WO2022009257A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2022009257A1
WO2022009257A1 PCT/JP2020/026358 JP2020026358W WO2022009257A1 WO 2022009257 A1 WO2022009257 A1 WO 2022009257A1 JP 2020026358 W JP2020026358 W JP 2020026358W WO 2022009257 A1 WO2022009257 A1 WO 2022009257A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting layer
emitting surface
display device
Prior art date
Application number
PCT/JP2020/026358
Other languages
English (en)
French (fr)
Inventor
裕介 榊原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US18/013,846 priority Critical patent/US20230180532A1/en
Priority to PCT/JP2020/026358 priority patent/WO2022009257A1/ja
Publication of WO2022009257A1 publication Critical patent/WO2022009257A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different

Definitions

  • This disclosure relates to a display device.
  • Display devices such as QLED (Quantum dot Light Emitting Diode) or OLED (Organic Light Emitting Diode), which have a structure in which thin films are laminated, are being developed.
  • QLED Quantum dot Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • the two lights emitted by the light emitting layer interfere with each other. More specifically, the first light emitted directly from the light emitting layer to the outside and the second light emitted from the light emitting layer after being reflected by the electrodes and then emitted to the outside interfere with each other. do. Therefore, the intensity of the light emitted from the light emitting layer differs depending on the optical path difference between the first light and the second light. Therefore, the intensity of light visible to the human eye differs depending on the traveling direction of the light emitted from the light emitting surface, in other words, the angle at which the human display surface is viewed.
  • the light when the film thickness of the charge transport layer on the light radiation side of the light emitting layer is the same for each emission color such as red, green, and blue, the light is arranged for each wavelength of light.
  • the light characteristics that is, the intensity of light depending on the traveling direction of light is different.
  • light with shorter wavelengths i.e., green and blue light
  • the display surface looks closer to green or blue than the color when the display surface is viewed along the reference direction. There is.
  • An object of the present disclosure is the color of the display surface when the display surface is viewed along a reference direction perpendicular to the display surface, and the color of the display surface when the display surface is viewed along a direction inclined from the reference direction.
  • the purpose of the present invention is to provide a display device in which the difference from the taste is reduced.
  • the display device of one embodiment of the present disclosure includes a plurality of light emitting layers, each of which can emit light in a reference direction perpendicular to the light emitting surface, and light traveling in a direction inclined from the light emitting surface with respect to the reference direction.
  • the plurality of light emitting layers are provided with a light shielding portion capable of blocking a part of the light of the above, and the first light emitting layer capable of emitting light having a first peak wavelength and longer than the first peak wavelength.
  • the first light emitting layer includes a second light emitting layer capable of emitting light having a second peak wavelength, and the first light emitting layer has at least one specific direction among the inclined directions as compared with the second light emitting layer. The ratio of the part of the light that can be shielded by the light-shielding portion to the light traveling to is large.
  • FIG. 3 is a schematic plan view for explaining a display surface, pixels, and sub-pixels of the display device of the first embodiment. It is a perspective schematic diagram for demonstrating the structure of the red sub-pixel, the green sub-pixel, and the blue sub-pixel which constitute the pixel of the display apparatus of Embodiment 1.
  • FIG. It is a top view for demonstrating the distance between a light emitting surface and a light-shielding part. It is sectional drawing for demonstrating the height of a light-shielding part. It is a cross-sectional view of a part of the display device corresponding to the cross-sectional view of the VV line of FIG.
  • FIG. FIG. 6 is a cross-sectional view of a part of the display device corresponding to the cross-sectional view taken along the line XVIII-XVIII of FIG.
  • FIG. 3 is a cross-sectional view of a part of the display device corresponding to the cross-sectional view taken along the line XX-XX of FIG. It is a top view of the light emitting surface of a red sub-pixel, the light-emitting surface of a green sub-pixel, and the light-emitting surface of a blue sub-pixel constituting the four pixels of the display device of the third embodiment.
  • FIG. 22 is a cross-sectional view of a part of the display device corresponding to the cross-sectional view of the XXIV-XXIV line of FIGS. 22 and 23.
  • the ratio of the radiation angle of the light to the red intensity of the light and the blue intensity thereof is a graph which shows the relationship.
  • FIG. 3 is a cross-sectional view of a part of the display device corresponding to the cross-sectional view taken along the line XXXIV-XXXIV of FIG. 33.
  • the display device of the sixth embodiment when light is incident on the light emitting surface along a first direction inclined from a reference direction perpendicular to the light emitting surface of the blue subpixel, it is formed on the light emitting surface of the blue light emitting layer.
  • FIG. 6 is a cross-sectional view for explaining a third step of a method of manufacturing a first conical portion as a light-shielding portion for a blue sub-pixel and a second conical portion as a light-shielding portion for a green sub-pixel of the display device of the seventh embodiment.
  • FIG. 6 is a cross-sectional view for explaining a third step of a method of manufacturing a first conical portion as a light-shielding portion for a blue sub-pixel and a second conical portion as a light-shielding portion for a green sub-pixel of the display device of the seventh embodiment.
  • FIG. It is a plane schematic diagram for demonstrating the structure of the red sub-pixel, the green sub-pixel, and the blue sub-pixel which constitute the pixel of the display apparatus of Embodiment 7.
  • FIG. It is sectional drawing of a part of the display device corresponding to the sectional view of the XLV-XLV line of FIGS. 39 and 44.
  • It is a graph which shows the relationship with.
  • the second cone-shaped portion formed on the light emitting surface when the light is incident on the light emitting surface along the first direction inclined from the reference direction perpendicular to the light emitting surface It is sectional drawing of the light emitting layer and the light-shielding part for demonstrating the shadow of.
  • the second cone-shaped portion formed on the light emitting surface is formed. It is a top view of the light emitting layer and the light-shielding part for explaining the shadow of.
  • a second conical portion formed on the light emitting surface is formed. It is sectional drawing of the light emitting layer and the light-shielding part for demonstrating the shadow of.
  • FIG. 8 It is a perspective schematic diagram for demonstrating the structure of the red sub-pixel, the green sub-pixel, and the blue sub-pixel which constitute the pixel of the display apparatus of Embodiment 8. It is a perspective schematic diagram for demonstrating the structure of the red sub-pixel, the green sub-pixel, and the blue sub-pixel which constitute the pixel of the display apparatus of Embodiment 9.
  • FIG. 9 It is a perspective schematic diagram for demonstrating the structure of the red sub-pixel, the green sub-pixel, and the blue sub-pixel which constitute the pixel of the display apparatus of Embodiment 9.
  • the display device D includes a group of pixels P arranged in a matrix.
  • the display surface DS is a virtual plane on which an image viewed by a person is displayed.
  • the horizontal direction of the display device D that is, the long side direction of the rectangle is the row direction
  • the vertical direction of the display device D that is, the short side direction of the rectangle is the column direction.
  • Each of the group of pixels P includes a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B.
  • each light emitting surface of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B is schematically drawn.
  • the light emitting surface is the main surface on the side that radiates the light emitted by the light emitting layer to the outside of the display device D among the two main surfaces facing each other of the light emitting layer, that is, the back side of the main surface facing the reflective electrode. It is the main surface.
  • the light emitting surface is assumed to be the upper main surface of the light emitting layer in the cross-sectional view and the perspective view used in the following description. In the present specification, it is assumed that the virtual plane including the light emitting surfaces of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B constitutes the above-mentioned display surface DS.
  • the "plane” means a plane limited to a portion where a member constituting the plane exists, while the “plane” means the plane. It shall mean a plane without such restrictions. Further, as in the case where the light emitting surfaces of the red subpixel R, the green subpixel G, and the blue subpixel B are not on the same plane, the light emitting surface is on a different plane for each subpixel and its light emitting layer. There are cases like this. In such a case, each sub-pixel and its light-emitting layer shall have a separate light-emitting surface. Further, the virtual plane and the display surface DS in the description of each sub-pixel shall have a separate virtual plane and display surface DS for each sub-pixel.
  • the light emitting surface of the red subpixel R, the light emitting surface of the green subpixel G, and the light emitting surface of the blue subpixel B are the red light, the green light, and the light emitting surface from the light emitting surface with the reference direction perpendicular to the light emitting surface as the central axis, respectively. It can emit blue light in a radial pattern. Red light, green light, and blue light have shorter peak wavelengths in this order.
  • peak wavelength of red light emitted by the light emitting surface of the red subpixel R peak wavelength of green light emitted by the light emitting surface of the green subpixel G
  • peak wavelength of blue light emitted by the light emitting surface of the blue subpixel B peak wavelength of red light emitted by the red light emitting layer REML
  • peak wavelength of green light emitted by the green light emitting layer GEML is, for example, about 500 nm to about 550 nm.
  • peak wavelength of blue light emitted by the blue light emitting layer BEML is, for example, about 460 nm to about 500 nm.
  • FIG. 2 shows three pixels P adjacent to each other in the display device D of the present embodiment.
  • Each of the three pixels P has a red subpixel R, a green subpixel G, and a blue subpixel B.
  • the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B are each surrounded by one common bank BK.
  • the bank BK is formed by a grid-like portion and a frame-shaped portion surrounding the grid-like portion in a plan view.
  • the bank BK partitions a group of sub-pixels arranged in a matrix.
  • the bank BK that divides a group of sub-pixels is not an essential configuration of the display device D.
  • the bank BK functions as a light-shielding portion capable of blocking the light emitted from the light-emitting surface of the red light-emitting layer REML, the light-emitting surface of the green light-emitting layer GEML, and the light-emitting surface of the blue light-emitting layer BEML.
  • the bank BK is made of a material capable of absorbing or reflecting visible light. Visible light is light having a wavelength between about 380 nm and about 780 nm.
  • Bank BK blocks some of the light traveling in the direction inclined from the light emitting surface to the reference direction perpendicular to the light emitting surface.
  • the bank BK partitions the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML.
  • the bank BK projects upward from the light emitting surfaces of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML.
  • a plurality of red subpixels R are arranged in a row
  • a plurality of green subpixels G are arranged in a row
  • a plurality of blues are arranged.
  • the sub-pixels B are arranged in a row.
  • the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B form a virtual straight line VL in the row direction, that is, in the lateral direction. They are lined up in a row along.
  • the light emitting surface of the red sub-pixel R, the light emitting surface of the green sub-pixel G, and the light-emitting surface of the blue sub-pixel B each have a rectangular shape.
  • the lengths of one side of the rectangle along the aforementioned virtual straight line VL are LR, LG, and LB, respectively.
  • LR> LG> LB The relationship of LR> LG> LB is established.
  • LR 200 ⁇ m
  • LG 100 ⁇ m
  • LB 50 ⁇ m.
  • the lengths of the light emitting surfaces of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B along the direction perpendicular to the above-mentioned virtual straight line VL are the same, for example, 100 ⁇ m.
  • the distances are the same, 10 ⁇ m.
  • the area of the light emitting surface of the blue light emitting layer BEML is smaller than the area of the light emitting surface of the green light emitting layer GEML.
  • the area of the light emitting surface of the green light emitting layer GEML is smaller than the area of the light emitting surface of the red light emitting layer REML.
  • the relationship (area of the light emitting surface of the red light emitting layer REML)> (area of the light emitting surface of the green light emitting layer GEML)> (area of the light emitting surface of the blue light emitting layer BEML) is established.
  • the area of the shadow of the bank BK formed on the light emitting surface of the red light emitting layer REML, the area of the shadow of the bank BK formed on the light emitting surface of the green light emitting layer GEML, and the area of the shadow of the bank BK formed on the light emitting surface of the blue light emitting layer BEML is the same. Therefore, regarding the ratio of the area of the shadow formed on the light emitting surface to the area of the light emitting surface, the relationship of (red light emitting layer REML) ⁇ (green light emitting layer GEML) ⁇ (blue light emitting layer BEML) is established.
  • the light-shielding portion SH of the present specification is a virtual plane VP in which at least a part thereof is around the light-emitting surface ES of the light-emitting layer and includes the light-emitting surface ES of the light-emitting layer. That is, it exists on the upper side of the virtual display surface DS.
  • the light-shielding portion SH for example, the bank BK may block light as much as possible, but the transmittance of the light-shielding portion SH is preferably 50% or less. However, the transmittance of the light-shielding portion SH is more preferably about 10% to 20%.
  • the "distance DT between the light emitting surface and the light-shielding portion SH in the virtual plane VP including the light-emitting surface” is defined as a at a certain point in the light-emitting surface, and the light-shielding portion SH in the virtual plane VP including the light-emitting surface.
  • a certain point is b
  • the height H of the light-shielding portion SH from the virtual plane VP is the distance in the direction perpendicular to the light-emitting surface from the light-emitting surface to the highest point M of the light-shielding portion SH.
  • the range of the display surface DS of the display device D in the viewing direction is a cone from the reference direction perpendicular to the display surface DS to a direction inclined by about 70 ° with respect to the reference direction. It is considered to be a range of shapes. Therefore, when the display device D is viewed from an inclined direction, if the light-shielding portion SH is in the vicinity of the light emitting surface, the change in color tone should be reduced in the range of 0 to 70 ° from the reference direction perpendicular to the display surface DS. Can be done.
  • the display device D includes a substrate ST.
  • the substrate ST has a group of TFTs (Thin Film Transistors) (not shown).
  • TFTs Thin Film Transistors
  • Each of the group of TFTs of the red subpixel R, the green subpixel G, and the blue subpixel B can switch the ON state / OFF state of the red subpixel R, the green subpixel G, and the blue subpixel B. It is electrically connected to one of them.
  • Bank BK is formed on the substrate ST.
  • the bank BK partitions adjacent sub-pixels of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B constituting one pixel P from each other. Specifically, a part of the bank BK is provided between the red sub-pixel R and the green sub-pixel G. The other portion of the bank BK is provided between the green sub-pixel G and the blue sub-pixel B. Yet another portion of the bank BK is provided between the blue sub-pixel B and the red sub-pixel R. Bank BKs are also provided between the red sub-pixels R, between the green sub-pixels G, and between the blue sub-pixels B.
  • the light emitting surface of the red light emitting layer REML is the upper side surface of the red light emitting layer REML, and in the present embodiment, the surface opposite to the surface facing the substrate ST.
  • the light emitting surface of the green light emitting layer GEML is the upper side surface of the green light emitting layer GEML, and in the present embodiment, the surface opposite to the surface facing the substrate ST.
  • the light emitting surface of the blue light emitting layer BEML is the upper side surface of the blue light emitting layer BEML, and in the present embodiment, the surface opposite to the surface facing the substrate ST.
  • the light emitting surface is surrounded by the bank BK in the present embodiment, but may not be surrounded by the bank BK.
  • the depth of the light emitting surface of the red light emitting layer REML, the depth of the light emitting surface of the green light emitting layer GEML, and the depth of the light emitting surface of the blue light emitting layer BEML are the same.
  • the distances of B to the light emitting surface are, for example, 10 ⁇ m, which are the same.
  • the distance to is the same.
  • the cathode C, the electron transport layer ETL, the red light emitting layer REML, the common hole transport layer HTL, and the common anode A are provided on the substrate ST in this order from the bottom.
  • a cathode C, an electron transport layer ETL, a green light emitting layer GEML, a common hole transport layer HTL, and a common anode A are provided on the substrate ST in this order from the bottom.
  • a cathode C, an electron transport layer ETL, a blue light emitting layer BEML, a common hole transport layer HTL, and a common anode A are provided on the substrate ST in this order from the bottom.
  • the electron transport layer ETL, the hole transport layer HTL, and the anode A are transparent layers that transmit the light emitted from each light emitting layer.
  • the cathode C is a reflective electrode that reflects the light emitted from each light emitting layer.
  • the anode A and the cathode C may be interchanged with each other in FIG.
  • both the hole transport layer HTL and the electron transport layer ETL are interchanged with each other in FIG.
  • the electron transport layer ETL, the hole transport layer HTL, and the cathode C are transparent layers that transmit the light emitted from each light emitting layer.
  • the anode A is a reflective electrode that reflects the light emitted from each light emitting layer.
  • the portion provided on the upper side of the light emitting layer is composed of a transparent portion that transmits the light emitted from the light emitting layer. Further, the portion provided on the lower side of the light emitting layer includes a portion that reflects the light emitted from the light emitting layer toward the upper side of the light emitting layer.
  • the red light emitting layer REML, the green light emitting layer GEML, the blue light emitting layer BEML, and the bank BK are covered with a common hole transport layer HTL.
  • the three hole transport layers may individually cover the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML, respectively.
  • the three hole transport layers are covered by a common anode A.
  • the three anodes may be individually provided above the three hole transport layers, in other words, above the red light emitting layer REML, the green light emitting layer GELL, and the blue light emitting layer BEML.
  • the display device D of the present embodiment includes an anode A that covers the entire red light emitting layer REML, green light emitting layer GEML, and blue light emitting layer BEML.
  • Anode A functions as a transparent common electrode.
  • one anode A supplies charges to each of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML, or each of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML.
  • the cathode C may be provided at the position of the anode A to form the above-mentioned transparent common electrode.
  • the display device D of the present embodiment includes a hole transport layer HTL that covers the entire red light emitting layer REML, green light emitting layer GELL, and blue light emitting layer BEML.
  • the hole transport layer HTL functions as a transparent common charge transport layer.
  • one hole transport layer HTL transports charges to each of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML, or the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer. Charges are transported from each of the BEMLs.
  • each of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML is a light emitting layer of QLED, but is a light emitting layer made of any other material such as OLED. May be good.
  • FIG. 6 is a graph showing the relationship between the light emission angle and the light intensity for each color of the light emitted from the light emitting surface of the light emitting layer.
  • red light, the green light, and the blue light each show the relationship between the radiation angle and the intensity as shown in FIG. 6 will be explained below.
  • the optical path length difference L of the two lights l1 and l2 traveling along the reference direction perpendicular to the light emitting surface is examined.
  • the light l1 is light that is emitted from the light emitting point of the light emitting layer to the outside through one of the charge transport layers.
  • the light l2 travels from the light emitting point of the light emitting layer to the opposite side of one of the charge transport layers, and the light reflected at the interface between the light emitting layer and the other charge transport layer is emitted. Light that passes through the light emitting layer and the charge transport layer and is emitted to the outside.
  • the thickness of the light emitting layer is d1, the refractive index of the light emitting layer is n1, the thickness of the charge (electron or hole) transport layer is d2, and the refractive index of the charge transport layer is n2.
  • the light emitting point is set at the center position in the thickness direction of the light emitting layer. Let the wavelength of light be ⁇ .
  • the relationship of the optical path length difference L 2 (n1 ⁇ d1 / 2 + n2 ⁇ d2) is established. Also, the light intensity is proportional to sin 2 ( ⁇ L / ⁇ ).
  • the two blue lights mentioned above intensify each other.
  • the refractive index and the position of the light emitting point that is, the optical path length difference L shall not depend on the color.
  • the difference in the optical path lengths of the two lights traveling along the direction inclined by the angle ⁇ from the reference direction perpendicular to the light emitting surface is Lcos ⁇ . Therefore, the intensity of the light traveling along the direction inclined by the angle ⁇ from the reference direction perpendicular to the light emitting surface is calculated by the formula sin 2 [ ⁇ L / ⁇ cos ⁇ ].
  • the orientation characteristics of the light traveling along the direction inclined by the angle ⁇ from the reference direction perpendicular to the light emitting surface are as follows.
  • Red light sin 2 [0.37 ⁇ cos ⁇ ]
  • Green light sin 2 [0.44 ⁇ cos ⁇ ]
  • Blue light sin 2 [0.50 ⁇ cos ⁇ ]
  • a graph as shown in FIG. 6 above is created. From FIG. 6, when a common charge transport layer, eg, the common hole transport layer HTL shown in FIG. 5, is used, the red light, the green light, and the blue light are sent to the light emitting surface in this order. It can be seen that the intensity of the light traveling along the vertical reference direction increases.
