WO2022009484A1 - 成膜方法 - Google Patents

成膜方法 Download PDF

Info

Publication number
WO2022009484A1
WO2022009484A1 PCT/JP2021/011719 JP2021011719W WO2022009484A1 WO 2022009484 A1 WO2022009484 A1 WO 2022009484A1 JP 2021011719 W JP2021011719 W JP 2021011719W WO 2022009484 A1 WO2022009484 A1 WO 2022009484A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
rotary targets
magnet
rotary
angle
Prior art date
Application number
PCT/JP2021/011719
Other languages
English (en)
French (fr)
Inventor
雄一 織井
宗人 箱守
具和 須田
大 ▲高▼木
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2022534907A priority Critical patent/JP7358647B2/ja
Priority to KR1020227022033A priority patent/KR20220106187A/ko
Priority to CN202180009850.6A priority patent/CN114981470A/zh
Publication of WO2022009484A1 publication Critical patent/WO2022009484A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3417Arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present invention relates to a film forming method.
  • the film formation technology for substrates used in large displays requires high uniformity in film thickness distribution.
  • the sputtering method is adopted as the film forming method, it may be difficult to make the film thickness distribution uniform in the substrate surface due to the complicated spatial distribution of the sputtering particles.
  • the film thickness at the center of the substrate and the edge of the substrate tends to be more non-uniform.
  • an object of the present invention is to provide a film forming method in which the film thickness distribution in the substrate surface becomes more uniform.
  • At least a plurality of rotary targets having a central axis and a target surface and having a rotatable magnet inside the central axis are provided. Sputtering film formation is performed on the substrate using three or more.
  • the plurality of rotary targets are arranged so that the central axes are parallel to each other and the central axes are parallel to the substrate. While applying power to the plurality of rotary targets, the magnets of each of the plurality of rotary targets are moved around the central axis on an arc having the point A closest to the substrate to the substrate.
  • Sputter film formation is performed, and among the plurality of rotary targets, the magnets of the pair of rotary targets arranged at at least both ends form a film on the arc in a region away from the center of the substrate from the point A.
  • the time is shorter than the time for forming a film in the region closer to the center of the substrate than the point A.
  • the movement of the magnets of the pair of rotary targets arranged at both ends is controlled as described above, and the film thickness distribution in the substrate surface becomes more uniform.
  • the above-mentioned pair of rotary targets The magnet may rotate between a position at any angle in the range of 20 to 90 degrees and a position at any angle in the range of ⁇ 20 degrees to ⁇ 90 degrees.
  • the movement of the magnets of the pair of rotary targets arranged at both ends is controlled as described above, and the film thickness distribution in the substrate surface becomes more uniform.
  • one of the pair of rotary targets arranged at both ends started film formation from a region closer to the center of the substrate than the point A on the arc, and was arranged at both ends.
  • the other of the pair of rotary targets may start film formation from a region distant from the center of the substrate from the point A on the arc.
  • the movement of the magnets of the pair of rotary targets arranged at both ends is controlled as described above, and the film thickness distribution in the substrate surface becomes more uniform.
  • the average angular velocity of moving the region away from the center of the substrate from the point A on the arc is the above. It may be faster than the average angular velocity moving in the region closer to the center of the substrate than the point A.
  • the movement of the magnets of the pair of rotary targets arranged at both ends is controlled as described above, and the film thickness distribution in the substrate surface becomes more uniform.
  • a film forming method in which the film thickness distribution in the substrate surface becomes more uniform.
  • FIG. (A) is a graph showing an example of the moving speed (angular velocity) of the magnet with respect to the angle of the magnet.
  • FIG. (B) is a graph showing an example of the ratio of the discharge time to the angle of the magnet.
  • FIG. (A) is a graph showing the film thickness distribution in the substrate surface according to the comparative example.
  • FIG. (B) is a graph showing an example of the film thickness distribution in the substrate surface when the film is formed by the film forming method of the present embodiment.
  • FIG. 1A and 1 (b) are schematic views showing an example of a film forming method according to the present embodiment.
  • FIG. 1A shows a schematic cross section showing an arrangement relationship between a plurality of rotary targets and a substrate
  • FIG. 1B shows a schematic plane showing the arrangement relationship. ..
  • the film forming according to the present embodiment is automatically performed by, for example, the control device 410 of the film forming apparatus 400 shown in FIG.
  • At least three or more of a plurality of rotatable cylindrical rotary targets are used to perform sputtering film formation (magnetron sputtering) on the substrate 10.
  • sputtering film formation magnetic sputtering
  • FIGS. 1A and 1B for example, 10 rotary targets 201 to 210 are exemplified.
  • the number of the plurality of rotary targets is not limited to this number, and is appropriately changed according to, for example, the size of the substrate 10.
  • Each of the plurality of rotary targets 201 to 210 has a central axis 20 and a target surface (sputtering surface) 21.
  • Each of the plurality of rotary targets 201 to 210 is internally provided with a magnet that can rotate around the central axis 20.
  • magnets 301 to 310 are arranged in the order of a plurality of rotary targets 201 to 210.
  • Magnets 301-310 are so-called magnet assemblies.
  • the magnets 301 to 310 have a permanent magnet and a magnetic yoke.
  • the plurality of rotary targets 201 to 210 are arranged so that the central axes 20 are parallel to each other and the central axes 20 are parallel to the substrate 10.
  • the plurality of rotary targets 201 to 210 are arranged side by side so that the target surfaces 21 face each other in the direction intersecting the central axis 20.
  • the direction in which the plurality of rotary targets 201 to 210 are arranged side by side corresponds to the longitudinal direction of the substrate 10. If necessary, the direction in which the plurality of rotary targets 201 to 210 are arranged side by side may be the lateral direction of the substrate 10.
  • the board 10 is supported by a board holder (not shown).
  • the potential of the substrate holder is, for example, a floating potential, a ground potential, or the like.
  • the plurality of rotary targets 201 to 210 are arranged so that the direction in which the plurality of rotary targets 201 to 210 are arranged is parallel to the longitudinal direction of the substrate 10.
  • the target surface 21 of each of the plurality of rotary targets 201 to 210 faces the film forming surface 11 of the substrate 10.
  • the direction in which the plurality of rotary targets 201 to 210 are arranged side by side corresponds to the Y-axis direction
  • the direction from the substrate 10 toward the plurality of rotary targets 201 to 210 is the Z axis.
  • the direction in which each of the plurality of rotary targets 201 to 210 extends corresponds to the X-axis.
  • a pair of rotary targets 201 and 210 are arranged at both ends of a group of a plurality of rotary targets 201 to 210.
  • the pair of rotary targets 201 and 210 are arranged so as to protrude from the substrate 10 in the Y-axis direction.
  • a plurality of rotary targets 201 to 210 and a substrate 10 are arranged so that at least a part of each of the pair of rotary targets 201 and 210 overlaps with the substrate 10.
  • the plurality of rotary targets 201 to 210 and the substrate 10 are arranged so that the central axes 20 of the pair of rotary targets 201 and 210 and the substrate 10 overlap each other.
  • a plurality of rotary targets 201 to 210 are arranged so that the central axes 20 of the pair of rotary targets 201 and 210 are located inside the substrate 10.
  • the central axis 20 of the rotary target 201 and the end portion 12a of the substrate 10 in the Y-axis direction overlap in the Z-axis direction. Further, the central axis 20 of the rotary target 210 and the end portion 12b of the substrate 10 in the Y-axis direction overlap with each other.
  • the rotary target 201 may be referred to as one rotary target
  • the rotary target 210 may be referred to as the other rotary target.
  • the pitches of the plurality of rotary targets 201 to 210 are set substantially evenly in the Y-axis direction. Further, the relative distance between the plurality of rotary targets 201 to 210 and the substrate 10 during the sputtering film formation is a fixed distance.
  • the outer diameter of each of the plurality of rotary targets 201 to 210 is 100 mm or more and 200 mm or less.
  • the pitch of the plurality of rotary targets 201 to 210 in the Y-axis direction is 200 mm or more and 300 mm or less.
  • the size of the substrate 10 is 700 mm or more and 4000 mm or less in the Y-axis direction and 700 mm or more and 4000 mm or less in the X-axis direction.
  • the materials of the plurality of rotary targets 201 to 210 are, for example, a metal such as aluminum, an In—Sn—O system, an In—Ga—Zn—O system oxide, and the like.
  • the material of the substrate 10 is, for example, glass, an organic resin, or the like.
  • discharge power is applied to each of the plurality of rotary targets 201 to 210, and magnets of the plurality of rotary targets 201 to 210 rotate on an arc around the central axis 20 and sputter onto the substrate 10. Film formation is performed.
  • the larger the size of the substrate 10 the larger the difference between the thickness of the film formed near the end portions 12a and 12b of the substrate 10 and the thickness of the film formed in the central portion of the substrate 10. It tends to be.
  • the central portion of the substrate 10 is the region of the substrate 10 on which the rotary targets 202 to 209 face each other.
