WO2022009996A1 - Welding method, welding device, and welded structure of metal members - Google Patents

Welding method, welding device, and welded structure of metal members Download PDF

Info

Publication number
WO2022009996A1
WO2022009996A1 PCT/JP2021/026146 JP2021026146W WO2022009996A1 WO 2022009996 A1 WO2022009996 A1 WO 2022009996A1 JP 2021026146 W JP2021026146 W JP 2021026146W WO 2022009996 A1 WO2022009996 A1 WO 2022009996A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser
welding
energy density
metal
Prior art date
Application number
PCT/JP2021/026146
Other languages
French (fr)
Japanese (ja)
Inventor
暢康 松本
啓伍 松永
知道 安岡
昌充 金子
史香 西野
淳 寺田
和行 梅野
大烈 尹
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2022535411A priority Critical patent/JP7336035B2/en
Publication of WO2022009996A1 publication Critical patent/WO2022009996A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material

Definitions

  • the present invention relates to a welding method, a welding device, and a welding structure of a metal member.
  • one of the problems of the present invention is, for example, to obtain an improved new welding method, a welding device, and a welded structure of a metal member.
  • the welding method of the present invention includes, for example, a first member and a second member that overlaps the first member in the first direction and has a material different from that of the first member. It is a welding method in which the first member and the second member are welded by irradiating a surface located at an end in the direction opposite to the direction with a laser beam. A welded portion containing a weld metal that penetrates the first member in the first direction and reaches the second member is formed, and the penetration depth Wd of the weld metal in the first direction is the said of the first member.
  • the weld metal includes a first portion formed in the first member and a second portion formed in the second member, and the second portion is melted in the first direction.
  • the welding method of the present invention includes, for example, a first member and a second member which overlaps the first member in the first direction and is made of a material different from the first member. It is a welding method in which the first member and the second member are welded by irradiating a surface located at an end in the direction opposite to the first direction with a laser beam. A welded portion containing a weld metal that penetrates the first member from the surface in the first direction and reaches the second member is formed, and the weld metal is formed by the first portion formed in the first member and the said portion.
  • the ratio Ew2 Ww2 / Wd2 of the width Ww2 in the second direction intersecting with the first direction to the penetration depth Wd2 in the first direction of the second part including the second portion formed in the second member. However, it is 1 or more.
  • the laser beam may include a first laser beam having a wavelength of 800 [nm] or more and 1200 [nm] or less, and a second laser beam having a wavelength of 550 [nm] or less.
  • the wavelength of the second laser beam may be 400 [nm] or more and 500 [nm] or less.
  • the melting point of the second member may be lower than the melting point of the first member.
  • the first member may be a copper-based material
  • the second member may be an aluminum-based material.
  • E 1 R 1 x P 1 / (D 1 x V) ...
  • E 2 R 2 x P 2 / (D 2 x V) ...
  • E 1 is the energy density of the first laser beam [J / mm 2 ]
  • R 1 is the absorption rate of the material of the first member of the first laser beam
  • P 1 is the power of the first laser beam [J / mm 2].
  • W] and D 1 are the spot diameter [mm] of the first laser beam on the surface
  • E 2 is the energy density of the second laser beam [J / mm 2 ]
  • R 2 is the first member of the second laser beam.
  • the ratio (E 1 / E 2 ) of the energy density E 1 of the first laser beam to the energy density E 2 of the second laser beam is 0 or more and 6 or less. There may be.
  • the melting point of the first member may be lower than the melting point of the second member.
  • the second member may be a copper-based material
  • the first member may be an aluminum-based material
  • E 1 R 1 x P 1 / (D 1 x V) ...
  • E 2 R 2 x P 2 / (D 2 x V) ...
  • E 1 is the energy density of the first laser beam [J / mm 2 ]
  • R 1 is the absorption rate of the material of the first member of the first laser beam
  • P 1 is the power of the first laser beam [J / mm 2].
  • W] and D 1 are the spot diameter [mm] of the first laser beam on the surface
  • E 2 is the energy density of the second laser beam [J / mm 2 ]
  • R 2 is the first member of the second laser beam.
  • E 2 is the power of the second laser beam [W]
  • D 2 is the spot diameter [mm] of the second laser beam on the surface
  • V is the sweep rate [mm / s].
  • the thickness of the first member in the first direction is 0.1 [mm] or more and 2 [mm] or less, and the thickness of the second member in the first direction is 0. It may be 1 [mm] or more and 2 [mm] or less.
  • the welding apparatus of the present invention includes, for example, a laser oscillator, a first member, and a second member that overlaps the first member in the first direction and is made of a material different from the first member.
  • a welding device comprising an optical head that irradiates a laser beam on a surface located at an end in a direction opposite to the first direction, and welding the first member and the second member.
  • the laser beam includes a first laser beam and a second laser beam different from the first laser beam.
  • the wavelength of the first laser beam may be 800 [nm] or more and 1200 [nm] or less, and the wavelength of the second laser beam may be 550 [nm] or less.
  • the welding apparatus may include a controller capable of changing the output of the first laser beam and the second laser beam from the laser oscillator.
  • the welding device may include a controller capable of changing the sweep rate of the laser beam on the surface.
  • the welding device may include a controller capable of changing the distance between the optical head and the processing target.
  • E 1 R 1 x P 1 / (D 1 x V) ...
  • E 2 R 2 x P 2 / (D 2 x V) ...
  • E 1 is the energy density of the first laser beam [J / mm 2 ]
  • R 1 is the absorption rate of the material of the first member of the first laser beam
  • P 1 is the power of the first laser beam [J / mm 2].
  • W] and D 1 are the spot diameter [mm] of the first laser beam on the surface
  • E 2 is the energy density of the second laser beam [J / mm 2 ]
  • R 2 is the first member of the second laser beam.
  • the controller can change the ratio (E 1 / E 2 ) of the energy density E 1 of the first laser beam to the energy density E 2 of the second laser beam. There may be.
  • the welded structure of the metal member of the present invention is, for example, the first member, the second member overlapping the first member in the first direction, and the first member extending in the first direction and partially. It is a welded structure of a metal member including a weld metal that bites into the second member and includes a welded portion for welding the first member and the second member, wherein the weld metal is the first member. It has a first portion containing the same component as the member and aligned with the first member in a second direction intersecting the first direction, and a second portion containing the same component as the second member.
  • the melting point of the second member may be lower than the melting point of the first member.
  • the first member may be a copper-based material
  • the second member may be an aluminum-based material
  • the first end portion of the first portion in the first direction and the second end portion of the second portion in the opposite direction of the first direction may be in contact with each other. ..
  • the thickness of the first member in the first direction is 0.1 [mm] or more and 2 [mm] or less
  • the thickness of the second member in the first direction is , 0.1 [mm] or more and 2 [mm] or less.
  • the average value of the crystal grain sizes of the first portion and the second portion in the cross sections along the first direction and the second direction may be different from each other.
  • FIG. 1 is an exemplary schematic configuration diagram of the laser welding apparatus of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of an example of a welded structure formed by the laser welding apparatus of the embodiment.
  • FIG. 3 is an exemplary schematic diagram showing a beam (spot) of laser light formed on the surface of a processing target by the laser welding apparatus of the first embodiment.
  • FIG. 4 is a graph showing the light absorption rate of each metal material with respect to the wavelength of the irradiated laser light.
  • FIG. 5 is a schematic cross-sectional view of an example of a welded structure formed by the laser welding apparatus of the embodiment.
  • FIG. 6 is an exemplary schematic configuration diagram of the laser welding apparatus of the second embodiment.
  • FIG. 7 is an exemplary schematic configuration diagram of the laser welding apparatus of the first modification of the second embodiment.
  • FIG. 8 is an explanatory diagram showing the concept of the principle of the diffractive optical element included in the laser welding apparatus of the first modification of the second embodiment.
  • the X direction is represented by an arrow X
  • the Y direction is represented by an arrow Y
  • the Z direction is represented by an arrow Z.
  • the X, Y, and Z directions intersect and are orthogonal to each other.
  • the Z direction is the normal direction of the surface Wa (processed surface, welded surface) of the processing target W.
  • the sweep direction SD on the surface Wa of the laser beam L is along the X direction is shown, but the sweep direction SD should be along the surface Wa and intersect the Z direction. It is good, not only along the X direction.
  • FIG. 1 is a schematic configuration diagram of the laser welding apparatus 100 of the first embodiment.
  • the laser welding device 100 includes a laser device 111, a laser device 112, an optical head 120, and an optical fiber 130.
  • the laser welding device 100 is an example of a welding device.
  • the laser devices 111 and 112 each have a laser oscillator, and are configured to be capable of outputting, for example, a laser beam having a power of several kW.
  • the laser devices 111 and 112 irradiate laser light having a wavelength of 380 [nm] or more and 1200 [nm] or less.
  • the laser devices 111 and 112 have a laser light source such as a fiber laser, a semiconductor laser (element), a YAG laser, and a disk laser inside.
  • the laser devices 111 and 112 may be configured to be capable of outputting multimode laser light having a power of several kW as the total of the outputs of the plurality of light sources.
  • the laser device 111 outputs the first laser beam having a wavelength of 800 [nm] or more and 1200 [nm] or less.
  • the laser device 111 is an example of the first laser device.
  • the laser apparatus 111 has a fiber laser or a semiconductor laser (element) as a laser light source.
  • the laser oscillator included in the laser device 111 is an example of the first laser oscillator.
  • the laser device 112 outputs a second laser beam having a wavelength of 550 [nm] or less.
  • the laser device 112 is an example of a second laser device.
  • the laser device 112 has a semiconductor laser (element) as a laser light source.
  • the laser device 112 preferably outputs a second laser beam having a wavelength of 400 [nm] or more and 500 [nm] or less.
  • the laser oscillator included in the laser device 112 is an example of a second laser oscillator.
  • the optical fiber 130 guides the laser light output from the laser devices 111 and 112 to the optical head 120, respectively.
  • the optical head 120 is an optical device for irradiating the laser beam input from the laser devices 111 and 112 toward the processing target W.
  • the optical head 120 includes a collimating lens 121, a condenser lens 122, a mirror 123, and a filter 124.
  • the collimating lens 121, the condenser lens 122, the mirror 123, and the filter 124 may also be referred to as optical components.
  • the optical head 120 is configured so that the relative position with the processing target W can be changed in order to sweep the laser light L while irradiating the surface Wa of the processing target W with the laser light L.
  • the relative movement between the optical head 120 and the processing target W can be realized by the movement of the optical head 120, the movement of the processing target W, or the movement of both the optical head 120 and the processing target W.
  • the optical head 120 may be configured to be able to sweep the laser beam L on the surface Wa by having a galvano scanner or the like (not shown).
  • the collimating lens 121 (121-1, 121-2) collimates the laser beam input via the optical fiber 130, respectively.
  • the collimated laser beam becomes parallel light.
  • the mirror 123 reflects the first laser beam that has become parallel light by the collimated lens 121-1.
  • the first laser beam reflected by the mirror 123 travels in the opposite direction to the Z direction and heads toward the filter 124.
  • the mirror 123 is not required in the configuration in which the first laser beam is input to the optical head 120 so as to travel in the direction opposite to the Z direction.
  • the filter 124 is a high-pass filter that transmits the first laser beam and reflects the second laser beam without transmitting it.
  • the first laser beam passes through the filter 124, travels in the opposite direction in the Z direction, and heads toward the condenser lens 122.
  • the filter 124 reflects the second laser beam that has become parallel light by the collimated lens 121-2.
  • the second laser beam reflected by the filter 124 travels in the opposite direction to the Z direction and heads toward the condenser lens 122.
  • the condensing lens 122 condenses the first laser beam and the second laser beam as parallel light, and irradiates the processing target W as the laser beam L (output light).
  • the laser welding device 100 includes a controller 141 and a controlled mechanism whose operation is controlled by the controller 141.
  • the laser welding device 100 includes, for example, laser devices 111 and 112 and a drive mechanism 150 as controlled mechanisms.
  • the controller 141 can control the operation of the laser devices 111 and 112. Specifically, the controller 141 can switch the operation and deactivation of the laser devices 111 and 112, and change the power of the laser light emitted by the laser devices 111 and 112, for example.
  • the drive mechanism 150 changes the relative position of the optical head 120 with respect to the processing target W.
  • the drive mechanism 150 includes, for example, a rotation mechanism such as a motor, a deceleration mechanism for decelerating the rotation output of the rotation mechanism, a motion conversion mechanism for converting the rotation decelerated by the deceleration mechanism into linear motion, and the like.
  • the controller 141 can control the drive mechanism 150 so that the relative positions of the optical head 120 with respect to the processing target W in the X direction, the Y direction, and the Z direction change. Further, the controller 141 can control the drive mechanism 150 so that the sweep speed of the spot of the laser beam L on the surface Wa changes.
  • the laser welding apparatus 100 has a camera 170, a filter 127 as an optical component for guiding light to the camera 170, and a mirror 128.
  • the filter 127 is provided between the mirror 123 and the filter 124.
  • the filter 127 transmits the first laser light from the mirror 123 toward the filter 124 and reflects the light from the surface Wa (for example, visible light) toward the mirror 128.
  • the light reflected by the mirror 128 is input to the camera 170.
  • the camera 170 can capture an image on the surface Wa.
  • the image captured by the camera 170 may include, for example, an image of the surface Wa and an image of a beam (spot) by the laser beam L.
  • the image captured by the camera 170 can be said to be the detection result of the deviation of the spot formed on the surface Wa with respect to a predetermined position, and the camera 170 can be said to be an example of the sensor for detecting the deviation. ..
  • the photographed image may include the irradiation target of the laser beam L, and the image of the spot needs to be included. There is no.
  • the camera 170 and the controller 141 are examples of the detection mechanism. The controller 141 may control the operation of the camera 170.
  • the controller 141 can control the drive mechanism 150 so as to detect a deviation of the spot with respect to a predetermined position from the image captured by the camera 170 and correct the deviation. Further, the controller 141 may execute feedback control so that the deviation is within a predetermined threshold value.
  • the controller 141 and the drive mechanism 150 are examples of the correction mechanism. With such a configuration, the accuracy of the irradiation position of the laser beam can be improved.
  • the processing target W is a welded structure 10 having a plurality of metal members 11 and 12 laminated in the Z direction.
  • FIG. 2 is a cross-sectional view of a welded structure 10-1 (10) which is an example of a processing target W of the laser welding apparatus 100.
  • the cross section of FIG. 2 intersects and is orthogonal to the X direction and is along the Y and Z directions.
  • the welded structure 10-1 has a plurality of metal members 11 and 12 and a welded portion 14.
  • the plurality of metal members 11 and 12 are, for example, bus bars, electrode terminals, electrode foils, and the like, and form at least a part of the conductive path. That is, the plurality of metal members 11 and 12 are all made of a conductive metal material. However, in the present embodiment, the metal member 11 and the metal member 12 are made of different materials.
  • the welded portion 14 mechanically and electrically connects a plurality of metal members 11 and 12.
  • the melting point of the metal member 12 is lower than the melting point of the metal member 11.
  • the metal member 11 is a copper-based material such as copper or a copper alloy.
  • the metal member 12 is an aluminum-based material such as aluminum or an aluminum alloy.
  • a plating layer may be formed on the surface of at least one of the metal members 11 and 12.
  • the metal members 11 and 12 overlap in the Z direction.
  • the metal members 11 and 12 have a plate-like or foil-like shape, spread in the Z direction, and extend in the X direction and the Y direction.
  • the Z direction can also be referred to as the thickness direction of the metal members 11 and 12.
  • the welded structure 10 may also be referred to as a laminated body.
  • the metal member 11 overlaps the metal member 12 in the Z direction.
  • the metal member 12 overlaps the metal member 11 in the direction opposite to the Z direction.
  • the metal member 11 is adjacent to the metal member 12 in the Z direction and overlaps with the metal member 12 in a substantially close contact state in the Z direction.
  • the metal member 11 is an example of the first member
  • the metal member 12 is an example of the second member
  • the opposite direction in the Z direction is an example of the first direction.
  • the target W to be processed is welded by the laser welding device 100, it is temporarily fixed integrally in the laminated state of FIG. 2 by a fixture (not shown), and for example, the normal direction of the surface Wa is substantially parallel to the Z direction. It is set in the posture.
  • the surface Wa is the end face of the processing target W in the Z direction, and at the portion where the welded portion 14 is provided, the surface Wa intersects the Z direction and extends orthogonally to the Z direction.
  • the optical head 120 irradiates the laser beam L toward the surface Wa in the direction opposite to the Z direction.
  • the surface Wa is an irradiation surface of the laser beam L, and may also be referred to as a facing surface facing the optical head 120.
  • the direction opposite to the Z direction can be referred to as the irradiation direction of the laser beam L.
  • the welded portion 14 extends from the surface Wa in the direction opposite to the Z direction.
  • the direction opposite to the Z direction can also be referred to as the depth direction of the welded portion 14.
  • the depth direction of the welded portion 14 is also the irradiation direction of the laser beam L.
  • the optical head 120 moves relative to the processing target W in the sweep direction SD by the operation of the drive mechanism 150, so that the laser beam L is transferred on the surface Wa. It is swept in the sweep direction SD.
  • the welded portion 14 has a cross-sectional shape substantially similar to that in FIG. 2, and extends in the sweep direction SD (X direction in FIG. 2) along the surface Wa.
  • the sweep direction SD can also be referred to as a longitudinal direction or an extension direction of the welded portion 14.
  • the direction intersecting the Z direction and the sweep direction SD (Y direction in FIG. 2) can also be referred to as a width direction of the welded portion 14.
  • the Y direction is an example of the second direction.
  • the welded portion 14 has a welded metal 14a extending from the surface Wa in the opposite direction in the Z direction, and a heat-affected zone 14b located around the welded metal 14a.
  • the weld metal 14a is a portion that is melted by irradiation with the laser beam L and then solidified.
  • the weld metal 14a may also be referred to as a melt-solidified portion.
  • the heat-affected zone 14b is a portion where the base material of the processing target W is thermally affected and is not melted.
  • the heat-affected zone 14b has a first zone 14b1 formed in the metal member 11 and a second zone 14b2 formed in the metal member 12.
  • the weld metal 14a extends the metal member 11 from the surface Wa in the opposite direction to the Z direction.
  • the end portion of the weld metal 14a in the opposite direction to the Z direction partially bites into the metal member 12.
  • the heat-affected zone 14b is located around the weld metal 14a. In the Y direction, the heat-affected zone 14b is adjacent to both sides of the weld metal 14a. In other words, in the Y direction, the heat-affected zone 14b is located outside the weld metal 14a. Further, the heat-affected zone 14b is partially adjacent to the weld metal 14a in the direction opposite to the Z direction.
  • the weld metal 14a has a first portion 14a1 formed in the metal member 11 and a second portion 14a2 formed in the metal member 12.
  • the first portion 14a1 contains the same components as the metal member 11, and the second portion 14a2 contains the same components as the metal member 12.
  • the first portion 14a1 is a portion melted and solidified by irradiation with the first laser beam and the second laser beam. Further, the second portion 14a2 is a portion that is melted and solidified mainly by heat conduction from the first portion 14a1.
  • the cross section intersecting the sweep direction SD that is, the irradiation direction of the laser beam L (the depth direction of the welded portion 14) and the width of the welded portion 14, respectively.
  • the average value of the crystal grain size in the cross section along the direction and the main elements are different.
  • the first site 14a1 and the second site 14a2 are analyzed by the EBSD method (electron back scattered diffraction pattern) and EDS (energy dispersive X-ray spectroscopy, energy) for the cross section of FIG. 2 of the welded structure 10. It can be discriminated by elemental analysis by dispersion X-ray spectroscopy).
  • the first portion 14a1 penetrates the metal member 11 in the Z direction. Therefore, the first portion 14a1 is aligned with the metal member 11 (base material) in the Y direction.
  • the second portion 14a2 is adjacent to the first portion 14a1 in the direction opposite to the Z direction. Therefore, in the example of FIG. 2, the end portion 14c2 in the Z direction of the second portion 14a2 is in contact with the end portion 14c1 in the opposite direction in the Z direction of the first portion 14a1.
  • the end portion 14c1 is an example of a first end portion
  • the end portion 14c2 is an example of a second end portion.
  • the outflow of the component of the first part 14a1 to the second part 14a2 is suppressed. That is, it was confirmed that the formation of intermetallic compounds was suppressed.
  • the second portion 14a2 is obtained by melting due to the conduction of heat from the first portion 14a1 and the first zone 14b1, that is, by the heat conduction type melting. .. At this time, it can be estimated that the second portion 14a2 is heated to a temperature higher than the melting point of the metal member 12.
  • the degree of suppression of the outflow of the component of the first site 14a1 to the second site 14a2 can be expressed by, for example, the distribution of the abundance of the component of the metal member 11 in the second site 14a2 in the Z direction.
  • the abundance (mass) at a position near the boundary surface with the first site 14a1 (or the first zone 14b1) in the second site 14a2 is second from the boundary surface in the Z direction.
  • the ratio of the abundance (mass) at the position of 1/2 of the length (depth) of the portion 14a2 may be 100%.
  • the ratio decreases to, for example, 50%.
  • the ratio is preferably as low as possible from the viewpoint of suppressing outflow, that is, suppressing the formation of intermetallic compounds, and is preferably as low as 40%, 30%, 20%, or 10%, for example.
  • FIG. 3 is a schematic diagram showing a beam (spot) of a laser beam L irradiated on a flat surface Wa.
  • Each of the beam B1 and the beam B2 has, for example, a Gaussian-shaped power distribution in the radial direction of the cross section orthogonal to the optical axis direction of the beam.
  • the power distribution of the beam B1 and the beam B2 is not limited to the Gaussian shape.
  • the diameter of the circle representing the beams B1 and B2 is the beam diameter of each beam B1 and B2.
  • Beam diameter of each beam B1, B2 includes a peak of the beam is defined as the diameter of the region of 1 / e 2 or more of the intensity of the peak intensity.
  • the beam diameter if the beam is not circular, (in the figure, Y-direction) the sweep direction SD and the vertical direction in the length of the region to be the 1 / e 2 or more of the intensity of the peak intensity can be defined as the beam diameter .
  • the beam diameter on the surface Wa is referred to as a spot diameter.
  • the beam B1 of the first laser beam and the beam B2 of the second laser beam overlap on the surface Wa, and the beam B2 is formed. It is larger (wider) than the beam B1 and is formed so that the outer edge B2a of the beam B2 surrounds the outer edge B1a of the beam B1.
  • the spot diameter D2 of the beam B2 is larger than the spot diameter D1 of the beam B1.
  • the beam B1 is an example of the first spot
  • the beam B2 is an example of the second spot.
  • the beam (spot) of the laser beam L since the beam (spot) of the laser beam L has a point-symmetrical shape with respect to the center point C on the surface Wa, the SD in an arbitrary sweep direction is used. , The shape of the spot will be the same. Therefore, when a moving mechanism for relatively moving the optical head 120 and the processing target W for sweeping the surface Wa of the laser beam L is provided, the moving mechanism should have at least a relatively translatable mechanism. However, the relatively rotatable mechanism may be omitted.
  • FIG. 4 is a graph showing the light absorption rate of each metal material with respect to the wavelength of the laser beam L to be irradiated.
  • the horizontal axis of the graph of FIG. 4 is the wavelength, and the vertical axis is the absorption rate.
  • FIG. 4 shows the relationship between wavelength and absorptance for aluminum (Al), copper (Cu), gold (Au), nickel (Ni), silver (Ag), tantalum (Ta), and titanium (Ti). It is shown.
  • a blue or green laser beam (second laser) is used rather than using a general infrared (IR) laser beam (first laser beam). It can be understood that the energy absorption rate is higher when light) is used. This feature is remarkable in copper (Cu), gold (Au), and the like.
  • the laser beam When the laser beam is applied to the processing target W, which has a relatively low absorption rate with respect to the wavelength used, most of the light energy is reflected and does not affect the processing target W as heat. Therefore, it is necessary to apply a relatively high power in order to obtain a melting region having a sufficient depth. In that case, energy is suddenly applied to the central part of the beam, so that sublimation occurs and a keyhole is formed.
  • the wavelength of the first laser beam, the wavelength of the second laser beam, and the wavelength of the processing target W are such that the absorption rate of the processing target W with respect to the second laser light is higher than the absorption rate with respect to the first laser light.
  • the material is selected.
  • the welded portion (hereinafter referred to as the welded portion) of the processing target W due to the sweeping of the spot of the laser beam L is first, first.
  • the second laser beam is irradiated by the region B2f of the beam B2 of the second laser beam located in front of the SD in FIG.
  • the welded portion is irradiated with the beam B1 of the first laser beam, and then the second laser beam is irradiated again by the region B2b of the beam B2 of the second laser beam located behind the sweep direction SD.
  • a heat conduction type melting region is first generated by irradiation with a second laser beam having a high absorption rate in the region B2f. After that, a deeper keyhole-type melting region is generated in the welded portion by irradiation with the first laser beam.
  • the required depth is obtained by the first laser beam having a lower power than in the case where the heat conduction type melting region is not formed.
  • a molten region can be formed.
  • the welded portion is changed in a molten state by irradiation with a second laser beam having a high absorption rate in the region B2b.
  • the wavelength of the second laser beam is preferably 550 [nm] or less, and more preferably 500 [nm] or less.
  • the welding structure 10 in which the metal member 11 and the metal member 12 are integrally temporarily fixed by a holder (not shown) irradiates the surface Wa with the laser beam L. It is set to be done. Then, in a state where the surface Wa is irradiated with the laser beam L including the beam B1 and the beam B2, the laser beam L and the welded structure 10 are relatively moved. As a result, the laser beam L moves (sweeps) in the sweep direction SD on the surface Wa while being irradiated on the surface Wa. The portion irradiated with the laser beam L melts, and then solidifies as the temperature decreases, so that the metal member 11 and the metal member 12 are joined via the welded portion 14, and the welded structure 10 is integrated. Will be done.
  • E n R n ⁇ P n / (D n ⁇ V) ⁇ (1)
  • E n the energy density [J / mm 2]
  • R n the laser light absorption rate in the material of the member (first member) that is irradiated with the laser light
  • P n the laser light by the laser device power [W]
  • D n the spot diameter at the surface Wa [mm]
  • V is the sweep rate [mm / s].
  • E n the energy density
  • the energy density may also be referred to as an effective energy density.
  • the energy density ratio Re1 is preferably 0 or more and 6 or less, more preferably 0 or more and 4 or less, and even more preferably 0 or more and 2 or less. found.
  • the thickness T1 (see FIG. 1) of the metal member 11 is 0.1 [mm] or more and 2 [mm] or less
  • the thickness T2 of the metal member 12 (see FIG. 1) is 0.
  • the experimental results when it is 1 [mm] or more and 2 [mm] or less are shown.
  • the controller 141 can control a controlled mechanism such as a laser device 111, 112 or a drive mechanism 150 so that the ratio Re1 changes.
  • FIG. 5 is a cross-sectional view of the welded structure 10-2 (10), which is an example of the processing target W of the laser welding apparatus 100.
  • the cross section of FIG. 5 intersects and is orthogonal to the X direction and is along the Y and Z directions.
  • the welded structure 10-2 exemplified in FIG. 5 has metal members 11 and 12 made of the same material as the welded structure 10-1 illustrated in FIG. However, in the welded structure 10-2, the arrangement (stacking order) of the metal members 11 and 12 in the Z direction is opposite to that of the welded structure 10-1.
  • the metal member 12 overlaps the metal member 11 in the Z direction.
  • the metal member 11 overlaps the metal member 12 in the direction opposite to the Z direction.
  • the metal member 12 is adjacent to the metal member 11 in the Z direction and overlaps with the metal member 11 in a substantially close contact state in the Z direction.
  • the metal member 12 is an example of the first member
  • the metal member 11 is an example of the second member.
  • the weld metal 14a is a second portion 14a2 formed in the metal member 12 and obtained by melting the heat conductive type, and a second portion 14a2 formed in the metal member 11 and obtained by melting the heat conductive type. It has one site 14a1 and.
  • the second portion 14a2 penetrates the metal member 12.
  • the first portion 14a1 is adjacent to the second portion 14a2 in the direction opposite to the Z direction.
  • the end portion 14c2 of the second portion 14a2 in the opposite direction in the Z direction and the end portion 14c1 of the first portion 14a1 in the Z direction are in contact with each other.
  • the energy density ratio Re1 is preferably 1 or more, more preferably 1 or more and 20 or less, and even more preferably 3 or more and 10 or less.
  • the thickness T1 of the metal member 11 is 0.1 [mm] or more and 2 [mm] or less
  • the thickness T2 of the metal member 12 is 0.1 [mm] or more and 2 [mm] or less.
  • controller 141 can control a controlled mechanism such as the laser devices 111 and 112 and the drive mechanism 150 so that the ratio Re2 changes.
  • the laser welding device 100 controls the operation of the laser devices 111 and 112 and the drive mechanism 150 under the conditions suitable for each case by the controller 141, thereby controlling the welding structures 10-1 of FIG. 2 and the welding structure of FIG. For 10-2 and other welded structures not shown, higher connection strength and higher quality welds can be performed.
  • Table 3 shows the energy density [J / mm] when the thickness T1 of the metal member 11 is 0.5 [mm] or less and the thickness T2 of the metal member 12 is 1.0 [mm]. 2 ] shows the experimental results for a plurality of samples (Sample Nos. 1 to 3) with different differences.
  • Wd2 (see FIG. 2) is the penetration depth of the second portion 14a2 of the weld metal 14a, which is the end portion 14c2 of the second portion 14a2 in the Z direction (in the Z direction, in the Z direction of the metal member 12). It is the depth from (the same position as the end face) to the tip of the second portion 14a2 in the opposite direction in the Z direction.
  • the penetration depths Wd and Wd2 are based on the JIS Handbook 40-1 Welding I (basic), 4.1.6 Welding Design, 11619 "Pluding".
  • This ratio Ew2 can also be referred to as the aspect ratio of the second portion 14a2.
  • the width Ww2 conforms to JIS Handbook 40-1 Welding I (basic), 4.1.6 Welding design, 11605 "Welding width”.
  • the penetration Wd2 of the second portion 14a2 is 500 [ ⁇ m] or less, that is, Wd ⁇ T1 + 0.5 [mm], and the maximum value of the shear stress is 100 [Mpa]. With the above, the required bonding strength is obtained.
  • the penetration depth Wd of the weld metal 14a is too shallow with respect to the thickness T1 of the metal member 11, in other words, the weld metal 14a does not penetrate the metal member 11 and does not reach the metal member 12. In some cases, it was found that it was difficult to obtain the required joint strength.
  • the penetration depth Wd2 of the second portion 14a2 is preferably not so deep.
  • the weld metal 14a penetrates at least the metal member 11, and the total penetration depth Wd of the weld metal 14a is substantially the same as or slightly deeper (thick, longer) than the thickness T1 of the metal member 11. It has been found that T1 ⁇ Wd ⁇ T1 + 0.5 [mm] is preferable.
  • Findings 1 and 2 are the same in the welded structure 10-2 in which the positions of the metal member 11 and the metal member 12 are interchanged.
  • the weld metal 14a has a first portion 14a1 and a second portion 14a2, and the first portion 14a1 is in the metal member 11 (first member) in the Z direction.
  • the second portion 14a2 is located in the metal member 12 (second member) and is adjacent to or separated from the first portion 14a1 in the opposite direction of the Z direction. There is.
  • the welded structure 10-1 having the welded portion 14 including the weld metal 14a having such a configuration is obtained by welding by irradiation with the first laser beam and the laser beam L including the second laser beam.
  • the welded structure 10-1 for example, the outflow of the component of the first portion 14a1 to the second portion 14a2, that is, the formation of the intermetallic compound can be suppressed. Therefore, according to the present embodiment, for example, the welded structure 10-1 having the required joint strength can be obtained more easily or more quickly.
  • the controller 141 switches and controls the operation of controlled mechanisms such as the laser devices 111 and 112 and the drive mechanism 150, whereby the welding structure 10 is used. It is possible to form a welded portion 14 suitable for various machining targets W having different specifications such as material, arrangement, and thickness of metal members including -1 and 10-2. According to such a configuration, for example, since it is not necessary to perform welding using a different laser welding device for each processing target W, welding can be performed more quickly, and the labor and cost of welding can be reduced. You can get the advantage of being able to do it.
  • FIG. 6 is a schematic configuration diagram of the laser welding apparatus 100A of the second embodiment.
  • the optical head 120 has a galvano scanner 126 between the filter 124 and the condenser lens 122. Except for this point, the laser welding apparatus 100A has the same configuration as the laser welding apparatus 100 of the first embodiment.
  • the galvano scanner 126 has two mirrors 126a and 126b, and by controlling the angles of the two mirrors 126a and 126b, the irradiation position of the laser beam L can be set without moving the optical head 120. It is a device that can be moved to sweep the laser beam L.
  • the angles of the mirrors 126a and 126b are changed by, for example, a motor (not shown) controlled by the controller 141, respectively. Further, the controller 141 can control the motor and the like so that the sweep speed of the spot of the laser beam L on the surface Wa changes. With such a configuration, a mechanism for relatively moving the optical head 120 and the processing target W becomes unnecessary, and for example, there is an advantage that the device configuration can be miniaturized.
  • the controller 141 can control the galvano scanner 126 so as to detect a deviation of the spot with respect to a predetermined position from the image captured by the camera 170 and correct the deviation. Further, the controller 141 may execute feedback control so that the deviation is within a predetermined threshold value.
  • the controller 141 and the galvano scanner 126 are examples of the correction mechanism. With such a configuration, the accuracy of the irradiation position of the laser beam can be improved.
  • the weld having the welded portion 14 containing the weld metal 14a having the same configuration as that of the first embodiment is welded.
  • Structure 10 can be obtained. Therefore, according to the present embodiment, for example, the welded structure 10 having the required joint strength can be obtained more easily or more quickly.
  • FIG. 7 is a schematic configuration diagram of the laser welding apparatus 100B of the first modification of the second embodiment.
  • the optical head 120 has a DOE125 (diffractive optical element) between the collimating lens 121-2 and the filter 124. Except for this point, the laser welding apparatus 100B has the same configuration as the laser welding apparatus 100A of the second embodiment.
  • DOE125 diffractive optical element
  • the DOE 125 is arranged between the collimating lens 121-2 and the condenser lens 122, and forms the shape of the beam of the laser beam (hereinafter referred to as the beam shape).
  • the DOE 125 has, for example, a configuration in which a plurality of diffraction gratings 125a having different periods are superposed.
  • the DOE 125 can form a more suitable beam shape by bending or superimposing parallel light in a direction affected by each diffraction grating 125a.
  • DOE125 may also be referred to as a beam shaper.
  • the DOE 125 may be arranged between the collimating lens 121-1 and the condenser lens 122. Further, the beam of the laser beam output from only one of the laser devices 111 and 112 may be formed by the DOE 125 and then irradiated to the processing target W.
  • the number of metal members may be 3 or more.
  • the surface area of the molten pool may be adjusted by sweeping by known wobbling, weaving, output modulation or the like.
  • the present invention can be used for welding methods, welding devices, and welding structures of metal members.

