WO2022007322A1 - 一种无磁计量装置、无磁计量方法和流量表 - Google Patents

一种无磁计量装置、无磁计量方法和流量表 Download PDF

Info

Publication number
WO2022007322A1
WO2022007322A1 PCT/CN2020/133766 CN2020133766W WO2022007322A1 WO 2022007322 A1 WO2022007322 A1 WO 2022007322A1 CN 2020133766 W CN2020133766 W CN 2020133766W WO 2022007322 A1 WO2022007322 A1 WO 2022007322A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
module
voltage
voltage feedback
charging
Prior art date
Application number
PCT/CN2020/133766
Other languages
English (en)
French (fr)
Inventor
李俊
李宁
万贞
陈钇安
罗军
Original Assignee
湖南威铭能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南威铭能源科技有限公司 filed Critical 湖南威铭能源科技有限公司
Publication of WO2022007322A1 publication Critical patent/WO2022007322A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/061Indicating or recording devices for remote indication
    • G01F15/063Indicating or recording devices for remote indication using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/07Integration to give total flow, e.g. using mechanically-operated integrating mechanism
    • G01F15/075Integration to give total flow, e.g. using mechanically-operated integrating mechanism using electrically-operated integrating means

Definitions

  • the invention relates to the field of non-magnetic measurement, in particular to a non-magnetic measurement device, a non-magnetic measurement method and a flow meter.
  • Non-magnetic measurement is currently a new measurement method newly promoted in the water meter industry after reed switch and photoelectric direct reading measurement. It not only overcomes the measurement problem of traditional reed switches affected by strong magnetic interference, but also solves the problem that photoelectric direct reading measurement is difficult to achieve high-precision measurement, and is convenient for installation and removal. Currently, it is vigorously applied and promoted by water meter customers and manufacturers. However, non-magnetic metering has relatively high requirements on supporting hardware design, electronic component parameter consistency and manufacturing process, and non-magnetic metering has a short sensing distance, which limits the installation adaptability of non-magnetic modules, and requires high dimensional accuracy for structural installation, which is very important for batch production. Production and application bring relatively great difficulties.
  • the electronic system of the water meter is only powered by the internal battery, and it is required to run for more than 6 years, and its power consumption requirement is low. Therefore, the electromagnetic power emitted by the non-magnetic detection coil plate is very low, and the distance between the non-magnetic detection coil plate and the non-magnetic metal pointer cannot be too far (usually within 6mm), otherwise the distance is too far, and the non-magnetic metal pointer cannot be cut.
  • Non-magnetic detection coil plate so that the relationship between the voltage and magnitude of the four secondary coils that cannot be accurately detected cannot be presented according to a predetermined rule, so that the detection results are not possible.
  • the detection results are that one secondary coil is larger than the other
  • the secondary coil is designed so that normal measurement cannot be performed. The limitation of this distance makes it difficult for the non-magnetic module to adapt to the installation requirements of different water meter structures and sizes.
  • the patent document with the patent number of ZL201921036078.3 discloses a new type of gas metering device, which includes a sensor, a signal acquisition unit, a signal processing module, an A/D conversion module, an external power supply, a microcontroller, an output module and a storage module.
  • the sensor includes a main sensor module and a sub-sensor module, the sub-sensor module includes a temperature sensor, a pressure sensor, a remote wireless communication module, a data measurement and processing module, the output end of the sensor is electrically connected with the input end of the signal acquisition unit,
  • the signal acquisition unit collects the signal measured by the sensor, and transmits it to the signal processing module.
  • the device is provided with a first secondary coil, a second secondary coil and a third secondary coil in the main sensor module, and adopts an anti-corrosion method.
  • the design of static magnetic field and alternating magnetic field avoids loss of accuracy due to magnetic field interference during use, so the robustness of the entire device is better. But the above problems still exist.
  • the existing non-magnetic measurement technology has shortcomings and needs to be improved and improved.
  • the purpose of the present invention is to provide a non-magnetic measuring device, a non-magnetic measuring method and a flow meter, which can improve the sensing distance of the non-magnetic detection coil and improve the measurement accuracy.
  • a non-magnetic measuring device comprising a non-magnetic detection coil, a non-magnetic conversion plate and a non-magnetic metal pointer; the non-magnetic detection coil is installed on the non-magnetic conversion plate, and the non-magnetic metal pointer is correspondingly installed on the non-magnetic conversion plate. the relative position of the non-magnetic detection coil;
  • the wireless detection coil includes a primary coil and a plurality of secondary coils; a plurality of the secondary coils are installed inside the primary coil, and are installed in pairs, and each pair of the secondary coils is installed opposite to each other ;
  • the non-magnetic conversion board includes a metering module, a voltage detection module, a voltage feedback module, a charging and discharging module, and an excitation module; the excitation module is respectively connected with the metering module and the primary coil; the voltage feedback module is connected to a plurality of the secondary coil is connected; the voltage feedback module is respectively connected with the metering module and the voltage feedback module; the charging and discharging module is respectively connected with the metering module and the voltage feedback module.
  • the voltage feedback module has a plurality of voltage feedback units, which are respectively connected with the plurality of secondary coils for feeding back the induced voltage of the secondary coils.
  • the voltage feedback unit is a capacitor.
  • the charging and discharging module has a plurality of charging and discharging units, which are respectively connected to the plurality of the voltage feedback units and are respectively connected to the metering instructs to charge and discharge the voltage feedback unit.
  • the non-magnetic metal pointer has a non-magnetic needle head and a non-magnetic needle body; the material of the non-magnetic needle body is metal, and the area is half the area of the primary coil.
  • a non-magnetic measurement method using the non-magnetic measurement device comprising the steps of:
  • the non-magnetic conversion board excites the incoming line of the primary coil, collects the voltage of the voltage feedback module through the voltage detection module, and then obtains the magnitude relationship between the voltages between the first pair of secondary coils;
  • the non-magnetic conversion board charges and discharges the voltage feedback module through the charging and discharging module, so that the voltage magnitude relationship of the voltage feedback module changes, and records the current Charge and discharge time;
  • the non-magnetic measuring device executes steps S1-S4 at predetermined time intervals.
