WO2022007849A1 - 具有制冰组件的制冷电器及清洁方法 - Google Patents

具有制冰组件的制冷电器及清洁方法 Download PDF

Info

Publication number
WO2022007849A1
WO2022007849A1 PCT/CN2021/105018 CN2021105018W WO2022007849A1 WO 2022007849 A1 WO2022007849 A1 WO 2022007849A1 CN 2021105018 W CN2021105018 W CN 2021105018W WO 2022007849 A1 WO2022007849 A1 WO 2022007849A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
cleaning
ice maker
fluid
storage volume
Prior art date
Application number
PCT/CN2021/105018
Other languages
English (en)
French (fr)
Inventor
坎迪桑托什
纳加 萨提亚 维杰 库马尔 科特文卡塔
本杰明 米勒查尔斯
尼古拉斯 吉尔基布拉德利
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to AU2021306388A priority Critical patent/AU2021306388A1/en
Priority to CN202180048113.7A priority patent/CN116018488A/zh
Priority to EP21838736.3A priority patent/EP4180745A4/en
Publication of WO2022007849A1 publication Critical patent/WO2022007849A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/22Distributing ice particularly adapted for household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/12Means for sanitation

Definitions

  • the present invention relates generally to refrigeration appliances and ice making assemblies, and more particularly to features and methods for cleaning ice making assemblies (eg, within refrigeration appliances).
  • Some refrigeration appliances include ice makers. To create ice, liquid water is directed to an ice maker and frozen. Depending on the specific ice maker used, many types of ice can be produced. For example, some ice makers include a mold body for receiving liquid water. An auger within the mold body can rotate and scrape ice from the inner surface of the mold body to form ice cubes. This type of ice maker is often referred to as a block ice maker. Certain consumers prefer block ice makers and their associated ice cubes.
  • Ice cubes are usually stored at temperatures above the freezing temperature of liquid water to preserve the texture of the ice cubes. When stored at such temperatures, at least a portion of the ice cubes will melt into liquid water. Typically, liquid water thus accumulates in the ice bucket of the ice making assembly. This can create many difficult or undesirable situations for refrigeration appliances. For example, every time some liquid water freezes, it causes parts of the ice to freeze together, making it difficult to dispense the ice. Also, liquid water may damage or adversely affect electrical components such as electric motors. Additionally, liquid water can be difficult to remove and, in some cases, can drip or flow from the ice dispensing portion of the refrigeration appliance.
  • a method of cleaning an ice making assembly may include positioning a cleaning cartridge containing detergent along a fluid path between the ice maker and the fluid storage volume, and initiating a flow of water to the fluid storage volume.
  • the method may further include directing a flow of overflow water to the ice maker and directing water from the ice maker to a cleaning cartridge to generate a cleaning solution.
  • the method may further include: forcing the cleaning solution through the fluid storage volume to the ice maker, and opening a drain line downstream of the cleaning cartridge between the fluid storage volume and the ice maker to direct the cleaning solution out of the fluid path.
  • a refrigeration appliance may include a case, an ice making assembly, and a controller.
  • An ice making assembly may be attached to the case.
  • the ice making assembly may include: a fluid path downstream of the water supply conduit; an ice making machine disposed along the fluid path; a fluid storage volume disposed along the fluid path, connected to the ice making machine in fluid communication; a cleaning cartridge containing a cleaning agent and selectively disposed along a fluid path between the ice maker and the fluid storage volume; and a drain conduit between the fluid storage volume and the ice maker downstream of the cleaning filter element in between.
  • a controller may be in operative communication with the ice making assembly.
  • the controller may be configured to initiate a cleaning operation comprising: initiating a flow of water from the water supply conduit to the fluid storage volume, directing a flow of overflow water to the ice maker, directing water from the ice maker along the fluid path to the cleaning cartridge, To generate the cleaning solution, force the cleaning solution through the fluid storage volume to the ice maker, and open the drain line to direct the cleaning solution away from the fluid path.
  • FIG. 1 provides a perspective view of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a perspective view of a door of the exemplary refrigeration appliance of FIG. 1 .
  • FIG. 3 provides a schematic diagram of the hermetic cooling system of the exemplary refrigeration appliance shown in FIG. 1 .
  • FIG. 4 provides a front view of the door of the exemplary refrigeration appliance of FIG. 2 having an access door of the door shown in an open position and an ice storage bin mounted for ice making operations.
  • FIG. 5 provides a schematic diagram of an ice making assembly according to an exemplary embodiment of the present invention.
  • FIG. 6 provides a schematic front view of a portion of an ice making assembly according to an exemplary embodiment of the present invention.
  • Figure 7 provides a schematic front view of a portion of an ice making assembly according to an exemplary embodiment of the present invention with the ice bank removed for cleaning operations.
  • FIG. 8 provides a schematic front view of a portion of the example ice making assembly of FIG. 7 with the ice storage bin replaced for an ice making operation.
  • FIG. 9 provides a schematic front view of a portion of an ice making assembly according to an exemplary embodiment of the present invention.
  • FIG. 10 provides a flowchart illustrating a method of operating a refrigeration appliance according to an exemplary embodiment of the present invention.
  • FIG. 11 provides a schematic diagram of an ice making assembly according to other exemplary embodiments of the present invention.
  • FIG. 1 shows a perspective view of refrigerator 100 .
  • Refrigeration appliance 100 includes a box or housing 102 extending in vertical direction V between top 104 and bottom 106 and laterally L between first side 108 and second side 110 , and extends along the transverse direction T between the front side 112 and the rear side 114 .
  • Each of the vertical direction V, the lateral direction L, and the lateral direction T are perpendicular to each other.
  • the housing 102 defines a refrigerated compartment for receiving food items for storage.
  • the housing 102 defines a food preservation compartment 122 disposed at or adjacent to the top 104 of the housing 102 and a freezer compartment 124 disposed at or adjacent to the bottom 106 of the housing 102 .
  • the refrigeration appliance 100 is generally referred to as a bottom-mounted refrigerator.
  • the benefits of the present invention are applicable to other types and styles of refrigeration appliances, such as overhead refrigeration appliances or side-by-side refrigeration appliances. Accordingly, the description set forth herein is for illustrative purposes only and is not intended to limit any particular refrigeration chamber configuration in any respect.
  • the refrigerator door 128 is rotatably hinged to the edge of the housing 102 for selective access to the food preservation compartment 122 .
  • a freezing door 130 is arranged below the refrigerating door 128 so as to selectively enter the freezing compartment 124 .
  • the freezer door 130 is coupled to a freezer drawer (not shown) slidably mounted within the freezer compartment 124 .
  • the refrigerator door 128 and the freezer door 130 are shown in the closed position in FIG. 1 .
  • the refrigeration appliance 100 also includes a delivery assembly 140 for delivering or dispensing liquid water or ice.
  • the delivery assembly 140 includes a distributor 142 disposed on or mounted to the exterior of the refrigeration appliance 100 (eg, on one of the refrigeration doors 128).
  • the dispenser 142 includes a drain 144 for obtaining ice and liquid water.
  • An actuation mechanism 146 shown as a paddle, is mounted below the drain 144 to operate the dispenser 142 .
  • any suitable actuation mechanism may be used to operate the dispenser 142 .
  • the dispenser 142 may include a sensor (such as an ultrasonic sensor) or a button instead of a paddle.
  • a control panel 148 is provided to control the mode of operation.
  • the control panel 148 includes a number of user inputs (not labeled), such as a water dispense button and an ice dispense button, for selecting a desired mode of operation, such as crushed ice or non-crushed ice.
  • Drain 144 and actuation mechanism 146 are external parts of dispenser 142 and are mounted in dispenser recess 150 .
  • the dispenser recess 150 is provided at a predetermined height that is convenient for the user to take ice or water and enables the user to take the ice without bending over and without opening the refrigerator door 128 .
  • the dispenser recess 150 is positioned near the level of the user's chest.
  • dispensing assembly 140 may receive ice from ice maker 152 disposed in a sub-compartment of food preservation compartment 122 .
  • FIG. 2 provides a perspective view of the door in refrigerated door 128 .
  • an alternate embodiment of the refrigeration appliance 100 includes a sub-compartment 160 defined on the refrigeration door body 128 .
  • the sub-compartment 160 is commonly referred to as an "ice box”. Also, the sub-compartment 160 extends into the fresh food compartment 122 when the refrigerating door 128 is in the closed position.
  • FIG. 3 provides a schematic diagram of certain components of the refrigeration appliance 100 .
  • the refrigeration appliance 100 includes a hermetic cooling system 180 for implementing a vapor compression cycle for cooling within the refrigeration appliance 100 (eg, the food preservation compartment 122 and the freezer). air in chamber 124).
  • the sealed refrigeration system 180 includes a compressor 182 , a condenser 184 , an expansion device 186 , and an evaporator 188 fluidly connected in series and filled with refrigerant.
  • the sealed cooling system 180 may include additional components (eg, at least one additional evaporator, compressor, expansion device, or condenser).
  • the hermetic cooling system 180 may include two evaporators.
  • the gaseous refrigerant flows into a compressor 182, which operates to increase the pressure of the refrigerant. Compression of the refrigerant raises its temperature, which is lowered by the passage of the gaseous refrigerant through condenser 184 . Within the condenser 184, heat exchange with ambient air takes place in order to cool the refrigerant and condense the refrigerant to a liquid state.
  • Expansion device 186 receives liquid refrigerant from condenser 184 .
  • Liquid refrigerant enters evaporator 188 from expansion device 186 .
  • the liquid refrigerant drops in pressure and evaporates. Due to the pressure drop and phase change of the refrigerant, the evaporator 188 is cool relative to the fresh food compartment 122 and the freezer compartment 124 of the refrigeration appliance 100 . Thereby, cooling air is generated and the fresh food compartment 122 and the freezing compartment 124 of the refrigeration appliance 100 are cooled.
  • the evaporator 188 is a heat exchanger that transfers heat from the air passing through the evaporator 188 to the refrigerant flowing through the evaporator 188 .
  • the refrigeration appliance 100 also includes a valve 194 (eg, in fluid communication with the water supply conduit 272) for regulating the flow of liquid water to the fluid flow path or the ice maker 210 along the path.
  • Valve 194 is selectively adjustable between an open configuration and a closed configuration. In the open configuration, valve 194 allows liquid water to flow to ice maker 210 . Conversely, in the closed configuration, valve 194 blocks the flow of liquid water to ice maker 210 .
  • the refrigeration appliance 100 also includes an air handler 192 .
  • the air handler 192 is operable to push cool air from the evaporator (FIG. 3) (eg, within the freezer compartment 124) into the ice compartment 160 (eg, via supply and return ducts or cool air passages), and may is any suitable means for moving air.
  • the air handler 192 may be an axial fan or a centrifugal fan.
  • Operation of refrigeration appliance 100 may be regulated by controller 190 operatively coupled to (eg, in electrical or wireless communication with) user interface panel 148 , sealed cooling system 180 , or various other components.
  • User interface panel 148 provides selections for the user to operate the operation of refrigeration appliance 100, such as in dispensing ice, cold water, or various other options.
  • the controller 190 may operate various components of the refrigeration appliance 100 in response to user manipulation of the user interface panel 148 or one or more sensor signals.
  • the controller 190 may include memory and one or more microprocessors, CPUs, etc., such as a general-purpose or special-purpose microprocessor, for executing programmed instructions or micro-control code associated with the operation of the refrigeration appliance 100 .
  • the memory may represent random access memory such as DRAM or read only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be contained on a board within the processor.
  • the controller 190 may be implemented without the use of a microprocessor (eg, using a combination of discrete analog or digital logic circuits such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) To perform control functions instead of relying on software.
  • the controller 190 may be provided at various locations throughout the refrigeration appliance 100 .
  • controller 190 is located within user interface panel 148.
  • the controller 190 may be disposed at any suitable location within the refrigeration appliance 100, such as, for example, within a food preservation compartment, a freezer door, and the like.
  • I/O Input/output
  • signals may be routed between the controller 190 and various operational components of the refrigeration appliance 100 .
  • user interface panel 148 may communicate with controller 190 via one or more signal lines or a shared communication bus.
  • the controller 190 may communicate with various components of the refrigeration appliance 100 and may control the operation of the various components. For example, various valves, switches, etc. may be actuated based on commands from the controller 190 .
  • the interface panel 148 may additionally be in communication with the controller 190, as described. As such, various operations may occur automatically based on user input or via controller 190 instructions.
  • certain embodiments include an ice making assembly 200 that includes an ice making machine 210 and a selectively removable ice storage bin 212 attached to the bin 102 ( FIG. 1 ). (eg, indirectly via door 128, or alternatively, directly within the refrigerated compartment defined by enclosure 102).