Abstract

This welding method for welding a workpiece that, for example, includes a first member and a second member overlapping the first member in a first direction and comprising a different material than the first member, said welding being carried out by irradiating a surface with laser light, said surface being located on an end portion in the opposite direction from the first direction, and thereby welding the first member and the second member, wherein a welded portion that includes welded metal stretching from the surface and through the first member in the first direction to the second member is formed in the workpiece, and when the thickness of the first member in the first direction is defined as T1, the penetration depth Wd of the welded metal in the first direction is T1<Wd≤T1+0.5(mm). In addition, the ratio Ew2=Ww2/Wd2 of the width Ww2 in a second direction intersecting the first direction with respect to a penetration depth Wd2 of a second region in the first direction may be 1 or greater.

Description

溶接方法、溶接装置、および金属部材の溶接構造Welding method, welding equipment, and welded structure of metal parts
 本発明は、溶接方法、溶接装置、および金属部材の溶接構造に関する。 The present invention relates to a welding method, a welding device, and a welding structure of a metal member.
 従来、異種金属のレーザ溶接については、金属間化合物が生成されることによる脆化が問題となっている。その対策として、レーザ光を照射しながら走査する工程を複数回行い、各走査の位置、タイミング、およびレーザ光の出力を調整することにより金属間化合物の生成を抑制する溶接方法が、知られている(例えば、特許文献1)。 Conventionally, in laser welding of dissimilar metals, embrittlement due to the formation of intermetallic compounds has become a problem. As a countermeasure, a welding method is known in which scanning is performed multiple times while irradiating a laser beam, and the position, timing, and output of the laser beam are adjusted to suppress the formation of intermetallic compounds. (For example, Patent Document 1).
特開2019-081183号公報Japanese Unexamined Patent Publication No. 2019-081183
 しかしながら、上記従来の溶接方法にあっては、例えば、複数回の走査を要する分、溶接が完了するまでの所要時間が長くなったり、各走査における走査位置や、タイミング、出力等の調整が面倒であったり、といった課題が生じる虞があった。 However, in the above-mentioned conventional welding method, for example, since a plurality of scans are required, the time required for welding to be completed becomes long, and it is troublesome to adjust the scan position, timing, output, etc. in each scan. There was a risk that problems such as
 そこで、本発明の課題の一つは、例えば、改善された新たな溶接方法、溶接装置、および金属部材の溶接構造を得ること、である。 Therefore, one of the problems of the present invention is, for example, to obtain an improved new welding method, a welding device, and a welded structure of a metal member.
 本発明の溶接方法は、例えば、第一部材と、当該第一部材に対して第一方向に重なるとともに当該第一部材とは異なる材質の第二部材と、を含む加工対象の、前記第一方向とは反対方向の端部に位置した表面上にレーザ光を照射することにより、前記第一部材と前記第二部材とを溶接する溶接方法であって、前記加工対象には、前記表面から前記第一部材を前記第一方向に貫通して前記第二部材に至る溶接金属を含む溶接部が形成され、前記溶接金属の前記第一方向の溶け込み深さWdは、前記第一部材の前記第一方向の厚さをT1とした場合に、T1<Wd≦T1+0.5[mm]である。 The welding method of the present invention includes, for example, a first member and a second member that overlaps the first member in the first direction and has a material different from that of the first member. It is a welding method in which the first member and the second member are welded by irradiating a surface located at an end in the direction opposite to the direction with a laser beam. A welded portion containing a weld metal that penetrates the first member in the first direction and reaches the second member is formed, and the penetration depth Wd of the weld metal in the first direction is the said of the first member. When the thickness in the first direction is T1, T1 <Wd ≦ T1 + 0.5 [mm].
 前記溶接方法では、前記溶接金属は、前記第一部材において形成される第一部位と、前記第二部材において形成される第二部位と、を含み、前記第二部位の前記第一方向の溶け込み深さWd2に対する前記第一方向と交差した第二方向の幅Ww2の比Ew2=Ww2/Wd2が、1以上であってもよい。 In the welding method, the weld metal includes a first portion formed in the first member and a second portion formed in the second member, and the second portion is melted in the first direction. The ratio Ew2 = Ww2 / Wd2 of the width Ww2 in the second direction intersecting with the first direction to the depth Wd2 may be 1 or more.
 また、本発明の溶接方法は、例えば、第一部材と、当該第一部材に対して第一方向に重なるとともに当該第一部材とは異なる材質の第二部材と、を含む加工対象の、前記第一方向とは反対方向の端部に位置した表面上にレーザ光を照射することにより、前記第一部材と前記第二部材とを溶接する溶接方法であって、前記加工対象には、前記表面から前記第一部材を前記第一方向に貫通して前記第二部材に至る溶接金属を含む溶接部が形成され、前記溶接金属は、前記第一部材において形成される第一部位と、前記第二部材において形成される第二部位と、を含み、前記第二部位の前記第一方向の溶け込み深さWd2に対する前記第一方向と交差した第二方向の幅Ww2の比Ew2=Ww2/Wd2が、1以上である。 Further, the welding method of the present invention includes, for example, a first member and a second member which overlaps the first member in the first direction and is made of a material different from the first member. It is a welding method in which the first member and the second member are welded by irradiating a surface located at an end in the direction opposite to the first direction with a laser beam. A welded portion containing a weld metal that penetrates the first member from the surface in the first direction and reaches the second member is formed, and the weld metal is formed by the first portion formed in the first member and the said portion. The ratio Ew2 = Ww2 / Wd2 of the width Ww2 in the second direction intersecting with the first direction to the penetration depth Wd2 in the first direction of the second part including the second portion formed in the second member. However, it is 1 or more.
 前記溶接方法では、前記レーザ光は、800[nm]以上かつ1200[nm]以下の波長の第一レーザ光と、550[nm]以下の波長の第二レーザ光と、を含んでもよい。 In the welding method, the laser beam may include a first laser beam having a wavelength of 800 [nm] or more and 1200 [nm] or less, and a second laser beam having a wavelength of 550 [nm] or less.
 前記溶接方法では、前記第二レーザ光の波長は、400[nm]以上かつ500[nm]以下であってもよい。 In the welding method, the wavelength of the second laser beam may be 400 [nm] or more and 500 [nm] or less.
 前記溶接方法では、前記第二部材の融点は、前記第一部材の融点よりも低くてもよい。 In the welding method, the melting point of the second member may be lower than the melting point of the first member.
 前記第一部材は、銅系材料であり、前記第二部材は、アルミニウム系材料であってもよい。 The first member may be a copper-based material, and the second member may be an aluminum-based material.
 前記溶接方法では、以下の式(1)および式(2)
 E=R×P/(D×V) ・・・ (1)
 E=R×P/(D×V) ・・・ (2)
ここに、Eは、第一レーザ光のエネルギ密度[J/mm]、Rは、第一レーザ光の第一部材の材料における吸収率、Pは、第一レーザ光のパワー[W]、Dは、表面における第一レーザ光のスポット径[mm]、Eは、第二レーザ光のエネルギ密度[J/mm]、Rは、第二レーザ光の第一部材の材料における吸収率、Pは、第二レーザ光のパワー[W]、Dは、表面における第二レーザ光のスポット径[mm]、およびVは、掃引速度[mm/s]、で表せるエネルギ密度E,Eを定義した場合、第一レーザ光のエネルギ密度Eの、第二レーザ光のエネルギ密度Eに対する比(E/E)が、0以上かつ6以下であってもよい。
In the welding method, the following equations (1) and (2)
E 1 = R 1 x P 1 / (D 1 x V) ... (1)
E 2 = R 2 x P 2 / (D 2 x V) ... (2)
Here, E 1 is the energy density of the first laser beam [J / mm 2 ], R 1 is the absorption rate of the material of the first member of the first laser beam, and P 1 is the power of the first laser beam [J / mm 2]. W] and D 1 are the spot diameter [mm] of the first laser beam on the surface, E 2 is the energy density of the second laser beam [J / mm 2 ], and R 2 is the first member of the second laser beam. 2 is the power of the second laser beam [W], D 2 is the spot diameter [mm] of the second laser beam on the surface, and V is the sweep rate [mm / s]. When the energy densities E 1 and E 2 that can be expressed are defined, the ratio (E 1 / E 2 ) of the energy density E 1 of the first laser beam to the energy density E 2 of the second laser beam is 0 or more and 6 or less. There may be.
 前記溶接方法では、前記第一部材の融点は、前記第二部材の融点よりも低くてもよい。 In the welding method, the melting point of the first member may be lower than the melting point of the second member.
 前記溶接方法では、前記第二部材は、銅系材料であり、前記第一部材は、アルミニウム系材料であってもよい。 In the welding method, the second member may be a copper-based material, and the first member may be an aluminum-based material.
 前記溶接方法では、以下の式(1)および式(2)
 E=R×P/(D×V) ・・・ (1)
 E=R×P/(D×V) ・・・ (2)
ここに、Eは、第一レーザ光のエネルギ密度[J/mm]、Rは、第一レーザ光の第一部材の材料における吸収率、Pは、第一レーザ光のパワー[W]、Dは、表面における第一レーザ光のスポット径[mm]、Eは、第二レーザ光のエネルギ密度[J/mm]、Rは、第二レーザ光の第一部材の材料における吸収率、Pは、第二レーザ光のパワー[W]、Dは、表面における第二レーザ光のスポット径[mm]、およびVは、掃引速度[mm/s]、で表せるエネルギ密度E,Eを定義した場合、第一レーザ光のエネルギ密度Eの、第二レーザ光のエネルギ密度Eに対する比(E/E)が、1以上であってもよい。
In the welding method, the following equations (1) and (2)
E 1 = R 1 x P 1 / (D 1 x V) ... (1)
E 2 = R 2 x P 2 / (D 2 x V) ... (2)
Here, E 1 is the energy density of the first laser beam [J / mm 2 ], R 1 is the absorption rate of the material of the first member of the first laser beam, and P 1 is the power of the first laser beam [J / mm 2]. W] and D 1 are the spot diameter [mm] of the first laser beam on the surface, E 2 is the energy density of the second laser beam [J / mm 2 ], and R 2 is the first member of the second laser beam. 2 is the power of the second laser beam [W], D 2 is the spot diameter [mm] of the second laser beam on the surface, and V is the sweep rate [mm / s]. When the energy densities E 1 and E 2 that can be expressed are defined, even if the ratio (E 1 / E 2 ) of the energy density E 1 of the first laser light to the energy density E 2 of the second laser light is 1 or more. good.
 前記溶接方法では、前記第一部材の前記第一方向の厚さは、0.1[mm]以上2[mm]以下であり、前記第二部材の前記第一方向の厚さは、0.1[mm]以上2[mm]以下であってもよい。 In the welding method, the thickness of the first member in the first direction is 0.1 [mm] or more and 2 [mm] or less, and the thickness of the second member in the first direction is 0. It may be 1 [mm] or more and 2 [mm] or less.
 本発明の溶接装置は、例えば、レーザ発振器と、第一部材と、当該第一部材に対して第一方向に重なるとともに当該第一部材とは異なる材質の第二部材と、を含む加工対象の、前記第一方向とは反対方向の端部に位置した表面上にレーザ光を照射する光学ヘッドと、を備え、前記第一部材と前記第二部材とを溶接する、溶接装置であって、前記レーザ光は、第一レーザ光と当該第一レーザ光とは異なる第二レーザ光とを含む。 The welding apparatus of the present invention includes, for example, a laser oscillator, a first member, and a second member that overlaps the first member in the first direction and is made of a material different from the first member. A welding device comprising an optical head that irradiates a laser beam on a surface located at an end in a direction opposite to the first direction, and welding the first member and the second member. The laser beam includes a first laser beam and a second laser beam different from the first laser beam.
 前記溶接装置では、前記第一レーザ光の波長は、800[nm]以上かつ1200[nm]以下であり、前記第二レーザ光の波長は、550[nm]以下であってもよい。 In the welding apparatus, the wavelength of the first laser beam may be 800 [nm] or more and 1200 [nm] or less, and the wavelength of the second laser beam may be 550 [nm] or less.
 前記溶接装置は、前記レーザ発振器からの第一レーザ光および第二レーザ光の出力を変更可能なコントローラを備えてもよい。 The welding apparatus may include a controller capable of changing the output of the first laser beam and the second laser beam from the laser oscillator.
 前記溶接装置は、前記レーザ光の前記表面上での掃引速度を変更可能なコントローラを備えてもよい。 The welding device may include a controller capable of changing the sweep rate of the laser beam on the surface.
 前記溶接装置は、前記光学ヘッドと前記加工対象との間の距離を変更可能なコントローラを備えてもよい。 The welding device may include a controller capable of changing the distance between the optical head and the processing target.
 前記溶接装置では、以下の式(1)および式(2)
 E=R×P/(D×V) ・・・ (1)
 E=R×P/(D×V) ・・・ (2)
ここに、Eは、第一レーザ光のエネルギ密度[J/mm]、Rは、第一レーザ光の第一部材の材料における吸収率、Pは、第一レーザ光のパワー[W]、Dは、表面における第一レーザ光のスポット径[mm]、Eは、第二レーザ光のエネルギ密度[J/mm]、Rは、第二レーザ光の第一部材の材料における吸収率、Pは、第二レーザ光のパワー[W]、Dは、表面における第二レーザ光のスポット径[mm]、およびVは、掃引速度[mm/s]、で表せるエネルギ密度E,Eを定義した場合、前記コントローラは、第一レーザ光のエネルギ密度Eの、第二レーザ光のエネルギ密度Eに対する比(E/E)を変更可能であってもよい。
In the welding apparatus, the following equations (1) and (2)
E 1 = R 1 x P 1 / (D 1 x V) ... (1)
E 2 = R 2 x P 2 / (D 2 x V) ... (2)
Here, E 1 is the energy density of the first laser beam [J / mm 2 ], R 1 is the absorption rate of the material of the first member of the first laser beam, and P 1 is the power of the first laser beam [J / mm 2]. W] and D 1 are the spot diameter [mm] of the first laser beam on the surface, E 2 is the energy density of the second laser beam [J / mm 2 ], and R 2 is the first member of the second laser beam. 2 is the power of the second laser beam [W], D 2 is the spot diameter [mm] of the second laser beam on the surface, and V is the sweep rate [mm / s]. When the energy densities E 1 and E 2 that can be expressed are defined, the controller can change the ratio (E 1 / E 2 ) of the energy density E 1 of the first laser beam to the energy density E 2 of the second laser beam. There may be.
 本発明の金属部材の溶接構造は、例えば、第一部材と、前記第一部材に対して第一方向に重なった第二部材と、前記第一部材内で前記第一方向に延びるとともに部分的に前記第二部材に食い込む溶接金属を含み、前記第一部材と前記第二部材とを溶接する溶接部と、を備えた、金属部材の溶接構造であって、前記溶接金属は、前記第一部材と同じ成分を含み前記第一方向と交差する第二方向に前記第一部材と並ぶ第一部位と、前記第二部材と同じ成分を含む第二部位と、を有する。 The welded structure of the metal member of the present invention is, for example, the first member, the second member overlapping the first member in the first direction, and the first member extending in the first direction and partially. It is a welded structure of a metal member including a weld metal that bites into the second member and includes a welded portion for welding the first member and the second member, wherein the weld metal is the first member. It has a first portion containing the same component as the member and aligned with the first member in a second direction intersecting the first direction, and a second portion containing the same component as the second member.
 前記金属部材の溶接構造では、前記第二部材の融点は、前記第一部材の融点よりも低くてもよい。 In the welded structure of the metal member, the melting point of the second member may be lower than the melting point of the first member.
 前記金属部材の溶接構造では、前記第一部材は、銅系材料であり、前記第二部材は、アルミニウム系材料であってもよい。 In the welded structure of the metal member, the first member may be a copper-based material, and the second member may be an aluminum-based material.
 前記金属部材の溶接構造では、前記第一部位の前記第一方向の第一端部と、前記第二部位の前記第一方向の反対方向の第二端部とは、互いに接していてもよい。 In the welded structure of the metal member, the first end portion of the first portion in the first direction and the second end portion of the second portion in the opposite direction of the first direction may be in contact with each other. ..
 前記金属部材の溶接構造では、前記第一部材の前記第一方向の厚さは、0.1[mm]以上2[mm]以下であり、前記第二部材の前記第一方向の厚さは、0.1[mm]以上2[mm]以下であってもよい。 In the welded structure of the metal member, the thickness of the first member in the first direction is 0.1 [mm] or more and 2 [mm] or less, and the thickness of the second member in the first direction is , 0.1 [mm] or more and 2 [mm] or less.
 前記金属部材の溶接構造では、前記第一部位および前記第二部位の、前記第一方向および前記第二方向に沿う断面における結晶粒のサイズの平均値は、互いに異なってもよい。 In the welded structure of the metal member, the average value of the crystal grain sizes of the first portion and the second portion in the cross sections along the first direction and the second direction may be different from each other.
図1は、第1実施形態のレーザ溶接装置の例示的な概略構成図である。FIG. 1 is an exemplary schematic configuration diagram of the laser welding apparatus of the first embodiment. 図2は、実施形態のレーザ溶接装置によって形成された溶接構造の一例の模式的な断面図である。FIG. 2 is a schematic cross-sectional view of an example of a welded structure formed by the laser welding apparatus of the embodiment. 図3は、第1実施形態のレーザ溶接装置によって加工対象の表面上に形成されるレーザ光のビーム(スポット)を示す例示的な模式図である。FIG. 3 is an exemplary schematic diagram showing a beam (spot) of laser light formed on the surface of a processing target by the laser welding apparatus of the first embodiment. 図4は、照射するレーザ光の波長に対する各金属材料の光の吸収率を示すグラフである。FIG. 4 is a graph showing the light absorption rate of each metal material with respect to the wavelength of the irradiated laser light. 図5は、実施形態のレーザ溶接装置によって形成された溶接構造の一例の模式的な断面図である。FIG. 5 is a schematic cross-sectional view of an example of a welded structure formed by the laser welding apparatus of the embodiment. 図6は、第2実施形態のレーザ溶接装置の例示的な概略構成図である。FIG. 6 is an exemplary schematic configuration diagram of the laser welding apparatus of the second embodiment. 図7は、第2実施形態の第1変形例のレーザ溶接装置の例示的な概略構成図である。FIG. 7 is an exemplary schematic configuration diagram of the laser welding apparatus of the first modification of the second embodiment. 図8は、第2実施形態の第1変形例のレーザ溶接装置に含まれる回折光学素子の原理の概念を示す説明図である。FIG. 8 is an explanatory diagram showing the concept of the principle of the diffractive optical element included in the laser welding apparatus of the first modification of the second embodiment.