  • the non-magnetic measurement device has a voltage feedback module for feeding back the voltage of the secondary coil
  • the non-magnetic conversion board obtains the magnitude relationship of the secondary coil voltage by detecting the voltage of the voltage feedback module.
  • the charging and discharging duration is obtained by charging and discharging the voltage feedback module to obtain the charging and discharging duration of each of the secondary coils.
  • the predetermined time is 10-50ms.
  • a non-magnetic measurement flow meter which uses the non-magnetic measurement device or the non-magnetic measurement method for flow measurement.
  • a non-magnetic metering device, non-magnetic metering method and flow meter provided by the present invention have the following beneficial effects:
  • the present invention can adapt to and be compatible with the difference of hardware performance parameters, and can offset and compensate for the problem of hardware performance differences through the introduction of the charging and discharging time parameter, thereby improving the measurement accuracy;
  • the present invention uses the voltage feedback module to feed back the induced voltage of the secondary coil, which can increase the inductive distance between the non-magnetic metal pointer and the non-magnetic detection coil to more than 8 mm, even within 10 mm. Accurate measurement within the range of -15mm is a great improvement in the field of non-magnetic measurement.
  • Fig. 1 is the structure diagram of the non-magnetic metering device provided by the present invention.
  • Fig. 2 is the structural block diagram of the non-magnetic conversion plate provided by the present invention.
  • FIG. 3 is a structural block diagram of an embodiment of the secondary coil voltage detection structure provided by the present invention.
  • Fig. 4 is the flow chart of the non-magnetic metering method provided by the present invention.
  • Fig. 5 is the time locus point diagram that the non-magnetic metal pointer provided by the present invention rotates one rotation;
  • FIG. 6 is a time trajectory point diagram of the non-magnetic metal pointer provided by the present invention rotating for multiple cycles.
  • the present invention provides a non-magnetic measuring device, including a non-magnetic detection coil 1, a non-magnetic conversion plate 2 and a non-magnetic metal pointer 3; the non-magnetic detection coil 1 is installed in the non-magnetic On the magnetic conversion plate 2, the non-magnetic metal pointer 3 is correspondingly installed at the opposite position of the non-magnetic detection coil 1;
  • the wireless detection coil includes a primary coil 11 and a plurality of secondary coils 12; a plurality of the secondary coils 12 are installed inside the primary coil 11, and are installed in pairs, and each pair of the secondary coils
  • the coils 12 are installed relative to each other; the relative installation is relative to the center of the primary coil (for example, if the primary coil is circular, it is installed relative to the center of the circle);
  • the non-magnetic conversion board 2 includes a metering module 21, a voltage detection module 22, a voltage feedback module 23, a charging and discharging module 24, and an excitation module 25; the excitation module 25 is respectively connected to the metering module 21 and the primary coil 11. ;
  • the voltage feedback module 23 is connected to a plurality of the secondary coils 12 ; the voltage feedback module 23 is respectively connected to the metering module 21 and the voltage feedback module 23 ;
  • the metering module 21 and the voltage feedback module 23 are connected.
  • the metering module 21 is an MCU (Micro controller Unit, micro control unit), and the specific model is not limited; the voltage feedback module 23 has voltage feedback components connected to the secondary coil 12 respectively, and the voltage feedback The feedback component is further preferably a capacitor; the voltage detection module 22 , the charge-discharge module 24 , and the excitation module 25 are all voltage detection circuits commonly used in the art, and are not specifically limited.
  • the plurality of secondary coils 12 installed in the primary coil 11 are also installed in opposite pairs, by directly collecting and comparing the plurality of secondary coils 12 to determine the position of the non-magnetic metal pointer 3 based on the magnitude relationship of the output voltage data, then when the distance between the non-magnetic metal pointer 3 and the non-magnetic detection coil 1 is too far (for example, greater than 6mm, ), the voltages of the two primary coils 11 cannot be accurately detected, and even the results displayed at any time are a magnitude relationship, and the position of the non-magnetic metal pointer 3 cannot be determined.
  • the non-magnetic metering device by adding a voltage feedback module 23 to a plurality of the secondary coils 12, it is used to directly feedback the voltage level, instead of directly detecting the voltage of the secondary coil 12, but through the voltage feedback module 23 The voltage value fed back is used to judge the position of the non-magnetic metal pointer 3.
  • the added components are simple, but even if the installation distance of the non-magnetic metal pointer 3 is slightly farther, its position can be accurately measured. ; it works as follows:
  • the metering module 21 drives the excitation module 25 to excite the primary coil 11 , and at this time, the primary coil 11 is charged, and the secondary coil 12 obtains an induced voltage, which is output to
  • the voltage feedback module 23 for example, when the component used by the voltage feedback module 23 to feedback the voltage of the secondary coil 12 is a capacitor, after the secondary coil 12 senses the voltage, the capacitor will be charged, According to the different voltages sensed by the secondary coil 12, the electric energy obtained by the capacitor is also different.
  • the voltage of the secondary coil 12 can be obtained by detecting the voltage of the capacitor; the metering module 21 directly measures the voltage feedback
  • the voltage value of the module 23 can compare the voltage of the two secondary coils 12, and then determine the position of the non-magnetic metal pointer 3, and then determine whether to rotate a circle according to the position of the non-magnetic technical pointer, and finally realize the Lap measurement.
  • the present invention also provides a non-magnetic measuring device using the non-magnetic measuring device. Measurement method, including steps:
  • the non-magnetic conversion board 2 excites the primary coil 11, and collects the voltage of the voltage feedback module 23 through the voltage detection module 22 to obtain the magnitude of the voltage between the first pair of secondary coils 12.
  • the voltage feedback module 23 is respectively connected with a plurality of secondary coils 12 for feeding back the induced voltage of the secondary coils 12, and the voltage detection module 22 and the voltage feedback module 23 are mutually
  • the voltage data of each pair of the secondary coils 12 to be detected can be output and output to the metering module 21 to obtain the magnitude relationship of the voltage, and the data obtained by the metering module 21 is the magnitude relationship at this time;
  • the specific size relationship between the two secondary coils 12 has not yet been determined; it should be noted that the voltage and current for exciting the primary coil 11 each time remain unchanged;
