WO2022004157A1 - Water spray cooling device - Google Patents

Water spray cooling device Download PDF

Info

Publication number
WO2022004157A1
WO2022004157A1 PCT/JP2021/018570 JP2021018570W WO2022004157A1 WO 2022004157 A1 WO2022004157 A1 WO 2022004157A1 JP 2021018570 W JP2021018570 W JP 2021018570W WO 2022004157 A1 WO2022004157 A1 WO 2022004157A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
unit
water
blowing direction
Prior art date
Application number
PCT/JP2021/018570
Other languages
French (fr)
Japanese (ja)
Inventor
善仁 嘉田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022004157A1 publication Critical patent/WO2022004157A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/06Spray nozzles or spray pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a water spray cooling device that improves the cooling capacity of the heat exchanger by spraying water on the heat exchanger.
  • the present disclosure is a water spray cooling device that sprays water on a heat exchanger to improve the cooling capacity of the heat exchanger, and sprays water on the heat exchanger over a wide range while suppressing an increase in ventilation resistance.
  • the purpose is.
  • the water spray cooling device of the present disclosure includes a supply unit and a guide unit.
  • the supply unit stores the water sprayed on the heat dissipation unit.
  • the guide section is connected to the supply section, guides the water supplied from the supply section to a position away from the supply section, and disperses the water to the heat dissipation section of the heat exchanger.
  • the heat radiating section allows air flowing in the blowing direction to pass through.
  • the supply unit is provided at a position that does not overlap with the heat dissipation unit in the air blowing direction.
  • the guide unit guides the water supplied from the supply unit to a position away from the supply unit and sprays the water on the heat radiation unit, so that the water can be sprayed over a wide range on the heat radiation unit.
  • the water spray cooling device of the present disclosure is applied to a fuel cell system.
  • the arrows indicating up / down, left / right, and front / back in each figure are shown with reference to the viewpoint from the occupant sitting on the vehicle seat.
  • the fuel cell system 1 of the first embodiment is mounted on a vehicle (not shown).
  • vehicle is an electric vehicle (fuel cell vehicle) that travels on the fuel cell 10 as a power source.
  • the electric power generated by the fuel cell 10 is supplied to an in-vehicle device such as a traveling motor via an inverter (not shown).
  • the fuel cell system 1 has a fuel cell 10 and a cooling water circuit 20.
  • a solid polymer electrolyte fuel cell (PEFC) is used as the fuel cell 10.
  • the fuel cell 10 has a stack structure in which a large number of cells are stacked. Each cell is formed by sandwiching an electrolyte membrane between a pair of electrodes.
  • the fuel cell 10 generates electric power by utilizing a chemical reaction between hydrogen and oxygen. Specifically, air containing oxygen is supplied to the fuel cell 10 through the air passage 11. An air pump (not shown) is arranged in the air passage 11, and air is pumped by the operation of the air pump to supply it to the fuel cell 10. Further, hydrogen is supplied to the fuel cell 10 via the hydrogen passage 12.
  • the following electrochemical reaction between hydrogen and oxygen occurs, and electric energy is generated.
  • the unreacted oxygen and hydrogen not used in this electrochemical reaction are discharged from the fuel cell 10 as exhaust gas and exhaust hydrogen.
  • the electrolyte membrane in the fuel cell 10 needs to be in a wet state containing water.
  • the fuel cell system 1 humidifies the air and / or hydrogen supplied to the fuel cell 10, and supplies these humidified gases to the fuel cell 10 to form an electrolyte membrane in the fuel cell 10. It is configured to humidify.
  • the fuel cell 10 heat and moisture are generated by an electrochemical reaction at the time of power generation.
  • the generated water generated inside the fuel cell 10 is discharged to the outside of the fuel cell 10 in a state of being contained in the exhaust gas.
  • the fuel cell 10 needs to be maintained at a constant temperature (for example, about 80 ° C.) while the fuel cell system 1 is operating. Further, if the electrolyte membrane inside the fuel cell 10 exceeds a predetermined allowable upper limit temperature, it will be destroyed by the high temperature. Therefore, it is necessary to keep the temperature of the fuel cell 10 below the permissible temperature.
  • a constant temperature for example, about 80 ° C.
  • a cooling water circuit 20 is arranged in the fuel cell system 1 in order to maintain the temperature of the fuel cell 10 within a certain allowable range.
  • the cooling water circuit 20 cools the fuel cell 10 by using cooling water as a heat medium, and controls the temperature of the fuel cell 10.
  • the cooling water for example, a mixed solution of ethylene glycol and water can be used in order to prevent freezing at a low temperature.
  • the cooling water circuit 20 is provided with a cooling water circulation flow path 21, a water pump 22, a heat exchanger 23, and a blower 24.
  • the cooling water circuit 20 circulates the cooling water between the fuel cell 10 and the heat exchanger 23 to release the heat generated by the fuel cell 10 to the outside of the system.
  • the cooling water circulation flow path 21 is a flow path through which cooling water, which is a heat medium, flows, and is configured to circulate via the fuel cell 10 and the heat exchanger 23.
  • the water pump 22 is arranged in the cooling water circulation flow path 21, and by pumping the cooling water, the cooling water is circulated inside the cooling water circulation flow path 21.
  • the heat exchanger 23 is a radiator that dissipates the heat generated by the fuel cell 10 to the outside of the system and cools the fuel cell 10.
  • the heat exchanger 23 exchanges heat between the air flowing in the predetermined blowing direction W and the cooling water flowing inside.
  • the predetermined blowing direction W is a direction from the front to the rear of the vehicle. The configuration of the heat exchanger 23 will be described later.
  • the cooling water of the cooling water circuit 20 absorbs heat generated by the electrochemical reaction and flows out in the process of flowing through the fuel cell 10, and flows into the heat exchanger 23 via the cooling water circulation flow path 21.
  • heat is exchanged between the cooling water and the blown air, and the heat of the cooling water is dissipated to the blown air. After that, the cooling water flows from the heat exchanger 23 toward the fuel cell 10 and circulates in the cooling water circulation flow path 21 of the cooling water circuit 20.
  • a blower 24 is arranged on the rear side of the heat exchanger 23 to create an air flow toward the blow direction W.
  • a fan shroud 25 is arranged around the blower 24 to improve the blowing performance of the blower 24.
  • the air flow in the blowing direction W passing through the heat exchanger 23 is not limited to the flow due to the operation of the blower 24, and it is also possible to use the running wind generated when the vehicle is running, and both are used in combination. You can also.
  • the temperature control of the cooling water in the cooling water circuit 20 is realized by controlling the flow rate by the water pump 22 and controlling the amount of air blown by the blower 24 by the control device 40 described later.
  • the generated water generated during power generation by the fuel cell 10 is discharged from the fuel cell 10 through the air passage 11 in a state of being contained in air (that is, in a gas-liquid two-phase state). .. Therefore, the gas-liquid separator 13 is arranged on the downstream side of the fuel cell 10 in the air passage 11.
  • the gas-liquid separator 13 collects the generated water generated during power generation in the fuel cell 10 together with the air discharged from the air passage 11 and separates it into steam and water. Then, the water vapor separated by the gas-liquid separator 13 is discharged to the outside of the fuel cell system 1.
  • the water separated by the gas-liquid separator 13 is collected and stored inside the gas-liquid separator 13 in a state where the temperature is lowered by condensation.
  • the water stored inside the gas-liquid separator 13 is used for humidifying the electrolyte membrane of the fuel cell 10 and cooling the heat exchanger 23.
  • a humidifying flow path 26 and a spraying flow path 27 are connected to the gas-liquid separator 13.
  • the humidification flow path 26 is a flow path for using the water stored in the gas-liquid separator 13 to humidify the electrolyte membrane of the fuel cell 10.
