WO2022009452A1 - Feeding bottle thermometer - Google Patents

Feeding bottle thermometer Download PDF

Info

Publication number
WO2022009452A1
WO2022009452A1 PCT/JP2021/000700 JP2021000700W WO2022009452A1 WO 2022009452 A1 WO2022009452 A1 WO 2022009452A1 JP 2021000700 W JP2021000700 W JP 2021000700W WO 2022009452 A1 WO2022009452 A1 WO 2022009452A1
Authority
WO
WIPO (PCT)
Prior art keywords
baby bottle
temperature
thermometer
heat insulating
insulating material
Prior art date
Application number
PCT/JP2021/000700
Other languages
French (fr)
Japanese (ja)
Inventor
加藤博和
Original Assignee
加藤博和
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020206151A external-priority patent/JP2022013585A/en
Application filed by 加藤博和 filed Critical 加藤博和
Publication of WO2022009452A1 publication Critical patent/WO2022009452A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element

Definitions

  • the present invention relates to a baby bottle thermometer attached to the outside of a baby bottle and measuring the temperature of milk in the baby bottle.
  • thermometer for measuring the temperature of milk in a baby bottle
  • a temperature measuring element is attached to the inside of the baby bottle (see, for example, Patent Document 1 and Patent Document 2), and a temperature measuring element is used in the baby bottle.
  • Those attached to the outside see, for example, Patent Document 3 are known.
  • Patent Document 2 the temperature inside the container (baby bottle) is sealed by contacting the temperature sensor (temperature measuring element) with the good heat conductive film provided on the cap of the baby bottle. It is also described that can be measured accurately and easily.
  • Patent Document 3 also describes that a part of the outer peripheral portion of a baby bottle is covered with a metal material, and a liquid crystal display that changes color at a predetermined temperature is attached to the outside thereof.
  • thermometer that measures the temperature of milk put in a baby bottle by attaching a temperature measuring element in the baby bottle accurately measures the temperature of milk.
  • the temperature measuring element since the temperature measuring element is installed inside the baby bottle, care must be taken in terms of hygiene.
  • the thermometer of Patent Document 2 since the good heat conductive film provided on the cap also comes into contact with milk, it is necessary to pay more attention to hygiene.
  • thermometer of the type in which a temperature measuring element is attached to the outer surface of a baby bottle as in Patent Document 3 it is not necessary to sterilize the temperature measuring element, but it is difficult to detect the temperature with high accuracy.
  • the temperature measuring element comes into contact with the cold water. This is because the temperature of the milk cannot be detected accurately.
  • the temperature measuring element becomes an obstacle and it becomes difficult to cool the milk quickly.
  • the liquid crystal used in Patent Document 3 generally has low temperature accuracy.
  • the thermometer is fitted to the outer peripheral portion of the baby bottle as in Patent Document 3, there is a problem that the size and shape of the baby bottle that can be used with the thermometer are limited.
  • the present invention has been made to solve the above problems, and the temperature of the milk in the baby bottle is raised while solving the hygienic problem by attaching the temperature measuring element to the outside of the baby bottle. It provides a thermometer for baby bottles that can measure with accuracy. It is also an object of the present invention to provide a baby bottle thermometer capable of quickly and easily cooling the milk in a baby bottle and reducing the trouble of controlling the temperature of the milk. Furthermore, it is also an object of the present invention to provide a baby bottle thermometer that is easy to handle without any particular limitation on the size and shape of the baby bottle that refers to it.
  • thermometer for baby bottles A temperature measuring element that makes thermal contact with the outer wall of the baby bottle, a sensor unit made of a heat insulating material that covers the temperature measuring element and adheres to the baby bottle,
  • the lead wire of the temperature measuring element and It is composed of a temperature display unit connected to the lead wire.
  • the temperature measuring element By arranging the temperature measuring element on the outside of the baby bottle in this way, the temperature of the milk in the baby bottle can be measured non-invasively on the outside of the baby bottle. Therefore, the temperature of the milk in the baby bottle can be measured hygienically. Further, by covering the outer surface of the temperature measuring element with a heat insulating material, when the baby bottle is immersed in cold water to cool the milk, the temperature of the cold water is less likely to be transmitted to the temperature measuring element. Therefore, the temperature of the milk in the baby bottle can be measured with high accuracy.
  • the sensor unit is brought into close contact with the outside of the baby bottle and the baby bottle is cooled with cold water, so that the milk can be efficiently and easily brought to an appropriate temperature in a short time without any trouble. Can be cooled. Since the temperature can be displayed as a numerical value on the temperature display unit, the temperature of milk can be adjusted accurately. Further, since the thermometer for baby bottles of the present invention does not need to be sterilized and is removable, the baby bottle can be easily washed. Another feature is that the size and shape of the baby bottle is not limited because it can be attached to the baby bottle that you want to use.
  • thermometer for baby bottles of the present invention it is important how much the size (thickness and width) of the heat insulating material should be. This is because the temperature detected by the temperature measuring element (the temperature estimated as the temperature of milk) is the temperature of the outer wall of the baby bottle in contact with the center of the inner side surface of the heat insulating material, and the temperature at this place is in the center of the inner side surface of the heat insulating material. Not only is it affected by the temperature of the inner wall of the baby bottle that faces it, but in addition to that, the temperature of the outer wall surface of the baby bottle that is in contact with the inner side surface edge of the heat insulating material and the outer surface of the heat insulating material on the opposite side of the inner side surface of the heat insulating material.
  • the temperature of the outer wall surface of the baby bottle in contact with the inner side surface edge of the heat insulating material and the temperature of the outer surface of the heat insulating material on the opposite side of the inner side surface of the heat insulating material become the temperature detected by the temperature measuring element. It can be less likely to affect you. Thereby, even when the baby bottle is immersed in cold water, the temperature of the milk can be measured with higher accuracy by the temperature measuring element placed between the center of the inner side surface of the heat insulating material and the outer wall of the baby bottle.
  • the thickness of the heat insulating material (thickness in the direction perpendicular to the surface in close contact with the baby bottle; the same applies hereinafter) is set to 0.
  • the temperature of the outer surface of the heat insulating material is less likely to affect the temperature detected by the temperature measuring element, and the temperature of milk can be measured with higher accuracy.
  • the insulation can be facilitated along the outer wall of the baby bottle.
  • the widths (for example, the vertical width and the horizontal width) of the surfaces of the heat insulating material in close contact with the baby bottle are 0.5 mm to 100 mm.
  • the temperature of the outer wall surface of the baby bottle in contact with the inner side edge of the heat insulating material is less likely to affect the temperature detected by the temperature measuring element, and the temperature of milk can be measured with higher accuracy.
  • the heat insulating material can be made compact to make the sensor portion easier to handle.
  • the temperature display unit is composed of a power switch, a battery, an electronic circuit, and a temperature display panel. Thereby, the electric signal obtained by the temperature measuring element can be displayed as a numerical value.
  • a good heat conductive thin film to the surface of the sensor unit that is in close contact with the baby bottle.
  • the temperature measuring element is usually very small and the lead wire is also an ultrafine wire, so that the temperature measuring element is easily damaged by an external force.
  • by covering the temperature measuring element with a good heat conductive thin film it is possible to protect the temperature measuring element from damage and improve the durability of the temperature measuring element while suppressing a decrease in the temperature measurement accuracy of milk. ..
  • a seventh means for solving the above problem it is also proposed to attach a belt with an adhesive material, a belt with a suction cup or a winding belt to the sensor unit.
  • the inner side surface of the heat insulating material can be held in close contact with the outer wall of the baby bottle by bringing the belt with the adhesive material or the belt with the suction cup into close contact with the baby bottle. Therefore, it is possible to accurately measure the temperature of the milk with the temperature measuring element by preventing the cold water in which the baby bottle is immersed from entering between the heat insulating material and the baby bottle.
  • the sensor unit, the lead wire, and the temperature display unit are integrated. This makes it possible to easily handle the thermometer for baby bottles.
  • the temperature display unit can be placed remotely from the baby bottle, so that the temperature display unit does not need to have a heat-resistant structure and can have an open structure.
  • the temperature display panel can be watched even when the baby bottle is being cooled while being shaken.
  • the temperature of the milk in the baby bottle can be measured with high accuracy while solving the hygienic problem by attaching the temperature measuring element to the outside of the baby bottle. It will be possible to provide a baby bottle. Further, it is possible to provide a thermometer for a baby bottle, which can quickly and easily cool the milk in the baby bottle and can reduce the trouble of adjusting the temperature of the milk. Further, the size and shape of the baby bottle that refers to it is not particularly limited, and it is possible to provide a baby bottle thermometer that is easy to handle.
  • FIG. 1 It is a schematic cross-sectional view which shows the structure of the baby bottle thermometer which concerns on Example 1 of this invention, (a) is the baby bottle thermometer which integrated the sensor part, the lead wire, and the temperature display part. It is a schematic cross-sectional view of the place in which it is in close contact with the baby bottle, and (b) is a partially enlarged view showing the structure of a baby bottle thermometer. It is a schematic cross-sectional view which shows the structure of the baby bottle thermometer which concerns on Example 2 of this invention, (a) is feeding a baby bottle thermometer which has a separated structure of a sensor part and a temperature display part via a lead wire.
  • thermometer It is a schematic cross-sectional view of a place in close contact with a bottle, and (b) is a partially enlarged view showing the structure of a baby bottle thermometer.
  • thermometer It is a simulation model of the two-dimensional steady state of the thermometer for a baby bottle which concerns on Example 3 of this invention. It is the result of the simulation carried out about the thermometer for a baby bottle which concerns on Example 3 of this invention, (a) is the temperature distribution on the y-axis, and (b) is the temperature distribution on the x-axis.
  • thermometer for a baby bottle which concerns on Example 4 of this invention, (a) shows the arrangement of the laboratory equipment, (b) shows the time-dependent change of the measured temperature. ..
  • thermometer for a baby bottle which concerns on Example 5 and Example 6 of this invention
  • (a) is a belt with an adhesive material
  • (b) is a belt with a suction cup. be.
  • thermometer for baby bottles According to the present invention, embodiments of the thermometer for baby bottles according to the present invention will be described with reference to FIGS. 1 to 8.
  • FIG. 1 shows a schematic cross-sectional view of the structure of the thermometer 1 for a baby bottle according to the first embodiment of the present invention.
  • the first, second, third, fourth, sixth and eighth means are adopted.
  • FIG. 1A is a schematic cross-sectional view showing a baby bottle 2 and a baby bottle thermometer 1 in close contact with the baby bottle 2.
  • FIG. 1B is an enlarged cross-sectional view of a portion of the baby bottle thermometer 1.
  • the sensor unit 3 composed of the temperature measuring element 3A and the heat insulating material 3B, the lead wire 4, the power switch 5A, the battery 5B, the electronic circuit 5C, and the temperature display unit 5 composed of the temperature display panel 5D are integrated into an integrated structure. There is.
  • the sensor unit 3 has a pad-like shape, and the baby bottle outer wall surface 2C (see FIG.
  • the temperature display unit 5 is sealed in the waterproof case 12 together with the heat insulating material 17.
  • the heat insulating material 17 prevents the temperature of the temperature display unit 5 from rising sharply due to the milk 10, and reduces the temperature non-uniformity of the temperature display unit 5.
  • the temperature measuring element 3A and the heat insulating material 3B are in close contact with the baby bottle 2 by the adhesive thin film 7 attached to the heat insulating material 3B. In the figure, for the sake of clarity, they are drawn at intervals for convenience rather than close contact.
  • the temperature of the milk 10 in the baby bottle 2 is measured by the temperature display panel 5D while shaking the baby bottle 2 in cold water. While checking, cool to an appropriate temperature and prepare milk 10 suitable for breastfeeding.
  • the baby bottle outer wall surface 2C has a simple cylindrical surface shape having no local unevenness, and the baby bottle thermometer 1 is attached to the baby bottle outer wall surface 2C.
  • a structure for attaching the baby bottle thermometer 1 can be provided on the outer wall surface 2C of the baby bottle.
  • a recess 2F may be provided on the outer wall surface 2C of the baby bottle, and the baby bottle thermometer 1 may be fitted in the recess 2F.
  • FIG. 7 is a perspective view showing how the baby bottle thermometer 1 is attached to the recess 2F provided on the outer wall surface 2C of the baby bottle.
  • the baby bottle thermometer 1 attached to the baby bottle 2 is prevented from protruding from the outer wall surface 2C of the baby bottle, so that the baby bottle thermometer 1 can be used when shaking the baby bottle 2 or immersing it in cold water. You can also keep it out of the way.
  • This structure (dent 2F) can be suitably adopted when the sensor unit 3 and the temperature display unit 5 have an integral structure as in the baby bottle thermometer 1 of the first embodiment.
  • the sensor unit 3 and the temperature display unit 5 are separated from each other via the lead wire 4, as in the baby bottle thermometer 1 (see FIG. 2) of the second embodiment described later, the sensor is used.
  • the portion 3 can be attached in a state of being fitted in the recess 2F.
  • FIG. 2 shows a schematic cross-sectional view of the structure of the thermometer for baby bottles according to the second embodiment of the present invention.
  • the first to ninth means among the above-mentioned first to ninth means, the first to sixth means and the ninth means are adopted.
  • FIG. 2A is a schematic cross-sectional view showing a baby bottle 2 and a baby bottle thermometer 1 in close contact with the baby bottle 2
  • FIG. 2B is an enlarged cross-sectional view of the baby bottle thermometer 1.
  • the sensor unit 3 composed of the temperature measuring element 3A and the heat insulating material 3B, and the temperature display unit 5 composed of the power switch 5A, the battery 5B, the electronic circuit 5C, and the temperature display panel 5D are separated via the lead wire 4.
  • the temperature display unit 5 is housed in the case 13.
  • the side of the temperature measuring element 3A facing the baby bottle 2 is covered with a good thermal conductive thin film 6 and protected from damage. Further, an adhesive thin film 7 is attached to the side of the good thermal conductive thin film 6 facing the baby bottle 2, and the sensor portion 3 is adhered to the baby bottle 2 by the adhesive thin film 7.
  • the temperature of the milk 10 in the baby bottle is confirmed on the temperature display panel 5D while shaking the baby bottle 2 in cold water. While cooling to an appropriate temperature, milk 10 suitable for breastfeeding is prepared.
  • the temperature display unit 5 may be placed remotely from the baby bottle 2.
  • FIG. 3 shows a two-dimensional steady state simulation model of the baby bottle thermometer 1 according to the third embodiment of the present invention.
  • the first, second and third means among the above-mentioned first to ninth means are adopted.
  • the two-dimensional steady state model and coordinates of the time are shown.
  • the temperature Ts of the center 3B4 of the inner side surface of the heat insulating material is the heat outflow from the inner wall surface 2D of the baby bottle facing the center 3B4 of the inner side surface of the heat insulating material to the outer surface 3B1 of the heat insulating material and the inner wall surface of the baby bottle facing the center 3B4 of the inner side surface of the heat insulating material.
  • FIG. 4 shows the results of a simulation carried out on the baby bottle thermometer 1 according to the third embodiment of the present invention.
  • FIG. 4A is a temperature distribution on the y-axis in the simulation result.
  • Tm 100 ° C. at the temperature Tm of the inner wall surface 2D of the baby bottle.
  • Ts 99.3 ° C.
  • This temperature is the temperature of the temperature measuring element 3A because the temperature measuring element 3A is arranged at that position.
  • Tw of the heat insulating material outer surface 3B1 10 ° C.
  • FIG. 4 (b) shows the temperature distribution on the x-axis.
  • the thickness D of the glass baby bottle is 0.2 mm to 5 mm, and the thickness of the heat insulating material 3B.
  • the thickness D of the baby bottle is 0.2 mm.
  • the percentage r of the ratio of the temperature that decreases at the baby bottle wall 2A which is an index of the temperature distribution in the y-axis direction, is as follows. The simulation formula is summarized in (Equation 2).
  • the thickness H of the heat insulating material 3B when the temperature error is 0.1%, 0.5%, 2.5%, and 5.0%, respectively. Is shown.
  • the thickness H of the heat insulating material 3B is preferably 0.5 mm or more, and more preferably 1 mm or more, 2 mm or more, 3 mm or more, 4 mm or more. It is optimal that the thickness H of the heat insulating material 3B is 5 mm or more.
  • the thickness H of the heat insulating material 3B is preferably made as large as possible if only the temperature measurement accuracy is considered, but considering the ease of use of the baby bottle thermometer 1 and the like, the heat insulating material 3B is used. It is not preferable to make the thickness H too large. Looking at Table 1 above, for example, when the thickness D of the baby bottle 2 made of PPSU resin (plastic) is 3 mm and the thickness H of the heat insulating material 3B is 269.7 mm, the temperature error becomes 0.1%.
  • the thickness H of the heat insulating material 3B is usually 100 mm or less.
  • the thickness H of the heat insulating material 3B is preferably 50 mm or less, more preferably 30 mm or less, and further preferably 20 mm or less.
  • the thickness H of the heat insulating material 3B is optimally 10 mm or less.
  • the larger the thickness H of the heat insulating material 3B and the larger the width W of the heat insulating material 3B the more accurately the temperature of the milk 10 inside the baby bottle can be measured on the outside of the baby bottle.
  • the smaller the thickness H and the smaller the width W the lower the accuracy of the temperature measurement of the milk 10.
  • the accuracy of the measured temperature of the milk 10 is about 1 ° C.
  • the conditions for measuring the temperature of the milk 10 inside the baby bottle with an accuracy of 1 ° C. or higher are that the width W of each of the heat insulating materials 3B is 15 mm or more and the thickness H of the heat insulating material 3B is 5 mm or more.
  • W 95 0.5 mm
  • W 95 10.6 mm.
  • the larger the width W of the heat insulating material 3B the smaller the temperature error.
  • the width W of the heat insulating material 3B is preferably 0.5 mm or more, and more preferably 1 mm or more, 5 mm or more, 10 mm or more, and 20 mm or more. It is optimal that the width W of the heat insulating material 3B is 30 mm or more.
  • the width W of the heat insulating material 3B be as large as possible, but it does not make much sense to make it larger than twice W 99.9. Further, considering the ease of use of the baby bottle thermometer 1, it is not preferable to make the width W of the heat insulating material 3B too large. This is because if the width W of the heat insulating material 3B is made too large, it becomes difficult to attach the heat insulating material 3B to the outer wall surface of the baby bottle 2. In addition, since a wide area on the outer wall surface of the baby bottle 2 is covered with the heat insulating material 3B, it becomes difficult to cool the milk 10 in the baby bottle 2 with cold water.
  • the width W of the heat insulating material 3B is usually 100 mm or less.
  • the width W of the heat insulating material 3B is preferably 70 mm or less, and more preferably 50 mm or less.
  • the width W of the heat insulating material 3B is optimally set to around 40 mm.
  • the heat insulating property is further improved by adopting a closed cell type such as foamed polyethylene rather than the continuous cell type (heat conductivity k is suppressed to a small value). be able to.
  • the thermal conductivity k of the heat insulating material 3B is 0.1 W / mK or less, 0.07 W / mK or less, 0.05 W / mK or less, 0.03 W / mK or less, and the lower the value, the more preferable.
  • even air has a thermal conductivity k of 0.024 W / mK or more. Therefore, the thermal conductivity k of the heat insulating material 3B is practically 0.025 W / mK or more.
  • FIG. 5 is a diagram illustrating an experiment carried out on a baby bottle thermometer according to Example 4 of the present invention.
  • FIG. 5A shows the arrangement of the experimental instruments.
  • the sensor unit 3 is in close contact with the baby bottle outer wall surface 2C of the baby bottle 2.
  • the temperature measuring element 3A and the lead wire 4 are TypeT thermocouples having a wire diameter of 0.1 mm, and the heat insulating material 3B is a closed cell type foamed polyethylene having a width of 40 mm on a side and a thickness of 10 mm.
  • the baby bottle inner thermometer 15 is inserted inside the baby bottle 2, and the baby bottle outer thermometer 16 is brought into close contact with the baby bottle outer wall surface 2C.
  • FIG. 5B the baby bottle inner thermometer 15 and the baby bottle when the baby bottle 2 is cooled while shaking in the cold water 11 at 14.7 ° C. after injecting the hot water 14 at 100 ° C. into the baby bottle 2.
  • the temperature change with time of the bottle outer thermometer 16 and the temperature measuring element 3A is shown.
  • the temperature inside the baby bottle drops sharply. 180 seconds after the injection of boiling water
  • the temperature of the baby bottle inner thermometer 15 drops to 40.5 ° C
  • the temperature of the temperature measuring element 3A drops to 40.9 ° C.
  • the temperature of the baby bottle outer thermometer 16 indicates 25.2 ° C. 210 seconds after the hot water injection, the baby bottle 2 is taken out from the cold water 11.
  • the accuracy of the temperature displayed by the temperature measuring element 3A largely depends on the thickness of the heat insulating material and the width of the heat insulating material, but also depends on the heat transfer by the lead wire 4.
  • a thermistor or a thermocouple can be considered. Electronic circuits are inexpensive in thermistors.
  • the temperature measuring element 3A using a thermocouple is a contact of a lead wire made of two dissimilar metals, and the difference in thermoelectromotive force at the contact is applied. Therefore, the temperature measuring element 3A using a thermocouple can be made as small as possible, and the lead wire 4 can be made as thin as possible.
  • a thermocouple having a wire diameter of 0.1 mm is used to reduce the heat transfer by the lead wire 4, but a thermocouple having a wire diameter of 0.01 mm can also be used.
  • FIG. 6 shows a belt attached to the heat insulating material 3B of the baby bottle thermometer 1 according to the fifth and sixth embodiments of the present invention.
  • the first, second, third and seventh means are adopted, and as shown in FIG. 6A, a belt with an adhesive material to which an adhesive material is added. 8 is attached to the sensor unit 3.
  • the inner side surface 3B2 of the heat insulating material can be brought into close contact with the baby bottle 2.
  • the baby bottle thermometer 1 of the sixth embodiment also adopts the first, second, third and seventh means as in the baby bottle thermometer 1 of the above-mentioned Example 5.
  • a belt 9 with a suction cup to which a suction cup is added is attached to the sensor unit 3.
  • the inner side surface 3B2 of the heat insulating material can be brought into close contact with the baby bottle 2.
  • the baby bottle thermometer 1 of Example 7 also adopts the first, second, third, and seventh means as in the case of the baby bottle thermometer 1 of Example 5 and Example 6 described above.
  • a winding belt 18 forming an annular shape is attached to the sensor unit 3, and the winding belt 18 is attached to the outer peripheral portion of the baby bottle 2.
  • the winding belt 18 may be an endless belt whose length can be adjusted by changing the positions at which both ends thereof are fixed to each other, or may be an endless belt made of an elastic material such as rubber.
  • the temperature of the milk 10 inside the baby bottle 2 can be measured by thermally contacting the sensor unit 3 with the outer wall of the baby bottle 2 and bringing the heat insulating material 3B into close contact with the sensor unit 3 from above.
  • the use of the baby bottle thermometer 1 of the present invention is not limited to the baby bottle 2, and can be applied to containers such as paper containers, plastic containers,recitic bags, and metal pots in kitchens. The temperature of the contents contained in them can be measured from the outside of the container.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