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。 Hereinafter, exemplary embodiments of the present invention will be disclosed. The configurations of the embodiments shown below, as well as the actions and results (effects) brought about by the configurations, are examples. The present invention can also be realized by configurations other than those disclosed in the following embodiments. Further, according to the present invention, it is possible to obtain at least one of various effects (including derivative effects) obtained by the configuration.
 以下に示される複数の実施形態は、同様の構成を備えている。よって、各実施形態の構成によれば、当該同様の構成に基づく同様の作用および効果が得られる。また、以下では、それら同様の構成には同様の符号が付与されるとともに、重複する説明が省略される場合がある。 The plurality of embodiments shown below have similar configurations. Therefore, according to the configuration of each embodiment, the same operation and effect based on the similar configuration can be obtained. Further, in the following, the same reference numerals are given to those similar configurations, and duplicate explanations may be omitted.
 また、各図において、X方向を矢印Xで表し、Y方向を矢印Yで表し、Z方向を矢印Zで表している。X方向、Y方向、およびZ方向は、互いに交差するとともに直交している。Z方向は、加工対象Wの表面Wa(加工面、溶接面)の法線方向である。また、各図では、便宜上、レーザ光Lの表面Waにおける掃引方向SDがX方向に沿っている例が図示されているが、掃引方向SDは、表面Waに沿うとともにZ方向と交差していればよく、X方向のみに沿うものではない。 Further, in each figure, the X direction is represented by an arrow X, the Y direction is represented by an arrow Y, and the Z direction is represented by an arrow Z. The X, Y, and Z directions intersect and are orthogonal to each other. The Z direction is the normal direction of the surface Wa (processed surface, welded surface) of the processing target W. Further, in each figure, for convenience, an example in which the sweep direction SD on the surface Wa of the laser beam L is along the X direction is shown, but the sweep direction SD should be along the surface Wa and intersect the Z direction. It is good, not only along the X direction.
 また、本明細書において、序数は、部品や、部材、部位、レーザ光、方向等を区別するために便宜上付与されており、優先度や順番を示すものではない。 Further, in the present specification, the ordinal number is given for convenience in order to distinguish parts, members, parts, laser beams, directions, etc., and does not indicate priority or order.
[第1実施形態]
 図1は、第1実施形態のレーザ溶接装置100の概略構成図である。図1に示されるように、レーザ溶接装置100は、レーザ装置111と、レーザ装置112と、光学ヘッド120と、光ファイバ130と、を備えている。レーザ溶接装置100は、溶接装置の一例である。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of the laser welding apparatus 100 of the first embodiment. As shown in FIG. 1, the laser welding device 100 includes a laser device 111, a laser device 112, an optical head 120, and an optical fiber 130. The laser welding device 100 is an example of a welding device.
 レーザ装置111,112は、それぞれ、レーザ発振器を有しており、例えば、数kWのパワーのレーザ光を出力できるよう構成されている。レーザ装置111,112は、380[nm]以上かつ1200[nm]以下の波長のレーザ光を照射する。レーザ装置111,112は、内部に、例えば、ファイバレーザや、半導体レーザ(素子)、YAGレーザ、ディスクレーザのような、レーザ光源を有している。レーザ装置111,112は、複数の光源の出力の合計として、数kWのパワーのマルチモードのレーザ光を出力できるよう構成されてもよい。 The laser devices 111 and 112 each have a laser oscillator, and are configured to be capable of outputting, for example, a laser beam having a power of several kW. The laser devices 111 and 112 irradiate laser light having a wavelength of 380 [nm] or more and 1200 [nm] or less. The laser devices 111 and 112 have a laser light source such as a fiber laser, a semiconductor laser (element), a YAG laser, and a disk laser inside. The laser devices 111 and 112 may be configured to be capable of outputting multimode laser light having a power of several kW as the total of the outputs of the plurality of light sources.
 レーザ装置111は、800[nm]以上かつ1200[nm]以下の波長の第一レーザ光を出力する。レーザ装置111は、第一レーザ装置の一例である。一例として、レーザ装置111は、レーザ光源として、ファイバレーザかあるいは半導体レーザ(素子)を有する。レーザ装置111が有するレーザ発振器は、第一レーザ発振器の一例である。 The laser device 111 outputs the first laser beam having a wavelength of 800 [nm] or more and 1200 [nm] or less. The laser device 111 is an example of the first laser device. As an example, the laser apparatus 111 has a fiber laser or a semiconductor laser (element) as a laser light source. The laser oscillator included in the laser device 111 is an example of the first laser oscillator.
 他方、レーザ装置112は、550[nm]以下の波長の第二レーザ光を出力する。レーザ装置112は、第二レーザ装置の一例である。一例として、レーザ装置112は、レーザ光源として、半導体レーザ(素子)を有する。レーザ装置112は、400[nm]以上かつ500[nm]以下の波長の第二レーザ光を出力するのが好適である。レーザ装置112が有するレーザ発振器は、第二レーザ発振器の一例である。 On the other hand, the laser device 112 outputs a second laser beam having a wavelength of 550 [nm] or less. The laser device 112 is an example of a second laser device. As an example, the laser device 112 has a semiconductor laser (element) as a laser light source. The laser device 112 preferably outputs a second laser beam having a wavelength of 400 [nm] or more and 500 [nm] or less. The laser oscillator included in the laser device 112 is an example of a second laser oscillator.
 光ファイバ130は、それぞれ、レーザ装置111,112から出力されたレーザ光を光学ヘッド120に導く。 The optical fiber 130 guides the laser light output from the laser devices 111 and 112 to the optical head 120, respectively.
 光学ヘッド120は、レーザ装置111,112から入力されたレーザ光を、加工対象Wに向かって照射するための光学装置である。光学ヘッド120は、コリメートレンズ121と、集光レンズ122と、ミラー123と、フィルタ124と、を備えている。コリメートレンズ121、集光レンズ122、ミラー123、およびフィルタ124は、光学部品とも称されうる。 The optical head 120 is an optical device for irradiating the laser beam input from the laser devices 111 and 112 toward the processing target W. The optical head 120 includes a collimating lens 121, a condenser lens 122, a mirror 123, and a filter 124. The collimating lens 121, the condenser lens 122, the mirror 123, and the filter 124 may also be referred to as optical components.
 光学ヘッド120は、加工対象Wの表面Wa上でレーザ光Lの照射を行いながらレーザ光Lを掃引するために、加工対象Wとの相対位置を変更可能に構成されている。光学ヘッド120と加工対象Wとの相対移動は、光学ヘッド120の移動、加工対象Wの移動、または光学ヘッド120および加工対象Wの双方の移動により、実現されうる。 The optical head 120 is configured so that the relative position with the processing target W can be changed in order to sweep the laser light L while irradiating the surface Wa of the processing target W with the laser light L. The relative movement between the optical head 120 and the processing target W can be realized by the movement of the optical head 120, the movement of the processing target W, or the movement of both the optical head 120 and the processing target W.
 なお、光学ヘッド120は、図示しないガルバノスキャナ等を有することにより、表面Wa上でレーザ光Lを掃引可能に構成されてもよい。 The optical head 120 may be configured to be able to sweep the laser beam L on the surface Wa by having a galvano scanner or the like (not shown).
 コリメートレンズ121(121-1,121-2)は、それぞれ、光ファイバ130を介して入力されたレーザ光をコリメートする。コリメートされたレーザ光は、平行光になる。 The collimating lens 121 (121-1, 121-2) collimates the laser beam input via the optical fiber 130, respectively. The collimated laser beam becomes parallel light.
 ミラー123は、コリメートレンズ121-1で平行光となった第一レーザ光を反射する。ミラー123で反射した第一レーザ光は、Z方向の反対方向に進み、フィルタ124へ向かう。なお、第一レーザ光が光学ヘッド120においてZ方向の反対方向へ進むように入力される構成にあっては、ミラー123は不要である。 The mirror 123 reflects the first laser beam that has become parallel light by the collimated lens 121-1. The first laser beam reflected by the mirror 123 travels in the opposite direction to the Z direction and heads toward the filter 124. The mirror 123 is not required in the configuration in which the first laser beam is input to the optical head 120 so as to travel in the direction opposite to the Z direction.
 フィルタ124は、第一レーザ光を透過し、かつ第二レーザ光を透過せずに反射するハイパスフィルタである。第一レーザ光は、フィルタ124を透過してZ方向の反対方向へ進み、集光レンズ122へ向かう。他方、フィルタ124は、コリメートレンズ121-2で平行光となった第二レーザ光を反射する。フィルタ124で反射した第二レーザ光は、Z方向の反対方向に進み、集光レンズ122へ向かう。 The filter 124 is a high-pass filter that transmits the first laser beam and reflects the second laser beam without transmitting it. The first laser beam passes through the filter 124, travels in the opposite direction in the Z direction, and heads toward the condenser lens 122. On the other hand, the filter 124 reflects the second laser beam that has become parallel light by the collimated lens 121-2. The second laser beam reflected by the filter 124 travels in the opposite direction to the Z direction and heads toward the condenser lens 122.
 集光レンズ122は、平行光としての第一レーザ光および第二レーザ光を集光し、レーザ光L(出力光)として、加工対象Wへ照射する。 The condensing lens 122 condenses the first laser beam and the second laser beam as parallel light, and irradiates the processing target W as the laser beam L (output light).
 また、レーザ溶接装置100は、コントローラ141と、コントローラ141によって作動を制御される被制御機構と、を備えている。本実施形態では、レーザ溶接装置100は、被制御機構として、例えば、レーザ装置111,112および駆動機構150を備えている。 Further, the laser welding device 100 includes a controller 141 and a controlled mechanism whose operation is controlled by the controller 141. In the present embodiment, the laser welding device 100 includes, for example, laser devices 111 and 112 and a drive mechanism 150 as controlled mechanisms.
 コントローラ141は、レーザ装置111,112の作動を制御することができる。具体的に、コントローラ141は、例えば、レーザ装置111,112の作動および作動停止を切り替えたり、レーザ装置111,112が出射するレーザ光のパワーを変更したりすることができる。 The controller 141 can control the operation of the laser devices 111 and 112. Specifically, the controller 141 can switch the operation and deactivation of the laser devices 111 and 112, and change the power of the laser light emitted by the laser devices 111 and 112, for example.
 駆動機構150は、加工対象Wに対する光学ヘッド120の相対的な位置を変更する。駆動機構150は、例えば、モータのような回転機構や、当該回転機構の回転出力を減速する減速機構、減速機構によって減速された回転を直動に変換する運動変換機構等を、有する。コントローラ141は、加工対象Wに対する光学ヘッド120のX方向、Y方向、およびZ方向における相対位置が変化するよう、駆動機構150を制御することができる。また、コントローラ141は、レーザ光Lのスポットの表面Wa上での掃引速度が変化するよう、駆動機構150を制御することができる。 The drive mechanism 150 changes the relative position of the optical head 120 with respect to the processing target W. The drive mechanism 150 includes, for example, a rotation mechanism such as a motor, a deceleration mechanism for decelerating the rotation output of the rotation mechanism, a motion conversion mechanism for converting the rotation decelerated by the deceleration mechanism into linear motion, and the like. The controller 141 can control the drive mechanism 150 so that the relative positions of the optical head 120 with respect to the processing target W in the X direction, the Y direction, and the Z direction change. Further, the controller 141 can control the drive mechanism 150 so that the sweep speed of the spot of the laser beam L on the surface Wa changes.
 また、レーザ溶接装置100は、カメラ170と、カメラ170へ光を導く光学部品としてのフィルタ127およびミラー128と、を有している。フィルタ127は、ミラー123とフィルタ124との間に設けられている。フィルタ127は、ミラー123からの第一レーザ光をフィルタ124へ向けて透過するとともに、表面Waからの光(例えば、可視光)をミラー128に向けて反射する。ミラー128で反射した光は、カメラ170に入力される。このような構成により、カメラ170は、表面Wa上の画像を撮影することができる。カメラ170による撮影画像には、例えば、表面Waの画像と、レーザ光Lによるビーム(スポット)の画像とが、含まれうる。よって、カメラ170による撮影画像は、表面Wa上に形成されるスポットの所定位置に対するずれの検出結果と言うことができ、カメラ170は、当該ずれを検出するセンサの一例であると言うことができる。なお、撮影画像の画角におけるスポットの位置が固定している場合にあっては、撮影画像には、レーザ光Lの照射目標が含まれていればよく、スポットの画像は含まれている必要は無い。カメラ170およびコントローラ141は、検出機構の一例である。なお、コントローラ141は、カメラ170の作動を制御してもよい。 Further, the laser welding apparatus 100 has a camera 170, a filter 127 as an optical component for guiding light to the camera 170, and a mirror 128. The filter 127 is provided between the mirror 123 and the filter 124. The filter 127 transmits the first laser light from the mirror 123 toward the filter 124 and reflects the light from the surface Wa (for example, visible light) toward the mirror 128. The light reflected by the mirror 128 is input to the camera 170. With such a configuration, the camera 170 can capture an image on the surface Wa. The image captured by the camera 170 may include, for example, an image of the surface Wa and an image of a beam (spot) by the laser beam L. Therefore, the image captured by the camera 170 can be said to be the detection result of the deviation of the spot formed on the surface Wa with respect to a predetermined position, and the camera 170 can be said to be an example of the sensor for detecting the deviation. .. When the position of the spot at the angle of view of the photographed image is fixed, the photographed image may include the irradiation target of the laser beam L, and the image of the spot needs to be included. There is no. The camera 170 and the controller 141 are examples of the detection mechanism. The controller 141 may control the operation of the camera 170.
 また、コントローラ141は、カメラ170による撮影画像から、スポットの所定位置に対するずれを検出し、当該ずれを補正するよう、駆動機構150を制御することができる。また、コントローラ141は、当該ずれが所定の閾値以内となるようフィードバック制御を実行してもよい。コントローラ141および駆動機構150は、補正機構の一例である。このような構成により、レーザ光の照射位置の精度を高めることができる。 Further, the controller 141 can control the drive mechanism 150 so as to detect a deviation of the spot with respect to a predetermined position from the image captured by the camera 170 and correct the deviation. Further, the controller 141 may execute feedback control so that the deviation is within a predetermined threshold value. The controller 141 and the drive mechanism 150 are examples of the correction mechanism. With such a configuration, the accuracy of the irradiation position of the laser beam can be improved.
 本実施形態では、加工対象Wは、Z方向に積層された複数の金属部材11,12を有した溶接構造10である。 In the present embodiment, the processing target W is a welded structure 10 having a plurality of metal members 11 and 12 laminated in the Z direction.
[溶接構造の例(1)]
 図2は、レーザ溶接装置100の加工対象Wの一例である溶接構造10-1(10)の断面図である。図2の断面は、X方向と交差するとともに直交し、Y方向およびZ方向に沿っている。
[Example of welded structure (1)]
FIG. 2 is a cross-sectional view of a welded structure 10-1 (10) which is an example of a processing target W of the laser welding apparatus 100. The cross section of FIG. 2 intersects and is orthogonal to the X direction and is along the Y and Z directions.
 溶接構造10-1は、複数の金属部材11,12と、溶接部14と、を有している。複数の金属部材11,12は、例えば、バスバーや、電極端子、電極箔等であり、導電経路の少なくとも一部を構成している。すなわち、複数の金属部材11,12は、いずれも導電性を有した金属材料で作られている。ただし、本実施形態では、金属部材11と金属部材12とは、相異なる材料で作られている。溶接部14は、複数の金属部材11,12を、機械的かつ電気的に接続している。 The welded structure 10-1 has a plurality of metal members 11 and 12 and a welded portion 14. The plurality of metal members 11 and 12 are, for example, bus bars, electrode terminals, electrode foils, and the like, and form at least a part of the conductive path. That is, the plurality of metal members 11 and 12 are all made of a conductive metal material. However, in the present embodiment, the metal member 11 and the metal member 12 are made of different materials. The welded portion 14 mechanically and electrically connects a plurality of metal members 11 and 12.
 また、本実施形態では、金属部材12の融点は、金属部材11の融点よりも低い。金属部材11は、例えば、銅や、銅合金のような、銅系材料である。また、金属部材12は、例えば、アルミニウムや、アルミニウム合金のような、アルミニウム系材料である。なお、少なくともいずれか一方の金属部材11,12の表面には、めっき層が形成されていてもよい。 Further, in the present embodiment, the melting point of the metal member 12 is lower than the melting point of the metal member 11. The metal member 11 is a copper-based material such as copper or a copper alloy. Further, the metal member 12 is an aluminum-based material such as aluminum or an aluminum alloy. A plating layer may be formed on the surface of at least one of the metal members 11 and 12.