  • the humidifying flow path 26 extends to the upstream side of the fuel cell 10 in the air passage 11 and the hydrogen passage 12, and is used for humidifying the air and hydrogen supplied to the fuel cell 10.
  • the fuel cell system 1 can stabilize the electrochemical reaction in the fuel cell 10 by humidifying the electrolyte membrane of the fuel cell 10 into a wet state via the air passage 11 and the hydrogen passage 12.
  • the spraying flow path 27 is a flow path for using the water stored in the gas-liquid separator 13 for cooling the heat exchanger 23.
  • the spraying flow path 27 extends to the front side of the heat exchanger 23 in the electric vehicle.
  • a spraying pump 28 and a water spraying cooling device 30 are arranged in the spraying flow path 27.
  • the water spray cooling device 30 is connected to the tip of the spray flow path 27, and sprays the water stored in the gas-liquid separator 13 to the heat exchanger 23.
  • the water spray cooling device 30 is arranged on the upstream side of the heat exchanger 23 in the blowing direction W. A predetermined gap is provided between the heat exchanger 23 and the water spray cooling device 30.
  • the water spray cooling device 30 can be fixed to a heat exchanger 23, a vehicle body (not shown), or the like. The specific configuration of the water spray cooling device 30 will be described later.
  • the cooling capacity of the heat exchanger 23 can be improved by utilizing the latent heat of evaporation of water. Then, by improving the cooling capacity of the heat exchanger 23, the power generation capacity of the fuel cell 10 can be improved.
  • the spraying pump 28 is an electric pump arranged between the gas-liquid separator 13 and the water spray cooling device 30 in the spraying flow path 27, and sucks the water stored in the gas-liquid separator 13. , Pumped toward the water spray cooling device 30.
  • the fuel cell system 1 is provided with a control device 40.
  • the control device 40 is a control unit that controls the operation of each control target device constituting the fuel cell system 1.
  • the control device 40 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
  • the control device 40 can control the operation of the fuel cell system 1 based on the control program stored in the ROM.
  • a fuel cell 10 and a water temperature sensor are connected to the input side of the control device 40.
  • the control device 40 can acquire the output of the fuel cell 10 and the cooling water temperature detected by the water temperature sensor.
  • Each controlled object such as a water pump 22, a blower 24, and a spraying pump 28 is connected to the output side of the control device 40.
  • the heat exchanger 23 includes a heat dissipation unit 231, a tank unit 232, and an insert 233.
  • the tank portion 232 and the insert 233 are non-radiating portions.
  • the heat radiating unit 231 is a portion of the heat exchanger 23 through which air can pass, and does not obstruct the air flow in the blowing direction W.
  • the tank portion 232 and the insert 233 are portions of the heat exchanger 23 where air cannot pass, and obstruct the air flow in the blowing direction W.
  • the heat dissipation unit 231 is a heat exchange unit that exchanges heat between the air and the cooling water circulating inside and dissipates the heat of the cooling water.
  • the heat radiating portion 231 is a substantially rectangular portion formed by a plurality of tubes 231a and fins 231b.
  • the blowing direction W is a direction that intersects the plate surface of the heat radiating portion 231. In the heat radiating unit 231, air passes through the gap between the adjacent tubes 231a.
  • the plurality of tubes 231a are stacked and arranged in parallel so that the longitudinal direction coincides with the vertical direction.
  • the vertical direction of the paper surface is the stacking direction of the tubes 231a
  • the left-right direction of the paper surface is the stacking direction of the tubes 231a.
  • the fins 231b are joined to the adjacent tube 231a to increase the heat transfer area with the air and promote the heat exchange between the cooling water and the air.
  • air can pass between the tubes 231a.
  • the tank portion 232 is provided at both ends of the tube 231a in the heat radiating portion 231 in the longitudinal direction. In the first embodiment, the tank portion 232 is provided at both ends of the heat radiating portion 231 in the vertical direction.
  • the tank portion 232 includes an upper tank portion provided on the upper side of the heat radiating portion 231 and a lower tank portion provided on the lower side of the heat radiating portion 231.
  • the tank portion 232 is connected to the end portions of a plurality of tubes 231a and communicates with the tubes 231a.
  • the tank unit 232 distributes or aggregates the cooling water flowing through the heat radiating unit 231 at least one of them.
  • the tank portion 232 provided on the upper side distributes the cooling water to each tube 231a of the heat radiating portion 231, and the tank portion 232 provided on the lower side circulates each tube 231a of the heat radiating portion 231. Collect the cooling water.
  • Inserts 233 are provided at both ends of the tube 231a in the heat dissipation portion 231 in the stacking direction. In the first embodiment, the inserts 233 are provided at both ends of the heat radiating portion 231 in the horizontal direction.
  • the insert 233 is a reinforcing member that reinforces the heat radiating portion 231.
  • the insert 233 is arranged in the direction connecting the two tank portions 232 (that is, in the vertical direction).
  • the water spray cooling device 30 can be made of, for example, a resin material or a metal material. As shown in FIGS. 2 and 3, the water spray cooling device 30 includes a supply unit 301, a frame unit 302, and a guide unit 303.
  • the supply unit 301 supplies the water supplied from the spray flow path 27 to the heat exchanger 23.
  • the supply unit 301 is a hollow member, and can store the water supplied from the spraying flow path 27 inside.
  • the supply unit 301 has a cylindrical shape, but any hollow member may be used, and the shape is arbitrary.
  • the supply unit 301 is arranged so that the longitudinal direction is horizontal.
  • the supply unit 301 is provided with a supply hole 301a for supplying the water inside to the heat exchanger 23.
  • the water inside the supply unit 301 can flow out from the supply hole 301a.
  • a plurality of supply holes 301a are provided.
  • the plurality of supply holes 301a are arranged at predetermined intervals along the longitudinal direction of the supply portion 301.
  • the supply hole 301a is provided at a position that does not overlap with the heat radiating portion 231 in the blowing direction W.
  • the supply hole 301a is provided on the downstream side of the ventilation direction W in the supply unit 301. Therefore, the supply hole 301a is provided on the side of the supply unit 301 facing the heat exchanger 23.
  • the frame portion 302 is a support member that supports the supply portion 301.
  • the frame portion 302 is fixed to the vehicle body or the heat exchanger 23.
  • the frame unit 302 absorbs an input such as vibration from the vehicle body side and suppresses an input such as vibration to the supply unit 301.
  • the frame portion 302 may be integrally molded with the supply section 301, or may be assembled to the supply section 301 as a separate member from the supply section 301. When the supply unit 301 and the frame unit 302 are used as separate members, they may be made of different materials.
  • the supply unit 301 is provided with a guide unit 303.
  • the guide unit 303 guides the water supplied from the supply hole 301a of the supply unit 301 to a position away from the supply unit 301 and sprays the water to the heat dissipation unit 231.
  • the water supplied from the supply unit 301 is sprayed from the guide unit 303 to the heat dissipation unit 231 in a liquid state.
  • the guide unit 303 is provided so as to extend downward from the supply hole 301a of the supply unit 301 in the direction in which gravity acts. Therefore, the tip portion 303a of the guide portion 303 is located below the supply hole 301a in the direction of gravity.
  • the guide unit 303 is provided corresponding to each of the plurality of supply holes 301a.
  • the plurality of guide portions 303 are arranged in parallel so as not to intersect each other, and the plurality of guide portions 303 are arranged in a comb shape.
  • the guide portion 303 is a plate-shaped member.
  • the guide portion 303 is arranged so that the plate surface is parallel to the blowing direction W.
  • the guide portion 303 is provided with a groove portion 303b.
  • the groove portion 303b is provided along the longitudinal direction of the guide portion 303.
  • the groove portion 303b is provided on the downstream side of the guide portion 303 in the blowing direction W.