  • a common charge transport layer eg, the common hole transport layer HTL shown in FIG. 5
  • both the ratio of the intensity of the green light to the intensity of the red light and the ratio of the intensity of the blue light to the intensity of the red light gradually increase. ..
  • the radiation angle of light and the red intensity of the light are used.
  • the value of h in FIG. 9 is (depth of the light emitting surface of the green light emitting layer GEML) / (horizontal length of the light emitting surface of the green light emitting layer GEML), that is, (green light emission from the top surface of the bank BK in FIG. 2).
  • Distance to the light emitting surface of the layer GEML) / (the length of one side of the light emitting surface of the green light emitting layer GEML along the VV line of FIG. 2).
  • the ratio of the green intensity to the red intensity of the display device D of the comparative example gradually increases from 0 ° to 90 °.
  • the ratio of the green intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 70 °. That is, it can be seen that the difference between the red intensity and the green intensity of the display surface when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • the radiation angle of light and the red intensity of the light are used.
  • the value of h in FIG. 10 is (depth of the light emitting surface of the blue light emitting layer BEML) / (horizontal length of the light emitting surface of the blue light emitting layer BEML), that is, (blue light emission from the top surface of the bank BK in FIG. 2).
  • Distance to the light emitting surface of the layer BEML) / (the length of one side of the light emitting surface of the blue light emitting layer BEML along the VV line in FIG. 2).
  • the ratio of the blue intensity to the red intensity of the display device D of the comparative example gradually increases from 0 ° to 90 °.
  • the ratio of the blue intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 60 °. That is, it can be seen that the difference between the red intensity and the blue intensity of the display surface DS when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • the above-mentioned radiation angle is indicated by an angle in a direction inclined with respect to a reference direction perpendicular to the light emitting surface when the direction perpendicular to the light emitting surface is 0 °.
  • the color of the display surface DS when the display surface is viewed along the reference direction perpendicular to the display surface DS with respect to the display device of the comparative example is reduced.
  • 13 and 14 show the first shadow S of the bank BK as a light-shielding portion formed on the light emitting surface. 13 and 14 show light emitted in each of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML along the first direction D2 inclined from the reference direction D1 perpendicular to the light emitting surface. The shadow S when it is incident on the surface is shown.
  • 15 and 16 show a second shadow S of the bank BK as a light-shielding portion formed on the light emitting surface.
  • 15 and 16 show light emitted in each of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML along the second direction D3 inclined from the reference direction D1 perpendicular to the light emitting surface. The shadow S when it is incident on the surface is shown.
  • the area on the light emitting surface of the shadow S of the light traveling along the second direction D3 having a relatively large inclination angle with respect to the reference direction D1 has a relative inclination angle with respect to the reference direction D1. It is larger than the area of the shadow S of the light traveling along the small first direction D2 on the light emitting surface.
  • the ratio of the area of the shadow S of the bank BK as the light shielding portion to the area of the light emitting surface is different.
  • the ratio of the area of the shadow S of the light shielding portion to the area of the light emitting surface is the same.
  • Direction D3 It is assumed that the virtual light traveling in the specific direction) is irradiated.
  • the blue light emitting layer BEML has a larger ratio of the area of the shadow S of the bank BK (light-shielding portion) projected on the light emitting surface to the area of the light emitting surface as compared with the green light emitting layer GEML.
  • the ratio of the area of the shadow S of the bank BK (light-shielding portion) projected on the light emitting surface to the area of the light emitting surface is larger than that in the red light emitting layer REML.
  • the blue light emitting layer BEML is a bank BK (light-shielding portion) for light traveling in at least one specific direction of the direction inclined with respect to the reference direction D1 perpendicular to the light emitting surface as compared with the green light emitting layer GEML.
  • the proportion of light that is shielded (absorbed or reflected) is large.
  • the green light emitting layer GEML shields (absorbs) light from the bank BK (light shielding portion) for light traveling in at least one specific direction in the direction inclined with respect to the reference direction perpendicular to the light emitting surface. Or the proportion of light that is reflected) is large.
  • the color of the display surface DS and the inclination from the reference direction perpendicular to the display surface DS when the display surface DS is viewed along the reference direction D1 perpendicular to the display surface DS in the row direction It is possible to reduce the difference from the color of the display surface DS when the display surface DS is viewed along the direction.
  • the distances from the top surface of the bank BK to the light emitting surface are the same for the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML. Therefore, in the design stage, the area of the light emitting surface of the red light emitting layer REML, the area of the light emitting surface of the green light emitting layer GEML, and the area of the light emitting surface of the blue light emitting layer BEML are different, which is caused by the difference in viewing direction. It is possible to reduce the difference in color on the display surface DS.
  • the film thickness of the common charge transport layer is increased by interference when the display surface DS is viewed along the reference direction perpendicular to the display surface DS. It is a suitable film thickness. For example, when the display surface DS is viewed along a reference direction perpendicular to the display surface DS, the intensity of blue light having low luminous efficiency is increased by interference, so that the brightness of blue light having low luminous efficiency is increased. Can be done.
  • the emission color emitted by the emission layer is the film thickness of the charge transport layer, for example, the hole transport layer HTL. Adjust for each.
  • the charge transport layer common to the plurality of light emitting layers, that is, the hole transport layer HTL in the present embodiment cannot be manufactured in the same manufacturing process. Therefore, the manufacturing process of the display device D becomes complicated.
  • the ratio of the bank BK as a light-shielding portion to block the light emitted from the light-emitting surface for each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML is simplified.
  • the display device D of the present embodiment in the case described later, specifically, when the height position of the light emitting surface is changed for each light emitting layer having a different light emitting color, or on the upper side of the bank BK.
  • the structure and manufacturing method can be simplified as compared with the case where the wall portion or the conical portion is provided.
  • the display device D of the second embodiment will be described with reference to FIGS. 17 and 18. In the following description, the description of the same points as in the first embodiment will not be repeated unless there is a particular need.
  • the display device D of the present embodiment is different from the display device D of the first embodiment in the following points.
  • the number of the blue light emitting layer BEML having the lowest luminous efficiency among the red light emitting layer REML, the green light emitting layer GELL, and the blue light emitting layer BEML is the red light emitting layer. More than the number of REML, green light emitting layer GEML. Specifically, the number of red light emitting layer REML and the number of green light emitting layer GEML are 3, and the number of blue light emitting layer BEML is 12.
  • the ratio of the area of the shadow of the bank BK formed on the light emitting surface of the blue light emitting layer BEML to the area of the light emitting surface of the blue light emitting layer BEML is the same as that of the first embodiment. ..
  • the display device D of the present embodiment it is the same as the display device D of the first embodiment in that the above-mentioned difference in color can be reduced.
  • the area of the light emitting surface of the blue sub-pixel B is larger than the area of the light emitting surface of the other sub-pixels, so that it is compared with the display device D of the first embodiment. Therefore, it is possible to increase the amount of light emitted from the blue sub-pixel B having low luminous efficiency among the pixels P of the three colors.
  • the display device D of the third embodiment will be described with reference to FIGS. 19 to 21. In the following description, the description of the same points as in the first embodiment will not be repeated unless there is a particular need.
  • the display device D of the present embodiment is different from the display device D of the first embodiment in the following points.
  • the number of green light emitting layers GEML is larger than the number of red light emitting layers REML in each of the group of pixels P.
  • the number of blue light emitting layers BEML is larger than the number of green light emitting layers GEML. That is, in the present embodiment, the relationship of (number of red light emitting layer REML) ⁇ (number of green light emitting layer GEML) ⁇ (number of blue light emitting layer BEML) is established in one pixel P.
  • the number of red light emitting layer REML is 1, the number of green light emitting layer GEML is 4, and the number of blue light emitting layer BEML is 16.
  • the difference between the total area of the light emitting surface of the red light emitting layer REML, the total area of the light emitting surface of the green light emitting layer GEML, and the total area of the light emitting surface of the blue light emitting layer BEML is reduced.
  • the relationship of 0.5 is established.
  • FIG. 21 is a top view of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B constituting the four pixels of the display device of the present embodiment.
  • one pixel P is one square light emitting surface of one red light emitting layer REML, four square light emitting surfaces of four green light emitting layers GEML, and 16 of 16 blue light emitting layers BEML. It has a square light emitting surface.
  • the light emitting surface of one square of one red light emitting layer REML coincides with the virtual square VS.
  • the four square light emitting surfaces of the four green light emitting layers GEML are arranged in a matrix in the above-mentioned virtual square VS.
  • the four green light emitting layers GEML are partitioned by a grid-like bank BK.
  • the 16 square light emitting surfaces of the 16 blue light emitting layers BEML are arranged in a matrix in the above-mentioned virtual square VS.
  • the 16 blue light emitting layers BEML are partitioned by a grid-like bank BK.
  • the ratio of the area of the shadow of the bank BK formed on the light emitting surface of the blue light emitting layer BEML to the area of the light emitting surface of the blue light emitting layer BEML is the same as that of the first embodiment. More specifically, also in the present embodiment, the ratio of the light emitted from the light emitting surface of the blue light emitting layer BEML being blocked by the light blocking portion in at least one specific direction among the directions inclined from the reference direction described above is determined. The ratio of the light emitted from the light emitting surface of the green light emitting layer GEML is larger than the ratio of being blocked by the light-shielding portion.
  • the ratio of the light emitted from the light emitting surface of the green light emitting layer GEML blocked by the light blocking portion is the ratio of the light emitted by the light emitting surface of the red light emitting layer REML being the light blocking portion. It is larger than the rate of being blocked by.
  • the display device D of the present embodiment has a square light emitting surface. Therefore, according to the present embodiment, in addition to the effects obtained by the first and second embodiments, the above-mentioned tint is obtained in both the row direction and the column direction, that is, in both the horizontal direction and the vertical direction. It is also possible to obtain the effect that the difference between the two can be reduced.
  • the display device D of the fourth embodiment will be described with reference to FIGS. 22 to 28. In the following description, the description of the same points as in the first embodiment will not be repeated unless there is a particular need.
  • the display device D of the present embodiment is different from the display device D of the first embodiment in the following points.
  • the structure of the display device D of the present embodiment will be described with reference to FIGS. 22 to 24.
  • the blue light emitting layer BEML has a larger depth from the top surface to the light emitting surface of the bank BK than the green light emitting layer GEML.
  • the green light emitting layer GEML has a larger depth from the top surface to the light emitting surface of the bank BK than the red light emitting layer REML. That is, (distance from the top surface of the bank BK to the light emitting surface of the red light emitting layer REML) ⁇ (distance from the top surface of the bank BK to the light emitting surface of the green light emitting layer GEML) ⁇ (the distance from the top surface of the bank BK to the blue light emitting layer) The relationship (distance to the light emitting surface of BEML) is established.
  • the top surface of the bank BK and the light emitting surface of the red light emitting layer REML are in the same plane.
  • the depth from the top surface of the bank BK to the light emitting surface of the green light emitting layer GEML is 10 ⁇ m.
  • the depth from the top surface of the bank BK to the light emitting surface of the blue light emitting layer BEML is 20 ⁇ m.
  • each of the light emitting surface of the red light emitting layer REML, the light emitting surface of the green light emitting layer GEML, and the light emitting surface of the blue light emitting layer BEML is a square of the same size, for example, a square having a side of 100 ⁇ m. Is doing. Therefore, the shapes and areas of the light emitting surfaces of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML are the same.
  • the anodes A are electrically connected to each other by a conductive member CON.
  • the ratio of the light emitted from the light emitting surface of the blue light emitting layer BEML blocked by the light shielding portion in at least one specific direction among the directions inclined from the reference direction described above is the light emission of the green light emitting layer GEML.
  • the rate at which the light emitted by the surface is blocked by the light-shielding portion is greater.
  • the ratio of the light emitted from the light emitting surface of the green light emitting layer GEML blocked by the light blocking portion is the ratio of the light emitted by the light emitting surface of the red light emitting layer REML being the light blocking portion. It is larger than the rate of being blocked by.
  • the display surface caused by the difference in viewing direction is a simple method of making the depths from the top surface of the bank BK to the light emitting surfaces of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML different. It is possible to reduce the difference in the tint of DS.
  • the display device D of the present embodiment since all the light emitting surfaces are square, it is possible to reduce the above-mentioned difference in color in both the row direction and the column direction. According to the display device D of the present embodiment, the number of the green sub-pixel G and the blue sub-pixel B is not increased with respect to the number of the red sub-pixel R, and the above-mentioned is described in both the row direction and the column direction. The difference in color can be reduced.
  • the adjustment layer X, the cathode C, the electron transport layer ETL, the red light emitting layer REML, the hole transport layer HTL, and the anode A are arranged in this order on the substrate ST. It is laminated.
  • the adjusting layer X is provided between the substrate ST and the electron transport layer ETL.
  • the adjusting layer X has a contact hole CHR penetrating in the thickness direction thereof. A part of the cathode C in the contact hole CHR and the TFT for the red subpixel R in the substrate ST are electrically connected.
  • the adjustment layer Y includes the adjustment layer Y, the cathode C, the electron transport layer ETL, the green light emitting layer GEML, the hole transport layer HTL, and the anode A on the substrate ST. They are stacked in order. It is provided between the feed layer ETL and has a smaller thickness than the adjustment layer X.
  • the adjusting layer Y has a contact hole CHG penetrating in the thickness direction thereof. A part of the cathode C in the contact hole CHG and the TFT in the substrate ST are electrically connected.
  • the cathode C, the electron transport layer ETL, the blue light emitting layer BEML, the hole transport layer HTL, and the anode A are laminated in this order on the substrate ST.
  • the blue sub-pixel B is not provided with an adjustment layer.
  • the transparent common hole transport layer HTL and the transparent common anode A cover the top surface of the red light emitting layer REML, the green light emitting layer GEML, the blue light emitting layer BEML, and the bank BK. It may be laminated in this order as described above.
  • the heights of the cathode C, the electron transport layer ETL, the light emitting layer, and the bank BK from the main surface of the substrate ST are the same. .. Therefore, due to the presence of the adjusting layer X and the adjusting layer Y, the depths from the top surface of the bank BK to the light emitting surface of the red light emitting layer REML, the light emitting surface of the green light emitting layer GEML, and the light emitting surface of the blue light emitting layer BEML are respectively. Is different.
  • FIG. 25 shows the emission angle of light and the blue intensity with respect to the red intensity of the light in each of the display device D (with bank shading (large)) and the display device of the comparative example (without bank shading) of the present embodiment.
  • the relationship with the ratio of is shown.
  • the value of h in FIG. 25 is (bank depth) / (horizontal length of the light emitting surface), that is, (distance from the light emitting surface of the blue light emitting layer BEML in FIG. 22 to the top surface of the bank BK) / (. The length of one side of the light emitting surface of the blue light emitting layer BEML along the XXIV-XXIV line of FIG. 22).
  • the ratio of the blue intensity to the red intensity of the display device of the comparative example gradually increases from 0 ° to 90 °.
  • the ratio of the blue intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 50 °. That is, it can be seen that the difference between the red intensity and the blue intensity of the display surface DS when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • FIG. 26 shows the emission angle of light and the green intensity with respect to the red intensity of the light in each of the display device D (with bank shading (small)) and the display device of the comparative example (without bank shading) of the present embodiment.
  • the value of h in FIG. 26 is (height of the light-shielding portion) / (horizontal length of the light emitting surface), that is, (distance from the light emitting surface of the green light emitting layer GEML in FIG. 22 to the top surface of the bank BK) /. (The length of one side of the light emitting surface of the green light emitting layer GEML along the XXIV-XXIV line of FIG. 22).
  • the ratio of the green intensity to the red intensity of the display device of the comparative example gradually increases from 0 ° to 90 °.
  • the ratio of the green intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 55 °. That is, it can be seen that the difference between the red intensity and the green intensity of the display surface DS when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • a method of manufacturing the display device D according to the present embodiment will be described with reference to FIGS. 27 and 28.
  • a material layer Z having a certain thickness is formed on the substrate ST as a raw material constituting the adjusting layer X and the adjusting layer Y.
  • the photomask MS is installed above the material layer Z provided on the substrate ST.
  • the first portion R1 of the photomask MS above the region where the red subpixel R is to be formed has a light transmittance (exposure amount) of zero.
  • the second portion R2 of the photomask MS above the region where the green subpixel G is to be formed has a relatively small light transmittance (exposure amount).
  • the third portion R3 of the photomask MS above the region where the blue subpixel B is to be formed has a relatively large light transmittance (exposure amount).
  • the light emitted from the light source irradiates the material layer Z via the second portion R2 and the third portion R3 of the photomask MS.
  • the developer is applied to the material layer Z.
  • the adjustment layer X and the adjustment layer Y having different thicknesses are placed in the region where the red subpixel R is planned to be formed and the region where the green subpixel G is planned to be formed, respectively. Remains.
  • the depth from the top surface of the bank BK to the light emitting surface can be easily adjusted.
  • the display device D of the present embodiment described above since it is not necessary to make the area of the light emitting surface different for each light emitting layer having a different light emitting color, it is not necessary to intentionally make the light emitting amount of the light emitting layer different. .. Therefore, the method of manufacturing the light emitting layer becomes easy.
  • the display device D of the fifth embodiment will be described with reference to FIGS. 29 to 32. In the following description, the description of the same points as in the first embodiment will not be repeated unless there is a particular need.
  • the display device D of the present embodiment is different from the display device D of the first embodiment in the following points.
  • the bank BK partitions each of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML. Further, the top surface of the bank BK and the light emitting surfaces of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML are in the same virtual plane.
  • the first wall portion BW is provided around the light emitting surface of the blue light emitting layer BEML and on the upper side of the virtual plane including the light emitting surface of the blue light emitting layer BEML.
  • the second wall portion GW is provided around the light emitting surface of the green light emitting layer GEML and on the upper side of the virtual plane including the light emitting surface of the green light emitting layer GEML.
  • the height of the first wall portion BW from the light emitting surface is larger than that of the second wall portion GW.
  • the first wall portion BW is provided on the upper side of the top surface of the bank BK adjacent to the blue light emitting layer BEML.
  • a second wall portion GW is provided on the upper side of the top surface of the bank BK adjacent to the green light emitting layer GEML.
  • No wall is provided on the upper side of the top surface of the bank BK adjacent to the red light emitting layer REML.
  • the height of the first wall portion BW from the top surface of the bank BK is larger than that of the second wall portion GW.
  • the top surface of the bank BK is included in a virtual plane at the same distance from the main surface (upper side surface) of the substrate ST.
