 via the network. As another example, the pressure measurement component 140 may transmit instructions to the light source 120 via the network to cause the light source 120 to emit a laser.
  • the sensing component 110 the light source 120, the fluorescence processing component 130, the storage device 150
  • the pressure measurement component 140 may be directly connected to or communicate with one or more components (e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the storage device 150) of the pressure measurement system 100.
  • the pressure measurement component 140 may be directly connected to the sensing component 110, the light source 120, the fluorescence processing component 130, and/or the storage device 150 to access stored information and/or data.
  • the storage device 150 may be connected to the network to communicate with one or more components (e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140) of the pressure measurement system 100.
  • One or more components of the pressure measurement system 100 may access the data or instructions stored in the storage device 150 via the network.
  • the storage device 150 may be directly connected to or communicate with one or more components (the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140) of the pressure measurement system 100.
  • the storage device 150 may be part of the pressure measurement component 140.
  • the storage device 150 may be integrated into the pressure measurement component 140.
  • the pressure measurement system 100 may also include one or more terminal devices (not shown) .
  • the terminal device (s) may be configured to receive information and/or data from the components (e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140, and/or the storage device 150) of the pressure measurement system 100 and/or transmit information and/or data to the components via the network.
  • the terminal device (s) may receive information (e.g., the fluorescence data, the pressure data) from the pressure measurement component 140 via the network.
  • the terminal device (s) may provide a user interface via which a user may view information and/or input data and/or instructions to the pressure measurement system 100.
  • a user may view the information (e.g., the fluorescence data, the pressure data) via the user interface.
  • a user may input an instruction via the user interface and then the terminal device may transmit the instruction to the light source 120 or the pressure measurement component 140 via the network.
  • the instruction may include an instruction for emitting a laser to the sensing component 110, an instruction for setting or modifying a parameter associated with pressure measurement, etc.
  • the terminal device may include a display that can display information in a human-readable form, such as text, image, audio, video, graph, animation, or the like, or any combination thereof.
  • the display of the terminal device (s) may include a cathode ray tube (CRT) display, a liquid crystal display (LCD) , a light-emitting diode (LED) display, a plasma display panel (PDP) , a three dimensional (3D) display, or the like, or a combination thereof.
  • the pressure measurement component 140 may be integrated into the terminal device (s) .
  • the terminal device may include a mobile device, a tablet computer, a laptop computer, or the like, or any combination thereof.
  • the mobile device may include a smart home device, a wearable device, a smart mobile device, a virtual reality device, an augmented reality device, or the like, or any combination thereof.
  • the smart home device may include a smart lighting device, a control device of an intelligent electrical apparatus, a smart monitoring device, a smart television, a smart video camera, an interphone, or the like, or any combination thereof.
  • the wearable device may include a smart bracelet, a smart footgear, a smart glass, a smart helmet, a smartwatch, smart clothing, a smart backpack, a smart accessory, or the like, or any combination thereof.
  • the smart mobile device may include a smartphone, a personal digital assistant (PDA) , a gaming device, a navigation device, a point of sale (POS) device, or the like, or any combination thereof.
  • PDA personal digital assistant
  • POS point of sale
  • the virtual reality device and/or the augmented reality device may include a virtual reality helmet, a virtual reality glass, a virtual reality patch, an augmented reality helmet, an augmented reality glass, an augmented reality patch, or the like, or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include a Google TM Glass, an Oculus Rift, a HoloLens, a Gear VR, etc.
  • pressure measurement system 100 is merely provided for the purposes of illustration, and is not intended to limit the scope of the present disclosure.
  • multiple variations or modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
  • the components of the pressure measurement system 100 may be connected with each other in any suitable way.
  • the light source 120 may be connected to the pressure measurement component 140 directly or through the network
  • the fluorescence processing component 130 may be connected to the pressure measurement component 140 directly or through the network
  • the storage device 150 may be connected to the pressure measurement component 140 directly or through the network, etc.
  • the sensing component 110 may be placed between a first medium (e.g., a material, a product) and a second medium (e.g., a material, a product) such that the pressure applied to the sensing component 110 may be substantially the same as a pressure (e.g., an internal force, a binding force) between the first medium and the second medium.
  • a pressure e.g., an internal force, a binding force
  • the pressure measurement component 140 can determine pressure data (e.g., a value, a value range) associated with the pressure between the first medium and the second medium.
  • the pressure measurement component 140 also can evaluate properties (e.g., aging information, deterioration, inside bond stability) of a material (e.g., a composite material) or a product associated with the first medium and the second medium. For example, the pressure measurement component 140 may compare the pressure data with initial pressure data associated with an initial pressure between the first medium and the second medium when the material or the product is formed, if the pressure data remains substantially the same as the initial pressure data, it may indicate that the bond between the first medium and the second medium is stable; if a difference between the pressure data and the initial pressure data is greater than a threshold (e.g., 10%, 20%of the initial pressure data) , it may indicate that the bond between the first medium and the second medium tends to become unstable, which may indicate the aging of the material or product or the deterioration of the material or product.
  • a threshold e.g. 10%, 20%of the initial pressure data
  • FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device according to some embodiments of the present disclosure.
  • the pressure measurement component 140 may be implemented on the computing device 200, for example, via its hardware, software program, firmware, or a combination thereof. Although only one such computer is shown, for convenience, the computer functions relating to pressure measurement as described herein may be implemented in a distributed fashion on a number of similar platforms to distribute the processing load.
  • the computing device 200 may include COM ports 250 connected to and from a network connected thereto to facilitate data communications.
  • the computing device 200 may also include a processor (e.g., a processor 220) , in the form of one or more processors (e.g., logic circuits) , for executing program instructions.
  • the processor 220 may include interface circuits and processing circuits therein.
  • the interface circuits may be configured to receive electronic signals from a bus 210, wherein the electronic signals encode structured data and/or instructions for the processing circuits to process.
  • the processing circuits may conduct logic calculations, and then determine a conclusion, a result, and/or an instruction encoded as electronic signals. Then the interface circuits may send out the electronic signals from the processing circuits via the bus 210.
  • the computing device 200 may further include one or more storages configured to store various data files (e.g., program instructions) to be processed and/or transmitted by the computing device 200.
  • the one or more storages may include a high speed random access memory (not shown) , a non-volatile memory (e.g., a magnetic storage device, a flash memory, or other non-volatile solid state memories) (not shown) , a disk 270, a read-only memory (ROM) 230, or a random-access memory (RAM) 240, or the like, or any combination thereof.
  • the one or more storages may further include a remote storage corresponding to the processor 220. The remote storage may connect to the computing device 200 via the network.
  • the computing device 200 may also include program instructions stored in the one or more storages (e.g., the ROM 230, RAM 240, and/or another type of non-transitory storage medium) to be executed by the processor 220.
  • the methods and/or processes of the present disclosure may be implemented as the program instructions.
  • the computing device 200 may also include an I/O component 260, supporting input/output between the computing device 200 and other components.
  • the computing device 200 may also receive programming and data via network communications.
  • processors 220 are also contemplated; thus, operations and/or method steps performed by one processor 220 as described in the present disclosure may also be jointly or separately performed by the multiple processors.
  • the processor 220 of the computing device 200 executes both operation A and operation B, it should be understood that operation A and operation B may also be performed by two different processors 220 jointly or separately in the computing device 200 (e.g., a first processor executes operation A and a second processor executes operation B, or the first and second processors jointly execute operations A and B) .
  • FIG. 3 is a block diagram illustrating an exemplary pressure measurement component according to some embodiments of the present disclosure.
  • the pressure measurement component 300 may be an example of the pressure measurement component 140 illustrated in FIG. 1.
  • the pressure measurement component 300 may include a laser emitting module 310, a pressure receiving module 320, a fluorescence data determination module 330, and a pressure determination module 340.
  • the laser emitting module 310 may be configured to cause a light source (e.g., the light source 120) to emit a laser to a sensing component (e.g., the sensing component 110) .
  • the laser emitting module 310 may adjust one or more properties (e.g., a pulse length, a frequency, a power, a wavelength) of the laser according to practical demands, for example, one or more properties of the fluorescent material, a power requirement, etc.
  • the pressure receiving module 320 may be configured to cause the sensing component to receive a pressure to be measured.
  • the pressure may refer to a force or a force per unit area (i.e., pressure intensity) applied to the sensing component.
  • the sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine (e.g., formula (1) illustrated in FIG. 6) .
  • the fluorescent material may include laurdan with a pressure measurement sensitivity of 7.742 nm ⁇ GPa -1 and a pressure measurement range from 0 GPa to 22.79 GPa.
  • the fluorescence data determination module 330 may be configured to obtain, from a fluorescence processing component (e.g., the fluorescence processing component 130) , fluorescence data associated with a fluorescence generated by the sensing component in response to the laser.
  • the fluorescence data may include a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, a color of the fluorescence, or the like, or any combination thereof. More descriptions regarding the fluorescence data may be found elsewhere in the present disclosure (e.g., FIG. 1 and the description thereof) .
  • the pressure determination module 340 may be configured to determine pressure data (e.g., a value of the pressure, a value range of the pressure) associated with the pressure to be measured based on the fluorescence data.
  • the peak wavelength of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure determination module 340 may determine the pressure data based on the peak wavelength of the fluorescence according to a relationship between pressure data and peak wavelength.
  • the relationship between pressure data and peak wavelength may be a linear relationship.
  • the relationship between pressure data and peak wavelength may be pre-determined based on a plurality of reference pressures applied to a reference sensing component and reference fluorescence data corresponding thereto. More descriptions of the relationship between pressure data and peak wavelength may be found elsewhere in the present disclosure (e.g., FIGs. 7-9 and the descriptions thereof) .
  • the color of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure determination module 340 may determine the pressure data based on the color of the fluorescence. For example, if the color of the fluorescence is blue or dark blue, the range of the pressure may be from 1 atm to 4.14 GPa. As another example, if the color of the fluorescence is green, the range of the pressure may be from 6.09 GPa to 11.18 GPa. As a further example, if the color of the fluorescence is yellow, the range of the pressure may be from 12.03 GPa to 16.06 GPa. As a further example, if the color of the fluorescence is orange-red, the range of the pressure may be from 18.38 GPa to 22.79 GPa.
  • the pressure determination module 340 may also be configured to determine the relationship between pressure data and peak wavelength based on the plurality of reference pressures applied to the reference sensing component and the reference fluorescence data corresponding thereto.
  • the pressure determination module 340 may cause a pressure device (e.g., a diamond anvil cell, a copper crusher, a pressure sensor) to apply the plurality of reference pressures to the reference sensing component.
  • a pressure device e.g., a diamond anvil cell, a copper crusher, a pressure sensor
  • the pressure determination module 340 may cause a reference light source to emit a laser to the reference sensing component.
  • the reference light source may be similar to or the same as the light source 120 illustrated in FIG. 1.
  • the pressure determination module 340 may also determine the reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser.
  • the pressure determination module 340 may determine the relationship based on the plurality of reference pressures and corresponding reference peak wavelengths according to a fitting approach (e.g., a linear fitting approach) .
  • a calibration object e.g., ruby
  • a known relationship between pressure data and peak wavelength may be used to determine or calibrate the plurality of reference pressures.
  • the modules in the pressure measurement component 300 may be connected to or communicated with each other via a wired connection or a wireless connection.