  • the groove 303b is connected to the supply hole 301a, and the other end is provided up to the tip 303a of the guide 303. That is, the groove portion 303b is provided from the upper end to the lower end of the guide portion 303.
  • the cross-sectional shape of the groove portion 303b is U-shaped, but the cross-sectional shape is not limited to this, and the cross-sectional shape of the groove portion 303b can be arbitrarily set.
  • the water supplied from the supply hole 301a moves downward along the guide portion 303 due to gravity and the surface tension generated by the groove portion 303b, and is guided to the tip portion 303a of the guide portion 303.
  • the water that has moved to the tip portion 303a of the guide portion 303 is separated from the tip portion 303a by the air flow passing through the heat dissipation portion 231 of the heat exchanger 23 before growing into droplets.
  • the water separated from the tip portion 303a of the guide portion 303 moves in the blowing direction W while falling and is scattered on the surface of the heat exchanger 23.
  • the water supplied from the supply unit 301 is guided to a position away from the supply unit 301 by the guide unit 303, and is widely sprayed on the surface of the heat exchanger 23.
  • the water sprayed from the guide portion 303 separates from the guide portion 303 before growing into droplets, so that the water is uniformly sprayed on the surface of the heat exchanger 23.
  • the water sprayed from the water spray cooling device 30 evaporates on the surface of the heat exchanger 23, and the cooling capacity of the heat exchanger 23 is improved by the latent heat of vaporization.
  • the supply unit 301 and the frame unit 302 are portions having a large projected area in the ventilation direction W.
  • the supply unit 301 and the frame unit 302 are provided at positions that do not overlap with the heat dissipation unit 231 of the heat exchanger 23 in the air blowing direction W.
  • the supply unit 301 and the frame unit 302 are provided at positions overlapping with the tank unit 232 provided on the upper side of the heat exchanger 23 in the air blowing direction W.
  • the guide unit 303 is provided so as to extend from the supply unit 301 toward the heat radiation unit 231 of the heat exchanger 23, and the tip portion 303a of the guide unit 303 is provided at a position overlapping the heat radiation unit 231. Therefore, one end side of the guide portion 303 is located at a position where it overlaps with the tank portion 232, and the other end side of the guide portion 303 is located at a position where it overlaps with the heat radiating portion 231.
  • the guide unit 303 is a portion having a smaller projected area in the blowing direction W than the supply unit 301 and the frame unit 302. Therefore, it is possible to suppress the influence of the guide portion 303 on the air flow of the heat radiating portion 231 and the increase of the ventilation resistance of the air flowing through the heat radiating portion 231.
  • FIGS. 5 and 6 the solid line shows the first embodiment, and the broken line shows a comparative example.
  • the alternate long and short dash line in FIG. 5 shows the characteristics of the blower 24 of the first embodiment.
  • the supply unit 301 and the frame unit 302 of the water spray cooling device 30 are arranged so as not to overlap with the heat radiation unit 231 in the ventilation direction W.
  • a comparative example is a configuration in which the entire water spray cooling device 30 is arranged so as to overlap the heat radiating unit 231 in the blowing direction W. That is, in the comparative example, the supply unit 301 and the frame unit 302 are arranged so as to overlap the heat radiation unit 231 in the ventilation direction W.
  • the ventilation resistance of the air passing through the heat radiating unit 231 is smaller and the wind speed is higher than in the comparative example. That is, according to the first embodiment, even when the water spray cooling device 30 is provided, it is possible to suppress an increase in the ventilation resistance of the air passing through the heat radiation unit 231 and suppress a decrease in the wind speed.
  • the cooling performance of the heat exchanger 23 is higher than that in the comparative example. That is, according to the first embodiment, even when the water spray cooling device 30 is provided, the deterioration of the cooling performance of the heat exchanger 23 can be suppressed.
  • the supply unit 301 and the frame unit 302 having a large projected area are arranged at positions that do not overlap with the heat dissipation unit 231 of the heat exchanger 23 in the ventilation direction W. .. Therefore, the water spray cooling device 30 can suppress an increase in the ventilation resistance of the air passing through the heat radiating unit 231 due to the supply unit 301 and the frame unit 302.
  • the guide unit 303 is provided so as to extend from the supply unit 301 toward the heat dissipation unit 231 of the heat exchanger 23.
  • the guide unit 303 can guide the water supplied from the supply unit 301 to a position away from the supply unit 301, and can disperse the water over a wide range to the heat dissipation unit 231.
  • the water spray cooling device 30 of the first embodiment by providing the guide portion 303, water is sprayed on the heat exchanger 23 before the water supplied from the supply hole 301a grows into large droplets. Can be done. As a result, the water can be more uniformly sprayed on the heat radiating section 231 than when the water is sprayed directly from the supply hole 301a of the supply section 301.
  • the guide section 303 has a smaller projected area in the blowing direction W than the supply section 301 and the frame section 302. Therefore, even if the guide unit 303 is provided at a position overlapping the heat radiating unit 231 when viewed from the ventilation direction W, it is possible to suppress an increase in the ventilation resistance of the air passing through the heat radiating unit 231.
  • the guide portion 303 of the first embodiment is provided so that the plate surface is parallel to the blowing direction W.
  • the projected area of the guide unit 303 in the ventilation direction W can be made as small as possible, and it is possible to effectively suppress an increase in the ventilation resistance of the air passing through the heat radiation unit 231 by the guide unit 303.
  • the guide portion 303 is provided with the groove portion 303b. Therefore, the water supplied from the supply hole 301a of the supply unit 301 can easily move to the tip of the guide portion 303 without staying in the supply hole 301a due to gravity and the surface tension generated by the groove portion 303b. As a result, the water can be sprayed on the heat exchanger 23 before the water supplied from the supply hole 301a grows into large droplets, and the water can be uniformly sprayed on the heat radiating portion 231 of the heat exchanger 23.
  • the groove portion 303b is provided on the downstream side of the ventilation direction W in the guide portion 303.
  • the direction perpendicular to the paper surface is the blowing direction W.
  • the heat exchanger 23 of the second embodiment is arranged so that the longitudinal direction of the tube 231a coincides with the horizontal direction. Therefore, the tank portion 232 is arranged at both ends in the horizontal direction of the heat radiating portion 231, and the insert 233 is arranged at both ends in the vertical direction of the heat radiating portion 231.
  • the supply unit 301 and the frame unit 302 are provided at positions that do not overlap with the heat dissipation unit 231 of the heat exchanger 23 when viewed from the air blowing direction W.
  • the supply unit 301 and the frame unit 302 are provided at positions overlapping with the insert 233 in the ventilation direction W.
  • the supply unit 301 and the frame unit 302 are provided at a position where a part thereof overlaps with the insert 233 and the other part does not overlap with the heat exchanger 23 itself in the ventilation direction W. Has been done.
  • the heat dissipation portion 231 of the heat exchanger 23 includes a high wind speed region 231c and a low wind speed region 231d.
  • the low wind speed region 231d is a region in which the wind speed of the air passing through the heat radiating unit 231 in the blowing direction W is slower than the high wind speed region 231c.
  • the high wind speed region 231c is a region that overlaps with the blower 24 in the heat radiating unit 231 in the blowing direction W.
  • the low wind speed region 231d is a region that does not overlap with the blower 24 in the heat radiating unit 231 in the blowing direction W.
  • the high wind speed region 231c is directly affected by the air flow generated by the blower 24, the wind speed of the passing air becomes high.
  • the low wind speed region 231d is not easily affected by the air flow generated by the blower 24, and the wind speed of the passing air is unlikely to increase. That is, the high wind speed region 231c is a region where the wind speed of the air passing through is higher than that of the low wind speed region 231d and the cooling performance is high.
  • the low wind speed region 231d is a region where the wind speed of air is lower than that of the high wind speed region 231c and the cooling performance is low.
  • the supply unit 301 of the water spray cooling device 30 is provided so as to overlap the heat radiation unit 231 as a whole in the ventilation direction W.