  • the rotational movement of the magnets of the pair of rotary targets 201 and 210 arranged at both ends of the group of rotary targets 201 and 210 and the rotary targets 202 and 209 arranged between the pair of rotary targets 201 and 210 is controlled more uniformly.
  • the rotational movement of the magnets of the plurality of rotary targets 201 to 210 may be one rotational movement from the start point to the end point at a rotation angle of 360 degrees or less, or at least one swing at a rotation angle of 360 degrees or less. good.
  • the magnet when the magnet is folded back, the magnet does not stop at the folded back position, and the magnet is continuously folded back.
  • each of the plurality of rotary targets 201 to 210 is applied to each of the plurality of rotary targets 201 to 210 in order to substantially equalize the consumption of each rotary target.
  • the input power may be DC power or AC power such as RF band and VHF band.
  • each of the plurality of rotary targets 201 to 210 rotates clockwise or counterclockwise.
  • Each of the plurality of rotary targets 201 to 210 is set to, for example, 5 rpm or more and 30 rpm or less at the same rotation speed.
  • FIG. 2 is a diagram for explaining the definition of the angle of the magnet that rotates and moves around the central axis of the rotary target.
  • the rotary target 201 is illustrated among the plurality of rotary targets 201 to 210.
  • the same definitions as those for the rotary target 201 are made for the rotary targets 202 to 210 other than the rotary target 201.
  • the angle of the magnet 301 when the distance between the center of the magnet 301 and the substrate 10 is the shortest is set to 0 degrees.
  • the position where the perpendicular line and the center 30 of the magnet 301 coincide with each other corresponds to an angle of 0 degrees of the magnet 301.
  • the center 30 draws an arc trajectory.
  • the angle is 0 degrees
  • the magnet 310 is closest to the substrate 10, and the point on the arc at this time is defined as the point A.
  • the clockwise direction is a positive angle (+ ⁇ ) and the counterclockwise direction is a negative angle ( ⁇ ) from 0 degrees.
  • the position of the magnet 301 is assumed to be the angular position of the center 30 at a certain angle.
  • the magnet 301 By rotating the magnet 301 around the central axis 20 of the rotary target 201, plasma can be concentrated near the target surface 21 on which the magnet 301 faces during magnetron discharge. In other words, the sputtered particles can be preferentially emitted from the target surface 21 on which the magnet 301 faces. Thereby, the direction in which the sputtering particles are emitted from the target surface 21 can be controlled according to the angle of the magnet 301. Further, after the substrate 10 is arranged to face the plurality of rotary targets 201 to 210, the direction of the sputtering particles toward the substrate 10 can be changed ex post facto by changing the range of the moving angle of the magnet 310.
  • FIGS. 3 (a) and 3 (b) are graphs showing an example of the moving speed (angular velocity) of the magnet with respect to the angle of the magnet.
  • FIG. 3A shows an example of the moving speed of the magnet with respect to the angle of the magnet 301.
  • FIG. 3B shows an example of the moving speed of the magnet with respect to the angle of the magnet 310.
  • the rotational movement of the magnets 301 and 310 exemplified in FIGS. 3A and 3B is one rotational movement from the start point to the end point.
  • sputtering film formation is performed while rotating the magnets 301 and 310 in the clockwise direction.
  • the magnets 301 and 310 of the pair of rotary targets 201 and 210 arranged at both ends among the plurality of rotary targets 201 to 210 are as follows. Controls rotational movement.
  • the time required to form a film in a region farther from the center of the substrate 10 than the point A is longer than that of the point A.
  • Rotate and move so that the time required to form a film is shorter in the region near the center.
  • the rotary target 201 starts film formation from a region closer to the center of the substrate 10 than the point A on the arc
  • the rotary target 210 starts film formation from a region farther from the center of the substrate 10 than the point A on the arc. Start.
  • the magnet 301 rotates and moves in a range of an angle of ⁇ 60 degrees to +60 degrees.
  • the position at an angle of ⁇ 60 degrees is the start point of the rotational movement of the magnet 301
  • the position at the angle of +60 degrees is the end point of the rotational movement of the magnet 301.
  • the angular velocity at the starting point position is approximately 0.2 deg. Whereas / sec, the angular velocity at the end point is 120 deg. Set to / sec.
  • the angular velocity in the range from the starting point position to 25 degrees is 0.2 deg. / Sec to 0.2 deg. While it is around / sec, the angular velocity in the range from 25 degrees to the end point position is 120 deg. Set to / sec.
  • the average angular velocity of moving in a region farther from the center of the substrate 10 than the point A on the arc is higher than the average angular velocity of moving in a region closer to the center of the substrate 10 than the point A. Rotate and move to make it faster.
  • the average value of the angular velocities is low, whereas the magnet 301 has the point A.
  • the average value of the angular velocity is set to high velocity.
  • the magnet 310 rotates and moves in the range of an angle of -60 degrees to 60 degrees.
  • the position at an angle of ⁇ 60 degrees is the start point of the rotational movement of the magnet 310
  • the position at the angle of +60 degrees is the end point of the rotational movement of the magnet 310.
  • the angular velocity of the magnet 310 at the starting point position is 120 deg.
  • the angular velocity of the magnet 310 at the end point is approximately 0.2 deg. Set to / sec.
  • the angular velocity in the range from the starting point position to -25 degrees is 120 deg.
  • the angular velocity in the range from -25 degrees to the end point position is 0.2 deg. / Sec to 0.2 deg. It is set near / sec.
  • the average angular velocity of moving in a region farther from the center of the substrate 10 than the point A on the arc is higher than the average angular velocity of moving in a region closer to the center of the substrate 10 than the point A. Rotate and move to make it faster.
  • the average value of the angular velocities is high, whereas in the range in which the magnet 310 rotates from the position of point A to the end point position. Is set to a low average angular velocity.
  • the change in the angular velocity with respect to the angle of the magnet 301 of the rotary target 201 (FIG. 3 (a)) and the change of the angular velocity with respect to the angle of the magnet 310 of the rotary target 210 (FIG. 3 (b)) cause the magnet to rotate and move.
  • the angular velocities of the magnets 301 and 310 are set so as to be symmetrical in the range (-60 degrees to +60 degrees).
  • the magnet 301 of the rotary target 201 and the magnet 310 of the rotary target 210 rotate and move in the same rotation direction.
  • the direction of rotation is not limited to this example, and the directions in which the magnets 301 and 310 rotate and move may be opposite to each other.
  • FIG. 4 (a) and 4 (b) are graphs showing an example of the ratio of the discharge time to the angle of the magnet.
  • FIG. 4A shows an example of the ratio of the discharge time to the angle of the magnet 301
  • FIG. 4B shows an example of the ratio of the discharge time to the angle of the magnet 310.
  • the ratio of the discharge time corresponds to the ratio of the residence time of the magnet at the position of a predetermined angle. That is, the higher the ratio of the discharge time, the longer the movement time of the magnet at the angle position.
  • the ratio of the discharge time corresponds to the ratio of the residence time of the discharge plasma concentrated in the vicinity of the target surface 21 facing the magnet, and the higher the ratio of the discharge time, the more the sputtering particles are emitted from the target surface 21. The amount will increase.
  • the discharge time ratio at any position from -60 degrees to +25 degrees is in the range of 3% to 10%, whereas it is +25 degrees.
  • the discharge time ratio at any position from to +60 degrees is controlled to approximately 0%.
  • the discharge is longer when the magnet 301 is located from -60 degrees to +25 degrees than when the magnet 301 is located from +25 degrees to +60 degrees.
  • Plasma stays.
  • the sputtering particles emitted from the target surface 21 of the rotary target 201 are preferentially directed to the region from the end portion 12a toward the inside of the substrate 10 rather than the outside of the end portion 12a of the substrate 10.
  • the discharge time ratio at any position from -60 degrees to -25 degrees is approximately 0% due to the rotational movement of the magnet 310, whereas- The discharge time ratio at any position from 25 degrees to +60 degrees is controlled in the range of 3% to 10%.
  • the time when the magnet 310 is located from -25 degrees to +60 degrees is longer than when the magnet 310 is located from -60 to -25 degrees.
  • the discharge plasma stays.
  • the sputtering particles emitted from the target surface 21 of the rotary target 210 are preferentially directed to the region from the end portion 12b toward the inside of the substrate 10 rather than the outside of the end portion 12b of the substrate 10.
  • FIGS. 3 (a) and 3 (b) and FIGS. 4 (a) and 4 (b) are examples, and the rotation angle at which each of the magnets 301 and 310 rotates is shown in FIG. 3 (a). ), (B) and FIGS. 4 (a) and 4 (b).
  • the magnets 301, 310 of a pair of rotary targets 201, 210 are positioned at any angle in the range 20 to 90 degrees and at any angle in the range -20 to -90 degrees. It may rotate to and from the position of.
  • the start point of the rotational movement of the magnet 301 of the rotary target 201 is a position at any angle in the range of -20 degrees to -90 degrees, and the end point of the rotational movement is any of the ranges of +20 degrees to +90 degrees.
  • the start point of the rotational movement of the magnet 310 of the rotary target 210 is the position at any angle in the range of -20 degrees to -90 degrees, and the end point of the rotational movement is +20.