  • ice making assembly 200 is provided or disposed within ice bin compartment 160 .
  • ice making assembly 200 may be installed directly within a refrigeration compartment (eg, freezer compartment 124 - FIG. 1 ) of refrigeration appliance 100 .
  • ice may be selectively supplied to the dispenser 142 recess 150 ( FIG. 1 ) from the ice maker 210 or the ice storage bin 212 in the ice bin compartment 160 on the rear side of the refrigerated door 128 (eg, , during or as part of an ice making operation).
  • air from the sealing system 180 ( FIG. 3 ) of the refrigeration appliance 100 may be directed into the ice maker 210 in order to cool the ice maker 210 .
  • cool air from sealing system 180 may cool components of ice maker 210, such as the housing or mold body of ice maker 210, to or below the freezing temperature of liquid water.
  • the ice maker 210 may be an air cooled ice maker 210 .
  • Cool air from sealing system 180 may also cool ice bank 212 .
  • the air surrounding the ice storage bin 212 may be cooled to a temperature above the freezing temperature of liquid water (eg, to about the temperature of the food preservation compartment 122, so that the ice cubes in the ice storage bin 212 due to exposure to liquid water air at temperatures above the freezing temperature that melts over time).
  • the access door 166 is hinged to the refrigerated door body 128 .
  • access door 166 may allow selective access to ice compartment 160 .
  • Any suitable latch 168 is configured with the ice compartment 160 to hold the access door 166 in the closed position.
  • latch 168 may be actuated by a consumer to open access door 166 to provide access into ice bin compartment 160 .
  • Access door 166 may also assist in insulating ice compartment 160 .
  • ice making assembly 200 is illustrated as being at least partially enclosed within ice bin compartment 160 , alternative embodiments may not have any separate access door 166 (eg, such that ice making assembly 200 is generally associated with at least one of refrigeration appliance 100 ) A refrigerated compartment is in open fluid communication).
  • FIGS. 5 and 6 provide schematic illustrations of ice making assembly 200 (eg, during a cleaning operation).
  • filter assembly 240 may be positioned downstream of support tray 218 and tray outlet 234 to filter liquid water (eg, prior to selectively returning the liquid water to ice maker 210). Also, filter assembly 240 , support tray 218 and ice maker 210 may be positioned along fluid flow path 260 .
  • fluid flow path 260 may receive liquid (eg, water from water supply line 272), fluid flow path 260 may be defined as a closed circuit with one or more drains or drain lines. Additionally or alternatively, fluid flow path 260 may be fluidly isolated from dispenser 142 such that liquid within or discharged from fluid flow path 260 does not flow into or out of dispenser 142 .
  • the cartridge mounting area 211 is positioned adjacent to the ice maker 210 (eg, to receive ice cubes or fluid therefrom, depending on the operation initiated at a given time). As shown, the cartridge mounting area 211 extends in the vertical direction V between the top end 214 and the bottom end 216 .
  • the support tray 218 may generally define or extend below the bottom end 216 to provide an area above which cartridges may be received. Also, the support tray 218 may define a tray outlet 234 to allow liquid to flow therethrough. Additionally or alternatively, a support tray 218 may be mounted or formed on a portion of the door body 128 to hold or otherwise engage a cartridge mounted within the cartridge mounting area 211 .
  • an ice storage bin 212 is provided. Specifically, the ice storage bin 212 may be selectively or removably received within the bin mounting area 211 (eg, during an ice making operation). For example, the ice bin 212 may be slidably mounted on the support tray 218 within the ice bin compartment 160 . Generally, the ice storage bin 212 defines an ice storage volume 224 for holding ice cubes therein. It should be appreciated that a movable auger or paddle may be mounted within the ice storage volume 224 to agitate or push the ice therein.
  • An ice inlet 220 may be defined (eg, at the upper end) to allow ice from the ice maker 210 to enter the ice storage volume 224 (eg, during an ice making operation when the ice storage bin 212 is received within the bin mounting area 211).
  • an ice outlet 222 is defined (eg, at the lower end) to selectively allow ice to pass from the ice storage volume 224 to the dispenser 142 (FIG. 1).
  • the ice storage bin 212 may define a bin outlet 226 through the lower end.
  • the bottom wall 228 of the ice bank 212 may define one or more apertures therethrough (eg, above the tray outlet 234).
  • the size (eg, diameter) of the orifice of the cartridge outlet 226 can be designed to be large enough to allow liquid water to flow therethrough and to the tray outlet 234 .
  • the orifice of the cartridge outlet 226 may be defined as a series of unobstructed perforations.
  • the bin outlet 226 may include a removable or resilient plug configured to selectively engage the support tray 218 and allow water when the ice storage bin 212 is fully contained within the ice bin compartment 160 Tray outlet 234 is reached through cassette outlet 226 .
  • a cleaning box 229 is provided.
  • cleaning cartridge 229 may be selectively or removably received within cartridge mounting area 211 (e.g., during cleaning operations).
  • a cleaning box 229 may be installed in the box mounting area 211 in place of the ice bank 212 so that cleaning operations can be performed without flowing a cleaning solution through the ice bank 212 .
  • the cleaning box 229 may be slidably mounted on the support tray 218 within the ice box compartment 160 .
  • the cleaning box 229 defines a container volume 230 for holding a liquid (eg, water or cleaning solution) therein.
  • the container volume 230 may generally be open and unobstructed by any internal (eg, movable) components.
  • a container inlet 232 may be defined (eg, at the upper end) to allow liquid water or cleaning solution from the ice maker 210 to enter the container volume 230 (eg, during a cleaning operation, when the cleaning box 229 is received within the box mounting area 211 ) .
  • a container outlet 233 is defined at the lower end of the cleaning box 229 .
  • the bottom wall 231 of the cleaning box 229 may define one or more apertures therethrough.
  • the size (eg, diameter) of the orifice of the container outlet 233 can be designed to be large enough to allow liquid water to flow therethrough.
  • the orifice of the container outlet 233 may be defined as a series of unobstructed perforations.
  • the container outlet 233 may include a removable or resilient plug configured to selectively engage the support tray 218 and allow the passage of water when the cleaning box 229 is fully contained within the ice box compartment 160 The container outlet 233 reaches the tray outlet 234 .
  • cleaning box 229 is provided as part of an assembly kit with ice storage box 212 and appliance 100 so that a user can selectively interchange or exchange ice storage box 212 with cleaning box 229 (eg, to to allow appliance 100 to perform cleaning operations), and similarly, interchange or exchange cleaning bin 229 with ice bank 212 (eg, to allow appliance 100 to perform ice making operations).
  • FIGS. 7-9 although separate ice bin 212 and cleaning bin 229 are illustrated with respect to FIGS. 5 and 6 , alternative embodiments may include only a single bin (eg, ice bin 212 ) that Ice may be contained without receiving liquid (eg, water or cleaning solution) directly from ice maker 210 .
  • the collection cup 284 may be positioned below the ice maker 210 .
  • the collection cup 284 may be disposed horizontally between the ice bank 212 and the ice maker 210 (eg, when the ice bank 212 is mounted in the bin mounting area 211 or received on the support tray 218). Additionally or alternatively, at least a portion of the collection cup 284 may be positioned above the ice storage bin 212 .
  • collection cup 284 defines at least one fluid outlet (eg, apex outlet 286 ) along fluid flow path 260 between ice maker 210 and filter assembly 240 (eg, at filter element mounting area 241 ).
  • apex outlet 286 may be downstream of the ice maker 210 while upstream of the filter element mounting area 241 of the filter assembly 240 (FIG. 5).
  • the collection cup 284 may be fixedly mounted (eg, within the ice bin 160).
  • the collection cup 284 includes a lower funnel base 288 attached to the upper guide plate 289 .
  • the upper guide plate 289 may be inclined along a slope from the ice maker 210 toward the box mounting area 211 .
  • the upper guide plate 289 may define one or more plate apertures 290 that extend through the upper guide plate (eg, along the vertical V) to the lower funnel base 288.
  • the plate apertures 290 may each define a diameter that is smaller than the predetermined size of the ice cubes formed within the ice maker 210 .
  • guides 289 may guide ice cubes to ice storage bin 212 (eg, ice storage volume 224).
  • a liquid eg, water or cleaning solution
  • the apex outlet 286 may be defined through the lower funnel base 288 (eg, at its lowest point) such that water or cleaning solution is allowed to flow from the lower funnel base 288 to the filter assembly 240 .
  • the collection cup 284 may be removably (eg, pivotally) mounted (eg, within the ice bin 160).
  • the collection cup 284 includes a funnel wall 292 disposed proximate the cartridge mounting area 211 .
  • the secondary wall 294 may be positioned proximate the ice maker 210 .
  • the funnel wall 292 and the secondary wall 294 may extend in opposite directions to the apex.
  • funnel wall 292 and secondary wall 294 may be joined together as a continuous or integral funnel.
  • the collection cup 284 may be pivotally mounted to rotate about a predetermined pivot axis A (eg, defined above the ice bank 212).
  • the pivot axis A is positioned closer to the cartridge mounting area 211 (eg, in a horizontal direction, eg, lateral direction L) than the apex outlet 286 .
  • the collection cup 284 is selectively movable between a storage position (eg, FIG. 8 ) and a cleaning position (eg, FIG. 9 ).
  • ice storage bin 212 may be fully contained within ice bin 160 (eg, on support tray 218 or otherwise between ice maker 210 and filter element mounting area 241 ) proximate funnel wall 292 .
  • the funnel wall 292 may pivot downward toward the ice bank.
  • funnel wall 292 may thereby direct ice cubes to ice storage bin 212 (eg, ice storage volume 224).
  • ice bank 212 may be removed from ice bank compartment 160 or otherwise removed from collection cup 284 .
  • the funnel wall 292 can pivot upward.
  • liquid from ice maker 210 may be directed along funnel wall 292 to apex outlet 286 (eg, such that water is allowed to flow from lower funnel base 288 to filter assembly 240).
  • filter assembly 240 includes a selectively removable fluid filter 242 having one or more filter media therein for treating water.
  • fluid filter 242 is disposed along fluid flow path 260 between ice maker 210 and one or more fluid storage volumes.
  • a cartridge mounting area 241 may be defined below the support tray 218 (eg, along vertical V) to accommodate the fluid filter 242 .
  • the cartridge mounting area 241 may be directly below the support tray 218, or alternatively, offset laterally therefrom.
  • the filter element mounting area 241 includes a filter element inlet 244 and a filter element outlet 246 located along the vertical direction V below (eg, lower than) the filter element inlet 244 .
  • the cartridge inlet 244 When assembled, the cartridge inlet 244 is positioned downstream of the tray outlet 234 so that water flowing from the tray outlet 234 (e.g., as pushed by gravity) can enter the fluid filter 242 through the cartridge inlet 244. Also, the cartridge outlet 246 is disposed downstream of the cartridge inlet 244 .
  • Fluid filter 242 may comprise any suitable filter media.
  • the filter medium comprises a mixed resin medium, such as a mixed bed medium of mixed anionic and cationic resins.
  • the mixed bed media can be configured to remove dissolved solids, such as inorganic salts of sodium and chloride ions.
  • Additional or alternative embodiments may include another suitable medium configured to filter liquid water, such as a paper filter element, activated carbon, or the like.
  • the filter assembly 240 may include a selectively removable cleaning cartridge 247 containing one or more cleaning solutions for generating a cleaning solution (eg, when mixed with or dissolved in water) agent.
  • the cleaning agent may be any suitable cleaning agent used to descale or disinfect (eg, eliminate pathogens) within the ice maker, such as citric acid or nitric acid.
  • a cleaning cartridge 247 is disposed along the fluid flow path 260 at the cartridge mounting area 241 (eg, in place of the fluid filter 242 ).
  • the cleaning cartridge 247 when installed within the cartridge mounting area 241 , the cleaning cartridge 247 may be retained or otherwise disposed between the cartridge inlet 244 and the cartridge outlet 246 such that water flowing along the flow path 260 is generally forced through the cleaning cartridge 247 (eg, to mix with or dissolve the cleaning agent therein).
  • a filter storage tank 248 defining a storage volume (eg, first storage volume 252 ) is provided downstream of filter element mounting area 241 (ie, downstream of filter element outlet 246 ) to receive liquid (eg, liquid state) therefrom
  • the water or cleaning solution is based on whether the fluid filter 242 or cleaning cartridge 247 is installed in the cartridge mounting area 241 ,).
  • the filter storage tank 248 may define a tank inlet 256 through which liquid may be received.
  • liquid water may be received after such water has been filtered within fluid filter 242 and passed through cartridge outlet 246 (eg, during an ice making operation where fluid filter 242 is installed within cartridge mounting area 241).
  • the liquid cleaning solution 241 may be received after the liquid cleaning solution is generated within the filter element mounting area 241 and passes through the filter element outlet 246 (eg, during a cleaning operation in which the cleaning filter element 247 is installed within the filter element mounting area).
  • filter storage tank 248 is positioned below cartridge mounting area 241 (eg, along vertical V).
  • liquid water can flow (eg, as propelled by gravity) from the cartridge mounting area 241 to the filter reservoir 248 without the need for any intermediate pumps, valves, or other mechanically driven fluid propelling devices.
  • a filter reservoir 248 may optionally be disposed upstream of the filter mount assembly 240 .
  • a filter element eg, fluid filter element 242 or cleaning filter element 247
  • filter element mounting area 241 may be in fluid communication between filter reservoir 248 and ice maker 210 or upper reservoir 264.
  • liquid water may be drawn from the filter storage tank 248 through the filter cartridge mounting area 241 via, for example, a fluid pump 254 downstream of the filter storage tank 248 or the filter cartridge mounting area 241 .
  • a fluid pump 254 may be provided in fluid communication between the filter reservoir 248 and the ice maker 210 .
  • the fluid pump 254 may be configured to selectively direct or push liquid water or cleaning from the first storage volume 252 (eg, after passing through the tank outlet 258 ) and through the fluid flow path 260 between the fluid pump 254 and the ice maker 210 solution.
  • ice maker 210 is positioned above filter storage tank 248 such that fluid pump 254 is forced to push liquid (eg, water or cleaning solution) at least partially along vertical V.
  • a check valve 262 is disposed along (eg, in fluid communication with) the fluid flow path 260 downstream of the fluid pump 254 .
  • a drain line (eg, first drain line 310 ) is typically provided between first storage volume 252 and fluid pump 254 or ice maker 210 .
  • the first drain conduit 310 may extend between the first drain end 312 and the second drain end 314 .
  • the first drain end 312 may be coupled to the fluid flow path 260 downstream of the tank outlet 258 (or generally the first storage volume 252 ), while the second drain end 314 is coupled to the fluid flow path 260 downstream of the first drain end 312 Fluid flow paths 260 are spaced apart.
  • a suitable drain plug or valve 318 may be provided on the first drain conduit 310 to selectively open or close the second drain conduit 320 (eg, as manually pushed by a user, or alternatively, operably by a indicated by controller 190 coupled to drain valve 318).
  • the drain valve 318 may be further mounted in fluid communication with a separate refrigeration drain (eg, to direct water away from the refrigeration appliance 100, such as to a municipal drain or surrounding area) surroundings).
  • liquid water may flow from the first storage volume 252 to the fluid pump 254 before reaching the ice maker 210 .
  • the first drain conduit 310 may be closed during such operations.
  • the generated liquid cleaning solution may flow from the first storage volume 252 to the fluid pump 254 before reaching the ice maker 210 during certain portions or phases of the cleaning operation.
  • the first drain conduit 310 may be closed.
  • the first drain conduit 310 may be opened to direct the cleaning solution out of the fluid flow path 260 during other portions or phases of the cleaning operation (eg, after the cleaning solution is generated and circulated through the fluid flow path 260 ).
  • an upper reservoir 264 defining a storage volume is disposed upstream of the ice maker 210 .
  • the upper reservoir 264 may be provided at a location above the filter element mounting area 241 or the support tray 218 .
  • upper reservoir 264 is disposed at least partially above ice maker 210 .
  • the upper reservoir 264 may be positioned directly above the ice maker 210 to selectively flow liquid to the ice maker.
  • the upper reservoir 264 is positioned downstream of the fluid pump 254 .
  • a reservoir inlet 268 defined by upper reservoir 264 may be disposed upstream of second storage volume 266 to selectively receive liquid water from fluid pump 254 flowing through fluid flow path 260 .
  • a reservoir outlet 270 may also be defined by the upper reservoir 264 downstream of the second storage volume 266 and upstream of the ice maker 210 .
  • a drain conduit (eg, second drain conduit 320 ) is disposed between second storage volume 266 and ice maker 210 .
  • the second drain conduit 320 may extend between the first drain end 322 and the second drain end 324 .
  • the first drain end 322 may be coupled to the fluid flow path 260 downstream of the reservoir outlet 270 (or generally the second storage volume 266 ), while the second drain end 324 is at the first drain end 322 Downstream is spaced from the fluid flow path 260 .
  • a suitable drain plug or valve may be provided on the second drain conduit 320 to selectively open or close the second drain conduit 320 (eg, as manually pushed by a user, or alternatively, by an operably coupled controller 190 to drain valve 318 instructs).
  • the second drain conduit 320 may be coupled to the same drain valve 318 as the first drain conduit 310 . It will be appreciated, however, that alternative embodiments may include separate drain plugs or valves corresponding to the first drain conduit 310 and the second drain conduit 320, respectively.
  • liquid may flow from the fluid pump 254 to the second storage volume 266 before reaching the ice maker 210 .
  • liquid water may flow from the fluid pump 254 to the second storage volume 266 before reaching the ice maker 210 .
  • the second drain conduit 320 may be closed during such operations.
  • the generated liquid cleaning solution may flow from the fluid pump to the second storage volume 266 before reaching the ice maker 210 during certain portions or phases of the cleaning operation. If present, the second drain conduit 320 may be closed.
  • liquid water may be supplied to the ice maker 210 and subsequently to cleaning installed in the filter element installation area 241 after such water is supplied to the ice maker 210 .
  • Cartridge 247 was previously supplied to second storage volume 266 (eg, from water supply line 272).
  • the second drain conduit 320 may be opened to direct the cleaning solution out of the fluid flow path 260.
  • water supply conduit 272 is provided in selective fluid communication with ice making assembly 200 . It should be appreciated that the water supply conduit 272 may be in fluid communication downstream to receive a flow or volume of water from a suitable water source (eg, a municipal water system, a residential well, etc.). Optionally, the water supply conduit 272 may also be in upstream fluid communication with the fluid flow path 260 (eg, supply liquid water thereto). For example, water supply conduit 272 may be connected to fluid flow path 260 at a location between fluid pump 254 (eg, or check valve 262 ) and second storage volume 266 .
  • fluid pump 254 eg, or check valve 262
  • pre-filter 274 and supply valve 276 are disposed upstream of ice making assembly 200 (eg, fluid flow path 260). Water received in fluid flow path 260 from water supply conduit 272 may thus be forced through pre-filter 274 before being directed to ice making assembly 200 .
  • the pre-filter 274 may generally comprise any suitable filter body or media.
  • the pre-filter 274 may be an activated carbon filter configured to remove sediment or organic material from the water supplied thereto.
  • supply valve 276 is provided in fluid communication between second storage volume 266 and water supply conduit 272 (eg, with or as part of valve 194 - Figure 3).
  • supply valve 276 may be located downstream of fluid pump 254 or check valve 262 along fluid flow path 260 .
  • Supply valve 276 may be configured as any suitable valve (eg, independent of or separate from fluid pump 254 ) for selectively allowing or restricting water from water supply conduit 272 into fluid flow path 260 .
  • liquid water can selectively and alternately flow from the first storage volume 252 and the water supply conduit 272 to the second storage volume 266 .
  • one or more liquid level sensors are provided.
  • a first liquid level sensor 280 may be mounted to the filter storage tank 248 in fluid communication with the first storage volume 252 to detect the amount or volume of water therein.
  • a second liquid level sensor 282 may be mounted to the upper liquid reservoir 264 in fluid communication with the second storage volume 266 to detect the amount or volume of water therein.
  • One or both of the liquid level sensors 280, 282 may be operably coupled to (ie, in operative communication with) the controller 190.
  • the liquid level sensors 280, 282 may be provided as any suitable liquid detection sensors (eg, floating spring sensors, ultrasonic sensors, conductivity sensors, etc.).
  • the controller 190 may thereby generally determine whether and when the water within the first storage volume 252 or the second storage volume 266 has reached one or more corresponding predetermined levels.
  • the controller 190 is configured to control or direct the flow of liquid (eg, water or cleaning solution) to the second storage volume 266 alternately from the first storage volume 252 and the water supply conduit 272 .
  • the controller 190 may be configured to initiate a cleaning operation.
  • controller 190 may communicate with control panel 148 , air handler 192 , compressor 182 , ice maker 210 , fluid pump 254 , supply valve 276 , or one or more sensors 280 , 282 .
  • controller 190 may send signals to and receive signals from panel 148 , air handler 192 , compressor 182 , ice maker 210 , fluid pump 254 , supply valve 276 , or one or more sensors 280 , 282 .
  • the controller 190 may also communicate with other suitable components of the appliance 100 to facilitate operation of the appliance 100 .
  • the disclosed method can advantageously provide cleaning of the ice making assembly without removing various parts of the assembly, such as an ice maker. Additionally or alternatively, the disclosed method can easily, efficiently and effectively clean parts of the assembly, eg, without extensive user intervention or care.
  • Figure 10 depicts steps performed in a particular order for purposes of example and discussion. Using the summary provided herein, one of ordinary skill in the art should appreciate that the steps of any method described herein may be modified, adapted, rearranged, omitted, or expanded in various ways without departing from the scope of the invention (except in otherwise described).
  • method 400 includes: arranging along a fluid flow path between an ice maker (such as an ice cube ice maker) and a fluid storage volume (eg, the first storage volume or the second storage volume, as described above) comprising: Cleaning filter element for detergent.
  • the cleaning cartridge is disposed in the cartridge mounting area.
  • the cleaning cartridge may be provided as a replacement for the recirculation filter (eg, provided as a kit).
  • 410 may include replacing the recirculation filter in the cartridge installation area.
  • the replaced recirculation filter may remain separate from the rest of the case or appliance (eg, for the duration of method 400).
  • Such replacement may be performed by a user (eg, manually), and may include any steps normally required to replace a recirculation filter (eg, after the useful life of the recirculation filter has expired).
  • method 400 may require removing the ice storage bin from a location between the ice maker and the cleaning cartridge.
  • the ice storage bin may be separate from the ice bin or bin mounting area in which the ice storage bin is configured to receive ice during an ice making operation.
  • the removed ice bank may remain separate from the remainder of the case or appliance (eg, for the duration of method 400).
  • Such removal may be performed by a user (eg, manually), and may include any steps typically required to replace an ice bank (eg, to completely empty or remove most of the ice retained within the ice bank).
  • the ice bank may need to be removed prior to any subsequent steps (eg, 420 to 460), such as those described below.
  • the ice storage bin may be replaced by a cleaning bin (eg, within the ice bin or bin mounting area).
  • method 400 includes initiating water flow to the fluid storage volume. Specifically, 420 may follow 410 (eg, occur after 410).
  • the activated water flow may be provided, for example, by a water supply pipe.
  • 420 may include opening the supply valve (eg, moving the supply valve to an open configuration, as described above).
  • the fluid pump may remain inactive for the duration of 420 .
  • method 400 includes directing a flow of overflow water to an ice maker.
  • the initiated flow of water at 420 may continue such that a predetermined overflow volume is supplied to the fluid storage volume.
  • the overflow volume may be determined in response to a fill signal received from a level sensor (eg, a second level sensor) within the fluid storage volume or expiration of a predetermined fill time after the water supply valve is opened.
  • the supply valve may be held in an open position and then closed or restricted (eg, moving the supply valve to a closed configuration) when it is determined that a predetermined overflow volume has been supplied to the fluid storage volume.
  • the overflow volume can be directed or released to the ice maker with the overflow water flow.
  • the overflow water flow provides an amount of water that exceeds the capacity of the ice maker, such that at least a portion of the water (eg, excess) is poured out of the ice maker.
  • method 400 includes directing water (eg, excess) from the ice maker to a cleaning cartridge to generate a cleaning solution.
  • the ice maker may be located upstream of the cleaning cartridge along the flow path. Thereby, water can be directed through the assembled flow path before reaching the filter element. In some such embodiments, this includes directing the excess water through the cleaning box or along a path around the ice bank, as described above.
  • 440 includes directing water through a collection cup disposed below the ice maker.
  • the collection cup may be pivotally mounted for movement between the storage position and the cleaning position.
  • 440 may include positioning the collection cup in a clean position such that water is funneled from the ice maker to an outlet (eg, an apex outlet) of the collection cup.
  • the cleaning solution can be pushed or circulated (eg, repeatedly) from the cleaning cartridge along the assembled flow path, such as in a loop.
  • method 400 includes pushing cleaning solution through the fluid storage volume to the ice maker.
  • cleaning solution may be collected (eg, as at least partially driven by gravity) in a first storage volume defined by a storage tank disposed below the cleaning cartridge.
  • the cleaning solution may be pumped (eg, by a fluid pump) to a second storage volume defined by the upper reservoir container.
  • a fluid pump may pump cleaning solution along the fluid path from the first storage volume and up to the second storage volume.
  • method 400 includes opening a drain line downstream of the cleaning cartridge between the fluid storage volume and the ice maker to direct cleaning solution out of the fluid flow path.
  • the second drainage conduit may be opened downstream of the second storage volume, as described above.
  • the first drain conduit may be open downstream of the cleaning cartridge or the first storage volume, also as described above.
  • 460 may be initiated by the determination of the expiry of the cleaning operation.
  • the cleaning operation may have a predetermined time period (eg, in seconds or minutes) during which fluid (eg, water or cleaning solution) will be pushed through the ice making assembly.
  • fluid eg, water or cleaning solution
  • 460 may be initiated.
  • 460 may be initiated at a user-selected time, such as in response to user input to drain the cleaning solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

制冷电器和操作制冷电器的方法,制冷电器包括箱体、制冰组件和控制器。制冰组件附接到箱体,并且包括:流体路径,该流体路径在供水管道的下游;制冰机,该制冰机沿着流体路径;流体储存容积,该流体储存容积与制冰机流体连通;清洁滤芯,该清洁滤芯选择性地沿着制冰机与流体储存容积之间的流体路径设置;以及排液管道,该排液管道在流体储存容积与制冰机之间。控制器与制冰组件可操作地通信,并且被配置为启动清洁操作,该清洁操作包括:启动从供水管道到流体储存容积的水流,将溢出水流引导至制冰机,将水从制冰机引导至清洁滤芯,将清洁溶液推动到制冰机,并且打开排液管道。

Description

具有制冰组件的制冷电器及清洁方法 技术领域
本发明总体涉及制冷电器和制冰组件,更具体地涉及用于清洁制冰组件(例如,在制冷电器内)的特征和方法。
背景技术
某些制冷电器包括制冰机。为了产生冰,将液态水引导至制冰机并冻结。取决于所使用的特定制冰机,可以产生多种类型的冰。例如,某些制冰机包括用于接收液态水的模具体。模具体内的螺旋送料器可以旋转并从模具体的内表面刮下冰,以形成冰块。这种制冰机通常被称为块式冰制冰机。某些消费者更喜欢块式冰制冰机及其关联的冰块。
冰块通常在高于液态水冻结温度的温度下储存,以保持冰块的质地。当在这样的温度下储存时,至少一部分冰块将融化成液态水。通常,液态水由此会累积在制冰组件的冰桶内。这可能给制冷电器造成许多困难或不期望的情况。比如,一些液态水每次冻结,都导致部分冰块凝结在一起,使得难以分配冰块。而且,液态水可能损坏诸如电机的电气部件或对其性能有不利影响。此外,液态水可能难以去除,并且在某些情况下,可能从制冷电器的冰分配部滴落或流出。
尽管一些现有***已经尝试在制冰组件内再次利用融化的水(例如,为了制造新的冰块),但是这种***仍存在困难。比如,可能难以确保来自融化冰块的液态水不携带或包括不期望的元素,比如沉淀物、污垢、细菌等。定期清洁***可能对解决这种问题有用。然而,清洁整个组件可能是困难的,尤其是当用户无法从组件或制冷电器中去除某些部件进行详细清洁时。
因此,提供一种解决上述问题中的一个或多个的制冷电器或制冰组件将是有用的。特别地,提供一种具有用于清洁制冰组件的特征或方法的制冷电器或制冰组件将是有利的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种清洁制冰组件的方法。该方法可以包 括:沿着制冰机与流体储存容积之间的流体路径设置包含清洁剂的清洁滤芯,并且启动到流体储存容积的水流。该方法还可包括:将溢出水流引导至制冰机,并且将水从制冰机引导至清洁滤芯,以生成清洁溶液。该方法还可以进一步包括:促使清洁溶液通过流体储存容积到制冰机,并且在流体储存容积与制冰机之间打开清洁滤芯下游的排液管道,以引导清洁溶液离开流体路径。
在本发明的另一个示例性方面,提供了一种制冷电器。该制冷电器可以包括箱体、制冰组件和控制器。制冰组件可以附接到箱体。制冰组件可以包括:流体路径,该流体路径在供水管道的下游;制冰机,该制冰机沿着流体路径设置;流体储存容积,该流体储存容积沿着流体路径设置,与制冰机流体连通;清洁滤芯,该清洁滤芯包含清洁剂,并且选择性地沿着制冰机与流体储存容积之间的流体路径设置;以及排液管道,该排液管道在流体储存容积与制冰机之间的清洁滤芯的下游。控制器可以与制冰组件可操作地通信。控制器可以被配置为启动清洁操作,该清洁操作包括:启动从供水管道到流体储存容积的水流,将溢出水流引导至制冰机,将水从制冰机沿着流体路径引导至清洁滤芯,以生成清洁溶液,促使清洁溶液通过流体储存容积将到制冰机,并且打开排液管道,以引导清洁溶液从离开流体路径。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冷电器的立体图。
图2提供了图1的示例性制冷电器的门体的立体图。
图3提供了图1所示的示例性制冷电器的密封冷却***的示意图。
图4提供了图2的示例性制冷电器的门体的主视图,该制冷电器具有被示出为处于打开位置的门体的进入门和安装用于制冰操作的储冰盒。
图5提供了根据本发明的示例性实施方式的制冰组件的示意图。
图6提供了根据本发明的示例性实施方式的制冰组件的一部分的示意性主视图。
图7提供了根据本发明的示例性实施方式的制冰组件的一部分的示意性主视 图,其中为了清洁操作已经去除储冰盒。
图8提供了图7的示例性制冰组件的一部分的示意性主视图,其中为了制冰操作已经放回储冰盒。
图9提供了根据本发明的示例性实施方式的制冰组件的一部分的示意性主视图。
图10提供了例示了根据本发明的示例性实施方式的操作制冷电器的方法的流程图。
图11提供了根据本发明的其他示例性实施方式的制冰组件的示意图。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”)。术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体通路中的流体流动的相对方向。例如,“上游”是指流体流动的来向,而“下游”是指流体流动的去向。
转向附图,图1示出了冰箱100的立体图。制冷电器100包括箱体或壳体102,该箱体或壳体沿着竖向V在顶部104与底部106之间延伸,沿着侧向L在第一侧108与第二侧110之间延伸,并且沿着横向T在前侧112与后侧114之间延伸。竖向V、侧向L以及横向T中的每一个彼此互相垂直。
壳体102限定用于接收食品以便储存的制冷间室。特别地,壳体102限定设置在壳体102的顶部104处或与其相邻设置的食物保鲜室122和布置在壳体102的底部106处或与其相邻布置的冷冻室124。由此可见,制冷电器100通常被称为底置式冰箱。然而,认识到,本发明的益处适用于其他类型和样式的制冷电器,例如,顶置式制冷电器或对开门式制冷电器。因此,本文阐述的描述仅出于例示性目的,而无意于在任何方面限制任何特定的制冷室构造。
冷藏门体128可旋转地铰接到壳体102的边缘,以便选择性地进入食物保鲜室122。另外,在冷藏门体128的下方布置冷冻门体130,以便选择性地进入冷冻室124。冷冻门体130联接至可滑动地安装在冷冻室124内的冷冻抽屉(未示出)。冷藏门体128和冷冻门体130在图1中被示出为处于关闭位置。
制冷电器100还包括用于输送或分配液态水或冰的输送组件140。输送组件140包括分配器142,该分配器设置在制冷电器100的外部上或安装到该外部(例如,在冷藏门体128中的一个上)。分配器142包括用于获取冰和液态水的排放口144。被示出为拨片的致动机构146安装在排放口144下方,以便操作分配器142。在可选示例性实施方式中,可以使用任意合适的致动机构来操作分配器142。例如,分配器142可以包括传感器(诸如超声传感器)或按钮,而不是拨片。设置控制面板148,以便控制操作模式。例如,控制面板148包括多个用户输入(未标记),诸如水分配按钮和冰分配按钮,这些用户输入用于选择期望的操作模式,诸如碎冰或非碎冰。
排放口144和致动机构146是分配器142的外部零件,并且安装在分配器凹部150中。分配器凹部150设置在预定高度处,该预定高度方便用户取冰或水,并且使得用户能够在不需要弯腰的情况下且在不需要打开冷藏门体128的情况下取冰。在示例性实施方式中,分配器凹部150设置在接近用户的胸部水平的位置处。如以下更详细描述的,分配组件140可以从制冰机152接收冰,该制冰机布置在食物保鲜室122的子间室中。
图2提供了冷藏门体128中的门体的立体图。如图所示,制冷电器100的可选实施方式包括在冷藏门体128上限定的子间室160。子间室160通常被称为“冰盒”。而且,当冷藏门体128处于关闭位置时,子间室160延伸到食物保鲜室122中。
图3提供了制冷电器100的某些部件的示意图。如在图3中可以看到的,制冷电器100包括密封冷却***180,该密封冷却***用于执行蒸气压缩循环,该蒸汽压缩循环用于冷却制冷电器100内(例如,食物保鲜室122和冷冻室124内)的空气。密封制冷***180包括流体串联连接并填充有制冷剂的压缩机182、冷凝器184、膨胀装置186以及蒸发器188。如本领域技术人员将理解的,密封冷却***180可以包括另外部件(例如,至少一个另外的蒸发器、压缩机、膨胀装置或冷凝器)。作为示例,密封冷却***180可以包括两个蒸发器。
在密封冷却***180内,气态制冷剂流入压缩机182中,该压缩机运行为增大 制冷剂的压力。制冷剂的压缩升高其温度,通过气态制冷剂通过冷凝器184使该温度降低。在冷凝器184内,进行与周围空气的热交换,以便冷却制冷剂并使得制冷剂冷凝为液态。
膨胀装置186(例如,阀、毛细管或其他限制装置)接收来自冷凝器184的液态制冷剂。液态制冷剂从膨胀装置186进入蒸发器188。在离开膨胀装置186并进入蒸发器188时,液态制冷剂的压力下降并蒸发。由于制冷剂的压降和相变,蒸发器188相对于制冷电器100的食物保鲜室122和冷冻室124是凉的。由此,产生冷却空气并且对制冷电器100的食物保鲜室122和冷冻室124进行制冷。因此,蒸发器188是热交换器,该热交换器将热量从经过蒸发器188的空气传递到流过蒸发器188的制冷剂。
可选地,制冷电器100还包括阀194(例如,与供水管道272流体连通),该阀用于调节液态水向流体流动路径或沿着该路径的制冰机210的流动。阀194可在打开构造与关闭构造之间选择性地调节。在打开构造中,阀194允许液态水流到制冰机210。相反,在关闭构造中,阀194阻挡液态水流到制冰机210。
在一些实施方式中,制冷电器100还包括空气处理器192。空气处理器192可运行以推动冷空气从蒸发器(图3)(例如,在冷冻室124内)流入冰盒室160中(例如,经由送风和回风管道或冷空气通道),并可以是任意合适的用于使空气流动的装置。例如,空气处理器192可以是轴流式风扇或离心式风扇。
制冷电器100的运行可以由控制器190来调节,该控制器可操作地耦合到用户界面面板148、密封冷却***180或各种其他部件(例如,与其电气或无线通信)。用户界面面板148提供用于用户对制冷电器100的运行的操作的选择,诸如在分配冰、冷水或其他各种选项。响应于用户对用户界面面板148的操作或一个或多个传感器信号,控制器190可以运行制冷电器100的各种部件。控制器190可以包括存储器和一个或多个微处理器、CPU等,诸如通用或专用微处理器,该微处理器用于执行与制冷电器100的运行关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一个实施方式中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包含在处理器内的板上。可选地,控制器190可以在不使用微处理器的情况下(例如,使用离散的模拟或数字逻辑电路的组合,诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
控制器190可以设置在整个制冷电器100中的各种位置。在所示例的实施方式 中,控制器190位于用户界面面板148内。在其他实施方式中,控制器190可以设置在制冷电器100内的任意合适的位置处,诸如例如在食物保鲜室、冷冻门体等内。可以在控制器190与制冷电器100的各种运行部件之间路由输入/输出(“I/O”)信号。例如,用户界面面板148可以经由一条或多条信号线或共享的通信总线与控制器190通信。
如图所示,控制器190可以与制冷电器100的各种部件通信,并且可以控制各种部件的运行。例如,可以基于来自控制器190的命令来致动各种阀、开关等。如所述,界面面板148可以另外与控制器190通信。由此,各种运行可以基于用户输入或借助控制器190指令自动发生。
如在图4中可以看到的,某些实施方式包括制冰组件200,该制冰组件包括制冰机210和附接到箱体102(图1)的选择性可去除的储冰盒212(例如,间接地经由门体128,或者可选地,直接在由箱体102限定的制冷间室内)。在可选实施方式中,制冰组件200设置或布置在冰盒室160内。可选地,如将理解的,制冰组件200可以直接安装在制冷电器100的制冷间室(例如,冷冻室124-图1)内。
在一些实施方式中,冰可以从在冷藏门体128的后侧上的冰盒室160中的制冰机210或储冰盒212选择性地供应到分配器142凹部150(图1)(例如,在制冰操作期间或作为该操作的一部分)。在另外或可选的实施方式中,来自制冷电器100的密封***180(图3)的空气可以被引导到制冰机210中,以便冷却制冰机210。作为示例,在制冰操作期间,来自密封***180的冷空气可以将制冰机210的部件(诸如制冰机210的外壳或模具体)冷却到液态水的冻结温度或以下。由此,制冰机210可以是空气冷却制冰机210。来自密封***180的冷空气也可以冷却储冰盒212。特别地,储冰盒212周围的空气可以被冷却到液态水的冻结温度以上的温度(例如,冷却到大约食物保鲜室122的温度,使得储冰盒212中的冰块由于暴露到具有液态水的冻结温度以上的温度的空气而随着时间的推移融化)。
在可选实施方式中,进入门166铰接到冷藏门体128。通常,进入门166可以允许选择性地进入冰盒室160。任意方式的合适闩锁168与冰盒室160一起构造为将进入门166保持在关闭位置。作为示例,闩锁168可以由消费者致动,以便打开进入门166,以提供到冰盒室160中的途径。进入门166还可以辅助使冰盒室160隔热。
注意,虽然制冰组件200被示例为至少部分地封闭在冰盒室160内,但可选实施方式可以不具有任何单独的进入门166(例如,使得制冰组件200通常与制冷电器100的至少一个制冷间室开放地流体连通)。
现在一般参照图4至图6,图5和图6提供了制冰组件200(例如,在清洁操作期间)的示意图。
如图所示,过滤组件240可设置在支撑托盘218和托盘出口234的下游,以过滤液态水(例如,在选择性地将液态水返回到制冰机210之前)。而且,过滤组件240、支撑托盘218和制冰机210可沿流体流动路径260设置。尽管流体流动路径260可接收液体(例如,来自供水管道272的水),但流体流动路径260可被定义为具有一个或多个排液管或排液管道的闭合回路。另外或可选地,流体流动路径260可以与分配器142流体隔离,使得在流体流动路径260内或从流体流动路径260排出的液体不会流入或流出分配器142。
通常,盒安装区域211设置为与制冰机210相邻(例如,以取决于在给定时刻发起的操作,从其接收冰块或流体)。如图所示,盒安装区域211在顶端214与底端216之间沿着竖向V延伸。可选地,支撑托盘218通常可限定底端216或在底端216下方延伸,以提供上面可以容纳盒的区域。而且,支撑托盘218可以限定托盘出口234,以允许液体流过。另外或可选地,支撑托盘218可安装或形成在门体128的一部分上,以保持或以其他方式接合安装在盒安装区域211内的盒。
在一些实施方式中,设置储冰盒212。具体地,储冰盒212可以选择性地或可去除地容纳在盒安装区域211内(例如,在制冰操作期间)。比如,储冰盒212可以在冰盒室160内可滑动地安装在支撑托盘218上。通常,储冰盒212限定用于在其中保持冰块的储冰容积224。应当理解,可移动螺旋送料器或拨片可以安装在储冰容积224内,以在其中搅动或推动冰。可以限定冰入口220(例如,在上端),以允许冰从制冰机210进入储冰容积224(例如,在制冰操作期间,当储冰盒212被容纳在盒安装区域211内时)。在一些实施方式中,限定冰出口222(例如,在下端),以选择性地允许冰从储冰容积224传到分配器142(图1)。与任意冰出口222分离并分开,储冰盒212可限定穿过下端的盒出口226。作为示例,储冰盒212的底壁228可限定一个或多个贯穿其中的孔口(例如,在托盘出口234上方)。通常,盒出口226的孔口的尺寸(例如,直径)可以设计得足够大,以允许液态水流过其中并到达托盘出口234。比如,盒出口226的孔口可以被定义为一系列无阻碍的穿孔。另外地或可选地,盒出口226可以包括可移动的或弹性的塞子,该塞子被配置为选择性地接合支撑托盘218,并且当储冰盒212完全容纳在冰盒室160内时允许水通过盒出口226到达托盘出口234。
在另外或可选实施方式中,设置了清洁盒229。具体地,清洁盒229可以选择性 地或可去除地容纳在盒安装区域211内(例如,在清洁操作期间)。可选地,清洁盒229可以安装在盒安装区域211内,代替储冰盒212,使得可以在不使清洁溶液流过储冰盒212的情况下执行清洁操作。清洁盒229可以在冰盒室160内可滑动地安装在支撑托盘218上。通常,清洁盒229限定用于在其中保持液体(例如,水或清洁溶液)的容器容积230。容器容积230通常可以是开放的,并且不受任何内部(例如,可移动)构件的阻碍。可以限定容器入口232(例如,在上端),以允许液态水或清洁溶液从制冰机210进入容器容积230(例如,在清洁操作期间,当清洁盒229被容纳在盒安装区域211内时)。在一些实施方式中,在清洁盒229的下端限定容器出口233。作为示例,清洁盒229的底壁231可限定一个或多个贯穿其中的孔口。通常,容器出口233的孔口的尺寸(例如,直径)可以设计得足够大,以允许液态水流过其中。比如,容器出口233的孔口可以被定义为一系列无阻碍的穿孔。另外地或可选地,容器出口233可以包括可移动的或弹性的塞子,该塞子被配置为选择性地接合支撑托盘218,并且当清洁盒229完全容纳在冰盒室160内时允许水通过容器出口233到达托盘出口234。
在某些实施方式中,提供清洁盒229作为带有储冰盒212和电器100的组装套件的一部分,使得用户可以选择性地将储冰盒212与清洁盒229互换或交换(例如,以允许电器100执行清洁操作),并且类似地,将清洁盒229与储冰盒212互换或交换(例如,以允许电器100执行制冰操作)。
简要地转向图7至图9,尽管关于图5和图6示例了单独的储冰盒212和清洁盒229,但可选实施方式可仅包括单个盒(例如,储冰盒212),该盒可容纳冰,而不直接从制冰机210接收液体(例如,水或清洁溶液)。例如,收集杯284可设置在制冰机210下方。特别地,收集杯284可以水平地设置在储冰盒212与制冰机210之间(例如,当储冰盒212安装在盒安装区域211中或容纳在支撑托盘218上时)。另外或可选地,收集杯284的至少一部分可设置在储冰盒212上方。
如图所示,收集杯284沿着制冰机210与过滤组件240(例如,在滤芯安装区域241处)之间的流体流动路径260限定至少一个流体出口(例如,顶点出口286)。由此,顶点出口286可以在制冰机210的下游,同时在过滤组件240(图5)的滤芯安装区域241的上游。
特别参照图6,收集杯284可以固定地安装(例如,在冰盒160内)。在一些这样的实施方式中,收集杯284包括附接到上导板289的下漏斗基部288。上导板289可以沿着从制冰机210朝向盒安装区域211的斜面倾斜。另外地或可选地,上导板 289可以限定一个或多个板孔口290,该一个或多个板孔口穿过上导板(例如,沿着竖向V)延伸到下漏斗基部288。通常,板孔口290可各自限定比形成在制冰机210内的冰块的预定尺寸小的直径。当冰从制冰机210分配时,导板289可将冰块引导至储冰盒212(例如,储冰容积224)。相比之下,液体(例如,水或清洁溶液)可以通过导板289到达下漏斗基部288。顶点出口286可以限定为穿过下漏斗基部288(例如,在其最低点处),使得水或清洁溶液被允许从下漏斗基部288流到过滤组件240。
特别参照图8和图9,收集杯284可以可移动地(例如,可枢转地)安装(例如,在冰盒160内)。在一些这样的实施方式中,收集杯284包括设置为接近盒安装区域211的漏斗壁292。次壁294可以设置为接近制冰机210。当组装时,漏斗壁292和次壁294可沿相反方向延伸至顶点。可选地,漏斗壁292和次壁294可以联结在一起作为连续的或整体的漏斗。如图所示,收集杯284可以可枢转地安装成围绕预定的枢轴线A(例如,限定在储冰盒212上方)旋转。在一些这样的实施方式中,枢轴线A设置成比顶点出口286更靠近盒安装区域211(例如,沿着水平方向,例如侧向L)。当组装时,收集杯284可以选择性地在储存位置(例如,图8)与清洁位置(例如,图9)之间移动。在储存位置,储冰盒212可以完全容纳在冰盒160内(例如,在支撑托盘218上或以其他方式在制冰机210与滤芯安装区域241之间)接近漏斗壁292的地方。而且,漏斗壁292可以朝向储冰盒向下枢转。当冰从制冰机210分配时,漏斗壁292可由此将冰块引导至储冰盒212(例如,储冰容积224)。相比之下,在清洁位置,储冰盒212可以从冰盒室160去除或以其他方式从收集杯284移开。而且,漏斗壁292可以向上枢转。继而,从制冰机210流出的液体可以沿着漏斗壁292被引导到顶点出口286(例如,使得水被允许从下漏斗基部288流到过滤组件240)。
一般返回图5,在示例性实施方式中,过滤组件240包括可选择性去除的流体过滤器242,该过滤器在其中具有一种或多种用于处理水的过滤介质。在一些实施方式中,或在某些操作期间(例如,在制冰操作期间),流体过滤器242沿着制冰机210与一个或多个流体储存容积之间的流体流动路径260布置。比如,滤芯安装区域241可以限定在支撑托盘218下方(例如,沿着竖向V),以容纳流体过滤器242。可选地,滤芯安装区域241可以在支撑托盘218正下方,或者可选地,从其侧向偏移。通常,滤芯安装区域241包括滤芯入口244和滤芯出口246,滤芯出口246位于沿着竖向V在滤芯入口244下方(例如,低于滤芯入口244)的位置。组装时,滤芯 入口244设置在托盘出口234的下游,使得从托盘出口234流出的水(例如,如由重力推动的)可以通过滤芯入口244进入流体过滤器242。而且,滤芯出口246设置在滤芯入口244的下游。
流体过滤器242可包括任意合适的过滤介质。在可选的实施方式中,过滤介质包括混合树脂介质,诸如混合阴离子和阳离子树脂的混合床介质。如所理解的,混合床介质可以配置为去除溶解的固体,例如钠离子和氯离子的无机盐。另外的或可选的实施方式可以包括被配置为过滤液态水的另一种合适的介质,例如纸滤芯、活性炭等。
与流体过滤器242分开,过滤组件240可包括选择性可去除的清洁滤芯247,该清洁滤芯包含一种或多种用于生成清洁溶液(例如,当与水混合或溶解于水中时)的清洁剂。通常,清洁剂可以是用于在制冰机内除垢或消毒(例如,消除病原体)的任意合适的清洁剂,诸如柠檬酸或硝酸。在一些实施方式中,或在某些操作期间(例如,在清洁操作期间),清洁滤芯247沿着流体流动路径260布置在滤芯安装区域241处(例如,代替流体过滤器242)。由此,当安装在滤芯安装区域241内时,清洁滤芯247可以保持或以其他方式设置在滤芯入口244与滤芯出口246之间,使得沿着流动路径260流动的水通常被迫通过清洁滤芯247(例如,以与其中的清洁剂混合或溶解该清洁剂)。
在一些实施方式中,在滤芯安装区域241的下游(即,滤芯出口246的下游)设置限定储存容积(例如,第一储存容积252)的过滤储罐248,以从其接收液体(例如,液态水或清洁溶液基于流体过滤器242或清洁滤芯247是否安装在滤芯安装区域241内,)。具体地,过滤储罐248可以限定罐入口256,液体可以通过该罐入口256被接收。作为示例,液态水可以在这种水在流体过滤器242内过滤并通过滤芯出口246之后被接收(例如,在流体过滤器242安装在滤芯安装区域241内的制冰操作期间)。作为另外或可选示例,可以在液态清洁溶液在滤芯安装区域241内生成并通过滤芯出口246之后(例如,在清洁滤芯247安装在滤芯安装区域内的清洁操作期间)接收液态清洁溶液241。
在一些实施方式中,过滤储罐248设置在滤芯安装区域241下方(例如,沿着竖向V)。有利地,液态水可以从滤芯安装区域241流动(例如,如由重力推动的)到过滤储罐248,而不需要任何中间泵、阀或其他机械驱动的流体推动装置。
简要地转向图11,如图所示,过滤储罐248可以可选地布置在过滤安装组件240的上游。由此,滤芯安装区域241内的滤芯(例如,流体滤芯242或清洁滤芯 247)可以在过滤储罐248与制冰机210或上部储液容器264之间流体连通。在使用期间,可以通过滤芯安装区域241从过滤储罐248中经由比如在过滤储罐248或滤芯安装区域241下游的流体泵254抽取液态水。主要返回到图5,在某些实施方式中,流体泵254可以设置成在过滤储罐248与制冰机210之间流体连通。流体泵254可以被配置为选择性地从第一储存容积252(例如,在通过罐出口258之后)并通过流体泵254与制冰机210之间的流体流动路径260引导或推动液态水或清洁溶液。在一些实施方式中,制冰机210设置在过滤储罐248上方,使得流体泵254被迫至少部分地沿着竖向V推动液体(例如,水或清洁溶液)。在一些这样的实施方式中,止回阀262沿着流体流动路径260设置(例如,与其流体连通)在流体泵254的下游。
在示例性实施方式中,通常在第一储存容积252与流体泵254或制冰机210之间设置排液管道(例如,第一排液管道310)。比如,第一排液管道310可以在第一排液端312与第二排液端314之间延伸。如图所示,第一排液端312可以在罐出口258(或通常为第一储存容积252)下游联结到流体流动路径260,而第二排液端314在第一排液端312下游与流体流动路径260隔开。合适的排液塞或阀318可以设置在第一排液管道310上,以选择性地打开或关闭第二排液管道320(例如,如由用户手动推动,或者可选地,由可操作地联接到排液阀318的控制器190指示)。尽管未示出,但是可以理解的是,排液阀318可进一步安装成与单独的制冷排液管流体连通(例如,以将水从制冷电器100引导出,诸如引导到市政排液管或周围环境)。
在制冰操作期间,液态水可以在到达制冰机210之前从第一储存容积252流到流体泵254。如果存在,则第一排液管道310可在这种操作期间关闭。作为另外或可选示例,在清洁操作的某些部分或阶段期间,所生成的液态清洁溶液可在到达制冰机210之前从第一储存容积252流到流体泵254。如果存在,则第一排液管道310可以关闭。可选地,在清洁操作的其他部分或阶段期间(例如,在清洁溶液生成并通过流体流动路径260循环之后),可以打开第一排液管道310,以引导清洁溶液离开流体流动路径260。
在另外或可选实施方式中,限定储存容积(例如,第二储存容积266)的上部储液容器264设置在制冰机210的上游。比如,上部储液容器264可以设置在滤芯安装区域241或支撑托盘218上方的位置处。在某些实施方式中,上部储液容器264至少部分地设置在制冰机210上方。比如,上部储液容器264可以设置在制冰机210正上方,以选择性地将液体流到制冰机。在另外的实施方式中,上部储液容器264 设置在流体泵254的下游。由上部储液容器264限定的储液容器入口268可布置在第二储存容积266的上游,以选择性地接收从流体泵254流过流体流动路径260的液态水。还可以在第二储存容积266下游和制冰机210上游由上部储液容器264限定储液容器出口270。
在示例性实施方式中,排液管道(例如,第二排液管道320)设置在第二储存容积266与制冰机210之间。比如,第二排液管道320可以在第一排液端322与第二排液端324之间延伸。如图所示,第一排液端322可以在储液容器出口270(或通常为第二储存容积266)下游联结到流体流动路径260,而第二排液端324在第一排液端322下游与流体流动路径260隔开。合适的排液塞或阀可以设置在第二排液管道320上,以选择性地打开或关闭第二排液管道320(例如,如由用户手动推动,或者可选地,由可操作地联接到排液阀318的控制器190指示)。
如图所示,第二排液管道320可以与第一排液管道310联结到相同的排液阀318。然而,可以理解的是,可选实施方式可包括分别对应于第一排液管道310和第二排液管道320的独立排液塞或阀。
在操作期间,液体可以在到达制冰机210之前从流体泵254流到第二储存容积266。作为示例,在制冰操作期间,液态水可以在到达制冰机210之前从流体泵254流到第二储存容积266。如果存在,则第二排液管道320可在这种操作期间关闭。作为另外或可选示例,在清洁操作的某些部分或阶段期间,所生成的液态清洁溶液可在到达制冰机210之前从流体泵流到第二储存容积266。如果存在,则第二排液管道320可以关闭。可选地,在清洁操作的部分或阶段期间(例如,在生成液态清洁溶液之前),液态水可以在这种水被供应到制冰机210且随后供应到安装在滤芯安装区域241内的清洁滤芯247之前供应到第二储存容积266(例如,从供水管道272)。另外地或可选地,在清洁操作的其他部分或阶段期间(例如,在清洁溶液生成并通过流体流动路径260循环之后),可以打开第二排液管道320,以引导清洁溶液离开流体流动路径260。
在一些实施方式中,供水管道272被设置为与制冰组件200选择性流体连通。应当理解,供水管道272可以在下游流体连通,以从合适的水源(例如,市政供水***、住宅水井等)接收水流或水量。可选地,供水管道272还可与流体流动路径260在上游流体连通(例如,向其供应液态水)。比如,供水管道272可以在流体泵254(例如,或止回阀262)与第二储存容积266之间的位置处连接到流体流动路径260。
在一些实施方式中,预滤芯274和供应阀276设置在制冰组件200(例如,流体流动路径260)的上游。在流体流动路径260中从供水管道272接收的水由此可在被引导至制冰组件200之前被迫通过预滤芯274。预滤芯274通常可包括任意合适的过滤体或介质。可选地,预滤芯274可以是活性炭过滤器,该过滤器被配置为从供应到其的水中去除沉淀物或有机材料。
在一些实施方式中,供应阀276设置成在第二储存容积266与供水管道272之间流体连通(例如,与阀194一起或作为阀194的一部分——图3)。比如,供应阀276可以沿着流体流动路径260位于流体泵254或止回阀262下游的位置处。供应阀276可被设置为用于选择性地允许或限制来自供水管道272的水进入流体流动路径260的任意合适的阀(例如,独立于流体泵254或与流体泵254分开地)。由此,液态水可以选择性地且交替地从第一储存容积252和供水管道272流到第二储存容积266。
在某些实施方式中,设置了一个或多个液位传感器(例如,280、282)。作为示例,第一液位传感器280可以安装到与第一储存容积252流体连通的过滤储罐248,以检测其中的水量或体积。作为另外或可选示例,第二液位传感器282可以安装到与第二储存容积266流体连通的上部储液容器264,以检测其中的水量或体积。液位传感器280、282中的一个或两个可以可操作地联接到控制器190(即,与其可操作地通信)。而且,应当理解,液位传感器280、282可被设置为任意合适的液体检测传感器(例如,浮簧传感器、超声传感器、电导传感器等)。在使用期间,控制器190由此可大体上确定第一储存容积252或第二储存容积266内的水是否以及何时达到一个或多个对应的预定液位。
在可选实施方式中,控制器190被配置为控制或指示液体(例如,水或清洁溶液)交替地从第一储存容积252和供水管道272流向第二储存容积266。比如,控制器190可以被配置为启动清洁操作。
现在转向图10,提供了操作如上所述的制冷电器100(图1)的方法(例如,300)的流程图。方法400的一个或多个部分可以比如由控制器190(图3)执行。例如,如所讨论的,控制器190可以与控制面板148、空气处理器192、压缩机182、制冰机210、流体泵254、供应阀276或一个或多个传感器280、282通信。在操作期间,控制器190可以向面板148、空气处理器192、压缩机182、制冰机210、流体泵254、供应阀276或一个或多个传感器280、282发送信号并从其接收信号。通常,控制器190还可以与电器100的其他合适部件通信,以促进电器100的操作。
有利地,所公开的方法可以有利地提供制冰组件的清洁,而无需去除组件的各个部分,诸如制冰机。另外地或可选地,所公开的方法可以容易地、高效地并且有效地清洁组件的部分,例如不需要大量的用户干预或护理。
图10描述了为了示例和讨论的目的而以特定顺序执行的步骤。使用本文所提供的发明内容,本领域普通技术人员应该理解,本文所述的任何方法的步骤可以以各种方式修改、改编、重新排列、省略或扩展,而不脱离本发明的范围(除了以其他方式描述)。
在410,方法400包括:沿着在制冰机(诸如冰块制冰机)与流体储存容积(例如,第一储存容积或第二储存容积,如上所述)之间的流体流动路径设置包含清洁剂的清洁滤芯。在一些实施方式中,清洁滤芯设置在滤芯安装区域中。可选地,清洁滤芯可以设置为再循环过滤器的替代品(例如,作为套件提供)。由此,410可包括:更换滤芯安装区域内的再循环过滤器。更换的再循环过滤器可以与箱体或电器的其余部分保持分开(例如,在方法400的持续时间内)。这种更换可以由用户执行(例如,手动地),并且可以包括通常更换再循环过滤器所需的任意步骤(例如,在再循环过滤器的可用寿命到期之后)。
在可选实施方式中,方法400可能需要从制冰机与清洁滤芯之间的位置去除储冰盒。比如,如上所述,储冰盒可以与冰盒或盒安装区域分开,在该冰盒或盒安装区域中,储冰盒被设置成在制冰操作期间接收冰。去除的储冰盒可以与箱体或电器的其余部分保持分开(例如,在方法400的持续时间内)。这种去除可以由用户执行(例如,手动地),并且可以包括通常更换储冰盒所需的任意步骤(例如,以完全清空或去除保持在储冰盒内的大部分冰)。而且,储冰盒可能需要在任意后续步骤(例如,420到460)(诸如以下描述的那些步骤)之前去除。可选地,如上所述,储冰盒可由清洁盒(例如,在冰盒或盒安装区域内)代替。
在420,方法400包括:启动到流体储存容积的水流。具体地,420可以在410之后(例如,发生在410之后)。所启动的水流可以比如由供水管道提供。由此,420可以包括:打开供应阀(例如,将供应阀移动到打开配置,如上所述)。可选地,流体泵可以在420的持续时间内保持在非工作状态。
在430,方法400包括:将溢出水流引导至制冰机。比如,420的所启动水流可以继续,使得预定的溢出体积被供应到流体储存容积。比如,可以响应于从流体储存容积内的液位传感器(例如,第二液位传感器)接收的填充信号或在供水阀打开之后预定填充时间的到期来确定溢出体积。可选地,供应阀可以保持在打开位置, 然后在确定预定溢出体积已经被供应到流体储存容积时关闭或限制(例如,将供应阀移动到关闭配置)。从流体储存容积,溢出体积可以随着溢出水流被引导或释放到制冰机。在一些这样的实施方式中,溢出水流提供超过制冰机容量的水量,使得至少一部分水(例如,多余部分)从制冰机中倒出。
在440,方法400包括:将水(例如,多余部分)从制冰机引导至清洁滤芯,以生成清洁溶液。如上所述,制冰机可以沿着流动路径位于清洁滤芯的上游。由此,水可以在到达滤芯之前被引导通过组装的流动路径。在一些这样的实施方式中,这包括引导多余部分的水通过清洁盒或沿着绕过储冰盒的路径引导多余部分的水,如上所述。
在可选实施方式中,440包括:引导水通过设置在制冰机下方的收集杯。而且,如上面进一步描述的,收集杯可以可枢转地安装,以在储存位置与清洁位置之间移动。由此,440可以包括:将收集杯设置在清洁位置,使得水从制冰机漏斗般地输送到收集杯的出口(例如,顶点出口)。
一旦生成,清洁溶液就可以沿着组装的流动路径从清洁滤芯中被推动或循环(例如,重复地),诸如在回路中。
在450,方法400包括:通过流体储存容积将清洁溶液推动到制冰机。可选地,从清洁滤芯中,清洁溶液可以收集(例如,如至少部分由重力推动地)在由设置在清洁滤芯下方的储罐限定的第一储存容积中。另外地或可选地,清洁溶液可以被泵送(例如,通过流体泵)到由上部储液容器限定的第二储存容积。比如,流体泵可以将清洁溶液沿着流体路径从第一储存容积泵送并向上泵送至第二储存容积。
在460,方法400包括:在流体储存容积与制冰机之间的清洁滤芯下游打开排液管道,以引导清洁溶液离开流体流动路径。比如,第二排液管道可以在第二储存容积的下游打开,如上所述。另外地或可选地,第一排液管道可以在清洁滤芯或第一储存容积的下游打开,也如上所述。
可选地,460可以由清洁操作的确定到期启动。比如,清洁操作可具有预定时间段(例如,以秒或分钟为单位),在该时间段内,流体(例如,水或清洁溶液)将被推动通过制冰组件。响应于确定清洁溶液已经到期(例如,在420之后),可以启动460。另外地或可选地,460可以在用户选择的时刻启动,诸如响应于排出清洁溶液的用户输入。
本书面描述使用示例对本发明进行了公开,其中包括最佳实施例,并且还使本领域技术人员能够实施本发明,其中包括制造和使用任意装置或***并且执行所包 含的任意方法。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (18)

  1. 一种清洁制冰组件的方法,其特征在于,所述方法包括:
    沿着制冰机与流体储存容积之间的流体路径设置包含清洁剂的清洁滤芯;
    启动到所述流体储存容积的水流;
    将溢出水流引导至所述制冰机;
    将水从所述制冰机引导至所述清洁滤芯,以生成清洁溶液;
    促使所述清洁溶液通过所述流体储存容积到所述制冰机;以及
    在所述流体储存容积与所述制冰机之间打开所述清洁滤芯下游的排液管道,以引导所述清洁溶液离开所述流体路径。
  2. 根据权利要求1所述的方法,其特征在于,还包括:在将水从所述制冰机引导至所述清洁滤芯之前从所述制冰机与所述清洁滤芯之间移除储冰盒。
  3. 根据权利要求2所述的方法,其特征在于,将水从所述制冰机引导至所述清洁滤芯包括:引导水通过设置在所述制冰机下方的收集杯。
  4. 根据权利要求3所述的方法,其特征在于,所述收集杯被可枢转地安装,以在储存位置与清洁位置之间移动,其中,所述储存位置包括在所述制冰机与所述清洁滤芯之间朝向所述储冰盒向下枢转的漏斗壁,并且其中,所述清洁位置包括向上枢转以将液体漏斗般地输送至所述收集杯的顶点出口的所述漏斗壁。
  5. 根据权利要求1所述的方法,其特征在于,所述储存容积是由设置在所述清洁滤芯上方的上部储液容器限定的第二储存容积,并且其中,促使所述清洁溶液到所述制冰机包括:
    将所述清洁溶液收集在由设置在所述清洁滤芯下方的储罐限定的第一储存容积中;以及
    通过流体泵将所述清洁溶液从所述第一储存容积泵送至所述第二储存容积。
  6. 根据权利要求5所述的方法,其特征在于,所述排液管道是第二排液管道,并且其中,所述方法还包括:
    在所述第一储存容积与所述流体泵之间的所述清洁滤芯的下游打开第一排液管道,以引导所述清洁溶液离开所述流体路径。
  7. 根据权利要求1所述的方法,其特征在于,设置清洁滤芯包括:沿着所述制冰机与所述流体储存容积之间的所述流体路径更换再循环过滤器。
  8. 根据权利要求1所述的方法,其特征在于,所述制冰组件安装在制冷电器 内,并且其中,所述流体路径与所述制冷电器的水分配器流体隔离。
  9. 根据权利要求8所述的方法,其特征在于,所述制冰组件安装在所述制冷电器的旋转门体内。
  10. 一种制冷电器,其限定有竖向、侧向以及横向,其特征在于,所述制冷电器包括:
    箱体;
    制冰组件,该制冰组件附接到所述箱体,所述制冰组件包括:
    流体路径,该流体路径在供水管道的下游;
    制冰机,该制冰机沿着所述流体路径设置;
    流体储存容积,该流体储存容积沿着所述流体路径设置,与所述制冰机流体连通;
    清洁滤芯,该清洁滤芯包含清洁剂,并且选择性地沿着所述制冰机与所述流体储存容积之间的所述流体路径设置;以及
    排液管道,该排液管道在所述流体储存容积与所述制冰机之间的所述清洁滤芯的下游;以及
    控制器,该控制器与所述制冰组件可操作地通信,所述控制器被配置为启动清洁操作,该清洁操作包括:
    启动从所述供水管道到所述流体储存容积的水流;
    将溢出水流引导至所述制冰机;
    将水从所述制冰机沿着所述流体路径引导至所述清洁滤芯,以生成清洁溶液;
    促使所述清洁溶液通过所述流体储存容积将到所述制冰机;以及
    打开所述排液管道,以引导所述清洁溶液离开所述流体路径。
  11. 根据权利要求10所述的制冷电器,其特征在于,还包括可移除地安装在所述制冰机与所述清洁滤芯之间的储冰盒。
  12. 根据权利要求11所述的制冷电器,其特征在于,还包括安装在所述制冰机下方的收集杯,所述收集杯限定位于所述清洁滤芯上游的顶点出口,其中,将水从所述制冰机引导至所述清洁滤芯包括将水引导通过所述收集杯。
  13. 根据权利要求12所述的制冷电器,其特征在于,所述收集杯被可枢转地安装,以在储存位置与清洁位置之间移动,其中,所述储存位置包括在所述制冰机与所述清洁滤芯之间朝向所述储冰盒向下枢转的漏斗壁,并且其中,所述清洁位置包 括向上枢转以将液体漏斗般地输送至所述收集杯的所述顶点出口的所述漏斗壁。
  14. 根据权利要求10所述的制冷电器,其特征在于,所述储存容积是由设置在所述清洁滤芯上方的上部储液容器限定的第二储存容积,其中,所述制冰组件还包括第一储存容积和流体泵,其中,所述第一储存容积安装在所述清洁滤芯下方并与其在下游流体连通,其中,所述流体泵在所述第一储存容积与所述第二储存容积之间流体连通,并且其中,促使所述清洁溶液到所述制冰机包括:
    将所述清洁溶液收集在由设置在所述清洁滤芯下方的储罐限定的第一储存容积中;以及
    通过所述流体泵将所述清洁溶液从所述第一储存容积泵送至所述第二储存容积。
  15. 根据权利要求14所述的制冷电器,其特征在于,所述排液管道是第二排液管道,其中,所述制冰组件还包括第一排液管道,该第一排液管道位于在所述第一储存容积与所述流体泵之间的所述清洁滤芯的下游,并且其中,所述清洁操作还包括打开所述第一排液管道,以引导所述清洁溶液离开所述流体路径。
  16. 根据权利要求10所述的制冷电器,其特征在于,设置清洁滤芯包括:沿着所述制冰机与所述流体储存容积之间的所述流体路径更换再循环过滤器。
  17. 根据权利要求10所述的制冷电器,其特征在于,还包括可旋转地安装在所述箱体上的门体,其中,所述门体包括水分配器,并且其中,所述流体路径与所述水分配器流体隔离。
  18. 根据权利要求17所述的制冷电器,其特征在于,所述制冰组件安装在所述门体内。
PCT/CN2021/105018 2020-07-09 2021-07-07 具有制冰组件的制冷电器及清洁方法 WO2022007849A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021306388A AU2021306388A1 (en) 2020-07-09 2021-07-07 Refrigeration appliance having ice-making assembly, and cleaning method
CN202180048113.7A CN116018488A (zh) 2020-07-09 2021-07-07 具有制冰组件的制冷电器及清洁方法
EP21838736.3A EP4180745A4 (en) 2020-07-09 2021-07-07 REFRIGERATOR WITH ICE MAKING ARRANGEMENT AND CLEANING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202016924593A 2020-07-09 2020-07-09
US16/924,593 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022007849A1 true WO2022007849A1 (zh) 2022-01-13

Family

ID=79552265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105018 WO2022007849A1 (zh) 2020-07-09 2021-07-07 具有制冰组件的制冷电器及清洁方法

Country Status (4)

Country Link
EP (1) EP4180745A4 (zh)
CN (1) CN116018488A (zh)
AU (1) AU2021306388A1 (zh)
WO (1) WO2022007849A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010054A1 (en) * 2001-07-13 2003-01-16 Esch Willy Van Ice maker cooler
US20120118001A1 (en) * 2010-11-17 2012-05-17 General Electric Company Ice maker for dispensing soft ice and related refrigeration appliance
CN104075533A (zh) * 2014-07-22 2014-10-01 合肥晶弘电器有限公司 一种冰箱供水***控制方法
US20150108886A1 (en) * 2013-10-22 2015-04-23 General Electric Company Refrigerator appliance
CN111207544A (zh) * 2020-01-16 2020-05-29 六安索伊电器制造有限公司 一种节水式制冰机的水路***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3280960B1 (en) * 2015-04-06 2021-06-30 True Manufacturing Co., Inc. Ice maker with automatic descale and sanitize feature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010054A1 (en) * 2001-07-13 2003-01-16 Esch Willy Van Ice maker cooler
US20120118001A1 (en) * 2010-11-17 2012-05-17 General Electric Company Ice maker for dispensing soft ice and related refrigeration appliance
US20150108886A1 (en) * 2013-10-22 2015-04-23 General Electric Company Refrigerator appliance
CN104075533A (zh) * 2014-07-22 2014-10-01 合肥晶弘电器有限公司 一种冰箱供水***控制方法
CN111207544A (zh) * 2020-01-16 2020-05-29 六安索伊电器制造有限公司 一种节水式制冰机的水路***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4180745A4 *

Also Published As

Publication number Publication date
AU2021306388A1 (en) 2023-02-16
CN116018488A (zh) 2023-04-25
EP4180745A4 (en) 2023-12-06
EP4180745A1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
CN109997007B (zh) ***的控制方法
US20180128530A1 (en) Refrigerator appliance and ice-making assembly therefor
CN113286975A (zh) 具有制冰组件的冷藏器具
KR100846890B1 (ko) 제빙 시스템 및 제빙 방법
WO2022007849A1 (zh) 具有制冰组件的制冷电器及清洁方法
AU2021358230B2 (en) Drainage-free ice maker having cleaning system
KR101507037B1 (ko) 제빙기의 함체
KR101665138B1 (ko) 얼음정수기용 취수장치
WO2022267952A1 (zh) 具有可更换过滤器的制冰电器
EP4365518A1 (en) Drain pipe-free clear ice making machine for recycling water for use in making clear ice
WO2023093766A1 (zh) 用于独立制冰器的清洗排出管道
WO2023078298A1 (zh) 用于制造透明冰的方法和设备
JPH038925Y2 (zh)
EP4092362A1 (en) Ice-making appliance and method for distributing ice above sink
JP2009216326A (ja) 製氷機
CN115135940A (zh) 使用盘-隔板式和销式蜿蜒形蒸发器的用于方形冰块的制冰装置
KR20230154579A (ko) 얼음 정수기
KR20040085598A (ko) 제빙기의 냉각시스템 및 그 작동제어방법
KR20230149061A (ko) 얼음 정수기
JP2004036951A (ja) 製氷機
JP2000213838A (ja) 自動製氷機
JPH09269167A (ja) 冷蔵庫
KR20080061470A (ko) 제빙 시스템 및 제빙 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021838736

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021306388

Country of ref document: AU

Date of ref document: 20210707

Kind code of ref document: A