  • the supply unit 301 of the water spray cooling device 30 is provided corresponding to the low wind speed region 231d in the heat dissipation unit 231.
  • the frame portion 302 of the water spray cooling device 30 is provided so that a part thereof overlaps with the heat radiation portion 231 and the remaining portion overlaps with the tank portion 232 in the blowing direction W.
  • the portion where the frame portion 302 overlaps the heat radiating portion 231 is provided corresponding to the low wind speed region 231d.
  • the guide portion 303 of the water spray cooling device 30 is provided in a region overlapping the heat radiating portion 231 in the blowing direction W.
  • the tip portion 303a of the guide portion 303 is provided corresponding to the high wind speed region 231c or the low wind speed region 231d of the heat dissipation portion 231 in the blowing direction W.
  • the supply unit 301 is provided at a position corresponding to the low wind speed region 231d, which is a region where the wind speed is low and the cooling performance is low in the heat radiation unit 231. Therefore, it is possible to suppress an increase in the ventilation resistance of the air passing through the heat radiating unit 231 by the supply unit 301, and it is possible to suppress a decrease in the cooling performance of the heat radiating unit 231.
  • the water spray cooling device 30 of the third embodiment only a part of the frame portion 302 is provided at a position corresponding to the heat dissipation portion 231. Therefore, it is possible to suppress an increase in the ventilation resistance of the air passing through the heat radiating section 231 by the frame section 302, and it is possible to suppress the influence of the frame section 302 on the cooling performance of the radiating section 231.
  • a guide unit 303 for guiding water is provided at a position away from the supply unit 301.
  • the water supplied from the supply unit 301 can be widely sprayed on the heat dissipation unit 231.
  • the guide unit 303 can uniformly disperse the water supplied from the supply unit 301 to the heat radiation unit 231.
  • the supply unit 301 of the water spray cooling device 30 is provided between the bumper 3 of the vehicle and the heat exchanger 23.
  • the bumper 3 is provided on the upstream side of the heat exchanger 23 in the air blowing direction W, and is a windward member that obstructs the air flow in the air blowing direction W.
  • the windward member increases the ventilation resistance of the air flowing through the heat radiating portion 231.
  • the windward member is not limited to the bumper 3, and may be a front grill or the like (not shown).
  • the air flow is obstructed by the bumper 3 in the region overlapping the bumper 3 in the heat radiating portion 231 and the wind speed of the passing air becomes low.
  • the influence of the bumper 3 is small in the high wind speed region 231c, and the wind speed of the passing air is unlikely to decrease. That is, in the air blowing direction W, the region overlapping the bumper 3 in the heat radiating unit 231 is the low wind speed region 231d, and the region not overlapping the bumper 3 in the heat radiating unit 231 is the high wind speed region 231c.
  • the supply unit 301 of the water spray cooling device 30 is provided so as to overlap the heat radiation unit 231 as a whole in the ventilation direction W.
  • the supply unit 301 of the water spray cooling device 30 is provided corresponding to the low wind speed region 231d in the heat dissipation unit 231.
  • the frame portion 302 of the water spray cooling device 30 is provided so that a part thereof overlaps with the heat radiation portion 231 and the remaining portion overlaps with the tank portion 232 in the blowing direction W. In the blowing direction W, most of the portions where the frame portion 302 overlaps the heat radiating portion 231 are provided corresponding to the high wind speed region 231c.
  • the guide portion 303 of the water spray cooling device 30 is provided in a region overlapping the heat radiating portion 231 in the blowing direction W.
  • the tip portion 303a of the guide portion 303 is provided corresponding to the high wind speed region 231c or the low wind speed region 231d of the heat dissipation portion 231 in the blowing direction W.
  • the water spray cooling device 30 of the fourth embodiment described above can obtain the same effect as that of the third embodiment. That is, the supply unit 301 and the frame unit 302 can suppress an increase in the ventilation resistance of the air passing through the heat radiation unit 231 and suppress the deterioration of the cooling performance of the heat radiation unit 231. Further, the guide unit 303 can disperse the water supplied from the supply unit 301 over a wide range to the heat dissipation unit 231 and can evenly disperse the water supplied from the supply unit 301 to the heat radiation unit 231.
  • the supply unit 301 of the water spray cooling device 30 is provided between the heat exchanger 23 and the fuel cell 10.
  • the fuel cell 10 is a sewage-side member provided on the downstream side of the air flow in the air blowing direction W with respect to the heat exchanger 23 and obstructing the air flow in the air blowing direction W.
  • the leeward member increases the ventilation resistance of the air flowing through the heat radiating portion 231.
  • the leeward member is not limited to the fuel cell 10, and may be an inverter or the like (not shown).
  • the air flow is obstructed by the fuel cell 10 in the region of the heat radiating unit 231 that overlaps with the fuel cell 10, and the wind speed of the passing air becomes low.
  • the influence of the bumper 3 is small in the high wind speed region 231c, and the wind speed of the passing air is unlikely to decrease. That is, in the air blowing direction W, the region of the heat radiating unit 231 that overlaps with the fuel cell 10 is the low wind speed region 231d, and the region of the heat radiating unit 231 that does not overlap with the fuel cell 10 is the high wind speed region 231c.
  • the supply unit 301 of the water spray cooling device 30 is provided so as to overlap the heat radiation unit 231 as a whole in the ventilation direction W.
  • the supply unit 301 of the water spray cooling device 30 is provided corresponding to the low wind speed region 231d in the heat dissipation unit 231.
  • the frame portion 302 of the water spray cooling device 30 is provided so that a part thereof overlaps with the heat radiation portion 231 and the remaining portion overlaps with the tank portion 232 in the blowing direction W. In the blowing direction W, most of the portions where the frame portion 302 overlaps the heat radiating portion 231 are provided corresponding to the high wind speed region 231c.
  • the guide portion 303 of the water spray cooling device 30 is provided in a region overlapping the heat radiating portion 231 in the blowing direction W.
  • the tip portion 303a of the guide portion 303 is provided corresponding to the high wind speed region 231c or the low wind speed region 231d of the heat dissipation portion 231 in the blowing direction W.
  • the water spray cooling device 30 of the fifth embodiment described above can obtain the same effect as that of the third embodiment. That is, the supply unit 301 and the frame unit 302 can suppress an increase in the ventilation resistance of the air passing through the heat radiation unit 231 and suppress the deterioration of the cooling performance of the heat radiation unit 231. Further, the guide unit 303 can disperse the water supplied from the supply unit 301 over a wide range to the heat dissipation unit 231 and can evenly disperse the water supplied from the supply unit 301 to the heat radiation unit 231.
  • a second heat exchanger 29 different from the first heat exchanger 23 is provided.
  • the first heat exchanger 23 and the second heat exchanger 29 are arranged side by side in the air blowing direction W.
  • the second heat exchanger 29 is provided on the upstream side of the air flow of the first heat exchanger 23 in the blowing direction W.
  • the second heat exchanger 29 is smaller than the first heat exchanger 23 and has a shorter vertical length than the first heat exchanger 23.
  • the two heat exchangers 23 and 29 are provided in different cooling water circuits.
  • the first heat exchanger 23 is provided in the cooling water circuit 20 and cools the fuel cell 10.
  • the second heat exchanger 29 is provided in a cooling water circuit (not shown), and cools, for example, a secondary battery (not shown).
  • the first heat exchanger 23 and the second heat exchanger 29 have the same configuration.
  • the first heat exchanger 23 is provided with a first heat exchanger heat dissipation section 231, a first heat exchanger tank section 232, and a first heat exchanger insert 233.
  • the second heat exchanger 29 is provided with a second heat exchanger heat dissipation section 291, a second heat exchanger tank section 292, and a second heat exchanger insert 293.