  • the wired connection may include a metal cable, an optical cable, a hybrid cable, or the like, or any combination thereof.
  • the wireless connection may include a Local Area Network (LAN) , a Wide Area Network (WAN) , a Bluetooth, a ZigBee, a Near Field Communication (NFC) , or the like, or any combination thereof.
  • LAN Local Area Network
  • WAN Wide Area Network
  • Bluetooth a ZigBee
  • NFC Near Field Communication
  • the pressure receiving module 320 and the pressure determination module 340 may be combined as a single module which may both cause the sensing component to receive the pressure to be measured and determine pressure data associated with the pressure to be measured.
  • the pressure measurement component 300 may include a storage module (not shown) which may be used to store data generated by the above-mentioned modules.
  • FIG. 4 is a flowchart illustrating an exemplary process for pressure measurement according to some embodiments of the present disclosure.
  • the process 400 may be implemented as a set of instructions (e.g., an application) stored in the storage ROM 230 or RAM 240.
  • the processor 220 and/or the modules in FIG. 3 may execute the set of instructions, and when executing the instructions, the processor 220 and/or the modules may be configured to perform the process 400.
  • the operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 400 may be accomplished with one or more additional operations not described and/or without one or more of the operations herein discussed. Additionally, the order in which the operations of the process as illustrated in FIG. 4 and described below is not intended to be limiting.
  • the pressure measurement component 300 may cause a sensing component (e.g., the sensing component 110) to receive a pressure to be measured.
  • the pressure may refer to a force or a force per unit area (i.e., pressure intensity) applied to the sensing component.
  • the sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine (e.g., formula (1) illustrated in FIG. 6) .
  • the fluorescent material may include laurdan with a pressure measurement sensitivity of 7.742 nm ⁇ GPa -1 and a pressure measurement range from 0 GPa to 22.79 GPa.
  • the pressure measurement component 300 (e.g., the laser emitting module 310) (e.g., the processing circuits of the processor 220) may cause a light source (e.g., the light source 120) to emit a laser to the sensing component.
  • the pressure measurement component 300 may adjust one or more properties (e.g., a pulse length, a frequency, a power, a wavelength) of the laser according to practical demands, for example, one or more properties of the fluorescent material, a power requirement, etc.
  • the pressure measurement component 300 may obtain, from a fluorescence processing component (e.g., the fluorescence processing component 130) , fluorescence data associated with a fluorescence generated by the sensing component in response to the laser.
  • a fluorescence processing component e.g., the fluorescence processing component 130
  • the fluorescence data may include a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, a color of the fluorescence, or the like, or any combination thereof. More descriptions regarding the fluorescence data may be found elsewhere in the present disclosure (e.g., FIG. 1 and the description thereof) .
  • the pressure measurement component 300 e.g., the pressure determination module 340
  • the processing circuits of the processor 220 may determine pressure data (e.g., a value of the pressure, a value range of the pressure) associated with the pressure to be measured based on the fluorescence data.
  • the peak wavelength of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure measurement component 300 may determine the pressure data based on the peak wavelength of the fluorescence according to a relationship between pressure data and peak wavelength. In some embodiments, the relationship between pressure data and peak wavelength may be a linear relationship. In some embodiments, the relationship between pressure data and peak wavelength may be pre-determined based on a plurality of reference pressures applied to a reference sensing component and reference fluorescence data corresponding thereto. More descriptions of the relationship between pressure data and peak wavelength may be found elsewhere in the present disclosure (e.g., FIGs. 7-9 and the descriptions thereof) .
  • the color of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure measurement component 300 may determine the pressure data based on the color of the fluorescence. For example, if the color of the fluorescence is blue or dark blue, the range of the pressure may be from 1 atm to 4.14 GPa. As another example, if the color of the fluorescence is green, the range of the pressure may be from 6.09 GPa to 11.18 GPa. As a further example, if the color of the fluorescence is yellow, the range of the pressure may be from 12.03 GPa to 16.06 GPa. As a further example, if the color of the fluorescence is orange-red, the range of the pressure may be from 18.38 GPa to 22.79 GPa.
  • a pressure measurement process executed by the pressure measurement component 300 is described above (i.e., the pressure measurement component 300 is used as a central control component) , in actual practice, the pressure measurement process can be executed by separate components, for example, the pressure measurement process may include operations: receiving, by a sensing component, a pressure to be measured, emitting, by a light source, a laser to the sensing component, determining, by a fluorescence processing component, fluorescence data associated with a fluorescence generated by the sensing component in response to the laser, and determining, by a pressure measurement component, pressure data associated with the pressure to be measured based on the fluorescence data.
  • FIG. 5 is a flowchart illustrating an exemplary process for determining a relationship between pressure data and peak wavelength according to some embodiments of the present disclosure.
  • the process 500 may be implemented as a set of instructions (e.g., an application) stored in the storage ROM 230 or RAM 240.
  • the processor 220 and/or the modules in FIG. 3 may execute the set of instructions, and when executing the instructions, the processor 220 and/or the modules may be configured to perform the process 500.
  • the operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 500 may be accomplished with one or more additional operations not described and/or without one or more of the operations herein discussed. Additionally, the order in which the operations of the process as illustrated in FIG. 5 and described below is not intended to be limiting.
  • the pressure measurement component 300 (e.g., the pressure determination module 340) (e.g., the processing circuits of the processor 220) may cause a pressure device (e.g., a diamond anvil cell, a pressure sensor, a copper crusher) to apply a plurality of reference pressures to a reference sensing component.
  • a pressure device e.g., a diamond anvil cell, a pressure sensor, a copper crusher
  • the plurality of reference pressures may satisfy a preset condition.
  • the plurality of reference pressures may range from 0 GPa to 30 GPa.
  • the plurality of reference pressures may range from 0 GPa to 29 GPa.
  • the plurality of reference pressures may range from 0 GPa to 28 GPa.
  • the plurality of reference pressures may range from 0 GPa to 27 GPa.
  • the plurality of reference pressures may range from 0 GPa to 26 GPa.
  • the plurality of reference pressures may range from 0 GPa to 25 GPa.
  • the plurality of reference pressures may range from 0 GPa to 24 GPa. As still a further example, the plurality of reference pressures may range from 0 GPa to 23 GPa. As still a further example, the plurality of reference pressures may range from 0 GPa to 22 GPa.
  • the reference sensing component may be similar to the sensing component 110 illustrated in FIG. 1.
  • both the reference sensing component and the sensing component 110 may include the same fluorescent material.
  • features (e.g., size, shape, thickness) of the reference sensing component may be the same as those of the sensing component 110.
  • the reference sensing component may be totally the same as the sensing component 110.
  • the pressure measurement component 300 e.g., the pressure determination module 340
  • the processing circuits of the processor 220 may cause a reference light source to emit a laser to the reference sensing component.
  • the reference light source may be similar to or the same as the light source 120 illustrated in FIG. 1.
  • the pressure measurement component 300 e.g., the pressure determination module 340
  • the processing circuits of the processor 220 may determine reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser.
  • the reference fluorescence data may include a reference fluorescence spectrum of the reference fluorescence, a reference peak wavelength of the reference fluorescence spectrum, a reference color of the reference fluorescence, or the like, or any combination thereof.
  • the reference fluorescence spectrum may be expressed as a curve (e.g., a curve illustrated in FIG.
  • x-axis representing reference wavelength and y-axis representing normalized reference emission intensity.
  • a reference absorption spectrum corresponding to the reference fluorescence spectrum also can be expressed as a curve (e.g., a curve illustrated in FIG. 8) x-axis representing reference wavelength and y-axis representing absorbance. More descriptions of the fluorescence spectrum and the absorption spectrum can be found elsewhere in the present disclosure (e.g., FIGs. 7-9 and the descriptions thereof) .
  • the pressure measurement component 300 e.g., the pressure determination module 340
  • the processing circuits of the processor 220 may determine a relationship between pressure data and peak wavelength based on the reference fluorescence data and the plurality of reference pressures.
  • the plurality of reference pressures may be predetermined or predefined.
  • the pressure measurement component 300 may determine the relationship based on the plurality of reference pressures and corresponding reference peak wavelengths according to a fitting approach (e.g., a linear fitting approach) .
  • a calibration object e.g., ruby
  • the plurality of reference pressures may be applied to both the calibration object and the reference sensing component. Then the laser may be emitted to both the calibration object and the reference sensing component and fluorescence data of both the calibration object and the reference sensing component may be obtained.
  • the plurality of reference pressures can be determined based on the fluorescence data of the calibration object and the known “relationship between pressure data and peak wavelength. ” Accordingly, for the reference sensing component, the relationship between pressure data and peak wavelength can be further determined based on the plurality of reference pressures and reference peak wavelengths of the reference sensing component.
  • FIG. 7 is a schematic diagram illustrating exemplary reference fluorescence spectra of a reference sensing component under a plurality of reference pressures according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating absorption spectra of the reference sensing component under the plurality of reference pressures according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating an exemplary relationship between pressure data and peak wavelength according to some embodiments of the present disclosure.
  • a plurality of reference pressures may be applied to the reference sensing component and a relationship between pressure data and peak wavelength may be obtained.
  • a diamond anvil cell (DAC) with an anvil surface of 500 ⁇ m in diameter was used as a pressure device.
  • a center region of a T301 steel plate was prepressed by the DAC and then the thickness of the prepressed steel plate became 46 ⁇ m.
  • a hole with a diameter of 170 ⁇ m was drilled in the center region of the steel plate by a laser and used as a sample chamber (also referred to as an “experimental chamber” ) .
  • a calibration object e.g., a fluorescent material containing ruby, hereafter referred to as “ruby” for brevity
  • the reference sensing component e.g., a bulk material of crystalline laurdan, hereafter referred to as “laurdan” for brevity
  • a laser with a wavelength of 360 nm was emitted to the calibration object and the reference sensing component.
  • a first fluorescence was generated by the reference sensing component and a second fluorescence was generated by the calibration object.
  • fluorescence data e.g., a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, an absorption spectrum associated with the fluorescence, a color of the fluorescence
  • values of the plurality of reference pressures can be determined. Accordingly, as illustrated in FIG. 7 and FIG. 8, fluorescence data of the reference sensing component under each of the plurality of reference pressures can be determined.
  • the relationship between pressure data and peak wavelength may be determined based on the values of plurality of reference pressures and reference peak wavelengths (the experimental data are shown in Table 1 below) according to a fitting approach.
  • the relationship between pressure data and peak wavelength may be determined according to a linear fitting approach:
  • refers to peak wavelength with a unit of nm and P refers to pressure with a unit of GPa.
  • the sensitivity of the reference sensing component e.g., laurdan
  • refers to peak wavelength with a unit of nm
  • P refers to pressure with a unit of GPa.
  • the sensitivity of the reference sensing component is 7.742 (nm ⁇ GPa -1 ) , which is relatively good and can meet pressure measurement requirements under various application scenarios.
  • an absorbance spectrum may correspondingly characterize the transition from the ground state to the high-energy excited state and represent energy absorption at different wavelengths
  • the fluorescence spectrum may correspondingly characterize the transition from the high-energy excited state to the ground state and represent emission intensity at different wavelengths.
  • each of the absorption spectra has an absorption edge which indicates the minimum energy required for electrons to be excited and transit from the ground state to the excited state at a corresponding wavelength. Accordingly, a relationship between pressure data and wavelengths of the absorption edges can also be obtained, which is also a linear relationship and suggests that the linear relationship between pressure data and peak wavelength is reasonable.
  • aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer-readable media having computer-readable program code embodied thereon.
  • a computer-readable signal medium may include a propagated data signal with computer-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof.
  • a computer-readable signal medium may be any computer-readable medium that is not a computer- readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer-readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB, NET, Python or the like, conventional procedural programming languages, such as the "C" programming language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
  • LAN local area network
  • WAN wide area network
  • SaaS Software as a Service