  • the first wall portion BW and the second wall portion GW are formed of a material that blocks light, specifically, a material that absorbs or reflects light. Therefore, the first wall portion BW and the second wall portion GW, together with the bank BK, advance the light emitted from the light emitting surface of the red light emitting layer REML, the light emitting surface of the green light emitting layer GEML, and the light emitting surface of the blue light emitting layer BEML. It functions as a light-shielding part to prevent.
  • the first wall portion BW is provided on the top surface of the bank BK adjacent to the blue light emitting layer BEML so as to extend along one side of the square light emitting surface of the blue light emitting layer BEML.
  • the first wall portion BW functions as a light-shielding portion of the blue light emitting layer BEML.
  • the first wall portion BW is made of a material that absorbs or reflects visible light (light having a wavelength between about 380 nm and 780 nm).
  • the second wall portion GW is provided on the top surface of the bank BK adjacent to the green light emitting layer GEML so as to extend along one side of the square light emitting surface of the green light emitting layer GEML.
  • the second wall portion GW functions as a light-shielding portion of the green light emitting layer GEML.
  • the second wall portion GW is formed of a material that absorbs or reflects visible light (light having a wavelength between approximately 380 nm and 780 nm).
  • the first wall portion BW and the second wall portion GW are rectangular parallelepipeds having the same length and the same width, different only in height.
  • the height of the first wall portion BW is larger than the height of the second wall portion GW.
  • the height of the first wall portion BW is 20 ⁇ m
  • the height of the second wall portion GW is 10 ⁇ m.
  • the second wall portion GW may not be provided, that is, the height of the second wall portion GW may be zero.
  • the light emitting surfaces of the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML are square and have the same area.
  • FIG. 31 shows the emission angle of light and the red intensity of the light in each of the display device D (with the first wall portion BW) and the display device of the comparative example (without the first wall portion BW) of the present embodiment.
  • the relationship with the ratio of blue intensity to blue is shown.
  • the value of h in FIG. 31 is (height of the light-shielding portion) / (horizontal length of the light-emitting surface), that is, (from the light-emitting surface of the blue light-emitting layer BEML in FIG. 29 to the top surface of the first wall portion BW).
  • Distance / (the length of one side of the light emitting surface of the blue light emitting layer BEML along the XXX-XX lines in FIG. 29).
  • the ratio of the blue intensity to the red intensity of the display device of the comparative example gradually increases from 0 ° to 90 °.
  • the ratio of the blue intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 50 °. That is, it can be seen that the difference between the red intensity and the blue intensity of the display surface DS when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • FIG. 32 shows the emission angle of light and the red intensity of the light in each of the display device D (with the second wall portion GW) and the display device of the comparative example (without the second wall portion GW) of the present embodiment.
  • the relationship with the ratio of green intensity to green is shown.
  • the value of h in FIG. 32 is (height of the light-shielding portion) / (horizontal length of the light-emitting surface), that is, (from the light-emitting surface of the green light-emitting layer GEML in FIG. 29 to the top surface of the second wall portion GW).
  • Distance / (the length of one side of the light emitting surface of the green light emitting layer GEML along the XXX-XX lines in FIG. 29).
  • the ratio of the green intensity to the red intensity of the display device of the comparative example gradually increases from 0 ° to 90 °.
  • the ratio of the green intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 55 °. That is, it can be seen that the difference between the red intensity and the green intensity of the display surface DS when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • the ratio of the light emitted from the light emitting surface of the blue light emitting layer BEML blocked by the light blocking portion is larger than the ratio of the light emitted by the light emitting surface of the green light emitting layer GEML blocked by the light blocking portion.
  • the rate at which the light emitted from the light emitting surface of the green light emitting layer GEML is blocked by the light-shielding portion is larger than the rate at which the light emitted from the light emitting surface of the red light emitting layer REML is blocked by the light-shielding portion.
  • the display device D of the present embodiment can also reduce the above-mentioned difference in color in the row direction, that is, in the lateral direction. Further, according to the display device D of the present embodiment, the height of the first wall portion BW and the height of the second wall portion GW are made different by a simple method, and the display surface DS caused by the difference in the viewing direction. The difference in color can be reduced.
  • the display device D of the sixth embodiment will be described with reference to FIGS. 33 to 37. In the following description, the description of the same points as in the fifth embodiment will not be repeated unless there is a particular need.
  • the display device D of the present embodiment is different from the display device D of the fifth embodiment in the following points.
  • the blue light emitting layer is around the light emitting surface of the blue light emitting layer BEML and the blue light emitting layer.
  • the first wall portion BW is provided on the upper side of the virtual plane including the light emitting surface of BEML.
  • the second wall portion GW is provided around the light emitting surface of the green light emitting layer GEML and on the upper side of the virtual plane including the light emitting surface of the green light emitting layer GEML.
  • the first wall portion BW and the second wall portion GW are provided on the upper side of the top surface of the bank BK.
  • the light emitting surface of the red light emitting layer REML, the light emitting surface of the green light emitting layer GEML, and the light emitting surface of the blue light emitting layer BEML are all square. Its size is the same.
  • the first wall portion BW and the second wall portion GW of the fifth embodiment have different lengths, the same height (50 ⁇ m), and the same height (50 ⁇ m). It is a rectangular parallelepiped having the same width (50 ⁇ m).
  • the length of the first wall portion BW is 34 ⁇ m, which is larger than the length of the second wall portion GW of 18 ⁇ m.
  • the height of the first wall portion BW is the same as that of the second wall portion GW, but the length extending along one side of the light emitting surface of the square is large.
  • the second wall portion GW may not be provided, that is, the length of the second wall portion GW may be zero.
  • FIG. 35 shows the emission angle of light and the red intensity of the light in each of the display device D (with the first wall portion BW) and the display device of the comparative example (without the first wall portion BW) of the present embodiment.
  • the relationship with the ratio of blue intensity to blue is shown.
  • the value of h in FIG. 35 is (height of the light-shielding portion) / (horizontal length of the light emitting surface of the blue light emitting layer BEML), that is, (from the light emitting surface of the blue light emitting layer BEML of FIG. 33 to the first wall portion BW).
  • the value of w in FIG. 35 is (the length of the light-shielding portion) / (the length of the light emitting surface in the vertical direction), that is, (the length of the first wall portion BW along the direction perpendicular to the XXXIV-XXXIV line direction of FIG. 33).
  • Length (the length of one side of the light emitting surface of the blue light emitting layer BEML along the direction perpendicular to the XXXIV-XXXIV line direction of FIG. 33).
  • the ratio of the blue intensity to the red intensity of the display device D of the comparative example gradually increases from 0 ° to 90 °.
  • the ratio of the blue intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 90 °. That is, it can be seen that the difference between the red intensity and the blue intensity of the display surface DS when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • FIG. 36 shows the emission angle of light and the red intensity of the light in each of the display device D (with the second wall portion GW) and the display device of the comparative example (without the second wall portion GW) of the present embodiment.
  • the relationship with the ratio of green intensity to green is shown.
  • the value of h in FIG. 36 is (height of the light-shielding portion) / (horizontal length of the light emitting surface of the green light emitting layer GEML), that is, (from the light emitting surface of the green light emitting layer GEML of FIG. 33 to the second wall portion GW).
  • the value of w in FIG. 36 is (the length of the light-shielding portion) / (the length of the light emitting surface in the vertical direction), that is, (the length of the second wall portion GW along the direction perpendicular to the XXXIV-XXXIV line direction of FIG. 33).
  • Length (the length of one side of the light emitting surface of the green light emitting layer GEML along the direction perpendicular to the XXXV-XXXIV line direction of FIG. 33).
  • the ratio of the green intensity to the red intensity of the display device of the comparative example gradually increases from 0 ° to 90 °.
  • the ratio of the green intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 90 °. That is, it can be seen that the difference between the red intensity and the green intensity of the display surface DS when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • FIG. 37 shows a shadow of a light-shielding portion formed on the light-emitting surface when light is incident on the light-emitting surface along a direction inclined from a reference direction perpendicular to the light-emitting surface of the blue light-emitting layer BEML, specifically.
  • the shadow of the first wall portion BW is shown.
  • FIG. 38 shows a shadow of a light-shielding portion formed on the light-emitting surface when light is incident on the light-emitting surface along a direction inclined from a reference direction perpendicular to the light-emitting surface of the green light-emitting layer GEML, specifically.
  • the shadow of the second wall portion GW is shown.
  • the ratio of the light emitted from the light emitting surface of the blue-blue light emitting layer BEML blocked by the light-shielding portion in at least one specific direction among the directions inclined from the reference direction described above is the green light emitting layer.
  • the ratio of the light emitted from the light emitting surface of GEML is larger than the ratio of being blocked by the light-shielding portion.
  • the ratio of the light emitted from the light emitting surface of the blue-green light emitting layer GEML blocked by the light-shielding portion is the ratio of the light emitted from the light-emitting surface of the red light-emitting layer REML shielded from light. It is larger than the ratio of being blocked by the part.
  • the display device D of the present embodiment can also reduce the above-mentioned difference in color in the row direction, that is, in the lateral direction. Further, by a simple method of making the length of the first wall portion BW different from the length of the second wall portion GW, it is possible to reduce the difference in the color of the display surface DS due to the difference in the viewing direction.
  • the display device D of the seventh embodiment will be described with reference to FIGS. 39 to 51. In the following description, the description of the same points as in the first embodiment will not be repeated unless there is a particular need.
  • the display device D of the present embodiment is different from the display device D of the fifth or sixth embodiment in the following points.
  • the display device D of the present embodiment instead of the first wall portion BW of the fifth or sixth embodiment, from the bank BK on the upper side of the bank BK adjacent to the blue light emitting layer BEML.
  • a first conical portion BC that tapers away is provided.
  • a second conical portion GC that tapers away from the bank BK is provided on the upper side of the bank BK adjacent to the green light emitting layer GEML.
  • the first cone-shaped portion BC and the second cone-shaped portion GC are assumed to have a conical shape, but may have a pyramid shape. No cone is provided on the upper side of the bank BK adjacent to the red light emitting layer REML.
  • the height of the first cone BC and the height of the second cone GC shown in FIGS. 39 and 40 are both 100 ⁇ m.
  • the diameter of the circle on the bottom surface of the first cone BC is 34 ⁇ m, and the diameter of the circle on the bottom surface of the second cone GC is 18 ⁇ m.
  • the diameter of the circle on the bottom surface (or the length of one side of the square on the bottom surface) of the first cone-shaped portion BC is larger than that of the second cone-shaped portion GC.
  • the second cone GC may not be provided, that is, the diameter of the circle on the bottom surface of the second cone GC (or the length of one side of the square) may be zero.
  • the light emitting surface of the red light emitting layer REML, the light emitting surface of the green light emitting layer GEML, and the light emitting surface of the blue light emitting layer BEML all form a square having the same size.
  • the first cone-shaped portion BC and the second cone-shaped portion GC are formed of a material that absorbs or reflects light so as to form a light-shielding portion, similarly to the bank BK. Therefore, the first conical portion BC and the second conical portion GC, together with the bank BK, serve as a light-shielding portion that blocks the progress of light emitted from the light emitting surface of the green light emitting layer GEML and the light emitting surface of the blue light emitting layer BEML. Function.
  • the first conical portion BC and the second conical portion GC as the light-shielding portion are formed of a material that absorbs or reflects visible light (light having a wavelength between approximately 380 nm and 780 nm).
  • the first cone BC as a light-shielding portion for the blue sub-pixel
  • the second cone GC as the light-shielding portion for the green sub-pixel of the display device D of the present embodiment. The manufacturing method will be described.
  • the silicon oxide film 2 is formed on the silicon substrate 1.
  • the resist mask 3 is formed on the silicon oxide film 2.
  • contact holes HB and HG are formed on the resist mask 3.
  • the structure shown in FIG. 41 is formed.
  • the silicon oxide film 2 is irradiated with light via the contact holes HB and HG.
  • the resist mask 3 is removed from the silicon oxide film 2.
  • the silicon oxide film 2 is etched. As a result, a part of the silicon oxide film 2 irradiated with light is removed. As a result, as shown in FIG. 42, the other part of the silicon oxide film 2 not irradiated with light remains on the silicon substrate 1 as the residual oxide film 20. Then, the residual oxide film 20 is dry-etched. As a result, as shown in FIG. 43, the first cone BC and the second cone GC are formed.
  • the first cone BC and the second cone BC are formed on the top surface of the bank BK, the structure shown in FIG. 39 described above is formed. According to this manufacturing method, the first conical portion BC and the second conical portion GC having different diameters of the bottom surfaces can be formed only by adjusting the sizes of the contact holes HB and HG, respectively.
  • the anode A as a common electrode is arranged from the first conical portion BC and the second conical portion GC as the light-shielding portion in the arrangement in the direction parallel to the virtual plane extending along the light emitting surface. It is provided at a distance. That is, in the present embodiment, the anode A is formed so as to avoid the first cone-shaped portion and the second cone-shaped portion GC. Therefore, since the light-shielding portion and the common electrode do not come into contact with each other, the possibility that the light-shielding portion is damaged when the common electrode is formed is reduced.
  • the first conical portion BC is provided on the bank BK adjacent to the approximately central position of one side of the square light emitting surface of the blue light emitting layer BEML.
  • the second cone-shaped portion GC is provided on the bank BK adjacent to a position substantially at the center of one side of the square light emitting surface of the green light emitting layer GEML.
  • the diameter of the bottom surface of the first cone BC is larger than that of the second cone GC.
  • the diameter of the bottom surface of the second cone GC is smaller than that of the first cone BC.
  • the ratio of the area of the shadow of the second conical portion GC formed on the light emitting surface of the green light emitting layer GEML to the area of the light emitting surface of the green light emitting layer BEML is the ratio of the area of the shadow of the blue light emitting layer BEML to the area of the light emitting surface of the blue light emitting layer BEML. It is smaller than the ratio of the area of the shadow of the first conical portion BC formed on the light emitting surface of BEML.
  • the thickness of the laminated structure from the cathode C to the anode A is 270 nm, which is extremely small compared to the heights of the first cone BC and the second cone GC, respectively, of 100 ⁇ m. ..
  • FIG. 46 shows the emission angle of light and the light emission angle in each of the display device D (with the second cone GC) and the display device of the comparative example (without the second cone GC) of the present embodiment. The relationship between the red intensity and the green intensity is shown.
  • the ratio of the green intensity to the red intensity of the display device D of the comparative example gradually increases from 0 ° to 90 ° of the radiation angle.
  • the ratio of the green intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 90 °. That is, it can be seen that the difference between the red intensity and the green intensity of the display surface DS when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • FIG. 47 shows the emission angle of light and the light emission angle in each of the display device D (with the first cone BC) and the display device of the comparative example (without the first cone BC) of the present embodiment. The relationship between the red intensity and the blue intensity is shown.
  • the ratio of the blue intensity to the red intensity of the display device D of the comparative example gradually increases from 0 ° to 90 °.
  • the ratio of the blue intensity to the red intensity of the display device D of the present embodiment is almost constant from 0 ° to about 90 °. That is, it can be seen that the difference between the red intensity and the blue intensity of the display surface DS when the display surface DS is viewed along the direction inclined from the reference direction perpendicular to the display surface DS can be reduced.
  • 48 and 49 are formed on the light emitting surface in the display device D of the present embodiment when light is incident on the light emitting surface along a first direction inclined from a reference direction perpendicular to the light emitting surface.
  • the first shadow S of the conical portion to be formed is shown.
  • 50 and 51 are formed on the light emitting surface in the display device D of the present embodiment when light is incident on the light emitting surface along a second direction inclined from a reference direction perpendicular to the light emitting surface. It shows the second shadow of the cone that is formed.
  • the ratio of the light emitted from the light emitting surface of the blue-blue light emitting layer BEML blocked by the light-shielding portion in at least one specific direction among the directions inclined from the reference direction described above is the green light emitting layer GEML.
  • the ratio of the light emitted from the light emitting surface of the light emitting surface is larger than the ratio of being blocked by the light-shielding portion.
  • the ratio of the light emitted from the light emitting surface of the blue-green light emitting layer GEML blocked by the light-shielding portion is the ratio of the light emitted from the light-emitting surface of the red light-emitting layer REML shielded. It is larger than the ratio of being blocked by the part. Therefore, the display device D of the present embodiment can also reduce the above-mentioned difference in color in the row direction, that is, in the lateral direction. Further, according to the display device D of the present embodiment, the diameter of the circle on the bottom surface of the first cone BC and the diameter of the bottom surface of the second cone GC are different from each other in the viewing direction. It is possible to reduce the difference in color of the display surface DS due to the difference.
  • the display device D of the eighth embodiment will be described with reference to FIG. 52. In the following description, the description of the same points as in the fifth embodiment will not be repeated unless there is a particular need.
  • the display device D of the present embodiment is different from the display device D of the fifth embodiment in the following points.
  • the display device D is provided on the upper side of the top surface of the bank BK adjacent to the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML, and one or more of each is opened toward the opposite side of the bank BK.
  • it contains a comb-shaped portion CO having three notches.
  • the comb-shaped portion CO functions as a light-shielding portion that blocks the progress of light emitted by each of the red light-emitting layer REML, the green light-emitting layer GEML, and the blue light-emitting layer BEML.
  • the comb-shaped portion CO as a light-shielding portion is formed of a material that absorbs or reflects visible light (light having a wavelength between approximately 380 nm and 780 nm).
  • the ratio of the light emitted from the light emitting surface of the blue-blue light emitting layer BEML blocked by the light-shielding portion in at least one specific direction among the directions inclined from the reference direction described above is the light emission of the green light emitting layer GEML.
  • the rate at which the light emitted by the surface is blocked by the light-shielding portion is greater.
  • the ratio of the light emitted from the light emitting surface of the blue-green light emitting layer GEML blocked by the light-shielding portion is the ratio of the light emitted from the light-emitting surface of the red light-emitting layer REML shielded from light. It is larger than the ratio of being blocked by the part. Therefore, the display device D of the present embodiment can also reduce the above-mentioned difference in color in the row direction, that is, in the lateral direction.
  • the color of the display surface DS due to the difference in viewing direction is a simple method of differentiating the areas of the three notched areas corresponding to the red light emitting layer REML, the green light emitting layer GEML, and the blue light emitting layer BEML, respectively.
  • the difference in taste can be reduced.
  • the display device D of the present embodiment since the comb-shaped portion CO can be formed only by processing the plate member, the minute wall portion or the conical portion as described in the above-described embodiment can be formed. No processing is required. Therefore, the display device D can be easily manufactured.
  • the display device D of the ninth embodiment will be described with reference to FIG. 53. In the following description, the description of the same points as in the eighth embodiment will not be repeated unless there is a particular need.
  • the display device D of the present embodiment is different from the display device D of the eighth embodiment in the following points.
  • the display device D further includes a transparent plate SG provided above the top surface of the bank BK at a distance from the bank BK.
  • the comb-shaped portion CO is fixed to the transparent plate SG. Similar to the display device D of the eighth embodiment, the display device D of the present embodiment can also reduce the above-mentioned color difference in the row direction, that is, the lateral direction.
  • the comb-shaped portion CO functions as a spacer between the bank BK and the transparent plate SG. Therefore, the distance between the transparent plate SG and the bank BK can be maintained at a predetermined value or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