  • the second heat exchanger heat dissipation unit 291 is a portion through which air can pass, and does not obstruct the air flow in the air blowing direction W.
  • the second heat exchanger tank portion 292 and the second heat exchanger insert 293 are portions where air cannot pass, and obstruct the air flow in the air blowing direction W.
  • the air blowing direction W in the air blowing direction W, a part of the first heat exchanger heat exchanger 231 and the second heat exchanger tank portion 292 arranged on the upper side overlap each other.
  • the air blowing direction W in the region of the first heat exchanger radiating section 231 that overlaps with the second heat exchanger tank section 292, the air flow is obstructed by the second heat exchanger tank section 292, and the wind speed of the passing air becomes low. ..
  • the region of the first heat exchanger radiating section 231 that does not overlap with the second heat exchanger tank section 292 is less affected by the second heat exchanger tank section 292, and the wind speed of the passing air is low. It's hard to become.
  • the region of the first heat exchanger heat exchanger 231 that overlaps with the second heat exchanger tank portion 292 is the low wind speed region 231d.
  • the region of the first heat exchanger heat exchanger 231 that does not overlap with the second heat exchanger tank portion 292 is the high wind speed region 231c.
  • the water spray cooling device 30 is provided between the first heat exchanger 23 and the second heat exchanger 29. That is, the second heat exchanger 29, the water spray cooling device 30, and the first heat exchanger 23 are arranged in this order from the upstream side of the air blowing direction W.
  • the water spray cooling device 30 sprays water to the first heat exchanger 23 on the downstream side of the air flow in the ventilation direction W.
  • the supply unit 301 of the water spray cooling device 30 is provided so as to overlap with the first heat exchanger heat dissipation unit 231 in the air blowing direction W.
  • the supply unit 301 of the water spray cooling device 30 is provided corresponding to the low wind speed region 231d in the first heat exchanger heat dissipation unit 231.
  • the frame portion 302 of the water spray cooling device 30 is provided so that a part thereof overlaps with the first heat exchanger heat dissipation section 231 in the air blowing direction W, and the remaining portion overlaps with the first heat exchanger tank section 232. It is provided as follows. In the ventilation direction W, most of the portions where the frame portion 302 overlaps with the first heat exchanger heat dissipation portion 231 are provided corresponding to the high wind speed region 231c.
  • the guide portion 303 of the water spray cooling device 30 is provided in a region overlapping the first heat exchanger heat dissipation portion 231 in the air blowing direction W.
  • the guide unit 303 is provided in the air blowing direction W corresponding to the high wind speed region 231c and the low wind speed region 231d of the first heat exchanger heat dissipation unit 231.
  • the water spray cooling device 30 of the sixth embodiment described above can obtain the same effect as that of the third embodiment. That is, the supply unit 301 and the frame unit 302 can suppress an increase in the ventilation resistance of the air passing through the first heat exchanger heat dissipation unit 231, and the cooling performance of the first heat exchanger heat exchanger unit 231 deteriorates. Can be suppressed. Further, the guide unit 303 can spread the water supplied from the supply unit 301 to the first heat exchanger heat exchanger 231 over a wide range, and further, the water supplied from the supply unit 301 can be spread to the first heat exchanger heat exchanger unit 231. It can be evenly sprayed on 231.
  • the water spray cooling system of the present disclosure may be applied to a vehicle having an internal combustion engine as a drive source. ..
  • the water spray cooling system of the present disclosure is configured to spray water to the heat exchanger 23 as a radiator, but the water spray cooling system of the present disclosure is configured to spray heat exchangers other than the radiator (for example,). Water may be sprayed on the condenser).
  • the supply hole 301a of the supply unit 301 is provided on the downstream side of the air blowing direction W, but the supply hole 301a may be provided on a portion other than the downstream side of the air blowing direction W.
  • the guide portion 303 is formed in a plate shape, but the guide portion 303 may have a shape other than the plate shape.
  • the groove portion 303b of the guide portion 303 is provided on the downstream side of the blowing direction W, but the groove portion 303b of the guide portion 303 may be provided on a side other than the downstream side in the blowing direction.
  • the plurality of guide portions 303 have the same length, but the present invention is not limited to this, and a plurality of types of guide portions 303 having different lengths may be provided.
  • two types of guide portions 303 having different lengths can be provided alternately.
  • the distance between the tip portions 303a of the adjacent guide portions 303 is larger than in the configuration in which the adjacent guide portions 303 have the same length. Therefore, even when the adjacent guide portions 303 are arranged close to each other, it is difficult for the water sprayed from the adjacent guide portions 303 to combine. Therefore, the distance between the supply holes 301a of the supply unit 301 can be narrowed, and it becomes easy to uniformly spray water on the heat dissipation unit 231 of the heat exchanger 23.
  • the guide unit 303 is provided in all of the plurality of supply holes 301a of the supply unit 301, but the present invention is not limited to this, as long as the guide unit 303 is provided in at least a part of the supply holes 301a. good. That is, there may be a supply hole 301a in which the guide portion 303 is not provided.
  • the second heat exchanger 29 is provided on the upstream side of the air blowing direction W from the first heat exchanger 23, but the second heat exchanger 29 is more than the first heat exchanger 23. It may be provided on the downstream side of the ventilation direction W.
  • the water spray cooling device 30, the first heat exchanger 23, and the second heat exchanger 29 are arranged in this order from the upstream side of the air blowing direction W.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This water spray cooling device comprises a supply unit (301) and a guide unit (303). The supply unit stores the water to be sprayed on a heat radiation unit. The guide unit is connected to the supply unit, and guides the water supplied from the supply unit to a position away from the supply unit and sprays the water on the heat radiation unit of a heat exchanger. The heat radiation unit allows air flowing in the airflow direction to pass therethrough. The supply unit is provided at a position that does not overlap with the heat radiation unit in the airflow direction.

Description

水散布冷却装置Water spray cooling device 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年6月30日に出願された日本特許出願番号2020-112572号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2020-11257, which was filed on June 30, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、熱交換器に水を散布することによって、熱交換器の冷却能力を向上させる水散布冷却装置に関する。 The present disclosure relates to a water spray cooling device that improves the cooling capacity of the heat exchanger by spraying water on the heat exchanger.
 従来、燃料電池システム等においては、燃料電池を冷却するための熱交換器(例えば、ラジエータ)に水を散布し、熱交換器の冷却能力を向上させることが提案されている。例えば、特許文献1に記載された散布装置では、熱交換器における他の領域よりも風速が小さくなる領域に水を散布し、水の蒸発潜熱を利用して熱交換器の冷却能力を向上させている。 Conventionally, in a fuel cell system or the like, it has been proposed to spray water on a heat exchanger (for example, a radiator) for cooling the fuel cell to improve the cooling capacity of the heat exchanger. For example, in the spraying device described in Patent Document 1, water is sprayed in a region of the heat exchanger where the wind speed is lower than other regions, and the latent heat of vaporization of water is used to improve the cooling capacity of the heat exchanger. ing.
特開2017-129048号公報JP-A-2017-129048
 しかしながら、特許文献1の散布装置では、熱交換器の放熱部と離れた位置から放熱部に向かって水を散布しているため、放熱部での通風抵抗の増大を抑制できるものの、放熱部に広範囲に水を散布することが困難である。 However, in the spraying device of Patent Document 1, since water is sprayed toward the heat radiating portion from a position away from the heat radiating portion of the heat exchanger, an increase in ventilation resistance in the heat radiating portion can be suppressed, but the heat radiating portion is used. It is difficult to spray water over a wide area.
 本開示は上記点に鑑み、熱交換器に水を散布して熱交換器の冷却能力を向上させる水散布冷却装置において、通風抵抗の増大を抑制しつつ熱交換器に広範囲に水を散布することを目的とする。 In view of the above points, the present disclosure is a water spray cooling device that sprays water on a heat exchanger to improve the cooling capacity of the heat exchanger, and sprays water on the heat exchanger over a wide range while suppressing an increase in ventilation resistance. The purpose is.