 金属部材11,12は、Z方向に重なっている。図2の例において、金属部材11,12は、板状あるいは箔状の形状を有し、Z方向と交差して広がりX方向およびY方向に延びている。Z方向は、金属部材11,12の厚さ方向とも称されうる。また、溶接構造10は、積層体とも称されうる。 The metal members 11 and 12 overlap in the Z direction. In the example of FIG. 2, the metal members 11 and 12 have a plate-like or foil-like shape, spread in the Z direction, and extend in the X direction and the Y direction. The Z direction can also be referred to as the thickness direction of the metal members 11 and 12. Further, the welded structure 10 may also be referred to as a laminated body.
 図2の例では、金属部材11は、金属部材12に対して、Z方向に重なっている。言い換えると、金属部材12は、金属部材11に対して、Z方向の反対方向に重なっている。金属部材11は、金属部材12と溶接される部位においては、当該金属部材12に対してZ方向に隣接し、当該金属部材12とZ方向に略密着した状態で重なっている。図2の例において、金属部材11は、第一部材の一例であり、金属部材12は、第二部材の一例であり、Z方向の反対方向は、第一方向の一例である。 In the example of FIG. 2, the metal member 11 overlaps the metal member 12 in the Z direction. In other words, the metal member 12 overlaps the metal member 11 in the direction opposite to the Z direction. At the portion welded to the metal member 12, the metal member 11 is adjacent to the metal member 12 in the Z direction and overlaps with the metal member 12 in a substantially close contact state in the Z direction. In the example of FIG. 2, the metal member 11 is an example of the first member, the metal member 12 is an example of the second member, and the opposite direction in the Z direction is an example of the first direction.
 加工対象Wは、レーザ溶接装置100によって溶接されるに際し、不図示の固定具によって図2の積層状態で一体的に仮止めされ、例えば、表面Waの法線方向がZ方向と略平行となる姿勢で、セットされる。表面Waは、加工対象WのZ方向の端面であり、溶接部14が設けられる部位においては、Z方向と交差するとともに直交して広がっている。 When the target W to be processed is welded by the laser welding device 100, it is temporarily fixed integrally in the laminated state of FIG. 2 by a fixture (not shown), and for example, the normal direction of the surface Wa is substantially parallel to the Z direction. It is set in the posture. The surface Wa is the end face of the processing target W in the Z direction, and at the portion where the welded portion 14 is provided, the surface Wa intersects the Z direction and extends orthogonally to the Z direction.
 光学ヘッド120は、レーザ光Lを、表面Waに向けて、Z方向の反対方向に照射する。表面Waは、レーザ光Lの照射面であり、光学ヘッド120と面した対向面とも称されうる。Z方向の反対方向は、レーザ光Lの照射方向と称されうる。 The optical head 120 irradiates the laser beam L toward the surface Wa in the direction opposite to the Z direction. The surface Wa is an irradiation surface of the laser beam L, and may also be referred to as a facing surface facing the optical head 120. The direction opposite to the Z direction can be referred to as the irradiation direction of the laser beam L.
 このようなレーザ光Lの照射により、溶接部14は、表面Waから、Z方向の反対方向に向けて延びることになる。Z方向の反対方向は、溶接部14の深さ方向とも称されうる。溶接部14の深さ方向は、レーザ光Lの照射方向でもある。 By such irradiation of the laser beam L, the welded portion 14 extends from the surface Wa in the direction opposite to the Z direction. The direction opposite to the Z direction can also be referred to as the depth direction of the welded portion 14. The depth direction of the welded portion 14 is also the irradiation direction of the laser beam L.
 また、レーザ光Lが照射されている状態で、駆動機構150の作動によって光学ヘッド120が加工対象Wに対して掃引方向SDに相対的に移動することにより、表面Wa上でレーザ光Lが当該掃引方向SDに掃引される。これにより、溶接部14は、図2と略同様の断面形状で、表面Waに沿って、掃引方向SD(図2ではX方向)に延びることになる。掃引方向SDは、溶接部14の長手方向や延び方向とも称されうる。また、Z方向および掃引方向SDと交差する方向(図2ではY方向)は、溶接部14の幅方向とも称されうる。Y方向は、第二方向の一例である。 Further, in a state where the laser beam L is irradiated, the optical head 120 moves relative to the processing target W in the sweep direction SD by the operation of the drive mechanism 150, so that the laser beam L is transferred on the surface Wa. It is swept in the sweep direction SD. As a result, the welded portion 14 has a cross-sectional shape substantially similar to that in FIG. 2, and extends in the sweep direction SD (X direction in FIG. 2) along the surface Wa. The sweep direction SD can also be referred to as a longitudinal direction or an extension direction of the welded portion 14. Further, the direction intersecting the Z direction and the sweep direction SD (Y direction in FIG. 2) can also be referred to as a width direction of the welded portion 14. The Y direction is an example of the second direction.
 溶接部14は、表面WaからZ方向の反対方向に延びた溶接金属14aと、当該溶接金属14aの周囲に位置された熱影響部14bと、を有している。溶接金属14aは、レーザ光Lの照射によって溶融し、その後凝固した部位である。溶接金属14aは、溶融凝固部とも称されうる。熱影響部14bは、加工対象Wの母材が熱影響を受けた部位であって、溶融はしていない部位である。 The welded portion 14 has a welded metal 14a extending from the surface Wa in the opposite direction in the Z direction, and a heat-affected zone 14b located around the welded metal 14a. The weld metal 14a is a portion that is melted by irradiation with the laser beam L and then solidified. The weld metal 14a may also be referred to as a melt-solidified portion. The heat-affected zone 14b is a portion where the base material of the processing target W is thermally affected and is not melted.
 熱影響部14bは、金属部材11内に形成される第一ゾーン14b1と、金属部材12内に形成される第二ゾーン14b2と、を有している。 The heat-affected zone 14b has a first zone 14b1 formed in the metal member 11 and a second zone 14b2 formed in the metal member 12.
 溶接金属14aは、表面Waから金属部材11をZ方向の反対方向に延びている。溶接金属14aのZ方向の反対方向の端部は、部分的に、金属部材12に食い込んでいる。熱影響部14bは、溶接金属14aの周囲に位置している。Y方向において、熱影響部14bは、溶接金属14aの両側に隣接している。言い換えると、Y方向において、熱影響部14bは、溶接金属14aの外側に位置している。また、熱影響部14bは、部分的に、溶接金属14aに対して、Z方向の反対方向に隣接している。 The weld metal 14a extends the metal member 11 from the surface Wa in the opposite direction to the Z direction. The end portion of the weld metal 14a in the opposite direction to the Z direction partially bites into the metal member 12. The heat-affected zone 14b is located around the weld metal 14a. In the Y direction, the heat-affected zone 14b is adjacent to both sides of the weld metal 14a. In other words, in the Y direction, the heat-affected zone 14b is located outside the weld metal 14a. Further, the heat-affected zone 14b is partially adjacent to the weld metal 14a in the direction opposite to the Z direction.
 溶接金属14aは、金属部材11において形成される第一部位14a1と、金属部材12において形成される第二部位14a2と、を有している。第一部位14a1は、金属部材11と同じ成分を含み、第二部位14a2は、金属部材12と同じ成分を含む。 The weld metal 14a has a first portion 14a1 formed in the metal member 11 and a second portion 14a2 formed in the metal member 12. The first portion 14a1 contains the same components as the metal member 11, and the second portion 14a2 contains the same components as the metal member 12.
 第一部位14a1は、第一レーザ光および第二レーザ光の照射により溶融しかつ凝固した部位である。また、第二部位14a2は、主として第一部位14a1からの熱伝導により溶融しかつ凝固した部位である。 The first portion 14a1 is a portion melted and solidified by irradiation with the first laser beam and the second laser beam. Further, the second portion 14a2 is a portion that is melted and solidified mainly by heat conduction from the first portion 14a1.
 第一部位14a1および第二部位14a2については、それぞれ、図2のような、掃引方向SDと交差する断面、すなわちレーザ光Lの照射方向(溶接部14の深さ方向)および溶接部14の幅方向に沿う断面における結晶粒のサイズの平均値、および主たる元素が異なっている。第一部位14a1および第二部位14a2は、溶接構造10の図2の断面に対する、EBSD法(electron back scattered diffraction pattern、電子線後方散乱回折)による解析、およびEDS(energy dispersive X-ray spectrometry、エネルギ分散X線分光法)による元素分析により、判別可能である。 For the first portion 14a1 and the second portion 14a2, as shown in FIG. 2, the cross section intersecting the sweep direction SD, that is, the irradiation direction of the laser beam L (the depth direction of the welded portion 14) and the width of the welded portion 14, respectively. The average value of the crystal grain size in the cross section along the direction and the main elements are different. The first site 14a1 and the second site 14a2 are analyzed by the EBSD method (electron back scattered diffraction pattern) and EDS (energy dispersive X-ray spectroscopy, energy) for the cross section of FIG. 2 of the welded structure 10. It can be discriminated by elemental analysis by dispersion X-ray spectroscopy).
 また、図2の例では、第一部位14a1は、金属部材11をZ方向に貫通している。よって、第一部位14a1は、金属部材11(の母材)とY方向に並んでいる。 Further, in the example of FIG. 2, the first portion 14a1 penetrates the metal member 11 in the Z direction. Therefore, the first portion 14a1 is aligned with the metal member 11 (base material) in the Y direction.
 図2の例では、第二部位14a2は、第一部位14a1に対してZ方向の反対方向に隣接している。よって、図2の例では、第二部位14a2のZ方向の端部14c2は、第一部位14a1のZ方向の反対方向の端部14c1と接している。端部14c1は、第一端部の一例であり、端部14c2は、第二端部の一例である。 In the example of FIG. 2, the second portion 14a2 is adjacent to the first portion 14a1 in the direction opposite to the Z direction. Therefore, in the example of FIG. 2, the end portion 14c2 in the Z direction of the second portion 14a2 is in contact with the end portion 14c1 in the opposite direction in the Z direction of the first portion 14a1. The end portion 14c1 is an example of a first end portion, and the end portion 14c2 is an example of a second end portion.
 発明者らの研究により、図2に示されるような第一部位14a1および第二部位14a2を有した溶接金属14aにあっては、第一部位14a1の成分の第二部位14a2への流出が抑制されていること、すなわち金属間化合物の生成が抑制されていることが、確認できた。これは、上述したように、第二部位14a2が第一部位14a1および第一ゾーン14b1からの熱が伝導されることによる溶融、すなわち熱伝導型の溶融によって得られることによるものであると推定できる。この際、第二部位14a2は、金属部材12の融点よりも高い温度まで加熱されたものと推定できる。 According to the research by the inventors, in the weld metal 14a having the first part 14a1 and the second part 14a2 as shown in FIG. 2, the outflow of the component of the first part 14a1 to the second part 14a2 is suppressed. That is, it was confirmed that the formation of intermetallic compounds was suppressed. As described above, it can be presumed that the second portion 14a2 is obtained by melting due to the conduction of heat from the first portion 14a1 and the first zone 14b1, that is, by the heat conduction type melting. .. At this time, it can be estimated that the second portion 14a2 is heated to a temperature higher than the melting point of the metal member 12.
 第一部位14a1の成分の第二部位14a2への流出の抑制の程度は、例えば、Z方向における第二部位14a2内での金属部材11の成分の存在量の分布で表すことができる。たとえば、流出が多い場合は、第二部位14a2内で、第一部位14a1(または第一ゾーン14b1)との境界面近傍の位置での存在量(質量)に対する、Z方向における境界面から第二部位14a2の長さ(深さ)の1/2の位置での存在量(質量)の比率が100%となる場合がある。これに対して、流出が抑制されている場合は、当該比率が減少し、例えば50%となる。当該比率は、流出の抑制すなわち金属間化合物の生成の抑制の観点からは、低い方が好ましく、例えば40%、30%、20%、10%と低くなるほど好ましい。 The degree of suppression of the outflow of the component of the first site 14a1 to the second site 14a2 can be expressed by, for example, the distribution of the abundance of the component of the metal member 11 in the second site 14a2 in the Z direction. For example, when there is a large outflow, the abundance (mass) at a position near the boundary surface with the first site 14a1 (or the first zone 14b1) in the second site 14a2 is second from the boundary surface in the Z direction. The ratio of the abundance (mass) at the position of 1/2 of the length (depth) of the portion 14a2 may be 100%. On the other hand, when the outflow is suppressed, the ratio decreases to, for example, 50%. The ratio is preferably as low as possible from the viewpoint of suppressing outflow, that is, suppressing the formation of intermetallic compounds, and is preferably as low as 40%, 30%, 20%, or 10%, for example.
[ビーム形状]
 図3は、平面である表面Wa上に照射されたレーザ光Lのビーム(スポット)を示す模式図である。ビームB1およびビームB2のそれぞれは、そのビームの光軸方向と直交する断面の径方向において、たとえばガウシアン形状のパワー分布を有する。ただし、ビームB1およびビームB2のパワー分布はガウシアン形状に限定されない。また、図3のように各ビームB1,B2を円で表している各図において、当該ビームB1,B2を表す円の直径が、各ビームB1,B2のビーム径である。各ビームB1,B2のビーム径は、そのビームのピークを含み、ピーク強度の1/e以上の強度の領域の径として定義する。なお、図示されないが、円形でないビームの場合は、掃引方向SDと垂直方向(図では、Y方向)における、ピーク強度の1/e以上の強度となる領域の長さをビーム径と定義できる。また、表面Waにおけるビーム径は、スポット径と称する。
[Beam shape]
FIG. 3 is a schematic diagram showing a beam (spot) of a laser beam L irradiated on a flat surface Wa. Each of the beam B1 and the beam B2 has, for example, a Gaussian-shaped power distribution in the radial direction of the cross section orthogonal to the optical axis direction of the beam. However, the power distribution of the beam B1 and the beam B2 is not limited to the Gaussian shape. Further, in each figure in which each beam B1 and B2 is represented by a circle as shown in FIG. 3, the diameter of the circle representing the beams B1 and B2 is the beam diameter of each beam B1 and B2. Beam diameter of each beam B1, B2 includes a peak of the beam is defined as the diameter of the region of 1 / e 2 or more of the intensity of the peak intensity. Although not shown, if the beam is not circular, (in the figure, Y-direction) the sweep direction SD and the vertical direction in the length of the region to be the 1 / e 2 or more of the intensity of the peak intensity can be defined as the beam diameter .. Further, the beam diameter on the surface Wa is referred to as a spot diameter.
 図3に示されるように、本実施形態では、一例として、レーザ光Lのビームは、表面Wa上において、第一レーザ光のビームB1と第二レーザ光のビームB2とが重なり、ビームB2がビームB1よりも大きく(広く)、かつ、ビームB2の外縁B2aがビームB1の外縁B1aを取り囲むよう、形成されている。この場合、ビームB2のスポット径D2は、ビームB1のスポット径D1よりも大きい。表面Wa上において、ビームB1は、第一スポットの一例であり、ビームB2は、第二スポットの一例である。 As shown in FIG. 3, in the present embodiment, as an example, in the beam of the laser beam L, the beam B1 of the first laser beam and the beam B2 of the second laser beam overlap on the surface Wa, and the beam B2 is formed. It is larger (wider) than the beam B1 and is formed so that the outer edge B2a of the beam B2 surrounds the outer edge B1a of the beam B1. In this case, the spot diameter D2 of the beam B2 is larger than the spot diameter D1 of the beam B1. On the surface Wa, the beam B1 is an example of the first spot, and the beam B2 is an example of the second spot.
 また、本実施形態では、図3に示されるように、表面Wa上において、レーザ光Lのビーム(スポット)は、中心点Cに対する点対称形状を有しているため、任意の掃引方向SDについて、スポットの形状は同じになる。よって、レーザ光Lの表面Wa上での掃引のために光学ヘッド120と加工対象Wとを相対的に動かす移動機構を備える場合、当該移動機構は、少なくとも相対的に並進可能な機構を有すればよく、相対的に回転可能な機構は省略できる場合がある。 Further, in the present embodiment, as shown in FIG. 3, since the beam (spot) of the laser beam L has a point-symmetrical shape with respect to the center point C on the surface Wa, the SD in an arbitrary sweep direction is used. , The shape of the spot will be the same. Therefore, when a moving mechanism for relatively moving the optical head 120 and the processing target W for sweeping the surface Wa of the laser beam L is provided, the moving mechanism should have at least a relatively translatable mechanism. However, the relatively rotatable mechanism may be omitted.
[波長と光の吸収率]
 ここで、金属材料の光の吸収率について説明する。図4は、照射するレーザ光Lの波長に対する各金属材料の光の吸収率を示すグラフである。図4のグラフの横軸は波長であり、縦軸は吸収率である。図4には、アルミニウム(Al)、銅(Cu)、金(Au)、ニッケル(Ni)、銀(Ag)、タンタル(Ta)、およびチタン(Ti)について、波長と吸収率との関係が示されている。
[Wavelength and light absorption rate]
Here, the light absorption rate of the metal material will be described. FIG. 4 is a graph showing the light absorption rate of each metal material with respect to the wavelength of the laser beam L to be irradiated. The horizontal axis of the graph of FIG. 4 is the wavelength, and the vertical axis is the absorption rate. FIG. 4 shows the relationship between wavelength and absorptance for aluminum (Al), copper (Cu), gold (Au), nickel (Ni), silver (Ag), tantalum (Ta), and titanium (Ti). It is shown.
 材料によって特性が異なるものの、図4に示されている各金属に関しては、一般的な赤外線(IR)のレーザ光(第一レーザ光)を用いるよりも、青や緑のレーザ光(第二レーザ光)を用いた方が、エネルギの吸収率がより高いことが理解できよう。この特徴は、銅(Cu)や、金(Au)等においては顕著となる。 Although the characteristics differ depending on the material, for each metal shown in FIG. 4, a blue or green laser beam (second laser) is used rather than using a general infrared (IR) laser beam (first laser beam). It can be understood that the energy absorption rate is higher when light) is used. This feature is remarkable in copper (Cu), gold (Au), and the like.