  • the non-magnetic conversion board 2 charges and discharges the voltage feedback module 23 through the charging and discharging module 24, so that a new change occurs in the voltage magnitude relationship of the voltage feedback module 23, Record the charging and discharging time at this time; specifically, in order to more accurately determine the magnitude relationship between the voltages of the two opposing secondary coils 12, the measurement method provided by the present invention determines the two voltage feedback module 23.
  • the charging and discharging module 24 is used to perform the charging and discharging operation, thereby obtaining the charging and discharging duration; the charging and discharging duration can reflect the voltage difference between the two secondary coils 12
  • the standard of the charging and discharging operation is to discharge the corresponding part of the secondary coil 12 with a large voltage in the voltage feedback module 23 , and at the same time discharge the corresponding part of the secondary coil 12 with a small voltage in the voltage feedback module 23 Partial charging, and then during this process, the voltage detection module 22 detects the voltage values of the voltage feedback module 23 corresponding to the two secondary coils 12 in real time. When the voltage feedback module 23 feedbacks the two secondary coils 12.
  • the non-magnetic measuring device executes steps S1-S4 at predetermined time intervals.
  • the predetermined time is preferably 10-50ms, more preferably 30ms, and the detection is performed according to the predetermined time, and the curves shown in Figs.
  • the lower curve in each figure represents the change form of the charging and discharging time T12 (between the secondary coils L1 and L2 ), and the upper curve represents the charging and discharging time T34 (the secondary coil L3 and L4).
  • the measurement method provided by the present invention refines the traditional simple ratio of size to realize accurate measurement by comparing the charging and discharging time, improves the ability of non-magnetic measurement, and can realize long-distance induction feedback, such as the non-magnetic measurement.
  • the distance between the magnetic detection coil 1 and the non-magnetic metal pointer 3 is more than 8 mm, and even in the case of 10-15 mm, accurate detection is still possible.
  • the voltage feedback module 23 has a plurality of voltage feedback units 231 , which are respectively connected to the plurality of secondary coils 12 for feeding back the induced voltage of the secondary coils 12 .
  • the number of the voltage feedback units 231 is the same as the number of the secondary coils 12 , and they are respectively installed accordingly.
  • step S2 when the charging and discharging operation is performed, it means: for the secondary coil 12 with a large voltage (when detecting the induced voltage of the secondary coil 12, it is also by detecting the voltage feedback unit 231 corresponding to the secondary coil 12).
  • the voltage feedback unit 231 connected to the voltage for determining the voltage is discharged, and the voltage feedback unit 231 connected to the secondary coil 12 with a small voltage is charged at the same time, and then the voltage detection module 22 detects two The voltage value of the voltage feedback unit 231 connected to each of the secondary coils 12 (secondary coils L1 and L2 ), when the relationship between the voltages of the two secondary coils 12 shows a new change, record the charge and discharge at this time. of the total duration.
  • the voltage feedback unit 231 is a capacitor.
  • the non-magnetic metering device has a voltage feedback module 23 for feeding back the voltage of the secondary coil 12;
  • step S2 the non-magnetic conversion board 2 obtains the magnitude relationship of the voltage of the secondary coil 12 by detecting the voltage of the voltage feedback module 23.
  • the capacitor it is connected to the secondary coil 12.
  • the secondary coil 12 induces an induced current and an induced voltage, and at this time, the voltage feedback unit will be 231 (ie, the capacitor) is charged, then the voltage of the secondary coil 12 corresponding to the voltage of the voltage feedback unit 231 can be obtained by detecting the voltage of the voltage feedback unit 231 , which is convenient and quick.
  • the charging and discharging module 24 has a plurality of charging and discharging units 241, which are respectively connected to the plurality of the voltage feedback units 231, and are respectively connected to the metering module 21, for according to the The voltage feedback unit 231 is charged and discharged by the instruction of the metering module 21 .
  • the number of the charging and discharging units 241 is the same as the number of the voltage feedback units 231 .
  • the voltage detection module 22 has a plurality of voltage detection units 221, which are respectively connected to a plurality of the voltage feedback units 231 and are respectively connected to the metering module 21 for detecting the voltage feedback
  • the voltage data of the unit 231 is sent to the metering module 21 .
  • the charging and discharging duration is obtained by charging and discharging the voltage feedback module 23 to obtain the charging and discharging duration of each of the secondary coils 12 .
  • the charging and discharging module 24 is connected to the power source of the non-magnetic measuring device, and can charge or discharge the voltage feedback unit 231 .
  • charging refers to charging the voltage feedback unit 231 (that is, the capacitor) with the electric energy of the power supply;
  • discharging refers to releasing the electric energy of the voltage feedback unit 231 (that is, the capacitor) through the grounding resistance;
  • the work flow and principle are common technical means in the art, and are not described in detail in the present invention.
  • the non-magnetic metal pointer 3 has a non-magnetic needle head 31 and a non-magnetic needle body 32 ;
  • the non-magnetic needle body 32 is made of metal, and its area is half the area of the primary coil 11 .
  • the non-magnetic needle head 31 is preferably made of non-metallic material, so that it will not affect the secondary coil 12 ;
  • the non-magnetic needle body 32 is made of metal material, and is fan-shaped, with an area equal to that of the primary coil 11 .
  • the area of the non-magnetic needle body 32 can also be selected from other solutions, for example, its area is the area of the primary coil 11 (nm)/2n, n is the logarithm of the secondary coils 12 (two oppositely installed secondary coils 12 are a pair), m is a positive integer smaller than n, and the detection methods used are the same.
  • a non-magnetic measurement flow meter using the non-magnetic measurement device for flow measurement, because the non-magnetic measurement device can adapt to the distance between the non-magnetic metal pointer 3 and the non-magnetic detection coil 1 .
  • the distance (for example, greater than 8mm) is installed. Therefore, when the metering equipment is large, it is not necessary to change the model of the non-magnetic metering device; deformation, it will not affect the accuracy of the measurement.
  • the flow meter is preferably a water meter or a gas meter.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种无磁计量装置、无磁计量方法和流量表。一种无磁计量装置,包括无磁检测线圈(1)、无磁转换板(2)和无磁金属指针(3);无磁检测线圈(1)装设在无磁转换板(2)上,无磁金属指针(3)对应装设在无磁检测线圈(1)相对的位置;无磁检测线圈(1)包括初级线圈(11)和多个次级线圈(12);无磁转换板(2)包括计量模块(21)、电压检测模块(22)、电压反馈模块(23)、充放电模块(24)、激励模块(25);激励模块(25)分别与计量模块(21)、初级线圈(11)连接。可以适应和兼容硬件性能参数差异性,通过引入的充放电时间参数可以抵消和补偿硬件性能差异问题;使用电压反馈模块(23)来反馈次级线圈(12)的感应电压,能够将无磁金属指针(3)与无磁检测线圈(1)之间的感应距离提升到6mm以上。

Description

一种无磁计量装置、无磁计量方法和流量表 技术领域
本发明涉及无磁计量领域,尤其涉及一种无磁计量装置、无磁计量方法和流量表。
背景技术
无磁计量目前是水表行业继干簧管、光电直读计量之后新推广的一种新计量方式。它即克服了传统干簧管受强磁干扰影响计量问题,又解决光电直读计量难以实现高精度计量问题,而且方便安装和拆除等特点,目前受到水表客户和厂家大力应用和推广。但是无磁计量对配套的硬件设计、电子元器件参数一致性以及制作工艺要求比较高,而且无磁计量感应距离短,限制无磁模块安装适应性,对结构安装尺寸精度要求高,这对批量生产和应用带来了比较大难度。
现有的方法虽然能实现无磁计量,但是在实际测试、生产和应用中,发现以下两点问题:
1.对硬件PCB板以及配套的电子元器件的性能参数一致性、以及采集电压信号的传感器精度要求高。如果某些硬件的参数差异大,导致次级线圈输出的电压不能正常被检测到,进而不能准确比对各对次级线圈之间的电压大小关系,因此批量生产时不合格率比例高。
2.目前水表电子***仅靠内部电池供电运行,且要求能运行6年以上,其功耗要求低。因此无磁探测线圈板发射的电磁功率很低,限制无磁探测线圈板与无磁金属指针相隔的距离不能太远(一般是6mm以内),否则距离太远,则无磁金属指针无法切割影响无磁探测线圈板,使得四个次级线圈不能被准确检测到的电压大小关系无法表现出按预定的规律呈现,使得检测结果不具有可能检测的结果均是某一次级线圈大于另一相对装设的次级线圈,以致无法进行正常计量。这一距离的限制,导致无磁模块很难适应不同的水表结构尺寸安装要求。
专利号为ZL201921036078.3的专利文献公开了一种新型燃气计量装置,包括传感器、信号采集单元、信号处理模块、A/D转换模块、外部电源、微控制器、输出模块和存储模块,所述传感器包括主传感器模块和副传感器模块,所述副传感器模块包括温度传感器、压力传感器以及远程无线通讯模块、数据计量和处理模块,所述传感器的输出端与信号采集单元的输入端电性连接,所述信号采集单元采集传感器所测的信号,并输送给信号处理模块,本装置通过在主传感器模块内设置有第一次级线圈、第二次级线圈和第三次级线圈,并采用抗静磁场和交变磁场的设计,避免在使用时因为受到磁场干扰而失去准确性,从而整个装置的鲁棒性更好。但是依然存在上述问题。
因而现有的无磁计量技术存在不足,还有待改进和提高。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种无磁计量装置、无磁计量方法和流量表,能够提高无磁检测线圈的感应距离,提高计量的精准度。
为了达到上述目的,本发明采取了以下技术方案:
一种无磁计量装置,包括无磁检测线圈、无磁转换板和无磁金属指针;所述无磁检测线圈装设在所述无磁转换板上,所述无磁金属指针对应装设在所述无磁检测线圈相对的位置;
所述无线检测线圈包括初级线圈和多个次级线圈;多个所述次级线圈装设在所述初级线圈的内部,成对装设,每对成对的所述次级线圈相对装设;
所述无磁转换板包括计量模块、电压检测模块、电压反馈模块、充放电模块、激励模块;所述激励模块分别与所述计量模块、所述初级线圈连接;所述电压反馈模块与多个所述次级线圈连接;所述电压反馈模块分别与所述计量模块、所述电压反馈模块连接;所述充放电模块分别与所述计量模块、所述电压反馈模块连接。
优选的所述的无磁计量装置,所述电压反馈模块具有多个电压反馈单元,分别与多个所述次级线圈连接,用于反馈所述次级线圈的感应电压。
优选的所述的无磁计量装置,所述电压反馈单元为电容。
优选的所述的无磁计量装置,所述充放电模块具有多个充放电单元,分别与多个所述电压反馈单元连接,并分别与所述计量模块连接,用于根据所述计量模块的指令对所述电压反馈单元充放电。
优选的所述的无磁计量装置,所述无磁金属指针具有无磁针头和无磁针体;所述无磁针体的材料为金属,面积大小为所述初级线圈面积的一半。
一种使用所述的无磁计量装置的无磁计量方法,包括步骤:
S1、所述无磁转换板对所述初级线圈进线激励,通过所述电压检测模块采集所述电压反馈模块的电压,进而得到第一对次级线圈之间电压的大小关系;
S2、基于S1中的电压大小关系,所述无磁转换板通过所述充放电模块对所述电压反馈模块充放电,使所述电压反馈模块的电压大小关系发生新的变化,记录此时的充放电时长;
S3、对剩余的成对次级线圈按照步骤S1-S2执行,分别得到各自的充放电时长;
S4、判定所有成对次级线圈的充放电时长均回到原始值,若是,则判定旋转一圈,圈数加1;否则,判定未旋转一周;
S5、所述无磁计量装置间隔预定时间执行一次步骤S1-S4。
优选的所述的无磁计量方法,所述无磁计量装置具有电压反馈模块,用于反馈所述次级线圈的电压;
所述无磁转换板通过检测所述电压反馈模块的电压得到次级线圈电压的大小关系。
优选的所述的无磁计量方法,所述充放电时长,通过对所述电压反馈模块的充放电,进而得到每个所述次级线圈的充放电时长。
优选的所述的无磁计量方法,所述预定时间为10-50ms。
一种无磁计量的流量表,使用所述的无磁计量装置或所述的无磁计量方法进行流量计量。
相较于现有技术,本发明提供的一种无磁计量装置、无磁计量方法和流量表,具有以下有益效果:
1)本发明可以适应和兼容硬件性能参数差异性,通过引入的充放电时间参数可以抵消和补偿硬件性能差异问题,提高测量精度;
2)本发明使用所述电压反馈模块来反馈所述次级线圈的感应电压,能够将所述无磁金属指针与所述无磁检测线圈之间的感应距离提升到8mm以上,甚至能够在10-15mm的范围内精准测量,对无磁计量领域是极大的进步。
附图说明
图1是本发明提供的无磁计量装置的结构图;
图2是本发明提供的无磁转换板的结构框图;
图3是本发明提供的次级线圈电压检测结构一种实施方式的结构框图;
图4是本发明提供的无磁计量方法的流程图;
图5是本发明提供的无磁金属指针旋转一周产生的时间轨迹点图;
图6是本发明提供的无磁金属指针旋转多个周期产生的时间轨迹点图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1-图6,本发明提供一种无磁计量装置,包括无磁检测线圈1、无磁转换板2和无磁金属指针3;所述无磁检测线圈1装设在所述无磁转换板2上,所述无磁金属指针3对应装设在所述无磁检测线圈1相对的位置;
所述无线检测线圈包括初级线圈11和多个次级线圈12;多个所述次级线圈12装设在所述初级线圈11的内部,成对装设,每对成对的所述次级线圈12相对装设;所述相对装设,为相对所述初级线圈的中心相对装设(例如所述初级线圈是圆形,则相对于圆心装设);
所述无磁转换板2包括计量模块21、电压检测模块22、电压反馈模块23、充放电模块24、激励模块25;所述激励模块25分别与所述计量模块21、所述初级线圈11连接;所述电压反馈模块23与多个所述次级线圈12连接;所述电压反馈模块23分别与所述计量模块21、所述电压反馈模块23连接;所述充放电模块24分别与所述计量模块21、所述电压反馈模块23连接。优选的,所述计量模块21为MCU(Micro controller Unit,微控制单元),具体型号不做限定;所述电压反馈模块23内部具有分别与所述次级线圈12连接的电压反馈元器件,电压反馈元器件进一步优选为电容;所述电压检测模块22、所述充放电模块24、所述激励模块25均为本领域常用的电压检测电路,不做具体限定。
具体的,在传统的无磁计量装置中,装设在所述初级线圈11内的多个所述次级线圈12也是相对成对装设,是通过直接采集和比较多个所述次级线圈12输出的电压数据的大小关系,来判断所述无磁金属指针3所处的位置,那么当所述无磁金属指针3与所述无磁检测线圈1的距离过远时(例如大于6mm,),就会无法准确检测两个初级线圈11的电压大小,甚至,任何时候检测所呈现出来的结果均是一种大小关系,无法确定所述无磁金属指针3的位置。本发明提供的无磁计量装置,通过对多个所述次级线圈12添加电压反馈模块23,用于直接反馈出电压的高低,不直接检测次级线圈12的电压,而是通过电压反馈模块23反馈出来的电压值进行判断所述无磁金属指针3所处的位置,增加的元器件简单,但即使在所述无磁金属指针3的装设距离稍远,也可以准确的测量其位置;其工作原理如下:
在需要进行测量时,所述计量模块21驱动所述激励模块25对所述初级线圈11进行激励,此时,对所述初级线圈11充电,所述次级线圈12得到感应电压,并输出到所述电压反馈模块23,例如,所述电压反馈模块23使用的反馈所述次级线圈12电压的元器件是电容时,在 所述次级线圈12感应到电压后,就会对电容充电,根据所述次级线圈12感应到的电压不同,电容得到的电能也不同,这时就可以通过检测电容的电压得到所述次级线圈12的电压;所述计量模块21直接测量所述电压反馈模块23的电压值即可比对出两个所述次级线圈12的电压大小,进而判定所述无磁金属指针3的位置,然后根据所述无磁技术指针的位置判定是否旋转一周,最终实现圈数计量。
请一并参阅图3-图6,进一步的,所述为了更加精准的确定所述无磁金属指针3的位置,相应的,本发明还提供一种使用所述的无磁计量装置的无磁计量方法,包括步骤:
S1、所述无磁转换板2对所述初级线圈11进线激励,通过所述电压检测模块22采集所述电压反馈模块23的电压,进而得到第一对次级线圈12之间电压的大小关系;优选的,所述电压反馈模块23分别与多个次级线圈12连接,用于将所述次级线圈12的感应电压反馈出来,所述电压检测模块22与所述电压反馈模块23相互配合,则可以输出比对所要检测的每对所述次级线圈12的电压数据输出到所述计量模块21得到电压的大小关系,此时通过所述计量模块21得到的数据是大小的关系;对于两个所述次级线圈12之间的具体大小关系还没法确定出来;应当说明的是,每次对所述初级线圈11进行激励的电压和电流不变;
S2、基于S1中的电压大小关系,所述无磁转换板2通过所述充放电模块24对所述电压反馈模块23充放电,使所述电压反馈模块23的电压大小关系发生新的变化,记录此时的充放电时长;具体的,为了能够更加精准的确定两个相对的所述次级线圈12的电压大小关系,本发明提供的测量方法在通过所述电压反馈模块23确定了两个所述次级线圈12的电压大小关系后,就使用所述充放电模块24进行充放电操作,进而获得充放电时长;所述充放电时长即可体现两个次级线圈12之间电压的差值;所述充放电操作的标准为对电压大的次级线圈12在所述电压反馈模块23中对应的部分放电,同时对电压小的次级线圈12在所述电压反馈模块23中对应的部分充电,然后在此过程中所述电压检测模块22实时检测所述电压反馈模块23对应两个所述次级线圈12的电压值,当所述电压反馈模块23所反馈的两个次级线圈12电压大小关系呈现出新的变化时,记录此时充放电的总时长;应当说明的是,对所述电压反馈模块23的充放电所使用的功率相同,且电压、电流相等;例如,检测到的第一对次级线圈12(L1,L2)的电压大小关系为V L1>V L2,然后进行充放电操作,当第一对次级线圈12(图3中,分别为次级线圈L1/L2)的电压大小关系变为V L1≤V L2时,记录此时充放电时间T12;另外,所述充放电时间的单位一般是微秒;
S3、对剩余的成对次级线圈12(例如图3中次级线圈L3/L4)按照步骤S1-S2执行,分别得到各自的充放电时长;
S4、判定所有成对次级线圈12的充放电时长均回到原始值,若是,则判定旋转一圈,圈数加1;否则,判定未旋转一周;具体的,所述原始值为所述无磁计量装置初始化后第一次执行步骤S1-S3所得到的每对所述次级线圈12的充放电时长,存储在所述计量模块21中。应当说明的是,只要每次执行一次初始化(即无磁计量装置的计数归零),就对所述原始值进行一次更新;
S5、所述无磁计量装置间隔预定时间执行一次步骤S1-S4。所述预定时间优选为10-50ms,进一步优选为30ms,依照所述预定时间进行检测,可以得到图3和4所示曲线,进而进行所述无磁计量装置圈数的计量。
具体的,图5和图6中,每幅图中在下的曲线表示充放电时间T12(次级线圈L1和L2之间)的变化形态,在上的曲线表示充放电时间T34(次级线圈L3和L4之间)。可以看到,本发明提供的计量方法,将传统单纯比大小的情况细化为通过比对充放电时长实现精准计量,提高无磁计量的能力,能够实现远距离的感应反馈,例如所述无磁检测线圈1与所述无磁金属指针3之间的距离超过8mm,甚至可以在10-15mm的情况下,依然能够准确检测。
作为优选方案,本实施例中,所述电压反馈模块23具有多个电压反馈单元231,分别与多个所述次级线圈12连接,用于反馈所述次级线圈12的感应电压。所述电压反馈单元231的数量与所述次级线圈12的数量相同,并分别对应装设。在步骤S2中,执行充放电操作时,是指:对电压大的次级线圈12(在检测所述次级线圈12的感应电压时,也是通过检测与之对应的所述电压反馈单元231的电压进行判定)所连接的所述电压反馈单元231进行放电,同时对电压小的次级线圈12所连接的所述电压反馈单元231充电,然后在此过程中所述电压检测模块22实时检测两个所述次级线圈12(次级线圈L1和L2)所连接的所述电压反馈单元231的电压值,当两个次级线圈12电压大小关系呈现出新的变化时,记录此时充放电的总时长即可。
作为优选方案,本实施例中,所述电压反馈单元231为电容。
作为优选方案,本实施例中,所述无磁计量装置具有电压反馈模块23,用于反馈所述次级线圈12的电压;
步骤S2中,所述无磁转换板2通过检测所述电压反馈模块23的电压得到次级线圈12电压的大小关系。
具体的,根据电容的特性,与所述次级线圈12连接,当所述初级线圈11被激励时,所述次级线圈12感应到感应电流和感应电压,此时会对所述电压反馈单元231(即电容)充电, 那么检测所述电压反馈单元231的电压即可得到与之对应的所述次级线圈12的电压,方便快捷。
作为优选方案,本实施例中,所述充放电模块24具有多个充放电单元241,分别与多个所述电压反馈单元231连接,并分别与所述计量模块21连接,用于根据所述计量模块21的指令对所述电压反馈单元231充放电。所述充放电单元241的数量与所述电压反馈单元231的数量相同。
进一步的,作为优选方案,所述电压检测模块22具有多个电压检测单元221,分别与多个所述电压反馈单元231连接,并分别与所述计量模块21连接,用于检测所述电压反馈单元231的电压数据,并将所述电压数据发送到所述计量模块21中。
作为优选方案,本实施例中,所述充放电时长,通过对所述电压反馈模块23的充放电,进而得到每个所述次级线圈12的充放电时长。
优选的,所述充放电模块24与所述无磁计量装置的电源连接,能够对所述电压反馈单元231充电或放电。具体的,充电是指使用电源的电能对电压反馈单元231(即电容)充电;放电是指将所述电压反馈单元231(即电容)通过接地电阻将电能释放;控制通断的开关使用三极管,其中的工作流程以及原理均是本领域的常用技术手段,本发明不做赘述。
作为优选方案,本实施例中,所述无磁金属指针3具有无磁针头31和无磁针体32;所述无磁针体32的材料为金属,面积大小为所述初级线圈11面积的一半。具体的,所述无磁针头31优选为非金属材质,这样不会对所述次级线圈12产生影响;所述无磁针体32采用金属材质,且为扇形,面积是所述初级线圈11的一半,这样在处理的过程中,考量的因素较少;当然,所述无磁针体32的面积也可以选择其他的方案,例如其面积是所述初级线圈11面积的(n-m)/2n,n是所述次级线圈12的对数(两个相对装设的次级线圈12是一对),m是小于n的正整数,此中使用的检测方法相同。
一种无磁计量的流量表,使用所述的无磁计量装置进行流量计量,由于所述无磁计量装置能够适应所述无磁金属指针3与所述无磁检测线圈1之间的较远距离(例如大于8mm)的装设,因此,在计量设备较大时,也不用更改所述无磁计量装置的型号;同时,在设备长时间运行后,即使流量表因某些因素产生一定的变形,也不会对计量的准确性产生影响。所述流量表优选为水表或燃气表。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种无磁计量装置,其特征在于,包括无磁检测线圈、无磁转换板和无磁金属指针;所述无磁检测线圈装设在所述无磁转换板上,所述无磁金属指针对应装设在所述无磁检测线圈相对的位置;
    所述无线检测线圈包括初级线圈和多个次级线圈;多个所述次级线圈装设在所述初级线圈的内部,成对装设,每对成对的所述次级线圈相对装设;
    所述无磁转换板包括计量模块、电压检测模块、电压反馈模块、充放电模块、激励模块;所述激励模块分别与所述计量模块、所述初级线圈连接;所述电压反馈模块与多个所述次级线圈连接;所述电压反馈模块分别与所述计量模块、所述电压反馈模块连接;所述充放电模块分别与所述计量模块、所述电压反馈模块连接。
  2. 根据权利要求1所述的无磁计量装置,其特征在于,所述电压反馈模块具有多个电压反馈单元,分别与多个所述次级线圈连接,用于反馈所述次级线圈的感应电压。
  3. 根据权利要求2所述的无磁计量装置,其特征在于,所述电压反馈单元为电容。
  4. 根据权利要求2所述的无磁计量装置,其特征在于,所述充放电模块具有多个充放电单元,分别与多个所述电压反馈单元连接,并分别与所述计量模块连接,用于根据所述计量模块的指令对所述电压反馈单元充放电。
  5. 根据权利要求1所述的无磁计量装置,其特征在于,所述无磁金属指针具有无磁针头和无磁针体;所述无磁针体的材料为金属,面积大小为所述初级线圈面积的一半。
  6. 一种使用权利要求1-5任一所述的无磁计量装置的无磁计量方法,其特征在于,包括步骤:
    S1、所述无磁转换板对所述初级线圈进线激励,通过所述电压检测模块采集所述电压反馈模块的电压,进而得到第一对次级线圈之间电压的大小关系;
    S2、基于S1中的电压大小关系,所述无磁转换板通过所述充放电模块对所述电压反馈模块充放电,使所述电压反馈模块的电压大小关系发生新的变化,记录此时的充放电时长;
    S3、对剩余的成对次级线圈按照步骤S1-S2执行,分别得到各自的充放电时长;
    S4、判定所有成对次级线圈的充放电时长均回到原始值,若是,则判定旋转一圈,圈数加1;否则,判定未旋转一周;
    S5、所述无磁计量装置间隔预定时间执行一次步骤S1-S4。
  7. 根据权利要求6所述的无磁计量方法,其特征在于,所述无磁计量装置具有电压反馈模块,用于反馈所述次级线圈的电压;
    所述无磁转换板通过检测所述电压反馈模块的电压得到次级线圈电压的大小关系。
  8. 根据权利要求7所述的无磁计量方法,其特征在于,所述充放电时长,通过对所述电压反馈模块的充放电,进而得到每个所述次级线圈的充放电时长。
  9. 根据权利要求6所述的无磁计量方法,其特征在于,所述预定时间为10-50ms。
  10. 一种无磁计量的流量表,其特征在于,使用权利要求1-5任一所述的无磁计量装置或权利要求6-9任一所述的无磁计量方法进行流量计量。
PCT/CN2020/133766 2020-07-08 2020-12-04 一种无磁计量装置、无磁计量方法和流量表 WO2022007322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010650767.4 2020-07-08
CN202010650767.4A CN111998904A (zh) 2020-07-08 2020-07-08 一种无磁计量装置、无磁计量方法和流量表

Publications (1)

Publication Number Publication Date
WO2022007322A1 true WO2022007322A1 (zh) 2022-01-13

Family

ID=73467923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133766 WO2022007322A1 (zh) 2020-07-08 2020-12-04 一种无磁计量装置、无磁计量方法和流量表

Country Status (2)

Country Link
CN (1) CN111998904A (zh)
WO (1) WO2022007322A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998904A (zh) * 2020-07-08 2020-11-27 湖南威铭能源科技有限公司 一种无磁计量装置、无磁计量方法和流量表
CN113884165B (zh) * 2021-06-07 2024-04-19 利尔达科技集团股份有限公司 一种无磁计量模块性能检测装置及实现方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752026B1 (en) * 2002-02-09 2004-06-22 Thomas Allen Hyde Annular void electromagnetic flowmeter
CN109443462A (zh) * 2018-12-07 2019-03-08 杭州为峰智能科技有限公司 一种防磁计量检测装置
CN110530437A (zh) * 2019-09-10 2019-12-03 长沙铨准电子科技有限公司 一种直接激励式角位传感计量装置
CN111174856A (zh) * 2018-11-12 2020-05-19 杭州为峰智能科技有限公司 一种旋转检测装置
CN111351534A (zh) * 2020-03-13 2020-06-30 宁波水表股份有限公司 一种流量无磁计量装置
CN111998904A (zh) * 2020-07-08 2020-11-27 湖南威铭能源科技有限公司 一种无磁计量装置、无磁计量方法和流量表

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752026B1 (en) * 2002-02-09 2004-06-22 Thomas Allen Hyde Annular void electromagnetic flowmeter
CN111174856A (zh) * 2018-11-12 2020-05-19 杭州为峰智能科技有限公司 一种旋转检测装置
CN109443462A (zh) * 2018-12-07 2019-03-08 杭州为峰智能科技有限公司 一种防磁计量检测装置
CN110530437A (zh) * 2019-09-10 2019-12-03 长沙铨准电子科技有限公司 一种直接激励式角位传感计量装置
CN111351534A (zh) * 2020-03-13 2020-06-30 宁波水表股份有限公司 一种流量无磁计量装置
CN111998904A (zh) * 2020-07-08 2020-11-27 湖南威铭能源科技有限公司 一种无磁计量装置、无磁计量方法和流量表

Also Published As

Publication number Publication date
CN111998904A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2022007322A1 (zh) 一种无磁计量装置、无磁计量方法和流量表
WO1996016330A9 (en) Method and system for unobtrusively measuring physical properties in electrochemical processes
CN111174856B (zh) 一种旋转检测装置
CN110836631B (zh) 混凝土中钢筋检测装置及其方法
CN203133146U (zh) 一种变压器中性点电流测量装置
WO2021238137A1 (zh) 一种无磁计量装置、计量方法和流体计量设备
CN206469938U (zh) 液位检测电路及液位检测装置
CN111351534A (zh) 一种流量无磁计量装置
CN110286246A (zh) 涡轮转速检测方法及装置
CN105004387A (zh) 转数测量设备、转数测量方法和流速测量设备
CN111595233A (zh) 一种无磁传感器
CN109001637A (zh) 单体电芯绝缘内阻快速测试装置及方法
CN112050865B (zh) 无磁感应测量装置及转动板组件转动信息的计算方法
CN104345216A (zh) 测量水泥电阻率和水泥28天强度的方法和装置
CN110133528A (zh) 一种在线自学习锂电池的内阻测量装置及其测量方法
CN201215570Y (zh) 一种电池电压检测电路
CN202372102U (zh) 分离角接触球轴承调心力及调心量检测仪
CN205120740U (zh) 一种马达转速综合检测***
CN101211405A (zh) 射频识别字轮直读方法
CN202720262U (zh) 交流线路中电流测定的降噪结构
CN110907875B (zh) 一种霍尔电流传感器校准装置及方法
CN210774196U (zh) 平面绕线线圈无磁采集位移和角速度传感器
CN201319066Y (zh) 终端用户用的电能表测量装置
CN107945533A (zh) 一种地磁车辆检测器灵敏度和稳定性的检测方法
CN112697663A (zh) 一种液体纯净度监测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944054

Country of ref document: EP

Kind code of ref document: A1