 上記目的を達成するため、本開示の水散布冷却装置は、供給部とガイド部とを備える。供給部は、放熱部に散布される水を貯蔵する。ガイド部は、供給部に接続され、供給部から供給される水を供給部から離れた位置まで誘導して熱交換器の放熱部に散布する。放熱部は、送風方向に流れる空気が通過可能になっている。供給部は、送風方向において、放熱部と重ならない位置に設けられている。 In order to achieve the above object, the water spray cooling device of the present disclosure includes a supply unit and a guide unit. The supply unit stores the water sprayed on the heat dissipation unit. The guide section is connected to the supply section, guides the water supplied from the supply section to a position away from the supply section, and disperses the water to the heat dissipation section of the heat exchanger. The heat radiating section allows air flowing in the blowing direction to pass through. The supply unit is provided at a position that does not overlap with the heat dissipation unit in the air blowing direction.
 これにより、水散布冷却装置の供給部によって放熱部を通過する空気の通風抵抗が増大することを抑制できる。さらに、ガイド部によって、供給部から供給される水を供給部から離れた位置まで誘導して放熱部に散布することで、放熱部に水を広範囲に散布することができる。 This makes it possible to prevent the supply unit of the water spray cooling device from increasing the ventilation resistance of the air passing through the heat radiation unit. Further, the guide unit guides the water supplied from the supply unit to a position away from the supply unit and sprays the water on the heat radiation unit, so that the water can be sprayed over a wide range on the heat radiation unit.
第1実施形態の燃料電池システムの構成図である。It is a block diagram of the fuel cell system of 1st Embodiment. 第1実施形態の熱交換器と水散布冷却装置の側面図である。It is a side view of the heat exchanger and the water spray cooling apparatus of 1st Embodiment. 第1実施形態の熱交換器と水散布冷却装置の正面図である。It is a front view of the heat exchanger and the water spray cooling apparatus of 1st Embodiment. 第1実施形態の水散布冷却装置の斜視図である。It is a perspective view of the water spray cooling apparatus of 1st Embodiment. 第1実施形態および比較例の熱交換器を通過する空気の通風抵抗と風速との関係を示すグラフである。It is a graph which shows the relationship between the ventilation resistance of the air passing through the heat exchanger of 1st Embodiment and the comparative example, and the wind speed. 第1実施形態および比較例の熱交換器の冷却性能と熱交換器を通過する空気の風速との関係を示すグラフである。It is a graph which shows the relationship between the cooling performance of the heat exchanger of 1st Embodiment and the comparative example, and the wind speed of the air passing through a heat exchanger. 第2実施形態の熱交換器と水散布冷却装置の正面図である。It is a front view of the heat exchanger and the water spray cooling apparatus of 2nd Embodiment. 第3実施形態の熱交換器と水散布冷却装置の側面図である。It is a side view of the heat exchanger and the water spray cooling apparatus of 3rd Embodiment. 第3実施形態の熱交換器と水散布冷却装置の正面図である。It is a front view of the heat exchanger and the water spray cooling device of 3rd Embodiment. 第4実施形態の熱交換器と水散布冷却装置の側面図である。It is a side view of the heat exchanger and the water spray cooling apparatus of 4th Embodiment. 第4実施形態の熱交換器と水散布冷却装置の正面図である。It is a front view of the heat exchanger and the water spray cooling device of 4th Embodiment. 第5実施形態の熱交換器と水散布冷却装置の側面図である。It is a side view of the heat exchanger and the water spray cooling apparatus of 5th Embodiment. 第5実施形態の熱交換器と水散布冷却装置の正面図である。It is a front view of the heat exchanger and the water spray cooling device of 5th Embodiment. 第6実施形態の熱交換器と水散布冷却装置の側面図である。It is a side view of the heat exchanger and the water spray cooling apparatus of 6th Embodiment. 第6実施形態の熱交換器と水散布冷却装置の正面図である。It is a front view of the heat exchanger and the water spray cooling device of 6th Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of forms for carrying out the present disclosure will be described with reference to the drawings. In each form, the same reference numerals may be given to the parts corresponding to the matters described in the preceding forms, and duplicate explanations may be omitted. When only a part of the configuration is described in each form, other forms described above can be applied to the other parts of the configuration. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the partial combination of the embodiments even if the combination is not specified if there is no problem in the combination. Is also possible.
 (第1実施形態)
 以下、本開示の第1実施形態を図面を用いて説明する。本第1実施形態では、本開示の水散布冷却装置を燃料電池システムに適用している。なお、各図における上下、左右、前後を示す矢印は、車両シートに座った乗員からの視点を基準として示している。
(First Embodiment)
Hereinafter, the first embodiment of the present disclosure will be described with reference to the drawings. In the first embodiment, the water spray cooling device of the present disclosure is applied to a fuel cell system. The arrows indicating up / down, left / right, and front / back in each figure are shown with reference to the viewpoint from the occupant sitting on the vehicle seat.
 図1に示すように、本第1実施形態の燃料電池システム1は図示しない車両に搭載されている。車両は、燃料電池10を電源として走行する電気自動車(燃料電池車両)である。燃料電池10にて生じた電力は、図示しないインバータを介して、走行用モータ等の車載機器等に供給される。 As shown in FIG. 1, the fuel cell system 1 of the first embodiment is mounted on a vehicle (not shown). The vehicle is an electric vehicle (fuel cell vehicle) that travels on the fuel cell 10 as a power source. The electric power generated by the fuel cell 10 is supplied to an in-vehicle device such as a traveling motor via an inverter (not shown).
 燃料電池システム1は、燃料電池10と、冷却水回路20とを有している。本第1実施形態では、燃料電池10として、固体高分子電解質型燃料電池(PEFC)を用いている。燃料電池10は、多数のセルが積層されたスタック構造となっている。各セルは、電解質膜を一対の電極で挟み込んで形成されている。 The fuel cell system 1 has a fuel cell 10 and a cooling water circuit 20. In the first embodiment, a solid polymer electrolyte fuel cell (PEFC) is used as the fuel cell 10. The fuel cell 10 has a stack structure in which a large number of cells are stacked. Each cell is formed by sandwiching an electrolyte membrane between a pair of electrodes.
 燃料電池10は、水素と酸素との化学反応を利用して電力を発生する。具体的に説明すると、燃料電池10には、空気通路11を介して、酸素を含む空気が供給される。この空気通路11には、図示しないエアポンプが配置されており、エアポンプの作動によって空気を圧送して、燃料電池10に供給している。また、燃料電池10には、水素通路12を介して水素が供給される。 The fuel cell 10 generates electric power by utilizing a chemical reaction between hydrogen and oxygen. Specifically, air containing oxygen is supplied to the fuel cell 10 through the air passage 11. An air pump (not shown) is arranged in the air passage 11, and air is pumped by the operation of the air pump to supply it to the fuel cell 10. Further, hydrogen is supplied to the fuel cell 10 via the hydrogen passage 12.
 燃料電池10では、以下の水素と酸素の電気化学反応が起こり、電気エネルギが発生する。この電気化学反応に用いられなかった未反応の酸素及び水素は、排気ガス及び排気水素として燃料電池10から排出される。
(負極側)H2→2H++2e-
(正極側)2H++1/2O2+2e-→H2
 電気化学反応では、燃料電池10内の電解質膜は、水分を含んだ湿潤状態となっている必要がある。燃料電池システム1は、燃料電池10に供給される空気及び水素、若しくは何れか一方に加湿を行い、これらの加湿されたガスを燃料電池10に供給することで、燃料電池10内の電解質膜を加湿するように構成されている。
In the fuel cell 10, the following electrochemical reaction between hydrogen and oxygen occurs, and electric energy is generated. The unreacted oxygen and hydrogen not used in this electrochemical reaction are discharged from the fuel cell 10 as exhaust gas and exhaust hydrogen.