 使用波長に対して吸収率が比較的低い加工対象Wにレーザ光が照射された場合、大部分の光エネルギは反射され、加工対象Wに熱としての影響を及ぼさない。そのため、十分な深さの溶融領域を得るには比較的高いパワーを与える必要がある。その場合、ビーム中心部は急激にエネルギが投入されることで、昇華が生じ、キーホールが形成される。 When the laser beam is applied to the processing target W, which has a relatively low absorption rate with respect to the wavelength used, most of the light energy is reflected and does not affect the processing target W as heat. Therefore, it is necessary to apply a relatively high power in order to obtain a melting region having a sufficient depth. In that case, energy is suddenly applied to the central part of the beam, so that sublimation occurs and a keyhole is formed.
 他方、使用波長に対して吸収率が比較的高い加工対象Wにレーザ光が照射された場合、投入されるエネルギの多くが加工対象Wに吸収され、熱エネルギへと変換される。すなわち、過度なパワーを与える必要はないため、キーホールの形成を伴わず、熱伝導型の溶融となる。 On the other hand, when the laser beam is applied to the processing target W having a relatively high absorption rate with respect to the wavelength used, most of the input energy is absorbed by the processing target W and converted into thermal energy. That is, since it is not necessary to apply excessive power, heat conduction type melting is performed without forming keyholes.
 本実施形態では、加工対象Wの第二レーザ光に対する吸収率が、第一レーザ光に対する吸収率よりも高くなるよう、第一レーザ光の波長、第二レーザ光の波長、および加工対象Wの材質が、選択される。この場合、掃引方向が図3に示される掃引方向SDである場合、レーザ光Lのスポットの掃引により、加工対象Wの溶接される部位(以下、被溶接部位と称する)には、まずは、第二レーザ光のビームB2の、図3におけるSDの前方に位置する領域B2fによって、第二レーザ光が照射される。その後、被溶接部位には、第一レーザ光のビームB1が照射され、その後、第二レーザ光のビームB2の、掃引方向SDの後方に位置する領域B2bによって、再度第二レーザ光が照射される。 In the present embodiment, the wavelength of the first laser beam, the wavelength of the second laser beam, and the wavelength of the processing target W are such that the absorption rate of the processing target W with respect to the second laser light is higher than the absorption rate with respect to the first laser light. The material is selected. In this case, when the sweep direction is the sweep direction SD shown in FIG. 3, the welded portion (hereinafter referred to as the welded portion) of the processing target W due to the sweeping of the spot of the laser beam L is first, first. The second laser beam is irradiated by the region B2f of the beam B2 of the second laser beam located in front of the SD in FIG. After that, the welded portion is irradiated with the beam B1 of the first laser beam, and then the second laser beam is irradiated again by the region B2b of the beam B2 of the second laser beam located behind the sweep direction SD. To.
 したがって、被溶接部位には、まずは、領域B2fにおける吸収率が高い第二レーザ光の照射により、熱伝導型の溶融領域が生じる。その後、被溶接部位には、第一レーザ光の照射によって、より深いキーホール型の溶融領域が生じる。この場合、被溶接部位には、予め熱伝導型の溶融領域が形成されているため、当該熱伝導型の溶融領域が形成されない場合に比べて、より低いパワーの第一レーザ光によって所要の深さの溶融領域を形成することができる。さらにその後、被溶接部位には、領域B2bにおける吸収率が高い第二レーザ光の照射により、溶融状態が変化する。このような観点から、第二レーザ光の波長は550[nm]以下が好ましく、500[nm]以下がより好ましい。 Therefore, in the welded portion, a heat conduction type melting region is first generated by irradiation with a second laser beam having a high absorption rate in the region B2f. After that, a deeper keyhole-type melting region is generated in the welded portion by irradiation with the first laser beam. In this case, since the heat conduction type melting region is formed in advance in the welded portion, the required depth is obtained by the first laser beam having a lower power than in the case where the heat conduction type melting region is not formed. A molten region can be formed. After that, the welded portion is changed in a molten state by irradiation with a second laser beam having a high absorption rate in the region B2b. From such a viewpoint, the wavelength of the second laser beam is preferably 550 [nm] or less, and more preferably 500 [nm] or less.
 また、発明者らの実験的な研究により、図3のようなビームのレーザ光Lの照射による溶接にあっては、スパッタやブローホールのような溶接欠陥を低減できることが確認されている。これは、ビームB1が到来する前にビームB2の領域B2fによって加工対象Wを予め加熱しておくことにより、ビームB2およびビームB1によって形成される加工対象Wの溶融池がより安定化するためであると推定できる。 In addition, experimental research by the inventors has confirmed that welding defects such as spatter and blowholes can be reduced in welding by irradiation with the laser beam L as shown in FIG. This is because the work target W is preheated by the region B2f of the beam B2 before the beam B1 arrives, so that the molten pool of the work target W formed by the beam B2 and the beam B1 becomes more stable. It can be estimated that there is.
[溶接方法]
 レーザ溶接装置100を用いた溶接にあっては、まず、不図示の保持具によって金属部材11と金属部材12とが一体的に仮止めされた溶接構造10が、レーザ光Lが表面Waに照射されるようにセットされる。そして、ビームB1およびビームB2を含むレーザ光Lが表面Waに照射されている状態で、レーザ光Lと溶接構造10とが相対的に動かされる。これにより、レーザ光Lが表面Wa上に照射されながら当該表面Wa上を掃引方向SDに移動する(掃引する)。レーザ光Lが照射された部分は、溶融し、その後、温度の低下に伴って凝固することにより、溶接部14を介して金属部材11と金属部材12とが接合され、溶接構造10が一体化される。
[Welding method]
In welding using the laser welding device 100, first, the welding structure 10 in which the metal member 11 and the metal member 12 are integrally temporarily fixed by a holder (not shown) irradiates the surface Wa with the laser beam L. It is set to be done. Then, in a state where the surface Wa is irradiated with the laser beam L including the beam B1 and the beam B2, the laser beam L and the welded structure 10 are relatively moved. As a result, the laser beam L moves (sweeps) in the sweep direction SD on the surface Wa while being irradiated on the surface Wa. The portion irradiated with the laser beam L melts, and then solidifies as the temperature decreases, so that the metal member 11 and the metal member 12 are joined via the welded portion 14, and the welded structure 10 is integrated. Will be done.
[エネルギ密度]
 また、発明者らは、実験的な解析において、材料の吸収率を考慮したエネルギ密度という指標を導入し、当該エネルギ密度について、好適な溶接状態が得られる条件を見いだした。当該エネルギ密度は、以下の式(1)で表すことができる。
 E=R×P/(D×V) ・・・ (1)
ここに、Eは、エネルギ密度[J/mm]、Rは、レーザ光が照射される部材(第一部材)の材料におけるレーザ光の吸収率、Pは、レーザ装置によるレーザ光のパワー[W]、Dは、表面Waにおけるスポット径[mm]、Vは、掃引速度[mm/s]である。ここでは、下付のnにより、各パラメータを区別しており、n=1は、第一レーザ光のパラメータ、n=2は、第二レーザ光のパラメータを示す。式(1)から明らかとなるように、エネルギ密度Eによれば、レーザ光Lが照射される加工対象Wの材料の吸収率Rを考慮した分析が可能となる。なお、エネルギ密度は、実効エネルギ密度とも称されうる。
[Energy density]
In addition, the inventors introduced an index called energy density in consideration of the absorption rate of the material in the experimental analysis, and found the condition for obtaining a suitable welded state for the energy density. The energy density can be expressed by the following equation (1).
E n = R n × P n / (D n × V) ··· (1)
Here, E n is the energy density [J / mm 2], R n is, the laser light absorption rate in the material of the member (first member) that is irradiated with the laser light, P n is the laser light by the laser device power [W], D n, the spot diameter at the surface Wa [mm], V is the sweep rate [mm / s]. Here, each parameter is distinguished by the subscript n, where n = 1 indicates the parameter of the first laser beam and n = 2 indicates the parameter of the second laser beam. As will become apparent from the equation (1), according to the energy density E n, it allows analysis laser light L is considering absorption rate R n of the material of the processing target W to be irradiated. The energy density may also be referred to as an effective energy density.
 発明者らは、図2の溶接構造10-1に対する実験的解析により、第一レーザ光のエネルギ密度Eの、第二レーザ光のエネルギ密度Eの比Re1(=E/E、以下、エネルギ密度比と称する)によって、溶接状態が変化することを見いだした。 We, the experimental analysis for welded structures 10-1 of FIG. 2, the energy density E 1 of the first laser light, the ratio of the energy density E 2 of the second laser beam Re1 (= E 1 / E 2, Hereinafter, it has been found that the welding state changes depending on the energy density ratio).
Figure JPOXMLDOC01-appb-T000001
 表1において、「◎」は、溶接品質が非常に高いことを示し、「○」は、溶接品質が高いことを示し、「△」は、溶接品質がやや高いことを示し、「×」は、溶接品質が低いことを示している。表1に示されるように、エネルギ密度比Re1が、0以上かつ6以下である場合が好ましく、0以上かつ4以下である場合がより好ましく、0以上2以下である場合がより一層好ましいことが判明した。
Figure JPOXMLDOC01-appb-T000001
In Table 1, "◎" indicates that the welding quality is very high, "○" indicates that the welding quality is high, "△" indicates that the welding quality is slightly high, and "×" indicates that the welding quality is slightly high. , Indicates that the welding quality is low. As shown in Table 1, the energy density ratio Re1 is preferably 0 or more and 6 or less, more preferably 0 or more and 4 or less, and even more preferably 0 or more and 2 or less. found.
 また、表1は、金属部材11の厚さT1(図1参照)が0.1[mm]以上2[mm]以下であり、かつ金属部材12の厚さT2(図1参照)が0.1[mm]以上2[mm]以下である場合の実験結果を示している。 Further, in Table 1, the thickness T1 (see FIG. 1) of the metal member 11 is 0.1 [mm] or more and 2 [mm] or less, and the thickness T2 of the metal member 12 (see FIG. 1) is 0. The experimental results when it is 1 [mm] or more and 2 [mm] or less are shown.
 コントローラ141は、比Re1が変化するよう、例えばレーザ装置111,112や駆動機構150のような被制御機構を制御することができる。 The controller 141 can control a controlled mechanism such as a laser device 111, 112 or a drive mechanism 150 so that the ratio Re1 changes.
[溶接構造の例(2)]
 図5は、レーザ溶接装置100の加工対象Wの一例である溶接構造10-2(10)の断面図である。図5の断面は、X方向と交差するとともに直交し、Y方向およびZ方向に沿っている。
[Example of welded structure (2)]
FIG. 5 is a cross-sectional view of the welded structure 10-2 (10), which is an example of the processing target W of the laser welding apparatus 100. The cross section of FIG. 5 intersects and is orthogonal to the X direction and is along the Y and Z directions.
 図5に例示される溶接構造10-2は、図2に例示される溶接構造10-1と同じ材料の金属部材11,12を有している。ただし、溶接構造10-2は、Z方向における金属部材11,12の配置(積層順)が、溶接構造10-1とは逆である。 The welded structure 10-2 exemplified in FIG. 5 has metal members 11 and 12 made of the same material as the welded structure 10-1 illustrated in FIG. However, in the welded structure 10-2, the arrangement (stacking order) of the metal members 11 and 12 in the Z direction is opposite to that of the welded structure 10-1.
 すなわち、図5の例では、金属部材12は、金属部材11に対して、Z方向に重なっている。言い換えると、金属部材11は、金属部材12に対して、Z方向の反対方向に重なっている。金属部材12は、金属部材11と溶接される部位においては、当該金属部材11に対してZ方向に隣接し、当該金属部材11とZ方向に略密着した状態で重なっている。図5の例においては、金属部材12は、第一部材の一例であり、金属部材11は、第二部材の一例である。 That is, in the example of FIG. 5, the metal member 12 overlaps the metal member 11 in the Z direction. In other words, the metal member 11 overlaps the metal member 12 in the direction opposite to the Z direction. At the portion welded to the metal member 11, the metal member 12 is adjacent to the metal member 11 in the Z direction and overlaps with the metal member 11 in a substantially close contact state in the Z direction. In the example of FIG. 5, the metal member 12 is an example of the first member, and the metal member 11 is an example of the second member.
 図5の例では、溶接金属14aは、金属部材12内に形成され熱伝導型の溶融によって得られた第二部位14a2と、金属部材11内に形成され熱伝導型の溶融によって得られた第一部位14a1と、を有している。第二部位14a2は、金属部材12を貫通している。第一部位14a1は、第二部位14a2に対してZ方向の反対方向に隣接している。第二部位14a2のZ方向の反対方向の端部14c2と、第一部位14a1のZ方向の端部14c1とは、互いに接している。 In the example of FIG. 5, the weld metal 14a is a second portion 14a2 formed in the metal member 12 and obtained by melting the heat conductive type, and a second portion 14a2 formed in the metal member 11 and obtained by melting the heat conductive type. It has one site 14a1 and. The second portion 14a2 penetrates the metal member 12. The first portion 14a1 is adjacent to the second portion 14a2 in the direction opposite to the Z direction. The end portion 14c2 of the second portion 14a2 in the opposite direction in the Z direction and the end portion 14c1 of the first portion 14a1 in the Z direction are in contact with each other.
 発明者らは、図5の溶接構造10-2に対する実験的解析により、この場合も、第一レーザ光のエネルギ密度Eの、第二レーザ光のエネルギ密度Eの比Re2(=E/E、エネルギ密度比)によって、溶接状態が変化することを見いだした。 We, the experimental analysis for welded structures 10-2 of FIG. 5, also in this case, the energy density E 1 of the first laser light, the ratio of the energy density E 2 of the second laser beam Re2 (= E 1 / E 2, by the energy density ratio), the welding condition was found to vary.
Figure JPOXMLDOC01-appb-T000002
 表2中のマークの意味は、表1と同じである。表2に示されるように、エネルギ密度比Re1が、1以上である場合が好ましく、1以上かつ20以下である場合がより好ましく、3以上10以下である場合がより一層好ましいことが判明した。
Figure JPOXMLDOC01-appb-T000002
The meanings of the marks in Table 2 are the same as those in Table 1. As shown in Table 2, it has been found that the energy density ratio Re1 is preferably 1 or more, more preferably 1 or more and 20 or less, and even more preferably 3 or more and 10 or less.
 また、表2は、金属部材11の厚さT1が0.1[mm]以上2[mm]以下であり、かつ金属部材12の厚さT2が0.1[mm]以上2[mm]以下である場合の実験結果を示している。 Further, in Table 2, the thickness T1 of the metal member 11 is 0.1 [mm] or more and 2 [mm] or less, and the thickness T2 of the metal member 12 is 0.1 [mm] or more and 2 [mm] or less. The experimental result in the case of is shown.
 また、コントローラ141は、比Re2が変化するよう、例えばレーザ装置111,112や駆動機構150のような被制御機構を制御することができる。 Further, the controller 141 can control a controlled mechanism such as the laser devices 111 and 112 and the drive mechanism 150 so that the ratio Re2 changes.
 レーザ溶接装置100は、コントローラ141によって、それぞれの場合に適した条件でレーザ装置111,112や、駆動機構150の作動を制御することにより、図2の溶接構造10-1、図5の溶接構造10-2、および図示されないその他の溶接構造について、より接続強度が高くかつより高品質な溶接を行うことができる。 The laser welding device 100 controls the operation of the laser devices 111 and 112 and the drive mechanism 150 under the conditions suitable for each case by the controller 141, thereby controlling the welding structures 10-1 of FIG. 2 and the welding structure of FIG. For 10-2 and other welded structures not shown, higher connection strength and higher quality welds can be performed.
[溶け込み深さおよびアスペクト比]
 下記の表3は、金属部材11の厚さT1が0.5[mm]以下であり、かつ金属部材12の厚さT2が1.0[mm]である場合に、エネルギ密度[J/mm]を異ならせた複数のサンプル(サンプルNo.1~3)についての実験結果を示している。
Figure JPOXMLDOC01-appb-T000003
[Penetration depth and aspect ratio]
Table 3 below shows the energy density [J / mm] when the thickness T1 of the metal member 11 is 0.5 [mm] or less and the thickness T2 of the metal member 12 is 1.0 [mm]. 2 ] shows the experimental results for a plurality of samples (Sample Nos. 1 to 3) with different differences.
Figure JPOXMLDOC01-appb-T000003
 表3中、Wd2(図2参照)は、溶接金属14aの第二部位14a2の溶け込み深さであって、第二部位14a2のZ方向の端部14c2(Z方向において金属部材12のZ方向の端面と同じ位置)から第二部位14a2のZ方向の反対方向の先端までの深さである。なお、溶接金属14aの全体の溶け込み深さWd(図2参照)は、金属部材11の厚さT1と、第二部位14a2の溶け込み深さWd2との和であり、Wd=T1+Wd2の式で表される。ここに、溶け込み深さWd,Wd2は、JISハンドブック 40-1 溶接I(基本)、4.1.6 溶接設計、11619「溶込み」に準拠している。 In Table 3, Wd2 (see FIG. 2) is the penetration depth of the second portion 14a2 of the weld metal 14a, which is the end portion 14c2 of the second portion 14a2 in the Z direction (in the Z direction, in the Z direction of the metal member 12). It is the depth from (the same position as the end face) to the tip of the second portion 14a2 in the opposite direction in the Z direction. The total penetration depth Wd of the weld metal 14a (see FIG. 2) is the sum of the thickness T1 of the metal member 11 and the penetration depth Wd2 of the second portion 14a2, and is expressed by the equation Wd = T1 + Wd2. Will be done. Here, the penetration depths Wd and Wd2 are based on the JIS Handbook 40-1 Welding I (basic), 4.1.6 Welding Design, 11619 "Pluding".
 表3中、Ew2は、第二部位14a2の溶け込み深さWd2に対する、第二部位14a2の端部14c2におけるY方向での幅Ww2(図2参照)の比であり、Ew2=Ww2/Wd2の式で表される。この比Ew2は、第二部位14a2のアスペクト比とも称されうる。ここに、幅Ww2は、JISハンドブック 40-1 溶接I(基本)、4.1.6 溶接設計、11605「溶接幅」に準拠している。 In Table 3, Ew2 is the ratio of the width Ww2 (see FIG. 2) in the Y direction at the end 14c2 of the second portion 14a2 to the penetration depth Wd2 of the second portion 14a2, and the formula Ew2 = Ww2 / Wd2. It is represented by. This ratio Ew2 can also be referred to as the aspect ratio of the second portion 14a2. Here, the width Ww2 conforms to JIS Handbook 40-1 Welding I (basic), 4.1.6 Welding design, 11605 "Welding width".