The purpose of the present invention is to measure the temperature of milk in a feeding bottle by using a temperature measurement element brought into contact with the outer wall surface of the feeding bottle without inserting a thermometer into the feeding bottle and without bringing a temperature measuring instrument into contact with the milk in the feeding bottle. This feeding bottle thermometer is configured to measure the temperature of milk in a feeding bottle from the outside of the feeding bottle by covering, in a sensor unit constituted of a temperature measurement element which is brought into contact with the outer wall surface of the feeding bottle and a heat insulating material which has a thickness and a width necessary for eliminating the influence of the temperature outside the feeding bottle, the temperature measurement element with the heat insulating material.

Description

哺乳瓶用温度計Thermometer for baby bottles
 本発明は、哺乳瓶の外側に取り付け、哺乳瓶の中にあるミルクの温度を測定する哺乳瓶用温度計に関するものである。 The present invention relates to a baby bottle thermometer attached to the outside of a baby bottle and measuring the temperature of milk in the baby bottle.
 乳児のミルクを調乳するには、粉ミルクをいれた哺乳瓶に70℃以上の熱湯を注ぎ、冷却することにより40℃程度の適温まで冷ます必要がある。乳児にミルクを調乳するときは母親にとって忙しいときでもあり、その最中に高温のミルクを冷水で短時間冷ましては哺乳瓶の温度を手で確認し、再び冷水で冷ますということを繰り返し、最後は手首の皮膚にミルクを数滴落として確認し、授乳ということになる。このように忙しいときに手数が掛かり、それを昼夜何回となく調乳しなければならないことから、母親にとって大きな負担になっている。この負担を軽減するため、ミルクの温度を測定する温度計がある。 In order to prepare baby's milk, it is necessary to pour boiling water of 70 ° C or higher into a baby bottle containing powdered milk and cool it to an appropriate temperature of about 40 ° C. It is also a busy time for the mother to prepare milk for the baby, and during that time, cool the hot milk with cold water for a short time, check the temperature of the baby bottle by hand, and cool it again with cold water. Finally, drop a few drops of milk on the skin of your wrist and check that you are breastfeeding. This is a heavy burden for mothers because it takes time and effort when they are busy and they have to prepare milk many times day and night. To reduce this burden, there are thermometers that measure the temperature of milk.
 哺乳瓶の中にあるミルクの温度を測定する温度計としては、温度測定素子を哺乳瓶の内側に取り付けるもの(例えば特許文献1及び特許文献2を参照。)や、温度測定素子を哺乳瓶の外側に取り付けるもの(例えば特許文献3を参照。)が知られている。このうち、特許文献2には、哺乳瓶のキャップに設けた良熱伝導性膜に温度センサ(温度測定素子)を接触させることで、容器(哺乳瓶)を密封した状態で、容器内の温度を正確且つ簡単に測定できる旨も記載されている。また、特許文献3には、哺乳瓶の外周部の一部を金属材料で覆い、その外側に所定の温度で変色する液晶を付着する旨も記載されている。 As a thermometer for measuring the temperature of milk in a baby bottle, a temperature measuring element is attached to the inside of the baby bottle (see, for example, Patent Document 1 and Patent Document 2), and a temperature measuring element is used in the baby bottle. Those attached to the outside (see, for example, Patent Document 3) are known. Of these, in Patent Document 2, the temperature inside the container (baby bottle) is sealed by contacting the temperature sensor (temperature measuring element) with the good heat conductive film provided on the cap of the baby bottle. It is also described that can be measured accurately and easily. Further, Patent Document 3 also describes that a part of the outer peripheral portion of a baby bottle is covered with a metal material, and a liquid crystal display that changes color at a predetermined temperature is attached to the outside thereof.
実開平02-111440号公報Jikkenhei 02-11440 Gazette 実開昭62-117537号公報Jitsukaisho 62-117537 実開昭51-160582号公報Jikkai Sho 51-160582 Gazette
 しかし、特許文献1や特許文献2のように、哺乳瓶内に温度測定素子を取り付けることで、哺乳瓶の中に入れたミルクの温度を測定する温度計では、ミルクの温度を正確に測定することができるものの、哺乳瓶内に温度測定素子を取り付けるため衛生面で注意が必要となる。特に、特許文献2の温度計では、キャップに設けた良熱伝導性膜もミルクに接触するために、衛生面での注意がより必要となる。加えて、授乳の度に温度測定素子を滅菌する必要があり、母親の負担を軽減できないどころか、逆に負担を増加させることにもなる。 However, as in Patent Document 1 and Patent Document 2, a thermometer that measures the temperature of milk put in a baby bottle by attaching a temperature measuring element in the baby bottle accurately measures the temperature of milk. However, since the temperature measuring element is installed inside the baby bottle, care must be taken in terms of hygiene. In particular, in the thermometer of Patent Document 2, since the good heat conductive film provided on the cap also comes into contact with milk, it is necessary to pay more attention to hygiene. In addition, it is necessary to sterilize the temperature measuring element every time breastfeeding, and the burden on the mother cannot be reduced, but on the contrary, the burden is increased.
 一方、特許文献3のように、哺乳瓶の外面に温度測定素子を取り付けるタイプの温度計では、温度測定素子を滅菌する必要は無くなるものの、高精度で温度を検出することが難しい。というのも、温度測定素子とミルクとの間に、熱伝導度が低い哺乳瓶が存在するようになることに加えて、哺乳瓶を冷水に浸漬する際には、温度測定素子が冷水に触れるようになるため、ミルクの温度を正確に検出できなくなるからである。また、哺乳瓶を冷水に浸漬した際に、温度測定素子が邪魔になり、ミルクを速やかに冷却しにくくなる。さらに、特許文献3で用いるような液晶は、一般的に温度精度が低い。さらにまた、特許文献3のように、哺乳瓶の外周部に嵌め込むような温度計だと、それを使用できる哺乳瓶の寸法形状が限定されるという問題もある。 On the other hand, with a thermometer of the type in which a temperature measuring element is attached to the outer surface of a baby bottle as in Patent Document 3, it is not necessary to sterilize the temperature measuring element, but it is difficult to detect the temperature with high accuracy. This is because, in addition to the fact that there is a baby bottle with low thermal conductivity between the temperature measuring element and the milk, when the baby bottle is immersed in cold water, the temperature measuring element comes into contact with the cold water. This is because the temperature of the milk cannot be detected accurately. Further, when the baby bottle is immersed in cold water, the temperature measuring element becomes an obstacle and it becomes difficult to cool the milk quickly. Further, the liquid crystal used in Patent Document 3 generally has low temperature accuracy. Furthermore, if the thermometer is fitted to the outer peripheral portion of the baby bottle as in Patent Document 3, there is a problem that the size and shape of the baby bottle that can be used with the thermometer are limited.
 本発明は、上記課題を解決するために為されたものであり、温度測定素子を哺乳瓶の外側に取り付けることで衛生的な問題をクリアしながらも、哺乳瓶の中のミルクの温度を高精度で測定することができる哺乳瓶用温度計を提供するものである。また、哺乳瓶の中のミルクを速やか且つ容易に冷却することができ、ミルクの温度調節の手間を軽減することのできる哺乳瓶用温度計を提供することも本発明の目的である。さらに、それを称する哺乳瓶の寸法形状が特に限定されず、取り扱いが容易な哺乳瓶用温度計を提供することも本発明の目的である。 The present invention has been made to solve the above problems, and the temperature of the milk in the baby bottle is raised while solving the hygienic problem by attaching the temperature measuring element to the outside of the baby bottle. It provides a thermometer for baby bottles that can measure with accuracy. It is also an object of the present invention to provide a baby bottle thermometer capable of quickly and easily cooling the milk in a baby bottle and reducing the trouble of controlling the temperature of the milk. Furthermore, it is also an object of the present invention to provide a baby bottle thermometer that is easy to handle without any particular limitation on the size and shape of the baby bottle that refers to it.
 上記課題を解決するための第一の手段は、
 哺乳瓶用温度計を、
 哺乳瓶外壁に熱接触する温度測定素子と、温度測定素子を覆い哺乳瓶に密着する断熱材からなるセンサ部と、
 温度測定素子のリード線と、
 リード線に接続する温度表示部と
で構成することである。
The first means to solve the above problems is
A thermometer for baby bottles,
A temperature measuring element that makes thermal contact with the outer wall of the baby bottle, a sensor unit made of a heat insulating material that covers the temperature measuring element and adheres to the baby bottle,
The lead wire of the temperature measuring element and
It is composed of a temperature display unit connected to the lead wire.
 このように、温度測定素子を哺乳瓶の外側に配することによって、哺乳瓶内のミルクの温度を哺乳瓶外側で非侵襲的に測定することができる。このため、哺乳瓶内のミルクの温度を衛生的に測定することができる。また、温度測定素子の外面を断熱材によって覆うことによって、ミルクを冷ますために哺乳瓶を冷水に浸けた際に、その冷水の温度が温度測定素子に伝達しにくくなっている。このため、哺乳瓶内のミルクの温度を高精度で測定することもできる。 By arranging the temperature measuring element on the outside of the baby bottle in this way, the temperature of the milk in the baby bottle can be measured non-invasively on the outside of the baby bottle. Therefore, the temperature of the milk in the baby bottle can be measured hygienically. Further, by covering the outer surface of the temperature measuring element with a heat insulating material, when the baby bottle is immersed in cold water to cool the milk, the temperature of the cold water is less likely to be transmitted to the temperature measuring element. Therefore, the temperature of the milk in the baby bottle can be measured with high accuracy.
 加えて、本発明の哺乳瓶用温度計では、センサ部を哺乳瓶の外側に密着させ哺乳瓶を冷水で冷ますことにより、手間をかけずにミルクを効率よく短時間でしかも簡単に適温まで冷却することができる。温度表示部には、温度を数値等で表示することができるので、精度よくミルクの温度を調節することができる。また、本発明の哺乳瓶用温度計は、滅菌する必要がなく、また着脱式であるため、哺乳瓶を簡単に洗浄することができる。さらに、使用を望む哺乳瓶に装着することができることから、哺乳瓶の寸法形状が限定されないことも特長である。 In addition, in the baby bottle thermometer of the present invention, the sensor unit is brought into close contact with the outside of the baby bottle and the baby bottle is cooled with cold water, so that the milk can be efficiently and easily brought to an appropriate temperature in a short time without any trouble. Can be cooled. Since the temperature can be displayed as a numerical value on the temperature display unit, the temperature of milk can be adjusted accurately. Further, since the thermometer for baby bottles of the present invention does not need to be sterilized and is removable, the baby bottle can be easily washed. Another feature is that the size and shape of the baby bottle is not limited because it can be attached to the baby bottle that you want to use.
 本発明の哺乳瓶用温度計において、断熱材の寸法(厚みや幅)をどの程度とするかは重要である。というのも、温度測定素子が検出する温度(ミルクの温度として推定する温度)は、断熱材内側面中央に接する哺乳瓶外壁の温度であるところ、この場所の温度は、断熱材内側面中央に対峙する哺乳瓶内壁の温度の影響を受けるのは勿論のこと、それ以外にも、断熱材内側面辺縁に接する哺乳瓶外壁面の温度や、断熱材内側面の反対側の断熱材外側面の温度の影響も受けるからである。この点、断熱材を大きくすれば、断熱材内側面辺縁に接する哺乳瓶外壁面の温度や、断熱材内側面の反対側の断熱材外側面の温度が、温度測定素子が検出する温度に影響を及ぼしにくくすることができる。これにより、哺乳瓶が冷水に浸けられている場合においても、断熱材内側面中央と哺乳瓶外壁の間に留置した温度測定素子によってミルクの温度をより高い精度で測定することができる。その一方で、断熱材の寸法を大きくしすぎると、センサ部が大型化して測定の際に邪魔になるおそれがあるだけでなく、断熱材を哺乳瓶の外壁に沿わせにくくなる。このため、断熱材の寸法を大きくしすぎるのもよくない。 In the thermometer for baby bottles of the present invention, it is important how much the size (thickness and width) of the heat insulating material should be. This is because the temperature detected by the temperature measuring element (the temperature estimated as the temperature of milk) is the temperature of the outer wall of the baby bottle in contact with the center of the inner side surface of the heat insulating material, and the temperature at this place is in the center of the inner side surface of the heat insulating material. Not only is it affected by the temperature of the inner wall of the baby bottle that faces it, but in addition to that, the temperature of the outer wall surface of the baby bottle that is in contact with the inner side surface edge of the heat insulating material and the outer surface of the heat insulating material on the opposite side of the inner side surface of the heat insulating material. This is because it is also affected by the temperature of. In this regard, if the heat insulating material is increased, the temperature of the outer wall surface of the baby bottle in contact with the inner side surface edge of the heat insulating material and the temperature of the outer surface of the heat insulating material on the opposite side of the inner side surface of the heat insulating material become the temperature detected by the temperature measuring element. It can be less likely to affect you. Thereby, even when the baby bottle is immersed in cold water, the temperature of the milk can be measured with higher accuracy by the temperature measuring element placed between the center of the inner side surface of the heat insulating material and the outer wall of the baby bottle. On the other hand, if the size of the heat insulating material is too large, not only the sensor portion becomes large and may interfere with the measurement, but also it becomes difficult for the heat insulating material to follow the outer wall of the baby bottle. Therefore, it is not good to make the size of the heat insulating material too large.
 以上のことを考慮して、上記課題を解決するための第二の手段として、断熱材の厚み(哺乳瓶に密着する面に対して垂直な方向での厚み。以下同じ。)は、0.5mmから100mmとすることを提案する。これにより、温度測定素子が検出する温度に断熱材外側面の温度が影響を及ぼしにくくして、ミルクの温度をより高精度で測定することができる。加えて、断熱材を哺乳瓶の外壁に沿わせやすくすることもできる。 In consideration of the above, as a second means for solving the above problem, the thickness of the heat insulating material (thickness in the direction perpendicular to the surface in close contact with the baby bottle; the same applies hereinafter) is set to 0. We propose to make it from 5 mm to 100 mm. As a result, the temperature of the outer surface of the heat insulating material is less likely to affect the temperature detected by the temperature measuring element, and the temperature of milk can be measured with higher accuracy. In addition, the insulation can be facilitated along the outer wall of the baby bottle.