(Negative electrode) H 2 → 2H + + 2e -
(Positive side) 2H + + 1 / 2O 2 + 2e - → H 2 O
In the electrochemical reaction, the electrolyte membrane in the fuel cell 10 needs to be in a wet state containing water. The fuel cell system 1 humidifies the air and / or hydrogen supplied to the fuel cell 10, and supplies these humidified gases to the fuel cell 10 to form an electrolyte membrane in the fuel cell 10. It is configured to humidify.
 また、燃料電池10では、発電の際の電気化学反応により熱及び水分が発生する。燃料電池10内部で生じた生成水は、排気ガスに含まれた状態で、燃料電池10の外部に排出される。 Further, in the fuel cell 10, heat and moisture are generated by an electrochemical reaction at the time of power generation. The generated water generated inside the fuel cell 10 is discharged to the outside of the fuel cell 10 in a state of being contained in the exhaust gas.
 燃料電池10の発電効率を考慮すると、燃料電池10は、燃料電池システム1が作動している間、一定温度(例えば80℃程度)に維持されている必要がある。また、燃料電池10内部の電解質膜は、所定の許容上限温度を超えると、高温により破壊されてしまう。このため、燃料電池10の温度が許容温度以下となるようにしておく必要がある。 Considering the power generation efficiency of the fuel cell 10, the fuel cell 10 needs to be maintained at a constant temperature (for example, about 80 ° C.) while the fuel cell system 1 is operating. Further, if the electrolyte membrane inside the fuel cell 10 exceeds a predetermined allowable upper limit temperature, it will be destroyed by the high temperature. Therefore, it is necessary to keep the temperature of the fuel cell 10 below the permissible temperature.
 図1に示すように、燃料電池システム1には、燃料電池10の温度を一定の許容範囲内に維持するために、冷却水回路20が配置されている。冷却水回路20は、熱媒体としての冷却水を用いて燃料電池10を冷却し、燃料電池10の温度を制御している。冷却水としては、低温時における凍結を防止するために、例えばエチレングリコールと水の混合溶液を用いることができる。 As shown in FIG. 1, a cooling water circuit 20 is arranged in the fuel cell system 1 in order to maintain the temperature of the fuel cell 10 within a certain allowable range. The cooling water circuit 20 cools the fuel cell 10 by using cooling water as a heat medium, and controls the temperature of the fuel cell 10. As the cooling water, for example, a mixed solution of ethylene glycol and water can be used in order to prevent freezing at a low temperature.
 冷却水回路20には、冷却水循環流路21と、ウォータポンプ22と、熱交換器23と、送風機24とが設けられている。冷却水回路20は、燃料電池10と熱交換器23の間で冷却水を循環させることで、燃料電池10で発生した熱を系外へ放出する。 The cooling water circuit 20 is provided with a cooling water circulation flow path 21, a water pump 22, a heat exchanger 23, and a blower 24. The cooling water circuit 20 circulates the cooling water between the fuel cell 10 and the heat exchanger 23 to release the heat generated by the fuel cell 10 to the outside of the system.
 冷却水循環流路21は、熱媒体である冷却水が流れる流路であり、燃料電池10と熱交換器23とを経由して循環するように構成されている。そして、ウォータポンプ22は、冷却水循環流路21に配置されており、冷却水を圧送することで、冷却水循環流路21の内部において冷却水を循環させている。 The cooling water circulation flow path 21 is a flow path through which cooling water, which is a heat medium, flows, and is configured to circulate via the fuel cell 10 and the heat exchanger 23. The water pump 22 is arranged in the cooling water circulation flow path 21, and by pumping the cooling water, the cooling water is circulated inside the cooling water circulation flow path 21.
 熱交換器23は、燃料電池10で発生した熱を系外に放熱し、燃料電池10を冷却するラジエータである。熱交換器23は、所定の送風方向Wに流れる空気と内部を流通する冷却水とを熱交換する。所定の送風方向Wは、車両の前方から後方へ向かう方向である。熱交換器23の構成は、後で説明する。 The heat exchanger 23 is a radiator that dissipates the heat generated by the fuel cell 10 to the outside of the system and cools the fuel cell 10. The heat exchanger 23 exchanges heat between the air flowing in the predetermined blowing direction W and the cooling water flowing inside. The predetermined blowing direction W is a direction from the front to the rear of the vehicle. The configuration of the heat exchanger 23 will be described later.
 冷却水回路20の冷却水は、燃料電池10を流れる過程で、電気化学反応で発生した熱を吸熱して流出し、冷却水循環流路21を介して、熱交換器23へ流入する。熱交換器23では、冷却水と送風空気との熱交換が行われ、冷却水の熱が送風空気に放熱される。その後、冷却水は、熱交換器23から燃料電池10へ向かって流れ、冷却水回路20の冷却水循環流路21を循環する。 The cooling water of the cooling water circuit 20 absorbs heat generated by the electrochemical reaction and flows out in the process of flowing through the fuel cell 10, and flows into the heat exchanger 23 via the cooling water circulation flow path 21. In the heat exchanger 23, heat is exchanged between the cooling water and the blown air, and the heat of the cooling water is dissipated to the blown air. After that, the cooling water flows from the heat exchanger 23 toward the fuel cell 10 and circulates in the cooling water circulation flow path 21 of the cooling water circuit 20.
 熱交換器23の後方側には、送風機24が配置されており、送風方向Wへ向かう空気流れをつくりだしている。送風機24の周囲には、ファンシュラウド25が配置されており、送風機24の送風性能を向上させている。 A blower 24 is arranged on the rear side of the heat exchanger 23 to create an air flow toward the blow direction W. A fan shroud 25 is arranged around the blower 24 to improve the blowing performance of the blower 24.
 熱交換器23を通過する送風方向Wの空気流れは、送風機24の作動による流れに限定されるものではなく、車両走行時に生じる走行風を利用することも可能であるし、両者を併用することもできる。 The air flow in the blowing direction W passing through the heat exchanger 23 is not limited to the flow due to the operation of the blower 24, and it is also possible to use the running wind generated when the vehicle is running, and both are used in combination. You can also.
 燃料電池システム1では、冷却水回路20における冷却水の温度制御は、後述する制御装置40によって、ウォータポンプ22による流量制御、送風機24の送風量制御を行うことで実現される。 In the fuel cell system 1, the temperature control of the cooling water in the cooling water circuit 20 is realized by controlling the flow rate by the water pump 22 and controlling the amount of air blown by the blower 24 by the control device 40 described later.
 燃料電池システム1において、燃料電池10による発電の際に発生した生成水は、燃料電池10から空気通路11を介して、空気に含まれた状態(即ち、気液二相状態)で排出される。このため、空気通路11における燃料電池10の下流側には、気液分離器13が配置されている。 In the fuel cell system 1, the generated water generated during power generation by the fuel cell 10 is discharged from the fuel cell 10 through the air passage 11 in a state of being contained in air (that is, in a gas-liquid two-phase state). .. Therefore, the gas-liquid separator 13 is arranged on the downstream side of the fuel cell 10 in the air passage 11.
 気液分離器13は、燃料電池10での発電の際に発生した生成水を、空気通路11から排出された空気と共に回収し、水蒸気と水に分離する。そして、気液分離器13で分離された水蒸気は、燃料電池システム1の外部に排出される。 The gas-liquid separator 13 collects the generated water generated during power generation in the fuel cell 10 together with the air discharged from the air passage 11 and separates it into steam and water. Then, the water vapor separated by the gas-liquid separator 13 is discharged to the outside of the fuel cell system 1.