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

A pressure measurement system (100) includes a sensing component (110), a light source (120), a fluorescence processing component (130), and a pressure measurement component (140). The sensing component(110) is configured to receive a pressure to be measured. The sensing component (110) includes a fluorescent material containing a derivative of 6-acyl-2-naphthylamine. The light source (120) is configured to emit a laser to the sensing component(110). The fluorescence processing component(130) is configured to determine fluorescence data associated with a fluorescence generated by the sensing component(110) in response to the laser. The pressure measurement component(140) is configured to determine pressure data associated with the pressure to be measured based on the fluorescence data. The pressure measurement system(100) has a high sensitivity and can work under various conditions.

Description

SYSTEMS AND METHODS FOR PRESSURE MEASUREMENT TECHNICAL FIELD
The present disclosure generally relates to pressure measurement, and in particular, to systems and methods for pressure measurement based on a fluorescent material containing a derivative of 6-acyl-2-naphthylamine.
BACKGROUND
With the development of science technology and industrial technology, pressure measurement technology is crucial in various fields, such as aerospace, automotive industries, displaying and imaging, material maintenance, etc. Currently, pressure measurement technology based on fluorescent materials is a popular research area. Therefore, it is crucial to provide and/or design systems and methods for pressure measurement based on a fluorescent material with relatively good sensitivity and relatively wide pressure response range.
SUMMARY
In one aspect of the present disclosure, a system for pressure measurement may be provided. The system may include a sensing component, a light source, a fluorescence processing component, and a pressure measurement component. The sensing component may be configured to receive a pressure to be measured. The sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine. The light source may be configured to emit a laser to the sensing component. The fluorescence processing component may be configured to determine fluorescence data associated with a fluorescence generated by the sensing component in response to the laser. The pressure measurement component may be configured to determine pressure data associated with the pressure to be measured based on the fluorescence data.
In some embodiments, the pressure data associated with the pressure to be  measured may include a value of the pressure and/or a value range of the pressure.
In some embodiments, the fluorescence data may include at least one of a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, and/or a color of the fluorescence.
In some embodiments, to determine the pressure data associated with the pressure to be measured based on the fluorescence data, the pressure measurement component may be configured to determine the pressure data based on the color of the fluorescence.
In some embodiments, to determine the pressure data associated with the pressure to be measured based on the fluorescence data, the pressure measurement component may be configured to determine the pressure data based on the peak wavelength according to a relationship between pressure data and peak wavelength.
In some embodiments, the relationship between pressure data and peak wavelength may be determined by: applying a plurality of reference pressures to a reference sensing component; for each of the plurality of reference pressures, emitting a laser to the reference sensing component by a reference light source; and determining reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser; and determining the relationship between pressure data and peak wavelength based on the reference fluorescence data and the plurality of reference pressures. At least part of the reference sensing component may be the same as the sensing component. The reference fluorescence data may correspond to the reference pressure. The reference fluorescence data may include a reference peak wavelength of a reference fluorescence spectrum under the reference pressure.
In some embodiments, the plurality of reference pressures may be determined based on a calibration object.
In some embodiments, the plurality of reference pressures may be applied to the reference sensing component by a pressure device.
In some embodiments, the plurality of reference pressures may range from 0 GPa  to 30 GPa.
In some embodiments, the relationship between pressure data and peak wavelength may be a linear relationship.
In some embodiments, a sensitivity of the fluorescent material may range from 7 (nm×GPa -1) to 8 (nm×GPa -1) .
In some embodiments, the derivative of 6-acyl-2-naphthylamine may include at least one of 6-lauroyl-2- (dimethylamino) naphthalene (laurdan) , 6-lauroyl-2- (methylamino) naphthalene (M-laurdan) , 6-lauroyl-2- [N-methyl-N- (methoxycarbonyl) amino] naphthalene (MoC-laurdan) , 6-lauroyl-2- [N-methyl-N- (carboxymethyl) amino] naphthalene (C-laurdan) , 6-formyl-2- (dimethylamino) naphthalene, 6-acetyl-2- (dimethylamino) naphthalene, and/or 6-propionyl-2- (dimethylamino) naphthalene.
Another aspect of the present disclosure, a method for pressure measurement may be provided. The method may include causing a sensing component to receive a pressure to be measured. The sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine. The method may also include causing a light source to emit a laser to the sensing component; obtaining, from a fluorescence processing component, fluorescence data associated with a fluorescence generated by the sensing component in response to the laser; and determining pressure data associated with the pressure to be measured based on the fluorescence data.
In some embodiments, the pressure data associated with the pressure to be measured may include a value of the pressure and/or a value range of the pressure.
In some embodiments, the fluorescence data may include at least one of a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, and/or a color of the fluorescence.
In some embodiments, the determining the pressure data associated with the pressure to be measured based on the fluorescence data may include determining the pressure data based on the color of the fluorescence.
In some embodiments, the determining the pressure data associated with the  pressure to be measured based on the fluorescence data may include determining the pressure data based on the peak wavelength according to a relationship between pressure data and peak wavelength.
In some embodiments, the relationship between pressure data and peak wavelength may be determined by: applying a plurality of reference pressures to a reference sensing component; for each of the plurality of reference pressures, emitting a laser to the reference sensing component by a reference light source; and determining reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser; and determining the relationship between pressure data and peak wavelength based on the reference fluorescence data and the plurality of reference pressures. As used herein, at least part of the reference sensing component may be the same as the sensing component. The reference fluorescence data may correspond to the reference pressure. The reference fluorescence data may include a reference peak wavelength of a reference fluorescence spectrum under the reference pressure.
In some embodiments, the plurality of reference pressures may range from 0 GPa to 30 GPa.
In some embodiments, the relationship between pressure data and peak wavelength may be a linear relationship.
In some embodiments, a sensitivity of the fluorescent material may range from 7 (nm×GPa -1) to 8 (nm×GPa -1) .
In some embodiments, the derivative of 6-acyl-2-naphthylamine may include at least one of 6-lauroyl-2- (dimethylamino) naphthalene (laurdan) , 6-lauroyl-2- (methylamino) naphthalene (M-laurdan) , 6-lauroyl-2- [N-methyl-N- (methoxycarbonyl) amino] naphthalene (MoC-laurdan) , 6-lauroyl-2- [N-methyl-N- (carboxymethyl) amino] naphthalene (C-laurdan) , 6-formyl-2- (dimethylamino) naphthalene, 6-acetyl-2- (dimethylamino) naphthalene, and/or 6-propionyl-2- (dimethylamino) naphthalene.
Another aspect of the present disclosure may provide a method for pressure  measurement. The method may include receiving, by a sensing component, a pressure to be measured; emitting, by a light source, a laser to the sensing component; determining, by a fluorescence processing component, fluorescence data associated with a fluorescence generated by the sensing component in response to the laser; and determining, by a pressure measurement component, pressure data associated with the pressure to be measured based on the fluorescence data. As used herein, the sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine.
Additional features will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The features of the present disclosure may be realized and attained by practice or use of various aspects of the methodologies, instrumentalities and combinations set forth in the detailed examples discussed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is further described in terms of exemplary embodiments. These exemplary embodiments are described in detail with reference to the drawings. The drawings are not to scale. These embodiments are non-limiting schematic embodiments, in which like reference numerals represent similar structures throughout the several views of the drawings, and wherein:
FIG. 1 is a schematic diagram illustrating an exemplary pressure measurement system according to some embodiments of the present disclosure;
FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device according to some embodiments of the present disclosure;
FIG. 3 is a block diagram illustrating an exemplary pressure measurement component according to some embodiments of the present disclosure;
FIG. 4 is a flowchart illustrating an exemplary process for pressure measurement according to some embodiments of the present disclosure;
FIG. 5 is a flowchart illustrating an exemplary process for determining a relationship between pressure data and peak wavelength according to some embodiments of the present disclosure;
FIG. 6 illustrates exemplary formulas of fluorescent materials according to some embodiments of the present disclosure;
FIG. 7 is a schematic diagram illustrating exemplary reference fluorescence spectra of a reference sensing component under a plurality of reference pressures according to some embodiments of the present disclosure;
FIG. 8 is a schematic diagram illustrating exemplary absorption spectra of a reference sensing component under a plurality of reference pressures according to some embodiments of the present disclosure; and
FIG. 9 is a schematic diagram illustrating an exemplary relationship between pressure data and peak wavelength according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant disclosure. However, it should be apparent to those skilled in the art that the present disclosure may be practiced without such details. In other instances, well-known methods, procedures, systems, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present disclosure. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present disclosure is not limited to the embodiments shown, but to  be accorded the widest scope consistent with the claims.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a, ” “an, ” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise, ” “comprises, ” and/or “comprising, ” “include, ” “includes, ” and/or “including, ” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that the terms “system, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, sections or assemblies of different levels in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
The modules (or units, blocks) described in the present disclosure may be implemented as software and/or hardware modules and may be stored in any type of non-transitory computer-readable medium or other storage devices. In some embodiments, a software module may be compiled and linked into an executable program. It will be appreciated that software modules can be callable from other modules or from themselves, and/or can be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices can be provided on a computer-readable medium, such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that requires installation, decompression, or decryption prior to execution) . Such software code can be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions can be embedded in a firmware, such as an EPROM. It will be further appreciated that hardware modules (e.g., circuits) can be included of connected or coupled logic units, such as gates and flip-flops, and/or can be  included of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as hardware modules, but can be software modules as well. In general, the modules described herein refer to logical modules that can be combined with other modules or divided into units despite their physical organization or storage.
It will be understood that when a unit, engine, module or block is referred to as being “on, ” “connected to, ” or “coupled to, ” another unit, engine, module, or block, it may be directly on, connected or coupled to, or communicate with the other unit, engine, module, or block, or an intervening unit, engine, module, or block may be present, unless the context clearly indicates otherwise. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
These and other features, and characteristics of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, may become more apparent upon consideration of the following description with reference to the accompanying drawings, all of which form a part of this disclosure. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended to limit the scope of the present disclosure.
The flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments of the present disclosure. It is to be expressly understood, the operations of the flowcharts may be implemented not in order. Conversely, the operations may be implemented in inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
An aspect of the present disclosure relates to systems and methods for pressure measurement. The systems may implement the pressure measurement based on a fluorescence response of a fluorescent material under a pressure in response to a laser. The systems may include a sensing component, a light source, a fluorescence processing  component, and a pressure measurement component. The sensing component may be configured to receive a pressure to be measured. The sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine. The light source may be configured to emit a laser to the sensing component. The fluorescence processing component may be configured to determine fluorescence data associated with a fluorescence generated by the sensing component under the pressure to be measured in response to the laser. For example, the fluorescence data may include a peak wavelength of a fluorescence spectrum of the fluorescence, a color of the fluorescence, etc. The pressure measurement component may be configured to determine pressure data (e.g., a value or a value range of the pressure to be measured) associated with the pressure to be measured based on the fluorescence data. For example, the pressure measurement component may determine the pressure data according to a relationship (e.g., a linear relationship) between pressure data and peak wavelength.
According to the systems and methods of the present disclosure, a fluorescent material containing a derivative of 6-acyl-2-naphthylamine is used in pressure measurement with a higher pressure measurement sensitivity (e.g., 7 (nm×GPa -1) to 8 (nm×GPa -1) ) and an improved pressure measurement range (e.g., 0-30 Gpa) . For example, the fluorescent material may include laurdan with a pressure measurement sensitivity of 7.742 nm×GPa -1 and a pressure measurement range from 0 GPa to 22.79 GPa.
FIG. 1 is a schematic diagram illustrating an exemplary pressure measurement system according to some embodiments of the present disclosure. In some embodiments, the pressure measurement system 100 may be applied in various scenarios, for example, aerospace, automotive industry, displaying and imaging, material maintenance, etc. In some embodiments, the pressure measurement system 100 may include a sensing component 110, a light source 120, a fluorescence processing component 130, a pressure measurement component 140, and a storage device 150.
The sensing component 110 may be configured to receive a pressure to be  measured and/or receive a laser emitted by the light source 120. The pressure to be measured may include a pressure applied to the sensing component 110. As used herein, the pressure may refer to a force or a force per unit area (i.e., pressure intensity) applied to the sensing component 110.