  • the position may be at any angle in the range from degrees to +90 degrees.
  • FIG. 5A is a graph showing an example of the moving speed (angular velocity) of the magnet with respect to the angle of the magnet.
  • FIG. 5B is a graph showing an example of the ratio of the discharge time to the angle of the magnet.
  • FIG. 5A shows an example of the moving speed of the magnet with respect to the angle of the magnets 302 to 309
  • FIG. 5B shows an example of the ratio of the discharge time to the angle of the magnets 302 to 309. There is.
  • the rotational movement is controlled so that the appearance is different from the rotational movement of the magnets 301 and 310.
  • the magnets 302 to 309 rotate so that the angular velocity in the middle of the rotational movement becomes the fastest in the range of the rotation angle in which the magnets 302 to 309 rotate.
  • the angular velocities of the magnets 302 to 309 have the highest angular velocities near the angle of 0 degrees (point A).
  • the position at an angle of ⁇ 60 degrees is the start point of the rotational movement of the magnets 302 to 309
  • the position at the angle of +60 degrees is the end point of the rotational movement of the magnets 302 to 309.
  • the angular velocities at the start and end points of the magnets 302 to 309 are set lower than the angular velocities at the end points of the magnet 301 and the angular velocities at the start point of the magnet 310.
  • the angular velocity is relatively slow near the start point, the angular velocity is relatively high in the middle of the rotational movement range, for example, at 0 degrees (point A), and the angular velocity is relatively slow again near the end point. Is controlled.
  • Each magnet of the rotary targets 202 to 209 rotates and moves in the same rotation direction, for example.
  • the discharge time ratio near the angle of 0 degrees is close to 0%, while the discharge time near the start point and the end point is near.
  • the ratio is controlled higher than the discharge time ratio near 0 degrees.
  • the discharge plasma is longer when the magnets 302 to 309 are located near the start point and the end point than when the respective angles of the magnets 302 to 309 are located near 0 degrees.
  • the sputtering particles emitted from the target surface 21 of the rotary targets 202 to 209 are directed to a wide angle in the range from the start point to the end point.
  • the sputtering particles emitted from each of the rotary targets 202 to 209 overlap on the substrate 10, and a film having a substantially uniform thickness is formed in the central portion of the substrate 10 on which the rotary targets 202 to 209 face each other. Will be done.
  • FIGS. 5 (a) and 5 (b) The example shown in FIGS. 5 (a) and 5 (b) is an example, and the angle of rotation in which each of the magnets 302 to 309 rotates is not limited to the example in FIGS. 5 (a) and 5 (b). ..
  • the change in the angular velocity with respect to each angle may be controlled to be symmetrical within the range in which the magnet rotates and moves.
  • the magnet 302 of the rotary target 202 and the magnet 309 of the rotary target 209 may be controlled so that the change in the angular velocity with respect to each angle is symmetrical within the range in which the magnet rotates and moves.
  • the magnet 303 of the rotary target 203 and the magnet 308 of the rotary target 208 may be controlled so that the change in the angular velocity with respect to each angle is symmetrical within the range in which the magnet rotates and moves.
  • the magnet 304 of the rotary target 204 and the magnet 307 of the rotary target 207 may be controlled so that the change in the angular velocity with respect to each angle is symmetrical within the range in which the magnet rotates and moves.
  • the magnet 305 of the rotary target 205 and the magnet 306 of the rotary target 206 may be controlled so that the change in the angular velocity with respect to each angle is symmetrical within the range in which the magnet rotates and moves.
  • the magnets do not approach or face each other between adjacent rotary targets in order to ensure the stability of magnetron discharge. Therefore, it is desirable that the magnets of the plurality of rotary targets 201 to 210 rotate and move in the same rotation direction during the film formation.
  • the thickness of the film formed near the end portions 12a and 12b of the substrate 10 is corrected, and the thickness of the film formed in the central portion of the substrate 10 and the end portion 12a of the substrate 10 are corrected.
  • the thickness of the film formed in the vicinity of 12b is adjusted to be substantially uniform.
  • FIG. 6 is a schematic plan view showing an example of the film forming apparatus of the present embodiment.
  • FIG. 6 schematically shows a plan view of the film forming apparatus 400 when viewed from above. At least three or more rotary targets are arranged in the film forming apparatus 400.
  • the film forming apparatus 400 As the film forming apparatus 400, a magnetron sputtering film forming apparatus is exemplified.
  • the film forming apparatus 400 includes a vacuum vessel 401, a plurality of rotary targets 201 to 210, a power supply 403, a substrate holder 404, a pressure gauge 405, a gas supply system 406, a gas flow meter 407, and an exhaust system 408.
  • the control device 410 is provided.
  • the substrate 10 is supported by the substrate holder 404.
  • the vacuum container 401 maintains a decompressed atmosphere by the exhaust system 408.
  • the vacuum vessel 401 accommodates a plurality of rotary targets 201 to 210, a substrate holder 404, a substrate 10, and the like.
  • a pressure gauge 405 for measuring the pressure inside the vacuum container 401 is attached to the vacuum container 401.
  • a gas supply system 406 for supplying a discharge gas (for example, Ar, oxygen) is attached to the vacuum container 401.
  • the gas flow rate supplied into the vacuum vessel 401 is adjusted by the gas flow meter 407.
  • the plurality of rotary targets 201 to 210 are film forming sources of the film forming apparatus 400. For example, when a plurality of rotary targets 201 to 210 are sputtered by plasma formed in the vacuum vessel 401, the sputtering particles are emitted from the plurality of rotary targets 201 to 210 toward the substrate 10.
  • the power supply 403 controls the discharge power applied to each of the plurality of rotary targets 201 to 210.
  • the power supply 403 may be a DC power supply or a high frequency power supply such as RF or VHF.
  • RF or VHF high frequency power supply
  • the control device 410 controls the electric power output by the power supply 403, the opening degree of the gas flow meter 407, and the like.
  • the pressure measured by the pressure gauge 405 is sent to the control device 410.
  • the control device 410 controls to perform sputtering film formation on the substrate 10 while rotating and moving the magnets of the plurality of rotary targets 201 to 210 around the central axis 20.
  • the control device 410 controls the rotational movement of the magnets 301 to 310 and controls the power supply to each of the plurality of rotary targets 201 to 210, which are described with reference to FIGS. 1 (a) to 5 (b). do.
  • FIG. 7A is a graph showing the film thickness distribution in the substrate surface according to the comparative example.
  • FIG. 7B is a graph showing an example of the film thickness distribution in the substrate surface when the film is formed by the film forming method of the present embodiment.
  • the broken line indicates the film thickness distribution when the sputtering particles emitted from the individual rotary targets 201 to 210 are deposited on the substrate 10.
  • the solid line shows the film thickness distribution in which the film thickness distributions formed by the individual rotary targets 201 to 210 are combined.
  • the width direction of the horizontal axis corresponds to the direction in which a plurality of rotary targets 201 to 210 are arranged side by side.
  • the vertical axis is the film thickness.
  • the film thickness distribution when the positions of the magnets 301 to 310 of the individual rotary targets 201 to 210 are fixed at 0 degrees is shown.
  • the emission angle distribution of the sputtering particles emitted from the individual rotary targets 201 to 210 follows the so-called cosine law.
  • the film thickness distribution by the individual rotary targets 201 to 210 shows a distribution symmetrical with respect to the center line of the film thickness distribution (broken line).
  • the individual film thickness distributions show the same distribution.
  • the emission angle distribution of the sputtering particles emitted from the rotary targets 201 and 210 is closer to the center side of the substrate 10 than in the comparative example, and the emission angle of the sputtering particles is set. Oriented to the center side of the substrate 10.
  • the film thickness distribution by the rotary targets 201 and 210 becomes asymmetric with respect to the center line of the film thickness distribution, and the distribution is closer to the center side of the substrate 10.
  • the peak of the film thickness distribution by the rotary targets 201 and 210 is higher than the peak of the film thickness distribution by the rotary targets 202 to 209.
  • the emission angle distribution of the sputtering particles emitted from the rotary targets 201 and 210 is directed to a wider angle than in the comparative example.
  • the film thickness distribution by the rotary targets 202 to 209 shows an appearance of spreading toward both ends of the substrate 10 as compared with the comparative example.
  • the film thickness distribution (solid line) in which these individual film thickness distributions are overlapped becomes flatter than that in the comparative example, and the in-plane distribution of the film thickness becomes more uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】膜厚分布の均一化を図る。 【解決手段】成膜方法では、中心軸とターゲット面とを有し、中心軸の周りに回転可能な磁石を内部に備えた複数のロータリターゲットを少なくとも3個以上用いて基板にスパッタリング成膜が行われる。複数のロータリターゲットは、中心軸が互いに平行で、かつ中心軸が基板と平行になるように配置される。複数のロータリターゲットに電力を投入しながら、複数のロータリターゲットのそれぞれの磁石を、中心軸の周りに、基板に最も近いA点を有する円弧上を移動させながら、基板にスパッタリング成膜を行い、複数のロータリターゲットの内、少なくとも両端に配置された一対のロータリターゲットの磁石は、円弧上において、A点より基板の中心から離れた領域で成膜する時間がA点より基板の中心に近い領域で成膜する時間より短い。