 また、表3中、「評価」において、×は、所要の接合強度が得られなかった場合、○は、所要の接合強度が得られた場合、◎は、十分な接合強度が得られた場合、を示す。なお、接合強度として、JIS Z 3136に準拠して各サンプルの剪断力を測定し、単位面積あたりの剪断力、すなわち剪断応力の最大値を算出した。一般に、純アルミニウムの剪断応力の最大値が50[MPa]、純銅の剪断応力の最大値が200[MPa]程度であり、銅およびアルミニウムの異材溶接の場合、剪断応力の最大値が例えば100[MPa]以上であれば、十分に接合強度が得られているといえる。 In Table 3, in "evaluation", x indicates that the required bonding strength was not obtained, ○ indicates that the required bonding strength was obtained, and ◎ indicates that sufficient bonding strength was obtained. , Is shown. As the joint strength, the shearing force of each sample was measured in accordance with JIS Z3136, and the shearing force per unit area, that is, the maximum value of the shearing stress was calculated. Generally, the maximum value of the shear stress of pure aluminum is about 50 [MPa], the maximum value of the shear stress of pure copper is about 200 [MPa], and in the case of dissimilar material welding of copper and aluminum, the maximum value of the shear stress is, for example, 100 [MPa]. If it is MPa] or more, it can be said that sufficient bonding strength is obtained.
 (知見1)溶接金属14aの溶け込み深さWdについては、表3のサンプルを含む複数サンプルの実験結果の解析等から、当該溶け込み深さWdが金属部材11の厚さT1に対して深すぎると、すなわち、第二部位14a2の溶け込み深さWd2が深すぎると、溶接金属14a内、特に第二部位14a2内で金属間化合物が増加し、所要の接合強度が得られ難くなることが判明した。具体的に、溶接金属14aの溶け込み深さWdについては、Wd≦T1+0.5[mm]であるのが好ましいことが判明した。表3のサンプル1,2では、いずれも、第二部位14a2の溶け込みWd2は500[μm]以下、すなわち、Wd≦T1+0.5[mm]であるとともに、剪断応力の最大値が100[Mpa]以上となっており、所要の接合強度が得られている。 (Finding 1) Regarding the penetration depth Wd of the weld metal 14a, it is found that the penetration depth Wd is too deep with respect to the thickness T1 of the metal member 11 from the analysis of the experimental results of a plurality of samples including the sample in Table 3. That is, it was found that if the penetration depth Wd2 of the second portion 14a2 is too deep, the intermetallic compound increases in the weld metal 14a, particularly in the second portion 14a2, and it becomes difficult to obtain the required bonding strength. Specifically, it was found that the penetration depth Wd of the weld metal 14a is preferably Wd ≦ T1 + 0.5 [mm]. In each of the samples 1 and 2 in Table 3, the penetration Wd2 of the second portion 14a2 is 500 [μm] or less, that is, Wd ≦ T1 + 0.5 [mm], and the maximum value of the shear stress is 100 [Mpa]. With the above, the required bonding strength is obtained.
 逆に、溶接金属14aの溶け込み深さWdが、金属部材11の厚さT1に対して浅すぎる場合、言い換えると、溶接金属14aが金属部材11を貫通せず、金属部材12に至らないような場合にも、所要の接合強度が得られ難くなることが判明した。 On the contrary, when the penetration depth Wd of the weld metal 14a is too shallow with respect to the thickness T1 of the metal member 11, in other words, the weld metal 14a does not penetrate the metal member 11 and does not reach the metal member 12. In some cases, it was found that it was difficult to obtain the required joint strength.
 このように、溶接金属14aは、少なくとも金属部材11を貫通する必要はあるものの、第二部位14a2の溶け込み深さWd2は、それほど深くないのが好ましいことが判明した。言い換えると、溶接金属14aは少なくとも金属部材11を貫通するとともに、当該溶接金属14aの全体の溶け込み深さWdとしては、金属部材11の厚さT1と略同じか僅かに深い(厚い、長い)状態であるのが好ましい、具体的には、T1<Wd≦T1+0.5[mm]であるのが好ましいことが、判明した。 As described above, although the weld metal 14a needs to penetrate at least the metal member 11, it has been found that the penetration depth Wd2 of the second portion 14a2 is preferably not so deep. In other words, the weld metal 14a penetrates at least the metal member 11, and the total penetration depth Wd of the weld metal 14a is substantially the same as or slightly deeper (thick, longer) than the thickness T1 of the metal member 11. It has been found that T1 <Wd ≦ T1 + 0.5 [mm] is preferable.
 (知見2)比Ew2(アスペクト比)については、Ew2=Ww2/Wd2が、1以上であれば、溶接金属14aの溶け込み深さWdおよび第二部位14a2の溶け込み深さWd2が深くなりすぎず、好ましいことが判明した。表3のサンプル1,2では、いずれも、比Ew2は、1以上となっており、これらの場合において、剪断応力の最大値が100[Mpa]以上となって、所要の接合強度が得られている。 (Knowledge 2) Regarding the ratio Ew2 (aspect ratio), if Ew2 = Ww2 / Wd2 is 1 or more, the penetration depth Wd of the weld metal 14a and the penetration depth Wd2 of the second portion 14a2 do not become too deep. It turned out to be preferable. In each of Samples 1 and 2 in Table 3, the ratio Ew2 is 1 or more, and in these cases, the maximum value of the shear stress is 100 [Mpa] or more, and the required bonding strength can be obtained. ing.
 また、発明者らは、知見1および知見2については、金属部材11と金属部材12との位置が入れ替わった溶接構造10-2においても同様であることを確認した。 Further, the inventors confirmed that Findings 1 and 2 are the same in the welded structure 10-2 in which the positions of the metal member 11 and the metal member 12 are interchanged.
 以上、説明したように、本実施形態では、例えば、溶接金属14aは、第一部位14a1および第二部位14a2を有し、第一部位14a1は、金属部材11(第一部材)内でZ方向の反対方向(第一方向)に延び、第二部位14a2は、金属部材12(第二部材)内に位置するとともに第一部位14a1に対してZ方向の反対方向に隣接するかあるいは離間している。 As described above, in the present embodiment, for example, the weld metal 14a has a first portion 14a1 and a second portion 14a2, and the first portion 14a1 is in the metal member 11 (first member) in the Z direction. The second portion 14a2 is located in the metal member 12 (second member) and is adjacent to or separated from the first portion 14a1 in the opposite direction of the Z direction. There is.
 このような構成の溶接金属14aを含む溶接部14を有した溶接構造10-1は、第一レーザ光および第二レーザ光を含むレーザ光Lの照射による溶接によって得られる。当該溶接構造10-1によれば、例えば、第一部位14a1の成分の第二部位14a2への流出、すなわち金属間化合物の生成を、抑制することができる。したがって、本実施形態によれば、例えば、より容易にあるいはより迅速に、所要の接合強度を有した溶接構造10-1を得ることができる。 The welded structure 10-1 having the welded portion 14 including the weld metal 14a having such a configuration is obtained by welding by irradiation with the first laser beam and the laser beam L including the second laser beam. According to the welded structure 10-1, for example, the outflow of the component of the first portion 14a1 to the second portion 14a2, that is, the formation of the intermetallic compound can be suppressed. Therefore, according to the present embodiment, for example, the welded structure 10-1 having the required joint strength can be obtained more easily or more quickly.
 また、本実施形態のレーザ溶接装置100(溶接装置)によれば、コントローラ141が、レーザ装置111,112や駆動機構150のような被制御機構の作動を切り替えて制御することにより、溶接構造10-1,10-2を含め、金属部材の材質や、配置、厚さのようなスペックの異なる種々の加工対象Wに適合した溶接部14を形成することができる。このような構成によれば、例えば、加工対象W毎に別のレーザ溶接装置を用いて溶接を行う必要がなくなる分、溶接をより迅速に行うことができたり、溶接の手間やコストを減らすことができたり、といった利点が得られる。 Further, according to the laser welding device 100 (welding device) of the present embodiment, the controller 141 switches and controls the operation of controlled mechanisms such as the laser devices 111 and 112 and the drive mechanism 150, whereby the welding structure 10 is used. It is possible to form a welded portion 14 suitable for various machining targets W having different specifications such as material, arrangement, and thickness of metal members including -1 and 10-2. According to such a configuration, for example, since it is not necessary to perform welding using a different laser welding device for each processing target W, welding can be performed more quickly, and the labor and cost of welding can be reduced. You can get the advantage of being able to do it.
[第2実施形態]
 図6は、第2実施形態のレーザ溶接装置100Aの概略構成図である。図6に示されるように、本実施形態では、光学ヘッド120は、フィルタ124と集光レンズ122との間に、ガルバノスキャナ126を有している。この点を除き、レーザ溶接装置100Aは、第1実施形態のレーザ溶接装置100と同様の構成を備えている。
[Second Embodiment]
FIG. 6 is a schematic configuration diagram of the laser welding apparatus 100A of the second embodiment. As shown in FIG. 6, in this embodiment, the optical head 120 has a galvano scanner 126 between the filter 124 and the condenser lens 122. Except for this point, the laser welding apparatus 100A has the same configuration as the laser welding apparatus 100 of the first embodiment.
 ガルバノスキャナ126は、2枚のミラー126a,126bを有しており、当該2枚のミラー126a,126bの角度を制御することで、光学ヘッド120を移動させることなく、レーザ光Lの照射位置を移動させ、レーザ光Lを掃引することができる装置である。ミラー126a,126bの角度は、それぞれ、例えばコントローラ141によって制御された不図示のモータによって変更される。また、コントローラ141は、レーザ光Lのスポットの表面Wa上での掃引速度が変化するよう、モータ等を制御することができる。このような構成によれば、光学ヘッド120と加工対象Wとを相対的に移動する機構が不要になり、例えば、装置構成を小型化できるという利点が得られる。 The galvano scanner 126 has two mirrors 126a and 126b, and by controlling the angles of the two mirrors 126a and 126b, the irradiation position of the laser beam L can be set without moving the optical head 120. It is a device that can be moved to sweep the laser beam L. The angles of the mirrors 126a and 126b are changed by, for example, a motor (not shown) controlled by the controller 141, respectively. Further, the controller 141 can control the motor and the like so that the sweep speed of the spot of the laser beam L on the surface Wa changes. With such a configuration, a mechanism for relatively moving the optical head 120 and the processing target W becomes unnecessary, and for example, there is an advantage that the device configuration can be miniaturized.
 また、本実施形態でも、コントローラ141は、カメラ170による撮影画像から、スポットの所定位置に対するずれを検出し、当該ずれを補正するよう、ガルバノスキャナ126を制御することができる。また、コントローラ141は、当該ずれが所定の閾値以内となるようフィードバック制御を実行してもよい。コントローラ141およびガルバノスキャナ126は、補正機構の一例である。このような構成により、レーザ光の照射位置の精度を高めることができる。 Further, also in the present embodiment, the controller 141 can control the galvano scanner 126 so as to detect a deviation of the spot with respect to a predetermined position from the image captured by the camera 170 and correct the deviation. Further, the controller 141 may execute feedback control so that the deviation is within a predetermined threshold value. The controller 141 and the galvano scanner 126 are examples of the correction mechanism. With such a configuration, the accuracy of the irradiation position of the laser beam can be improved.
 本実施形態によれば、加工対象Wに対する第一レーザ光および第二レーザ光を含むレーザ光Lの照射により、第1実施形態と同様の構成の溶接金属14aを含む溶接部14を有した溶接構造10を得ることができる。したがって、本実施形態によれば、例えば、より容易にあるいはより迅速に、所要の接合強度を有した溶接構造10を得ることができる。 According to the present embodiment, by irradiating the processing target W with the first laser beam and the laser beam L including the second laser beam, the weld having the welded portion 14 containing the weld metal 14a having the same configuration as that of the first embodiment is welded. Structure 10 can be obtained. Therefore, according to the present embodiment, for example, the welded structure 10 having the required joint strength can be obtained more easily or more quickly.
[第1変形例]
 図7は、第2実施形態の第1変形例のレーザ溶接装置100Bの概略構成図である。図7に示されるように、本実施形態では、光学ヘッド120は、コリメートレンズ121-2とフィルタ124との間に、DOE125(diffractive optical element、回折光学素子)を有している。この点を除き、レーザ溶接装置100Bは、第2実施形態のレーザ溶接装置100Aと同様の構成を備えている。
[First modification]
FIG. 7 is a schematic configuration diagram of the laser welding apparatus 100B of the first modification of the second embodiment. As shown in FIG. 7, in the present embodiment, the optical head 120 has a DOE125 (diffractive optical element) between the collimating lens 121-2 and the filter 124. Except for this point, the laser welding apparatus 100B has the same configuration as the laser welding apparatus 100A of the second embodiment.
 DOE125は、コリメートレンズ121-2と集光レンズ122との間に配置され、レーザ光のビームの形状(以下、ビーム形状と称する)を成形する。図8に概念的に例示されるよう、DOE125は、例えば、周期の異なる複数の回折格子125aが重ね合わせられた構成を備えている。DOE125は、平行光を、各回折格子125aの影響を受けた方向に曲げたり、重ね合わせたりすることにより、より好適なビーム形状を成形することができる。DOE125は、ビームシェイパとも称されうる。なお、DOE125は、コリメートレンズ121-1と集光レンズ122との間に配置されてもよい。また、レーザ装置111,112のうち一方のみから出力されたレーザ光のビームをDOE125によって成形した上で、加工対象Wに照射してもよい。 The DOE 125 is arranged between the collimating lens 121-2 and the condenser lens 122, and forms the shape of the beam of the laser beam (hereinafter referred to as the beam shape). As conceptually illustrated in FIG. 8, the DOE 125 has, for example, a configuration in which a plurality of diffraction gratings 125a having different periods are superposed. The DOE 125 can form a more suitable beam shape by bending or superimposing parallel light in a direction affected by each diffraction grating 125a. DOE125 may also be referred to as a beam shaper. The DOE 125 may be arranged between the collimating lens 121-1 and the condenser lens 122. Further, the beam of the laser beam output from only one of the laser devices 111 and 112 may be formed by the DOE 125 and then irradiated to the processing target W.
 以上、本発明の実施形態および変形例が例示されたが、上記実施形態および変形例は一例であって、発明の範囲を限定することは意図していない。上記実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。 Although the embodiments and modifications of the present invention have been exemplified above, the above embodiments and modifications are examples, and the scope of the invention is not intended to be limited. The above embodiments and modifications can be implemented in various other embodiments, and various omissions, replacements, combinations, and modifications can be made without departing from the gist of the invention. In addition, specifications such as each configuration and shape (structure, type, direction, model, size, length, width, thickness, height, number, arrangement, position, material, etc.) are changed as appropriate. Can be carried out.
 例えば、金属部材の数は、3以上であってもよい。また、加工対象に対してレーザ光を掃引する際に、公知のウォブリングやウィービングや出力変調等により掃引を行い、溶融池の表面積を調節するようにしてもよい。 For example, the number of metal members may be 3 or more. Further, when the laser beam is swept to the object to be processed, the surface area of the molten pool may be adjusted by sweeping by known wobbling, weaving, output modulation or the like.
 本発明は、溶接方法、溶接装置、および金属部材の溶接構造に利用することができる。 The present invention can be used for welding methods, welding devices, and welding structures of metal members.
10,10-1~10-2…溶接構造
11…金属部材(第一部材、第二部材)
12…金属部材(第二部材、第一部材)
14…溶接部
14a…溶接金属
14a1…第一部位
14a2…第二部位
14b…熱影響部
14b1…第一ゾーン
14b2…第二ゾーン
14c1…端部(第一端部)
14c2…端部(第二端部)
100,100A,100B…レーザ溶接装置(溶接装置)
111…レーザ装置(レーザ発振器)
112…レーザ装置(レーザ発振器)
120…光学ヘッド
121,121-1,121-2…コリメートレンズ
122…集光レンズ
123…ミラー
124…フィルタ
125…DOE
125a…回折格子
126…ガルバノスキャナ
126a,126b…ミラー
127…フィルタ
128…ミラー
130…光ファイバ
141…コントローラ(検出機構、補正機構)
150…駆動機構(補正機構)
170…カメラ(検出機構)
B1…ビーム(第一スポット)
B1a…外縁
B2…ビーム(第二スポット)
B2a…外縁
B2b…領域
B2f…領域
C…中心点
D1…スポット径(外径)
D2…スポット径(外径)
…スポット径
,E,E…エネルギ密度
L…レーザ光
…パワー
…吸収率
Re1,Re2…エネルギ密度比
SD…掃引方向
T1,T2…厚さ
V…掃引速度
W…加工対象
Wa…表面
Wd…溶け込み深さ
Wd2…溶け込み深さ
Ww2…幅
X…方向
Y…方向(第二方向)
Z…方向(第一方向)
10, 10-1 to 10-2 ... Welded structure 11 ... Metal member (first member, second member)
12 ... Metal member (second member, first member)
14 ... Welded part 14a ... Welded metal 14a1 ... First part 14a2 ... Second part 14b ... Heat-affected zone 14b1 ... First zone 14b2 ... Second zone 14c1 ... End part (first end part)
14c2 ... end (second end)
100, 100A, 100B ... Laser welding equipment (welding equipment)
111 ... Laser device (laser oscillator)
112 ... Laser device (laser oscillator)
120 ... Optical head 121, 121-1, 121-2 ... Collimating lens 122 ... Condensing lens 123 ... Mirror 124 ... Filter 125 ... DOE
125a ... Diffraction grating 126 ... Galvano scanner 126a, 126b ... Mirror 127 ... Filter 128 ... Mirror 130 ... Optical fiber 141 ... Controller (detection mechanism, correction mechanism)
150 ... Drive mechanism (correction mechanism)
170 ... Camera (detection mechanism)
B1 ... Beam (first spot)
B1a ... Outer edge B2 ... Beam (second spot)
B2a ... Outer edge B2b ... Region B2f ... Region C ... Center point D1 ... Spot diameter (outer diameter)
D2 ... Spot diameter (outer diameter)
D n ... spot diameter E n, E 1, E 2 ... energy density L ... laser light P n ... power R n ... absorptance Re1, Re2 ... energy density ratio SD ... sweep direction T1, T2 ... thickness V ... sweep rate W ... Processing target Wa ... Surface Wd ... Penetration depth Wd2 ... Penetration depth Ww2 ... Width X ... Direction Y ... Direction (second direction)
Z ... direction (first direction)

