WO2022007564A1 - 卫星导航差分数据接收方法、装置、设备及存储介质 - Google Patents

卫星导航差分数据接收方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022007564A1
WO2022007564A1 PCT/CN2021/098396 CN2021098396W WO2022007564A1 WO 2022007564 A1 WO2022007564 A1 WO 2022007564A1 CN 2021098396 W CN2021098396 W CN 2021098396W WO 2022007564 A1 WO2022007564 A1 WO 2022007564A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency point
differential data
grid
satellite navigation
broadcasting station
Prior art date
Application number
PCT/CN2021/098396
Other languages
English (en)
French (fr)
Inventor
翦林鹏
朱钧
尹华镜
Original Assignee
深圳思凯微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳思凯微电子有限公司 filed Critical 深圳思凯微电子有限公司
Publication of WO2022007564A1 publication Critical patent/WO2022007564A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of broadcasting technology, and in particular, to a satellite navigation differential data receiving method, apparatus, device, and storage medium.
  • Satellite navigation and positioning are widely used in various fields, and people's requirements for positioning accuracy are getting higher and higher. At present, there are positioning errors in satellite navigation and positioning. Therefore, by establishing GBAS (ground-based augmentation systems, ground-based augmentation systems) to improve the accuracy of satellite navigation and positioning.
  • GBAS ground-based augmentation systems, ground-based augmentation systems
  • GBAS is mainly composed of a reference station system, a data broadcasting system and a user terminal.
  • the reference station system in GBAS provides differential data to enhance the positioning of the satellite navigation system.
  • the reference station system is a ground reference station.
  • the signal generates differential data, and then transmits it to the user terminal through the data broadcasting system, and the user terminal corrects the positioning information according to the obtained differential data; for example, the data broadcasting system in the existing Beidou navigation GBAS uses digital broadcasting to broadcast differential data, and digital broadcasting Due to the lack of return channel, the differential data broadcasting method can only work in single base station mode at present, and the enhancement effect of differential data becomes worse as the distance between the user terminal and the reference station of the reference station system increases.
  • the main purpose of this application is to propose a satellite navigation differential data receiving method, device, equipment and storage medium, which aims to solve the problem of disseminating differential data in the current broadcast mode, which cannot be performed according to the distance between the user terminal and the reference station of the reference station system. Adjustment, technical problems that cannot be accurately positioned.
  • the satellite navigation differential data receiving method includes the following steps:
  • Receive the approximate position input from the outside obtain the grid information broadcast by the broadcasting station, and determine whether the approximate position is within the coverage of the current frequency point in the grid information;
  • the target frequency point is used as a working frequency point, switching to the working frequency point and monitoring the operating state of the working frequency point;
  • the method before the steps of receiving an externally input approximate location, acquiring grid information broadcast by a broadcasting station, and determining whether the approximate location is within the coverage range of the current frequency point in the grid information, the method include:
  • the steps of taking the target frequency point as the working frequency point, switching to the working frequency point, and monitoring the operation state of the working frequency point are performed.
  • the steps of the preset search sub-process include:
  • the priority search is performed within the priority search range, and if an available frequency is found, the target available frequency with the best signal quality is selected as the working frequency from the available frequencies; If no usable frequency is found in the above-mentioned priority search range, a full-mode and full-frequency scan is performed to search for an available frequency and select a target available frequency with the best signal quality from the available frequencies as the working frequency.
  • the method include:
  • the current frequency point of the broadcasting station is used as the working frequency point, and the operation status of the working frequency point is monitored;
  • the target frequency point is used as a working frequency point, switched to the working frequency point, and the working frequency point is monitored.
  • the method includes:
  • the target frequency point is used as a working frequency point, switched to the working frequency point, and the working frequency point is monitored.
  • the method further includes:
  • the present application also provides a satellite navigation differential data receiving device, and the satellite navigation differential data receiving device includes:
  • a request receiving module configured to receive an externally input rough position, obtain grid information broadcast by a broadcasting station, and determine whether the rough position is within the coverage of the current frequency point in the grid information
  • a frequency point determination module configured to determine whether there is a target frequency point covering the approximate location in the neighboring broadcasting stations of the broadcasting station if the approximate location is not within the coverage of the current frequency point in the grid information
  • the switching monitoring module is used for, if there is a target frequency point covering the approximate position in the adjacent broadcasting station, then use the target frequency point as a working frequency point, switch to the working frequency point and monitor the frequency of the working frequency point.
  • a grid determination module configured to determine whether the receiving end is in an optimal grid according to the approximate position and grid information of the operating frequency when the operating state of the operating frequency is normal;
  • a grid switching module configured to switch to the optimal grid if the receiving end is not in the optimal grid, and receive differential data of the optimal grid, so as to perform positioning according to the differential data.
  • the present application also provides a satellite navigation differential data receiving device
  • the satellite navigation differential data receiving device includes: a memory, a processor, and a device that is stored on the memory and can run on the processor.
  • the satellite navigation differential data receiving program when the satellite navigation differential data receiving program is executed by the processor, implements the steps of the above-mentioned satellite navigation differential data receiving method.
  • the present application also provides a storage medium on which a satellite navigation differential data receiving program is stored, and the satellite navigation differential data receiving program is executed by a processor to realize the above-mentioned satellite navigation The steps of the differential data receiving method.
  • the present application provides a satellite navigation differential data receiving method, device, device and storage medium.
  • the approximate location input from the outside is received, the grid information broadcast by the broadcasting station is obtained, and it is determined whether the approximate location is within the coverage of the current frequency point in the grid information; if the approximate location is not in the grid information If there is a target frequency that covers the approximate location in the neighboring broadcasting stations of the broadcasting station, if there is a target frequency covering the approximate location in the neighboring broadcasting station, the The target frequency is taken as the working frequency, switched to the working frequency and the operating state of the working frequency is monitored; when the operating state of the working frequency is normal, according to the approximate position and the working frequency determine whether the receiving end is in the optimal grid; if the receiving end is not in the optimal grid, switch to the optimal grid, and receive the differential data of the optimal grid, to perform positioning according to the differential data.
  • the automatic switching method based on the broadcast satellite navigation gridded differential data in this embodiment can enable the receiving end to automatically select the optimal grid to obtain the best positioning effect. That is, the receiving end obtains the information of the current broadcasting station, neighboring broadcasting stations, and grid information of the current broadcasting station according to the broadcast information of the broadcasting station; The input rough position selects the grid with the highest correlation to obtain the best positioning effect; when the receiving quality of the broadcast signal is poor, the receiving end can accurately identify whether the current position is temporarily blocked by the signal or exceeds the signal coverage of the broadcast station Scope.