表示装置は、それぞれが発光面に垂直な基準方向に光を発することができる複数の発光層と、前記発光面から前記基準方向に対して傾斜した方向に進む光のうちの一部の光を遮ることができる遮光部と、を備え、前記複数の発光層は、第1ピーク波長を有する光を発することができる第1発光層と、前記第1ピーク波長よりも長い第2ピーク波長を有する光を発することができる第2発光層と、を含み、前記第1発光層は、前記第2発光層に比較して、前記傾斜した方向のうちの少なくとも1つの特定方向に進む光に対する前記遮光部に遮光され得る前記一部の光の割合が大きい。

Description

表示装置
 本開示は、表示装置に関する。
 薄膜を積層した構造を有するQLED(Quantum dot Light Emitting Diode)またはOLED(Organic Light Emitting Diode)等の表示装置の開発が行われている。
特開2019-204793号公報
 上記のような表示装置においては、発光層が発した2つの光が干渉する。より具体的に言うと、発光層から外部へ直接放射される第1の光と、発光層が発した第1の光が電極で反射されてから外部へ放射される第2の光とが干渉する。そのため、発光層から発せられた光の強度は、第1の光と第2の光との光路差によって異なる。したがって、人の眼に見える光の強度は、発光面から放射された光の進行する方向、言い換えると、人の表示面を見る角度に応じて異なる。
 また、上記の表示装置において、発光層の光放射側の電荷輸送層の膜厚が、例えば、赤、緑、および青等のそれぞれの発光色において同一である場合、光の波長ごとに、配光特性、すなわち、光の進行方向に依存した光の強度が異なる。一般的に、波長が短い光のほうが、すなわち、赤色の光に比較して緑色および青色の光のほうが、前述の基準方向に対してより大きく傾斜した方向により高い強度で放射される。そのため、表示面に垂直な基準方向から傾斜した方向に沿って表示面を見ると、基準方向に沿って表示面を見た場合の色よりも、表示面が緑または青により近い色に見えることがある。
 つまり、表示面に垂直な基準方向に沿って表示面を見た場合の色味とその基準方向から傾斜した方向に沿って表示面を見た場合の色味とに差が生じる。
 本開示は、上述の問題に鑑みてなされたものである。本開示の目的は、表示面に垂直な基準方向に沿って表示面を見た場合の表示面の色味とその基準方向から傾斜した方向に沿って表示面を見た場合の表示面の色味との差が低減された表示装置を提供することである。
 本開示の一形態の表示装置は、それぞれが発光面に垂直な基準方向に光を発することができる複数の発光層と、前記発光面から前記基準方向に対して傾斜した方向に進む光のうちの一部の光を遮ることができる遮光部と、を備え、前記複数の発光層は、第1ピーク波長を有する光を発することができる第1発光層と、前記第1ピーク波長よりも長い第2ピーク波長を有する光を発することができる第2発光層と、を含み、前記第1発光層は、前記第2発光層に比較して、前記傾斜した方向のうちの少なくとも1つの特定方向に進む光に対する前記遮光部に遮光され得る前記一部の光の割合が大きい。
実施の形態1の表示装置の表示面、画素、およびサブ画素を説明するための平面模式図である。 実施の形態1の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための斜視模式図である。 発光面と遮光部との間の距離を説明するための平面図である。 遮光部の高さを説明するための断面図である。 図2のV-V線の断面図に対応する表示装置の一部の断面図である。 発光層の発光面が発した光の色ごとの光の放射角と光の強度との関係を示すグラフである。 光路差を説明するための図である。 赤強度に対する緑強度の比および赤強度に対する青強度の比のそれぞれと光の放射角との関係を示すグラフである。 実施の形態1の表示装置(遮光有)および比較例の表示装置(遮光無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する緑強度の比との関係を示すグラフである。 実施の形態1の表示装置(遮光有)および比較例の表示装置(遮光無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する青強度の比との関係を示すグラフである。 各サブ画素の発光面に対して垂直な基準方向に沿って光が発光面に入射したときに、発光面に遮光部の影が形成されないことを説明するための発光層および遮光部の断面図である。 各サブ画素の発光面に対して垂直な基準方向に沿って光が発光面に入射したときに、発光面に遮光部の影が形成されないことを説明するための発光層および遮光部の平面図である。 各サブ画素の発光面に対して垂直な基準方向から傾斜した第1の方向に沿って光が発光面に入射したときに、発光面に形成される遮光部の第1の影を説明するための発光層および遮光部の断面図である。 各サブ画素の発光面に対して垂直な基準方向から傾斜した第1の方向に沿って光が発光面に入射したときに、発光面に形成される遮光部の第1の影を説明するための発光層および遮光部の平面図である。 発光面に対して垂直な基準方向から傾斜した第2の方向に沿って光が発光面に入射したときに、発光面に形成される遮光部の第2の影を説明するための発光層および遮光部の断面図である。 発光面に対して垂直な基準方向から傾斜した第2の方向に沿って光が発光面に入射したときに、発光面に形成される遮光部の第2の影を説明するための発光層および遮光部の平面図である。 実施の形態2の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための斜視模式図である。 図17のXVIII-XVIII線の断面図に対応する表示装置の一部の断面図である。 実施の形態3の表示装置の画素4つを構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための斜視模式図である。 図19のXX-XX線の断面図に対応する表示装置の一部の断面図である。 実施の形態3の表示装置の画素4つを構成する赤サブ画素の発光面、緑サブ画素の発光面、および青サブ画素の発光面の平面図である。 実施の形態4の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための斜視模式図である。 実施の形態4の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための平面模式図である。 図22および図23のXXIV-XXIV線の断面図に対応する表示装置の一部の断面図である。 実施の形態4の表示装置(バンク遮光有(大))および比較例の表示装置(バンク遮光無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する青強度の比との関係を示すグラフである。 実施の形態4の表示装置(バンク遮光有(小))および比較例の表示装置(バンク遮光無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する緑強度の比との関係を示すグラフである。 実施の形態4の表示装置の製造方法の第1工程を説明するための断面図である。 実施の形態4の表示装置の製造方法の第2工程を説明するための断面図である。 実施の形態5の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための斜視模式図である。 図29のXXX-XXX線の断面図に対応する表示装置の一部の断面図である。 実施の形態5の表示装置(第1壁部有)および比較例の表示装置(第1壁部無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する青強度の比との関係を示すグラフである。 実施の形態5の表示装置(第1壁部有)および比較例の表示装置(第2壁部無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する緑強度の比との関係を示すグラフである。 実施の形態6の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための斜視模式図である。 図33のXXXIV-XXXIV線の断面図に対応する表示装置の一部の断面図である。 実施の形態6の表示装置(第1壁部有)および比較例の表示装置(第1壁部無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する青強度の比との関係を示すグラフである。 実施の形態6の表示装置(第2壁部有)および比較例の表示装置(第2壁部無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する緑強度の比との関係を示すグラフである。 実施の形態6の表示装置において、緑サブ画素の発光面に対して垂直な基準方向から傾斜した第1の方向に沿って光が発光面に入射したときに、緑発光層の発光面に形成される遮光部の影を説明するための発光層および遮光部の平面図である。 実施の形態6の表示装置において、青サブ画素の発光面に対して垂直な基準方向から傾斜した第1の方向に沿って光が発光面に入射したときに、青発光層の発光面に形成される遮光部の影を説明するための発光層および遮光部の平面図である。 実施の形態7の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための斜視模式図である。 実施の形態7の表示装置の青サブ画素用の遮光部として第1錐状部および緑サブ画素用の遮光部としての第2錐状部の側面図である。 実施の形態7の表示装置の青サブ画素用の遮光部として第1錐状部および緑サブ画素用の遮光部としての第2錐状部の製造方法の第1工程を説明するための断面図である。 実施の形態7の表示装置の青サブ画素用の遮光部として第1錐状部および緑サブ画素用の遮光部としての第2錐状部の製造方法の第2工程を説明するための断面図である。 実施の形態7の表示装置の青サブ画素用の遮光部として第1錐状部および緑サブ画素用の遮光部としての第2錐状部の製造方法の第3工程を説明するための断面図である。 実施の形態7の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための平面模式図である。 図39および図44のXLV-XLV線の断面図に対応する表示装置の一部の断面図である。 実施の形態7の表示装置(第1錐状部有)および比較例の表示装置(第1錐状部無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する青強度の比との関係を示すグラフである。 実施の形態7の表示装置(第2錐状部有)および比較例の表示装置(第2錐状部無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する緑強度の比との関係を示すグラフである。 実施の形態7の表示装置において、発光面に対して垂直な基準方向から傾斜した第1の方向に沿って光が発光面に入射したときに、発光面に形成される錐状部の第1の影を説明するための発光層および遮光部の平面図である。 実施の形態7の表示装置において、発光面に対して垂直な基準方向から傾斜した第1の方向に沿って光が発光面に入射したときに、発光面に形成される錐状部の第2の影を説明するための発光層および遮光部の断面図である。 実施の形態7の表示装置において、発光面に対して垂直な基準方向から傾斜した第2の方向に沿って光が発光面に入射したときに、発光面に形成される錐状部の第2の影を説明するための発光層および遮光部の平面図である。 実施の形態7の表示装置において、発光面に対して垂直な基準方向から傾斜した第2の方向に沿って光が発光面に入射したときに、発光面に形成される錐状部の第2の影を説明するための発光層および遮光部の断面図である。 実施の形態8の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための斜視模式図である。 実施の形態9の表示装置の画素を構成する赤サブ画素、緑サブ画素、および青サブ画素の構造を説明するための斜視模式図である。
 以下、本発明の実施形態の表示装置を、図面を参照しながら説明する。なお、各図面においては、同一または同等の要素には同一の符号を付し、同一または同等の要素の重複する説明は必要がなければ繰り返さない。
 (実施の形態1)
 図1~図16を用いて、実施の形態1の表示装置Dを説明する。
 図1を用いて、実施の形態の表示装置Dの概略構成を説明する。図1に示されるように、表示装置Dは、マトリックス状に配置された一群の画素Pを備えている。表示面DSは、人が見る画像が表示される仮想の平面である。本明細書においては、マトリックス状の一群の画素Pに関しては、表示装置Dの横方向、すなわち矩形の長辺方向を行方向とし、表示装置Dの縦方向、すなわち矩形の短辺方向を列方向とする。
 一群の画素Pのそれぞれは、赤サブ画素R、緑サブ画素G、および青サブ画素Bを含んでいる。図1においては、赤サブ画素R、緑サブ画素G、および青サブ画素Bのそれぞれの発光面が模式的に描かれている。
 発光面は、後述される発光層の対向する2つの主表面のうちの表示装置Dの外部へ発光層が発した光を放射する側の主表面、すなわち反射電極に対向する主表面の裏側の主表面である。具体的には、発光面は、以下の説明で用いられる断面図および斜視図における発光層の上側の主表面であるのものとする。なお、本明細書においては、赤サブ画素R、緑サブ画素G、および青サブ画素Bのそれぞれの発光面を含む仮想平面が前述の表示面DSを構成しているものとする。
 また、本明細書において、特別な説明をしていない場合は、「面」とは、その面を構成する部材が存在する部分に限定した平面を意味し、一方、「平面」とは、そのような限定をしない平面を意味するものとする。また、赤サブ画素R、緑サブ画素G、および青サブ画素Bのそれぞれの発光面が同一の平面上にない場合のように、サブ画素およびその発光層ごとに発光面が異なる平面上にあるような場合がある。そのような場合は、それぞれのサブ画素およびその発光層について個別の発光面を有するものとする。更に、それぞれのサブ画素についての説明の際の仮想平面および表示面DSは、それぞれのサブ画素について個別の仮想平面および表示面DSを有するものとする。
 赤サブ画素Rの発光面、緑サブ画素Gの発光面、および青サブ画素Bの発光面は、それぞれ、発光面に垂直な基準方向を中心軸として、発光面から赤色光、緑色光、および青色光を放射状に発することができる。赤色光、緑色光、および青色光は、この順番で、ピーク波長が短い。
 したがって、(赤サブ画素Rの発光面が発する赤色光のピーク波長)>(緑サブ画素Gの発光面が発する緑色光のピーク波長)>(青サブ画素Bの発光面が発する青色光のピーク波長)の関係が成立する。具体的には、赤発光層REMLが発する赤色光のピーク波長は、例えば、約610nm~約780nmである。緑発光層GEMLが発する緑色光のピーク波長は、例えば、約500nm~約550nmである。青発光層BEMLが発する青色光のピーク波長は、例えば、約460nm~約500nmである。
 図2を用いて、実施の形態1の表示装置Dの一群の画素Pのそれぞれの概略構成を説明する。
 図2は、本実施の形態の表示装置Dの互いに隣接する3つの画素Pを示している。3つの画素Pのそれぞれは、赤サブ画素R、緑サブ画素G、および青サブ画素Bを有する。図2に示されるように、赤サブ画素R、緑サブ画素G、および青サブ画素Bは、それぞれ、1つの共通のバンクBKによって取り囲まれている。
 バンクBKは、平面視において、格子状の部分とその格子状の部分を囲む枠状部とによって形成されている。バンクBKは、マトリックス状に配置された一群のサブ画素を区画している。ただし、一群のサブ画素を区画するバンクBKは、表示装置Dの必須の構成ではない。
 バンクBKは、赤発光層REMLの発光面、緑発光層GEMLの発光面、および青発光層BEMLの発光面から放射された光を遮ることができる遮光部として機能する。バンクBKは、可視光を吸収または反射することができる材料で形成されている。可視光は、約380nm~約780nmの間の波長を有する光である。
 バンクBKは、発光面から発光面に垂直な基準方向に対して傾斜した方向に進む光のうちの一部の光を遮る。バンクBKは、赤発光層REML、緑発光層GEML、および青発光層BEMLを仕切っている。バンクBKは、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれの発光面よりも上側に突出している。
 図2に示されるように、表示装置Dにおいては、列方向、すなわち、縦方向において、複数の赤サブ画素Rが一列に並べられ、複数の緑サブ画素Gが一列に並べられ、複数の青サブ画素Bが一列に並べられている。
 また、本実施の形態の画素Pを構成する3つの画素Pのそれぞれにおいては、行方向、すなわち、横方向において、赤サブ画素R、緑サブ画素G、および青サブ画素Bが仮想直線VLに沿って一列に並べられている。赤サブ画素Rの発光面、緑サブ画素Gの発光面、および青サブ画素Bの発光面は、それぞれ、長方形をなしている。その長方形の前述の仮想直線VLに沿った一辺の長さは、それぞれ、LR、LG、およびLBである。
 LR>LG>LBの関係が成り立っている。例えば、LR=200μmであり、LG=100μmであり、LB=50μmである。赤サブ画素R、緑サブ画素G、および青サブ画素Bのそれぞれの発光面の前述の仮想直線VLに垂直な方向に沿った長さは、同一であり、例えば、100μmである。
 なお、バンクBKの天面から赤発光層REMLの発光面までの距離、バンクBKの天面から緑発光層GEMLの発光面まで距離、およびバンクBKの天面から青発光層BEMLの発光面までの距離は、同一であり、10μmである。