In some embodiments, the sensing component 110 may include a fluorescent material which can generate a fluorescence (also referred to as a “fluorescence response” ) in response to the laser received from the light source 120. In some embodiments, the fluorescent material may contain a derivative of 6-acyl-2-naphthylamine, for example, formula (1) illustrated in FIG. 6, wherein R 1, R 2, and R 3 may refer to discretionary substituent groups. In some embodiments, R 1 may include an alkyl group, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, etc. For example, the butyl group may include an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, etc. As another example, the pentyl group may include an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an active pentyl group, etc. R 2 or R 3 may include an alkyl group, a hydroxyl group, a carbonyl group, an aldehyde group, a haloformyl group, a carbonate ester group, a carboxyl group, a carboalkoxy group, a methoxy group, a hydroperoxy group, a peroxy group, an ether group, or the like, or any combination thereof.
Merely by way of example, the derivative of 6-acyl-2-naphthylamine may include 6-lauroyl-2- (dimethylamino) naphthalene (i.e., laurdan (e.g., formula (3) illustrated in FIG. 6) ) , 6-lauroyl-2- (methylamino) naphthalene (i.e., M-laurdan (e.g., formula (4) illustrated in FIG. 6) ) , 6-lauroyl-2- [N-methyl-N- (methoxycarbonyl) amino] naphthalene (i.e., MoC-laurdan (e.g., formula (5) illustrated in FIG. 6) ) , 6-lauroyl-2- [N-methyl-N- (carboxymethyl) amino] naphthalene (i.e., C-laurdan (e.g., formula (6) illustrated in FIG. 6) ) , 6-formyl-2- (dimethylamino) naphthalene, 6-acetyl-2- (dimethylamino) naphthalene (e.g., formula (2) illustrated in FIG. 6) , 6-propionyl-2- (dimethylamino) naphthalene, 6-butyryl-2-  (dimethylamino) naphthalene, 6-valeryl-2- (dimethylamino) naphthalene, 6-caproyl-2- (dimethylamino) naphthalene, 6-heptanoyl-2- (dimethylamino) naphthalene, 6-octanoyl-2- (dimethylamino) naphthalene, 6-nonanoyl-2- (dimethylamino) naphthalene, 6-decanoyl-2- (dimethylamino) naphthalene, 6-undecanoyl-2- (dimethylamino) naphthalene, 6-lauroyl-2- (dimethylamino) naphthalene, etc.
In some embodiments, the fluorescent material may also include one or more substances (of which transmittance to laser should be relatively good (e.g., a transmittance larger than 90%) ) doped with the derivative of 6-acyl-2-naphthylamine. Exemplary substances may include a polymer, a metallic substance, a ceramic substance, a semiconductor substance, or the like, or any combination thereof. The polymer may include polyethylene, polypropylene, polystyrene, polyvinyl chloride, synthetic rubber, phenol formaldehyde resin, epoxy resin, neoprene, nylon, polyacrylonitrile, etc. The metallic substance may include silver, copper, gold, iron, tin, tantalum, platinum, palladium, zinc, cobalt, etc. The ceramic substance may include barium titanate, boron oxide, magnesium diboride, silicon carbide, zinc oxide, zirconium dioxide, uranium oxide, titanium carbide, etc. The semiconductor substance may include silicon, germanium, gray tin, silicon carbide, boron nitride, aluminum nitride, gallium phosphide, indium arsenide, cadmium sulfide, zinc oxide, copper sulfide, etc.
In some embodiments, the sensitivity (also referred to as a “pressure sensitivity” ) of the fluorescent material may satisfy a preset condition. As used herein, the sensitivity of the fluorescent material may indicate the easiness of a material’s fluorescence change induced by an applied pressure. For example, the higher the sensitivity is, the more obvious the change (e.g., a peak wavelength of a fluorescence spectrum) of the fluorescence generated by the fluorescent material among different fluorescent materials under a same pressure may be. For example, the sensitivity of the fluorescent material may range from 7 (nm×GPa -1) to 8 (nm×GPa -1) . As another example, the sensitivity of the fluorescent material may range from 7.1 (nm×GPa -1) to 7.9 (nm×GPa -1) . As a further example, the sensitivity of the fluorescent material may range from 7.2 (nm×GPa -1) to 7.8  (nm×GPa -1) . As a still further example, the sensitivity of the fluorescent material may range from 7.3 (nm×GPa -1) to 7.7 (nm×GPa -1) . As a still further example, the sensitivity of the fluorescent material may be from 7.4 (nm×GPa -1) to 7.6 (nm×GPa -1) .
In some embodiments, a pressure response range of the fluorescent material may satisfy a preset condition. As used herein, the pressure response range may refer to a pressure range that the fluorescent material can withstand and within which the fluorescent material can generate a corresponding fluorescence. For example, the pressure response range of the fluorescent material may range from 0 GPa to 30 GPa. Merely by way of example, the fluorescent material may include laurdan with a pressure measurement sensitivity of 7.742 nm×GPa -1 and a pressure measurement range from 0 GPa to 22.79 GPa.
In some embodiments, the sensing component 110 may include a sensor. In some embodiments, the sensor may include a sensor matrix and a plurality of particles (e.g., quantum dots) containing the fluorescent material. The plurality of particles may be embedded in the sensor matrix, for example, in a homogenous manner. In some embodiments, the plurality of particles may be directly dispersed in the sensor matrix. In some embodiments, the plurality of particles may be dispersed in a transparent component and then the transparent component may be dispersed in the sensor matrix, thus the plurality of particles may be protected from chemical deterioration. In some embodiments, the sensor matrix may be made of a material (e.g., a polymer (e.g., epoxy) ) with a good transmittance (e.g., larger than 90%) to laser. In some embodiments, the shape of the sensor may include a prism, a cube, a cylinder, a pyramid, a cone, a disk, a sphere, or the like, or any combination thereof.
The light source 120 may be configured to emit a laser to the sensing component 110. In some embodiments, the light source 120 may include a laser diode, a light-emitting diode (LED) , a filament, an arc lamp, a flash tube, etc. In some embodiments, one or more properties (e.g., a pulse length, a frequency, a power, a wavelength) of the laser may be selected according to practical demands, for example, one or more  properties of the fluorescent material, a power requirement, etc. In some embodiments, the light source 120 may be any source that can excite the fluorescence response of the fluorescent material, for example, an electron beam, a neutron beam, an ion beam, etc.
The fluorescence processing component 130 may be configured to determine fluorescence data associated with the fluorescence generated by the sensing component 110 in response to the laser emitted by the light source 120. In some embodiments, the fluorescence data may include a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, a color of the fluorescence, or the like, or any combination thereof.
In some embodiments, the fluorescence processing component 130 may include a gated photosensitive device (e.g., a photomultiplier tube, an avalanche photodiode, a silicon photodiode, an intensified charge-coupled device (ICCD) ) , a spectrometer (e.g., a wide-spectrum spectrometer) , an optical bandpass detector, a digital microscope camera, a charge-coupled detector, etc.
The pressure measurement component 140 may be configured to determine pressure data (e.g., a value of the pressure, a value range of the pressure) associated with the pressure received by the sensing component 110 based on the fluorescence data. As described above, the fluorescence generated by the fluorescent material included in the sensing component 110 may be associated with the pressure received by the sensing component 110. For example, the pressure may be applied to the sensing component 110, then the sensing component 110 under pressure may receive the laser emitted by the light source 120 and generate a fluorescence (which is different from a fluorescence generated by the sensing component 110 without pressure) . Accordingly, the pressure measurement component 140 may determine the pressure data associated with the pressure based on the fluorescence data.
In some embodiments, the peak wavelength of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure measurement component 140 may determine the pressure data  based on the peak wavelength of the fluorescence according to a relationship between pressure data and peak wavelength. In some embodiments, the relationship between pressure data and peak wavelength may be a linear relationship. In some embodiments, the pressure measurement component 140 may access the relationship between pressure data and peak wavelength from the storage device 150 or an external device (e.g., an external database) . In some embodiments, the relationship between pressure data and peak wavelength may be pre-determined based on sample data (e.g., experimental data) . For example, the relationship between pressure data and peak wavelength may be pre-determined based on a plurality of reference pressures applied to a reference sensing component and reference fluorescence data corresponding thereto. In some embodiments, the relationship between pressure data and peak wavelength may be pre-determined by the pressure measurement component 140 or a device (e.g., an experimental device, a research device) independent from the pressure measurement component 140. More descriptions of the relationship between pressure data and peak wavelength may be found elsewhere in the present disclosure (e.g., FIG. 5, FIGs. 7-9, and the descriptions thereof) .
In some embodiments, the color of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure measurement component 140 may determine the pressure data based on the color of the fluorescence. For example, if the color of the fluorescence is blue or dark blue, the range of the pressure may be from 1 atm to 4.14 GPa. As another example, if the color of the fluorescence is green, the range of the pressure may be from 6.09 GPa to 11.18 GPa. As a further example, if the color of the fluorescence is yellow, the range of the pressure may be from 12.03 GPa to 16.06 GPa. As a further example, if the color of the fluorescence is orange-red, the range of the pressure may be from 18.38 GPa to 22.79 GPa.
In some embodiments, different regions of the sensing component 110 may receive different pressures at the same time. Accordingly, the light source 120 may emit  laser to the regions and the fluorescence processing component 130 may determine fluorescence data corresponding to the different regions. Further, the pressure measurement component 140 may determine pressure data corresponding to the different regions. For example, the pressure measurement component 140 may determine individual pressure data corresponding to each of the different regions, average pressure data corresponding to the different regions, etc. In some embodiments, the sensing component 110 may receive different pressures at different time points. Accordingly, the pressure measurement component 140 may determine individual pressure data corresponding to each of the different time points, average pressure data corresponding to the different time points, etc.
In some embodiments, the pressure measurement component 140 may be implemented via a single server or a server group. The server group may be centralized or distributed (e.g., the pressure measurement component 140 may be a distributed system) . In some embodiments, the pressure measurement component 140 may include one or more processing engines (e.g., single-core processing engine (s) or multi-core processor (s) ) . Merely by way of example, the pressure measurement component 140 may include a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , an application-specific instruction-set processor (ASIP) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a controller, a microcontroller unit, a reduced instruction-set computer (RISC) , a microprocessor, or the like, or any combination thereof. In some embodiments, the pressure measurement component 140 may be implemented on a cloud platform. Merely by way of example, the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof. In some embodiments, the pressure measurement component 140 may be implemented on a computing device 200 including one or more components illustrated in FIG. 2 of the present disclosure.
The storage device 150 may store data and/or instructions. In some embodiments, the storage device 150 may store data obtained from the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140, an external storage device, etc. For example, the storage device 150 may store a relationship between pressure data and peak wavelength. As another example, the storage device 150 may store fluorescence data associated with a fluorescence generated by the sensing component 110 under a pressure in response to a laser. In some embodiments, the storage device 150 may store data and/or instructions that the pressure measurement component 140 may execute or use to perform exemplary methods described in the present disclosure. For example, the storage device 150 may store instructions that the pressure measurement component 140 may execute or use to determine pressure data associated with a pressure to be measured based on fluorescence data.
In some embodiments, the storage device 150 may include a mass storage, a removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc. Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc. Exemplary volatile read-and-write memory may include a random access memory (RAM) . Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc. Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically-erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc. In some embodiments, the storage device 150 may be implemented on a cloud platform. Merely by way of example, the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
In some embodiments, the pressure measurement system 100 may also include a network (not shown) . The network may facilitate exchange of information and/or data. In some embodiments, one or more components (e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140, the storage device 150) of the pressure measurement system 100 may transmit information and/or data to other component (s) of the pressure measurement system 100 via the network. For example, the pressure measurement component 140 may obtain a relationship between pressure data and peak wavelength from the storage device 150 via the network. As another example, the fluorescence processing component 130 may transmit fluorescence data to the pressure measurement component 140 via the network. In some embodiments, the network may be any type of wired or wireless network, or combination thereof. Merely by way of example, the network may include a cable network, a wireline network, an optical fiber network, a telecommunications network, an intranet, an Internet, a local area network (LAN) , a wide area network (WAN) , a wireless local area network (WLAN) , a metropolitan area network (MAN) , a wide area network (WAN) , a public telephone switched network (PSTN) , a Bluetooth network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof. In some embodiments, the network may include one or more network access points. For example, the network may include wired or wireless network access points, through which one or more components of the pressure measurement system 100 may be connected to the network to exchange data and/or information.
In some embodiments, the pressure measurement component 140 may be local or remote. In some embodiments, the pressure measurement component 140 may be connected to the network to communicate with one or more components (e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the storage device 150) of the pressure measurement system 100. For example, the pressure measurement component 140 may access information and/or data stored in the sensing component 110, the light source 120, the fluorescence processing component  130, and/or the storage device 150 via the network. As another example, the pressure measurement component 140 may transmit instructions to the light source 120 via the network to cause the light source 120 to emit a laser. In some embodiments, the pressure measurement component 140 may be directly connected to or communicate with one or more components (e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the storage device 150) of the pressure measurement system 100. For example, the pressure measurement component 140 may be directly connected to the sensing component 110, the light source 120, the fluorescence processing component 130, and/or the storage device 150 to access stored information and/or data.
In some embodiments, the storage device 150 may be connected to the network to communicate with one or more components (e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140) of the pressure measurement system 100. One or more components of the pressure measurement system 100 may access the data or instructions stored in the storage device 150 via the network. In some embodiments, the storage device 150 may be directly connected to or communicate with one or more components (the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140) of the pressure measurement system 100. In some embodiments, the storage device 150 may be part of the pressure measurement component 140. For example, the storage device 150 may be integrated into the pressure measurement component 140.