Claims (24)

  1.  第一部材と、当該第一部材に対して第一方向に重なるとともに当該第一部材とは異なる材質の第二部材と、を含む加工対象の、前記第一方向とは反対方向の端部に位置した表面上にレーザ光を照射することにより、前記第一部材と前記第二部材とを溶接する溶接方法であって、
     前記加工対象には、前記表面から前記第一部材を前記第一方向に貫通して前記第二部材に至る溶接金属を含む溶接部が形成され、
     前記溶接金属の前記第一方向の溶け込み深さWdは、前記第一部材の前記第一方向の厚さをT1とした場合に、T1<Wd≦T1+0.5[mm]である、溶接方法。
    At the end of the processing target, which includes the first member and the second member which overlaps the first member in the first direction and is made of a material different from the first member, in the direction opposite to the first direction. It is a welding method in which the first member and the second member are welded by irradiating a positioned surface with a laser beam.
    A welded portion containing a weld metal that penetrates the first member in the first direction from the surface to the second member is formed on the processing target.
    The welding method in which the penetration depth Wd of the weld metal in the first direction is T1 <Wd ≦ T1 + 0.5 [mm] when the thickness of the first member in the first direction is T1.
  2.  前記溶接金属は、前記第一部材において形成される第一部位と、前記第二部材において形成される第二部位と、を含み、
     前記第二部位の前記第一方向の溶け込み深さWd2に対する前記第一方向と交差した第二方向の幅Ww2の比Ew2=Ww2/Wd2が、1以上である、請求項1に記載の溶接方法。
    The weld metal includes a first portion formed in the first member and a second portion formed in the second member.
    The welding method according to claim 1, wherein the ratio Ew2 = Ww2 / Wd2 of the width Ww2 in the second direction intersecting with the first direction to the penetration depth Wd2 in the first direction of the second portion is 1 or more. ..
  3.  第一部材と、当該第一部材に対して第一方向に重なるとともに当該第一部材とは異なる材質の第二部材と、を含む加工対象の、前記第一方向とは反対方向の端部に位置した表面上にレーザ光を照射することにより、前記第一部材と前記第二部材とを溶接する溶接方法であって、
     前記加工対象には、前記表面から前記第一部材を前記第一方向に貫通して前記第二部材に至る溶接金属を含む溶接部が形成され、
     前記溶接金属は、前記第一部材において形成される第一部位と、前記第二部材において形成される第二部位と、を含み、
     前記第二部位の前記第一方向の溶け込み深さWd2に対する前記第一方向と交差した第二方向の幅Ww2の比Ew2=Ww2/Wd2が、1以上である、溶接方法。
    At the end of the processing target, which includes the first member and the second member which overlaps the first member in the first direction and is made of a material different from the first member, in the direction opposite to the first direction. It is a welding method in which the first member and the second member are welded by irradiating a positioned surface with a laser beam.
    A welded portion containing a weld metal that penetrates the first member in the first direction from the surface to the second member is formed on the processing target.
    The weld metal includes a first portion formed in the first member and a second portion formed in the second member.
    A welding method in which the ratio Ew2 = Ww2 / Wd2 of the width Ww2 in the second direction intersecting with the first direction to the penetration depth Wd2 in the first direction of the second portion is 1 or more.
  4.  前記レーザ光は、800[nm]以上かつ1200[nm]以下の波長の第一レーザ光と、550[nm]以下の波長の第二レーザ光と、を含む、請求項1~3のうちいずれか一つに記載の溶接方法。 Any of claims 1 to 3, wherein the laser light includes a first laser light having a wavelength of 800 [nm] or more and 1200 [nm] or less, and a second laser light having a wavelength of 550 [nm] or less. The welding method described in one.
  5.  前記第二レーザ光の波長は、400[nm]以上かつ500[nm]以下である、請求項4に記載の溶接方法。 The welding method according to claim 4, wherein the wavelength of the second laser beam is 400 [nm] or more and 500 [nm] or less.
  6.  前記第二部材の融点は、前記第一部材の融点よりも低い、請求項4または5に記載の溶接方法。 The welding method according to claim 4 or 5, wherein the melting point of the second member is lower than the melting point of the first member.
  7.  前記第一部材は、銅系材料であり、前記第二部材は、アルミニウム系材料である、請求項1~6のうちいずれか一つに記載の溶接方法。 The welding method according to any one of claims 1 to 6, wherein the first member is a copper-based material and the second member is an aluminum-based material.
  8.  以下の式(1)および式(2)
     E=R×P/(D×V) ・・・ (1)
     E=R×P/(D×V) ・・・ (2)
     ここに、Eは、第一レーザ光のエネルギ密度[J/mm]、Rは、第一レーザ光の第一部材の材料における吸収率、Pは、第一レーザ光のパワー[W]、Dは、表面における第一レーザ光のスポット径[mm]、Eは、第二レーザ光のエネルギ密度[J/mm]、Rは、第二レーザ光の第一部材の材料における吸収率、Pは、第二レーザ光のパワー[W]、Dは、表面における第二レーザ光のスポット径[mm]、およびVは、掃引速度[mm/s]、
     で表せるエネルギ密度E,Eを定義した場合、
     第一レーザ光のエネルギ密度Eの、第二レーザ光のエネルギ密度Eに対する比(E/E)が、0以上かつ6以下である、請求項6または7に記載の溶接方法。
    The following equations (1) and (2)
    E 1 = R 1 x P 1 / (D 1 x V) ... (1)
    E 2 = R 2 x P 2 / (D 2 x V) ... (2)
    Here, E 1 is the energy density of the first laser beam [J / mm 2 ], R 1 is the absorption rate of the material of the first member of the first laser beam, and P 1 is the power of the first laser beam [ W] and D 1 are the spot diameter [mm] of the first laser beam on the surface, E 2 is the energy density of the second laser beam [J / mm 2 ], and R 2 is the first member of the second laser beam. 2 is the power of the second laser beam [W], D 2 is the spot diameter [mm] of the second laser beam on the surface, and V is the sweep rate [mm / s].
    When the energy densities E 1 and E 2 that can be expressed by are defined,
    The welding method according to claim 6 or 7, wherein the ratio (E 1 / E 2 ) of the energy density E 1 of the first laser beam to the energy density E 2 of the second laser beam is 0 or more and 6 or less.
  9.  前記第一部材の融点は、前記第二部材の融点よりも低い、請求項4または5に記載の溶接方法。 The welding method according to claim 4 or 5, wherein the melting point of the first member is lower than the melting point of the second member.
  10.  前記第二部材は、銅系材料であり、前記第一部材は、アルミニウム系材料である、請求項4、5および9のうちいずれか一つに記載の溶接方法。 The welding method according to any one of claims 4, 5 and 9, wherein the second member is a copper-based material and the first member is an aluminum-based material.
  11.  以下の式(1)および式(2)
     E=R×P/(D×V) ・・・ (1)
     E=R×P/(D×V) ・・・ (2)
     ここに、Eは、第一レーザ光のエネルギ密度[J/mm]、Rは、第一レーザ光の第一部材の材料における吸収率、Pは、第一レーザ光のパワー[W]、Dは、表面における第一レーザ光のスポット径[mm]、Eは、第二レーザ光のエネルギ密度[J/mm]、Rは、第二レーザ光の第一部材の材料における吸収率、Pは、第二レーザ光のパワー[W]、Dは、表面における第二レーザ光のスポット径[mm]、およびVは、掃引速度[mm/s]、
     で表せるエネルギ密度E,Eを定義した場合、
     第一レーザ光のエネルギ密度Eの、第二レーザ光のエネルギ密度Eに対する比(E/E)が、1以上である、請求項9または10に記載の溶接方法。
    The following equations (1) and (2)
    E 1 = R 1 x P 1 / (D 1 x V) ... (1)
    E 2 = R 2 x P 2 / (D 2 x V) ... (2)
    Here, E 1 is the energy density of the first laser beam [J / mm 2 ], R 1 is the absorption rate of the material of the first member of the first laser beam, and P 1 is the power of the first laser beam [ W] and D 1 are the spot diameter [mm] of the first laser beam on the surface, E 2 is the energy density of the second laser beam [J / mm 2 ], and R 2 is the first member of the second laser beam. 2 is the power of the second laser beam [W], D 2 is the spot diameter [mm] of the second laser beam on the surface, and V is the sweep rate [mm / s].
    When the energy densities E 1 and E 2 that can be expressed by are defined,
    The welding method according to claim 9 or 10, wherein the ratio (E 1 / E 2 ) of the energy density E 1 of the first laser beam to the energy density E 2 of the second laser beam is 1 or more.
  12.  前記第一部材の前記第一方向の厚さは、0.1[mm]以上2[mm]以下であり、前記第二部材の前記第一方向の厚さは、0.1[mm]以上2[mm]以下である、請求項1~11のうちいずれか一つに記載の溶接方法。 The thickness of the first member in the first direction is 0.1 [mm] or more and 2 [mm] or less, and the thickness of the second member in the first direction is 0.1 [mm] or more. The welding method according to any one of claims 1 to 11, which is 2 [mm] or less.
  13.  レーザ発振器と、
     第一部材と、当該第一部材に対して第一方向に重なるとともに当該第一部材とは異なる材質の第二部材と、を含む加工対象の、前記第一方向とは反対方向の端部に位置した表面上にレーザ光を照射する光学ヘッドと、
     を備え、前記第一部材と前記第二部材とを溶接する、溶接装置であって、
     前記レーザ光は、第一レーザ光と当該第一レーザ光とは異なる第二レーザ光とを含む、溶接装置。
    Laser oscillator and
    At the end of the processing target, which includes the first member and the second member which overlaps the first member in the first direction and is made of a material different from the first member, in the direction opposite to the first direction. An optical head that irradiates a laser beam on the located surface,
    A welding device that welds the first member and the second member.
    The laser beam is a welding apparatus including a first laser beam and a second laser beam different from the first laser beam.
  14.  前記第一レーザ光の波長は、800[nm]以上かつ1200[nm]以下であり、
     前記第二レーザ光の波長は、550[nm]以下である、請求項13に記載の溶接装置。
    The wavelength of the first laser beam is 800 [nm] or more and 1200 [nm] or less.
    The welding apparatus according to claim 13, wherein the wavelength of the second laser beam is 550 [nm] or less.
  15.  前記レーザ発振器からの第一レーザ光および第二レーザ光の出力を変更可能なコントローラを備えた、請求項13または14に記載の溶接装置。 The welding apparatus according to claim 13 or 14, further comprising a controller capable of changing the output of the first laser beam and the second laser beam from the laser oscillator.
  16.  前記レーザ光の前記表面上での掃引速度を変更可能なコントローラを備えた、請求項13~15のうちいずれか一つに記載の溶接装置。 The welding apparatus according to any one of claims 13 to 15, further comprising a controller capable of changing the sweep speed of the laser beam on the surface.
  17.  前記光学ヘッドと前記加工対象との間の距離を変更可能なコントローラを備えた、請求項13~16のうちいずれか一つに記載の溶接装置。 The welding apparatus according to any one of claims 13 to 16, further comprising a controller capable of changing the distance between the optical head and the processing target.
  18.  以下の式(1)および式(2)
     E=R×P/(D×V) ・・・ (1)
     E=R×P/(D×V) ・・・ (2)
     ここに、Eは、第一レーザ光のエネルギ密度[J/mm]、Rは、第一レーザ光の第一部材の材料における吸収率、Pは、第一レーザ光のパワー[W]、Dは、表面における第一レーザ光のスポット径[mm]、Eは、第二レーザ光のエネルギ密度[J/mm]、Rは、第二レーザ光の第一部材の材料における吸収率、Pは、第二レーザ光のパワー[W]、Dは、表面における第二レーザ光のスポット径[mm]、およびVは、掃引速度[mm/s]、
     で表せるエネルギ密度E,Eを定義した場合、
     前記コントローラは、第一レーザ光のエネルギ密度Eの、第二レーザ光のエネルギ密度Eに対する比(E/E)を変更可能である、請求項15~17のうちいずれか一つに記載の溶接装置。
    The following equations (1) and (2)
    E 1 = R 1 x P 1 / (D 1 x V) ... (1)
    E 2 = R 2 x P 2 / (D 2 x V) ... (2)
    Here, E 1 is the energy density of the first laser beam [J / mm 2 ], R 1 is the absorption rate of the material of the first member of the first laser beam, and P 1 is the power of the first laser beam [ W] and D 1 are the spot diameter [mm] of the first laser beam on the surface, E 2 is the energy density of the second laser beam [J / mm 2 ], and R 2 is the first member of the second laser beam. 2 is the power of the second laser beam [W], D 2 is the spot diameter [mm] of the second laser beam on the surface, and V is the sweep rate [mm / s].
    When the energy densities E 1 and E 2 that can be expressed by are defined,
    The controller can change the ratio (E 1 / E 2 ) of the energy density E 1 of the first laser beam to the energy density E 2 of the second laser beam, any one of claims 15 to 17. The welding equipment described in.
  19.  第一部材と、
     前記第一部材に対して第一方向に重なった第二部材と、
     前記第一部材内で前記第一方向に延びるとともに部分的に前記第二部材に食い込む溶接金属を含み、前記第一部材と前記第二部材とを溶接する溶接部と、
     を備えた、金属部材の溶接構造であって、
     前記溶接金属は、前記第一部材と同じ成分を含み前記第一方向と交差する第二方向に前記第一部材と並ぶ第一部位と、前記第二部材と同じ成分を含む第二部位と、を有した、金属部材の溶接構造。
    The first member and
    A second member that overlaps the first member in the first direction,
    A welded portion that includes a weld metal that extends in the first direction and partially bites into the second member in the first member, and welds the first member and the second member.
    It is a welded structure of a metal member equipped with
    The weld metal has a first portion that contains the same component as the first member and is lined up with the first member in a second direction intersecting the first direction, and a second portion that contains the same component as the second member. Welded structure of metal parts.
  20.  前記第二部材の融点は、前記第一部材の融点よりも低い、請求項19に記載の金属部材の溶接構造。 The welded structure of a metal member according to claim 19, wherein the melting point of the second member is lower than the melting point of the first member.
  21.  前記第一部材は、銅系材料であり、前記第二部材は、アルミニウム系材料である、請求項19または20に記載の金属部材の溶接構造。 The welded structure of a metal member according to claim 19 or 20, wherein the first member is a copper-based material and the second member is an aluminum-based material.
  22.  前記第一部位の前記第一方向の第一端部と、前記第二部位の前記第一方向の反対方向の第二端部とは、互いに接している、請求項19~21のうちいずれか一つに記載の金属部材の溶接構造。 One of claims 19 to 21, wherein the first end portion of the first portion in the first direction and the second end portion of the second portion in the opposite direction of the first direction are in contact with each other. The welded structure of the metal member described in one.
  23.  前記第一部材の前記第一方向の厚さは、0.1[mm]以上2[mm]以下であり、前記第二部材の前記第一方向の厚さは、0.1[mm]以上2[mm]以下である、請求項19~22のうちいずれか一つに記載の金属部材の溶接構造。 The thickness of the first member in the first direction is 0.1 [mm] or more and 2 [mm] or less, and the thickness of the second member in the first direction is 0.1 [mm] or more. The welded structure for a metal member according to any one of claims 19 to 22, which is 2 [mm] or less.
  24.  前記第一部位および前記第二部位の、前記第一方向および前記第二方向に沿う断面における結晶粒のサイズの平均値は、互いに異なる、請求項19~23のうちいずれか一つに記載の金属部材の溶接構造。 13. Welded structure of metal members.
PCT/JP2021/026146 2020-07-10 2021-07-12 Welding method, welding device, and welded structure of metal members WO2022009996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022535411A JP7336035B2 (en) 2020-07-10 2021-07-12 Welding method and welding equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-119366 2020-07-10
JP2020119365 2020-07-10
JP2020-119365 2020-07-10
JP2020119366 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022009996A1 true WO2022009996A1 (en) 2022-01-13