 したがって、青発光層BEMLの発光面の面積は、緑発光層GEMLの発光面の面積よりも小さい。緑発光層GEMLの発光面の面積は、赤発光層REMLの発光面の面積よりも小さい。言い換えると、(赤発光層REMLの発光面の面積)>(緑発光層GEMLの発光面の面積)>(青発光層BEMLの発光面の面積)の関係が成立する。
 一方、赤発光層REMLの発光面に形成されるバンクBKの影の面積、緑発光層GEMLの発光面に形成されるバンクBKの影の面積、および青発光層BEMLの発光面に形成されるバンクBKの影の面積は、同一である。したがって、発光面の面積に対する発光面に形成される影の面積の比に関しては、(赤発光層REML)<(緑発光層GEML)<(青発光層BEML)の関係が成立する。
 図3および図4に示されるように、本明細書の遮光部SHに関しては、その少なくとも一部が発光層の発光面ESの周辺であってかつ発光層の発光面ESを含む仮想平面VP、すなわち、仮想の表示面DSの上側に存在する。遮光部SHは、例えば、バンクBKは、光をわずかでも遮ればよいが、遮光部SHの透過率は50%以下であることが好ましい。ただし、遮光部SHの透過率は10%~20%程度であることがより好ましい。
 なお、本明細書において、遮光部SHについて発光面の周辺と言う場合の周辺とは、(発光面を含む仮想平面VPにおける発光面ESと遮光部SHとの間の距離DT)/(仮想平面VPからの遮光部SHの高さH)が、2.7(=tan70°)以下の領域を意味するものとする。
 ここで、「発光面を含む仮想平面VPにおける発光面と遮光部SHとの間の距離DT」とは、発光面内のある点をaとし、発光面を含む仮想平面VP内の遮光部SHのある点をbとしたとき、点aと点bとの間の距離の最小値であるものとする。仮想平面VPからの遮光部SHの高さHは、発光面から遮光部SHの最も高い点Mまでの発光面に垂直な方向の距離である。
 一般的に、通常の表示装置の使用において、表示装置Dの表示面DSを見る方向の範囲は、表示面DSに垂直な基準方向から基準方向に対して70°程度だけ傾斜した方向までの円錐状の範囲と考えられる。そのため、表示装置Dを傾斜した方向から見たときに、遮光部SHが発光面の周辺にあれば、表示面DSに垂直な基準方向から0~70°範囲で色味の変化を小さくすることができる。
 図5を用いて、実施の形態1の表示装置Dの画素Pを構成する赤サブ画素R、緑サブ画素G、および青サブ画素Bのそれぞれの構造を説明する。
 図5に示されるように、表示装置Dは基板STを備えている。基板STは、図示されていない一群のTFT(Thin Film Transistor)を有している。一群のTFTのそれぞれは、赤サブ画素R、緑サブ画素G、および青サブ画素BのON状態/OFF状態を切り替え得るように、赤サブ画素R、緑サブ画素G、および青サブ画素Bのいずれかに電気的に接続されている。
 バンクBKが基板STの上に形成されている。バンクBKは、1画素Pを構成する赤サブ画素R、緑サブ画素G、および青サブ画素Bのうち隣接するサブ画素同士を互いに仕切っている。具体的には、バンクBKの一部は、赤サブ画素Rと緑サブ画素Gとの間に設けられている。バンクBKの他の部分は、緑サブ画素Gと青サブ画素Bとの間に設けられている。バンクBKのさらに他の部分は、青サブ画素Bと赤サブ画素Rとの間に設けられている。バンクBKは、赤サブ画素R同士の間、緑サブ画素G同士の間、および青サブ画素B同士の間にも設けられている。
 図5において、赤発光層REMLの発光面は、赤発光層REMLの上側面であり、本実施の形態では、基板STに対向する面とは反対側の面である。図5において、緑発光層GEMLの発光面は、緑発光層GEMLの上側面であり、本実施の形態では、基板STに対向する面とは反対側の面である。
 図5において、青発光層BEMLの発光面は、青発光層BEMLの上側面であり、本実施の形態においては、基板STに対向する面とは反対側の面である。発光面は、本実施の形態のいては、バンクBKに囲まれているが、バンクBKに囲まれていなくてもよい。
 図5において、赤サブ画素Rの発光面の長さLR:緑サブ画素Gの発光面の長さLG:青サブ画素Bの発光面の長さLB=2:1:0.5の関係が成立している。バンクBK内において、赤発光層REMLの発光面の深さ、緑発光層GEMLの発光面の深さ、および青発光層BEMLの発光面の深さは、同一である。
 より厳密に言うと、バンクBKの天面から赤サブ画素Rの発光面までの距離、バンクBKの天面から緑サブ画素Gの発光面までの距離、およびバンクBKの天面から青サブ画素Bの発光面までの距離は、いずれも、例えば、10μmであり、同一である。また、基板STの主表面から赤発光層REMLの発光面までの距離、基板STの主表面から緑発光層GEMLの発光面までの距離、および基板STの主表面から青発光層BEMLの発光面までの距離は、同一である。
 赤サブ画素Rにおいては、下から順に、カソードC、電子輸送層ETL、赤発光層REML、共通の正孔輸送層HTL、および共通のアノードAが、基板STの上に設けられている。緑サブ画素Gにおいては、下から順に、カソードC、電子輸送層ETL、緑発光層GEML、共通の正孔輸送層HTL、および共通のアノードAが、基板STの上に設けられている。青サブ画素Bは、下から順に、カソードC、電子輸送層ETL、青発光層BEML、共通の正孔輸送層HTL、および共通のアノードAが、基板STの上に設けられている。
 本実施の形態においては、電子輸送層ETL、正孔輸送層HTL、およびアノードAは、各発光層から発せられた光を透過する透明層である。カソードCは、各発光層から発せられた光を反射する反射電極である。
 なお、アノードAとカソードCとは、図5において、互いに入れ替えられてもよい。この場合、正孔輸送層HTLと電子輸送層ETLとも、図5において、互いに入れ替えられる。この場合、電子輸送層ETL、正孔輸送層HTL、およびカソードCは、各発光層から発せられた光を透過する透明層である。アノードAは、各発光層から発せられた光を反射する反射電極である。
 つまり、いずれの場合も、発光層の上側に設けられた部分は、発光層から発せられた光を透過する透明部で構成されている。また、発光層の下側に設けられた部分は、発光層から発せられた光を発光層に上側に向かって反射する部分を含んでいる。
 本実施の形態においては、赤発光層REML、緑発光層GEML、青発光層BEML、およびバンクBKは、共通の正孔輸送層HTLに覆われている。しかしながら、3つの正孔輸送層が、それぞれ、赤発光層REML、緑発光層GEML、青発光層BEMLを個別に覆っていてもよい。この場合も、3つの正孔輸送層は、共通のアノードAに覆われている。ただし、3つのアノードが、それぞれ、3つの正孔輸送層の上方に、言い換えると、赤発光層REML、緑発光層GEML、および青発光層BEMLの上方に個別に設けられていてもよい。
 本実施の形態の表示装置Dは、赤発光層REML、緑発光層GEML、青発光層BEMLの全体を覆うアノードAを備えている。アノードAは、透明の共通電極として機能する。この場合、1つのアノードAが、赤発光層REML、緑発光層GEML、青発光層BEMLのそれぞれに電荷を供給するか、または、赤発光層REML、緑発光層GEML、青発光層BEMLのそれぞれから電荷を供給される。しかしながら、図5において、カソードCが、アノードAの位置に設けられ、前述の透明の共通電極を構成していてもよい。
 また、本実施の形態の表示装置Dは、赤発光層REML、緑発光層GEML、青発光層BEMLの全体を覆う正孔輸送層HTLを備えている。正孔輸送層HTLは、透明の共通電荷輸送層として機能する。この場合、1つの正孔輸送層HTLが、赤発光層REML、緑発光層GEML、青発光層BEMLのそれぞれへ電荷を輸送するか、または、赤発光層REML、緑発光層GEML、青発光層BEMLのそれぞれから電荷を輸送される。
 本実施の形態においては、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれは、QLEDの発光層であるが、OLED等の他のいかなる材料によって構成された発光層であってもよい。
 図6は、発光層の発光面が発した光の色ごとの光の放射角と光の強度との関係を示すグラフである。
 赤色の光、緑色の光、および青色の光は、それぞれ、図6に示されるような放射角と強度との関係を示す理由を、以下に説明する。
 図7を参照しながら、発光面に垂直な基準方向に沿って進行する2つの光l1,l2の光路長差Lを検討する。これらの2つの光l1,l2のうちの光l1は、発光層の発光点から一方の電荷輸送層を通過して外部へ放射される光である。前述の2つの光l1,l2のうちの光l2は、発光層の発光点から一方の電荷輸送層とは逆側に進行し、発光層と他方の電荷輸送層との界面で反射した光が発光層および電荷輸送層を通過して外部へ放射される光である。
 発光層の厚さをd1、発光層の屈折率をn1、電荷(電子または正孔)輸送層の厚さをd2、電荷輸送層の屈折率をn2とする。また、発光点は、発光層の厚さ方向の中央位置とする。光の波長をλとする。
 この場合、光路長差L=2(n1・d1/2+n2・d2)の関係が成立する。また、光の強度は、sin(πL/λ) に比例する。
 そのため、πL/λ=(2a+1)π/2、すなわち、L=(2a+1)×λ/2(aは0または自然数)のとき、前述の2つの光は強め合う。また、πL/λ=bπ、すなわち、L=bλ(bは自然数)のとき、前述の2つの光は弱め合う。
 例えば、青サブ画素Bについては、λblue=465nm、L=233nmとすると、L/λ=0.5のときに、青発光層BEMLの発光面から発光面に垂直な基準方向に沿って進行する青色の前述の2つの光が強め合う。このとき、赤サブ画素Rについては、λred=620nm、L=233nmとすると、L/λ=0.37であり、緑サブ画素Gについては、λred=530nm、L=233nmとすると、L/λ=0.44であるので、前述の2つの光が強め合う条件は成立しない。
 ここでは、計算を簡単にするため、屈折率および発光点の位置、すなわち光路長差Lは、色によらないものとする。
 発光面に垂直な基準方向から角度θだけ傾斜した方向に沿って進行する2つの光の光路長差は、Lcosθである。そのため、発光面に垂直な基準方向から角度θだけ傾斜した方向に沿って進行する光の強度は、sin[πL/λcosθ]という式で算出される。
 したがって、発光面に垂直な基準方向から角度θだけ傾斜した方向に沿って進行する光の配向特性は、次のようになる。
 赤色の光:sin[0.37πcosθ]
 緑色の光:sin[0.44πcosθ]
 青色の光:sin[0.50πcosθ]
 この配向特性を用いて、上記の図6に示されるようなグラフが作成される。図6から、共通の電荷輸送層、例えば、図5に示された共通の正孔輸送層HTLを用いる場合、赤色の光、緑色の光、および青色の光は、この順番で、発光面に垂直な基準方向に沿って進行する光の強度が高くなることが分かる。
 また、図8に示されるように、赤色の光の強度に対する緑色の光の強度の比、および、赤色の光の強度に対する青色の光の強度の比のいずれも、徐々に高くなることも分かる。
 図9を用いて、本実施の形態の表示装置D(遮光有)および比較例の表示装置(遮光無)の場合のそれぞれにおいて、光の放射角とその光の赤強度(赤色の光の強度)に対する緑強度(緑色の光の強度)の比との関係を説明する。図9のhの値は、(緑発光層GEMLの発光面の深さ)/(緑発光層GEMLの発光面の横方向長さ)、すなわち、(図2のバンクBKの天面から緑発光層GEMLの発光面までの距離)/(図2のV-V線に沿った緑発光層GEMLの発光面の一辺の長さ)である。
 図9から、比較例の表示装置Dの赤強度に対する緑強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する緑強度の比は、放射角が0°から約70°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面の赤強度と緑強度との差を低減することができることが分かる。
 図10を用いて、本実施の形態の表示装置D(遮光有)および比較例の表示装置(遮光無)の場合のそれぞれにおいて、光の放射角とその光の赤強度(赤色の光の強度)に対する青強度(青色の光の強度)の比との関係を説明する。図10のhの値は、(青発光層BEMLの発光面の深さ)/(青発光層BEMLの発光面の横方向長さ)、すなわち、(図2のバンクBKの天面から青発光層BEMLの発光面までの距離)/(図2のV-V線に沿った青発光層BEMLの発光面の一辺の長さ)である。
 図10から、比較例の表示装置Dの赤強度に対する青強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する青強度の比は、放射角が0°から約60°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの赤強度と青強度との差を低減することができることが分かる。
 なお、本明細書においては、前述の放射角は、発光面に垂直な方向を0°としたときの発光面に垂直な基準方向に対して傾斜した方向の角度で示されるものとする。
 図9および図10から、本実施の形態の表示装置Dは、比較例の表示装置に対して、表示面DSに垂直な基準方向に沿って表示面を見た場合の表示面DSの色味とその基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの色味との差が低減された表示装置Dを提供することができることが分かる。
 図11~図16を用いて、発光面に形成される遮光部の影を説明する。
 図11および図12に示されるように、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれにおいて、発光面に対して垂直な基準方向D1に沿って光が発光面に入射したときに、発光面に遮光部としてのバンクBKの影が形成されない。
 図13および図14は、発光面に形成される遮光部としてのバンクBKの第1の影Sを示している。図13および図14は、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれにおいて、発光面に対して垂直な基準方向D1から傾斜した第1の方向D2に沿って光が発光面に入射するときの影Sを示している。
 図15および図16は、発光面に形成される遮光部としてのバンクBKの第2の影Sを示している。図15および図16は、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれにおいて、発光面に対して垂直な基準方向D1から傾斜した第2の方向D3に沿って光が発光面に入射したときの影Sを示している。
 図11~図16によれば、基準方向D1に対する傾斜角が相対的に大きい第2の方向D3に沿って進む光の影Sの発光面における面積は、基準方向D1に対する傾斜角が相対的に小さい第1の方向D2に沿って進む光の影Sの発光面における面積よりも大きい。
 上記のように、赤発光層REML、緑発光層GEML、および青発光層BEMLの関係においては、発光面の面積に対する遮光部としてのバンクBKの影Sの面積の比が異なる。一方、赤発光層REML同士の関係、緑発光層GEML同士の関係、および青発光層BEML同士の関係においては、発光面の面積に対する遮光部の影Sの面積の比は同一である。
 仮に、赤発光層REML、緑発光層GEML、青発光層BEML、およびバンクBK(遮光部)へ前述の発光面に垂直な基準方向D1から傾斜した方向(例えば、第1の方向D2または第2の方向D3:特定方向)に進む仮想光を照射したとする。この場合、青発光層BEMLは、緑発光層GEMLに比較して、発光面の面積に対する発光面に投影されるバンクBK(遮光部)の影Sの面積の比が大きい。また、緑発光層GEMLは、赤発光層REMLに比較して、発光面の面積に対する発光面に投影されるバンクBK(遮光部)の影Sの面積の比が大きい。
 言い換えると、青発光層BEMLは、緑発光層GEMLに比較して、発光面に垂直な基準方向D1に対して傾斜した方向のうちの少なくとも1つの特定方向に進む光に対するバンクBK(遮光部)に遮光(吸収または反射)される光の割合が大きい。緑発光層GEMLは、赤発光層REMLに比較して、発光面に垂直な基準方向に対して傾斜した方向のうちの少なくとも1つの特定方向に進む光に対するバンクBK(遮光部)に遮光(吸収または反射)される光の割合が大きい。
 そのため、表示装置Dによれば、行方向において、表示面DSに垂直な基準方向D1に沿って表示面DSを見た場合の表示面DSの色味と表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの色味との差を低減できる。
 また、本実施の形態の表示装置Dによれば、赤発光層REML、緑発光層GEML、および青発光層BEMLについて、バンクBKの天面から発光面までの距離が同一である。そのため、設計段階において赤発光層REMLの発光面の面積、緑発光層GEMLの発光面の面積、および青発光層BEMLの発光面の面積を異ならせるという簡単な手法で、見る方向の相違に起因した表示面DSの色味の差を低減することができる。
 なお、共通の電荷輸送層、具体的には、正孔輸送層HTLの膜厚は、表示面DSに垂直な基準方向に沿って表示面DSを見た場合に、青色の光が干渉によって強め合う膜厚である。例えば、表示面DSに垂直な基準方向に沿って表示面DSを見た場合に、発光効率が低い青色の光の強度が干渉によって高められるため、発光効率が低い青色の光の輝度を高めることができる。
 一般に、配向特性が発光色に依存しないように、光路長差および波長の少なくともいずれか一方の値を調整すると、電荷輸送層、例えば、正孔輸送層HTLの膜厚を発光層が発する発光色ごとに調整する。この場合、複数の発光層に共通の電荷輸送層、本実施の形態では正孔輸送層HTLを同一の製造工程で製造することができなくなる。そのため、表示装置Dの製造工程が複雑化する。