In some embodiments, the pressure measurement system 100 may also include one or more terminal devices (not shown) . The terminal device (s) may be configured to receive information and/or data from the components (e.g., the sensing component 110, the light source 120, the fluorescence processing component 130, the pressure measurement component 140, and/or the storage device 150) of the pressure measurement system 100 and/or transmit information and/or data to the components via  the network. For example, the terminal device (s) may receive information (e.g., the fluorescence data, the pressure data) from the pressure measurement component 140 via the network. In some embodiments, the terminal device (s) may provide a user interface via which a user may view information and/or input data and/or instructions to the pressure measurement system 100. For example, a user may view the information (e.g., the fluorescence data, the pressure data) via the user interface. As another example, a user may input an instruction via the user interface and then the terminal device may transmit the instruction to the light source 120 or the pressure measurement component 140 via the network. The instruction may include an instruction for emitting a laser to the sensing component 110, an instruction for setting or modifying a parameter associated with pressure measurement, etc. In some embodiments, the terminal device (s) may include a display that can display information in a human-readable form, such as text, image, audio, video, graph, animation, or the like, or any combination thereof. The display of the terminal device (s) may include a cathode ray tube (CRT) display, a liquid crystal display (LCD) , a light-emitting diode (LED) display, a plasma display panel (PDP) , a three dimensional (3D) display, or the like, or a combination thereof. In some embodiments, the pressure measurement component 140 may be integrated into the terminal device (s) .
In some embodiments, the terminal device (s) may include a mobile device, a tablet computer, a laptop computer, or the like, or any combination thereof. In some embodiments, the mobile device may include a smart home device, a wearable device, a smart mobile device, a virtual reality device, an augmented reality device, or the like, or any combination thereof. The smart home device may include a smart lighting device, a control device of an intelligent electrical apparatus, a smart monitoring device, a smart television, a smart video camera, an interphone, or the like, or any combination thereof. The wearable device may include a smart bracelet, a smart footgear, a smart glass, a smart helmet, a smartwatch, smart clothing, a smart backpack, a smart accessory, or the like, or any combination thereof. The smart mobile device may include a smartphone, a personal digital assistant (PDA) , a gaming device, a navigation device, a point of sale  (POS) device, or the like, or any combination thereof. The virtual reality device and/or the augmented reality device may include a virtual reality helmet, a virtual reality glass, a virtual reality patch, an augmented reality helmet, an augmented reality glass, an augmented reality patch, or the like, or any combination thereof. For example, the virtual reality device and/or the augmented reality device may include a Google TM Glass, an Oculus Rift, a HoloLens, a Gear VR, etc.
It should be noted that the pressure measurement system 100 is merely provided for the purposes of illustration, and is not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations or modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
For example, the components of the pressure measurement system 100 may be connected with each other in any suitable way. For example, the light source 120 may be connected to the pressure measurement component 140 directly or through the network, the fluorescence processing component 130 may be connected to the pressure measurement component 140 directly or through the network, the storage device 150 may be connected to the pressure measurement component 140 directly or through the network, etc.
As another example, the sensing component 110 may be placed between a first medium (e.g., a material, a product) and a second medium (e.g., a material, a product) such that the pressure applied to the sensing component 110 may be substantially the same as a pressure (e.g., an internal force, a binding force) between the first medium and the second medium. Accordingly, the pressure measurement component 140 can determine pressure data (e.g., a value, a value range) associated with the pressure between the first medium and the second medium. Further, the pressure measurement component 140 also can evaluate properties (e.g., aging information, deterioration, inside bond stability) of a material (e.g., a composite material) or a product associated with the first medium and the second medium. For example, the pressure measurement  component 140 may compare the pressure data with initial pressure data associated with an initial pressure between the first medium and the second medium when the material or the product is formed, if the pressure data remains substantially the same as the initial pressure data, it may indicate that the bond between the first medium and the second medium is stable; if a difference between the pressure data and the initial pressure data is greater than a threshold (e.g., 10%, 20%of the initial pressure data) , it may indicate that the bond between the first medium and the second medium tends to become unstable, which may indicate the aging of the material or product or the deterioration of the material or product.
FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device according to some embodiments of the present disclosure.
In some embodiments, the pressure measurement component 140 may be implemented on the computing device 200, for example, via its hardware, software program, firmware, or a combination thereof. Although only one such computer is shown, for convenience, the computer functions relating to pressure measurement as described herein may be implemented in a distributed fashion on a number of similar platforms to distribute the processing load.
The computing device 200, for example, may include COM ports 250 connected to and from a network connected thereto to facilitate data communications. The computing device 200 may also include a processor (e.g., a processor 220) , in the form of one or more processors (e.g., logic circuits) , for executing program instructions. For example, the processor 220 may include interface circuits and processing circuits therein. The interface circuits may be configured to receive electronic signals from a bus 210, wherein the electronic signals encode structured data and/or instructions for the processing circuits to process. The processing circuits may conduct logic calculations, and then determine a conclusion, a result, and/or an instruction encoded as electronic signals. Then the interface circuits may send out the electronic signals from the processing circuits via the  bus 210.
The computing device 200 may further include one or more storages configured to store various data files (e.g., program instructions) to be processed and/or transmitted by the computing device 200. In some embodiments, the one or more storages may include a high speed random access memory (not shown) , a non-volatile memory (e.g., a magnetic storage device, a flash memory, or other non-volatile solid state memories) (not shown) , a disk 270, a read-only memory (ROM) 230, or a random-access memory (RAM) 240, or the like, or any combination thereof. In some embodiments, the one or more storages may further include a remote storage corresponding to the processor 220. The remote storage may connect to the computing device 200 via the network. The computing device 200 may also include program instructions stored in the one or more storages (e.g., the ROM 230, RAM 240, and/or another type of non-transitory storage medium) to be executed by the processor 220. The methods and/or processes of the present disclosure may be implemented as the program instructions. The computing device 200 may also include an I/O component 260, supporting input/output between the computing device 200 and other components. The computing device 200 may also receive programming and data via network communications.
Merely for illustration, only one processor is illustrated in FIG. 2. Multiple processors 220 are also contemplated; thus, operations and/or method steps performed by one processor 220 as described in the present disclosure may also be jointly or separately performed by the multiple processors. For example, if in the present disclosure the processor 220 of the computing device 200 executes both operation A and operation B, it should be understood that operation A and operation B may also be performed by two different processors 220 jointly or separately in the computing device 200 (e.g., a first processor executes operation A and a second processor executes operation B, or the first and second processors jointly execute operations A and B) .
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons  having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 3 is a block diagram illustrating an exemplary pressure measurement component according to some embodiments of the present disclosure. The pressure measurement component 300 may be an example of the pressure measurement component 140 illustrated in FIG. 1. The pressure measurement component 300 may include a laser emitting module 310, a pressure receiving module 320, a fluorescence data determination module 330, and a pressure determination module 340.
The laser emitting module 310 may be configured to cause a light source (e.g., the light source 120) to emit a laser to a sensing component (e.g., the sensing component 110) . In some embodiments, the laser emitting module 310 may adjust one or more properties (e.g., a pulse length, a frequency, a power, a wavelength) of the laser according to practical demands, for example, one or more properties of the fluorescent material, a power requirement, etc.
The pressure receiving module 320 may be configured to cause the sensing component to receive a pressure to be measured. As used herein, the pressure may refer to a force or a force per unit area (i.e., pressure intensity) applied to the sensing component. As described in connection with FIG. 1, the sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine (e.g., formula (1) illustrated in FIG. 6) . For example, the fluorescent material may include laurdan with a pressure measurement sensitivity of 7.742 nm×GPa -1 and a pressure measurement range from 0 GPa to 22.79 GPa.
The fluorescence data determination module 330 may be configured to obtain, from a fluorescence processing component (e.g., the fluorescence processing component 130) , fluorescence data associated with a fluorescence generated by the sensing component in response to the laser. For example, the fluorescence data may include a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence  spectrum, a color of the fluorescence, or the like, or any combination thereof. More descriptions regarding the fluorescence data may be found elsewhere in the present disclosure (e.g., FIG. 1 and the description thereof) .
The pressure determination module 340 may be configured to determine pressure data (e.g., a value of the pressure, a value range of the pressure) associated with the pressure to be measured based on the fluorescence data. In some embodiments, the peak wavelength of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure determination module 340 may determine the pressure data based on the peak wavelength of the fluorescence according to a relationship between pressure data and peak wavelength. In some embodiments, the relationship between pressure data and peak wavelength may be a linear relationship. In some embodiments, the relationship between pressure data and peak wavelength may be pre-determined based on a plurality of reference pressures applied to a reference sensing component and reference fluorescence data corresponding thereto. More descriptions of the relationship between pressure data and peak wavelength may be found elsewhere in the present disclosure (e.g., FIGs. 7-9 and the descriptions thereof) .
In some embodiments, the color of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure determination module 340 may determine the pressure data based on the color of the fluorescence. For example, if the color of the fluorescence is blue or dark blue, the range of the pressure may be from 1 atm to 4.14 GPa. As another example, if the color of the fluorescence is green, the range of the pressure may be from 6.09 GPa to 11.18 GPa. As a further example, if the color of the fluorescence is yellow, the range of the pressure may be from 12.03 GPa to 16.06 GPa. As a further example, if the color of the fluorescence is orange-red, the range of the pressure may be from 18.38 GPa to 22.79 GPa.
In some embodiments, the pressure determination module 340 may also be  configured to determine the relationship between pressure data and peak wavelength based on the plurality of reference pressures applied to the reference sensing component and the reference fluorescence data corresponding thereto. The pressure determination module 340 may cause a pressure device (e.g., a diamond anvil cell, a copper crusher, a pressure sensor) to apply the plurality of reference pressures to the reference sensing component.
For each of the plurality of reference pressures, the pressure determination module 340 may cause a reference light source to emit a laser to the reference sensing component. In some embodiments, the reference light source may be similar to or the same as the light source 120 illustrated in FIG. 1. The pressure determination module 340 may also determine the reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser.
In some embodiments, the pressure determination module 340 may determine the relationship based on the plurality of reference pressures and corresponding reference peak wavelengths according to a fitting approach (e.g., a linear fitting approach) . In some embodiments, a calibration object (e.g., ruby) with a known relationship between pressure data and peak wavelength may be used to determine or calibrate the plurality of reference pressures.
The modules in the pressure measurement component 300 may be connected to or communicated with each other via a wired connection or a wireless connection. The wired connection may include a metal cable, an optical cable, a hybrid cable, or the like, or any combination thereof. The wireless connection may include a Local Area Network (LAN) , a Wide Area Network (WAN) , a Bluetooth, a ZigBee, a Near Field Communication (NFC) , or the like, or any combination thereof. Two or more of the modules may be combined into a single module, and any one of the modules may be divided into two or more units. For example, the pressure receiving module 320 and the pressure determination module 340 may be combined as a single module which may both cause the sensing component to receive the pressure to be measured and determine pressure  data associated with the pressure to be measured. As another example, the pressure measurement component 300 may include a storage module (not shown) which may be used to store data generated by the above-mentioned modules.
FIG. 4 is a flowchart illustrating an exemplary process for pressure measurement according to some embodiments of the present disclosure. In some embodiments, the process 400 may be implemented as a set of instructions (e.g., an application) stored in the storage ROM 230 or RAM 240. The processor 220 and/or the modules in FIG. 3 may execute the set of instructions, and when executing the instructions, the processor 220 and/or the modules may be configured to perform the process 400. The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 400 may be accomplished with one or more additional operations not described and/or without one or more of the operations herein discussed. Additionally, the order in which the operations of the process as illustrated in FIG. 4 and described below is not intended to be limiting.
In 410, the pressure measurement component 300 (e.g., the pressure receiving module 320) (e.g., the processing circuits of the processor 220) may cause a sensing component (e.g., the sensing component 110) to receive a pressure to be measured. As used herein, the pressure may refer to a force or a force per unit area (i.e., pressure intensity) applied to the sensing component. As described in connection with FIG. 1, the sensing component may include a fluorescent material containing a derivative of 6-acyl-2-naphthylamine (e.g., formula (1) illustrated in FIG. 6) . For example, the fluorescent material may include laurdan with a pressure measurement sensitivity of 7.742 nm×GPa -1 and a pressure measurement range from 0 GPa to 22.79 GPa.