Description

成膜方法
 本発明は、成膜方法に関する。
 大型ディスプレイで用いられる基板に対する成膜技術では、膜厚分布に関し高い均一性が要求される。特に、成膜方法としてスパッタリング法を採用した場合、スパッタリング粒子の複雑な空間的分布に起因して、基板面内における膜厚分布の均一化が難しくなる場合がある。
 このような状況の中、内部に磁石が設けられた棒状のロータリターゲットを基板に対向して複数並設して、それぞれのロータリターゲットからスパッタリング粒子を基板に入射させ、膜厚分布の改善を試みた例がある(例えば、特許文献1参照)。
特表2019-519673号公報
 しかしながら、昨今における基板のさらなる大型化に伴い、基板の中央部と基板の端部とにおける膜厚がより不均一になる傾向にある。基板面内における膜厚の均一化を図るために、如何にして基板面内における膜厚補正するかが重要になっている。
 以上のような事情に鑑み、本発明の目的は、基板面内における膜厚分布がより均一になる成膜方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る成膜方法では、中心軸とターゲット面とを有し、上記中心軸の周りに回転可能な磁石を内部に備えた複数のロータリターゲットを少なくとも3個以上用いて基板にスパッタリング成膜が行われる。
 上記複数のロータリターゲットは、上記中心軸が互いに平行で、かつ上記中心軸が上記基板と平行になるように配置される。
 上記複数のロータリターゲットに電力を投入しながら、上記複数のロータリターゲットのそれぞれの上記磁石を、上記中心軸の周りに、上記基板に最も近いA点を有する円弧上を移動させながら、上記基板にスパッタリング成膜を行い、上記複数のロータリターゲットの内、少なくとも両端に配置された一対のロータリターゲットの上記磁石は、上記円弧上において、上記A点より上記基板の中心から離れた領域で成膜する時間が上記A点より上記基板の中心に近い領域で成膜する時間より短い。
 このような成膜方法であれば、両端に配置された一対のロータリターゲットの磁石の移動が上記のように制御されて基板面内における膜厚分布がより均一になる。
 上記の成膜方法においては、上記A点の上記磁石の角度を0度とし、上記0度から反時計回り方向を負角度、時計回り方向を正角度とした場合、上記一対のロータリターゲットの上記磁石は、20度から90度までの範囲のいずれかの角度での位置と、-20度から-90度までの範囲のいずれかの角度での位置との間において回転移動してもよい。
 このような成膜方法であれば、両端に配置された一対のロータリターゲットの磁石の移動が上記のように制御されて基板面内における膜厚分布がより均一になる。
 上記の成膜方法においては、上記両端に配置された一対のロータリターゲットの一方は、上記円弧上の上記A点より上記基板の中心から近い領域から成膜を開始し、上記両端に配置された一対のロータリターゲットの他方は、上記円弧上の上記A点より上記基板の中心に離れた領域から成膜を開始してもよい。
 このような成膜方法であれば、両端に配置された一対のロータリターゲットの磁石の移動が上記のように制御されて基板面内における膜厚分布がより均一になる。
 上記の成膜方法においては、上記両端に配置された一対のロータリターゲットの上記磁石の移動において、上記円弧上の上記A点より上記基板の中心から離れた領域を移動する平均の角速度が、上記A点より上記基板の中心に近い領域を移動する平均の角速度より速くてもよい。
 このような成膜方法であれば、両端に配置された一対のロータリターゲットの磁石の移動が上記のように制御されて基板面内における膜厚分布がより均一になる。
 以上述べたように、本発明によれば、基板面内における膜厚分布がより均一になる成膜方法が提供される。
本実施形態に係る成膜方法の一例を示す模式図である。 ロータリターゲットの中心軸の周りに回転移動する磁石の角度の定義を説明するための図である。 磁石の角度に対する磁石の移動速度(角速度)の一例を示すグラフ図である。 磁石の角度に対する放電時間の割合の一例を示すグラフ図である。 図(a)は、磁石の角度に対する磁石の移動速度(角速度)の一例を示すグラフ図である。図(b)は、磁石の角度に対する放電時間の割合の一例を示すグラフ図である。 本実施形態の成膜装置の一例を示す模式的平面図である。 図(a)は、比較例に係る基板面内の膜厚分布を示すグラフ図である。図(b)は、本実施形態の成膜方法で成膜した場合の基板面内の膜厚分布の一例を示すグラフ図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。各図面には、XYZ軸座標が導入される場合がある。また、同一の部材または同一の機能を有する部材には同一の符号を付す場合があり、その部材を説明した後には適宜説明を省略する場合がある。また、以下に示す数値は例示であり、この例に限らない。
 図1(a)、(b)は、本実施形態に係る成膜方法の一例を示す模式図である。図1(a)には、複数のロータリターゲットと基板との配置関係を示す模式的な断面が示され、図1(b)には、その配置関係を示す模式的な平面が示されている。なお、本実施形態に係る成膜は、例えば、図6に示す成膜装置400の制御装置410によって自動的に行われる。
 本実施形態の成膜方法では、回転可能な円筒状の複数のロータリターゲットの少なくとも3個以上が用いられて基板10にスパッタリング成膜(マグネトロンスパッタリング)がなされる。図1(a)、(b)には、例えば、10個のロータリターゲット201~210が例示されている。複数のロータリターゲットの数は、この数に限らず、例えば、基板10のサイズに応じて適宜変更される。
 複数のロータリターゲット201~210のそれぞれは、中心軸20とターゲット面(スパッタリング面)21とを有する。複数のロータリターゲット201~210のそれぞれは、中心軸20の周りに回転可能な磁石を内部に備える。例えば、図1(a)、(b)の例では、複数のロータリターゲット201~210の順に、磁石301~310が配置されている。磁石301~310は、所謂、磁石アセンブリである。磁石301~310は、永久磁石と磁気ヨークとを有する。
 複数のロータリターゲット201~210は、中心軸20が互いに平行で、かつ中心軸20が基板10と平行になるように配置される。例えば、複数のロータリターゲット201~210は、中心軸20と交差する方向にターゲット面21同士が互いに対向するように並設される。複数のロータリターゲット201~210が並設された方向は、基板10の長手方向に対応している。なお、必要に応じて、複数のロータリターゲット201~210が並設された方向は、基板10の短手方向としてもよい。
 基板10は、図示しない基板ホルダに支持される。基板ホルダの電位は、例えば、浮遊電位、接地電位等とする。複数のロータリターゲット201~210は、複数のロータリターゲット201~210が並ぶ方向が基板10の長手方向に平行になるように配置される。複数のロータリターゲット201~210のそれぞれのターゲット面21は、基板10の成膜面11に対向している。
 なお、図1(a)、(b)では、複数のロータリターゲット201~210が並設された方向がY軸方向に対応し、基板10から複数のロータリターゲット201~210に向かう方向がZ軸に対応し、複数のロータリターゲット201~210のそれぞれが延在する方向がX軸に対応している。
 また、Y軸方向において、複数のロータリターゲット201~210の群の両端には、一対のロータリターゲット201、210が配置される。例えば、Z軸方向において複数のロータリターゲット201~210と基板10とを見た場合、Y軸方向において、一対のロータリターゲット201、210が基板10からはみ出すように配置される。例えば、一対のロータリターゲット201、210のそれぞれの少なくとも一部と、基板10とが重なるように、複数のロータリターゲット201~210と基板10とが配置される。