Family

ID=79552587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026146 WO2022009996A1 (en) 2020-07-10 2021-07-12 Welding method, welding device, and welded structure of metal members

Country Status (2)

Country Link
JP (1) JP7336035B2 (en)
WO (1) WO2022009996A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157809A1 (en) * 2022-02-15 2023-08-24 日亜化学工業株式会社 Laser welding method
WO2023157810A1 (en) * 2022-02-15 2023-08-24 日亜化学工業株式会社 Laser welding method and metal joined body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301583A (en) * 2001-04-03 2002-10-15 Hitachi Constr Mach Co Ltd Laser welding method and equipment
JP2006297464A (en) * 2005-04-22 2006-11-02 Miyachi Technos Corp Laser welding method and equipment
JP2015211981A (en) * 2014-04-15 2015-11-26 パナソニックIpマネジメント株式会社 Dissimilar metal joint body
JP2020040106A (en) * 2018-09-13 2020-03-19 トヨタ自動車株式会社 Different material joining method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347415A (en) * 2004-06-01 2005-12-15 Miyachi Technos Corp Electric part mounting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301583A (en) * 2001-04-03 2002-10-15 Hitachi Constr Mach Co Ltd Laser welding method and equipment
JP2006297464A (en) * 2005-04-22 2006-11-02 Miyachi Technos Corp Laser welding method and equipment
JP2015211981A (en) * 2014-04-15 2015-11-26 パナソニックIpマネジメント株式会社 Dissimilar metal joint body
JP2020040106A (en) * 2018-09-13 2020-03-19 トヨタ自動車株式会社 Different material joining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157809A1 (en) * 2022-02-15 2023-08-24 日亜化学工業株式会社 Laser welding method
WO2023157810A1 (en) * 2022-02-15 2023-08-24 日亜化学工業株式会社 Laser welding method and metal joined body

Also Published As

Publication number Publication date
JPWO2022009996A1 (en) 2022-01-13
JP7336035B2 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2022009996A1 (en) Welding method, welding device, and welded structure of metal members
JP7335923B2 (en) Welding method and welding equipment
JP5551792B2 (en) Welding method of two metal constituent members and joint structure having two metal constituent members
CN110936016B (en) Method and apparatus for laser welding
JP7282270B2 (en) LASER CUTTING METHOD AND LASER CUTTING APPARATUS FOR METAL FOIL
DE10113471B4 (en) Method for hybrid welding by means of a laser double focus
JP2023041676A (en) Welding method and laser welding system
US20220314367A1 (en) Metal foil welding method
JP5446334B2 (en) Laser welding apparatus and laser welding method
JP2021186861A (en) Welding method, welding device and product
JP2023157915A (en) Manufacturing method for busbar
JP2023053952A (en) Metal laminate, electric component, and electric product
JP2022011883A (en) Welding method, welding equipment and welding structure of metal conductor
JP2022013800A (en) Semiconductor device and welding method
JP2021191589A (en) Welding method, welding device, and battery assembly
WO2021182644A1 (en) Vapor chamber and method for manufacturing vapor chamber
WO2023157810A1 (en) Laser welding method and metal joined body
WO2023157809A1 (en) Laser welding method
WO2023085336A1 (en) Welding method, welding device, and metal laminate
WO2022270595A1 (en) Welding method, metal laminate, electrical component, and electrical product
WO2024034535A1 (en) Laser welding device, and laser welding method
JP2024052263A (en) Laser welding method and laser welding apparatus
KR20230066105A (en) Laser welding method and laser welding device
KR20240053919A (en) Laser welding device
JP2023059864A (en) Laser welding method and laser welding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838014

Country of ref document: EP

Kind code of ref document: A1