  • FIG. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the present application;
  • FIG. 2 is a schematic flowchart of the first embodiment of the satellite navigation differential data receiving method of the present application
  • FIG. 3 is a specific schematic diagram of grid division in the first embodiment of the satellite navigation differential data receiving method of the present application.
  • FIG. 5 is a specific schematic diagram of a sub-process of searching for a station in the third embodiment of the satellite navigation differential data receiving method of the present application;
  • FIG. 6 is a schematic diagram of functional modules of an embodiment of a satellite navigation differential data receiving apparatus of the present application.
  • FIG. 1 is a schematic diagram of a device structure of a hardware operating environment involved in the solution of the embodiment of the present application.
  • the satellite navigation differential data receiving device in the embodiment of the present application is also called a receiving end, and the receiving end may be a portable module or an embedded device.
  • the satellite navigation differential data receiving device may include a user interface and a communication bus, where the user interface is used to receive information input by the user, and the communication bus is used to realize connection and communication between these components.
  • the device structure shown in FIG. 1 does not constitute a limitation on the device, and may include more or less components than the one shown, or combine some components, or arrange different components.
  • a memory as a computer storage medium saves a satellite navigation differential data receiving program, and the receiving end calls the stored satellite navigation differential data receiving program, and executes the operations in the following satellite navigation differential data receiving method.
  • FIG. 2 is a schematic flowchart of a first embodiment of a satellite navigation differential data receiving method of the present application. The method includes:
  • Step S10 Receive an externally input approximate position, acquire grid information broadcast by a broadcasting station, and determine whether the approximate position is within the coverage range of the current frequency point in the grid information.
  • the satellite navigation differential data receiving method in this embodiment is applied to a satellite navigation differential data receiving device, which is also called a receiving end.
  • the satellite navigation differential data receiving device may be an in-vehicle terminal of a vehicle, and the satellite navigation differential data receiving device is a satellite navigation differential data receiving device.
  • the hardware carrier of the data receiving platform, the approximate position where the receiving end receives external input, and the receiving end obtains the grid information broadcast by the broadcasting station (the grid information refers to the broadcasting station information and grid division information collectively, the description of the broadcasting station information and the grid information).
  • the grid information is sent in the form of service data, and Figure 4 shows a schematic diagram of grid division), and the receiving end determines whether the approximate location is within the coverage of the current frequency point in the grid information.
  • Step S20 if the approximate location is not within the coverage range of the current frequency point in the grid information, determine whether there is a target frequency point covering the approximate location in neighboring broadcasting stations of the broadcasting station.
  • the receiver determines whether there is a target frequency covering the approximate location in the nearby broadcasting stations of the broadcasting station, that is, the probability location is A, and the current frequency is 92MHz Covering places B and C, the receiving end determines that the approximate location is not within the coverage of the current frequency point in the grid information, the receiving end obtains the adjacent broadcasting stations of the broadcasting station, and the receiving end judges whether there is coverage in the adjacent broadcasting stations of the broadcasting station.
  • the target frequency for the location is a target frequency covering the approximate location in the nearby broadcasting stations of the broadcasting station.
  • the circular area surrounded by points P0, P1, P2, P3, P4, and P5 represents the coverage of frequency points, and points A, B, and C are three points on the map.
  • the method of judging whether the current position is within the coverage of a certain frequency point 1. Determine whether the location is within the latitude and longitude range covered by the broadcasting station---point A is not within the coverage area; 2. According to the angle between the center point and the vertical direction (longitude direction), determine the location and the corresponding triangle, point B Corresponding to ⁇ P1-O-P2, point C corresponds to ⁇ P2-O-P3; 3. Determine whether the point is within the triangle according to the distance from the center point, point B is within the coverage area, and point C is not within the coverage area.
  • the receiving end determines that the approximate location is not within the coverage of the current frequency point in the grid information, the receiving end obtains the neighboring broadcasting stations of the broadcasting station, and the receiving end calculates the neighboring broadcasting station closest to the current position from the neighboring broadcasting stations covering the current location, and the receiving end It is judged whether there is a target frequency point covering the approximate position in the adjacent broadcast stations of the broadcast station as the working frequency point.
  • Step S30 if there is a target frequency point covering the approximate location in the adjacent broadcasting station, the target frequency point is used as a working frequency point, switched to the working frequency point, and the operation state of the working frequency point is monitored.
  • the receiver will use the target frequency point as the operating frequency point, the receiver will switch to the operating frequency point and monitor the operating status of the operating frequency point, and the receiver will judge the operating status of the operating frequency point. , specifically, including:
  • Step a1 obtaining the signal-to-noise ratio of the working frequency
  • Step a2 when the signal-to-noise ratio of the operating frequency point is greater than a preset threshold, determine that the operating state of the operating frequency point is normal;
  • Step a3 when the signal-to-noise ratio of the operating frequency point is less than or equal to a preset threshold, determine that the operating state of the operating frequency point is abnormal.
  • the receiving end obtains the signal-to-noise ratio of the working frequency; the receiving end compares the signal-to-noise ratio of the working frequency with a preset threshold, wherein the preset threshold can be set according to specific scenarios, for example, the preset threshold is set to 3dB ; When the signal-to-noise ratio of the working frequency is greater than the preset threshold, the receiving end determines that the operating state of the working frequency is normal; when the signal-to-noise ratio of the working frequency is less than or equal to the preset threshold, the receiving end determines that the working frequency is working The operating state of the frequency point is abnormal.
  • Step S40 when the operating state of the operating frequency point is normal, determine whether the receiving end is in an optimal grid according to the approximate location and grid information of the operating frequency point.
  • the receiving end judges whether the receiving end is in the optimal grid according to the approximate position and the grid information of the working frequency.
  • Step S50 if the receiving end is not in the optimal grid, switch to the optimal grid, and receive differential data of the optimal grid, so as to perform positioning according to the differential data.
  • the receiving end switches to the optimal grid, and receives the differential data of the optimal grid, so as to reduce the measurement error and improve the positioning accuracy according to the differential data;
  • the automatic switching method of broadcast satellite navigation gridded differential data can make up for the defect that broadcast RTK can only work in a single base station mode, and can enable the receiver to automatically select the optimal grid to obtain the best positioning effect.