 また、上記課題を解決するための第三の手段として、断熱材における哺乳瓶に密着する面のそれぞれの幅(例えば縦幅及び横幅)は、0.5mmから100mmとすることを提案する。これにより、温度測定素子が検出する温度に断熱材内側面辺縁に接する哺乳瓶外壁面の温度が影響を及ぼしにくくして、ミルクの温度をより高精度で測定することができる。加えて、断熱材をコンパクトにして、センサ部を取り扱いやすくすることもできる。 Further, as a third means for solving the above-mentioned problems, it is proposed that the widths (for example, the vertical width and the horizontal width) of the surfaces of the heat insulating material in close contact with the baby bottle are 0.5 mm to 100 mm. As a result, the temperature of the outer wall surface of the baby bottle in contact with the inner side edge of the heat insulating material is less likely to affect the temperature detected by the temperature measuring element, and the temperature of milk can be measured with higher accuracy. In addition, the heat insulating material can be made compact to make the sensor portion easier to handle.
 さらに、上記課題を解決するための第四の手段として、温度表示部を、電源スイッチと電池と電子回路とそして温度表示パネルで構成することを提案する。これにより、温度測定素子で得た電気信号を数値として表示することができる。 Furthermore, as a fourth means for solving the above problems, it is proposed that the temperature display unit is composed of a power switch, a battery, an electronic circuit, and a temperature display panel. Thereby, the electric signal obtained by the temperature measuring element can be displayed as a numerical value.
 さらにまた、上記課題を解決するための第五の手段として、センサ部における哺乳瓶に密着する面に良熱伝導性薄膜を付加することを提案する。というのも、通常、温度測定素子は微小であり、リード線も極細線であるため、温度測定素子は、外力により損傷を受け易い。この点、温度測定素子を良熱伝導性薄膜で覆うことによって、ミルクの温度の測定精度の低下を抑えながら、温度測定素子を損傷から保護し、温度測定素子の耐久性を向上することができる。 Furthermore, as a fifth means for solving the above problems, it is proposed to add a good heat conductive thin film to the surface of the sensor unit that is in close contact with the baby bottle. This is because the temperature measuring element is usually very small and the lead wire is also an ultrafine wire, so that the temperature measuring element is easily damaged by an external force. In this respect, by covering the temperature measuring element with a good heat conductive thin film, it is possible to protect the temperature measuring element from damage and improve the durability of the temperature measuring element while suppressing a decrease in the temperature measurement accuracy of milk. ..
 そして、上記課題を解決するための第六の手段として、センサ部における哺乳瓶に密着する面に粘着薄膜を付加することを提案する。これにより、断熱材の内側面を哺乳瓶の外壁に密着状態で保持させることができる。このため、哺乳瓶を浸漬している冷水が断熱材と哺乳瓶の間に侵入しないようにして、温度測定素子でミルクの温度を精度よく測定することが可能になる。 Then, as a sixth means for solving the above problem, it is proposed to add an adhesive thin film to the surface of the sensor unit that is in close contact with the baby bottle. As a result, the inner surface of the heat insulating material can be held in close contact with the outer wall of the baby bottle. Therefore, it is possible to accurately measure the temperature of the milk with the temperature measuring element by preventing the cold water in which the baby bottle is immersed from entering between the heat insulating material and the baby bottle.
 これに対し、上記課題を解決するための第七の手段として、粘着材付きベルト、吸盤付きベルト又は巻回ベルトをセンサ部に取り付けることも提案する。このように、粘着材付きベルト又は吸盤付きベルトを哺乳瓶に密着させることによっても、断熱材の内側面を哺乳瓶の外壁に密着状態で保持することができる。このため、哺乳瓶を浸漬している冷水が断熱材と哺乳瓶の間に侵入しないようにして、温度測定素子でミルクの温度を精度よく測定することが可能になる。 On the other hand, as a seventh means for solving the above problem, it is also proposed to attach a belt with an adhesive material, a belt with a suction cup or a winding belt to the sensor unit. In this way, the inner side surface of the heat insulating material can be held in close contact with the outer wall of the baby bottle by bringing the belt with the adhesive material or the belt with the suction cup into close contact with the baby bottle. Therefore, it is possible to accurately measure the temperature of the milk with the temperature measuring element by preventing the cold water in which the baby bottle is immersed from entering between the heat insulating material and the baby bottle.
 そしてまた、上記課題を解決するための第八の手段として、センサ部とリード線と温度表示部とを一体構造とすることを提案する。これにより、哺乳瓶用温度計を簡単に取り扱うことができるようになる。 And also, as an eighth means to solve the above problem, it is proposed that the sensor unit, the lead wire, and the temperature display unit are integrated. This makes it possible to easily handle the thermometer for baby bottles.
 これに対し、上記課題を解決するための第九の手段として、センサ部と温度表示部とを、リード線を介して分離することを提案する。これにより、温度表示部を哺乳瓶から遠隔に置くことができるので、温度表示部を耐熱構造にする必要はなく、そして開放構造にすることが可能になる。また、哺乳瓶を揺さぶりながら冷却しているときでも、温度表示パネルを注視することが可能になる。 On the other hand, as a ninth means for solving the above problem, it is proposed to separate the sensor unit and the temperature display unit via the lead wire. As a result, the temperature display unit can be placed remotely from the baby bottle, so that the temperature display unit does not need to have a heat-resistant structure and can have an open structure. In addition, the temperature display panel can be watched even when the baby bottle is being cooled while being shaken.
 以上のように、本発明によって、温度測定素子を哺乳瓶の外側に取り付けることで衛生的な問題をクリアしながらも、哺乳瓶の中のミルクの温度を高精度で測定することができる哺乳瓶用温度計を提供することが可能になる。また、哺乳瓶の中のミルクを速やか且つ容易に冷却することができ、ミルクの温度調節の手間を軽減することのできる哺乳瓶用温度計を提供することも可能になる。さらに、それを称する哺乳瓶の寸法形状が特に限定されず、取り扱いが容易な哺乳瓶用温度計を提供することも可能になる。 As described above, according to the present invention, the temperature of the milk in the baby bottle can be measured with high accuracy while solving the hygienic problem by attaching the temperature measuring element to the outside of the baby bottle. It will be possible to provide a baby bottle. Further, it is possible to provide a thermometer for a baby bottle, which can quickly and easily cool the milk in the baby bottle and can reduce the trouble of adjusting the temperature of the milk. Further, the size and shape of the baby bottle that refers to it is not particularly limited, and it is possible to provide a baby bottle thermometer that is easy to handle.
本発明の実施例1に係る哺乳瓶用温度計の構造を示す略断面図であり、(a)はセンサ部、リード線、そして温度表示部が一体構造となった哺乳瓶温度計を哺乳瓶に密着させたところの略断面図であり、(b)は哺乳瓶温度計の構造を示す部分拡大図である。It is a schematic cross-sectional view which shows the structure of the baby bottle thermometer which concerns on Example 1 of this invention, (a) is the baby bottle thermometer which integrated the sensor part, the lead wire, and the temperature display part. It is a schematic cross-sectional view of the place in which it is in close contact with the baby bottle, and (b) is a partially enlarged view showing the structure of a baby bottle thermometer. 本発明の実施例2に係る哺乳瓶用温度計の構造を示す略断面図であり、(a)はセンサ部と温度表示部がリード線を介して分離構造となった哺乳瓶温度計を哺乳瓶に密着させたところの略断面図であり、(b)は哺乳瓶温度計の構造を示す部分拡大図である。It is a schematic cross-sectional view which shows the structure of the baby bottle thermometer which concerns on Example 2 of this invention, (a) is feeding a baby bottle thermometer which has a separated structure of a sensor part and a temperature display part via a lead wire. It is a schematic cross-sectional view of a place in close contact with a bottle, and (b) is a partially enlarged view showing the structure of a baby bottle thermometer. 本発明の実施例3に係る哺乳瓶用温度計の2次元定常状態のシミュレーションモデルである。It is a simulation model of the two-dimensional steady state of the thermometer for a baby bottle which concerns on Example 3 of this invention. 本発明の実施例3に係る哺乳瓶用温度計について実施したシミュレーションの結果であり、(a)はy軸上の温度分布であり、(b)はx軸上の温度分布である。It is the result of the simulation carried out about the thermometer for a baby bottle which concerns on Example 3 of this invention, (a) is the temperature distribution on the y-axis, and (b) is the temperature distribution on the x-axis. 本発明の実施例4に係るの哺乳瓶用温度計について実施した実験を説明する図であり、(a)は実験器具の配置を、(b)は測定した温度の経時的変化を示している。It is a figure explaining the experiment carried out about the thermometer for a baby bottle which concerns on Example 4 of this invention, (a) shows the arrangement of the laboratory equipment, (b) shows the time-dependent change of the measured temperature. .. 本発明の実施例5及び実施例6に係る哺乳瓶用温度計の断熱材に取り付けたベルトを示した図であり、(a)は粘着材付きベルトであり、(b)は吸盤付きベルトである。It is a figure which showed the belt attached to the heat insulating material of the thermometer for a baby bottle which concerns on Example 5 and Example 6 of this invention, (a) is a belt with an adhesive material, (b) is a belt with a suction cup. be. 哺乳瓶外壁面に設けたくぼみに哺乳瓶用温度計を取り付ける様子を示した斜視図である。It is a perspective view which showed the state of attaching the thermometer for a baby bottle to the recess provided in the outer wall surface of a baby bottle. 本発明の実施例7に係る哺乳瓶用温度計を巻回ベルトによって哺乳瓶に取り付けた状態を示した斜視図である。It is a perspective view which showed the state which attached the thermometer for a baby bottle which concerns on Example 7 of this invention to a baby bottle by a winding belt.
 以下、本発明に係る哺乳瓶用温度計の実施の形態を図1から図8に基づいて説明する。 Hereinafter, embodiments of the thermometer for baby bottles according to the present invention will be described with reference to FIGS. 1 to 8.
 なお、本記載は特許請求の範囲を示した例であり、特許請求の範囲を本記載に限定することを意味するものではない。 Note that this description is an example showing the scope of claims, and does not mean that the scope of claims is limited to this description.
 図1に、本発明の実施例1に係る哺乳瓶用温度計1の構造の略断面図を示す。実施例1の哺乳瓶用温度計1では、上述した第一から第九までの手段のうち、第一、第二、第三、第四、第六及び第八の手段を採用している。 FIG. 1 shows a schematic cross-sectional view of the structure of the thermometer 1 for a baby bottle according to the first embodiment of the present invention. In the baby bottle thermometer 1 of the first embodiment, among the above-mentioned first to ninth means, the first, second, third, fourth, sixth and eighth means are adopted.
 実施例1の哺乳瓶用温度計1では、図1に示すように、センサ部3とリード線4とそして温度表示部5が、一体構造となっている。図1(a)は、哺乳瓶2と哺乳瓶2に密着した哺乳瓶用温度計1を示す略断面図である。図1(b)は、哺乳瓶用温度計1の部分の拡大断面図である。温度測定素子3Aと断熱材3Bからなるセンサ部3と、リード線4と、そして電源スイッチ5Aと電池5Bと電子回路5Cとそして温度表示パネル5Dからなる温度表示部5が、一体構造となっている。センサ部3は、パッド状を為しており、哺乳瓶外壁面2C(図3等を参照。以下同様に、引用している図面に該当する符号が無い場合は他の図を参照のこと。)における限られた範囲に密着されるようになっている。温度表示部5は、断熱材17とともに、防水ケース12の中に密閉されている。断熱材17は、温度表示部5がミルク10によって急激に温度が上昇することを避けるとともに、温度表示部5の温度の不均一を少なくする。温度測定素子3Aと断熱材3Bは、断熱材3Bに取り付けた粘着薄膜7により哺乳瓶2に密着している。図では見やすくするため、密着ではなく便宜上間隔をあけて描いている。 In the baby bottle thermometer 1 of the first embodiment, as shown in FIG. 1, the sensor unit 3, the lead wire 4, and the temperature display unit 5 have an integrated structure. FIG. 1A is a schematic cross-sectional view showing a baby bottle 2 and a baby bottle thermometer 1 in close contact with the baby bottle 2. FIG. 1B is an enlarged cross-sectional view of a portion of the baby bottle thermometer 1. The sensor unit 3 composed of the temperature measuring element 3A and the heat insulating material 3B, the lead wire 4, the power switch 5A, the battery 5B, the electronic circuit 5C, and the temperature display unit 5 composed of the temperature display panel 5D are integrated into an integrated structure. There is. The sensor unit 3 has a pad-like shape, and the baby bottle outer wall surface 2C (see FIG. 3 and the like. Similarly, if there is no corresponding reference numeral in the cited drawing, refer to another drawing. ), It is designed to be in close contact with the limited range. The temperature display unit 5 is sealed in the waterproof case 12 together with the heat insulating material 17. The heat insulating material 17 prevents the temperature of the temperature display unit 5 from rising sharply due to the milk 10, and reduces the temperature non-uniformity of the temperature display unit 5. The temperature measuring element 3A and the heat insulating material 3B are in close contact with the baby bottle 2 by the adhesive thin film 7 attached to the heat insulating material 3B. In the figure, for the sake of clarity, they are drawn at intervals for convenience rather than close contact.
 哺乳瓶2の中に粉ミルクと70℃以上の熱湯を注いで高温のミルク10を作製した後、冷水内で哺乳瓶2を揺さぶりながら、哺乳瓶2内のミルク10の温度を温度表示パネル5Dで確認しつつ適温まで冷却し、授乳に適したミルク10を調合する。 After making high-temperature milk 10 by pouring powdered milk and hot water of 70 ° C or higher into the baby bottle 2, the temperature of the milk 10 in the baby bottle 2 is measured by the temperature display panel 5D while shaking the baby bottle 2 in cold water. While checking, cool to an appropriate temperature and prepare milk 10 suitable for breastfeeding.
 温度表示部5に発音体を内蔵し、温度表示パネルの温度が設定温度まで低下すると発音するようにすると、哺乳瓶2を揺さぶっている場合でも、また暗い室内においても、容易にミルク10の温度を確認することができる。図1の例では、哺乳瓶外壁面2Cは、局所的な凹凸を有さない単純な円筒面状を為しており、この哺乳瓶外壁面2Cに対して、哺乳瓶用温度計1を取り付けるようにしているが、哺乳瓶外壁面2Cには、哺乳瓶用温度計1を取り付けるための構造を設けることもできる。例えば、図7に示すように、哺乳瓶外壁面2Cにくぼみ2Fを設け、このくぼみ2Fに、哺乳瓶用温度計1を嵌め込んだ状態で取り付けてもよい。図7は、哺乳瓶外壁面2Cに設けたくぼみ2Fに哺乳瓶用温度計1を取り付ける様子を示した斜視図である。これにより、哺乳瓶2に取り付けた哺乳瓶用温度計1が哺乳瓶外壁面2Cから突出しないようにして、哺乳瓶2を振る際や冷水に浸漬する際等に、哺乳瓶用温度計1が邪魔にならないようにすることもできる。この構造(くぼみ2F)は、実施例1の哺乳瓶用温度計1のように、センサ部3と温度表示部5とが一体構造となっている場合に、好適に採用することができる。しかし、後述する実施例2の哺乳瓶用温度計1(図2を参照。)のように、センサ部3と温度表示部5とがリード線4を介して分離しているときでも、そのセンサ部3については、くぼみ2Fに嵌め込んだ状態で取り付けることができる。
 