In 420, the pressure measurement component 300 (e.g., the laser emitting module 310) (e.g., the processing circuits of the processor 220) may cause a light source (e.g., the light source 120) to emit a laser to the sensing component. In some embodiments, the pressure measurement component 300 may adjust one or more properties (e.g., a pulse length, a frequency, a power, a wavelength) of the laser according to practical demands,  for example, one or more properties of the fluorescent material, a power requirement, etc.
In 430, the pressure measurement component 300 (e.g., the fluorescence data determination module 330) (e.g., the interface circuits of the processor 220) may obtain, from a fluorescence processing component (e.g., the fluorescence processing component 130) , fluorescence data associated with a fluorescence generated by the sensing component in response to the laser. For example, the fluorescence data may include a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, a color of the fluorescence, or the like, or any combination thereof. More descriptions regarding the fluorescence data may be found elsewhere in the present disclosure (e.g., FIG. 1 and the description thereof) .
In 440, the pressure measurement component 300 (e.g., the pressure determination module 340) (e.g., the processing circuits of the processor 220) may determine pressure data (e.g., a value of the pressure, a value range of the pressure) associated with the pressure to be measured based on the fluorescence data.
In some embodiments, the peak wavelength of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure measurement component 300 may determine the pressure data based on the peak wavelength of the fluorescence according to a relationship between pressure data and peak wavelength. In some embodiments, the relationship between pressure data and peak wavelength may be a linear relationship. In some embodiments, the relationship between pressure data and peak wavelength may be pre-determined based on a plurality of reference pressures applied to a reference sensing component and reference fluorescence data corresponding thereto. More descriptions of the relationship between pressure data and peak wavelength may be found elsewhere in the present disclosure (e.g., FIGs. 7-9 and the descriptions thereof) .
In some embodiments, the color of the fluorescence generated by the fluorescent material may change with pressure applied to the fluorescent material. Accordingly, the pressure measurement component 300 may determine the pressure data based on the  color of the fluorescence. For example, if the color of the fluorescence is blue or dark blue, the range of the pressure may be from 1 atm to 4.14 GPa. As another example, if the color of the fluorescence is green, the range of the pressure may be from 6.09 GPa to 11.18 GPa. As a further example, if the color of the fluorescence is yellow, the range of the pressure may be from 12.03 GPa to 16.06 GPa. As a further example, if the color of the fluorescence is orange-red, the range of the pressure may be from 18.38 GPa to 22.79 GPa.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations or modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. For example, for illustration purposes, a pressure measurement process executed by the pressure measurement component 300 is described above (i.e., the pressure measurement component 300 is used as a central control component) , in actual practice, the pressure measurement process can be executed by separate components, for example, the pressure measurement process may include operations: receiving, by a sensing component, a pressure to be measured, emitting, by a light source, a laser to the sensing component, determining, by a fluorescence processing component, fluorescence data associated with a fluorescence generated by the sensing component in response to the laser, and determining, by a pressure measurement component, pressure data associated with the pressure to be measured based on the fluorescence data.
FIG. 5 is a flowchart illustrating an exemplary process for determining a relationship between pressure data and peak wavelength according to some embodiments of the present disclosure. In some embodiments, the process 500 may be implemented as a set of instructions (e.g., an application) stored in the storage ROM 230 or RAM 240. The processor 220 and/or the modules in FIG. 3 may execute the set of instructions, and when executing the instructions, the processor 220 and/or the modules may be configured  to perform the process 500. The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 500 may be accomplished with one or more additional operations not described and/or without one or more of the operations herein discussed. Additionally, the order in which the operations of the process as illustrated in FIG. 5 and described below is not intended to be limiting.
In 510, the pressure measurement component 300 (e.g., the pressure determination module 340) (e.g., the processing circuits of the processor 220) may cause a pressure device (e.g., a diamond anvil cell, a pressure sensor, a copper crusher) to apply a plurality of reference pressures to a reference sensing component.
In some embodiments, the plurality of reference pressures may satisfy a preset condition. For example, the plurality of reference pressures may range from 0 GPa to 30 GPa. As another example, the plurality of reference pressures may range from 0 GPa to 29 GPa. As a further example, the plurality of reference pressures may range from 0 GPa to 28 GPa. As still a further example, the plurality of reference pressures may range from 0 GPa to 27 GPa. As still a further example, the plurality of reference pressures may range from 0 GPa to 26 GPa. As still a further example, the plurality of reference pressures may range from 0 GPa to 25 GPa. As still a further example, the plurality of reference pressures may range from 0 GPa to 24 GPa. As still a further example, the plurality of reference pressures may range from 0 GPa to 23 GPa. As still a further example, the plurality of reference pressures may range from 0 GPa to 22 GPa.
In some embodiments, at least part of the reference sensing component may be similar to the sensing component 110 illustrated in FIG. 1. For example, both the reference sensing component and the sensing component 110 may include the same fluorescent material. As another example, features (e.g., size, shape, thickness) of the reference sensing component may be the same as those of the sensing component 110. As a further example, the reference sensing component may be totally the same as the sensing component 110.
In 520, for each of the plurality of reference pressures, the pressure measurement  component 300 (e.g., the pressure determination module 340) (e.g., the processing circuits of the processor 220) may cause a reference light source to emit a laser to the reference sensing component. In some embodiments, the reference light source may be similar to or the same as the light source 120 illustrated in FIG. 1.
In 530, for each of the plurality of reference pressures, the pressure measurement component 300 (e.g., the pressure determination module 340) (e.g., the processing circuits of the processor 220) may determine reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser. As described in connection with operation 430, the reference fluorescence data may include a reference fluorescence spectrum of the reference fluorescence, a reference peak wavelength of the reference fluorescence spectrum, a reference color of the reference fluorescence, or the like, or any combination thereof. Take the reference fluorescence spectrum as an example, the reference fluorescence spectrum may be expressed as a curve (e.g., a curve illustrated in FIG. 7) with x-axis representing reference wavelength and y-axis representing normalized reference emission intensity. Similarly, a reference absorption spectrum corresponding to the reference fluorescence spectrum also can be expressed as a curve (e.g., a curve illustrated in FIG. 8) x-axis representing reference wavelength and y-axis representing absorbance. More descriptions of the fluorescence spectrum and the absorption spectrum can be found elsewhere in the present disclosure (e.g., FIGs. 7-9 and the descriptions thereof) .
In 540, the pressure measurement component 300 (e.g., the pressure determination module 340) (e.g., the processing circuits of the processor 220) may determine a relationship between pressure data and peak wavelength based on the reference fluorescence data and the plurality of reference pressures.
In some embodiments, the plurality of reference pressures may be predetermined or predefined. The pressure measurement component 300 may determine the relationship based on the plurality of reference pressures and corresponding reference peak wavelengths according to a fitting approach (e.g., a linear fitting approach) . In some  embodiments, a calibration object (e.g., ruby) with a known relationship between pressure data and peak wavelength may be used to determine or calibrate the plurality of reference pressures. In this situation, the plurality of reference pressures may be applied to both the calibration object and the reference sensing component. Then the laser may be emitted to both the calibration object and the reference sensing component and fluorescence data of both the calibration object and the reference sensing component may be obtained. Since the “relationship between pressure data and peak wavelength” of the calibration object is known, the plurality of reference pressures can be determined based on the fluorescence data of the calibration object and the known “relationship between pressure data and peak wavelength. ” Accordingly, for the reference sensing component, the relationship between pressure data and peak wavelength can be further determined based on the plurality of reference pressures and reference peak wavelengths of the reference sensing component.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations or modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 7 is a schematic diagram illustrating exemplary reference fluorescence spectra of a reference sensing component under a plurality of reference pressures according to some embodiments of the present disclosure. FIG. 8 is a schematic diagram illustrating absorption spectra of the reference sensing component under the plurality of reference pressures according to some embodiments of the present disclosure. FIG. 9 is a schematic diagram illustrating an exemplary relationship between pressure data and peak wavelength according to some embodiments of the present disclosure.
As described in connection with FIG. 5, a plurality of reference pressures may be applied to the reference sensing component and a relationship between pressure data and peak wavelength may be obtained. Specifically, a diamond anvil cell (DAC) with an anvil  surface of 500 μm in diameter was used as a pressure device. A center region of a T301 steel plate was prepressed by the DAC and then the thickness of the prepressed steel plate became 46 μm. A hole with a diameter of 170 μm was drilled in the center region of the steel plate by a laser and used as a sample chamber (also referred to as an “experimental chamber” ) . Further, a calibration object (e.g., a fluorescent material containing ruby, hereafter referred to as “ruby” for brevity) with a known relationship between pressure data and peak wavelength and the reference sensing component (e.g., a bulk material of crystalline laurdan, hereafter referred to as “laurdan” for brevity) were placed into the chamber and pressed by the DAC under the plurality of reference pressures. For each of the plurality of reference pressures, a laser with a wavelength of 360 nm was emitted to the calibration object and the reference sensing component. Then, in response to the laser, a first fluorescence was generated by the reference sensing component and a second fluorescence was generated by the calibration object. Further, fluorescence data (e.g., a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, an absorption spectrum associated with the fluorescence, a color of the fluorescence) of the calibration object and the reference sensing component were obtained. According to the known relationship between pressure data and peak wavelength as well as the fluorescence data of the calibration object, values of the plurality of reference pressures can be determined. Accordingly, as illustrated in FIG. 7 and FIG. 8, fluorescence data of the reference sensing component under each of the plurality of reference pressures can be determined.
Further, for the reference sensing component, the relationship between pressure data and peak wavelength may be determined based on the values of plurality of reference pressures and reference peak wavelengths (the experimental data are shown in Table 1 below) according to a fitting approach.
Table 1
Figure PCTCN2020101682-appb-000001
Figure PCTCN2020101682-appb-000002
Merely by way of example, as illustrated in FIG. 9, the relationship between pressure data and peak wavelength may be determined according to a linear fitting approach:
λ=450.948+7.742P      (1)
where λ refers to peak wavelength with a unit of nm and P refers to pressure with a unit of GPa. It can be seen that the sensitivity of the reference sensing component (e.g., laurdan) is 7.742 (nm×GPa -1) , which is relatively good and can meet pressure measurement requirements under various application scenarios. During the fluorescence response, electrons of the fluorescent material may be excited by the laser. After the electrons absorb a part of the energy of the laser, the electrons may transit from the ground state to the high-energy excited state. Further, the electrons spontaneously transit from the excited state down to the ground state to radiate the part of the energy and generate the fluorescence. Accordingly, an absorbance spectrum may correspondingly characterize the transition from the ground state to the high-energy excited state and represent energy absorption at different wavelengths; the fluorescence spectrum may correspondingly characterize the transition from the high-energy excited state to the ground state and represent emission intensity at different wavelengths. As illustrated in FIG. 8, it can be seen that each of the absorption spectra has an absorption edge which indicates the minimum energy required for electrons to be excited and transit from the ground state to the excited state at a corresponding wavelength. Accordingly, a relationship between pressure data and wavelengths of the absorption edges can also be obtained, which is also a linear relationship and suggests that the linear relationship between pressure data and peak wavelength is reasonable.
Having thus described the basic concepts, it may be rather apparent to those skilled in the art after reading this detailed disclosure that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. Various  alterations, improvements, and modifications may occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure, and are within the spirit and scope of the exemplary embodiments of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment, ” “an embodiment, ” and/or “some embodiments” mean that a particular feature, structure or characteristic described in connection with the embodiment is in at least one embodiment of the present disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” in various portions of this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined as suitable in one or more embodiments of the present disclosure.
Further, it will be appreciated by one skilled in the art, aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer-readable media having computer-readable program code embodied thereon.
A computer-readable signal medium may include a propagated data signal with computer-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof. A computer-readable signal medium may be any computer-readable medium that is not a computer- readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer-readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB, NET, Python or the like, conventional procedural programming languages, such as the "C" programming language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
Furthermore, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes and methods to any order except as may be specified in the claims. Although the above disclosure discusses through various examples what is currently considered to be a variety of useful embodiments of the disclosure, it is to be understood that such detail is solely for that purpose, and that the appended claims are not limited to the disclosed embodiments, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed embodiments. For  example, although the implementation of various components described above may be embodied in a hardware device, it may also be implemented as a software only solution, e.g., an installation on an existing server or mobile device.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various embodiments. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed subject matter requires more features than are expressly recited in each claim. Rather, claimed subject matter may lie in smaller than all features of a single foregoing disclosed embodiment.