  • the receiving end obtains the information of the current broadcasting station, neighboring broadcasting stations, and grid information of the current broadcasting station according to the broadcast information of the broadcasting station;
  • the input rough position selects the grid with the highest correlation to obtain the best positioning effect; when the reception quality of the broadcast signal is poor, the receiving end can accurately identify whether the current position is due to short-term signal occlusion or exceeds the signal of the broadcast station coverage.
  • This embodiment is a step before step S10 in the first embodiment, and the difference between this embodiment and the above-mentioned embodiment is:
  • the receiving end When the receiving end is powered on, it determines whether there is grid information broadcast by the broadcasting station; if there is no grid information broadcast by the broadcasting station, the receiving end executes a preset search sub-process; if there is a broadcast station broadcast The receiving end performs the steps of receiving the approximate position input from the outside, acquiring the grid information broadcast by the broadcasting station, and determining whether the approximate position is within the coverage range of the current frequency point in the grid information.
  • the receiving end when the receiving end is powered on, the grid information is stored, which makes the later positioning operation more convenient.
  • This embodiment is a step after step S20 in the first embodiment.
  • the difference between this embodiment and the above-mentioned embodiment is:
  • the steps of taking the target frequency point as the working frequency point, switching to the working frequency point, and monitoring the operation state of the working frequency point are performed.
  • the receiving end executes the preset search sub-process; until the target frequency point covering the approximate location is searched, step S30 of the receiving end in the first embodiment of the The step of switching to the operating frequency point and monitoring the operating state of the operating frequency point.
  • the steps of the preset search sub-process in Figure 5 include:
  • Step b1 determine whether the user sets a priority search range
  • Step b2 if the priority search range is not set, then perform full-mode and full-frequency scanning, search for available frequencies, and select the target available frequency with the best signal quality from the available frequencies as the working frequency;
  • Step b3 if a priority search range has been set, perform a priority search within the priority search range, and if an available frequency point is found, select the target available frequency point with the best signal quality from the available frequency points as the working frequency point ; If no usable frequency is found in the priority search range, perform a full-mode, full-frequency scan, search for an available frequency, and select a target available frequency with the best signal quality from the available frequencies as a working frequency.
  • the user can specify the priority search range. Specifically, you can specify the frequency point and spectrum mode of the station search. Either one of them can be specified, both can be specified, or none of them can be specified. It should be noted that the search range specified by the user is only used as the priority search range. If no available frequency is found within the priority search range, the receiving end will still perform full-mode and full-frequency scanning.
  • the steps in this embodiment are steps after step S10 in the first embodiment.
  • the differences between this embodiment and the above-mentioned embodiments are:
  • the current frequency point of the broadcasting station is used as the working frequency point, and the operation status of the working frequency point is monitored;
  • the receiver will take the current frequency point of the broadcasting station as the working frequency point, and monitor the operating status of the working frequency point; when the operating status of the working frequency point is normal , according to the approximate location and the grid information of the working frequency point to determine whether the receiving end is in the optimal grid; if the receiving end is in the optimal grid, the differential data is received for positioning adjustment, if the receiving end is not in the optimal grid
  • the grid is switched to the optimal grid, and the differential data of the optimal grid is received, so as to reduce the detection error and improve the positioning accuracy according to the differential data.
  • positioning is performed according to grid information, so that the positioning is accurate and fast.
  • This embodiment is a step after step S30 in the first embodiment.
  • the difference between this embodiment and the above implementation is:
  • the approximate position is within the coverage range of the working frequency, it is determined that the approximate position is temporarily in the blocking area of the broadcast signal of the broadcasting station, and the working frequency remains unchanged.
  • the receiving end determines whether the approximate location is within the coverage of the working frequency; if the approximate location is within the coverage of the working frequency, it is determined that the approximate location is temporarily in the broadcast If the approximate location is not within the coverage of the operating frequency, the operating frequency will be switched; the grid information of the decoded new operating frequency will be saved and monitored.
  • the operating state of the new operating frequency point, and the steps after step S30 in the first embodiment are performed. In this embodiment, when the operating frequency point is abnormal, automatic switching can be performed, so that the difference received by the receiving end is more accurate.
  • the present application also provides a satellite navigation differential data receiving device, the satellite navigation differential data receiving device includes:
  • the request receiving module 10 is configured to receive the approximate position input from the outside, obtain the grid information broadcast by the broadcasting station, and determine whether the approximate position is within the coverage of the current frequency point in the grid information;
  • a frequency point determination module 20 configured to determine whether there is a target frequency point covering the approximate position in the neighboring broadcasting stations of the broadcasting station if the approximate location is not within the coverage of the current frequency point in the grid information;
  • the switching monitoring module 30 is configured to switch to the working frequency and monitor the working frequency by using the target frequency as the working frequency if there is a target frequency covering the approximate location in the adjacent broadcasting station operating status;
  • a grid determination module 40 configured to determine whether the receiving end is in an optimal grid according to the approximate position and grid information of the operating frequency when the operating state of the operating frequency is normal;
  • the grid switching module 50 is configured to switch to the optimal grid if the receiving end is not in the optimal grid, and receive differential data of the optimal grid to perform positioning according to the differential data .
  • the satellite navigation differential data receiving device includes:
  • the detection and determination module is used to determine whether there is grid information broadcast by the broadcasting station when the receiver is powered on;
  • a sub-process execution module configured to execute a preset search sub-process if there is no grid information broadcast by the broadcasting station
  • a frequency point determination module configured to receive the approximate position of the external input if there is grid information broadcast by the broadcast station, obtain grid information broadcast by the broadcast station, and determine whether the approximate position is in the grid Steps within the coverage of the current frequency in the message.
  • the satellite navigation differential data receiving device includes:
  • a sub-process execution module configured to execute a preset search sub-process if there is no target frequency point covering the approximate location in the adjacent broadcasting station;
  • a search switching module used to search for a target frequency point covering the approximate location, perform the described target frequency point as a working frequency point, switch to the working frequency point and monitor the operating state of the working frequency point A step of.
  • the satellite navigation differential data receiving device includes:
  • the scope judgment module is used to judge whether the user sets the priority search scope
  • the first search module is used to perform a full-mode and full-frequency scan if the priority search range is not set, search for available frequencies, and select the target available frequency with the best signal quality from the available frequencies as the working frequency ;
  • the second search module if a priority search range has been set, perform a priority search within the priority search range, and if an available frequency point is found, select a target available frequency point with the best signal quality from the available frequency points As a working frequency point; if no usable frequency point is found in the priority search range, perform full-mode and full-frequency point scanning to find the available frequency point and select the target available frequency point with the best signal quality from the available frequency points as the target available frequency point. working frequency.