 しかしながら、本実施の形態の表示装置Dにおいては、赤発光層REML、緑発光層GEML、青発光層BEMLのそれぞれごとに、遮光部としてのバンクBKが発光面から発せられた光を遮光する割合を異ならせる。この構成によれば、電荷輸送層、例えば、正孔輸送層HTLを赤サブ画素R、緑サブ画素G、および青サブ画素Bごとに個別に設ける場合に比較して、表示装置Dの製造方法を簡略化することができる。
 また、本実施の形態の表示装置Dによれば、後述されるような場合、具体的には、発光色が異なる発光層ごとに発光面の高さ位置を変更する場合またはバンクBKの上側に壁部または錐状部を設ける場合に比較して、構造および製造方法を簡略化することができる。
 (実施の形態2)
 図17および図18を用いて、実施の形態2の表示装置Dを説明する。なお、以下の説明においては、実施の形態1と同様である点の説明は、特に必要がなければ、繰り返さない。本実施の形態の表示装置Dは、次の点で、実施の形態1の表示装置Dと異なる。
 図17および図18に示されるように、本実施の形態においては、赤発光層REML、緑発光層GEML、および青発光層BEMLのうち発光効率が最も低い青発光層BEMLの数が赤発光層REML、緑発光層GEMLの数よりも多い。具体的には、赤発光層REMLの数および緑発光層GEMLの数は、3個であり、青発光層BEMLの数は、12個である。一方、本実施の形態においても、青発光層BEMLの発光面の面積に対する青発光層BEMLの発光面に形成されるバンクBKの影の面積の比は、実施の形態1の場合と同一である。
 したがって、本実施の形態の表示装置Dによれば、前述の色味の差を低減することができる点については、実施の形態1の表示装置Dと同一である。しかしながら、本実施の形態の表示装置Dによれば、青サブ画素Bの発光面の面積が他のサブ画素の発光面の面積に比較して大きいため、実施の形態1の表示装置Dに比較して、3色の画素Pのうちの発光効率の低い青サブ画素Bの発光量を増加させることができる。
 (実施の形態3)
 図19~図21を用いて、実施の形態3の表示装置Dを説明する。なお、以下の説明においては、実施の形態1と同様である点に関する説明は、特に必要がなければ、繰り返さない。本実施の形態の表示装置Dは、次の点で、実施の形態1の表示装置Dと異なる。
 図19に示されるように、本実施の形態においては、一群の画素Pのそれぞれにおいて、緑発光層GEMLの数は、赤発光層REMLの数よりも多い。一群の画素Pのそれぞれにおいて、青発光層BEMLの数は、緑発光層GEMLの数よりも多い。つまり、本実施の形態においては、1つの画素Pにおいて、(赤発光層REMLの数)<(緑発光層GEMLの数)<(青発光層BEMLの数)の関係が成立する。
 より具体的には、赤発光層REMLの数は、1個であり、緑発光層GEMLの数は、4個であり、青発光層BEMLの数は、16個である。それにより、1つの画素Pにおいて、赤発光層REMLの発光面の全面積、緑発光層GEMLの発光面の全面積、および青発光層BEMLの発光面の全面積の差が低減されている。
 また、図20に示されるように、赤サブ画素Rの発光面の長さLR:緑サブ画素Gの発光面の長さLG:青サブ画素Bの発光面の長さLB=2:1:0.5の関係が成立している。
 図21は、本実施の形態の表示装置の画素4つを構成する赤サブ画素R、緑サブ画素G、および青サブ画素Bの上面図である。
 図21から分かるように、1画素Pは、1つの赤発光層REMLの1つの正方形の発光面、4つの緑発光層GEMLの4つの正方形の発光面、および16個の青発光層BEMLの16個の正方形の発光面を有している。
 図21に示されるように、1つの赤発光層REMLの1つ正方形の発光面は、仮想の正方形VSと一致する。4個の緑発光層GEMLの4個の正方形の発光面は、前述の仮想の正方形VSの中にマトリックス状に配置されている。4個の緑発光層GEMLは、格子状のバンクBKによって区画されている。16個の青発光層BEMLの16個の正方形の発光面は、前述の仮想の正方形VSの中にマトリックス状に配置されている。16個の青発光層BEMLは、格子状のバンクBKによって区画されている。
 本実施の形態においても、青発光層BEMLの発光面の面積に対する青発光層BEMLの発光面に形成されるバンクBKの影の面積の比は、実施の形態1の場合と同一である。より具体的には、本実施の形態においても、前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、青発光層BEMLの発光面が発する光が遮光部に遮られる割合が、緑発光層GEMLの発光面が発する光が遮光部に遮られる割合よりも大きい。前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、緑発光層GEMLの発光面が発する光が遮光部に遮られる割合が、赤発光層REMLの発光面が発する光が遮光部に遮られる割合よりも大きい。
 前述のように、本実施の形態の表示装置Dは、いずれの発光面も正方形である。そのため、本実施の形態によれば、実施の形態1および2により得られる効果に加えて、行方向および列方向のいずれにおいても、すなわち、横方向および縦方向のいずれにおいても、前述の色味の差を低減することができるという効果も得られる。
 (実施の形態4)
 図22~図28を用いて、実施の形態4の表示装置Dを説明する。なお、以下の説明においては、実施の形態1と同様である点に関する説明は、特に必要がなければ、繰り返さない。本実施の形態の表示装置Dは、次の点で、実施の形態1の表示装置Dと異なる。
 図22~図24を用いて、本実施の形態の表示装置Dの構造を説明する。
 図22に示されるように、青発光層BEMLは、緑発光層GEMLに比較して、バンクBKの天面から発光面までの深さが大きい。緑発光層GEMLは、赤発光層REMLに比較して、バンクBKの天面から発光面までの深さが大きい。つまり、(バンクBKの天面から赤発光層REMLの発光面までの距離)<(バンクBKの天面から緑発光層GEMLの発光面までの距離)<(バンクBKの天面から青発光層BEMLの発光面までの距離)の関係が成立する。
 より具体的には、バンクBKの天面と赤発光層REMLの発光面とは同一平面内にある。バンクBKの天面から緑発光層GEMLの発光面までの深さは、10μmである。バンクBKの天面から青発光層BEMLの発光面までの深さは、20μmである。
 図23に示されるように、赤発光層REMLの発光面、緑発光層GEMLの発光面、および青発光層BEMLの発光面のそれぞれは、同一の大きさの正方形、例えば、1辺100μmの正方形をなしている。そのため、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれの発光面の形状および面積は同一である。なお、アノードA同士は、導電性部材CONによって電気的に接続されている。
 本実施の形態においても、前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、青発光層BEMLの発光面が発する光が遮光部に遮られる割合が、緑発光層GEMLの発光面が発する光が遮光部に遮られる割合よりも大きい。前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、緑発光層GEMLの発光面が発する光が遮光部に遮られる割合が、赤発光層REMLの発光面が発する光が遮光部に遮られる割合よりも大きい。
 また、バンクBKの天面から赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれの発光面までの深さを異ならせるという簡単な手法で、見る方向の相違に起因した表示面DSの色味の差を低減することができる。
 本実施の形態においても、全ての発光面が正方形であるため、行方向および列方向のいずれにおいても、前述の色味の差を低減することができる。本実施の形態の表示装置Dによれば、赤サブ画素Rの数に対して緑サブ画素Gおよび青サブ画素Bの数を多くすることなく、行方向および列方向のいずれにおいても、前述の色味の差を低減することができる。
 図24に示されるように、赤サブ画素Rにおいては、基板ST上に、調整層X、カソードC、電子輸送層ETL、赤発光層REML、正孔輸送層HTL、およびアノードAがこの順番で積層されている。調整層Xは、基板STと電子輸送層ETLとの間に設けられている。調整層Xは、その厚さ方向に貫通するコンタクトホールCHRを有している。コンタクトホールCHR内のカソードCの一部と基板ST内の赤サブ画素R用のTFTとが電気的に接続されている。
 調整層Yは、基板STと電子輸緑サブ画素Rにおいては、基板ST上に、調整層Y、カソードC、電子輸送層ETL、緑発光層GEML、正孔輸送層HTL、およびアノードAがこの順番で積層されている。送層ETLとの間に設けられ、調整層Xよりも厚さが小さい。調整層Yは、その厚さ方向に貫通するコンタクトホールCHGを有している。コンタクトホールCHG内のカソードCの一部と基板ST内のTFTとが電気的に接続されている。
 青サブ画素Bにおいては、基板ST上に、カソードC、電子輸送層ETL、青発光層BEML、正孔輸送層HTL、およびアノードAがこの順番で積層されている。青サブ画素Bにおいては、調整層は設けられていない。
 なお、本実施の形態においても、透明の共通の正孔輸送層HTLおよび透明の共通のアノードAは、赤発光層REML、緑発光層GEML、青発光層BEML、およびバンクBKの天面を覆うようにこの順番で積層されていてもよい。
 赤サブ画素R、緑サブ画素G、および青サブ画素Bのそれぞれにおいて、カソードC、電子輸送層ETL、発光層、およびバンクBKのそれぞれの基板STの主表面からの高さは、同一である。そのため、調整層Xおよび調整層Yの存在により、バンクBKの天面から、赤発光層REMLの発光面、緑発光層GEMLの発光面、および青発光層BEMLの発光面のそれぞれまでの深さが異なっている。
 図25は、本実施の形態の表示装置D(バンク遮光有(大))および比較例の表示装置(バンク遮光無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する青強度の比との関係を示す。図25のhの値は、(バンクの深さ)/(発光面の横方向長さ)、すなわち、(図22の青発光層BEMLの発光面からバンクBKの天面までの距離)/(図22のXXIV-XXIV線に沿った青発光層BEMLの発光面の一辺の長さ)である。
 図25から、比較例の表示装置の赤強度に対する青強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する青強度の比は、放射角が0°から約50°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの赤強度と青強度との差を低減することができることが分かる。
 図26は、本実施の形態の表示装置D(バンク遮光有(小))および比較例の表示装置(バンク遮光無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する緑強度の比との関係を示す。図26のhの値は、(遮光部の高さ)/(発光面の横方向長さ)、すなわち、(図22の緑発光層GEMLの発光面からバンクBKの天面までの距離)/(図22のXXIV-XXIV線に沿った緑発光層GEMLの発光面の一辺の長さ)である。
 図26から、比較例の表示装置の赤強度に対する緑強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する緑強度の比は、放射角が0°から約55°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの赤強度と緑強度との差を低減することができることが分かる。
 図27および図28を用いて、本実施の形態の表示装置Dの製造方法を説明する。
 図27に示されるように、基板ST上に、調整層Xおよび調整層Yを構成する原材料として、一定の厚さを有する材料層Zを形成する。次に、基板ST上に設けられた材料層Zの上方にフォトマスクMSを設置する。赤サブ画素Rが形成される予定の領域の上方のフォトマスクMSの第1の部分R1は、光透過率(露光量)がゼロである。緑サブ画素Gが形成される予定の領域の上方のフォトマスクMSの第2の部分R2は、光透過率(露光量)が相対的に小さい値である。青サブ画素Bが形成される予定の領域の上方のフォトマスクMSの第3の部分R3は、光透過率(露光量)が相対的に大きい値である。
 図27に示される状態で、光源から発せられた光が、フォトマスクMSの第2の部分R2および第3の部分R3を経由して、材料層Zに照射される。次に、所定時間が経過した後、材料層Zに現像液を塗布する。それにより、図28に示されるように、厚さが異なる調整層Xおよび調整層Yが、それぞれ、赤サブ画素Rが形成される予定の領域および緑サブ画素Gが形成される予定の領域に残存する。
 本実施の形態の調整層XおよびYの製造方法によれば、バンクBKの天面から発光面までの深さを容易に調整することができる。
 また、上記の本実施の形態の表示装置Dによれば、発光色が異なる発光層ごとに発光面の面積を異ならせる必要がないため、発光層の発光量を意図的に異ならせる必要がない。そのため、発光層の製造方法が容易になる。
 (実施の形態5)
 図29~図32を用いて、実施の形態5の表示装置Dを説明する。なお、以下の説明においては、実施の形態1と同様である点に関する説明は、特に必要がなければ、繰り返さない。本実施の形態の表示装置Dは、次の点で、実施の形態1の表示装置Dと異なる。
 図29および図30に示されるように、本実施の形態の表示装置Dにおいては、バンクBKは、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれを区画している。また、バンクBKの天面と、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれの発光面とは同一の仮想平面内にある。
 青発光層BEMLの発光面の周辺であってかつ青発光層BEMLの発光面を含む仮想平面の上側に第1壁部BWが設けられている。緑発光層GEMLの発光面の周辺であってかつ緑発光層GEMLの発光面を含む仮想平面の上側に第2壁部GWが設けられている。第1壁部BWは、第2壁部GWに比較して、発光面からの高さが大きい。
 より具体的には、青発光層BEMLに隣接したバンクBKの天面の上側に第1壁部BWが設けられている。緑発光層GEMLに隣接したバンクBKの天面の上側に第2壁部GW設けられている。赤発光層REMLに隣接したバンクBKの天面の上側には壁部は設けられていない。第1壁部BWは、第2壁部GWに比較して、バンクBKの天面からの高さが大きい。なお、バンクBKの天面は、基板STの主表面(上側面)から同一距離の仮想平面内に含まれている。
 第1壁部BWおよび第2壁部GWは、バンクBKと同様に、光を遮光する材料、具体的には、光を吸収または反射する材料により形成されている。したがって、第1壁部BWおよび第2壁部GWは、バンクBKとともに、赤発光層REMLの発光面、緑発光層GEMLの発光面、および青発光層BEMLの発光面から放射される光の進行を阻止する遮光部として機能する。
 第1壁部BWは、青発光層BEMLに隣接したバンクBKの天面上に、青発光層BEMLの正方形の発光面の1辺に沿って延びるように設けられている。第1壁部BWは青発光層BEMLの遮光部として機能する。第1壁部BWは、可視光(おおよそ380nm~780nmの間の波長を有する光)を吸収または反射する材料で形成されている。
 第2壁部GWは、緑発光層GEMLに隣接したバンクBKの天面上に、緑発光層GEMLの正方形の発光面の1辺に沿って延びるように設けられている。第2壁部GWは、緑発光層GEMLの遮光部として機能する。第2壁部GWは、可視光(おおよそ380nm~780nmの間の波長を有する光)を吸収または反射する材料で形成されている。
 第1壁部BWおよび第2壁部GWは、高さのみ異なり、同一長さおよび同一幅を有する直方体である。第1壁部BWの高さは、第2壁部GWの高さよりも大きい。例えば、第1壁部BWの高さは、20μmであり、第2壁部GWは、10μmである。なお、第2壁部GWは設けられていなくてもよい、つまり、第2壁部GWの高さは、ゼロであってもよい。
 本実施の形態においては、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれの発光面は、正方形であり、その面積が同一である。
 図31は、本実施の形態の表示装置D(第1壁部BW有)および比較例の表示装置(第1壁部BW無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する青強度の比との関係を示す。図31のhの値は、(遮光部の高さ)/(発光面の横方向長さ)、すなわち、(図29の青発光層BEMLの発光面から第1壁部BWの天面までの距離)/(図29のXXX-XXX線に沿った青発光層BEMLの発光面の一辺の長さ)である。
 図31から、比較例の表示装置の赤強度に対する青強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する青強度の比は、放射角が0°から約50°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの赤強度と青強度との差を低減することができることが分かる。
 図32は、本実施の形態の表示装置D(第2壁部GW有)および比較例の表示装置(第2壁部GW無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する緑強度の比との関係を示す。図32のhの値は、(遮光部の高さ)/(発光面の横方向長さ)、すなわち、(図29の緑発光層GEMLの発光面から第2壁部GWの天面までの距離)/(図29のXXX-XXX線に沿った緑発光層GEMLの発光面の一辺の長さ)である。