 具体的には、一対のロータリターゲット201、210のそれぞれの中心軸20と、基板10とが重なるように、複数のロータリターゲット201~210と基板10とが配置される。例えば、一対のロータリターゲット201、210のそれぞれの中心軸20が基板10の内側に位置するように、複数のロータリターゲット201~210が配置される。
 図1(a)、(b)の例では、Z軸方向において、ロータリターゲット201の中心軸20と、基板10のY軸方向における端部12aとが重複している。また、ロータリターゲット210の中心軸20と、基板10のY軸方向における端部12bとが重複している。
 一対のロータリターゲット201、210と基板10の端部12a、12bとをこのように配置することにより、両端に配置されたロータリターゲット201、210から放出されるスパッタリング粒子が基板10の外側を無駄に通過することなく、基板10の端部12a、12b付近に指向される。これにより、基板10の端部12a、12b付近の膜厚が確実に補正される。なお、実施形態では、一対のロータリターゲット201、210の中、ロータリターゲット201を一方のロータリターゲット、ロータリターゲット210を他方のロータリターゲットと呼称することがある。
 また、Y軸方向において、複数のロータリターゲット201~210のピッチは、略均等に設定される。また、スパッタリング成膜中における、複数のロータリターゲット201~210と基板10との相対距離は、固定距離とされる。
 複数のロータリターゲット201~210のそれぞれの外径は、100mm以上200mm以下である。Y軸方向における複数のロータリターゲット201~210のピッチは、200mm以上300mm以下である。基板10のサイズは、Y軸方向が700mm以上4000mm以下、X軸方向が700mm以上4000mm以下である。
 複数のロータリターゲット201~210の材料は、例えば、アルミニウム等の金属、In-Sn-O系、In-Ga-Zn-O系の酸化物等である。基板10の材料は、例えば、ガラス、有機樹脂等である。
 本実施形態では、複数のロータリターゲット201~210のそれぞれに放電電力が投入され、複数のロータリターゲット201~210のそれぞれの磁石が中心軸20の周りに円弧上を回転移動しながら基板10にスパッタリング成膜が行われる。
 特に、スパッタリング成膜では基板10のサイズが大型になるほど、基板10の端部12a、12b付近に形成される膜の厚みと、基板10の中央部に形成される膜の厚みとの差が大きくなる傾向にある。ここで、基板10の中央部とは、ロータリターゲット202~209が対向する基板10の領域であるとする。
 本実施形態では、一群のロータリターゲット201~210の両端に配置された一対のロータリターゲット201、210と、一対のロータリターゲット201、210の間に配置されたロータリターゲット202~209の磁石の回転移動との様相を変えることにより、基板10の面内における膜厚分布をより均一に制御する。
 複数のロータリターゲット201~210の磁石の回転移動は、360度以下の回転角での始点から終点までの1回の回転移動でもよく、360度以下の回転角での少なくとも1回の揺動でもよい。なお、本実施形態の揺動動作では、磁石が折り返す際に折り返し位置では磁石が停止せず、連続的な折り返し移動をする。
 複数のロータリターゲット201~210のそれぞれには、それぞれのロータリターゲットの消耗を略均等にするため、同じ電力が投入される。投入電力は、直流電力でもよく、RF帯、VHF帯等の交流電力でもよい。また、複数のロータリターゲット201~210のそれぞれは、時計回りまたは反時計回りに回転する。複数のロータリターゲット201~210のそれぞれは、例えば、同じ回転数で5rpm以上30rpm以下に設定される。
 以下、磁石301~310の回転動作の具体例について説明する。まず、複数のロータリターゲット201~210の中、両端に配置された一対のロータリターゲット201、210の磁石301、310の回転動作の具体例について説明する。
 図2は、ロータリターゲットの中心軸の周りに回転移動する磁石の角度の定義を説明するための図である。図2では、一例として、複数のロータリターゲット201~210の中、ロータリターゲット201が例示される。磁石の角度、正角度、負角度、及びA点(後述)の定義については、ロータリターゲット201以外のロータリターゲット202~210についても、ロータリターゲット201と同様の定義がなされる。
 本実施形態では、磁石301の角度について、磁石301の中心と基板10との距離が最短となるときの磁石301の角度が0度とされる。例えば、中心軸20から基板10の成膜面11に垂線を引いた場合、この垂線と磁石301の中心30とが一致した位置が磁石301の角度0度に相当する。磁石301が中心軸20を回転移動するとき、その中心30は、円弧の軌道を描く。角度が0度のとき、磁石310は基板10に最も近づき、このときの円弧上の点をA点とする。また、磁石301の角度の正負については、0度から時計回り方向を正角度(+θ)、反時計回り方向を負角度(-θ)とする。なお、磁石301の位置とは、ある角度における中心30の角度位置であるとする。
 ロータリターゲット201の中心軸20の周りに磁石301を回転移動させることにより、マグネトロン放電時においては、磁石301が対向するターゲット面21付近にプラズマを集中させることができる。換言すれば、磁石301が対向するターゲット面21から優先的にスパッタリング粒子を放出することができる。これにより、磁石301の角度に応じて、スパッタリング粒子がターゲット面21から放出する指向を制御することができる。さらに、基板10を複数のロータリターゲット201~210に対向配置させた後において、磁石310の移動角度の範囲を変えることによりスパッタリング粒子が基板10に向かう指向を事後的に変えることができる。
 図3(a)、(b)は、磁石の角度に対する磁石の移動速度(角速度)の一例を示すグラフ図である。図3(a)には、磁石301の角度に対する磁石の移動速度の一例が示されている。図3(b)には、磁石310の角度に対する磁石の移動速度の一例が示されている。また、図3(a)、(b)に例示される磁石301、310の回転移動は、始点から終点までの1回の回転移動であるとする。図3(a)、(b)では、一例として、時計回り方向で磁石301、310を回転移動させながらスパッタリング成膜が行われる。
 本実施形態では、基板10にスパッタリング成膜を行う際に、複数のロータリターゲット201~210の中、両端に配置された一対のロータリターゲット201、210の磁石301、310については、次のような回転移動の制御を行う。
 例えば、磁石301、310に対して、円弧上において磁石301、310の角速度を変化させることにより、A点よりも基板10の中心から離れた領域で成膜する時間がA点よりも基板10の中心に近い領域で成膜する時間より短くなるように回転移動させる。ロータリターゲット201は、円弧上のA点よりも基板10の中心に近い領域から成膜を開始し、ロータリターゲット210は、円弧上のA点よりも基板10の中心から離れた領域から成膜を開始する。
 例えば、図3(a)に示すように、磁石301は、角度が-60度~+60度の範囲において回転移動する。ここで、角度-60度での位置が磁石301の回転移動の始点であり、角度+60度での位置が磁石301の回転移動の終点である。磁石301が始点に位置したときに、ロータリターゲット201に放電電力が投入される。放電電力の投入は、他のロータリターゲット202~210においても始点で投入される。すなわち、始点でプラズマが着火する。