  • the satellite navigation differential data receiving device includes:
  • a frequency point detection module configured to use the current frequency point of the broadcasting station as a working frequency point if the approximate position is within the coverage of the current frequency point in the grid information, and monitor the operation of the working frequency point state;
  • a grid determination module configured to determine whether the receiving end is in an optimal grid according to the approximate position and grid information of the operating frequency when the operating state of the operating frequency is normal;
  • a grid switching module configured to switch to the optimal grid if the receiving end is not in the optimal grid, and receive differential data of the optimal grid, so as to perform positioning according to the differential data.
  • the satellite navigation differential data receiving device includes:
  • an acquisition-to-noise ratio module used for acquiring the signal-to-noise ratio of the working frequency point
  • a first determination module configured to determine that the operating state of the operating frequency point is normal when the signal-to-noise ratio of the operating frequency point is greater than a preset threshold
  • a second determination module configured to determine that the operating state of the operating frequency point is abnormal when the signal-to-noise ratio of the operating frequency point is less than or equal to a preset threshold.
  • the satellite navigation differential data receiving device includes:
  • An abnormality determination module configured to determine whether the approximate position is within the coverage of the operating frequency when the operating state of the operating frequency is abnormal
  • a frequency switching module configured to switch the working frequency if the approximate position is not within the coverage of the working frequency
  • a decoding detection module used for decoding the grid information storage of the new working frequency point, and monitoring the running state of the new working frequency point;
  • the determining and maintaining module is configured to determine that the approximate location is temporarily in the blocking area of the broadcast signal of the broadcasting station if the approximate location is within the coverage of the working frequency, and the working frequency remains unchanged.
  • the automatic switching method based on the broadcast satellite navigation gridded differential data in this embodiment can enable the receiving end to automatically select the optimal grid to obtain the best positioning effect. That is, the receiving end obtains the information of the current broadcasting station, neighboring broadcasting stations, and grid information of the current broadcasting station according to the broadcast information of the broadcasting station; The input rough position selects the grid with the highest correlation to obtain the best positioning effect; when the reception quality of the broadcast signal is poor, the receiving end can accurately identify whether the current position is due to short-term signal occlusion or exceeds the signal of the broadcast station coverage.
  • the present application also provides a storage medium.
  • a satellite navigation differential data receiving program is stored on the storage medium of the present application, and when the satellite navigation differential data receiving program is executed by a processor, the steps of the above-mentioned satellite navigation differential data receiving method are implemented.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to the prior art.
  • the computer software products are stored in a storage medium (such as ROM/RAM) as described above. , magnetic disk, optical disk), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种卫星导航差分数据接收方法、装置、设备和存储介质,该方法包括:接收外部输入的概略位置,获取广播台广播的网格信息,确定概略位置是否在网格信息中当前频点覆盖范围内(S10);若否,则判断广播台的邻近广播台中是否存在覆盖概略位置的目标频点(S20);若是,则将目标频点作为工作频点,切换至工作频点并监测工作频点的运行状态(S30);在运行状态正常时,根据概略位置和工作频点的网格信息判断接收端是否处于最优网格(S40);若否,则切换至最优网格,并接收最优网格的差分数据,以根据差分数据进行定位(S50)。

Description

卫星导航差分数据接收方法、装置、设备及存储介质
本申请要求于2020年7月8日申请的、申请号为202010653876.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及广播技术领域,尤其涉及卫星导航差分数据接收方法、装置、设备及存储介质。
背景技术
卫星导航定位在各个领域中被广泛应用,人们对定位精度的要求越来越高,当前卫星导航定位存在定位误差,因此通过建立GBAS(ground -based augmentation systems,地基增强***)以提升卫星导航定位精度。
GBAS主要由参考站***、数据播发***和用户终端组成,GBAS中的参考站***提供差分数据对卫星导航***的定位进行增强,参考站***为地面基准站,参考站***根据实时接收到的卫星信号产生差分数据,然后通过数据播发***传给用户终端,用户终端根据得到的差分数据修正定位信息;例如,现有北斗导航GBAS中的数据播发***采用数字广播进行差分数据播发,数字广播方式进行差分数据播发方法,由于缺少回传通道,目前只能工作于单基站模式,差分数据的增强效果随用户终端与参考站***的基准站间的距离增加而变差。
技术问题
本申请的主要目的在于提出一种卫星导航差分数据接收方法、装置、设备及存储介质,旨在解决当前广播的方式传播差分数据,不可以根据用户终端与参考站***的基准站间的距离进行调整,不可以进行准确定位的技术问题。
技术解决方案
为实现上述目的,本申请提供一种卫星导航差分数据接收方法,所述卫星导航差分数据接收方法包括如下步骤:
接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内;
若所述概略位置不在所述网格信息中当前频点覆盖范围内,则确定所述广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点;
若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态;
在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;
若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。
在一实施例中,所述接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内的步骤之前,所述方法包括:
接收端上电时,确定是否存在广播台广播的网格信息;
若不存在所述广播台广播的网格信息,则执行预设的搜台子流程;
若存在所述广播台广播的网格信息,则执行所述接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内的步骤。
在一实施例中,所述若所述概略位置不在所述网格信息中当前频点覆盖范围内,则确定所述广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点的步骤之后,所述方法包括:
若所述邻近广播台中不存在覆盖所述概略位置的目标频点,则执行预设的搜台子流程;
直至搜索到覆盖所述概略位置的目标频点,执行所述将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态的步骤。
在一实施例中,所述预设的搜台子流程的步骤,包括:
判断用户是否设置优先搜索范围;
若没有设置优先搜索范围,则进行全模式、全频点扫描,查找可用频点并从所述可用频点中选择信号质量最好的目标可用频点作为工作频点;
若已设置优先搜索范围,则在所述优先搜索范围内进行优先搜索,若查找到可用频点则从所述可用频点中选择信号质量最好的目标可用频点作为工作频点;若所述优先搜索范围没有找到可用频点,则进行全模式、全频点扫描,查找可用频点并从所述可用频点中选择信号质量最好的目标可用频点作为工作频点。
在一实施例中,所述接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内的步骤之后,所述方法包括:
若所述概略位置在所述网格信息中当前频点覆盖范围内,则将所述广播台的当前频点作为工作频点,并监测所述工作频点的运行状态;
在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;
若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。
在一实施例中,所述若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态的步骤之后,所述方法包括:
获取所述工作频点的信噪比;
在所述工作频点的所述信噪比大于预设阈值时,判定所述工作频点的运行状态正常;
在所述工作频点的所述信噪比小于或等于预设阈值时,判定所述工作频点的运行状态异常。
在一实施例中,所述若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态的步骤之后,所述方法还包括:
在所述工作频点的运行状态异常时,确定所述概略位置是否处于所述工作频点的覆盖范围内;
若所述概略位置没有处于所述工作频点的覆盖范围内,则切换工作频点;
解码新的工作频点的网格信息保存,并监测所述新的工作频点的运行状态。
此外,为实现上述目的,本申请还提供一种卫星导航差分数据接收装置,所述卫星导航差分数据接收装置包括:
请求接收模块,用于接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内;
频点确定模块,用于若所述概略位置不在所述网格信息中当前频点覆盖范围内,则确定所述广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点;
切换监测模块,用于若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态;
网格确定模块,用于在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;
网格切换模块,用于若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。
此外,为实现上述目的,本申请还提供一种卫星导航差分数据接收设备,所述卫星导航差分数据接收设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的卫星导航差分数据接收程序,所述卫星导航差分数据接收程序被所述处理器执行时实现如上所述的卫星导航差分数据接收方法的步骤。
此外,为实现上述目的,本申请还提供一种存储介质,所述存储介质上存储有卫星导航差分数据接收程序,所述卫星导航差分数据接收程序被处理器执行时实现如上所述的卫星导航差分数据接收方法的步骤。
有益效果
本申请提供一种卫星导航差分数据接收方法、装置、设备及存储介质。本申请中接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内;若所述概略位置不在所述网格信息中当前频点覆盖范围内,则确定所述广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点;若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态;在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。本实施例中基于广播的卫星导航网格化差分数据的自动切换方法,可以使接收端自动选取最优的网格获取最佳定位效果。即,接收端根据广播站播发信息获取当前广播站以及邻近广播站信息、当前广播站网格信息;接收端根据外部输入的概略位置选取广播信号以获得最优的信号接收效果;接收端根据外部输入的概略位置选取相关度最高的网格以获得最佳定位效果;当广播信号的接收质量较差时,接收端能够准确识别当前位置是处于短暂的信号遮挡,还是超出了广播站的信号覆盖范围。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的设备结构示意图;
图2为本申请卫星导航差分数据接收方法第一实施例的流程示意图;
图3为本申请卫星导航差分数据接收方法第一实施例中网格划分的具体示意图;
图4为本申请卫星导航差分数据接收方法第一实施例中覆盖范围确定的具体示意图;
图5为本申请卫星导航差分数据接收方法第三实施例中搜台子流程的具体示意图;
图6为本申请卫星导航差分数据接收装置一实施例的功能模块示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的设备结构示意图。
本申请实施例卫星导航差分数据接收设备又叫接收端,接收端可以是便携的模组或嵌入式设备。如图1所示,该卫星导航差分数据接收设备可以包括:用户接口和通信总线,用户接口用于接收用户输入的信息,通信总线用于实现这些组件之间的连接通信。本领域技术人员可以理解,图1中示出的设备结构并不构成对设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器保存卫星导航差分数据接收程序,接收端通过调用存储的卫星导航差分数据接收程序,并执行下述卫星导航差分数据接收方法中的操作。
基于上述硬件结构,提出本申请卫星导航差分数据接收方法实施例。
参照图2,图2为本申请卫星导航差分数据接收方法第一实施例的流程示意图,所述方法包括:
步骤S10,接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内。
本实施例卫星导航差分数据接收方法应用于中的卫星导航差分数据接收设备,又叫接收端,例如,卫星导航差分数据接收设备可以是车辆的车载终端,卫星导航差分数据接收设备是卫星导航差分数据接收平台的硬件载体,接收端接收外部输入的概略位置,接受端获取广播台广播的网格信息(网格信息是指广播站信息和网格划分信息统称,广播站信息的描述以及网格的划分规则,网格信息以业务数据的形式发送,图4所示为网格划分示意图),接收端确定概略位置是否在网格信息中当前频点覆盖范围内。
步骤S20,若所述概略位置不在所述网格信息中当前频点覆盖范围内,则确定所述广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点。
若概略位置不在网格信息中当前频点覆盖范围内,接收端则判断广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点,即,概率位置为A地,当前频点为92MHz覆盖B地和C地,接收端判定概略位置不在网格信息中当前频点覆盖范围内,接收端获取广播台的邻近广播台,接收端则判断广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点。
如图4所示,由点P0、P1、P2、P3、P4、P5围成的圆形区域代表频点的覆盖范围,点A、B、C为地图上3个点。判断当前位置是否在某个频点覆盖范围内的方法: 1、判断位置是否在广播站覆盖的经纬度范围之内---A点不在覆盖范围内;2、根据和中心点相对于垂直方向(经度方向)的角度,判断位置与对应的三角形,B点对应△P1-O-P2,C点对应△P2-O-P3;3、根据与中心点的距离判断点是否在三角形内,B点在覆盖范围内,C点不在覆盖范围内。
接收端判定概略位置不在网格信息中当前频点覆盖范围内,接收端获取广播台的邻近广播台,接收端从覆盖当前位置的邻近广播站中计算离当前位置最近的临近广播站,接收端判断广播台的邻近广播台中是否存在覆盖概略位置的目标频点作为工作频点。
步骤S30,若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态。
若邻近广播台中存在覆盖概略位置的目标频点,接收端则将目标频点作为工作频点,接收端切换至工作频点并监测工作频点的运行状态,接收端判断工作频点的运行状态,具体地,包括:
步骤a1,获取所述工作频点的信噪比;
步骤a2,在所述工作频点的所述信噪比大于预设阈值时,判定所述工作频点的运行状态正常;
步骤a3,在所述工作频点的所述信噪比小于或等于预设阈值时,判定所述工作频点的运行状态异常。
即,接收端获取工作频点的信噪比;接收端将工作频点的信噪比与预设阈值进行比对,其中,预设阈值可以根据具体场景设置,例如,预设阈值设为3dB;在工作频点的所述信噪比大于预设阈值时,接收端判定工作频点的运行状态正常;在工作频点的所述信噪比小于或等于预设阈值时,接收算判定工作频点的运行状态异常。
步骤S40,在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格。
在工作频点的运行状态正常时,接收端根据概略位置和工作频点的网格信息判断接收端是否处于最优网格。
步骤S50,若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。
若接收端没有处于最优网格,接收端则切换至最优网格,并接收所述最优网格的差分数据,以根据差分数据减少测量误差,提高定位精度;本申请实施例中基于广播的卫星导航网格化差分数据的自动切换方法可以弥补广播RTK只能工作于单基站模式的缺陷,可以使接收端自动选取最优的网格获取最佳定位效果。即,接收端根据广播站播发信息获取当前广播站以及邻近广播站信息、当前广播站网格信息;接收端根据外部输入的概略位置选取广播信号以获得最优的信号接收效果;接收端根据外部输入的概略位置选取相关度最高的网格以获得最佳定位效果;当广播信号的接收质量较差时,接收端能够准确识别当前位置是出于短暂的信号遮挡,还是超出了广播站的信号覆盖范围。
进一步地,基于本申请卫星导航差分数据接收方法第一实施例,提出本申请卫星导航差分数据接收方法第二实施例。
本实施例是第一实施例中步骤S10之前的步骤,本实施例与上述实施例的区别在于:
接收端上电时,确定是否存在广播台广播的网格信息;
若不存在所述广播台广播的网格信息,则执行预设的搜台子流程;
若存在所述广播台广播的网格信息,则执行所述接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内的步骤。
接收端接收端上电时,确定是否存在广播台广播的网格信息;若不存在所述广播台广播的网格信息,接收端则执行预设的搜台子流程;若存在所述广播台广播的网格信息,接收端则执行所述接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内的步骤。本实施例中接收端在上电时,将网格信息进行存储,使得后期定位操作更加便捷。
进一步地,基于本申请卫星导航差分数据接收方法第一实施例,提出本申请卫星导航差分数据接收方法第三实施例。
本实施例是第一实施例中步骤S20之后的步骤,本实施例与上述实施例的区别在于:
若所述邻近广播台中不存在覆盖所述概略位置的目标频点,则执行预设的搜台子流程;
直至搜索到覆盖所述概略位置的目标频点,执行所述将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态的步骤。
若邻近广播台中不存在覆盖概略位置的目标频点,接收端则执行预设的搜台子流程;直至搜索到覆盖概略位置的目标频点,接收端第一实施例中步骤S30将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态的步骤。
参照图5,图5中预设的搜台子流程的步骤,包括:
步骤b1,判断用户是否设置优先搜索范围;
步骤b2,若没有设置优先搜索范围,则进行全模式、全频点扫描,查找可用频点并从所述可用频点中选择信号质量最好的目标可用频点作为工作频点;
步骤b3,若已设置优先搜索范围,则在所述优先搜索范围内进行优先搜索,若查找到可用频点则从所述可用频点中选择信号质量最好的目标可用频点作为工作频点;若所述优先搜索范围没有找到可用频点,则进行全模式、全频点扫描,查找可用频点并从所述可用频点中选择信号质量最好的目标可用频点作为工作频点。
搜台开始用户可以指定优先搜索的范围。具体地说,可以指定搜台的频点和频谱模式。可以指定其中一项,可以同时指定,也可以不指定。需要说明的是,用户指定的搜索范围只作为优先搜索范围,如果在优先搜索范围内没有发现可用频点,收端还是会进行全模式、全频点扫描。
进一步地,基于本申请卫星导航差分数据接收方法上述实施例,提出本申请卫星导航差分数据接收方法第四实施例。
本实施例中的步骤是第一实施例中步骤S10之后的步骤,本实施例与上述实施例的区别在于:
若所述概略位置在所述网格信息中当前频点覆盖范围内,则将所述广播台的当前频点作为工作频点,并监测所述工作频点的运行状态;
在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;
若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。
若概略位置在所述网格信息中当前频点覆盖范围内,接收端则将广播台的当前频点作为工作频点,并监测工作频点的运行状态;在工作频点的运行状态正常时,根据概略位置和所述工作频点的网格信息判断所述接收端是否处于最优网格;若接收端处于最优网格,则接收差分数据进行定位调整,若接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据差分数据减少检测误差,提高定位精度。本实施例中不需要进行频点切换时,根据网格信息进行定位,使得定位准确快速。
进一步地,基于本申请卫星导航差分数据接收方法第四实施例,提出本申请卫星导航差分数据接收方法第五实施例。
本实施例是第一实施例中步骤S30之后的步骤,本实施例与上述实施的区别在于:
在所述工作频点的运行状态异常时,确定所述概略位置是否处于所述工作频点的覆盖范围内;
若所述概略位置没有处于所述工作频点的覆盖范围内,则切换工作频点;
解码新的工作频点的网格信息保存,并监测所述新的工作频点的运行状态;
若所述概略位置处于所述工作频点的覆盖范围内,则判定所述概略位置短暂处于所述广播站广播信号的遮挡区域,工作频点保持不变。
在工作频点的运行状态异常时,接收端确定概略位置是否处于工作频点的覆盖范围内;若概略位置处于所述工作频点的覆盖范围内,则判定所述概略位置短暂处于所述广播站广播信号的遮挡区域,接收端将工作频点保持不变;若概略位置没有处于工作频点的覆盖范围内,则切换工作频点;解码新的工作频点的网格信息保存,并监测新的工作频点的运行状态,并执行第一实施例中步骤S30之后的步骤,本实施例中在工作频点异常时,可以进行自动切换,使得接收端接收到的差分数更加准确。
参照图6,本申请还提供一种卫星导航差分数据接收装置,所述卫星导航差分数据接收装置包括:
请求接收模块10,用于接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内;
频点确定模块20,用于若所述概略位置不在所述网格信息中当前频点覆盖范围内,则确定所述广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点;
切换监测模块30,用于若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态;
网格确定模块40,用于在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;
网格切换模块50,用于若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。
在一实施例中,所述卫星导航差分数据接收装置,包括:
检测确定模块,用于接收端上电时,确定是否存在广播台广播的网格信息;
子流程执行模块,用于若不存在所述广播台广播的网格信息,则执行预设的搜台子流程;
频点确定模块,用于若存在所述广播台广播的网格信息,则执行所述接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内的步骤。
在一实施例中,所述卫星导航差分数据接收装置,包括:
子流程执行模块,用于若所述邻近广播台中不存在覆盖所述概略位置的目标频点,则执行预设的搜台子流程;
搜索切换模块,用于直至搜索到覆盖所述概略位置的目标频点,执行所述将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态的步骤。
在一实施例中,所述卫星导航差分数据接收装置,包括:
范围判断模块,用于判断用户是否设置优先搜索范围;
第一搜索模块,用于若没有设置优先搜索范围,则进行全模式、全频点扫描,查找可用频点并从所述可用频点中选择信号质量最好的目标可用频点作为工作频点;
第二搜索模块,所述若已设置优先搜索范围,则在所述优先搜索范围内进行优先搜索,若查找到可用频点则从所述可用频点中选择信号质量最好的目标可用频点作为工作频点;若所述优先搜索范围没有找到可用频点,则进行全模式、全频点扫描,查找可用频点并从所述可用频点中选择信号质量最好的目标可用频点作为工作频点。
在一实施例中,所述卫星导航差分数据接收装置,包括:
频点检测模块,用于若所述概略位置在所述网格信息中当前频点覆盖范围内,则将所述广播台的当前频点作为工作频点,并监测所述工作频点的运行状态;
网格确定模块,用于在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;
网格切换模块,用于若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。
在一实施例中,所述卫星导航差分数据接收装置,包括:
获取性噪比模块,用于获取所述工作频点的信噪比;
第一判定模块,用于在所述工作频点的所述信噪比大于预设阈值时,判定所述工作频点的运行状态正常;
第二判定模块,用于在所述工作频点的所述信噪比小于或等于预设阈值时,判定所述工作频点的运行状态异常。
在一实施例中,所述卫星导航差分数据接收装置,包括:
异常确定模块,用于在所述工作频点的运行状态异常时,确定所述概略位置是否处于所述工作频点的覆盖范围内;
切换频点模块,用于若所述概略位置没有处于所述工作频点的覆盖范围内,则切换工作频点;
解码检测模块,用于解码新的工作频点的网格信息保存,并监测所述新的工作频点的运行状态;
判定保持模块,用于若所述概略位置处于所述工作频点的覆盖范围内,则判定所述概略位置短暂处于所述广播站广播信号的遮挡区域,工作频点保持不变。
本实施例中基于广播的卫星导航网格化差分数据的自动切换方法,可以使接收端自动选取最优的网格获取最佳定位效果。即,接收端根据广播站播发信息获取当前广播站以及邻近广播站信息、当前广播站网格信息;接收端根据外部输入的概略位置选取广播信号以获得最优的信号接收效果;接收端根据外部输入的概略位置选取相关度最高的网格以获得最佳定位效果;当广播信号的接收质量较差时,接收端能够准确识别当前位置是出于短暂的信号遮挡,还是超出了广播站的信号覆盖范围。
上述各程序模块所执行的方法可参照本申请卫星导航差分数据接收方法各个实施例,此处不再赘述。
本申请还提供一种存储介质。
本申请存储介质上存储有卫星导航差分数据接收程序,所述卫星导航差分数据接收程序被处理器执行时实现如上所述的卫星导航差分数据接收方法的步骤。
其中,在所述处理器上运行的卫星导航差分数据接收程序被执行时所实现的方法可参照本申请卫星导航差分数据接收方法各个实施例,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者***所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者***中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种卫星导航差分数据接收方法,其中,所述卫星导航差分数据接收方法应用于接收端,所述方法包括:
    接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内;
    若所述概略位置不在所述网格信息中当前频点覆盖范围内,则确定所述广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点;
    若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态;
    在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;
    若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。
  2. 如权利要求1所述的卫星导航差分数据接收方法,其中,所述接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内的步骤之前,所述方法包括:
    接收端上电时,确定是否存在广播台广播的网格信息;
    若不存在所述广播台广播的网格信息,则执行预设的搜台子流程;
    若存在所述广播台广播的网格信息,则执行所述接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内的步骤。
  3. 如权利要求1所述的卫星导航差分数据接收方法,其中,所述若所述概略位置不在所述网格信息中当前频点覆盖范围内,则确定所述广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点的步骤之后,所述方法包括:
    若所述邻近广播台中不存在覆盖所述概略位置的目标频点,则执行预设的搜台子流程;
    直至搜索到覆盖所述概略位置的目标频点,执行所述将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态的步骤。
  4. 如权利要求2或3所述的卫星导航差分数据接收方法,其中,所述预设的搜台子流程的步骤,包括:
    判断用户是否设置优先搜索范围;
    若没有设置优先搜索范围,则进行全模式、全频点扫描,查找可用频点并从所述可用频点中选择信号质量最好的目标可用频点作为工作频点;
    若已设置优先搜索范围,则在所述优先搜索范围内进行优先搜索,若查找到可用频点则从所述可用频点中选择信号质量最好的目标可用频点作为工作频点;若所述优先搜索范围没有找到可用频点,则进行全模式、全频点扫描,查找可用频点并从所述可用频点中选择信号质量最好的目标可用频点作为工作频点。
  5. 如权利要求1所述的卫星导航差分数据接收方法,其中,所述接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内的步骤之后,所述方法包括:
    若所述概略位置在所述网格信息中当前频点覆盖范围内,则将所述广播台的当前频点作为工作频点,并监测所述工作频点的运行状态;
    在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;
    若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据,以根据所述差分数据进行定位。
  6. 如权利要求1所述的卫星导航差分数据接收方法,其中,所述若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态的步骤之后,所述方法包括:
    获取所述工作频点的信噪比;
    在所述工作频点的所述信噪比大于预设阈值时,判定所述工作频点的运行状态正常;
    在所述工作频点的所述信噪比小于或等于预设阈值时,判定所述工作频点的运行状态异常。
  7. 如权利要求1-6中任一项所述的卫星导航差分数据接收方法,其中,所述若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态的步骤之后,所述方法还包括:
    在所述工作频点的运行状态异常时,确定所述概略位置是否处于所述工作频点的覆盖范围内;
    若所述概略位置没有处于所述工作频点的覆盖范围内,则切换工作频点,
    解码新的工作频点的网格信息保存,并监测所述新的工作频点的运行状态;
    若所述概略位置处于所述工作频点的覆盖范围内,则判定所述概略位置短暂处于所述广播站广播信号的遮挡区域,工作频点保持不变。
  8. 一种卫星导航差分数据接收装置,其中,所述卫星导航差分数据接收装置包括:
    请求接收模块,用于接收外部输入的概略位置,获取广播台广播的网格信息,确定所述概略位置是否在所述网格信息中当前频点覆盖范围内;
    频点确定模块,用于若所述概略位置不在所述网格信息中当前频点覆盖范围内,则确定所述广播台的邻近广播台中是否存在覆盖所述概略位置的目标频点;
    切换监测模块,用于若所述邻近广播台中存在覆盖所述概略位置的目标频点,则将所述目标频点作为工作频点,切换至所述工作频点并监测所述工作频点的运行状态;
    网格确定模块,用于在所述工作频点的运行状态正常时,根据所述概略位置和所述工作频点的网格信息确定所述接收端是否处于最优网格;
    网格切换模块,用于若所述接收端没有处于最优网格,则切换至所述最优网格,并接收所述最优网格的差分数据。
  9. 一种卫星导航差分数据接收设备,其中,所述卫星导航差分数据接收设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的卫星导航差分数据接收程序,所述卫星导航差分数据接收程序被所述处理器执行时实现如权利要求1至7中任一项所述的卫星导航差分数据接收方法的步骤。
  10. 一种存储介质,其中,所述存储介质上存储有卫星导航差分数据接收程序,所述卫星导航差分数据接收程序被处理器执行时实现如权利要求1至7中任一项所述的卫星导航差分数据接收方法的步骤。
PCT/CN2021/098396 2020-07-08 2021-06-04 卫星导航差分数据接收方法、装置、设备及存储介质 WO2022007564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010653876.1 2020-07-08
CN202010653876.1A CN111781618B (zh) 2020-07-08 2020-07-08 卫星导航差分数据接收方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022007564A1 true WO2022007564A1 (zh) 2022-01-13

Family

ID=72758376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098396 WO2022007564A1 (zh) 2020-07-08 2021-06-04 卫星导航差分数据接收方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN111781618B (zh)
WO (1) WO2022007564A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070385A (zh) * 2022-01-17 2022-02-18 天津七一二通信广播股份有限公司 复杂机场环境下gbas***及应用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781618B (zh) * 2020-07-08 2022-10-18 深圳思凯微电子有限公司 卫星导航差分数据接收方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334524A (zh) * 2015-10-21 2016-02-17 山东天星北斗信息科技有限公司 一种基于虚拟网格的伪距差分定位方法
CN107182124A (zh) * 2017-05-19 2017-09-19 北京旋极伏羲大数据技术有限公司 一种基于网格的高精度定位方法及装置
CN107426695A (zh) * 2017-07-07 2017-12-01 深圳思凯微电子有限公司 基于广播的网格化差分数据播发方法、服务器及存储介质
CN107422351A (zh) * 2017-08-02 2017-12-01 湖南省测绘科技研究所 一种基于虚拟网格的gnss分米级差分定位方法
CN108802765A (zh) * 2018-07-03 2018-11-13 千寻位置网络有限公司 网格信息传输的控制方法及***、定位方法及终端
US20200036461A1 (en) * 2018-07-30 2020-01-30 Denso Ten Limited Broadcast receiver
CN111781618A (zh) * 2020-07-08 2020-10-16 深圳思凯微电子有限公司 卫星导航差分数据接收方法、装置、设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942353B (zh) * 2017-11-09 2019-11-19 深圳思凯微电子有限公司 双通道卫星导航差分数据接收方法、接收机及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334524A (zh) * 2015-10-21 2016-02-17 山东天星北斗信息科技有限公司 一种基于虚拟网格的伪距差分定位方法
CN107182124A (zh) * 2017-05-19 2017-09-19 北京旋极伏羲大数据技术有限公司 一种基于网格的高精度定位方法及装置
CN107426695A (zh) * 2017-07-07 2017-12-01 深圳思凯微电子有限公司 基于广播的网格化差分数据播发方法、服务器及存储介质
CN107422351A (zh) * 2017-08-02 2017-12-01 湖南省测绘科技研究所 一种基于虚拟网格的gnss分米级差分定位方法
CN108802765A (zh) * 2018-07-03 2018-11-13 千寻位置网络有限公司 网格信息传输的控制方法及***、定位方法及终端
US20200036461A1 (en) * 2018-07-30 2020-01-30 Denso Ten Limited Broadcast receiver
CN111781618A (zh) * 2020-07-08 2020-10-16 深圳思凯微电子有限公司 卫星导航差分数据接收方法、装置、设备及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070385A (zh) * 2022-01-17 2022-02-18 天津七一二通信广播股份有限公司 复杂机场环境下gbas***及应用方法

Also Published As

Publication number Publication date
CN111781618B (zh) 2022-10-18
CN111781618A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN102598802B (zh) 用于在无线终端中接入网络的装置和方法
JP4748221B2 (ja) 携帯通信装置において位置情報を管理する装置、システムおよび方法
US6289279B1 (en) Positioning system, method, and device for obtaining information about a current position
US8244241B2 (en) WLAN network information caching
RU2235341C2 (ru) Система и способ определения положения беспроводного приемопередатчика системы множественного доступа с кодовым разделением каналов
US8175587B2 (en) Obtaining service when in a no-coverage area of a communication system
ES2445825T3 (es) Método de determinación de posición y aparto terminal de comunicación móvil
US7319876B2 (en) System and method for using equipment identity information in providing location services to a wireless communication device
US9161237B2 (en) Checking a validity of coverage area position information
US7039419B2 (en) Cell phone position measurement system, position measurement method, and cell phone terminal
WO2011152283A1 (ja) 測位装置及び方法
US7406318B2 (en) Apparatus and method for positioning mobile station
US9651674B2 (en) Devices, systems and methods for providing location information over a cellular network
WO2022007564A1 (zh) 卫星导航差分数据接收方法、装置、设备及存储介质
US8918115B2 (en) Method and location server for determining a postion of a target device
KR100984688B1 (ko) 광대역 무선통신 시스템에서 사용자 입력을 통한 소형 기지국의 위치 설정 장치 및 방법
US8818421B2 (en) Mobile communication terminal and location system selection method
JPWO2006022324A1 (ja) 基準位置情報補正方法、サーバシステム及び基凖位置情報補正システム
CN112804748B (zh) 定位方法、定位服务器、终端、移动基站及存储介质
JP2008002880A (ja) 測位アシスト方法、測位アシストサーバ及び測位システム
JP5366262B2 (ja) 無線品質情報の有効性を判定する通信装置、携帯端末、システム、プログラム及び方法
CN110446257B (zh) 基于移动终端的定位方法及定位装置
CN113207083B (zh) 检测终端位置的方法、装置、存储介质及终端
KR20100035244A (ko) 측위 정확도를 향상하는 pCell 데이터베이스를 구축하기 위한 서버 및 방법
CN118303002A (zh) 信息处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21837344

Country of ref document: EP

Kind code of ref document: A1