 図32から、比較例の表示装置の赤強度に対する緑強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する緑強度の比は、放射角が0°から約55°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの赤強度と緑強度との差を低減することができることが分かる。
 本実施の形態においても、青発光層BEMLの発光面が発する光が遮光部に遮られる割合が、緑発光層GEMLの発光面が発する光が遮光部に遮られる割合よりも大きい。緑発光層GEMLの発光面が発する光が遮光部に遮られる割合が、赤発光層REMLの発光面が発する光が遮光部に遮られる割合よりも大きい。
 そのため、本実施の形態の表示装置Dによっても、行方向、すなわち、横方向において、前述の色味の差を低減することができる。また、本実施の形態の表示装置Dによれば、第1壁部BWの高さと第2壁部GWの高さとを異ならせるという簡単な手法で、見る方向の相違に起因した表示面DSの色味の差の低減することができる。
 (実施の形態6)
 図33~図37を用いて、実施の形態6の表示装置Dを説明する。なお、以下の説明においては、実施の形態5と同様である点に関する説明は、特に必要がなければ、繰り返さない。本実施の形態の表示装置Dは、次の点で、実施の形態5の表示装置Dと異なる。
 図33および図34に示されるように、本実施の形態の表示装置Dにおいても、実施の形態5の表示装置Dと同様に、青発光層BEMLの発光面の周辺であってかつ青発光層BEMLの発光面を含む仮想平面の上側に第1壁部BWが設けられている。緑発光層GEMLの発光面の周辺であってかつ緑発光層GEMLの発光面を含む仮想平面の上側に第2壁部GWが設けられている。
 より具体的には、第1壁部BWおよび第2壁部GWがバンクBKの天面の上側に設けられている。なお、本実施の形態においても、実施の形態5と同様に、赤発光層REMLの発光面、緑発光層GEMLの発光面、および青発光層BEMLの発光面は、いずれも、正方形であり、その大きさは同一である。
 しかしながら、本実施の形態の第1壁部BWおよび第2壁部GWは、実施の形態5の第1壁部BWおよび第2壁部GWと異なり、異なる長さと、同一高さ(50μm)および同一幅(50μm)と、を有する直方体である。第1壁部BWの長さは、34μmであり、18μmの第2壁部GWの長さよりも大きい。
 具体的には、第1壁部BWは、第2壁部GWに比較して、高さが同一であるが、正方形の発光面の一辺に沿って延びる長さが大きい。なお、第2壁部GWは設けられていなくてもよい、すなわち、第2壁部GWの長さはゼロであってもよい。
 図35は、本実施の形態の表示装置D(第1壁部BW有)および比較例の表示装置(第1壁部BW無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する青強度の比との関係を示す。図35のhの値は、(遮光部の高さ)/(青発光層BEMLの発光面の横方向長さ)、すなわち、(図33の青発光層BEMLの発光面から第1壁部BWの天面までの距離)/(図33のXXXIV-XXXIV線方向に沿った青発光層BEMLの発光面の一辺の長さ)である。図35のwの値は、(遮光部の長さ)/(発光面の縦方向長さ)、すなわち、(図33のXXXIV-XXXIV線方向に垂直な方向に沿った第1壁部BWの長さ)/(図33のXXXIV-XXXIV線方向に垂直な方向に沿った青発光層BEMLの発光面の一辺の長さ)である。
 図35から、比較例の表示装置Dの赤強度に対する青強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する青強度の比は、放射角が0°から約90°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの赤強度と青強度との差を低減することができることが分かる。
 図36は、本実施の形態の表示装置D(第2壁部GW有)および比較例の表示装置(第2壁部GW無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する緑強度の比との関係を示す。図36のhの値は、(遮光部の高さ)/(緑発光層GEMLの発光面の横方向長さ)、すなわち、(図33の緑発光層GEMLの発光面から第2壁部GWの天面までの距離)/(図33のXXXIV-XXXIV線方向に沿った緑発光層GEMLの発光面の一辺の長さ)である。図36のwの値は、(遮光部の長さ)/(発光面の縦方向長さ)、すなわち、(図33のXXXIV-XXXIV線方向に垂直な方向に沿った第2壁部GWの長さ)/(図33のXXXIV-XXXIV線方向に垂直な方向に沿った緑発光層GEMLの発光面の一辺の長さ)である。
 図36から、比較例の表示装置の赤強度に対する緑強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する緑強度の比は、放射角が0°から約90°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの赤強度と緑強度との差を低減することができることが分かる。
 図37は、青発光層BEMLの発光面に対して垂直な基準方向から傾斜した方向に沿って光が発光面に入射したときに、発光面に形成される遮光部の影、具体的には、第1壁部BWの影を示している。図38は、緑発光層GEMLの発光面に対して垂直な基準方向から傾斜した方向に沿って光が発光面に入射したときに、発光面に形成される遮光部の影、具体的には、第2壁部GWの影を示している。
 図37と図38とを対比すれば分かるように、発光面に対して垂直な基準方向に対するその垂直な方向から傾斜した方向の角度が大きくなるほど、壁部の影が大きくなるため、発光面の面積に対する発光面に形成される壁部の影の面積の比が大きくなる。
 言い換えると、本実施の形態においても、前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、青青発光層BEMLの発光面が発する光が遮光部に遮られる割合が、緑発光層GEMLの発光面が発する光が遮光部に遮られる割合よりも大きい。前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、青緑発光層GEMLの発光面が発する光が遮光部に遮られる割合が、赤発光層REMLの発光面が発する光が遮光部に遮られる割合よりも大きい。
 そのため、本実施の形態の表示装置Dによっても、行方向、すなわち、横方向において、前述の色味の差を低減することができる。また、第1壁部BWの長さと第2壁部GWの長さとを異ならせるという簡単な手法で、見る方向の相違に起因した表示面DSの色味の差の低減することができる。
 (実施の形態7)
 図39~図51を用いて、実施の形態7の表示装置Dを説明する。なお、以下の説明においては、実施の形態1と同様である点に関する説明は、特に必要がなければ、繰り返さない。本実施の形態の表示装置Dは、次の点で、実施の形態5または6の表示装置Dと異なる。
 図39に示されるように、本実施の形態の表示装置Dにおいては、実施の形態5または6の第1壁部BWの代わりに、青発光層BEMLに隣接したバンクBKの上側にバンクBKから離れるにつれて先細る第1錐状部BCが設けられている。また、実施の形態5または6の第2壁部GWの代わりに、緑発光層GEMLに隣接したバンクBKの上側にバンクBKから離れるにつれて先細る第2錐状部GCが設けられている。
 第1錐状部BCおよび第2錐状部GCは、本実施の形態では、円錐形状を有しているものとするが、角錐形状を有していてもよい。赤発光層REMLに隣接したバンクBKの上側に錐状部は設けられていない。
 図39および図40に示される第1錐状部BCの高さよび第2錐状部GCの高さは、いずれも、100μmである。第1錐状部BCの底面の円の直径は、34μmであり、第2錐状部GCの底面の円の直径は、18μmである。
 したがって、第1錐状部BCは、第2錐状部GCに比較して、底面の円の直径(または底面の正方形の一辺の長さ)が大きい。なお、第2錐状部GCは設けられていなくてもよい、すなわち、第2錐状部GCの底面の円の直径(または正方形の一辺の長さ)は、ゼロであってもよい。
 赤発光層REMLの発光面、緑発光層GEMLの発光面、および青発光層BEMLの発光面は、いずれも、同一の大きさを有する正方形をなしている。
 第1錐状部BCおよび第2錐状部GCは、バンクBKと同様に、遮光部を構成するように、光を吸収または反射する材料により形成されている。したがって、第1錐状部BCおよび第2錐状部GCは、バンクBKとともに、緑発光層GEMLの発光面、および青発光層BEMLの発光面から放射された光の進行を阻止する遮光部として機能する。遮光部としての第1錐状部BCおよび第2錐状部GCは、可視光(おおよそ380nm~780nmの間の波長を有する光)を吸収または反射する材料で形成されている。
 図41~図43を用いて、本実施の形態の表示装置Dの青サブ画素用の遮光部としての第1錐状部BCおよび緑サブ画素用の遮光部としての第2錐状部GCの製造方法を説明する。
 まず、図41に示されるように、シリコン基板1上にシリコン酸化膜2を形成する。次に、シリコン酸化膜2上にレジストマスク3を形成する。その後、レジストマスク3にコンタクトホールHBおよびHGを形成する。それにより、図41に示される構造が形成される。次に、コンタクトホールHBおよびHGを経由して光をシリコン酸化膜2に照射する。その後、シリコン酸化膜2からレジストマスク3を除去する。
 次に、シリコン酸化膜2をエッチングする。それにより、光が照射されたシリコン酸化膜2の一部が除去される。その結果、図42に示されるように、光が照射されていないシリコン酸化膜2の他の一部が、残存酸化膜20としてシリコン基板1上に残存する。その後、残存酸化膜20をドライエッチングする。それにより、図43に示されるように、第1錐状部BCおよび第2錐状部GCが形成される。
 この第1錐状部BCおよび第2錐状部をバンクBKの天面の上で形成すれば、前述の図39に示される構造が形成される。この製造方法によれば、コンタクトホールHBおよびHGのそれぞれの大きさを調整するだけで、底面の直径が異なる第1錐状部BCおよび第2錐状部GCを形成することができる。
 図44に示されるように、共通電極としてのアノードAは、発光面に沿って広がる仮想平面に平行な方向の配置において、遮光部としての第1錐状部BCおよび第2錐状部GCから距離を置いて設けられている。つまり、本実施の形態においては、アノードAは、第1錐状部および第2錐状部GCを避けるように形成されている。そのため、遮光部と共通電極とが接触しないため、共通電極の形成時に遮光部が損傷することおそれが低減される。
 図44および図45から分かるように、第1錐状部BCは、青発光層BEMLの正方形の発光面の一辺のほぼ中央位置に隣接するバンクBK上に設けられている。第2錐状部GCは、緑発光層GEMLの正方形の発光面の一辺のほぼ中央位置に隣接するバンクBK上に設けられている。第1錐状部BCは、第2錐状部GCに比較して、底面の直径が大きい。第2錐状部GCは、第1錐状部BCに比較して、底面の直径が小さい。
 したがって、緑発光層GEMLの発光面の面積に対する緑発光層GEMLの発光面に形成される第2錐状部GCの影の面積の比は、青発光層BEMLの発光面の面積に対する青発光層BEMLの発光面に形成される第1錐状部BCの影の面積の比よりも小さい。
 なお、図45においては、カソードCからアノードAまでの積層構造の厚さは、270nmであり、第1錐状部BCおよび第2錐状部GCのそれぞれの高さ100μmに比較して極めて小さい。
 図46は、本実施の形態の表示装置D(第2錐状部GC有)および比較例の表示装置(第2錐状部GC無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する緑強度の比との関係を示す。
 図46から、比較例の表示装置Dの赤強度に対する緑強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する緑強度の比は、放射角が0°から約90°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの赤強度と緑強度との差を低減することができることが分かる。
 図47は、本実施の形態の表示装置D(第1錐状部BC有)および比較例の表示装置(第1錐状部BC無)の場合のそれぞれにおいて、光の放射角とその光の赤強度に対する青強度の比との関係を示す。
 図47から、比較例の表示装置Dの赤強度に対する青強度の比は、放射角が0°から90°までは、徐々に増加していることが分かる。一方、本実施の形態の表示装置Dの赤強度に対する青強度の比は、放射角が0°から約90°までは、ほぼ一定になっていることが分かる。つまり、表示面DSに垂直な基準方向から傾斜した方向に沿って表示面DSを見た場合の表示面DSの赤強度と青強度との差を低減することができることが分かる。
 図48および図49は、本実施の形態の表示装置Dにおいて、発光面に対して垂直な基準方向から傾斜した第1の方向に沿って光が発光面に入射したときに、発光面に形成される錐状部の第1の影Sを示している。図50および図51は、本実施の形態の表示装置Dにおいて、発光面に対して垂直な基準方向から傾斜した第2の方向に沿って光が発光面に入射したときに、発光面に形成される錐状部の第2の影を示している。
 図48および図49と図50および図51とを対比すれば分かるように、発光面に対して垂直な基準方向とその基準方向から傾斜した方向とがなす角度が大きくなるほど、錐状部の影が大きくなる。そのため、発光面の面積に対する発光面に形成される錐状部の影の面積の比が大きくなる。
 そのため、本実施の形態においても、前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、青青発光層BEMLの発光面が発する光が遮光部に遮られる割合が、緑発光層GEMLの発光面が発する光が遮光部に遮られる割合よりも大きい。前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、青緑発光層GEMLの発光面が発する光が遮光部に遮られる割合が、赤発光層REMLの発光面が発する光が遮光部に遮られる割合よりも大きい。したがって、本実施の形態の表示装置Dによっても、行方向、すなわち、横方向において、前述の色味の差を低減することができる。
 また、本実施の形態の表示装置Dによれば、第1錐状部BCの底面の円の直径と第2錐状部GCの底面の直径とを異ならせるという簡単な手法で、見る方向の相違に起因した表示面DSの色味の差の低減することができる。
 (実施の形態8)
 図52を用いて、実施の形態8の表示装置Dを説明する。なお、以下の説明においては、実施の形態5と同様である点に関する説明は、特に必要がなければ、繰り返さない。本実施の形態の表示装置Dは、次の点で、実施の形態5の表示装置Dと異なる。
 表示装置Dは、赤発光層REML、緑発光層GEML、および青発光層BEMLに隣接したバンクBKの天面の上側に設けられ、それぞれがバンクBKとは逆側に向かって開放された1以上、例えば、3つの切り欠きを有する櫛形状部COを含んでいる。櫛形状部COは、赤発光層REML、緑発光層GEML、および青発光層BEMLのそれぞれが発する光の進行を阻止する遮光部として機能する。遮光部としての櫛形状部COは、可視光(おおよそ380nm~780nmの間の波長を有する光)を吸収または反射する材料で形成されている。
 (赤発光層REMLに対応する切り欠きRO内の領域の面積)>(緑発光層GEMLに対応する切り欠きGO内の領域の面積)>(青発光層BEMLに対応する切り欠きBO内の領域の面積)の関係が成立する。なお、本実施の形態においても、実施の形態5と同様に、赤発光層REMLの発光面、緑発光層GEMLの発光面、および青発光層BEMLの発光面は、いずれも、正方形であり、その大きさは同一である。
 本実施の形態においても、前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、青青発光層BEMLの発光面が発する光が遮光部に遮られる割合が、緑発光層GEMLの発光面が発する光が遮光部に遮られる割合よりも大きい。前述の基準方向から傾斜した方向のうちの少なくとも1つの特定方向において、青緑発光層GEMLの発光面が発する光が遮光部に遮られる割合が、赤発光層REMLの発光面が発する光が遮光部に遮られる割合よりも大きい。そのため、本実施の形態の表示装置Dによっても、行方向、すなわち、横方向において、前述の色味の差を低減することができる。
 また、赤発光層REML、緑発光層GEML、および青発光層BEMLにそれぞれ対応する3つの切り欠きの領域の面積を異ならせるという簡単な手法で、見る方向の相違に起因した表示面DSの色味の差の低減することができる。
 また本実施の形態の表示装置Dによれば、板部材の加工のみで櫛形状部COを形成することができるため、前述の実施の形態で述べたような微小な壁部または錐状部の加工が不要である。したがって、表示装置Dの製造を容易に行うことができる。
 (実施の形態9)
 図53を用いて、実施の形態9の表示装置Dを説明する。なお、以下の説明においては、実施の形態8と同様である点に関する説明は、特に必要がなければ、繰り返さない。本実施の形態の表示装置Dは、次の点で、実施の形態8の表示装置Dと異なる。
 表示装置Dは、バンクBKの天面の上方に、バンクBKから距離をおいて設けられた透明板SGをさらに備えている。櫛形状部COは、透明板SGに固定されている。本実施の形態の表示装置Dによっても、実施の形態8の表示装置Dと同様に、行方向、すなわち、横方向において、前述の色味の差を低減することができる。
 また、櫛形状部COがバンクBKと透明板SGとの間でスペーサとして機能する。そのため、透明板SGとバンクBKとの間の距離が所定値以上になる状態に維持することができる。