 この回転角(120度)の範囲において、始点位置での角速度が略0.2deg./secであるのに対し、終点位置での角速度が120deg./secに設定される。例えば、始点位置から25度までの範囲の角速度が0.2deg./sec乃至0.2deg./sec付近であるのに対し、25度から終点位置までの範囲の角速度が120deg./secに設定される。
 磁石301については、その回転移動において、円弧上のA点よりも基板10の中心から離れた領域を移動する平均の角速度がA点よりも基板10の中心に近い領域を移動する平均の角速度より速くなるように回転移動させる。
 例えば、図3(a)に示されるように、磁石301が始点位置からA点の位置まで回転移動する範囲においては、角速度の平均値が低速度であるのに対して、磁石301がA点の位置から終点位置まで回転移動する範囲においては、角速度の平均値が高速度に設定される。
 また、図3(b)に示すように、磁石310については、角度が-60度~60度の範囲において回転移動する。ここで、角度-60度での位置が磁石310の回転移動の始点であり、角度+60度での位置が磁石310の回転移動の終点である。磁石310が始点に位置したときに、ロータリターゲット210に放電電力が投入される。
 この回転角(120度)の範囲において、磁石310が始点位置での角速度が120deg./secであるのに対し、磁石310が終点位置での角速度が略0.2deg./secに設定される。例えば、始点位置から-25度までの範囲の角速度が120deg./secであるのに対し、-25度から終点位置までの範囲の角速度が0.2deg./sec乃至0.2deg./sec付近に設定される。
 磁石310においては、その回転移動において、円弧上のA点よりも基板10の中心から離れた領域を移動する平均の角速度がA点よりも基板10の中心に近い領域を移動する平均の角速度より速くなるように回転移動させる。
 例えば、磁石310が始点位置からA点の位置まで回転移動する範囲においては、角速度の平均値が高速度であるのに対して、磁石310がA点の位置から終点位置まで回転移動する範囲においては、角速度の平均値が低速度に設定される。
 このように、ロータリターゲット201の磁石301における角度に対する角速度の変化(図3(a))と、ロータリターゲット210の磁石310における角度に対する角速度の変化(図3(b))とが磁石が回転移動する範囲(-60度~+60度)において対称になるように、磁石301、310のそれぞれの角速度が設定される。
 また、一対のロータリターゲット201、210において、ロータリターゲット201の磁石301と、ロータリターゲット210の磁石310とが同じ回転方向に回転移動する。回転の方向は、この例に限らず、磁石301、310が回転移動する方向が互いに逆でもよい。
 図4(a)、(b)は、磁石の角度に対する放電時間の割合の一例を示すグラフ図である。図4(a)には、磁石301の角度に対する放電時間の割合の一例が示され、図4(b)には、磁石310の角度に対する放電時間の割合の一例が示されている。
 ここで、放電時間の割合とは、所定の角度の位置における磁石の滞在時間の割合に相当する。すなわち、放電時間の割合が高いほど、その角度位置での磁石の移動時間が長いことを意味する。換言すれば、放電時間の割合とは、磁石と対向するターゲット面21付近に集中する放電プラズマの滞在時間の割合に相当し、放電時間の割合が高いほど、ターゲット面21からのスパッタリング粒子の放出量が多くなる。
 図4(a)に示すように、磁石301の回転移動によって、-60度から+25度までのいずれかの位置での放電時間割合が3%から10%の範囲であるのに対し、+25度から+60度までのいずれかの位置での放電時間割合は、略0%に制御される。
 これにより、ロータリターゲット201のターゲット面21付近には、磁石301が+25度から+60度の位置まで位置するときよりも、磁石301が-60度から+25度の位置まで位置するときのほうが長く放電プラズマが滞在する。この結果、ロータリターゲット201のターゲット面21から放出されるスパッタリング粒子は、基板10の端部12aより外側よりも、端部12aから基板10の内側に向かう領域に優先的に指向する。
 一方、図4(b)に示すように、磁石310の回転移動によって、-60度から-25度の位置までのいずれかの位置での放電時間割合が略0%であるのに対し、-25度から+60度までのいずれかの位置での放電時間割合は、3%から10%の範囲に制御される。
 これにより、ロータリターゲット210のターゲット面21付近には、磁石310が-60から-25度の位置まで位置するときよりも、磁石310が-25度から+60度の位置まで位置するときのほうが長く放電プラズマが滞在する。この結果、ロータリターゲット210のターゲット面21から放出されるスパッタリング粒子は、基板10の端部12bより外側よりも、端部12bから基板10の内側に向かう領域に優先的に指向する。
 なお、図3(a)、(b)及び図4(a)、(b)で示された例は、一例であり、磁石301、310のそれぞれが回転移動する回転角は、図3(a)、(b)及び図4(a)、(b)の例に限らない。
 例えば、一対のロータリターゲット201、210の磁石301、310は、20度から90度までの範囲のいずれかの角度での位置と、-20度から-90度までの範囲のいずれかの角度での位置との間において回転移動してもよい。
 例えば、ロータリターゲット201の磁石301の回転移動の始点が-20度から-90度までの範囲のいずれかの角度での位置であり、回転移動の終点が+20度から+90度までの範囲のいずれかの角度での位置である場合、ロータリターゲット210の磁石310の回転移動の始点は、-20度から-90度までの範囲のいずれかの角度での位置であり、回転移動の終点が+20度から+90度までの範囲のいずれかの角度での位置としてもよい。
 次に、残りのロータリターゲット202~209の磁石の回転動作の具体例について説明する。
 図5(a)は、磁石の角度に対する磁石の移動速度(角速度)の一例を示すグラフ図である。図5(b)は、磁石の角度に対する放電時間の割合の一例を示すグラフ図である。図5(a)には、磁石302~309の角度に対する磁石の移動速度の一例が示され、図5(b)には、磁石302~309の角度に対する放電時間の割合の一例が示されている。
 磁石302~309に対しては、磁石301、310の回転移動とは様相が異なるように回転移動の制御が行われる。磁石302~309においては、磁石302~309が回転移動する回転角の範囲において、回転移動の途中での角速度が最も速くなるように回転移動する。
 例えば、図5(a)に示すように、磁石302~309の角速度は、角度が0度(A点)付近において角速度が最も速くなっている。ここで、角度-60度での位置が磁石302~309の回転移動の始点であり、角度+60度での位置が磁石302~309の回転移動の終点である。また、磁石302~309における始点及び終点での角速度は、磁石301の終点の角速度及び磁石310の始点での角速度よりも低く設定される。磁石302~309のそれぞれが始点に位置したときに、ロータリターゲット202~209に放電電力が投入される。
 すなわち、磁石302~309においては、始点付近での角速度は比較的遅く、回転移動範囲の途中、例えば、0度(A点)で角速度が比較的高くなり、終点付近で再び角速度が比較的遅くなる制御がなされる。ロータリターゲット202~209のそれぞれの磁石は、例えば、同じ回転方向に回転移動する。
 これにより、図5(b)に示すように、ロータリターゲット202~209においては、角度が0度付近での放電時間割合が0%に近くなるのに対し、始点付近及び終点付近での放電時間割合が0度付近での放電時間割合に比べて高く制御される。
 これにより、ロータリターゲット202~209のターゲット面21付近には、磁石302~309のそれぞれの角度が0度付近に位置するときよりも、始点付近及び終点付近に位置するときのほうが長く放電プラズマが滞在する。この結果、ロータリターゲット202~209のターゲット面21から放出されるスパッタリング粒子は、始点から終点までの範囲において広角に指向する。
 この結果、基板10上では、ロータリターゲット202~209のそれぞれから放出されるスパッタリング粒子が重なり合うことになり、ロータリターゲット202~209が対向する基板10の中央部において、略均一な厚みの膜が形成される。
 なお、図5(a)、(b)で示された例は、一例であり、磁石302~309のそれぞれが回転移動する回転角は、図5(a)、(b)の例に限らない。
 例えば、ロータリターゲット201から数えて複数のロータリターゲット201~210の群の中心に向かってN番目のロータリターゲットの磁石と、ロータリターゲット210から数えて複数のロータリターゲット201~210の群の中心に向かってN番目のロータリターゲットの磁石とについては、それぞれの角度に対する角速度の変化が磁石が回転移動する範囲においてに対称となるように制御してもよい。
 例えば、ロータリターゲット202の磁石302と、ロータリターゲット209の磁石309とについては、それぞれの角度に対する角速度の変化が磁石が回転移動する範囲においてに対称となるように制御してもよい。ロータリターゲット203の磁石303と、ロータリターゲット208の磁石308とについては、それぞれの角度に対する角速度の変化が磁石が回転移動する範囲においてに対称となるように制御してもよい。ロータリターゲット204の磁石304と、ロータリターゲット207の磁石307とについては、それぞれの角度に対する角速度の変化が磁石が回転移動する範囲においてに対称となるように制御してもよい。ロータリターゲット205の磁石305と、ロータリターゲット206の磁石306とについては、それぞれの角度に対する角速度の変化が磁石が回転移動する範囲においてに対称となるように制御してもよい。
 このような対称な制御をすることにより、基板10の中央部においては、より均一な厚みの膜が形成される。
 なお、スパッタリング成膜中においては、マグネトロン放電の安定性を確保するために、隣り合うロータリターゲット間で磁石が接近または対向しないことが望ましい。このため、複数のロータリターゲット201~210のそれぞれの磁石は、成膜中、同じ回転方向に回転移動することが望ましい。
 このような手法によれば、基板10の端部12a、12b付近に形成される膜の厚みが補正されて、基板10の中央部に形成される膜の厚みと、基板10の端部12a、12b付近に形成される膜の厚みとが略均一になるように調整される。
 図6は、本実施形態の成膜装置の一例を示す模式的平面図である。図6には、成膜装置400が上方から見た場合の平面図が模式的に描かれている。成膜装置400には、少なくとも3個以上のロータリターゲットが配置される。
 成膜装置400として、マグネトロンスパッタリング成膜装置が例示される。成膜装置400は、真空容器401と、複数のロータリターゲット201~210と、電源403と、基板ホルダ404と、圧力計405と、ガス供給系406と、ガス流量計407と、排気系408と、制御装置410とを具備する。基板ホルダ404には、基板10が支持されている。
 真空容器401は、排気系408によって減圧雰囲気を維持する。真空容器401は、複数のロータリターゲット201~210、基板ホルダ404、及び基板10等を収容する。真空容器401には、真空容器401内の圧力を計測する圧力計405が取り付けられる。また、真空容器401には、放電ガス(例えば、Ar、酸素)を供給するガス供給系406が取り付けられる。真空容器401内に供給されるガス流量は、ガス流量計407で調整される。
 複数のロータリターゲット201~210は、成膜装置400の成膜源である。例えば、複数のロータリターゲット201~210が真空容器401内に形成されるプラズマによってスパッタリングされると、スパッタリング粒子が複数のロータリターゲット201~210から基板10に向けて出射される。
 電源403は、複数のロータリターゲット201~210のそれぞれに投入される放電電力を制御する。電源403は、DC電源でもよく、RF、VHF等の高周波電源でもよい。複数のロータリターゲット201~210に電源403から放電電力が供給されると、複数のロータリターゲット201~210のターゲット面21の近傍にプラズマが形成される。
 制御装置410は、電源403が出力する電力、ガス流量計407の開度等を制御する。圧力計405で計測された圧力は、制御装置410に送られる。
 制御装置410は、複数のロータリターゲット201~210のそれぞれの磁石を中心軸20の周りに回転移動させながら、基板10にスパッタリング成膜を行う制御をする。例えば、制御装置410は、図1(a)~図5(b)を用いて説明された、磁石301~310の回転移動の制御、複数のロータリターゲット201~210のそれぞれへの電力供給を制御する。
 図7(a)は、比較例に係る基板面内の膜厚分布を示すグラフ図である。図7(b)は、本実施形態の成膜方法で成膜した場合の基板面内の膜厚分布の一例を示すグラフ図である。破線は、個々のロータリターゲット201~210から放出するスパッタリング粒子が基板10に堆積した場合の膜厚分布を示す。実線は、個々のロータリターゲット201~210によって形成された膜厚分布が合成された膜厚分布を示す。横軸の幅方向は、複数のロータリターゲット201~210が並設された方向に対応する。縦軸は、膜厚である。
 図7(a)に示す比較例では、個々のロータリターゲット201~210の磁石301~310の位置が0度に固定された場合の膜厚分布が示されている。この場合、個々のロータリターゲット201~210から放出するスパッタリング粒子の放出角度分布は、所謂、余弦則に則る。これにより、個々のロータリターゲット201~210による膜厚分布は、膜厚分布の中心線を基準に対称となった分布を示す(破線)。また、個々の膜厚分布は、同じ分布を示している。
 これらの個々の膜厚分布を重ねた膜厚分布(実線)は、山と谷とが顕著に表れ、膜厚の基板面内分布がばらつくことが分かる。
 これに対し、図7(b)に示す本実施形態では、ロータリターゲット201、210から放出するスパッタリング粒子の放出角度分布が比較例に比べて基板10の中心側に寄り、スパッタリング粒子の放出角度が基板10の中心側に指向する。これにより、ロータリターゲット201、210による膜厚分布は、膜厚分布の中心線を基準に非対称となり、基板10の中心側に分布が寄っている。また、ロータリターゲット201、210による膜厚分布のピークは、ロータリターゲット202~209による膜厚分布のピークよりも高い。
 さらに、ロータリターゲット201、210から放出するスパッタリング粒子の放出角度分布は、比較例に比べて広角に指向する。これにより、ロータリターゲット202~209による膜厚分布は、比較例に比べて基板10の両端に向かって広がった様相を示す。
 従って、これらの個々の膜厚分布を重ねた膜厚分布(実線)は、比較例に比べて平坦となり、膜厚の基板面内分布がより均一になることが分かる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。各実施形態は、独立の形態とは限らず、技術的に可能な限り複合することができる。
 10…基板
 11…成膜面
 12a、12b…端部
 20…中心軸
 21…ターゲット面
 201~210…ロータリターゲット
 301~310…磁石
 400…成膜装置
 401…真空容器
 403…電源
 404…基板ホルダ
 405…圧力計
 406…ガス供給系
 407…ガス流量計
 408…排気系
 410…制御装置

Claims (4)

  1.  中心軸とターゲット面とを有し、前記中心軸の周りに回転可能な磁石を内部に備えた複数のロータリターゲットを少なくとも3個以上用いて基板にスパッタリング成膜を行う成膜方法であって、
     前記複数のロータリターゲットは、前記中心軸が互いに平行で、かつ前記中心軸が前記基板と平行になるように配置され、
     前記複数のロータリターゲットに電力を投入しながら、前記複数のロータリターゲットのそれぞれの前記磁石を、前記中心軸の周りに、前記基板に最も近いA点を有する円弧上を移動させながら、前記基板にスパッタリング成膜を行い、
     前記複数のロータリターゲットの内、少なくとも両端に配置された一対のロータリターゲットの前記磁石は、前記円弧上において、前記A点より前記基板の中心から離れた領域で成膜する時間が前記A点より前記基板の中心に近い領域で成膜する時間より短い
     成膜方法。
  2.  請求項1に記載された成膜方法においては、
     前記A点の前記磁石の角度を0度とし、前記0度から反時計回り方向を負角度、時計回り方向を正角度とした場合、
     前記一対のロータリターゲットの前記磁石は、20度から90度までの範囲のいずれかの角度での位置と、-20度から-90度までの範囲のいずれかの角度での位置との間において回転移動する
     成膜方法。
  3.  請求項1または2に記載された成膜方法においては、
     前記両端に配置された一対のロータリターゲットの一方は、前記円弧上の前記A点より前記基板の中心に近い領域から成膜を開始し、
     前記両端に配置された一対のロータリターゲットの他方は、前記円弧上の前記A点より前記基板の中心から離れた領域から成膜を開始する
     成膜方法。
  4.  請求項1~3のいずれか1つに記載された成膜方法においては、
     前記両端に配置された一対のロータリターゲットの前記磁石の移動において、前記円弧上の前記A点より前記基板の中心から離れた領域を移動する平均の角速度が前記A点より前記基板の中心に近い領域を移動する平均の角速度より速い
     成膜方法。
PCT/JP2021/011719 2020-07-08 2021-03-22 成膜方法 WO2022009484A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022534907A JP7358647B2 (ja) 2020-07-08 2021-03-22 成膜方法
KR1020227022033A KR20220106187A (ko) 2020-07-08 2021-03-22 성막 방법
CN202180009850.6A CN114981470A (zh) 2020-07-08 2021-03-22 成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-117530 2020-07-08
JP2020117530 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022009484A1 true WO2022009484A1 (ja) 2022-01-13

Family

ID=79552859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011719 WO2022009484A1 (ja) 2020-07-08 2021-03-22 成膜方法

Country Status (5)

Country Link
JP (1) JP7358647B2 (ja)
KR (1) KR20220106187A (ja)
CN (1) CN114981470A (ja)
TW (1) TWI821656B (ja)
WO (1) WO2022009484A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350768A (ja) * 2004-05-05 2005-12-22 Applied Films Gmbh & Co Kg 回転可能なマグネトロンの大面積アセンブリを有するコーター
JP2013506756A (ja) * 2009-10-02 2013-02-28 アプライド マテリアルズ インコーポレイテッド 基板をコーティングするための方法およびコータ
JP2019519673A (ja) * 2016-04-21 2019-07-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 基板をコーティングするための方法、及びコータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688217A (ja) * 1992-09-09 1994-03-29 Hitachi Ltd 両面同時スパッタ成膜方法及び成膜装置
JP5104151B2 (ja) * 2007-09-18 2012-12-19 東京エレクトロン株式会社 気化装置、成膜装置、成膜方法及び記憶媒体
WO2015072046A1 (ja) * 2013-11-14 2015-05-21 株式会社Joled スパッタリング装置
JP6498819B1 (ja) * 2018-05-10 2019-04-10 京浜ラムテック株式会社 スパッタリングカソード集合体およびスパッタリング装置
KR20220153636A (ko) * 2020-03-13 2022-11-18 에바텍 아크티엔게젤샤프트 Dc 펄스 캐소드 어레이를 사용한 장치 및 공정

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350768A (ja) * 2004-05-05 2005-12-22 Applied Films Gmbh & Co Kg 回転可能なマグネトロンの大面積アセンブリを有するコーター
JP2013506756A (ja) * 2009-10-02 2013-02-28 アプライド マテリアルズ インコーポレイテッド 基板をコーティングするための方法およびコータ
JP2019519673A (ja) * 2016-04-21 2019-07-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 基板をコーティングするための方法、及びコータ

Also Published As

Publication number Publication date
JP7358647B2 (ja) 2023-10-10
TWI821656B (zh) 2023-11-11
CN114981470A (zh) 2022-08-30
KR20220106187A (ko) 2022-07-28
JPWO2022009484A1 (ja) 2022-01-13
TW202202644A (zh) 2022-01-16

Similar Documents

Publication Publication Date Title
JP6963551B2 (ja) 真空処理装置及び基板を処理するための方法
WO2010073307A1 (ja) スパッタリング装置および成膜方法
KR20170131816A (ko) 성막 장치 및 성막 워크 제조 방법
US20120006266A1 (en) Sputtering apparatus, method of operating the same, and method of manufacturing substrate using the same
JP2004156122A (ja) 成膜方法及びスパッタ装置
JP2008038245A (ja) 成膜装置及び成膜方法
JP2012241281A (ja) スパッタリング用分割ターゲット装置、及びそれを利用したスパッタリング方法
TWI776802B (zh) 磁性膜成膜裝置及磁性膜成膜方法
TWI386504B (zh) Film forming apparatus and film forming method
WO2022009484A1 (ja) 成膜方法
JP4994220B2 (ja) スパッタリング装置
TW201608044A (zh) 以旋轉靶材組件在兩個塗佈區域中塗佈基板之濺射沈積裝置及方法和其用途
WO2015072046A1 (ja) スパッタリング装置
US9426875B2 (en) Method for producing plasma flow, method for plasma processing, apparatus for producing plasma, and apparatus for plasma processing
JP7097172B2 (ja) スパッタリング装置
JP4246546B2 (ja) スパッタ源、スパッタリング装置、及びスパッタリング方法
JP4740300B2 (ja) スパッタリング方法及び装置及び電子部品の製造方法
JP4974582B2 (ja) 成膜装置
US20200118803A1 (en) Film formation apparatus
JP5836485B2 (ja) スパッタリング装置およびスパッタリング方法
US8852412B2 (en) Magnetron source and method of manufacturing
JPH01268867A (ja) マグネトロンスパッタリング装置
US6488821B2 (en) System and method for performing sputter deposition using a divergent ion beam source and a rotating substrate
JP6947569B2 (ja) スパッタ装置
JP2001262337A (ja) マグネトロンスパッタ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227022033

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022534907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837466

Country of ref document: EP

Kind code of ref document: A1