By incorporating a sounding body in the temperature display unit 5 and making it sound when the temperature of the temperature display panel drops to the set temperature, the temperature of the milk 10 can be easily obtained even when the baby bottle 2 is shaken or in a dark room. Can be confirmed. In the example of FIG. 1, the baby bottle outer wall surface 2C has a simple cylindrical surface shape having no local unevenness, and the baby bottle thermometer 1 is attached to the baby bottle outer wall surface 2C. However, a structure for attaching the baby bottle thermometer 1 can be provided on the outer wall surface 2C of the baby bottle. For example, as shown in FIG. 7, a recess 2F may be provided on the outer wall surface 2C of the baby bottle, and the baby bottle thermometer 1 may be fitted in the recess 2F. FIG. 7 is a perspective view showing how the baby bottle thermometer 1 is attached to the recess 2F provided on the outer wall surface 2C of the baby bottle. As a result, the baby bottle thermometer 1 attached to the baby bottle 2 is prevented from protruding from the outer wall surface 2C of the baby bottle, so that the baby bottle thermometer 1 can be used when shaking the baby bottle 2 or immersing it in cold water. You can also keep it out of the way. This structure (dent 2F) can be suitably adopted when the sensor unit 3 and the temperature display unit 5 have an integral structure as in the baby bottle thermometer 1 of the first embodiment. However, even when the sensor unit 3 and the temperature display unit 5 are separated from each other via the lead wire 4, as in the baby bottle thermometer 1 (see FIG. 2) of the second embodiment described later, the sensor is used. The portion 3 can be attached in a state of being fitted in the recess 2F.
 図2に、本発明の実施例2に係る哺乳瓶用温度計の構造の略断面図を示す。実施例2の哺乳瓶用温度計1では、上述した第一から第九までの手段のうち、第一から第六まで及び第九の手段を採用している。 FIG. 2 shows a schematic cross-sectional view of the structure of the thermometer for baby bottles according to the second embodiment of the present invention. In the baby bottle thermometer 1 of the second embodiment, among the above-mentioned first to ninth means, the first to sixth means and the ninth means are adopted.
 実施例2の哺乳瓶用温度計1では、図2に示すように、センサ部3と温度表示部5が、リード線4を介して分離した構造となっている。図2(a)は、哺乳瓶2と哺乳瓶2に密着した哺乳瓶用温度計1を示す略断面図であり、図2(b)は、哺乳瓶用温度計1の拡大断面図である。温度測定素子3Aと断熱材3Bからなるセンサ部3と、電源スイッチ5Aと電池5Bと電子回路5Cと温度表示パネル5Dからなる温度表示部5が、リード線4を介して分離した構造となっている。温度表示部5はケース13の中に収められている。温度測定素子3Aにおける哺乳瓶2を向く側は、良熱伝導性薄膜6によって覆われ、損傷を受けないように保護されている。さらに、良熱伝導性薄膜6における哺乳瓶2を向く側には、粘着薄膜7が取り付けられ、この粘着薄膜7によってセンサ部3が哺乳瓶2に密着した状態で接着されている。 In the baby bottle thermometer 1 of the second embodiment, as shown in FIG. 2, the sensor unit 3 and the temperature display unit 5 have a structure in which the sensor unit 3 and the temperature display unit 5 are separated via the lead wire 4. FIG. 2A is a schematic cross-sectional view showing a baby bottle 2 and a baby bottle thermometer 1 in close contact with the baby bottle 2, and FIG. 2B is an enlarged cross-sectional view of the baby bottle thermometer 1. .. The sensor unit 3 composed of the temperature measuring element 3A and the heat insulating material 3B, and the temperature display unit 5 composed of the power switch 5A, the battery 5B, the electronic circuit 5C, and the temperature display panel 5D are separated via the lead wire 4. There is. The temperature display unit 5 is housed in the case 13. The side of the temperature measuring element 3A facing the baby bottle 2 is covered with a good thermal conductive thin film 6 and protected from damage. Further, an adhesive thin film 7 is attached to the side of the good thermal conductive thin film 6 facing the baby bottle 2, and the sensor portion 3 is adhered to the baby bottle 2 by the adhesive thin film 7.
 哺乳瓶2の中に粉ミルクと70℃以上の熱湯を注いで高温のミルク10を作製した後、冷水内で哺乳瓶2を揺さぶりながら、哺乳瓶内のミルク10の温度を温度表示パネル5Dで確認しつつ適温まで冷却し、授乳に適したミルク10を調合する。温度表示部5は哺乳瓶2から遠隔に置いてもよい。
 
After making high-temperature milk 10 by pouring powdered milk and hot water of 70 ° C or higher into the baby bottle 2, the temperature of the milk 10 in the baby bottle is confirmed on the temperature display panel 5D while shaking the baby bottle 2 in cold water. While cooling to an appropriate temperature, milk 10 suitable for breastfeeding is prepared. The temperature display unit 5 may be placed remotely from the baby bottle 2.
 図3に、本発明の実施例3に係る哺乳瓶用温度計1の2次元定常状態のシミュレーションモデルを示す。実施例3の哺乳瓶用温度計1では、上述した第一から第九までの手段のうち、第一、第二及び第三の手段を採用している。 FIG. 3 shows a two-dimensional steady state simulation model of the baby bottle thermometer 1 according to the third embodiment of the present invention. In the baby bottle thermometer 1 of the third embodiment, the first, second and third means among the above-mentioned first to ninth means are adopted.
 図3には、哺乳瓶2(熱伝導率k=1.005W/mKのガラス)の哺乳瓶外壁面2Cに断熱材3B(熱伝導率k=0.027W/mKの発泡スチロール)を密着させたときの2次元定常状態モデルと座標を示している。厚みD=3mmの哺乳瓶壁2Aの上に厚みH=10mm、幅W=40mmの断熱材3Bが密着している。哺乳瓶内側2Eには温度Tm=100℃のミルク10で満たされ、哺乳瓶外側2Bは温度Tw=10℃の冷水11に浸漬されている。断熱材内側面中央3B4の温度Tsは、断熱材内側面中央3B4に対峙する哺乳瓶内壁面2Dから断熱材外側面3B1への熱流出と、断熱材内側面中央3B4に対峙する哺乳瓶内壁面2Dから断熱材内側面辺縁3B3に接する哺乳瓶外壁面2Cへの熱流出によってほぼ決まる。この熱流出は、ミルク10の温度Tmおよび冷水11の温度Twそのものに依存するものではなく、それらの温度差Tm-Twに依存する。x軸は哺乳瓶外壁面2C上にあり、断熱材内側面中央3B4でx=0とする。 In FIG. 3, a heat insulating material 3B (foamed styrol having a thermal conductivity k = 0.027 W / mK) is adhered to the outer wall surface 2C of the baby bottle 2 (glass having a thermal conductivity k = 1.005 W / mK). The two-dimensional steady state model and coordinates of the time are shown. A heat insulating material 3B having a thickness of H = 10 mm and a width of W = 40 mm is in close contact with the baby bottle wall 2A having a thickness of D = 3 mm. The inner side 2E of the baby bottle is filled with milk 10 having a temperature of Tm = 100 ° C., and the outer side 2B of the baby bottle is immersed in cold water 11 having a temperature of Tw = 10 ° C. The temperature Ts of the center 3B4 of the inner side surface of the heat insulating material is the heat outflow from the inner wall surface 2D of the baby bottle facing the center 3B4 of the inner side surface of the heat insulating material to the outer surface 3B1 of the heat insulating material and the inner wall surface of the baby bottle facing the center 3B4 of the inner side surface of the heat insulating material. It is almost determined by the heat outflow from 2D to the outer wall surface 2C of the baby bottle in contact with the inner side edge 3B3 of the heat insulating material. This heat outflow does not depend on the temperature Tm of the milk 10 and the temperature Tw of the cold water 11 itself, but depends on their temperature difference Tm-Tw. The x-axis is on the outer wall surface 2C of the baby bottle, and x = 0 at the center 3B4 of the inner side surface of the heat insulating material.
 図4に、本発明の実施例3に係る哺乳瓶用温度計1について実施したシミュレーションの結果を示す。図4(a)は、シミュレーション結果におけるy軸上の温度分布である。y=-3mmでは哺乳瓶内壁面2Dの温度TmでTm=100℃となっている。y=0mmでは断熱材内側面中央3B4の温度TsでTs=99.3℃となっている。この温度は、その位置に温度測定素子3Aを配置することから温度測定素子3Aの温度となる。y=10mmでは、断熱材外側面3B1の温度Tw=10℃となっている。温度は、哺乳瓶壁2Aで、また断熱材3Bで、直線的に低下している。哺乳瓶壁2Aでの温度低下をTmsとすると、Tms=Tm-Ts=100-99.3=0.7℃低下している。哺乳瓶内壁面2Dの温度Tmから断熱材外側面3B1の温度Twを差し引いた温度差Tmwは、Tmw=Tm-Tw=100-10=90℃であるので、哺乳瓶壁2Aで低下した温度の割合の百分率rは、r=100*Tms/Tmw=100*(Tm-Ts)/(Tm-Tw)=100*0.7/90=0.8%となる。 FIG. 4 shows the results of a simulation carried out on the baby bottle thermometer 1 according to the third embodiment of the present invention. FIG. 4A is a temperature distribution on the y-axis in the simulation result. At y = -3 mm, Tm = 100 ° C. at the temperature Tm of the inner wall surface 2D of the baby bottle. When y = 0 mm, the temperature Ts at the center 3B4 of the inner surface of the heat insulating material is Ts = 99.3 ° C. This temperature is the temperature of the temperature measuring element 3A because the temperature measuring element 3A is arranged at that position. When y = 10 mm, the temperature Tw of the heat insulating material outer surface 3B1 is Tw = 10 ° C. The temperature drops linearly at the baby bottle wall 2A and at the insulation 3B. Assuming that the temperature drop at the baby bottle wall 2A is Tms, the temperature drop is Tms = Tm-Ts = 100-99.3 = 0.7 ° C. The temperature difference Tmw obtained by subtracting the temperature Tw of the heat insulating material outer surface 3B1 from the temperature Tm of the inner wall surface 2D of the baby bottle is Tmw = Tm-Tw = 100-10 = 90 ° C. The percentage r of the ratio is r = 100 * Tms / Tmw = 100 * (Tm-Ts) / (Tm-Tw) = 100 * 0.7 / 90 = 0.8%.
 図4(b)はx軸上の温度分布である。断熱材内側面辺縁3B3のx=-20mmまでは哺乳瓶外壁面2Cの温度、すなわち冷水11の温度Tw=10℃となり、それよりxが大きくなるに従い温度は急激に上昇し、x=-2.7mmより温度は一定となりx=0で温度測定素子3Aの温度TsはTs=99.3℃となっている。x>0では、x=0で対称な温度分布になっている。 FIG. 4 (b) shows the temperature distribution on the x-axis. The temperature of the outer wall surface 2C of the baby bottle up to x = -20 mm of the inner side surface edge 3B3 of the heat insulating material, that is, the temperature Tw = 10 ° C. of the cold water 11, and the temperature rises sharply as x becomes larger than that, and x =-. From 2.7 mm, the temperature becomes constant, x = 0, and the temperature Ts of the temperature measuring element 3A is Ts = 99.3 ° C. When x> 0, x = 0 and the temperature distribution is symmetrical.
 x=0における温度Tsから冷水11の温度Twを差し引いた温度差をTswとすると、Tsw=Ts-Tw=99.3-10=89.3℃となる。この温度の98.5%になるxの値を求める。98.5%になる温度をT98.5とすると、T98.5=0.985*Tsw+Tw=0.985*(99.3-10)+10=98.0℃となる。この温度になるxの値、それをx98.5とすると、それは図4(b)よりx98.5=-12.4mm、そしてx98.5=12.4mmとなる。T98.5まで温度が上昇するために必要な断熱材3Bの幅をW98.5とすると、W98.5=(-12.4-(-20))+(20-12.4)=15.2mmとなる。 Assuming that the temperature difference obtained by subtracting the temperature Tw of the cold water 11 from the temperature Ts at x = 0 is Tsw, Tsw = Ts−Tw = 99.3-10 = 89.3 ° C. Find the value of x that is 98.5% of this temperature. Assuming that the temperature at which 98.5% is T 98.5 , T 98.5 = 0.985 * Tsw + Tw = 0.985 * (99.3-10) + 10 = 98.0 ° C. Assuming that the value of x at this temperature is x 98.5 , it is x 98.5 = -12.4 mm and x 98.5 = 12.4 mm from FIG. 4 (b). Assuming that the width of the heat insulating material 3B required for the temperature to rise to T 98.5 is W 98.5 , W 98.5 = (-12.4- (-20)) + (20-12.4). = 15.2 mm.
 T98.5と同様に99%になる温度をT99とすると、T99=98.4℃となり、T99となるxの値、即ちx99は図4(b)よりx99=-11.8mmとなる。T99まで温度が上昇するために必要な断熱材3Bの幅をW99とすると、W99=2*(-11.8-(-20))=16.4mmとなる。 When T 98.5 similarly to the temperature at which 99% and T 99, T 99 = 98.4 ℃, and the value of the T 99 x, i.e. x 99 in x 99 = -11 from Fig 4 (b) It will be 8.8 mm. Assuming that the width of the heat insulating material 3B required for the temperature to rise to T 99 is W 99 , W 99 = 2 * (-11.8- (-20)) = 16.4 mm.
 このように、哺乳瓶2の厚みD=3mm、断熱材3Bの厚みH=10mm、そして幅W=40mmでは、温度測定素子3Aの温度Tsは99.3℃となり、ミルク10の温度より0.7℃低く表示されることになる。熱流出は温度差によって決まることから、ミルク10の温度が40℃まで低下したときは、哺乳瓶内壁面2Dと哺乳瓶外壁面2Cの温度差は(100-10)=90℃から(40-10)=30℃となるので、温度測定素子3Aの温度Tsはミルク10の温度より0.7/(90/30)=0.2℃低く表示されることになる。 As described above, when the thickness D of the baby bottle 2 is 3 mm, the thickness of the heat insulating material 3B is H = 10 mm, and the width W = 40 mm, the temperature Ts of the temperature measuring element 3A is 99.3 ° C. It will be displayed 7 ° C lower. Since the heat outflow is determined by the temperature difference, when the temperature of the milk 10 drops to 40 ° C, the temperature difference between the inner wall surface 2D of the baby bottle and the outer wall surface 2C of the baby bottle is from (100-10) = 90 ° C to (40-). Since 10) = 30 ° C., the temperature Ts of the temperature measuring element 3A is displayed 0.7 / (90/30) = 0.2 ° C. lower than the temperature of the milk 10.
 断熱材3Bの幅Wが充分に大きくなると、x軸上においてx=0付近で温度は一定の値になる。このように平坦になり温度勾配がない場合、その方向への熱の流出はない。このような状態では、断熱材3Bが同じ幅で奥行方向にあったとしてもその方向への熱の流出はない。このような場合、2次元モデルの温度分布は3次元モデルの断面における温度分布と同じになる。よって、断熱材3Bの奥行方向の幅をx軸方向の幅と同じにするか、もしくはそれよりも大きくすれば、哺乳瓶内のミルク10の温度を哺乳瓶外側2Bから精度よく測定することができる。 When the width W of the heat insulating material 3B becomes sufficiently large, the temperature becomes a constant value near x = 0 on the x-axis. When it is flat and has no temperature gradient, there is no heat outflow in that direction. In such a state, even if the heat insulating material 3B has the same width and is in the depth direction, heat does not flow out in that direction. In such a case, the temperature distribution of the two-dimensional model becomes the same as the temperature distribution in the cross section of the three-dimensional model. Therefore, if the width of the heat insulating material 3B in the depth direction is the same as or larger than the width in the x-axis direction, the temperature of the milk 10 in the baby bottle can be accurately measured from the outside 2B of the baby bottle. can.
 断熱材の幅Wが充分に大きく断熱材内側面中央3B4の付近でx軸方向に温度勾配が生じない場合において、ガラス製の哺乳瓶の厚みDを0.2mmから5mm、断熱材3Bの厚みHを5mmから20mmまで変化させたシミュレーションの結果、y軸方向の温度分布の指標となる哺乳瓶壁2Aで低下する温度の割合の百分率rは、次のシミュレーション式、(数1)にまとめられる。
 
 (数1)
  r=2.65D/H
 
When the width W of the heat insulating material is sufficiently large and the temperature gradient does not occur in the x-axis direction near the center 3B4 of the inner side surface of the heat insulating material, the thickness D of the glass baby bottle is 0.2 mm to 5 mm, and the thickness of the heat insulating material 3B. As a result of the simulation in which H is changed from 5 mm to 20 mm, the percentage r of the ratio of the temperature that decreases on the baby bottle wall 2A, which is an index of the temperature distribution in the y-axis direction, is summarized in the following simulation formula, (Equation 1). ..

(Number 1)
r = 2.65D / H
 ガラス、プラスチック又はステンレス製の哺乳瓶で、断熱材の幅Wが充分に大きく断熱材内側面中央3B4の付近でx軸方向に温度勾配が生じない場合において、哺乳瓶の厚みDを0.2mmから20mm、断熱材3Bの厚みHを0.5mmから300mmまで変化させたシミュレーションの結果、y軸方向の温度分布の指標となる哺乳瓶壁2Aで低下する温度の割合の百分率rは、次のシミュレーション式、(数2)にまとめられる。
 
 (数2)
  r=100*(D/k)/(D/k+H/k
 
 ここで、kは哺乳瓶2の熱伝導率であり、ガラスではk=1.005、プラスチックではk=0.30、ステンレスではk=16を採用している。kは断熱材の熱伝導率であり、発泡スチロールではk=0.027を採用している。
In a glass, plastic or stainless steel baby bottle, when the width W of the heat insulating material is sufficiently large and no temperature gradient occurs in the x-axis direction near the center 3B4 of the inner side surface of the heat insulating material, the thickness D of the baby bottle is 0.2 mm. As a result of simulation in which the thickness H of the heat insulating material 3B is changed from 0.5 mm to 300 mm, the percentage r of the ratio of the temperature that decreases at the baby bottle wall 2A, which is an index of the temperature distribution in the y-axis direction, is as follows. The simulation formula is summarized in (Equation 2).

(Number 2)
r = 100 * (D / k 1 ) / (D / k 1 + H / k 2 )

Here, k 1 is the thermal conductivity of the baby bottle 2, and k 1 = 1.005 for glass, k 1 = 0.30 for plastic, and k 1 = 16 for stainless steel. k 2 is the thermal conductivity of the heat insulating material, and k 2 = 0.027 is adopted for Styrofoam.
 温度20℃の冷水でミルク10を40℃に冷却するとき、断熱材内側面中央3B4における温度の誤差が1.0℃まで許容されるとするとr=5.0%となる。下記表1に、哺乳瓶2の材質がパイレックス(登録商標)ガラス(厚みD=1mm、2mm、3mm、4mm)である場合と、PPSU樹脂(厚みD=0.5mm、1mm、2mm、3mm)である場合とのそれぞれにつき、温度の誤差が0.1%のときと、0.5%のときと、2.5%のときと、5.0%であるときにおける断熱材3Bの厚みHを示す。
 
Figure JPOXMLDOC01-appb-T000001
When the milk 10 is cooled to 40 ° C. with cold water having a temperature of 20 ° C., if the temperature error in the center 3B4 of the inner surface of the heat insulating material is allowed up to 1.0 ° C., r = 5.0%. In Table 1 below, the material of the baby bottle 2 is Pyrex (registered trademark) glass (thickness D = 1 mm, 2 mm, 3 mm, 4 mm) and PPSU resin (thickness D = 0.5 mm, 1 mm, 2 mm, 3 mm). The thickness H of the heat insulating material 3B when the temperature error is 0.1%, 0.5%, 2.5%, and 5.0%, respectively. Is shown.

Figure JPOXMLDOC01-appb-T000001
 上記表1を見ると、誤差5.0%で必要とされる断熱材3Bの厚みHは、パイレックス(登録商標)ガラス製の哺乳瓶2の厚みDが1mmのときにはH=0.5mmとなり、Dが4mmのときにはH=2.0mmとなることが分かる。また、PPSU樹脂製(プラスチック製)の哺乳瓶2の厚みDが0.5mmのときにはH=0.9mmとなり、Dが3mmのときにはH=5.1mmとなることが分かる。温度20℃の冷水でミルク10を40℃に冷却するとき、断熱材内側面中央3B4における温度の誤差が0.1℃まで許容されるとするとr=0.5%となり、必要とする断熱材3Bの厚みHは、パイレックス(登録商標)ガラス製の哺乳瓶2の厚みDが1mmのときにはH=5.3mmとなり、Dが4mmのときにはH=21.4mmとなることが分かる。また、PPSU樹脂製(プラスチック製)の哺乳瓶2の厚みDが0.5mmのときにはH=9.0mmとなり、厚みDが3mmのときにはH=53.7mmとなることが分かる。また、いずれの場合においても、断熱材3Bの厚みHが大きくなればなるほど、温度の誤差が小さくなることが分かる。以上のことから、断熱材3Bの厚みHは、0.5mm以上とすることが好ましく、1mm以上、2mm以上、3mm以上、4mm以上とさらに大きくしていくことがより好ましいことが分かる。断熱材3Bの厚みHは、5mm以上とすることが最適である。 Looking at Table 1 above, the thickness H of the heat insulating material 3B required with an error of 5.0% is H = 0.5 mm when the thickness D of the baby bottle 2 made of Pyrex (registered trademark) glass is 1 mm. It can be seen that when D is 4 mm, H = 2.0 mm. Further, it can be seen that when the thickness D of the baby bottle 2 made of PPSU resin (made of plastic) is 0.5 mm, H = 0.9 mm, and when D is 3 mm, H = 5.1 mm. When the milk 10 is cooled to 40 ° C. with cold water having a temperature of 20 ° C., if the temperature error in the center 3B4 of the inner surface of the heat insulating material is allowed up to 0.1 ° C., r = 0.5%, and the required heat insulating material It can be seen that the thickness H of 3B is H = 5.3 mm when the thickness D of the baby bottle 2 made of Pyrex (registered trademark) glass is 1 mm, and H = 21.4 mm when D is 4 mm. Further, it can be seen that when the thickness D of the baby bottle 2 made of PPSU resin (made of plastic) is 0.5 mm, H = 9.0 mm, and when the thickness D is 3 mm, H = 53.7 mm. Further, in any case, it can be seen that the larger the thickness H of the heat insulating material 3B, the smaller the temperature error. From the above, it can be seen that the thickness H of the heat insulating material 3B is preferably 0.5 mm or more, and more preferably 1 mm or more, 2 mm or more, 3 mm or more, 4 mm or more. It is optimal that the thickness H of the heat insulating material 3B is 5 mm or more.
 温度の測定精度のことだけを考えるのであれば、断熱材3Bの厚みHは、できるだけ大きくすることが好ましいが、哺乳瓶用温度計1の使用のしやすさ等を考慮すると、断熱材3Bの厚みHを大きくしすぎることは好ましくない。上記表1を見ると、例えば、PPSU樹脂製(プラスチック製)の哺乳瓶2の厚みDが3mmのときには、断熱材3Bの厚みHを269.7mmとすると、温度の誤差を0.1%に抑えることができるものの、このような厚みHを有する断熱材3Bを哺乳瓶2に取り付けようとしても、哺乳瓶2の外壁面に沿って断熱材3Bを湾曲させることが難しいし、仮に取り付けることができたとしても、哺乳瓶2を振る操作を行いにくくなる等の不具合が生ずる。このため、断熱材3Bの厚みHは、通常、100mm以下とされる。断熱材3Bの厚みHは、50mm以下とすることが好ましく、30mm以下とすることがより好ましく、20mm以下とすることがさらに好ましい。断熱材3Bの厚みHは、10mm以下とすると最適である。 The thickness H of the heat insulating material 3B is preferably made as large as possible if only the temperature measurement accuracy is considered, but considering the ease of use of the baby bottle thermometer 1 and the like, the heat insulating material 3B is used. It is not preferable to make the thickness H too large. Looking at Table 1 above, for example, when the thickness D of the baby bottle 2 made of PPSU resin (plastic) is 3 mm and the thickness H of the heat insulating material 3B is 269.7 mm, the temperature error becomes 0.1%. Although it can be suppressed, even if an attempt is made to attach the heat insulating material 3B having such a thickness H to the baby bottle 2, it is difficult to bend the heat insulating material 3B along the outer wall surface of the baby bottle 2, and it is possible to temporarily attach the heat insulating material 3B. Even if it can be done, problems such as difficulty in shaking the baby bottle 2 will occur. Therefore, the thickness H of the heat insulating material 3B is usually 100 mm or less. The thickness H of the heat insulating material 3B is preferably 50 mm or less, more preferably 30 mm or less, and further preferably 20 mm or less. The thickness H of the heat insulating material 3B is optimally 10 mm or less.
 図4(b)のガラス製の哺乳瓶でのx軸方向の温度分布については、T98.5となる断熱材3Bの最小の幅W98.5は、次のシミュレーション式、(数3)にまとめられる。
 
 (数3)
  W98.5=2*(2.32D+0.51)
 
Figure 4 The temperature distribution in the x-axis direction at the glass baby bottles of (b) is a heat insulating member 3B minimum width W 98.5 of the T 98.5, the following simulation formula (Equation 3) It is summarized in.

(Number 3)
W 98.5 = 2 * (2.32D + 0.51)
  さらに、T99となる断熱材3Bの最小の幅W99は、次のシミュレーション式、(数4)にまとめられる。
 
 (数4)
  W99=2*(2.57D+0.59)
 
Further, the minimum width W 99 of the heat insulating material 3B to be T 99 is summarized in the following simulation formula, (Equation 4).

(Number 4)
W 99 = 2 * (2.57D + 0.59)
 例えば、(数1)でガラス製の哺乳瓶2の厚みがD=3mmにおいて、断熱材3Bの厚みがH=10mmではr=0.8%となり、H=20mmではr=0.4%となる。(数3)において、哺乳瓶2の厚みがD=2mmではW98.5=10mmとなり、D=3mmではW98.5=15mm、D=4mmではW98.5=20mmとなる。さらに、(数4)において、哺乳瓶2の厚みがD=2mmではW99=12mmとなり、D=3mmではW99=17mm、D=4mmではW99=22mmとなる。断熱材3Bの幅W98.5、W99は、哺乳瓶2の厚みDによって変化する。哺乳瓶2の厚みDが厚い程、幅W98.5、W99は増大する。 For example, in (Equation 1), when the thickness of the glass baby bottle 2 is D = 3 mm, when the thickness of the heat insulating material 3B is H = 10 mm, r = 0.8%, and when H = 20 mm, r = 0.4%. Become. In (Equation 3), when the thickness of the baby bottle 2 is D = 2 mm, W 98.5 = 10 mm, when D = 3 mm, W 98.5 = 15 mm, and when D = 4 mm, W 98.5 = 20 mm. Further, in (Equation 4), when the thickness of the baby bottle 2 is D = 2 mm, W 99 = 12 mm, when D = 3 mm, W 99 = 17 mm, and when D = 4 mm, W 99 = 22 mm. The widths W 98.5 and W 99 of the heat insulating material 3B vary depending on the thickness D of the baby bottle 2. The thicker the thickness D of the baby bottle 2, the larger the widths W 98.5 and W 99 .
 このように断熱材3Bの厚みHを大きくするほど、また断熱材3Bの幅Wを大きくするほど、哺乳瓶外側で哺乳瓶内側のミルク10の温度を精度よく測定することができる。また逆に、厚みHを小さくすればするほど、また幅Wを小さくするほど、ミルク10の温度測定の精度は低下する。哺乳瓶2の厚みがD=3mmにおける許容できる精度について、r=1.5%とすると断熱材3Bの厚みはH=5mmとなり、幅方向の精度を1.5%とするとそれに対応する断熱材3Bの幅W98.5はW98.5=15mmとなる。この許容できる精度の場合、ミルク10の温度を40℃、冷水の温度を10℃とすると、測定されるミルク10の温度の精度は1℃程度になる。1℃以上の精度で哺乳瓶内側のミルク10の温度を哺乳瓶外側で測定する条件は、断熱材3Bのそれぞれの幅Wが15mm以上、断熱材3Bの厚みHが5mm以上である。 As described above, the larger the thickness H of the heat insulating material 3B and the larger the width W of the heat insulating material 3B, the more accurately the temperature of the milk 10 inside the baby bottle can be measured on the outside of the baby bottle. On the contrary, the smaller the thickness H and the smaller the width W, the lower the accuracy of the temperature measurement of the milk 10. Regarding the allowable accuracy when the thickness of the baby bottle 2 is D = 3 mm, when r = 1.5%, the thickness of the heat insulating material 3B is H = 5 mm, and when the accuracy in the width direction is 1.5%, the corresponding heat insulating material. The width W 98.5 of 3B is W 98.5 = 15 mm. In the case of this acceptable accuracy, if the temperature of the milk 10 is 40 ° C. and the temperature of the cold water is 10 ° C., the accuracy of the measured temperature of the milk 10 is about 1 ° C. The conditions for measuring the temperature of the milk 10 inside the baby bottle with an accuracy of 1 ° C. or higher are that the width W of each of the heat insulating materials 3B is 15 mm or more and the thickness H of the heat insulating material 3B is 5 mm or more.
 W99.9、W99.5、W97.5、W95をW98.5と同様に定義し、2次元定常状態の有限要素法によるシミュレーションにおいて、断熱材の幅を100mm、断熱材の厚みを10mmとして、哺乳瓶2の材質がパイレックス(登録商標)ガラス(厚みD=1mm、2mm、3mm、4mm)である場合と、PPSU樹脂(厚みD=0.5mm、1mm、2mm、3mm)である場合とのそれぞれにつき、W99.9、W99.5、W97.5そしてW95を下記表2に示す。
 
Figure JPOXMLDOC01-appb-T000002
W 99.9 , W 99.5 , W 97.5 , and W 95 are defined in the same way as W 98.5, and in the simulation by the finite element method of the two-dimensional steady state, the width of the heat insulating material is 100 mm, and the heat insulating material is When the thickness is 10 mm and the material of the baby bottle 2 is Pyrex (registered trademark) glass (thickness D = 1 mm, 2 mm, 3 mm, 4 mm) and PPSU resin (thickness D = 0.5 mm, 1 mm, 2 mm, 3 mm). W 99.9 , W 99.5 , W 97.5 and W 95 are shown in Table 2 below, respectively.

Figure JPOXMLDOC01-appb-T000002
 上記表2を見ると、誤差が5.0%で必要とされる断熱材3Bの幅W95は、パイレックス(登録商標)ガラス製の哺乳瓶2の厚みDが1mmのときにはW95=2.5mmとなり、Dが4mmのときにはW95=12.6mmとなることが分かる。また、PPSU樹脂製(プラスチック製)の哺乳瓶の厚みDが0.5mmのときにはW95=0.5mmとなり、Dが3mmのときにはW95=10.6mmとなることが分かる。いずれの場合においても、断熱材3Bの幅Wが大きくなればなるほど、温度の誤差が小さくなることが分かる。以上のことから、断熱材3Bの幅Wは、0.5mm以上とすることが好ましく、1mm以上、5mm以上、10mm以上、20mm以上とさらに大きくしていくことがより好ましいことが分かる。断熱材3Bの幅Wは、30mm以上とすることが最適である。 Looking at Table 2 above, the width W 95 of the heat insulating material 3B required with an error of 5.0% is W 95 = 2. When the thickness D of the baby bottle 2 made of Pyrex (registered trademark) glass is 1 mm. It is 5 mm, and when D is 4 mm, it can be seen that W 95 = 12.6 mm. Further, it can be seen that when the thickness D of the baby bottle made of PPSU resin (made of plastic) is 0.5 mm, W 95 = 0.5 mm, and when D is 3 mm, W 95 = 10.6 mm. In any case, it can be seen that the larger the width W of the heat insulating material 3B, the smaller the temperature error. From the above, it can be seen that the width W of the heat insulating material 3B is preferably 0.5 mm or more, and more preferably 1 mm or more, 5 mm or more, 10 mm or more, and 20 mm or more. It is optimal that the width W of the heat insulating material 3B is 30 mm or more.
 温度の測定精度のことだけを考えるのであれば、断熱材3Bの幅Wは、できるだけ大きくすることが好ましいが、W99.9の2倍よりも大きくしてもあまり意味はない。また、哺乳瓶用温度計1の使用のしやすさ等を考慮すると、断熱材3Bの幅Wを大きくしすぎることは好ましくない。というのも、断熱材3Bの幅Wを大きくしすぎると、断熱材3Bを哺乳瓶2の外壁面に取り付けにくくなるからである。加えて、哺乳瓶2の外壁面における広い範囲が断熱材3Bで覆われるようになるため、哺乳瓶2の中のミルク10を冷水で冷却しにくくなる。このため、断熱材3Bの幅Wは、通常、100mm以下とされる。断熱材3Bの幅Wは、70mm以下とすることが好ましく、50mm以下とすることがより好ましい。断熱材3Bの幅Wは、40mm前後とすると最適である。 If only the temperature measurement accuracy is considered, it is preferable that the width W of the heat insulating material 3B be as large as possible, but it does not make much sense to make it larger than twice W 99.9. Further, considering the ease of use of the baby bottle thermometer 1, it is not preferable to make the width W of the heat insulating material 3B too large. This is because if the width W of the heat insulating material 3B is made too large, it becomes difficult to attach the heat insulating material 3B to the outer wall surface of the baby bottle 2. In addition, since a wide area on the outer wall surface of the baby bottle 2 is covered with the heat insulating material 3B, it becomes difficult to cool the milk 10 in the baby bottle 2 with cold water. Therefore, the width W of the heat insulating material 3B is usually 100 mm or less. The width W of the heat insulating material 3B is preferably 70 mm or less, and more preferably 50 mm or less. The width W of the heat insulating material 3B is optimally set to around 40 mm.
 実施例3の哺乳瓶用温度計1では、断熱材3Bとしてk=0.027W/mKの発泡スチロールを用いている。発泡スチロールの熱伝導率は空気の熱伝導率k=0.026W/mKとほぼ同じであり高い断熱効果を有している。断熱材3Bとして高い断熱効果があれば発泡スチロールに限定することなく、同程度の熱伝導率をもつウレタンフォーム等の発泡プラスチックを断熱材3Bとして用いることができる。断熱材3Bとして発泡プラスチックを用いる場合には、連通気泡型のものより、発泡ポリエチレンのような独立気泡型のものを採用することで、その断熱性をより高める(熱伝導率kを小さく抑える)ことができる。断熱材3Bの熱伝導率kは、0.1W/mK以下、0.07W/mK以下、0.05W/mK以下、0.03W/mK以下と、低ければ低いほど好ましい。ただし、空気でも0.024W/mK以上の熱伝導率kを有する。このため、断熱材3Bの熱伝導率kは、現実的には、0.025W/mK以上とされる。
 
In the baby bottle thermometer 1 of Example 3, styrofoam of k = 0.027 W / mK is used as the heat insulating material 3B. The thermal conductivity of Styrofoam is almost the same as the thermal conductivity of air k = 0.026 W / mK, and has a high heat insulating effect. If the heat insulating material 3B has a high heat insulating effect, foamed plastic such as urethane foam having the same thermal conductivity can be used as the heat insulating material 3B without being limited to styrofoam. When foamed plastic is used as the heat insulating material 3B, the heat insulating property is further improved by adopting a closed cell type such as foamed polyethylene rather than the continuous cell type (heat conductivity k is suppressed to a small value). be able to. The thermal conductivity k of the heat insulating material 3B is 0.1 W / mK or less, 0.07 W / mK or less, 0.05 W / mK or less, 0.03 W / mK or less, and the lower the value, the more preferable. However, even air has a thermal conductivity k of 0.024 W / mK or more. Therefore, the thermal conductivity k of the heat insulating material 3B is practically 0.025 W / mK or more.
 実施例4の哺乳瓶用温度計1では、上述した第一から第九までの手段のうち、第一、第二、第三、第四、第六及び第九の手段を採用している。図5は、本発明の実施例4に係るの哺乳瓶用温度計について実施した実験を説明する図である。図5(a)に実験器具の配置を示す。哺乳瓶2の哺乳瓶外壁面2Cにセンサ部3が密着している。温度測定素子3A及びリード線4は線径0.1mmのTypeTの熱電対であり、断熱材3Bは幅の一辺が40mm、厚みが10mmの独立気泡型発泡ポリエチレンである。哺乳瓶2の内側に哺乳瓶内側温度計15を挿入するとともに、哺乳瓶外壁面2Cに哺乳瓶外側温度計16を密着させている。 In the baby bottle thermometer 1 of the fourth embodiment, among the above-mentioned first to ninth means, the first, second, third, fourth, sixth and ninth means are adopted. FIG. 5 is a diagram illustrating an experiment carried out on a baby bottle thermometer according to Example 4 of the present invention. FIG. 5A shows the arrangement of the experimental instruments. The sensor unit 3 is in close contact with the baby bottle outer wall surface 2C of the baby bottle 2. The temperature measuring element 3A and the lead wire 4 are TypeT thermocouples having a wire diameter of 0.1 mm, and the heat insulating material 3B is a closed cell type foamed polyethylene having a width of 40 mm on a side and a thickness of 10 mm. The baby bottle inner thermometer 15 is inserted inside the baby bottle 2, and the baby bottle outer thermometer 16 is brought into close contact with the baby bottle outer wall surface 2C.
 図5(b)に、100℃の熱湯14を哺乳瓶2に注入した後、14.7℃の冷水11の中で哺乳瓶2を揺さぶりながら冷却したときの、哺乳瓶内側温度計15、哺乳瓶外側温度計16、そして温度測定素子3Aの経時的な温度変化を示す。熱湯14を注ぎ冷水11の中で哺乳瓶2を揺さぶると、哺乳瓶内側の温度が急激に低下する。熱湯注入180秒後には哺乳瓶内側温度計15の温度は40.5℃に低下し、温度測定素子3Aの温度は40.9℃に低下している。哺乳瓶外側温度計16の温度は25.2℃を示している。熱湯注入210秒後に、哺乳瓶2を冷水11から取り出している。このように温度測定素子3Aに断熱材3Bを密着させることにより、哺乳瓶内のミルク10の温度を哺乳瓶外側から精度良く測定することができる。 In FIG. 5B, the baby bottle inner thermometer 15 and the baby bottle when the baby bottle 2 is cooled while shaking in the cold water 11 at 14.7 ° C. after injecting the hot water 14 at 100 ° C. into the baby bottle 2. The temperature change with time of the bottle outer thermometer 16 and the temperature measuring element 3A is shown. When the baby bottle 2 is shaken in the cold water 11 by pouring the hot water 14, the temperature inside the baby bottle drops sharply. 180 seconds after the injection of boiling water, the temperature of the baby bottle inner thermometer 15 drops to 40.5 ° C, and the temperature of the temperature measuring element 3A drops to 40.9 ° C. The temperature of the baby bottle outer thermometer 16 indicates 25.2 ° C. 210 seconds after the hot water injection, the baby bottle 2 is taken out from the cold water 11. By bringing the heat insulating material 3B into close contact with the temperature measuring element 3A in this way, the temperature of the milk 10 in the baby bottle can be accurately measured from the outside of the baby bottle.
 温度測定素子3Aで表示される温度の精度は、断熱材の厚みと断熱材の幅に大きく依存するが、さらにリード線4による熱移動にも依存する。温度測定素子3Aとして、サーミスタや熱電対が考えられる。サーミスタでは電子回路が安価である。熱電対を用いた温度測定素子3Aは、2本の異種金属からなるリード線の接点であり、その接点における熱起電力の差を応用したものである。そのことから、熱電対を使用した温度測定素子3Aは可能な限り小さく、そしてリード線4も可能な限り細くすることができる。実施例4では線径0.1mmの熱電対を用いてリード線4による熱移動を小さくしているが、線径0.01mmの熱電対を用いることもできる。
 
The accuracy of the temperature displayed by the temperature measuring element 3A largely depends on the thickness of the heat insulating material and the width of the heat insulating material, but also depends on the heat transfer by the lead wire 4. As the temperature measuring element 3A, a thermistor or a thermocouple can be considered. Electronic circuits are inexpensive in thermistors. The temperature measuring element 3A using a thermocouple is a contact of a lead wire made of two dissimilar metals, and the difference in thermoelectromotive force at the contact is applied. Therefore, the temperature measuring element 3A using a thermocouple can be made as small as possible, and the lead wire 4 can be made as thin as possible. In Example 4, a thermocouple having a wire diameter of 0.1 mm is used to reduce the heat transfer by the lead wire 4, but a thermocouple having a wire diameter of 0.01 mm can also be used.
 図6に、本発明の実施例5及び実施例6に係る哺乳瓶用温度計1の断熱材3Bに取り付けたベルトを示す。実施例5の哺乳瓶用温度計1では、第一、第二、第三及び第七の手段を採用しており、図6(a)に示すように、粘着材を付加した粘着材付きベルト8をセンサ部3に取り付けている。粘着材付きベルト8を引っ張りながら哺乳瓶2に粘着させることにより、断熱材内側面3B2を哺乳瓶2に密着させることができる。
 
FIG. 6 shows a belt attached to the heat insulating material 3B of the baby bottle thermometer 1 according to the fifth and sixth embodiments of the present invention. In the baby bottle thermometer 1 of the fifth embodiment, the first, second, third and seventh means are adopted, and as shown in FIG. 6A, a belt with an adhesive material to which an adhesive material is added. 8 is attached to the sensor unit 3. By adhering the belt 8 with the adhesive material to the baby bottle 2 while pulling it, the inner side surface 3B2 of the heat insulating material can be brought into close contact with the baby bottle 2.
 実施例6の哺乳瓶用温度計1でも、上記の実施例5の哺乳瓶用温度計1と同様、第一、第二、第三及び第七の手段を採用している。ただし、実施例6の哺乳瓶用温度計1では、図6(b)に示すように、吸盤を付加した吸盤付きベルト9をセンサ部3に取り付けている。吸盤付きベルト9を引っ張りながら哺乳瓶2に吸盤を吸着させることにより、断熱材内側面3B2を哺乳瓶2に密着させることができる。
 
The baby bottle thermometer 1 of the sixth embodiment also adopts the first, second, third and seventh means as in the baby bottle thermometer 1 of the above-mentioned Example 5. However, in the baby bottle thermometer 1 of the sixth embodiment, as shown in FIG. 6 (b), a belt 9 with a suction cup to which a suction cup is added is attached to the sensor unit 3. By adsorbing the suction cup to the baby bottle 2 while pulling the belt 9 with the suction cup, the inner side surface 3B2 of the heat insulating material can be brought into close contact with the baby bottle 2.
 実施例7の哺乳瓶用温度計1でも、上記の実施例5や実施例6の哺乳瓶用温度計1と同様、第一、第二、第三及び第七の手段を採用している。ただし、実施例7の哺乳瓶用温度計1では、図8に示すように、環状を為す巻回ベルト18をセンサ部3に取り付けており、この巻回ベルト18を哺乳瓶2の外周部に掛け回すことによって、哺乳瓶用温度計1を哺乳瓶2に取り付けるようにしている。巻回ベルト18は、その両端部を互いに固定する位置を変更することで長さ調節可能とした有端ベルトとしてもよいが、ゴム等の伸縮性素材で形成した無端ベルトとしてもよい。これにより、哺乳瓶2の外径等が変わっても、センサ部3を哺乳瓶外壁面2Cに密着させることができる。
 
The baby bottle thermometer 1 of Example 7 also adopts the first, second, third, and seventh means as in the case of the baby bottle thermometer 1 of Example 5 and Example 6 described above. However, in the baby bottle thermometer 1 of the seventh embodiment, as shown in FIG. 8, a winding belt 18 forming an annular shape is attached to the sensor unit 3, and the winding belt 18 is attached to the outer peripheral portion of the baby bottle 2. By turning it around, the baby bottle thermometer 1 is attached to the baby bottle 2. The winding belt 18 may be an endless belt whose length can be adjusted by changing the positions at which both ends thereof are fixed to each other, or may be an endless belt made of an elastic material such as rubber. As a result, even if the outer diameter of the baby bottle 2 changes, the sensor unit 3 can be brought into close contact with the baby bottle outer wall surface 2C.
 本発明によれば、哺乳瓶2の外壁にセンサ部3を熱接触させ、その上から断熱材3Bを密着させることにより、哺乳瓶2の内部にあるミルク10の温度を測定することができる。本発明の哺乳瓶用温度計1の使用は哺乳瓶2に限定するものではなく、紙容器、プラスチック容器、プチスチック製袋、さらに厨房の金属鍋等の容器に対しても応用することができ、それらに入れられた内容物の温度を容器の外側から測定することができる。 According to the present invention, the temperature of the milk 10 inside the baby bottle 2 can be measured by thermally contacting the sensor unit 3 with the outer wall of the baby bottle 2 and bringing the heat insulating material 3B into close contact with the sensor unit 3 from above. The use of the baby bottle thermometer 1 of the present invention is not limited to the baby bottle 2, and can be applied to containers such as paper containers, plastic containers, petitstic bags, and metal pots in kitchens. The temperature of the contents contained in them can be measured from the outside of the container.
  1  哺乳瓶用温度計
  2  哺乳瓶
  2A 哺乳瓶壁
  2B 哺乳瓶外側
  2C 哺乳瓶外壁面
  2D 哺乳瓶内壁面
  2E 哺乳瓶内側
  2F くぼみ
  3  センサ部
  3A 温度測定素子
  3B 断熱材
  3B1 断熱材外側面
  3B2 断熱材内側面
  3B3 断熱材内側面辺縁
  3B4 断熱材内側面中央
  4  リード線
  5  温度表示部
  5A 電源スイッチ
  5B 電池
  5C 電子回路
  5D 温度表示パネル
  6  良熱伝導性薄膜
  7  粘着薄膜
  8  粘着材付きベルト
  9  吸盤付きベルト
 10  ミルク
 11  冷水
 12  防水ケース
 13  ケース
 14  熱湯
 15  哺乳瓶内側温度計
 16  哺乳瓶外側温度計
 17  断熱材
 18  巻回ベルト
  D  哺乳瓶の厚み[mm]
  W  断熱材の幅[mm]
  H  断熱材の厚み[mm]
  Tm ミルクの温度[℃]
  Tw 冷水の温度[℃]
  Ts 温度測定素子の温度[℃]
  Tms 哺乳瓶壁内で低下する温度(Tms=Tm-Ts)[℃]
  Tsw 断熱材内で低下する温度(Tsw=Ts-Tw)[℃]
  Tmw ミルクと冷水との温度差(Tmw=Tm-Tw)[℃]
  r  哺乳瓶壁内で低下する温度の割合の百分率(r=100*Tms/Tmw)[%]
  W98.5 断熱材内側面辺縁3B3からTmsの98.5%まで温度が上昇するに必要な断熱材の幅に2を掛けた値
  W99 断熱材内側面辺縁3B3からTmsの99%まで温度が上昇するに必要な断熱材の幅に2を掛けた値
  W99.9 断熱材内側面辺縁3B3からTmsの99.9%まで温度が上昇するに必要な断熱材の幅に2を掛けた値
  W99.5 断熱材内側面辺縁3B3からTmsの99.5%まで温度が上昇するに必要な断熱材の幅に2を掛けた値
  W97.5 断熱材内側面辺縁3B3からTmsの97.5%まで温度が上昇するに必要な断熱材の幅に2を掛けた値
  W95 断熱材内側面辺縁3B3からTmsの95%まで温度が上昇するに必要な断熱材の幅に2を掛けた値
1 Baby bottle thermometer 2 Baby bottle 2A Baby bottle wall 2B Baby bottle outer wall surface 2D Baby bottle inner wall surface 2E Baby bottle inner wall 2F Indentation 3 Sensor part 3A Temperature measuring element 3B Insulation material 3B1 Insulation material Outer surface 3B2 Insulation Material inner side surface 3B3 Insulation material inner side edge 3B4 Insulation material inner side surface center 4 Lead wire 5 Temperature display 5A Power switch 5B Battery 5C Electronic circuit 5D Temperature display panel 6 Good heat conductive thin film 7 Adhesive thin film 8 Adhesive belt 9 Belt with sucker 10 Milk 11 Cold water 12 Waterproof case 13 Case 14 Hot water 15 Baby bottle inside thermometer 16 Baby bottle outside thermometer 17 Insulation material 18 Winding belt D Baby bottle thickness [mm]
W Insulation width [mm]
H Insulation thickness [mm]
Tm milk temperature [℃]
Tw Cold water temperature [℃]
Ts temperature measuring element temperature [° C]
Tms The temperature that drops inside the baby bottle wall (Tms = Tm-Ts) [° C]
Tsw Temperature that drops in the insulation (Tsw = Ts-Tw) [° C]
Tmw Temperature difference between milk and cold water (Tmw = Tm-Tw) [° C]
r Percentage of the percentage of temperature that drops in the baby bottle wall (r = 100 * Tms / Tmw) [%]
W 98.5 Insulation inner side edge 3B3 to 98.5% of Tms Insulation width required to increase temperature multiplied by 2 W 99 Insulation inner side edge 3B3 to 99% of Tms W 99.9 Insulation inner side edge 3B3 to 99.9% of Tms The width of the insulation required to increase the temperature is 2 W 99.5 Insulation inner side edge 3 Multiplying the width of the insulation required to raise the temperature from 3B3 to 99.5% of Tms W 97.5 Insulation inner side edge 3 The width of the insulation required to increase the temperature from 3B3 to 97.5% of Tms multiplied by 2 W 95 Insulation inner side edge Insulation required to increase the temperature from 3B3 to 95% of Tms Width multiplied by 2

Claims (9)

  1.  哺乳瓶外壁に熱接触する温度測定素子と、温度測定素子を覆い哺乳瓶に密着する断熱材からなるセンサ部と、
     温度測定素子のリード線と、
     リード線に接続する温度表示部と
    で構成されたことを特徴とする哺乳瓶用温度計。
     
    A temperature measuring element that makes thermal contact with the outer wall of the baby bottle, a sensor unit made of a heat insulating material that covers the temperature measuring element and adheres to the baby bottle,
    The lead wire of the temperature measuring element and
    A thermometer for baby bottles, which is characterized by being composed of a temperature display unit connected to a lead wire.
  2.  断熱材の厚みが0.5mmから100mmであることを特徴とする請求項1記載の哺乳瓶用温度計。
     
    The thermometer for a baby bottle according to claim 1, wherein the thickness of the heat insulating material is 0.5 mm to 100 mm.
  3.  断熱材における哺乳瓶に密着する面のそれぞれの幅が0.5mmから100mmであることを特徴とする請求項1又は2記載の哺乳瓶用温度計。
     
    The thermometer for a baby bottle according to claim 1 or 2, wherein the width of each of the surfaces of the heat insulating material in close contact with the baby bottle is 0.5 mm to 100 mm.
  4.  温度表示部は、電源スイッチと電池と電子回路とそして温度表示パネルで構成されていることを特徴とする請求項1~3のいずれか1項に記載の哺乳瓶用温度計。
     
    The thermometer for a baby bottle according to any one of claims 1 to 3, wherein the temperature display unit includes a power switch, a battery, an electronic circuit, and a temperature display panel.
  5.  センサ部の哺乳瓶に密着する面に、良熱伝導性薄膜が付加されていることを特徴とする請求項1~4のいずれか1項に記載の哺乳瓶用温度計。
     
    The thermometer for a baby bottle according to any one of claims 1 to 4, wherein a good heat conductive thin film is added to a surface of the sensor unit that is in close contact with the baby bottle.
  6.  センサ部における哺乳瓶に密着する面に、粘着薄膜が付加されていることを特徴とする請求項1~5のいずれか1項に記載の哺乳瓶用温度計。
     
    The thermometer for a baby bottle according to any one of claims 1 to 5, wherein an adhesive thin film is added to a surface of the sensor unit that is in close contact with the baby bottle.
  7.  粘着材付きベルト、吸盤付きベルト又は巻回ベルトが、センサ部に取り付けられていることを特徴とする請求項1~5のいずれか1項に記載の哺乳瓶用温度計。
     
    The thermometer for a baby bottle according to any one of claims 1 to 5, wherein a belt with an adhesive material, a belt with a suction cup, or a winding belt is attached to a sensor portion.
  8.  センサ部とリード線と温度表示部とが、一体構造であることを特徴とする請求項1~7のいずれか1項に記載の哺乳瓶用温度計。
     
    The thermometer for a baby bottle according to any one of claims 1 to 7, wherein the sensor unit, the lead wire, and the temperature display unit have an integrated structure.
  9.  センサ部と温度表示部とが、リード線を介して分離していることを特徴とする請求項1~7のいずれか1項に記載の哺乳瓶用温度計。 The thermometer for a baby bottle according to any one of claims 1 to 7, wherein the sensor unit and the temperature display unit are separated via a lead wire.
PCT/JP2021/000700 2020-07-04 2021-01-12 Feeding bottle thermometer WO2022009452A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020116038 2020-07-04
JP2020-116038 2020-07-04
JP2020-206151 2020-12-11
JP2020206151A JP2022013585A (en) 2020-07-04 2020-12-11 Temperature indicator for bottle

Publications (1)

Publication Number Publication Date
WO2022009452A1 true WO2022009452A1 (en) 2022-01-13

Family

ID=79553215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000700 WO2022009452A1 (en) 2020-07-04 2021-01-12 Feeding bottle thermometer

Country Status (1)

Country Link
WO (1) WO2022009452A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759129A (en) * 1980-09-26 1982-04-09 Akira Kataoka Temperature display tool
JPS58160324U (en) * 1982-04-21 1983-10-25 株式会社日立製作所 food temperature detector
JPS62117535U (en) * 1986-01-17 1987-07-25
JPH073648U (en) * 1991-10-29 1995-01-20 明喜男 矢田 Baby bottle with liquid temperature display function
US20070053407A1 (en) * 2003-04-15 2007-03-08 Peter Kinsler Thermometer
US20080137709A1 (en) * 2004-11-16 2008-06-12 Welch Allyn, Inc. Temperature patch and method of using the same
CN104207945A (en) * 2014-08-22 2014-12-17 宁波市鄞州下应百益五金厂 Feeding bottle auxiliary part
CN204085721U (en) * 2014-08-29 2015-01-07 北京七秒迅驰科技有限公司 A kind of temperature-sensing device
CN104634464A (en) * 2013-11-08 2015-05-20 西安天动数字科技有限公司 Temperature monitoring device for liquid of feeding bottle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759129A (en) * 1980-09-26 1982-04-09 Akira Kataoka Temperature display tool
JPS58160324U (en) * 1982-04-21 1983-10-25 株式会社日立製作所 food temperature detector
JPS62117535U (en) * 1986-01-17 1987-07-25
JPH073648U (en) * 1991-10-29 1995-01-20 明喜男 矢田 Baby bottle with liquid temperature display function
US20070053407A1 (en) * 2003-04-15 2007-03-08 Peter Kinsler Thermometer
US20080137709A1 (en) * 2004-11-16 2008-06-12 Welch Allyn, Inc. Temperature patch and method of using the same
CN104634464A (en) * 2013-11-08 2015-05-20 西安天动数字科技有限公司 Temperature monitoring device for liquid of feeding bottle
CN104207945A (en) * 2014-08-22 2014-12-17 宁波市鄞州下应百益五金厂 Feeding bottle auxiliary part
CN204085721U (en) * 2014-08-29 2015-01-07 北京七秒迅驰科技有限公司 A kind of temperature-sensing device

Similar Documents

Publication Publication Date Title
US6827487B2 (en) Temperature measuring device
US7479116B2 (en) Temperature measurement device
US4487208A (en) Fast response thermoresistive temperature sensing probe
US8649998B2 (en) Surface temperature profile
US6264049B1 (en) Nursing bottle with integral temperature sensor
EP1249691A1 (en) Electronic clinical thermometer
US6886978B2 (en) Electronic clinical thermometer
US3695110A (en) Baby thermometer spoon
EP2396616A1 (en) Baby feeding bottle
US20120128024A1 (en) Temperature measuring device
JP2008076144A (en) Electronic thermometer
WO2003051165A1 (en) Handle for cooking utensils including a temperature indicator device
WO2013121762A1 (en) Clinical thermometer and body temperature measurement system
WO2022009452A1 (en) Feeding bottle thermometer
JP3161231U (en) Pacifier thermometer
JP2022013585A (en) Temperature indicator for bottle
JP2018151322A (en) Internal temperature measuring device
US20030000451A1 (en) Beverage container having thermal indicator
JPWO2013024568A1 (en) Thermometer
JP2022044068A (en) Infant-feeding bottle thermometer including transparent heat insulation body
US20080049812A1 (en) Thermometer with Dual Thermal Sensor
GB2324472A (en) Temperature sensing container
EP1433407B1 (en) A thermally insulatable vessel and a thermally insulatable vessel system
JP3173864U (en) Heat conduction structure of non-mercury non-electronic thermometer
JP2016023954A (en) Water bottle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21836831

Country of ref document: EP

Kind code of ref document: A1