Claims (13)

  1.  それぞれが発光面に垂直な基準方向に光を発することができる複数の発光層と、
     前記発光面から前記基準方向に対して傾斜した方向に進む光のうちの一部の光を遮ることができる遮光部と、を備え、
     前記複数の発光層は、第1ピーク波長を有する光を発することができる第1発光層と、前記第1ピーク波長よりも長い第2ピーク波長を有する光を発することができる第2発光層と、を含み、
     前記第1発光層は、前記第2発光層に比較して、前記傾斜した方向のうちの少なくとも1つの特定方向に進む光に対する前記遮光部に遮光され得る前記一部の光の割合が大きい、表示装置。
  2.  前記遮光部は、前記第1発光層および前記第2発光層のそれぞれを区画し、前記発光面よりも上側に突出したバンクを含み、
     前記第1発光層の前記発光面の面積は、前記第2発光層の前記発光面の面積よりも小さい、請求項1に記載の表示装置。
  3.  各画素において、前記第1発光層の数は、前記第2発光層の数よりも多い、請求項2に記載の表示装置。
  4.  前記第1発光層および前記第2発光層のそれぞれの前記発光面が正方形をなしている、請求項1~3のいずれかに記載の表示装置。
  5.  前記遮光部は、前記第1発光層および前記第2発光層のそれぞれを区画し、前記発光面よりも上側に突出したバンクを含み、
     前記第1発光層は、前記第2発光層に比較して、前記バンクの天面から前記発光面までの深さが大きい、請求項1~4のいずれかに記載の表示装置。
  6.  前記遮光部は、
      前記第1発光層の前記発光面の周辺であってかつ前記第1発光層の前記発光面を含む仮想平面の上側に設けられた第1壁部と
      前記第2発光層の前記発光面の周辺であってかつ前記第2発光層の前記発光面を含む仮想平面の上側に設けられた第2壁部と、を含み、
     前記第1壁部は、前記第2壁部に比較して、前記発光面からの高さが大きい、請求項1~5のいずれかに記載の表示装置。
  7.  前記遮光部は、
      前記第1発光層の前記発光面の周辺であってかつ前記第1発光層の前記発光面を含む仮想平面の上側に設けられた第1壁部と、
      前記第2発光層の前記発光面の周辺であってかつ前記第2発光層の前記発光面を含む仮想平面の上側に設けられた第2壁部と、を含み、
     前記第1壁部は、前記第2壁部に比較して、前記発光面に沿って延びる長さが大きい、請求項1~6のいずれかに記載の表示装置。
  8.  前記遮光部は、
      前記第1発光層の前記発光面の周辺であってかつ前記第1発光層の前記発光面を含む仮想平面の上側に設けられ、前記発光面から離れるにつれて先細る第1錐状部と、
      前記第2発光層の前記発光面の周辺であってかつ前記第2発光層の前記発光面の上側に設けられ、前記発光面から離れるにつれて先細る第2錐状部と、を含み、
     前記第1錐状部は、前記第2錐状部に比較して、底面の径または辺の長さが大きい、請求項1~7のいずれかに記載の表示装置。
  9.  前記遮光部は、前記第1発光層の前記発光面および前記第2発光層の前記発光面の周辺であってかつ前記第1発光層の前記発光面および前記第2発光層の発光面を含む仮想平面の上側に設けられ、それぞれが前記第1発光層の前記発光面および前記第2発光層の前記発光面とは逆側に向かって開放された1以上の切り欠きを有する櫛形状部と、を含み、
     前記1以上の切り欠きのうちの前記第1発光層に対応する第1の切り欠きの領域の面積は、前記1以上の切り欠きのうちの前記第2発光層に対応する第2の切り欠きの領域の面積よりも小さい、請求項1~8のいずれかに記載の表示装置。
  10.  前記発光面の上方に、前記発光面から距離をおいて設けられた透明板をさらに備え、
     前記櫛形状部は、前記透明板に固定された、請求項9に記載の表示装置。
  11.  前記第1発光層および前記第2発光層のそれぞれに電荷を供給するか、または、前記第1発光層および前記第2発光層のそれぞれから電荷を供給される共通電極をさらに備え、
     前記共通電極は、前記発光面に沿って広がる仮想平面に平行な方向の配置において、前記遮光部から距離を置いて設けられた、請求項7~10のいずれかに記載の表示装置。
  12.  前記遮光部は、可視光を吸収する材料で形成されている、請求項1~11のいずれかに記載の表示装置。
  13.  前記複数の発光層のそれぞれへ電荷を輸送するか、または、前記複数の発光層から電荷を輸送される透明の共通電荷輸送層をさらに備えた、請求項1~12のいずれかに記載の表示装置。
PCT/JP2020/026358 2020-07-06 2020-07-06 表示装置 WO2022009257A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/013,846 US20230180532A1 (en) 2020-07-06 2020-07-06 Display device
PCT/JP2020/026358 WO2022009257A1 (ja) 2020-07-06 2020-07-06 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026358 WO2022009257A1 (ja) 2020-07-06 2020-07-06 表示装置

Publications (1)

Publication Number Publication Date
WO2022009257A1 true WO2022009257A1 (ja) 2022-01-13

Family

ID=79553112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026358 WO2022009257A1 (ja) 2020-07-06 2020-07-06 表示装置

Country Status (2)

Country Link
US (1) US20230180532A1 (ja)
WO (1) WO2022009257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4312482A1 (en) * 2022-07-26 2024-01-31 Samsung Display Co., Ltd. Display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040352A (ja) * 2009-08-18 2011-02-24 Sony Corp 表示装置
JP2012054091A (ja) * 2010-09-01 2012-03-15 Canon Inc 多色表示装置
JP2012221811A (ja) * 2011-04-11 2012-11-12 Canon Inc 表示装置
US20140048779A1 (en) * 2012-08-14 2014-02-20 Min Tak LEE Organic light emitting display device
JP2015146304A (ja) * 2014-02-04 2015-08-13 ソニー株式会社 表示装置、および電子機器
JP2020017349A (ja) * 2018-07-23 2020-01-30 株式会社Joled 有機el表示パネル
JP2020021619A (ja) * 2018-07-31 2020-02-06 株式会社Joled 発光装置および電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040352A (ja) * 2009-08-18 2011-02-24 Sony Corp 表示装置
JP2012054091A (ja) * 2010-09-01 2012-03-15 Canon Inc 多色表示装置
JP2012221811A (ja) * 2011-04-11 2012-11-12 Canon Inc 表示装置
US20140048779A1 (en) * 2012-08-14 2014-02-20 Min Tak LEE Organic light emitting display device
JP2015146304A (ja) * 2014-02-04 2015-08-13 ソニー株式会社 表示装置、および電子機器
JP2020017349A (ja) * 2018-07-23 2020-01-30 株式会社Joled 有機el表示パネル
JP2020021619A (ja) * 2018-07-31 2020-02-06 株式会社Joled 発光装置および電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4312482A1 (en) * 2022-07-26 2024-01-31 Samsung Display Co., Ltd. Display device

Also Published As

Publication number Publication date
US20230180532A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2021254228A1 (zh) 显示面板和显示装置
CN112185268B (zh) 图像显示元件
US10770441B2 (en) Display device having a plurality of bank structures
JP6686497B2 (ja) 電気光学装置及び電子機器
KR20170052455A (ko) 유기발광 표시장치
US11456288B2 (en) Image display element
WO2016031679A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置、および表示装置
JP2012226931A (ja) 表示装置
KR101749147B1 (ko) 유기발광 표시장치 및 그 제조방법
US11839093B2 (en) Image rendering in organic light emitting diode (OLED) displays, apparatuses, systems, and methods
US8648527B2 (en) Display apparatus
US20130076236A1 (en) Display apparatus
JP2013120731A (ja) 表示装置
JP2013058447A (ja) 有機el発光装置
US20120256562A1 (en) Display apparatus
WO2016080310A1 (ja) 有機エレクトロルミネッセンス装置および有機エレクトロルミネッセンス装置の製造方法
KR102393788B1 (ko) 유기발광 표시장치
WO2022009257A1 (ja) 表示装置
KR20230127994A (ko) 표시 장치 및 전자 기기
JP2012252984A (ja) 表示装置
JP2012248453A (ja) 表示装置
KR20210017493A (ko) 표시장치
WO2022094973A1 (zh) 显示面板及显示装置
JP2013080661A (ja) 表示装置及びその製造方法
JP2012221687A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP