WO2022004223A1 - Virtual image display device - Google Patents

Virtual image display device Download PDF

Info

Publication number
WO2022004223A1
WO2022004223A1 PCT/JP2021/020560 JP2021020560W WO2022004223A1 WO 2022004223 A1 WO2022004223 A1 WO 2022004223A1 JP 2021020560 W JP2021020560 W JP 2021020560W WO 2022004223 A1 WO2022004223 A1 WO 2022004223A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
unit
virtual image
image display
Prior art date
Application number
PCT/JP2021/020560
Other languages
French (fr)
Japanese (ja)
Inventor
孝啓 南原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022004223A1 publication Critical patent/WO2022004223A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • This disclosure relates to a virtual image display device.
  • a virtual image display device that reflects display light by a translucent member and visually displays a virtual image due to the display light is conventionally known.
  • the virtual image display device disclosed in Patent Document 1 includes a liquid crystal panel that forms an image by transmitting illumination light condensed by a two-stage lens and emits the display light of the image.
  • the illumination light is generated from a set of light source elements having different emission colors. This makes it possible to adjust the display color of the virtual image.
  • the illumination light is focused on the entire area of the liquid crystal panel by a two-stage lens common to all the light source elements. Therefore, the color mixing is insufficient between the illumination light from the light source element whose arrangement position is close to the optical axis of the two-stage lens and the illumination light from the light source element whose arrangement position is separated from the optical axis, and the display is performed. Since the light causes color unevenness or color shift, the visibility of the virtual image is deteriorated.
  • an object of the present disclosure is to provide a virtual image display device that enhances the visibility of the virtual image.
  • One aspect of the disclosure is It is a virtual image display device that reflects the display light by a translucent member and visually displays the virtual image due to the display light.
  • a lighting unit that emits illumination light and An image forming unit that forms an image by transmitting illumination light and emits the display light of the image It is equipped with a condensing unit that condenses the illumination light toward the image forming unit.
  • the image forming unit has a plurality of pixel regions arranged in the image forming unit.
  • the condensing unit has a plurality of lens units arranged so as to individually condense the illumination light incident on each pixel region.
  • the lighting unit has a set of light source elements that independently emit illumination light of the three primary colors as a light source group, and has a plurality of light source units arranged so that the illumination light incident on each lens unit is emitted from individual light source groups. ..
  • a plurality of lens units are arranged so as to individually condense the illumination light incident on each of the plurality of arranged pixel regions in the image forming unit.
  • a plurality of light source units are arranged so that the illumination light incident on each lens unit is emitted from individual light source groups.
  • any of the light source elements that independently emit the illumination light of the three primary colors can be arranged as close as possible to the optical axis of the incident destination lens unit.
  • the illumination light from the light source elements of at least two primary colors in the light source group of each light source unit is mixed by the incident destination lens unit and emitted as display light from the incident destination pixel region, the color unevenness in each pixel region is observed. And it is difficult to cause color deviation. Further, when the illumination light from the light source element having at least one primary color in the light source group of each light source unit is collected by the incident destination lens unit and emitted as display light from the incident destination pixel region, the color between the pixel regions is obtained. It is difficult to cause unevenness and color deviation. From these things, it is possible to improve the visibility of the virtual image.
  • FIG. 2 is a view taken along the line III-III in FIG.
  • FIG. 2 is a view taken along the line IV-IV in FIG. It is a VV line arrow view of FIG.
  • FIG. 2 is an enlarged cross-sectional view taken along the line VI-VI of FIG. It is an enlarged sectional view of FIG.
  • FIG. 2 is a view taken along the line VIII-VIII of FIG. It is a schematic diagram for demonstrating the illumination example of the image formation panel of FIG.
  • the virtual image display device of the first embodiment is configured to be mounted on the vehicle 1 and is housed in the instrument panel 2 of the vehicle 1 as a head-up display (hereinafter referred to as HUD). It is 100.
  • the vehicle 1 is broadly understood to include, for example, various vehicles such as automobiles, railroad vehicles, aircraft, ships, and non-moving game housings.
  • the vehicle 1 of the present embodiment is a four-wheeled vehicle.
  • the front, rear, up, down, left, and right directions of the HUD 100 are defined with reference to the vehicle 1 on the horizontal plane.
  • the HUD 100 projects the display light of the image toward the windshield 3 of the vehicle 1. As a result, the display light reflected by the windshield 3 reaches the visual recognition area EB set in the interior of the vehicle 1. The occupant whose eye point EP is located in the visible area EB in the interior of the vehicle 1 perceives the display light that has reached the visible area EB as a virtual image VRI. In this way, the HUD 100 can make the viewer 4 recognize various information by displaying the virtual image VRI that can be seen by the viewer (hereinafter, simply referred to as the viewer) 4 who is the occupant of the vehicle 1. ..
  • Various information displayed as a virtual image VRI by the HUD 100 include, for example, information indicating the state of the vehicle 1 such as vehicle speed and remaining fuel amount, visibility assistance information, road information, navigation information, and the like.
  • the viewing area EB is a spatial area that can be visually recognized by the viewer 4 when the virtual image VRI displayed by the HUD 100 satisfies a predetermined specification (for example, the entire virtual image VRI has a predetermined brightness or higher). Also called a box.
  • the visible area EB is typically set so as to overlap the irips set in the vehicle 1.
  • the eye lip is set in a virtual ellipsoid shape based on the eye range that statistically represents the spatial distribution of the eye point EP in the viewer 4.
  • the windshield 3 is a translucent member formed in the shape of a translucent plate by, for example, glass or synthetic resin.
  • the windshield 3 is located above the instrument panel 2 and divides the interior and exterior of the vehicle 1.
  • the windshield 3 is inclined so as to be separated from the instrument panel 2 from the front to the rear.
  • the rear surface of the windshield 3 on the indoor side has a reflective surface 3a on which display light is projected and reflected from the HUD 100, which is formed into a smooth concave surface or a flat surface.
  • the windshield 3 may be configured to utilize diffracted reflection with interference fringes instead of surface reflection by providing a reflective holographic optical element. Further, instead of the windshield 3, a combiner as a translucent member may be installed in the interior of the vehicle 1, so that the combiner may be provided with the reflecting surface 3a.
  • the HUD 100 includes a light guide unit 10, an image forming unit 20, a light collecting unit 30, and a lighting unit 40.
  • the light guide unit 10 constitutes an optical path L from the image forming unit 20 to the windshield 3.
  • the light guide unit 10 guides the display light projected from the image forming unit 20 toward the windshield 3. It is preferable that the light guide unit 10 has a magnifying action of magnifying the image formed by the image forming unit 20 to a predetermined optical magnification to the virtual image VRI visually recognized by the viewer 4. This is because the light guide unit 10 can be miniaturized by the expanding action.
  • the light guide unit 10 having such a function includes at least one optical member 11.
  • the light guide unit 10 is configured by combining a plane mirror (or curved mirror) 11a and a concave mirror 11b as an optical member 11 one by one.
  • the concave mirror 11b gives the above-mentioned magnifying action.
  • the light guide unit 10 may be configured by combining a convex mirror and a concave mirror as the optical member 11 one by one, or may be configured by one concave mirror as the optical member 11. good.
  • the optical member 11 constituting such a light guide unit 10 may be either a fixed type or a movable type.
  • the image forming unit 20 forms an image that can be imaged as a virtual image VRI outside the vehicle 1, and emits the display light of the formed image toward the light guide unit 10. As shown in FIGS. 1 and 2, the image forming unit 20 includes an image display panel 21 and a diffusion panel 22.
  • the image display panel 21 is formed in a plate shape as a whole.
  • the image display panel 21 is a transmissive TFT liquid crystal panel using a thin film transistor.
  • the image display panel 21 is an active matrix type having a plurality of liquid crystal pixels arranged two-dimensionally. Illumination light from the illumination unit 40 is incident on the incident surface 210, which is one side of the image display panel 21, through the condensing unit 30. From the emission surface 211 on the opposite side of the image display panel 21, the display light of the image is emitted toward the light guide unit 10 on the optical path L.
  • the image display panel 21 displays and forms an image that serves as the display light.
  • each polarizing element has a transmission axis and a blocking axis orthogonal to each other along both sides 210 and 211 of the image display panel 21.
  • Each substituent transmits polarized light at the azimuth angle of the transmission axis and absorbs polarized light at the azimuth angle of the blocking axis.
  • the liquid crystal layer is configured to be able to adjust the polarization of the illumination light transmitted according to the applied voltage of each liquid crystal pixel.
  • the ratio of light transmitted through the polarizing element on the emission side, that is, the transmittance is adjusted for each liquid crystal pixel, so that an image is formed.
  • a color filter can be provided on each liquid crystal pixel to form a color image.
  • a plurality of pixel regions 212 are set in the image display panel 21 so as to be two-dimensionally arranged by a predetermined number in the Xa direction and the Ya direction orthogonal to each other.
  • Each pixel region 212 is defined as a rectangular image forming region in which a plurality of liquid crystal pixels are arranged two-dimensionally in the Xa direction and the Ya direction.
  • the number of arrangements of the pixel region 212 in the Xa direction may be smaller, larger, or the same as the number of arrangements of the pixel region 212 in the Ya direction (example of FIG. 3).
  • the diffusion panel 22 is formed as a whole from a hard transparent material such as glass or resin into a plate shape or a thin film shape.
  • the diffusion panel 22 is arranged substantially parallel to the incident surface 210 of the image display panel 21.
  • the diffusion panel 22 exerts a diffusion effect on the illumination light incident on the image display panel 21.
  • the diffusion panel 22 may be integrally configured with the panel 21 by giving the incident surface 210 of the image display panel 21 minute irregularities.
  • the light collecting unit 30 shown in FIGS. 1 and 2 collects the illumination light from the lighting unit 40 toward the image forming unit 20.
  • the light collecting unit 30 includes a front lens array 31 and a rear lens array 32.
  • the front lens array 31 is formed in a plate shape as a whole from a hard transparent material such as glass or resin.
  • the front lens array 31 is a plano-convex lens array.
  • the front lens array 31 has a plurality of front lens portions 312 that are two-dimensionally arranged in a predetermined number in the Xb direction and the Yb direction that are orthogonal to each other.
  • the number of arrangements of the front lens unit 312 in the Xb direction coincides with the number of arrangements of the pixel region 212 in the Xa direction.
  • the number of arrangements of the front lens unit 312 in the Yb direction coincides with the number of arrangements of the pixel region 212 in the Ya direction.
  • each front lens unit 312 is associated with any of the pixel regions 212 in a 1: 1 ratio.
  • Illumination light from the lighting unit 40 is incident on the front-stage incident surface 310, which is one side of each front-stage lens unit 312 shown in FIG. Illumination light incident on the front-stage incident surface 310 is emitted toward the rear-stage lens array 32 from the front-stage injection surface 311 which is the opposite surface of each front-stage lens unit 312.
  • each front-stage lens unit 312 exhibits a planar shape substantially perpendicular to the optical axis Al orthogonal to the Xb direction and the Yb direction.
  • the front injection surface 311 of each front lens unit 312 has a convex shape that is smoothly curved in any direction including the Xb direction and the Yb direction.
  • Each front-stage lens unit 312 exerts a condensing action on the illumination light emitted toward the rear-stage lens array 32 by the convex front-stage injection surface 311.
  • the function Z representing the convex shape of the front-stage injection surface 311 is given by, for example, the following equation 1.
  • r is a radius (that is, a radius) from the optical axis Al with respect to an arbitrary point on a convex surface.
  • c is the curvature given in a convex shape.
  • k is a conic constant.
  • ⁇ i is a free-form surface coefficient.
  • the rear lens array 32 is formed in a plate shape as a whole from a hard transparent material such as glass or resin. As shown in FIGS. 2 and 5, the rear lens array 32 has a plurality of rear lens portions 322 that are two-dimensionally arranged by a predetermined number in the Xc direction and the Yc direction that are orthogonal to each other. The number of arrangements of the rear-stage lens unit 322 in the Xc direction matches the number of arrangements of the pixel region 212 in the Xa direction and the number of arrangements of the front-stage lens unit 312 in the Xb direction.
  • each rear lens unit 322 in the Yc direction matches the number of arrangements of the pixel region 212 in the Ya direction and the number of arrangements of the front-stage lens unit 312 in the Yb direction. With these configurations, each rear lens unit 322 is associated with any of the pixel regions 212 and any of the front lens units 312 in a 1: 1 ratio.
  • Each rear lens unit 322 is located in the rear stage with respect to the corresponding front lens unit 312 and has an optical axis Al in common.
  • the image display panel 21 and the diffusion panel 22 are tilted with respect to the optical axis Al of each of the front lens portions 312 and each of the rear lens portions 322. Due to this tilting arrangement, the Xa direction of the image display panel 21 is defined to be tilted toward the lens arrays 31 and 32 with respect to the Xb direction of the front lens array 31 and the Xc direction of the rear lens array 32.
  • the Ya direction of the image display panel 21 is defined to be substantially parallel along the Yb direction of the front lens array 31 and the Yc direction of the rear lens array 32.
  • Illumination light from the corresponding front lens unit 312 is incident on the rear incident surface 320, which is one side of each rear lens unit 322 shown in FIGS. 6 and 7. Illumination light incident on the rear-stage incident surface 320 is emitted toward the corresponding pixel region 212 from the rear-stage injection surface 321 which is the opposite surface of each rear-stage lens unit 322.
  • the rear incident surface 320 forms a composite surface structure in which the forward refraction surface portion 323 and the reverse refraction surface portion 324 are alternately arranged from the optical axis Al toward the outside in the Xc direction.
  • the plurality of forward refracting surface portions 323 are formed in a striped shape (see FIG. 5) that is separated from each other in the Xc direction and extends along the Yc direction.
  • Each forward refraction surface portion 323 corresponds to any of the divided portions obtained by dividing the virtual base surface Si1 with a constant width in the Xc direction.
  • the virtual base surface Si1 is defined to be convex on the incident side, for example, a convex surface.
  • the plurality of reverse refracting surface portions 324 are formed in a striped shape (see FIG. 5) that is separated from each other in the Xc direction and extends in the Yc direction.
  • Each reverse refraction surface portion 324 corresponds to any of the divided portions in which the virtual base surface Si2 is divided into a plurality of parts in the Xc direction.
  • the virtual base surface Si2 is defined as having a concave shape on the injection side, for example, a valley-shaped slope.
  • each forward refraction surface portion 323 collects the illumination light on the optical axis Al side in the Xc direction by refraction and collimates it with the optical axis Al, while each reverse refraction surface portion 324 refracts the illumination light in each forward refraction. It is refracted in the direction opposite to that of the surface portion 323 and mixed with the parallelized light.
  • parallelization means that the illumination light is in a state of approaching the parallel luminous flux, and the illumination light does not have to be a completely parallel luminous flux.
  • the rear injection surface 321 forms a composite surface structure in which the forward refraction surface portion 325 and the reverse refraction surface portion 326 are alternately arranged from the optical axis Al toward the outside in the Yc direction.
  • the plurality of forward refracting surface portions 325 are formed in a striped shape (see FIG. 5) that is separated from each other in the Yc direction and extends along the Xc direction.
  • Each forward refraction surface portion 325 corresponds to any of the divided portions in which the virtual base surface So1 is divided into a plurality of parts in the Yc direction.
  • the virtual base surface So1 is defined to be convex to the injection side, for example, a convex surface.
  • the plurality of reverse refracting surface portions 326 are formed in a striped shape (see FIG. 5) that is separated from each other in the Yc direction and extends in the Xc direction.
  • Each reverse refraction surface portion 326 corresponds to any of the divided portions obtained by dividing the virtual base surface So2 with a constant width in the Yc direction.
  • the virtual base surface So2 is defined as having a concave shape on the incident side, for example, a valley-shaped slope.
  • each forward refraction surface portion 325 collects the illumination light on the optical axis Al side in the Yc direction by refraction and collimates it with the optical axis Al, while each reverse refraction surface portion 324 refracts the illumination light in each forward refraction. It is refracted in the direction opposite to that of the surface portion 323 and mixed with the parallelized light.
  • the condensing unit 30 individually condenses the illumination light incident on each of the pixel regions 212 by the joint operation of the front lens unit 312 and the rear lens unit 322 corresponding to each pixel region 212. It is.
  • the lighting unit 40 shown in FIGS. 1 and 2 emits illumination light that illuminates the image forming unit 20 through the condensing unit 30.
  • the lighting unit 40 has a plurality of light source units 402 that are two-dimensionally arranged in a predetermined number in the Xd direction and the Yd direction that are orthogonal to each other.
  • the number of arrangements of the light source unit 402 in the Xd direction matches the number of arrangements of the pixel region 212 in the Xa direction, the number of arrangements of the front stage lens unit 312 in the Xb direction, and the number of arrangements of the rear stage lens unit 322 in the Xc direction.
  • each light source unit 402 in the Yd direction matches the number of arrangements of the pixel region 212 in the Ya direction, the number of arrangements of the front stage lens unit 312 in the Yb direction, and the number of arrangements of the rear stage lens unit 322 in the Yc direction.
  • each light source unit 402 is associated with any of the pixel regions 212, any of the front lens units 312, and any of the rear lens units 322 in a 1: 1 ratio.
  • each light source unit 402 is composed of a light source group 403 having the same configuration as each other.
  • the light source group 403 of each light source unit 402 is defined by a set of light source elements 403R, 403G, and 403B that independently emit illumination light of the three primary colors of red, green, and blue (RGB).
  • the light source elements 403R, 403G, and 403B of the three primary colors forming the light source group 403 are configured by individual LED bare chips and are packaged in common with each other.
  • each light source unit 402 the light source elements 403R, 403G, and 403B of the three primary colors of RGB are arranged one-dimensionally side by side along the Yd direction as the linear direction.
  • the Yd direction in which the light source elements 403R, 403G, and 403B are arranged in a straight line corresponds to the vertical direction Dv (see FIG. 1) of the virtual image VRI.
  • the light source element of one primary color located in the center in the Yd direction (FIG. 2 is an example of 403G) is on the common optical axis Al of the corresponding front lens unit 312 and the rear lens unit 322. Is placed in.
  • the light source elements 403R, 403G, and 403B are arranged closer to the condensing unit 30 than the combined focal point of the lens units 312 and 322 in the direction along the optical axis Al of the corresponding front lens unit 312 and the rear lens unit 322. Has been done.
  • the intensity peak direction at which the emission intensity of the light source elements 403R, 403G, and 403B is maximized is substantially parallel along the optical axis Al of the corresponding front lens unit 312 and the rear lens unit 322.
  • the Xd direction of the lighting unit 40 is defined to be substantially parallel along the Xb direction of the front lens array 31 and the Xc direction of the rear lens array 32, and is inclined with respect to the Xa direction of the image display panel 21.
  • the Yd direction of the illumination unit 40 is defined to be substantially parallel along the Ya direction of the image display panel 21, the Yb direction of the front lens array 31, and the Yc direction of the rear lens array 32.
  • the illumination light emitted from the light source element of at least one primary color among the light source elements 403R, 403G, and 403B of the three primary colors is sequentially incident on the corresponding front lens unit 312 and the rear lens unit 322. do. That is, the illumination unit 40 emits illumination light sequentially incident on each of the corresponding sets of the lens units 312 and 322 from the light source group 403 of the light source unit 402 individually corresponding to each of the lens units 312 and 322. .
  • the pixel region 212 corresponding to the light source unit 402 in which the light source elements 403R, 403G, and 403B of the three primary colors all emit light in the light source group 403 is illuminated by the white light mixed with the three primary colors. ..
  • the pixel area 212 corresponding to the light source unit 402 that emits light from the light source elements of the two primary colors and turns off the light source element of the one primary color is , Illuminated by the mixed color light of the two primary colors.
  • the pixel area 212 corresponding to the light source unit 402 that emits light from the light source element of the first primary color and turns off the light source element of the second primary color is , Illuminated by the monochromatic light of the one primary color.
  • a plurality of front lens units 312 are arranged so as to individually condense the illumination light incident on each of the plurality of arranged pixel regions 212 in the image forming unit 20.
  • a plurality of light source units 402 are arranged so that the illumination light incident on each front lens unit 312 is emitted from the individual light source group 403.
  • all of the light source elements 403R, 403G, and 403B that independently emit the illumination light of the three primary colors are arranged as close as possible to the optical axis Al of the incident destination lens unit 312. be able to.
  • each pixel region 212 It is difficult to cause color unevenness and color shift in each case. Further, in the light source group 403 of each light source unit 402, the illumination light from the light source element of at least one primary color is collected by the incident destination lens unit 312 and emitted as display light from the incident destination pixel region 212, in each pixel region. It is difficult to cause color unevenness and color shift between 212.
  • the chromaticity of the display light emitted from the incident destination pixel region 212 becomes vivid in the illumination light from the light source element of one primary color. From these things, it is possible to improve the visibility of the virtual image VRI.
  • the light source elements 403R, 403G, and 403B of the three primary colors are arranged side by side in the Yd direction as the linear direction.
  • the light source elements 403R, 403G, and 403B of the three primary colors are arranged one-dimensionally so as to be as close as possible to the optical axis Al of the incident destination lens unit 312 in the Yd direction in which they are aligned with each other. can do. Therefore, it is possible to suppress color unevenness and color shift of the display light for each pixel region 212 and between the pixel regions 212, and improve the visibility of the virtual image VRI.
  • each front stage lens unit 312 a plurality of rear stage lens units 322 are provided so as to individually condense the illumination light incident on each pixel region 212 together with the front stage lens unit 312. Be arranged. Therefore, in each rear lens unit 322, the forward refracting surface portion 325 that parallelizes the illumination light by refraction and the reverse refracting surface portion 326 that refracts the illumination light and mixes it with the parallelized light alternate in the Yd direction as the linear direction. Is formed in.
  • the illumination light from the light source elements of at least two primary colors not only has a condensing action in the front stage lens unit 312 but also a rear stage lens accompanied by mixing with parallelized light. Due to the light-collecting action of the unit 322, the colors are easily mixed in the Yd direction in which the elements are lined up. Therefore, it is possible to improve the visibility of the virtual image VRI by suppressing color unevenness and color shift of the display light especially in each pixel region 212.
  • the Yd direction as the linear direction in which the light source elements 403R, 403G, and 403B of the three primary colors are lined up in the light source group 403 of each light source unit 402 corresponds to the vertical direction Dv of the virtual image VRI.
  • the vertical direction Dv where the eyeball of the viewer 4 who visually recognizes the virtual image VRI is difficult to move the color shift of the display light in each of the pixel regions 212 where the colors are mixed is unlikely to occur due to the movement.
  • the Xd direction corresponding to the left-right direction Dh see FIG.
  • the light source elements 403R, 403G, and 403B of the three primary colors are used for each light source group 403 of each light source unit 402. Not lined up. Therefore, the display light in each of the pixel regions 212 to be mixed is unlikely to cause color deviation due to the movement of the eyeball of the viewer 4. From these facts, it is possible to guarantee the reliability of the effect of enhancing the visibility of the virtual image VRI.
  • the light source elements 403R, 403G, and 403B of the three primary colors are packaged in common with each other.
  • the light source elements 403R, 403G, and 403B of the three primary colors can be arranged together with the common packaging at positions as close as possible to the optical axis Al of the incident destination lens unit 312. can. Therefore, it is possible to improve the productivity of the HUD 100, which is a virtual image display device for enhancing the visibility of the virtual image VRI.
  • the second embodiment is a modification of the first embodiment.
  • the light source elements 403R, 403G, and 403B of the three primary colors forming the light source group 2403 are each composed of individual LED bare chips, and are individually packaged with each other.
  • the light source elements 403R, 403G, and 403B of the three primary colors are packaged independently of each other in the light source group 2403 of each light source unit 2402.
  • the position of the independent packaging as close as possible to the optical axis Al of the incident destination lens unit 312 is set as the position where the light source elements 403R, 403G, and 403B of the three primary colors are arranged.
  • the third embodiment is a modification of the first embodiment.
  • the light source elements 403R, 403G, and 403B of the three primary colors forming the light source group 3403 in each light source unit 3402 of the third embodiment are mutually in at least one of the Yd direction which is a linear direction and the Xd direction which is an orthogonal direction thereof. They are offset and arranged in two dimensions.
  • FIGS. 11 and 12 show that the light source elements of the two primary colors (examples of 403R and 403G in the same figure) are displaced only in the Xd direction, and the light source elements of the remaining one primary color (the same) with respect to the light source elements of the two primary colors.
  • the figure shows an example in which the example of 403B) is arranged so as to be offset in both the Xd and Yd directions.
  • the Yd direction in which the light source elements of the two primary colors are arranged so as to be offset from each other corresponds to the vertical direction Dv of the virtual image VRI (see FIG. 1 of the first embodiment).
  • the center of gravity is the common optical axis of the corresponding front lens portion 312 and the rear lens portion 322. It is arranged on Al (see FIG. 11).
  • the light source elements of the two primary colors are displaced only in the Yd direction, and the light source elements of the two primary colors are displaced from each other.
  • the remaining one primary color light source element (the figure is an example of 403B) may be arranged so as to be offset in both the Xd and Yd directions.
  • the light source elements 403R, 403G, and 403B are packaged in common with each other as in the first embodiment, but are packaged independently from each other according to the second embodiment. May be.
  • the light source elements 403R, 403G, and 403B of the three primary colors have at least one of the Yd direction which is a linear direction and the Xd direction which is an orthogonal direction thereof. They are placed offset from each other on one side.
  • the light source elements 403R, 403G, and 403B of the three primary colors are two-dimensionally arranged so as to be as close as possible to the optical axis Al of the incident destination lens unit 312 in a direction deviating from each other. can do. Therefore, it is possible to suppress color unevenness and color shift of the display light for each pixel region 212 and between the pixel regions 212, and improve the visibility of the virtual image VRI.
  • the rear lens array 32 may not be provided.
  • at least one of the rear-stage incident surface 320 and the rear-stage injection surface 321 of the rear-stage lens array 32 may be configured by the Fresnel lens surface.
  • the front lens array 31 may be a TIR lens array.
  • the image display panel 21 and the diffusion panel 22 may be arranged substantially perpendicular to the optical axis Al of each front lens unit 312 and each rear lens unit 322.
  • the pixel regions 212 may be arranged one-dimensionally in a row in either the Xa direction or the Ya direction.
  • the front-stage lens portions 312 may be arranged one-dimensionally in a row in one of the Xb direction and the Yb direction.
  • the rear lens array 32 of the modified example the rear lens portions 322 may be arranged one-dimensionally in a row in one of the Xc direction and the Yc direction.
  • the light source units 402 may be arranged one-dimensionally in a row in either the Xd direction or the Yd direction.
  • the Xa direction and the Ya direction in the image display panel 21 of the modified example may be interchanged with each other.
  • the Xc direction and the Yc direction in the rear lens array 32 of the modified example may be interchanged with each other.
  • the Yd direction in each of the light source units 402, 2402, and 3402 of the modified example may correspond to the left-right direction Dh of the virtual image VRI (see FIG. 1 of the first embodiment).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Instrument Panels (AREA)

Abstract

A virtual image display device according to the present invention comprises: an illumination unit (40) that causes a transmission member to reflect display light so as to emit illuminating light for visibly displaying a virtual image formed by the display light; an image formation unit (20) that forms an image by transmitting the illuminating light and emits display light for the image; and a light concentration unit (30) that concentrates the illuminating light toward the image formation unit (20). The image formation unit (20) has a plurality of pixel regions (212) in an array. The light concentration unit (30) has a plurality of lens portions (312) that are in an array so as to individually concentrate incident illuminating light for each pixel region (212). The illumination unit (40) has a plurality of light source portions (402) that are in an array so that illuminating light that enters the lens portions (312) is emitted from respective light source groups (403) each of which is a set of light source elements (403R, 403G, 403B) for independently emitting illuminating light in three respective primary colors.

Description

虚像表示装置Virtual image display device 関連出願の相互参照Cross-reference of related applications
 この出願は、2020年6月30日に日本に出願された特許出願第2020-112508号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2020-11258 filed in Japan on June 30, 2020, and the contents of the basic application are incorporated by reference as a whole.
 本開示は、虚像表示装置に関する。 This disclosure relates to a virtual image display device.
 表示光を透光部材により反射させて、表示光による虚像を視認可能に表示する虚像表示装置は、従来知られている。 A virtual image display device that reflects display light by a translucent member and visually displays a virtual image due to the display light is conventionally known.
 例えば特許文献1に開示の虚像表示装置は、二段レンズにより集光された照明光の透過により画像を形成し、当該画像の表示光を射出する液晶パネルを、備えている。ここで照明光は、発光色の相異なる光源素子の組から、生成されている。これにより、虚像の表示色を調整することが、可能となっている。 For example, the virtual image display device disclosed in Patent Document 1 includes a liquid crystal panel that forms an image by transmitting illumination light condensed by a two-stage lens and emits the display light of the image. Here, the illumination light is generated from a set of light source elements having different emission colors. This makes it possible to adjust the display color of the virtual image.
特開2019-164285号公報Japanese Unexamined Patent Publication No. 2019-164285
 しかし、特許文献1に開示の虚像表示装置では、液晶パネルの全領域に対して、全光源素子に共通の二段レンズにより、照明光を集光させている。そのため、二段レンズの光軸に配置位置が近接する光源素子からの照明光と、当該光軸とは配置位置が離間する光源素子からの照明光とでは、混色が不十分となって、表示光に色ムラ乃至は色ズレを生じさせてしまうため、虚像の視認性を低下させることになる。 However, in the virtual image display device disclosed in Patent Document 1, the illumination light is focused on the entire area of the liquid crystal panel by a two-stage lens common to all the light source elements. Therefore, the color mixing is insufficient between the illumination light from the light source element whose arrangement position is close to the optical axis of the two-stage lens and the illumination light from the light source element whose arrangement position is separated from the optical axis, and the display is performed. Since the light causes color unevenness or color shift, the visibility of the virtual image is deteriorated.
 そこで本開示の課題は、虚像の視認性を高める虚像表示装置を、提供することにある。 Therefore, an object of the present disclosure is to provide a virtual image display device that enhances the visibility of the virtual image.
 以下、課題を解決するための本開示の技術的手段について、説明する。 Hereinafter, the technical means of the present disclosure for solving the problems will be described.
 本開示の一態様は、
 表示光を透光部材により反射させて、表示光による虚像を視認可能に表示する虚像表示装置であって、
 照明光を発する照明ユニットと、
 照明光の透過により画像を形成し、画像の表示光を射出する画像形成ユニットと、
 照明光を画像形成ユニットへ向けて集光する集光ユニットとを、備え、
 画像形成ユニットは、複数配列される画素領域を、有し、
 集光ユニットは、各画素領域毎に入射する照明光を個別に集光するように、複数配列されるレンズ部を、有し、
 照明ユニットは、三原色の照明光を独立して発する光源素子の組を光源群として、各レンズ部毎に入射する照明光を個別の光源群から発するように、複数配列される光源部を、有する。
One aspect of the disclosure is
It is a virtual image display device that reflects the display light by a translucent member and visually displays the virtual image due to the display light.
A lighting unit that emits illumination light and
An image forming unit that forms an image by transmitting illumination light and emits the display light of the image,
It is equipped with a condensing unit that condenses the illumination light toward the image forming unit.
The image forming unit has a plurality of pixel regions arranged in the image forming unit.
The condensing unit has a plurality of lens units arranged so as to individually condense the illumination light incident on each pixel region.
The lighting unit has a set of light source elements that independently emit illumination light of the three primary colors as a light source group, and has a plurality of light source units arranged so that the illumination light incident on each lens unit is emitted from individual light source groups. ..
 こうした一態様の集光ユニットによると、画像形成ユニットにおいて複数配列される各画素領域毎に入射する照明光を個別に集光するように、レンズ部が複数配列される。ここで一態様の照明ユニットでは、各レンズ部毎に入射する照明光を個別の光源群から発するように、光源部が複数配列される。これにより各光源部の光源群では、三原色の照明光を独立に発する光源素子のいずれも、入射先レンズ部の光軸に可及的に近接させて配置することができる。 According to one aspect of the condensing unit, a plurality of lens units are arranged so as to individually condense the illumination light incident on each of the plurality of arranged pixel regions in the image forming unit. Here, in the lighting unit of one aspect, a plurality of light source units are arranged so that the illumination light incident on each lens unit is emitted from individual light source groups. As a result, in the light source group of each light source unit, any of the light source elements that independently emit the illumination light of the three primary colors can be arranged as close as possible to the optical axis of the incident destination lens unit.
 故に、各光源部の光源群において少なくとも二原色の光源素子からの照明光は、入射先レンズ部により混色されて入射先画素領域から表示光として射出する際に、各画素領域毎での色ムラ及び色ズレを生じさせ難い。また、各光源部の光源群において少なくとも一原色の光源素子からの照明光は、入射先レンズ部により集光されて入射先画素領域から表示光として射出する際に、各画素領域間での色ムラ及び色ズレも生じさせ難い。これらのことから、虚像の視認性を高めることが可能である。 Therefore, when the illumination light from the light source elements of at least two primary colors in the light source group of each light source unit is mixed by the incident destination lens unit and emitted as display light from the incident destination pixel region, the color unevenness in each pixel region is observed. And it is difficult to cause color deviation. Further, when the illumination light from the light source element having at least one primary color in the light source group of each light source unit is collected by the incident destination lens unit and emitted as display light from the incident destination pixel region, the color between the pixel regions is obtained. It is difficult to cause unevenness and color deviation. From these things, it is possible to improve the visibility of the virtual image.
第一実施形態による虚像表示装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the virtual image display device by 1st Embodiment. 第一実施形態による虚像表示装置の詳細構成を示す断面図である。It is sectional drawing which shows the detailed structure of the virtual image display device by 1st Embodiment. 図2のIII-III線矢視図である。FIG. 2 is a view taken along the line III-III in FIG. 図2のIV-IV線矢視図である。FIG. 2 is a view taken along the line IV-IV in FIG. 図2のV-V線矢視図である。It is a VV line arrow view of FIG. 図2のVI-VI線拡大断面図である。FIG. 2 is an enlarged cross-sectional view taken along the line VI-VI of FIG. 図2の拡大断面図である。It is an enlarged sectional view of FIG. 図2のVIII-VIII線矢視図である。FIG. 2 is a view taken along the line VIII-VIII of FIG. 図3の画像形成パネルの照明例を説明するための模式図である。It is a schematic diagram for demonstrating the illumination example of the image formation panel of FIG. 第二実施形態による虚像表示装置を図8に対応して示す図である。It is a figure which shows the virtual image display device by 2nd Embodiment corresponding to FIG. 第三実施形態による虚像表示装置を図2に対応して示す断面図である。It is sectional drawing which shows the virtual image display device by 3rd Embodiment corresponding to FIG. 第三実施形態による虚像表示装置を図8に対応して示す図である。It is a figure which shows the virtual image display device by 3rd Embodiment corresponding to FIG. 図12の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG. 図2の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG. 図2の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG. 図2の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG. 図2の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG.
 以下、複数の実施形態を図面に基づき説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことで、重複する説明を省略する場合がある。また、各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。さらに、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。 Hereinafter, a plurality of embodiments will be described based on the drawings. By assigning the same reference numerals to the corresponding components in each embodiment, duplicate description may be omitted. Further, when only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other parts of the configuration. Further, not only the combination of the configurations specified in the description of each embodiment but also the configurations of a plurality of embodiments can be partially combined even if the combination is not specified.
 図1に示すように第一実施形態の虚像表示装置は、車両1に搭載されるように構成されて当該車両1のインストルメントパネル2内に収容される、ヘッドアップディスプレイ(以下、HUDという)100である。ここで車両1とは、例えば自動車、鉄道車両の他、航空機、船舶、及び移動しないゲーム筐体等の各種乗り物を含むように、広義に解される。特に本実施形態の車両1は、四輪の自動車である。尚、HUD100に関する前、後、上、下、左、及び右の各方向は、水平面上の車両1を基準として、定義される。 As shown in FIG. 1, the virtual image display device of the first embodiment is configured to be mounted on the vehicle 1 and is housed in the instrument panel 2 of the vehicle 1 as a head-up display (hereinafter referred to as HUD). It is 100. Here, the vehicle 1 is broadly understood to include, for example, various vehicles such as automobiles, railroad vehicles, aircraft, ships, and non-moving game housings. In particular, the vehicle 1 of the present embodiment is a four-wheeled vehicle. The front, rear, up, down, left, and right directions of the HUD 100 are defined with reference to the vehicle 1 on the horizontal plane.
 HUD100は、車両1のウインドシールド3へ向けて、画像の表示光を投影する。その結果、ウインドシールド3により反射される表示光は、車両1の室内に設定された視認領域EBに、到達する。車両1の室内において視認領域EBにアイポイントEPが位置する乗員は、当該視認領域EBに到達した表示光を虚像VRIとして知覚する。このようにHUD100は、車両1の乗員である視認者(以下、単に視認者という)4により視認可能な虚像VRIを表示することで、各種情報を当該視認者4に認識させることが可能である。HUD100により虚像VRIとして表示される各種情報には、例えば車速、燃料残量等といった車両1の状態を示す情報、視界補助情報、道路情報、及びナビゲーション情報等が挙げられる。 The HUD 100 projects the display light of the image toward the windshield 3 of the vehicle 1. As a result, the display light reflected by the windshield 3 reaches the visual recognition area EB set in the interior of the vehicle 1. The occupant whose eye point EP is located in the visible area EB in the interior of the vehicle 1 perceives the display light that has reached the visible area EB as a virtual image VRI. In this way, the HUD 100 can make the viewer 4 recognize various information by displaying the virtual image VRI that can be seen by the viewer (hereinafter, simply referred to as the viewer) 4 who is the occupant of the vehicle 1. .. Various information displayed as a virtual image VRI by the HUD 100 include, for example, information indicating the state of the vehicle 1 such as vehicle speed and remaining fuel amount, visibility assistance information, road information, navigation information, and the like.
 視認領域EBは、HUD100により表示される虚像VRIが所定の仕様を満たす(例えば、虚像VRI全体が所定輝度以上となる等)ことで、視認者4により視認可能となる空間領域であって、アイボックスとも称される。視認領域EBは典型的には、車両1に設定されたアイリプスと重なるように、設定される。アイリプスは、視認者4におけるアイポイントEPの空間分布を統計的に表したアイレンジに基づき、仮想の楕円体状に設定される。 The viewing area EB is a spatial area that can be visually recognized by the viewer 4 when the virtual image VRI displayed by the HUD 100 satisfies a predetermined specification (for example, the entire virtual image VRI has a predetermined brightness or higher). Also called a box. The visible area EB is typically set so as to overlap the irips set in the vehicle 1. The eye lip is set in a virtual ellipsoid shape based on the eye range that statistically represents the spatial distribution of the eye point EP in the viewer 4.
 ウインドシールド3は、例えばガラス又は合成樹脂等により透光性の板状に形成された、透光部材である。ウインドシールド3は、インストルメントパネル2よりも上方に位置して、車両1の室内外を区画している。ウインドシールド3は、前方から後方へ向かうほど、インストルメントパネル2から離間する姿勢に、傾斜している。ウインドシールド3において室内側となる後面は、HUD100から表示光が投影されて反射する反射面3aを、滑らかな凹面状又は平面状に形成している。 The windshield 3 is a translucent member formed in the shape of a translucent plate by, for example, glass or synthetic resin. The windshield 3 is located above the instrument panel 2 and divides the interior and exterior of the vehicle 1. The windshield 3 is inclined so as to be separated from the instrument panel 2 from the front to the rear. The rear surface of the windshield 3 on the indoor side has a reflective surface 3a on which display light is projected and reflected from the HUD 100, which is formed into a smooth concave surface or a flat surface.
 尚、ウインドシールド3については、反射型のホログラフィック光学素子が設けられることで、面反射に代わる干渉縞での回折反射を利用する構成であってもよい。またウインドシールド3に代えて、透光部材としてのコンバイナが車両1の室内に設置されることで、当該コンバイナに反射面3aが設けられていてもよい。 The windshield 3 may be configured to utilize diffracted reflection with interference fringes instead of surface reflection by providing a reflective holographic optical element. Further, instead of the windshield 3, a combiner as a translucent member may be installed in the interior of the vehicle 1, so that the combiner may be provided with the reflecting surface 3a.
 図1に示すようにHUD100は、導光ユニット10、画像形成ユニット20、集光ユニット30、及び照明ユニット40を備えている。 As shown in FIG. 1, the HUD 100 includes a light guide unit 10, an image forming unit 20, a light collecting unit 30, and a lighting unit 40.
 導光ユニット10は、画像形成ユニット20からウインドシールド3に至る光路Lを、構成している。導光ユニット10は、画像形成ユニット20から投射される表示光を、ウインドシールド3へ向けて導光する。導光ユニット10は、画像形成ユニット20により形成される画像を、視認者4により視認される虚像VRIへ所定の光学倍率に拡大する、拡大作用を有していることが好ましい。これは、導光ユニット10の拡大作用によって小型化が図られるからである。 The light guide unit 10 constitutes an optical path L from the image forming unit 20 to the windshield 3. The light guide unit 10 guides the display light projected from the image forming unit 20 toward the windshield 3. It is preferable that the light guide unit 10 has a magnifying action of magnifying the image formed by the image forming unit 20 to a predetermined optical magnification to the virtual image VRI visually recognized by the viewer 4. This is because the light guide unit 10 can be miniaturized by the expanding action.
 このような機能の導光ユニット10は、少なくとも一つの光学部材11を含んで構成される。導光ユニット10は、光学部材11としての平面鏡(又は曲面鏡)11a及び凹面鏡11bを一つずつ組み合わせて、構成されている。ここで凹面鏡11bは、上述の拡大作用を与える。それ以外にも例えば導光ユニット10は、光学部材11としての凸面鏡及び凹面鏡を一つずつ組み合わせた構成であってもよいし、光学部材11としての一つの凹面鏡から構成される等であってもよい。こうした導光ユニット10を構成する光学部材11は、固定式又は可動式のいずれであってもよい。 The light guide unit 10 having such a function includes at least one optical member 11. The light guide unit 10 is configured by combining a plane mirror (or curved mirror) 11a and a concave mirror 11b as an optical member 11 one by one. Here, the concave mirror 11b gives the above-mentioned magnifying action. In addition, for example, the light guide unit 10 may be configured by combining a convex mirror and a concave mirror as the optical member 11 one by one, or may be configured by one concave mirror as the optical member 11. good. The optical member 11 constituting such a light guide unit 10 may be either a fixed type or a movable type.
 画像形成ユニット20は、車両1の室外において虚像VRIとして結像可能な画像を形成し、当該形成画像の表示光を導光ユニット10へ向けて射出する。図1,2に示すように画像形成ユニット20は、画像表示パネル21及び拡散パネル22を含んで構成される。 The image forming unit 20 forms an image that can be imaged as a virtual image VRI outside the vehicle 1, and emits the display light of the formed image toward the light guide unit 10. As shown in FIGS. 1 and 2, the image forming unit 20 includes an image display panel 21 and a diffusion panel 22.
 画像表示パネル21は、全体として板状に形成されている。画像表示パネル21は、薄膜トランジスタを用いた、透過型のTFT液晶パネルである。画像表示パネル21は、二次元配列された複数の液晶画素を有する、アクティブマトリクス式である。画像表示パネル21の片面である入射面210には、照明ユニット40からの照明光が集光ユニット30を通して入射する。画像表示パネル21の逆側となる射出面211からは、画像の表示光が光路L上の導光ユニット10へ向けて射出される。画像表示パネル21は、この表示光となる画像を表示形成する。 The image display panel 21 is formed in a plate shape as a whole. The image display panel 21 is a transmissive TFT liquid crystal panel using a thin film transistor. The image display panel 21 is an active matrix type having a plurality of liquid crystal pixels arranged two-dimensionally. Illumination light from the illumination unit 40 is incident on the incident surface 210, which is one side of the image display panel 21, through the condensing unit 30. From the emission surface 211 on the opposite side of the image display panel 21, the display light of the image is emitted toward the light guide unit 10 on the optical path L. The image display panel 21 displays and forms an image that serves as the display light.
 こうした機能の画像表示パネル21では、一対の平板状偏光子と、それら偏光子に挟まれた液晶層とが、板厚方向に積層されている。各偏光子は、互いに直交する透過軸及び遮断軸を、画像表示パネル21の両面210,211に沿って有している。各偏光子は、透過軸の方位角では偏光を透過させ、遮断軸の方位角では偏光を吸収する。液晶層は、液晶画素毎の印加電圧に応じて透過させる照明光の偏光を、調整可能に構成されている。液晶層での偏光調整により、射出側の偏光子を透過する光の割合、即ち透過率が液晶画素毎に調整されることで、画像が形成される。ここで特に画像表示パネル21では、各液晶画素にカラーフィルタが設けられることで、カラー画像の形成が可能となっている。 In the image display panel 21 having such a function, a pair of flat plate-shaped polarizing elements and a liquid crystal layer sandwiched between the polarizing plates are laminated in the plate thickness direction. Each polarizing element has a transmission axis and a blocking axis orthogonal to each other along both sides 210 and 211 of the image display panel 21. Each substituent transmits polarized light at the azimuth angle of the transmission axis and absorbs polarized light at the azimuth angle of the blocking axis. The liquid crystal layer is configured to be able to adjust the polarization of the illumination light transmitted according to the applied voltage of each liquid crystal pixel. By adjusting the polarization in the liquid crystal layer, the ratio of light transmitted through the polarizing element on the emission side, that is, the transmittance is adjusted for each liquid crystal pixel, so that an image is formed. Here, particularly in the image display panel 21, a color filter can be provided on each liquid crystal pixel to form a color image.
 図2,3に示すように画像表示パネル21には、互いに直交するXa方向とYa方向とに所定数ずつ二次元配列される複数の画素領域212が、設定されている。各画素領域212は、Xa方向とYa方向とに液晶画素が複数ずつ二次元に並んで構成される、矩形の画像形成領域として定義される。Xa方向における画素領域212の配列数は、Ya方向における画素領域212の配列数に対して、少ない(図3の例)、多い、又は同一のいずれであってもよい。 As shown in FIGS. 2 and 3, a plurality of pixel regions 212 are set in the image display panel 21 so as to be two-dimensionally arranged by a predetermined number in the Xa direction and the Ya direction orthogonal to each other. Each pixel region 212 is defined as a rectangular image forming region in which a plurality of liquid crystal pixels are arranged two-dimensionally in the Xa direction and the Ya direction. The number of arrangements of the pixel region 212 in the Xa direction may be smaller, larger, or the same as the number of arrangements of the pixel region 212 in the Ya direction (example of FIG. 3).
 図1に示すように拡散パネル22は、例えばガラス又は樹脂等の硬質透明材から、全体として板状又は薄膜状に形成されている。拡散パネル22は、画像表示パネル21の入射面210に沿って実質平行に、配置される。拡散パネル22は、画像表示パネル21へ入射する照明光に対して、拡散作用を与える。尚、拡散パネル22は、画像表示パネル21の入射面210に微小な凹凸が与えられることで、同パネル21と一体に構成されてもよい。 As shown in FIG. 1, the diffusion panel 22 is formed as a whole from a hard transparent material such as glass or resin into a plate shape or a thin film shape. The diffusion panel 22 is arranged substantially parallel to the incident surface 210 of the image display panel 21. The diffusion panel 22 exerts a diffusion effect on the illumination light incident on the image display panel 21. The diffusion panel 22 may be integrally configured with the panel 21 by giving the incident surface 210 of the image display panel 21 minute irregularities.
 図1,2に示す集光ユニット30は、照明ユニット40からの照明光を画像形成ユニット20へ向けて集光する。集光ユニット30は、前段レンズアレイ31及び後段レンズアレイ32を含んで構成される。 The light collecting unit 30 shown in FIGS. 1 and 2 collects the illumination light from the lighting unit 40 toward the image forming unit 20. The light collecting unit 30 includes a front lens array 31 and a rear lens array 32.
 前段レンズアレイ31は、例えばガラス又は樹脂等の硬質透明材から、全体として板状に形成されている。前段レンズアレイ31は、平凸レンズアレイである。図2,4に示すように前段レンズアレイ31は、互いに直交するXb方向とYb方向とに所定数ずつ二次元配列される複数の前段レンズ部312を、有している。Xb方向における前段レンズ部312の配列数は、Xa方向における画素領域212の配列数と一致している。Yb方向における前段レンズ部312の配列数は、Ya方向における画素領域212の配列数と一致している。これらの構成により各前段レンズ部312は、画素領域212のいずれかと1:1で対応付けられている。 The front lens array 31 is formed in a plate shape as a whole from a hard transparent material such as glass or resin. The front lens array 31 is a plano-convex lens array. As shown in FIGS. 2 and 4, the front lens array 31 has a plurality of front lens portions 312 that are two-dimensionally arranged in a predetermined number in the Xb direction and the Yb direction that are orthogonal to each other. The number of arrangements of the front lens unit 312 in the Xb direction coincides with the number of arrangements of the pixel region 212 in the Xa direction. The number of arrangements of the front lens unit 312 in the Yb direction coincides with the number of arrangements of the pixel region 212 in the Ya direction. With these configurations, each front lens unit 312 is associated with any of the pixel regions 212 in a 1: 1 ratio.
 図2に示す各前段レンズ部312の片面である前段入射面310には、照明ユニット40からの照明光が入射する。各前段レンズ部312の逆面となる前段射出面311からは、前段入射面310に入射の照明光が後段レンズアレイ32へ向けて射出される。 Illumination light from the lighting unit 40 is incident on the front-stage incident surface 310, which is one side of each front-stage lens unit 312 shown in FIG. Illumination light incident on the front-stage incident surface 310 is emitted toward the rear-stage lens array 32 from the front-stage injection surface 311 which is the opposite surface of each front-stage lens unit 312.
 各前段レンズ部312の前段入射面310は、Xb方向及びYb方向と直交する光軸Alに対して、実質垂直な平面状を呈している。各前段レンズ部312の前段射出面311は、Xb方向及びYb方向を含む任意方向において滑らかに湾曲する、凸面状を呈している。各前段レンズ部312は、後段レンズアレイ32へ向けて射出の照明光に対して、こうした凸面状の前段射出面311により集光作用を与える。このような集光作用を与えるために前段射出面311の凸面状を表す関数Zは、例えば次の数1により与えられる。数1においてrは、凸面状の任意点に関する、光軸Alからの動径(即ち、半径)である。数1においてcは、凸面状に与える曲率である。数1においてkは、コーニック定数である。数1においてαiは、自由曲面係数である。
Figure JPOXMLDOC01-appb-M000001
The front-stage incident surface 310 of each front-stage lens unit 312 exhibits a planar shape substantially perpendicular to the optical axis Al orthogonal to the Xb direction and the Yb direction. The front injection surface 311 of each front lens unit 312 has a convex shape that is smoothly curved in any direction including the Xb direction and the Yb direction. Each front-stage lens unit 312 exerts a condensing action on the illumination light emitted toward the rear-stage lens array 32 by the convex front-stage injection surface 311. In order to give such a light-collecting action, the function Z representing the convex shape of the front-stage injection surface 311 is given by, for example, the following equation 1. In the equation 1, r is a radius (that is, a radius) from the optical axis Al with respect to an arbitrary point on a convex surface. In the equation 1, c is the curvature given in a convex shape. In the number 1, k is a conic constant. In equation 1, αi is a free-form surface coefficient.
Figure JPOXMLDOC01-appb-M000001
 後段レンズアレイ32は、例えばガラス又は樹脂等の硬質透明材から、全体として板状に形成されている。図2,5に示すように後段レンズアレイ32は、互いに直交するXc方向とYc方向とに所定数ずつ二次元配列される複数の後段レンズ部322を、有している。Xc方向における後段レンズ部322の配列数は、Xa方向における画素領域212の配列数とXb方向における前段レンズ部312の配列数とに、一致している。Yc方向における後段レンズ部322の配列数は、Ya方向における画素領域212の配列数とYb方向における前段レンズ部312の配列数とに、一致している。これらの構成により各後段レンズ部322は、画素領域212のいずれかと前段レンズ部312のいずれかとに、1:1で対応付けられている。 The rear lens array 32 is formed in a plate shape as a whole from a hard transparent material such as glass or resin. As shown in FIGS. 2 and 5, the rear lens array 32 has a plurality of rear lens portions 322 that are two-dimensionally arranged by a predetermined number in the Xc direction and the Yc direction that are orthogonal to each other. The number of arrangements of the rear-stage lens unit 322 in the Xc direction matches the number of arrangements of the pixel region 212 in the Xa direction and the number of arrangements of the front-stage lens unit 312 in the Xb direction. The number of arrangements of the rear-stage lens unit 322 in the Yc direction matches the number of arrangements of the pixel region 212 in the Ya direction and the number of arrangements of the front-stage lens unit 312 in the Yb direction. With these configurations, each rear lens unit 322 is associated with any of the pixel regions 212 and any of the front lens units 312 in a 1: 1 ratio.
 各後段レンズ部322は、対応する前段レンズ部312に対しては、後段に位置して光軸Alを共通にしている。こうした各前段レンズ部312及び各後段レンズ部322の光軸Alに対して、画像表示パネル21及び拡散パネル22は傾斜配置されている。この傾斜配置により画像表示パネル21のXa方向は、前段レンズアレイ31のXb方向と後段レンズアレイ32のXc方向と対して、それらレンズアレイ31,32側へ傾斜するように、定義される。一方、画像表示パネル21のYa方向は、前段レンズアレイ31のYb方向と後段レンズアレイ32のYc方向とに沿って実質平行に、定義される。 Each rear lens unit 322 is located in the rear stage with respect to the corresponding front lens unit 312 and has an optical axis Al in common. The image display panel 21 and the diffusion panel 22 are tilted with respect to the optical axis Al of each of the front lens portions 312 and each of the rear lens portions 322. Due to this tilting arrangement, the Xa direction of the image display panel 21 is defined to be tilted toward the lens arrays 31 and 32 with respect to the Xb direction of the front lens array 31 and the Xc direction of the rear lens array 32. On the other hand, the Ya direction of the image display panel 21 is defined to be substantially parallel along the Yb direction of the front lens array 31 and the Yc direction of the rear lens array 32.
 図6,7に示す各後段レンズ部322の片面である後段入射面320には、それぞれ対応する前段レンズ部312からの照明光が、入射する。各後段レンズ部322の逆面となる後段射出面321からは、後段入射面320に入射の照明光が、それぞれ対応する画素領域212へ向けて射出される。 Illumination light from the corresponding front lens unit 312 is incident on the rear incident surface 320, which is one side of each rear lens unit 322 shown in FIGS. 6 and 7. Illumination light incident on the rear-stage incident surface 320 is emitted toward the corresponding pixel region 212 from the rear-stage injection surface 321 which is the opposite surface of each rear-stage lens unit 322.
 図6に示す各後段レンズ部322毎に後段入射面320は、光軸AlからXc方向の外側へ向かって順屈折面部323と逆屈折面部324とが交互に並ぶ複合面構造を、形成している。複数の順屈折面部323は、Xc方向に互いに離間且つYc方向に沿って延伸するストライプ状(図5参照)に、形成されている。各順屈折面部323は、仮想ベース面Si1をXc方向に一定幅で分割した分割部分のいずれかに、対応している。ここで仮想ベース面Si1は、入射側に凸の例えば凸面状等に、定義される。複数の逆屈折面部324は、Xc方向に互いに離間且つYc方向に延伸するストライプ状(図5参照)に、形成されている。各逆屈折面部324は、仮想ベース面Si2をXc方向に複数分割した分割部分のいずれかに、対応している。ここで仮想ベース面Si2は、射出側に凹の例えば谷形斜面状等に、定義される。以上の如き複合面構造では、各順屈折面部323が照明光を屈折によりXc方向の光軸Al側に集めて光軸Alに平行化する一方、各逆屈折面部324が照明光を各順屈折面部323とは逆向きに屈折させて当該平行化光に混ぜ合わせる。尚、平行化とは、照明光が平行光束に近づいた状態となることを意味し、照明光が完全に平行光束となっている必要はない。 For each rear lens portion 322 shown in FIG. 6, the rear incident surface 320 forms a composite surface structure in which the forward refraction surface portion 323 and the reverse refraction surface portion 324 are alternately arranged from the optical axis Al toward the outside in the Xc direction. There is. The plurality of forward refracting surface portions 323 are formed in a striped shape (see FIG. 5) that is separated from each other in the Xc direction and extends along the Yc direction. Each forward refraction surface portion 323 corresponds to any of the divided portions obtained by dividing the virtual base surface Si1 with a constant width in the Xc direction. Here, the virtual base surface Si1 is defined to be convex on the incident side, for example, a convex surface. The plurality of reverse refracting surface portions 324 are formed in a striped shape (see FIG. 5) that is separated from each other in the Xc direction and extends in the Yc direction. Each reverse refraction surface portion 324 corresponds to any of the divided portions in which the virtual base surface Si2 is divided into a plurality of parts in the Xc direction. Here, the virtual base surface Si2 is defined as having a concave shape on the injection side, for example, a valley-shaped slope. In the composite surface structure as described above, each forward refraction surface portion 323 collects the illumination light on the optical axis Al side in the Xc direction by refraction and collimates it with the optical axis Al, while each reverse refraction surface portion 324 refracts the illumination light in each forward refraction. It is refracted in the direction opposite to that of the surface portion 323 and mixed with the parallelized light. It should be noted that parallelization means that the illumination light is in a state of approaching the parallel luminous flux, and the illumination light does not have to be a completely parallel luminous flux.
 図7に示す各後段レンズ部322毎に後段射出面321は、光軸AlからYc方向の外側へ向かって順屈折面部325と逆屈折面部326とが交互に並ぶ複合面構造を、形成している。複数の順屈折面部325は、Yc方向に互いに離間且つXc方向に沿って延伸するストライプ状(図5参照)に、形成されている。各順屈折面部325は、仮想ベース面So1をYc方向に複数分割した分割部分のいずれかに、対応している。ここで仮想ベース面So1は、射出側に凸の例えば凸面状等に、定義される。複数の逆屈折面部326は、Yc方向に互いに離間且つXc方向に延伸するストライプ状(図5参照)に、形成されている。各逆屈折面部326は、仮想ベース面So2をYc方向に一定幅で分割した分割部分のいずれかに、対応している。ここで仮想ベース面So2は、入射側に凹の例えば谷形斜面状等に、定義される。以上の如き複合面構造では、各順屈折面部325が照明光を屈折によりYc方向の光軸Al側に集めて光軸Alに平行化する一方、各逆屈折面部324が照明光を各順屈折面部323とは逆向きに屈折させて当該平行化光に混ぜ合わせる。 For each rear lens portion 322 shown in FIG. 7, the rear injection surface 321 forms a composite surface structure in which the forward refraction surface portion 325 and the reverse refraction surface portion 326 are alternately arranged from the optical axis Al toward the outside in the Yc direction. There is. The plurality of forward refracting surface portions 325 are formed in a striped shape (see FIG. 5) that is separated from each other in the Yc direction and extends along the Xc direction. Each forward refraction surface portion 325 corresponds to any of the divided portions in which the virtual base surface So1 is divided into a plurality of parts in the Yc direction. Here, the virtual base surface So1 is defined to be convex to the injection side, for example, a convex surface. The plurality of reverse refracting surface portions 326 are formed in a striped shape (see FIG. 5) that is separated from each other in the Yc direction and extends in the Xc direction. Each reverse refraction surface portion 326 corresponds to any of the divided portions obtained by dividing the virtual base surface So2 with a constant width in the Yc direction. Here, the virtual base surface So2 is defined as having a concave shape on the incident side, for example, a valley-shaped slope. In the composite surface structure as described above, each forward refraction surface portion 325 collects the illumination light on the optical axis Al side in the Yc direction by refraction and collimates it with the optical axis Al, while each reverse refraction surface portion 324 refracts the illumination light in each forward refraction. It is refracted in the direction opposite to that of the surface portion 323 and mixed with the parallelized light.
 ここまでの構成から集光ユニット30は、各画素領域212にそれぞれ対応する前段レンズ部312及び後段レンズ部322の共同により、それら各画素領域212毎に入射する照明光を、個別に集光するのである。 From the configuration up to this point, the condensing unit 30 individually condenses the illumination light incident on each of the pixel regions 212 by the joint operation of the front lens unit 312 and the rear lens unit 322 corresponding to each pixel region 212. It is.
 図1,2に示す照明ユニット40は、集光ユニット30を通して画像形成ユニット20を照明する照明光を、発する。図1,2,8に示すように照明ユニット40は、互いに直交するXd方向とYd方向とに所定数ずつ二次元配列される複数の光源部402を、有している。Xd方向における光源部402の配列数は、Xa方向における画素領域212の配列数とXb方向における前段レンズ部312の配列数とXc方向における後段レンズ部322の配列数とに、一致している。Yd方向における光源部402の配列数は、Ya方向における画素領域212の配列数とYb方向における前段レンズ部312の配列数とYc方向における後段レンズ部322の配列数とに、一致している。これらの構成により各光源部402は、画素領域212のいずれかと前段レンズ部312のいずれかと後段レンズ部322のいずれかとに、1:1で対応付けられている。 The lighting unit 40 shown in FIGS. 1 and 2 emits illumination light that illuminates the image forming unit 20 through the condensing unit 30. As shown in FIGS. 1, 2, and 8, the lighting unit 40 has a plurality of light source units 402 that are two-dimensionally arranged in a predetermined number in the Xd direction and the Yd direction that are orthogonal to each other. The number of arrangements of the light source unit 402 in the Xd direction matches the number of arrangements of the pixel region 212 in the Xa direction, the number of arrangements of the front stage lens unit 312 in the Xb direction, and the number of arrangements of the rear stage lens unit 322 in the Xc direction. The number of arrangements of the light source unit 402 in the Yd direction matches the number of arrangements of the pixel region 212 in the Ya direction, the number of arrangements of the front stage lens unit 312 in the Yb direction, and the number of arrangements of the rear stage lens unit 322 in the Yc direction. With these configurations, each light source unit 402 is associated with any of the pixel regions 212, any of the front lens units 312, and any of the rear lens units 322 in a 1: 1 ratio.
 図2,8に示すように各光源部402は、互いに同一構成の光源群403から構成されている。各光源部402の光源群403は、赤緑青(RGB)である三原色の照明光をそれぞれ独立して発する光源素子403R,403G,403Bの組により、定義される。各光源部402では、光源群403を組する三原色の光源素子403R,403G,403Bが個別のLEDベアチップにより構成され、互いに共通にパッケージングされている。 As shown in FIGS. 2 and 8, each light source unit 402 is composed of a light source group 403 having the same configuration as each other. The light source group 403 of each light source unit 402 is defined by a set of light source elements 403R, 403G, and 403B that independently emit illumination light of the three primary colors of red, green, and blue (RGB). In each light source unit 402, the light source elements 403R, 403G, and 403B of the three primary colors forming the light source group 403 are configured by individual LED bare chips and are packaged in common with each other.
 各光源部402では、RGB三原色の光源素子403R,403G,403Bが直線方向としてのYd方向に沿って、互いに並んで一次元に配置されている。ここで特に、光源素子403R,403G,403Bが直線上に並ぶYd方向は、虚像VRIの上下方向Dv(図1参照)に対応する。また光源素子403R,403G,403Bのうち、Yd方向の真ん中に位置する一原色の光源素子(図2は403Gの例)は、対応する前段レンズ部312及び後段レンズ部322の共通光軸Al上に、配置されている。さらに、対応する前段レンズ部312及び後段レンズ部322の光軸Alに沿う方向において光源素子403R,403G,403Bは、それらレンズ部312,322の合成焦点よりも集光ユニット30に近接して配置されている。 In each light source unit 402, the light source elements 403R, 403G, and 403B of the three primary colors of RGB are arranged one-dimensionally side by side along the Yd direction as the linear direction. Here, in particular, the Yd direction in which the light source elements 403R, 403G, and 403B are arranged in a straight line corresponds to the vertical direction Dv (see FIG. 1) of the virtual image VRI. Among the light source elements 403R, 403G, and 403B, the light source element of one primary color located in the center in the Yd direction (FIG. 2 is an example of 403G) is on the common optical axis Al of the corresponding front lens unit 312 and the rear lens unit 322. Is placed in. Further, the light source elements 403R, 403G, and 403B are arranged closer to the condensing unit 30 than the combined focal point of the lens units 312 and 322 in the direction along the optical axis Al of the corresponding front lens unit 312 and the rear lens unit 322. Has been done.
 各光源部402の光源群403において光源素子403R,403G,403Bの発光強度がそれぞれ最大となる強度ピーク方向は、対応する前段レンズ部312及び後段レンズ部322の光軸Alに沿って、実質平行に設定されている。この設定下において照明ユニット40のXd方向は、前段レンズアレイ31のXb方向と後段レンズアレイ32のXc方向とに沿って実質平行に定義されると共に、画像表示パネル21のXa方向とは傾斜して定義される。一方、照明ユニット40のYd方向は、画像表示パネル21のYa方向と前段レンズアレイ31のYb方向と後段レンズアレイ32のYc方向とに沿って実質平行に、定義される。 In the light source group 403 of each light source unit 402, the intensity peak direction at which the emission intensity of the light source elements 403R, 403G, and 403B is maximized is substantially parallel along the optical axis Al of the corresponding front lens unit 312 and the rear lens unit 322. Is set to. Under this setting, the Xd direction of the lighting unit 40 is defined to be substantially parallel along the Xb direction of the front lens array 31 and the Xc direction of the rear lens array 32, and is inclined with respect to the Xa direction of the image display panel 21. Is defined. On the other hand, the Yd direction of the illumination unit 40 is defined to be substantially parallel along the Ya direction of the image display panel 21, the Yb direction of the front lens array 31, and the Yc direction of the rear lens array 32.
 各光源部402の光源群403では、三原色の光源素子403R,403G,403Bのうち、少なくとも一原色の光源素子から発せられた照明光は、対応する前段レンズ部312及び後段レンズ部322へ順次入射する。即ち照明ユニット40は、各レンズ部312,322の対応する組毎に順次入射される照明光を、それら各レンズ部312,322と個別に対応する光源部402の光源群403から、発するのである。 In the light source group 403 of each light source unit 402, the illumination light emitted from the light source element of at least one primary color among the light source elements 403R, 403G, and 403B of the three primary colors is sequentially incident on the corresponding front lens unit 312 and the rear lens unit 322. do. That is, the illumination unit 40 emits illumination light sequentially incident on each of the corresponding sets of the lens units 312 and 322 from the light source group 403 of the light source unit 402 individually corresponding to each of the lens units 312 and 322. ..
 図9に白抜きで示すように、光源群403において三原色の光源素子403R,403G,403Bが全て発光した光源部402に対応する画素領域212は、当該三原色の混色した白色光により、照明される。図9にドットハッチングで示すように、光源群403における光源素子403R,403G,403Bのうち、二原色の光源素子の発光且つ一原色の光源素子の消灯した光源部402に対応する画素領域212は、当該二原色の混色光により照明される。図9にクロスハッチングで示すように、光源群403における光源素子403R,403G,403Bのうち、一原色の光源素子の発光且つ二原色の光源素子の消灯した光源部402に対応する画素領域212は、当該一原色の単色光により照明される。 As shown in white in FIG. 9, the pixel region 212 corresponding to the light source unit 402 in which the light source elements 403R, 403G, and 403B of the three primary colors all emit light in the light source group 403 is illuminated by the white light mixed with the three primary colors. .. As shown by dot hatching in FIG. 9, among the light source elements 403R, 403G, and 403B in the light source group 403, the pixel area 212 corresponding to the light source unit 402 that emits light from the light source elements of the two primary colors and turns off the light source element of the one primary color is , Illuminated by the mixed color light of the two primary colors. As shown by cross-hatching in FIG. 9, among the light source elements 403R, 403G, and 403B in the light source group 403, the pixel area 212 corresponding to the light source unit 402 that emits light from the light source element of the first primary color and turns off the light source element of the second primary color is , Illuminated by the monochromatic light of the one primary color.
 (作用効果)
 以上説明した第一実施形態の作用効果を、以下に説明する。
(Action effect)
The effects of the first embodiment described above will be described below.
 第一実施形態の集光ユニット30によると、画像形成ユニット20において複数配列される各画素領域212毎に入射する照明光を個別に集光するように、前段レンズ部312が複数配列される。ここで第一実施形態の照明ユニット40では、各前段レンズ部312毎に入射する照明光を個別の光源群403から発するように、光源部402が複数配列される。これにより各光源部402の光源群403では、三原色の照明光を独立に発する光源素子403R,403G,403Bのいずれも、入射先レンズ部312の光軸Alに可及的に近接させて配置することができる。 According to the condensing unit 30 of the first embodiment, a plurality of front lens units 312 are arranged so as to individually condense the illumination light incident on each of the plurality of arranged pixel regions 212 in the image forming unit 20. Here, in the lighting unit 40 of the first embodiment, a plurality of light source units 402 are arranged so that the illumination light incident on each front lens unit 312 is emitted from the individual light source group 403. As a result, in the light source group 403 of each light source unit 402, all of the light source elements 403R, 403G, and 403B that independently emit the illumination light of the three primary colors are arranged as close as possible to the optical axis Al of the incident destination lens unit 312. be able to.
 故に、各光源部402の光源群403において少なくとも二原色の光源素子からの照明光は、入射先レンズ部312により混色されて入射先画素領域212から表示光として射出する際に、各画素領域212毎での色ムラ及び色ズレを生じさせ難い。また、各光源部402の光源群403において少なくとも一原色の光源素子からの照明光は、入射先レンズ部312により集光されて入射先画素領域212から表示光として射出する際に、各画素領域212間での色ムラ及び色ズレも生じさせ難い。さらに、各光源部402の光源群403において一原色の光源素子からの照明光では、入射先画素領域212から射出される表示光の色度が鮮やかになる。これらのことから、虚像VRIの視認性を高めることが可能である。 Therefore, when the illumination light from the light source elements of at least two primary colors in the light source group 403 of each light source unit 402 is mixed by the incident destination lens unit 312 and emitted as display light from the incident destination pixel region 212, each pixel region 212 It is difficult to cause color unevenness and color shift in each case. Further, in the light source group 403 of each light source unit 402, the illumination light from the light source element of at least one primary color is collected by the incident destination lens unit 312 and emitted as display light from the incident destination pixel region 212, in each pixel region. It is difficult to cause color unevenness and color shift between 212. Further, in the light source group 403 of each light source unit 402, the chromaticity of the display light emitted from the incident destination pixel region 212 becomes vivid in the illumination light from the light source element of one primary color. From these things, it is possible to improve the visibility of the virtual image VRI.
 第一実施形態によると、各光源部402の光源群403において三原色の光源素子403R,403G,403Bは、直線方向としてのYd方向に互いに並んで配置される。これにより各光源部402の光源群403では、三原色の光源素子403R,403G,403Bを、互いに並ぶYd方向において入射先レンズ部312の光軸Alに可及的に近接させるように、一次元配置することができる。故に、画素領域212毎及び画素領域212間での表示光の色ムラ及び色ズレを抑制して、虚像VRIの視認性を高めることが可能となる。 According to the first embodiment, in the light source group 403 of each light source unit 402, the light source elements 403R, 403G, and 403B of the three primary colors are arranged side by side in the Yd direction as the linear direction. As a result, in the light source group 403 of each light source unit 402, the light source elements 403R, 403G, and 403B of the three primary colors are arranged one-dimensionally so as to be as close as possible to the optical axis Al of the incident destination lens unit 312 in the Yd direction in which they are aligned with each other. can do. Therefore, it is possible to suppress color unevenness and color shift of the display light for each pixel region 212 and between the pixel regions 212, and improve the visibility of the virtual image VRI.
 第一実施形態によると、各前段レンズ部312の後段には、各画素領域212毎に入射する照明光を個別に前段レンズ部312と共同して集光するように、後段レンズ部322が複数配列される。そこで各後段レンズ部322では、照明光を屈折により平行化する順屈折面部325と、照明光を屈折させて当該平行化光に混ぜ合わせる逆屈折面部326とが、直線方向としてのYd方向に交互に形成される。これによれば、各光源部402の光源群403において少なくとも二原色の光源素子からの照明光は、前段レンズ部312での集光作用だけでなく、平行化光への混ぜ合わせを伴う後段レンズ部322での集光作用により、それら素子の並ぶYd方向において混色され易くなる。故に、特に画素領域212毎での表示光の色ムラ及び色ズレを抑制して、虚像VRIの視認性を高めることが可能となる。 According to the first embodiment, in the rear stage of each front stage lens unit 312, a plurality of rear stage lens units 322 are provided so as to individually condense the illumination light incident on each pixel region 212 together with the front stage lens unit 312. Be arranged. Therefore, in each rear lens unit 322, the forward refracting surface portion 325 that parallelizes the illumination light by refraction and the reverse refracting surface portion 326 that refracts the illumination light and mixes it with the parallelized light alternate in the Yd direction as the linear direction. Is formed in. According to this, in the light source group 403 of each light source unit 402, the illumination light from the light source elements of at least two primary colors not only has a condensing action in the front stage lens unit 312 but also a rear stage lens accompanied by mixing with parallelized light. Due to the light-collecting action of the unit 322, the colors are easily mixed in the Yd direction in which the elements are lined up. Therefore, it is possible to improve the visibility of the virtual image VRI by suppressing color unevenness and color shift of the display light especially in each pixel region 212.
 第一実施形態によると、各光源部402の光源群403において三原色の光源素子403R,403G,403Bが並ぶ直線方向としてのYd方向は、虚像VRIの上下方向Dvに対応する。これによれば、虚像VRIを視認する視認者4の眼球が移動し難い上下方向Dvでは、特に混色される画素領域212毎での表示光の、当該移動に起因する色ズレが生じ難くなる。また一方、視認者4の眼球が移動し易い虚像VRIの左右方向Dh(図1参照)に対応したXd方向では、各光源部402の光源群403毎に三原色の光源素子403R,403G,403Bが並ばない。そのため、混色される画素領域212毎での表示光には、視認者4の眼球移動に起因する色ズレがそもそも生じ難い。これらのことから、虚像VRIの視認性を高める効果の信頼性を、担保することが可能となる。 According to the first embodiment, the Yd direction as the linear direction in which the light source elements 403R, 403G, and 403B of the three primary colors are lined up in the light source group 403 of each light source unit 402 corresponds to the vertical direction Dv of the virtual image VRI. According to this, in the vertical direction Dv where the eyeball of the viewer 4 who visually recognizes the virtual image VRI is difficult to move, the color shift of the display light in each of the pixel regions 212 where the colors are mixed is unlikely to occur due to the movement. On the other hand, in the Xd direction corresponding to the left-right direction Dh (see FIG. 1) of the virtual image VRI in which the eyeball of the viewer 4 is easily moved, the light source elements 403R, 403G, and 403B of the three primary colors are used for each light source group 403 of each light source unit 402. Not lined up. Therefore, the display light in each of the pixel regions 212 to be mixed is unlikely to cause color deviation due to the movement of the eyeball of the viewer 4. From these facts, it is possible to guarantee the reliability of the effect of enhancing the visibility of the virtual image VRI.
 第一実施形態によると、各光源部402の光源群403において三原色の光源素子403R,403G,403Bは、互いに共通にパッケージングされる。これにより各光源部402の光源群403では、三原色の光源素子403R,403G,403Bを、入射先レンズ部312の光軸Alに可及的に近接した位置に、共通パッケージングごと配置することができる。故に、虚像VRIの視認性を高めるための虚像表示装置である、HUD100の生産性向上を、図ることが可能となる。 According to the first embodiment, in the light source group 403 of each light source unit 402, the light source elements 403R, 403G, and 403B of the three primary colors are packaged in common with each other. As a result, in the light source group 403 of each light source unit 402, the light source elements 403R, 403G, and 403B of the three primary colors can be arranged together with the common packaging at positions as close as possible to the optical axis Al of the incident destination lens unit 312. can. Therefore, it is possible to improve the productivity of the HUD 100, which is a virtual image display device for enhancing the visibility of the virtual image VRI.
 (第二実施形態)
 図10に示すように第二実施形態は、第一実施形態の変形例である。第二実施形態の各光源部2402では、光源群2403を組する三原色の光源素子403R,403G,403Bがそれぞれ個別のLEDベアチップにより構成され、互いに個別にパッケージングされている。
(Second embodiment)
As shown in FIG. 10, the second embodiment is a modification of the first embodiment. In each light source unit 2402 of the second embodiment, the light source elements 403R, 403G, and 403B of the three primary colors forming the light source group 2403 are each composed of individual LED bare chips, and are individually packaged with each other.
 このような第二実施形態によると、各光源部2402の光源群2403において三原色の光源素子403R,403G,403Bは、互いに独立してパッケージングされる。これにより各光源部2402の光源群2403では、三原色の光源素子403R,403G,403Bをそれぞれ配置する位置として、入射先レンズ部312の光軸Alに可及的に近接した独立パッケージングの位置を、個別に高精度調整することができる。故に、虚像VRIの視認性を高める効果の信頼性を、担保することが可能となる。 According to such a second embodiment, the light source elements 403R, 403G, and 403B of the three primary colors are packaged independently of each other in the light source group 2403 of each light source unit 2402. As a result, in the light source group 2403 of each light source unit 2402, the position of the independent packaging as close as possible to the optical axis Al of the incident destination lens unit 312 is set as the position where the light source elements 403R, 403G, and 403B of the three primary colors are arranged. , Can be individually adjusted with high precision. Therefore, it is possible to guarantee the reliability of the effect of enhancing the visibility of the virtual image VRI.
 (第三実施形態)
 図11,12に示すように第三実施形態は、第一実施形態の変形例である。第三実施形態の各光源部3402において光源群3403を組する三原色の光源素子403R,403G,403Bは、直線方向であるYd方向と、その直交方向であるXd方向とのうち、少なくとも一方に互いにずれて二次元に配置されている。ここで図11,12は、二原色の光源素子(同図は403R,403Gの例)同士がXd方向のみにずれると共に、当該二原色の光源素子に対して残りの一原色の光源素子(同図は403Bの例)がXd,Yd方向の双方にずれて配置された例を、示している。
(Third embodiment)
As shown in FIGS. 11 and 12, the third embodiment is a modification of the first embodiment. The light source elements 403R, 403G, and 403B of the three primary colors forming the light source group 3403 in each light source unit 3402 of the third embodiment are mutually in at least one of the Yd direction which is a linear direction and the Xd direction which is an orthogonal direction thereof. They are offset and arranged in two dimensions. Here, FIGS. 11 and 12 show that the light source elements of the two primary colors (examples of 403R and 403G in the same figure) are displaced only in the Xd direction, and the light source elements of the remaining one primary color (the same) with respect to the light source elements of the two primary colors. The figure shows an example in which the example of 403B) is arranged so as to be offset in both the Xd and Yd directions.
 ここで特に、二原色の光源素子同士がずれて配置されるYd方向は、虚像VRIの上下方向Dv(第一実施形態の図1参照)に対応する。また、光源素子403R,403G,403Bの各中心を頂点とする三角形領域(図12の二点鎖線内)のうち、例えば重心点は、対応する前段レンズ部312及び後段レンズ部322の共通光軸Al(図11参照)上に、配置されている。尚、以上の他にも例えば図13に示すように、二原色の光源素子(同図は403R,403Gの例)同士がYd方向のみにずれていると共に、当該二原色の光源素子に対して残りの一原色の光源素子(同図は403Bの例)がXd,Yd方向の双方にずれて配置されてもよい。尚、各光源部3402の光源群3403において光源素子403R,403G,403Bは、第一実施形態と同様に互いに共通パッケージングとなっているが、第二実施形態に準じて互いに独立パッケージングとなっていてもよい。 Here, in particular, the Yd direction in which the light source elements of the two primary colors are arranged so as to be offset from each other corresponds to the vertical direction Dv of the virtual image VRI (see FIG. 1 of the first embodiment). Further, in the triangular region (inside the alternate long and short dash line in FIG. 12) having the center of each of the light source elements 403R, 403G, and 403B as the apex, for example, the center of gravity is the common optical axis of the corresponding front lens portion 312 and the rear lens portion 322. It is arranged on Al (see FIG. 11). In addition to the above, as shown in FIG. 13, for example, the light source elements of the two primary colors (examples of 403R and 403G in the same figure) are displaced only in the Yd direction, and the light source elements of the two primary colors are displaced from each other. The remaining one primary color light source element (the figure is an example of 403B) may be arranged so as to be offset in both the Xd and Yd directions. In the light source group 3403 of each light source unit 3402, the light source elements 403R, 403G, and 403B are packaged in common with each other as in the first embodiment, but are packaged independently from each other according to the second embodiment. May be.
 このような第三実施形態によると、各光源部3402の光源群3403において三原色の光源素子403R,403G,403Bは、直線方向であるYd方向と、その直交方向であるXd方向とのうち、少なくとも一方に互いにずれて配置される。これにより各光源部3402の光源群3403では、三原色の光源素子403R,403G,403Bを、互いにずれる方向において、入射先レンズ部312の光軸Alに可及的に近接させるように、二次元配置することができる。故に、画素領域212毎及び画素領域212間での表示光の色ムラ及び色ズレを抑制して、虚像VRIの視認性を高めることが可能となる。 According to such a third embodiment, in the light source group 3403 of each light source unit 3402, the light source elements 403R, 403G, and 403B of the three primary colors have at least one of the Yd direction which is a linear direction and the Xd direction which is an orthogonal direction thereof. They are placed offset from each other on one side. As a result, in the light source group 3403 of each light source unit 3402, the light source elements 403R, 403G, and 403B of the three primary colors are two-dimensionally arranged so as to be as close as possible to the optical axis Al of the incident destination lens unit 312 in a direction deviating from each other. can do. Therefore, it is possible to suppress color unevenness and color shift of the display light for each pixel region 212 and between the pixel regions 212, and improve the visibility of the virtual image VRI.
 (他の実施形態)
 以上、複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
(Other embodiments)
Although the plurality of embodiments have been described above, the present disclosure is not construed as being limited to those embodiments, and can be applied to various embodiments without departing from the gist of the present disclosure. ..
 図14に示すように変形例では、後段レンズアレイ32が設けられていなくてもよい。図15に示すように変形例では、後段レンズアレイ32において後段入射面320及び後段射出面321の少なくとも一方が、フレネルレンズ面により構成されていてもよい。図16に示すように変形例では、前段レンズアレイ31がTIRレンズアレイであってもよい。図17に示すように変形例では、各前段レンズ部312及び各後段レンズ部322の光軸Alに対して、画像表示パネル21及び拡散パネル22が実質垂直に配置されていてもよい。 As shown in FIG. 14, in the modified example, the rear lens array 32 may not be provided. As shown in FIG. 15, in the modified example, at least one of the rear-stage incident surface 320 and the rear-stage injection surface 321 of the rear-stage lens array 32 may be configured by the Fresnel lens surface. As shown in FIG. 16, in the modified example, the front lens array 31 may be a TIR lens array. As shown in FIG. 17, in the modified example, the image display panel 21 and the diffusion panel 22 may be arranged substantially perpendicular to the optical axis Al of each front lens unit 312 and each rear lens unit 322.
 変形例の画像表示パネル21において画素領域212は、Xa方向及びYa方向の一方においては一列の、一次元配列されていてもよい。変形例の前段レンズアレイ31において前段レンズ部312は、Xb方向及びYb方向の一方においては一列の、一次元配列されていてもよい。変形例の後段レンズアレイ32において後段レンズ部322は、Xc方向及びYc方向の一方においては一列の、一次元配列されていてもよい。変形例において光源部402は、Xd方向及びYd方向の一方においては一列の、一次元配列されていてもよい。 In the image display panel 21 of the modified example, the pixel regions 212 may be arranged one-dimensionally in a row in either the Xa direction or the Ya direction. In the front-stage lens array 31 of the modified example, the front-stage lens portions 312 may be arranged one-dimensionally in a row in one of the Xb direction and the Yb direction. In the rear lens array 32 of the modified example, the rear lens portions 322 may be arranged one-dimensionally in a row in one of the Xc direction and the Yc direction. In the modified example, the light source units 402 may be arranged one-dimensionally in a row in either the Xd direction or the Yd direction.
 変形例の画像表示パネル21におけるXa方向とYa方向とは、互いに入れ替えられてもよい。変形例の後段レンズアレイ32におけるXc方向とYc方向とは、互いに入れ替えられてもよい。変形例の各光源部402,2402,3402におけるYd方向は、虚像VRIの左右方向Dh(第一実施形態の図1参照)に対応していてもよい。 The Xa direction and the Ya direction in the image display panel 21 of the modified example may be interchanged with each other. The Xc direction and the Yc direction in the rear lens array 32 of the modified example may be interchanged with each other. The Yd direction in each of the light source units 402, 2402, and 3402 of the modified example may correspond to the left-right direction Dh of the virtual image VRI (see FIG. 1 of the first embodiment).

Claims (8)

  1.  表示光を透光部材(3)により反射させて、前記表示光による虚像(VRI)を視認可能に表示する虚像表示装置(100)であって、
     照明光を発する照明ユニット(40)と、
     前記照明光の透過により画像を形成し、前記画像の前記表示光を射出する画像形成ユニット(20)と、
     前記照明光を前記画像形成ユニットへ向けて集光する集光ユニット(30)とを、備え、
     前記画像形成ユニットは、複数配列される画素領域(212)を、有し、
     前記集光ユニットは、各前記画素領域毎に入射する前記照明光を個別に集光するように、複数配列されるレンズ部(312)を、有し、
     前記照明ユニットは、三原色の前記照明光を独立して発する光源素子(403R,403G,403B)の組を光源群(403,2403,3403)として、前記各レンズ部毎に入射する前記照明光を個別の前記光源群から発するように、複数配列される光源部(402,2402,3402)を、有する虚像表示装置。
    It is a virtual image display device (100) that reflects the display light by the translucent member (3) and visually displays the virtual image (VRI) by the display light.
    A lighting unit (40) that emits illumination light,
    An image forming unit (20) that forms an image by transmitting the illumination light and emits the display light of the image.
    A condensing unit (30) that condenses the illumination light toward the image forming unit is provided.
    The image forming unit has a plurality of pixel regions (212) arranged in the image forming unit.
    The condensing unit has a plurality of lens units (312) arranged so as to individually condense the illumination light incident on each of the pixel regions.
    The illumination unit uses a set of light source elements (403R, 403G, 403B) that independently emit the illumination light of the three primary colors as a light source group (403, 2403, 3403), and emits the illumination light incident on each lens unit. A virtual image display device having a plurality of light source units (402, 2402, 3402) arranged so as to emit light from the individual light source group.
  2.  各前記光源部(402,2402)の前記光源群(403,2403)において三原色の前記光源素子は、直線方向(Yd)に互いに並んで配置される請求項1に記載の虚像表示装置。 The virtual image display device according to claim 1, wherein the light source elements of the three primary colors are arranged side by side in the linear direction (Yd) in the light source group (403, 2403) of each light source unit (402, 2402).
  3.  前記集光ユニットは、前記レンズ部としての前段レンズ部の後段に、各前記画素領域毎に入射する前記照明光を個別に当該前段レンズ部と共同して集光するように、複数配列される後段レンズ部(322)を有し、
     前記後段レンズ部は、前記照明光を屈折により平行化する順屈折面部(325)と、前記照明光を屈折により当該平行化光に混ぜ合わせる逆屈折面部(326)とを、前記直線方向に交互に形成する請求項2に記載の虚像表示装置。
    A plurality of the condensing units are arranged in the rear stage of the pre-stage lens unit as the lens unit so as to individually condense the illumination light incident on each of the pixel regions in collaboration with the pre-stage lens unit. It has a rear lens unit (322) and has a rear lens unit (322).
    In the rear lens portion, a forward refraction surface portion (325) that parallelizes the illumination light by refraction and a reverse refraction surface portion (326) that mixes the illumination light with the parallelized light by refraction alternate in the linear direction. The virtual image display device according to claim 2, which is formed in 1.
  4.  前記直線方向は、前記虚像の上下方向(Dv)に対応する請求項2又は3に記載の虚像表示装置。 The virtual image display device according to claim 2 or 3, wherein the linear direction corresponds to the vertical direction (Dv) of the virtual image.
  5.  各前記光源部(3402)の前記光源群(3403)において三原色の前記光源素子は、直線方向(Yd)とその直交方向(Xd)とのうち、少なくとも一方に互いにずれて配置される請求項1に記載の虚像表示装置。 Claim 1 in which in the light source group (3403) of each light source unit (3402), the light source elements of the three primary colors are arranged so as to be offset from each other in at least one of a linear direction (Yd) and an orthogonal direction (Xd) thereof. The virtual image display device described in 1.
  6.  各前記光源部(402,3402)の前記光源群(403,3403)において三原色の前記光源素子は、互いに共通にパッケージングされる請求項1~5のいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 5, wherein the light source elements of the three primary colors in the light source group (403, 3403) of each light source unit (402, 3402) are packaged in common with each other.
  7.  各前記光源部(2402)の前記光源群(2403)において三原色の前記光源素子は、互いに独立してパッケージングされる請求項1~5のいずれか一項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 5, wherein the light source elements of the three primary colors are packaged independently of each other in the light source group (2403) of each light source unit (2402).
  8.  前記集光ユニットは、前記レンズ部としての前段レンズ部の後段に、各前記画素領域毎に入射する前記照明光を個別に当該前段レンズ部と共同して集光するように、複数配列される後段レンズ部(322)を有する請求項1~7のいずれか一項に記載の虚像表示装置。 A plurality of the condensing units are arranged in the rear stage of the pre-stage lens unit as the lens unit so as to individually condense the illumination light incident on each of the pixel regions in collaboration with the pre-stage lens unit. The virtual image display device according to any one of claims 1 to 7, which has a rear lens unit (322).
PCT/JP2021/020560 2020-06-30 2021-05-28 Virtual image display device WO2022004223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112508A JP7318597B2 (en) 2020-06-30 2020-06-30 virtual image display
JP2020-112508 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004223A1 true WO2022004223A1 (en) 2022-01-06

Family

ID=79315920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020560 WO2022004223A1 (en) 2020-06-30 2021-05-28 Virtual image display device

Country Status (2)

Country Link
JP (1) JP7318597B2 (en)
WO (1) WO2022004223A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500753A (en) * 2002-09-27 2006-01-05 シーメンス アクチエンゲゼルシヤフト Equipment for image generation
KR20080043077A (en) * 2006-11-13 2008-05-16 엘지전자 주식회사 Back light unit and micro display apparatus having the same
JP2017215571A (en) * 2016-05-25 2017-12-07 株式会社デンソー Head-up display device and image projection unit
JP2019164285A (en) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 Head-up display and movable body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500753A (en) * 2002-09-27 2006-01-05 シーメンス アクチエンゲゼルシヤフト Equipment for image generation
KR20080043077A (en) * 2006-11-13 2008-05-16 엘지전자 주식회사 Back light unit and micro display apparatus having the same
JP2017215571A (en) * 2016-05-25 2017-12-07 株式会社デンソー Head-up display device and image projection unit
JP2019164285A (en) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 Head-up display and movable body

Also Published As

Publication number Publication date
JP2022011390A (en) 2022-01-17
JP7318597B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP6579212B2 (en) Head-up display device
CN108885345B (en) Head-up display device
CN109154721B (en) Head-up display device and image projection unit
WO2015107883A1 (en) Illumination lens, illumination unit, and head-up display device
JP6319355B2 (en) Head-up display device
WO2016194305A1 (en) Headup display device
WO2020225963A1 (en) Virtual image display device
CN111051960A (en) Head-up display device and image projection unit
WO2017130481A1 (en) Head up display apparatus and manufacturing method of same
WO2017145557A1 (en) Head-up display device
WO2022004223A1 (en) Virtual image display device
WO2022014180A1 (en) Virtual-image display device
WO2022130823A1 (en) Virtual image display device
WO2022014179A1 (en) Virtual-image display device
WO2020158258A1 (en) Virtual image display device
WO2017145558A1 (en) Head-up display device
CN115210629B (en) virtual image display device
JP7163804B2 (en) Lighting unit for head-up display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833776

Country of ref document: EP

Kind code of ref document: A1