Claims (23)

  1. A system for pressure measurement, comprising:
    a sensing component configured to receive a pressure to be measured, the sensing component including a fluorescent material containing a derivative of 6-acyl-2-naphthylamine;
    a light source configured to emit a laser to the sensing component;
    a fluorescence processing component configured to determine fluorescence data associated with a fluorescence generated by the sensing component in response to the laser; and
    a pressure measurement component configured to determine pressure data associated with the pressure to be measured based on the fluorescence data.
  2. The system of claim 1, wherein the pressure data associated with the pressure to be measured includes a value of the pressure, or a value range of the pressure.
  3. The system of claim 1 or claim 2, wherein the fluorescence data includes at least one of a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, or a color of the fluorescence.
  4. The system of claim 3, wherein to determine the pressure data associated with the pressure to be measured based on the fluorescence data, the pressure measurement component is configured to:
    determine the pressure data based on the color of the fluorescence.
  5. The system of claim 3 or claim 4, wherein to determine the pressure data associated with the pressure to be measured based on the fluorescence data, the pressure measurement component is configured to:
    determine the pressure data based on the peak wavelength according to a  relationship between pressure data and peak wavelength.
  6. The system of claim 5, wherein the relationship between pressure data and peak wavelength is determined by:
    applying a plurality of reference pressures to a reference sensing component, at least part of the reference sensing component being the same as the sensing component;
    for each of the plurality of reference pressures,
    emitting a laser to the reference sensing component by a reference light source; and
    determining reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser, the reference fluorescence data corresponding to the reference pressure, the reference fluorescence data comprising a reference peak wavelength of a reference fluorescence spectrum under the reference pressure; and
    determining the relationship between pressure data and peak wavelength based on the reference fluorescence data and the plurality of reference pressures.
  7. The system of claim 6, wherein the plurality of reference pressures are determined based on a calibration object.
  8. The system of claim 6 or claim 7, wherein the plurality of reference pressures are applied to the reference sensing component by a pressure device.
  9. The system of any one of claims 6-8, wherein the plurality of reference pressures range from 0 GPa to 30 GPa.
  10. The system of any one of claims 5-9, wherein the relationship between pressure data and peak wavelength is a linear relationship.
  11. The system of any of claims 1-10, wherein a sensitivity of the fluorescent material ranges from 7 (nm×GPa -1) to 8 (nm×GPa -1) .
  12. The system of any one of claims 1-11, wherein the derivative of 6-acyl-2-naphthylamine includes at least one of 6-lauroyl-2- (dimethylamino) naphthalene (laurdan) , 6-lauroyl-2- (methylamino) naphthalene (M-laurdan) , 6-lauroyl-2- [N-methyl-N-(methoxycarbonyl) amino] naphthalene (MoC-laurdan) , 6-lauroyl-2- [N-methyl-N-(carboxymethyl) amino] naphthalene (C-laurdan) , 6-formyl-2- (dimethylamino) naphthalene, 6-acetyl-2- (dimethylamino) naphthalene, or 6-propionyl-2- (dimethylamino) naphthalene.
  13. A method for pressure measurement, comprising:
    causing a sensing component to receive a pressure to be measured, the sensing component including a fluorescent material containing a derivative of 6-acyl-2-naphthylamine;
    causing a light source to emit a laser to the sensing component;
    obtaining, from a fluorescence processing component, fluorescence data associated with a fluorescence generated by the sensing component in response to the laser; and
    determining pressure data associated with the pressure to be measured based on the fluorescence data.
  14. The method of claim 13, wherein the pressure data associated with the pressure to be measured includes a value of the pressure, or a value range of the pressure.
  15. The method of claim 13 or claim 14, wherein the fluorescence data includes at least one of a fluorescence spectrum of the fluorescence, a peak wavelength of the fluorescence spectrum, or a color of the fluorescence.
  16. The method of claim 15, wherein the determining the pressure data associated with the pressure to be measured based on the fluorescence data includes:
    determining the pressure data based on the color of the fluorescence.
  17. The method of claim 15 or claim 16, wherein the determining the pressure data associated with the pressure to be measured based on the fluorescence data includes:
    determining the pressure data based on the peak wavelength according to a relationship between pressure data and peak wavelength.
  18. The method of claim 17, wherein the relationship between pressure data and peak wavelength is determined by:
    applying a plurality of reference pressures to a reference sensing component, at least part of the reference sensing component being the same as the sensing component;
    for each of the plurality of reference pressures,
    emitting a laser to the reference sensing component by a reference light source; and
    determining reference fluorescence data of a reference fluorescence generated by the reference sensing component in response to the laser, the reference fluorescence data corresponding to the reference pressure, the reference fluorescence data comprising a reference peak wavelength of a reference fluorescence spectrum under the reference pressure; and
    determining the relationship between pressure data and peak wavelength based on the reference fluorescence data and the plurality of reference pressures.
  19. The method of claim 18, wherein the plurality of reference pressures range from 0 GPa to 30 GPa.
  20. The method of any one of claims 17-19, wherein the relationship between pressure  data and peak wavelength is a linear relationship.
  21. The method of any of claims 13-20, wherein a sensitivity of the fluorescent material ranges from 7 (nm×GPa -1) to 8 (nm×GPa -1) .
  22. The method of any one of claims 13-21, wherein the derivative of 6-acyl-2-naphthylamine includes at least one of 6-lauroyl-2- (dimethylamino) naphthalene (laurdan) , 6-lauroyl-2- (methylamino) naphthalene (M-laurdan) , 6-lauroyl-2- [N-methyl-N-(methoxycarbonyl) amino] naphthalene (MoC-laurdan) , 6-lauroyl-2- [N-methyl-N-(carboxymethyl) amino] naphthalene (C-laurdan) , 6-formyl-2- (dimethylamino) naphthalene, 6-acetyl-2- (dimethylamino) naphthalene, or 6-propionyl-2- (dimethylamino) naphthalene.
  23. A method for pressure measurement, comprising:
    receiving, by a sensing component, a pressure to be measured, the sensing component including a fluorescent material containing a derivative of 6-acyl-2-naphthylamine;
    emitting, by a light source, a laser to the sensing component;
    determining, by a fluorescence processing component, fluorescence data associated with a fluorescence generated by the sensing component in response to the laser; and
    determining, by a pressure measurement component, pressure data associated with the pressure to be measured based on the fluorescence data.
PCT/CN2020/101682 2020-07-13 2020-07-13 Systems and methods for pressure measurement WO2022011508A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/101682 WO2022011508A1 (en) 2020-07-13 2020-07-13 Systems and methods for pressure measurement
CN202080001240.7A CN112088295B (en) 2020-07-13 2020-07-13 Pressure measurement system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101682 WO2022011508A1 (en) 2020-07-13 2020-07-13 Systems and methods for pressure measurement

Publications (1)

Publication Number Publication Date
WO2022011508A1 true WO2022011508A1 (en) 2022-01-20

Family

ID=73730422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101682 WO2022011508A1 (en) 2020-07-13 2020-07-13 Systems and methods for pressure measurement

Country Status (2)

Country Link
CN (1) CN112088295B (en)
WO (1) WO2022011508A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674470A (en) * 2022-03-21 2022-06-28 云南师范大学 Transparent pressure detection device based on carbon quantum dots
CN114754912A (en) * 2022-04-15 2022-07-15 云南师范大学 Optical fiber carbon quantum dot pressure detection system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094819A (en) * 1989-06-16 1992-03-10 Washington Research Foundation Fluorescence-based optical sensor and method for detection of lipid-soluble analytes
US5631141A (en) * 1995-05-05 1997-05-20 The Regents Of The University Of California High resolution biosensor for in-situ microthermometry
US20080071106A1 (en) * 2006-06-29 2008-03-20 Korea University Industry and Academy Cooperation Foundation Two-photon dyes for real-time imaging of lipid rafts
CN101452002A (en) * 2008-12-30 2009-06-10 重庆医科大学 Homogeneous phase compatible analytical method used tryptophan residue in protein as forster resonance energy transfer donator
CN106525884A (en) * 2016-11-15 2017-03-22 中国科学院高能物理研究所 Optical system and fluorescence measurement and pre-positioning method thereof
CN106632264A (en) * 2016-12-19 2017-05-10 山东大学 Probe for clearly distinguishing cell membrane-lipid raft microdomain from non-lipid-raft microdomain by using two fluorescence colors and simultaneously imaging microdomains and application of probe
CN107382978A (en) * 2017-07-28 2017-11-24 温州大学 1,4 dihydrogen pyridine derivatives and preparation method thereof and purposes
CN110028427A (en) * 2019-05-06 2019-07-19 吉林大学 Pressure containing bis- (diphenylmethylene) the anthracene structures of 9,10- causes fluorescence off-color material and its application in pressure detecting
WO2019210436A1 (en) * 2018-05-03 2019-11-07 Uster Technologies Ag Textile brightness measurement system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094819A (en) * 1989-06-16 1992-03-10 Washington Research Foundation Fluorescence-based optical sensor and method for detection of lipid-soluble analytes
US5631141A (en) * 1995-05-05 1997-05-20 The Regents Of The University Of California High resolution biosensor for in-situ microthermometry
US20080071106A1 (en) * 2006-06-29 2008-03-20 Korea University Industry and Academy Cooperation Foundation Two-photon dyes for real-time imaging of lipid rafts
CN101452002A (en) * 2008-12-30 2009-06-10 重庆医科大学 Homogeneous phase compatible analytical method used tryptophan residue in protein as forster resonance energy transfer donator
CN106525884A (en) * 2016-11-15 2017-03-22 中国科学院高能物理研究所 Optical system and fluorescence measurement and pre-positioning method thereof
CN106632264A (en) * 2016-12-19 2017-05-10 山东大学 Probe for clearly distinguishing cell membrane-lipid raft microdomain from non-lipid-raft microdomain by using two fluorescence colors and simultaneously imaging microdomains and application of probe
CN107382978A (en) * 2017-07-28 2017-11-24 温州大学 1,4 dihydrogen pyridine derivatives and preparation method thereof and purposes
WO2019210436A1 (en) * 2018-05-03 2019-11-07 Uster Technologies Ag Textile brightness measurement system
CN110028427A (en) * 2019-05-06 2019-07-19 吉林大学 Pressure containing bis- (diphenylmethylene) the anthracene structures of 9,10- causes fluorescence off-color material and its application in pressure detecting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, Y.L. ; FRANGOS, J.A. ; CHACHISVILIS, M.: "Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 347, no. 3, 1 September 2006 (2006-09-01), Amsterdam NL , pages 838 - 841, XP024925580, ISSN: 0006-291X, DOI: 10.1016/j.bbrc.2006.06.152 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674470A (en) * 2022-03-21 2022-06-28 云南师范大学 Transparent pressure detection device based on carbon quantum dots
CN114754912A (en) * 2022-04-15 2022-07-15 云南师范大学 Optical fiber carbon quantum dot pressure detection system

Also Published As

Publication number Publication date
CN112088295B (en) 2022-02-15
CN112088295A (en) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2022011508A1 (en) Systems and methods for pressure measurement
Würth et al. Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields
Li et al. Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection
Terasaki et al. Mechanoluminescent light source for a fluorescent probe molecule
EP2657998A3 (en) Semiconductor light emitting device
CN103676315A (en) Light guide plate, backlight source and liquid crystal display device
CN107703676A (en) A kind of optical film assembly, backlight module and display device
Xu et al. White-light long persistent and photo-stimulated luminescence in CaSnSiO5: Dy3+
Seliverstov et al. New fast scintillators on the base of BaF2 crystals with increased light yield of 0.9 ns luminescence for TOF PET
CN105203041B (en) A kind of method of broadband fluorescence integrated intensity than measuring strain
Dudek et al. Size‐Dependent Photon Avalanching in Tm3+ Doped LiYF4 Nano, Micro, and Bulk Crystals
Ferguson et al. The assignment of the luminescent states of Ru (bpy) 2+ 3. MCPL and time-resolved luminescence at 2.0 K
Wenger Fluorescence enhancement factors on optical antennas: enlarging the experimental values without changing the antenna design
Campomenosi et al. Establishing a protocol for the selection of zircon inclusions in garnet for Raman thermobarometry
CN107703675A (en) A kind of optical film assembly, backlight module and display device
CN111630372A (en) Light measurement device and light measurement method
Erroi et al. Ultrafast and radiation-hard lead halide perovskite nanocomposite scintillators
Wei et al. Combinatorial optimization of La, Ce-co-doped pyrosilicate phosphors as potential scintillator materials
Würth et al. Quantification of anisotropy-related uncertainties in relative photoluminescence quantum yield measurements of nanomaterials–semiconductor quantum dots and rods
CN110658169A (en) Hyperspectrum-based transmission-type testing device and method for luminescent characteristics of fluorescent powder
Fukabori et al. Fundamental optical constants of Nd-doped Y2O3 ceramic and its scintillation characteristics
Bois et al. White LED light characteristics as a function of phosphor particle size
Gruzintsev Anti-stokes luminescence of Y 2 O 3: Er
Brodu et al. Hyperfine interactions and slow spin dynamics in quasi-isotropic InP-based core/shell colloidal nanocrystals
CN110437831B (en) Method for widening light-emitting range of lead-free double perovskite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945332

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21/09/23)