 一方、気液分離器13で分離された水は、凝縮により温度が下げられた状態で気液分離器13の内部に回収されて蓄えられる。気液分離器13の内部に蓄えられた水は、燃料電池10の電解質膜に対する加湿と、熱交換器23の冷却に用いられる。 On the other hand, the water separated by the gas-liquid separator 13 is collected and stored inside the gas-liquid separator 13 in a state where the temperature is lowered by condensation. The water stored inside the gas-liquid separator 13 is used for humidifying the electrolyte membrane of the fuel cell 10 and cooling the heat exchanger 23.
 気液分離器13には、加湿用流路26と散布用流路27が接続されている。加湿用流路26は、気液分離器13に蓄えられた水を燃料電池10の電解質膜の加湿に用いるための流路である。加湿用流路26は、空気通路11及び水素通路12における燃料電池10の上流側に伸びており、燃料電池10に供給される空気及び水素の加湿に用いられる。 A humidifying flow path 26 and a spraying flow path 27 are connected to the gas-liquid separator 13. The humidification flow path 26 is a flow path for using the water stored in the gas-liquid separator 13 to humidify the electrolyte membrane of the fuel cell 10. The humidifying flow path 26 extends to the upstream side of the fuel cell 10 in the air passage 11 and the hydrogen passage 12, and is used for humidifying the air and hydrogen supplied to the fuel cell 10.
 燃料電池システム1は、空気通路11及び水素通路12を介して、燃料電池10の電解質膜を加湿して湿潤状態とすることで、燃料電池10における電気化学反応を安定させることができる。 The fuel cell system 1 can stabilize the electrochemical reaction in the fuel cell 10 by humidifying the electrolyte membrane of the fuel cell 10 into a wet state via the air passage 11 and the hydrogen passage 12.
 散布用流路27は、気液分離器13に蓄えられた水を熱交換器23の冷却に用いるための流路である。散布用流路27は、電気自動車における熱交換器23の前方側まで伸びている。 The spraying flow path 27 is a flow path for using the water stored in the gas-liquid separator 13 for cooling the heat exchanger 23. The spraying flow path 27 extends to the front side of the heat exchanger 23 in the electric vehicle.
 散布用流路27には、散布用ポンプ28と水散布冷却装置30が配置されている。水散布冷却装置30は、散布用流路27の先端部に接続されており、気液分離器13に蓄えられた水を熱交換器23に散布する。 A spraying pump 28 and a water spraying cooling device 30 are arranged in the spraying flow path 27. The water spray cooling device 30 is connected to the tip of the spray flow path 27, and sprays the water stored in the gas-liquid separator 13 to the heat exchanger 23.
 水散布冷却装置30は、送風方向Wにおける熱交換器23の上流側に配置されている。熱交換器23と水散布冷却装置30との間には、所定の隙間が設けられている。水散布冷却装置30は、熱交換器23や図示しない車体等に固定することができる。水散布冷却装置30の具体的な構成については後述する。 The water spray cooling device 30 is arranged on the upstream side of the heat exchanger 23 in the blowing direction W. A predetermined gap is provided between the heat exchanger 23 and the water spray cooling device 30. The water spray cooling device 30 can be fixed to a heat exchanger 23, a vehicle body (not shown), or the like. The specific configuration of the water spray cooling device 30 will be described later.
 水散布冷却装置30による熱交換器23への水の散布により、水の蒸発潜熱を利用して熱交換器23の冷却能力を向上させることができる。そして、熱交換器23の冷却能力を向上させることで、燃料電池10による発電能力を向上させることができる。 By spraying water to the heat exchanger 23 by the water spray cooling device 30, the cooling capacity of the heat exchanger 23 can be improved by utilizing the latent heat of evaporation of water. Then, by improving the cooling capacity of the heat exchanger 23, the power generation capacity of the fuel cell 10 can be improved.
 散布用ポンプ28は、散布用流路27にて気液分離器13と水散布冷却装置30との間に配置された電動式ポンプであり、気液分離器13内に蓄えられた水を吸込み、水散布冷却装置30へ向かって圧送する。 The spraying pump 28 is an electric pump arranged between the gas-liquid separator 13 and the water spray cooling device 30 in the spraying flow path 27, and sucks the water stored in the gas-liquid separator 13. , Pumped toward the water spray cooling device 30.
 燃料電池システム1には、制御装置40が設けられている。制御装置40は、燃料電池システム1を構成する各制御対象機器の作動を制御する制御部である。制御装置40は、CPU、ROM及びRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置40は、ROMに記憶されている制御プログラムに基づいて、燃料電池システム1の作動を制御することができる。 The fuel cell system 1 is provided with a control device 40. The control device 40 is a control unit that controls the operation of each control target device constituting the fuel cell system 1. The control device 40 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof. The control device 40 can control the operation of the fuel cell system 1 based on the control program stored in the ROM.
 制御装置40の入力側には、燃料電池10及び図示しない水温センサが接続されている。制御装置40は、燃料電池10の出力や水温センサで検出された冷却水温度を取得することができる。制御装置40の出力側には、ウォータポンプ22、送風機24、散布用ポンプ28等の各制御対象機器が接続されている。 A fuel cell 10 and a water temperature sensor (not shown) are connected to the input side of the control device 40. The control device 40 can acquire the output of the fuel cell 10 and the cooling water temperature detected by the water temperature sensor. Each controlled object such as a water pump 22, a blower 24, and a spraying pump 28 is connected to the output side of the control device 40.
 次に、熱交換器23を図2、図3を用いて説明する。図2、図3に示すように、熱交換器23は、放熱部231、タンク部232、インサート233を備えている。タンク部232およびインサート233は、非放熱部である。 Next, the heat exchanger 23 will be described with reference to FIGS. 2 and 3. As shown in FIGS. 2 and 3, the heat exchanger 23 includes a heat dissipation unit 231, a tank unit 232, and an insert 233. The tank portion 232 and the insert 233 are non-radiating portions.
 放熱部231は、熱交換器23において、空気が通過可能な部位であり、送風方向Wの空気流れを妨げない。タンク部232およびインサート233は、熱交換器23において、空気が通過可能になっていない部位であり、送風方向Wの空気流れを妨げる。 The heat radiating unit 231 is a portion of the heat exchanger 23 through which air can pass, and does not obstruct the air flow in the blowing direction W. The tank portion 232 and the insert 233 are portions of the heat exchanger 23 where air cannot pass, and obstruct the air flow in the blowing direction W.
 放熱部231は、空気と内部を流通する冷却水との間で熱交換を行い、冷却水の熱を放熱する熱交換部である。放熱部231は、複数本のチューブ231aとフィン231bによって形成された略矩形状の部位である。 The heat dissipation unit 231 is a heat exchange unit that exchanges heat between the air and the cooling water circulating inside and dissipates the heat of the cooling water. The heat radiating portion 231 is a substantially rectangular portion formed by a plurality of tubes 231a and fins 231b.
 放熱部231では、所定の送風方向Wに空気が通過する。本第1実施形態では、送風方向Wは、放熱部231の板面に交差する方向である。放熱部231では、隣接するチューブ231aの隙間を空気が通過する。 In the heat radiating unit 231, air passes in the predetermined blowing direction W. In the first embodiment, the blowing direction W is a direction that intersects the plate surface of the heat radiating portion 231. In the heat radiating unit 231, air passes through the gap between the adjacent tubes 231a.
 複数本のチューブ231aは、長手方向が鉛直方向に一致するように並列に積層配置されている。図2では紙面垂直方向がチューブ231aの積層方向であり、図3では紙面左右方向がチューブ231aの積層方向である。フィン231bは、隣接するチューブ231aに接合されており、空気との伝熱面積を増大させて冷却水と空気との熱交換を促進する。放熱部231では、各チューブ231aの間を空気が通過可能となっている。 The plurality of tubes 231a are stacked and arranged in parallel so that the longitudinal direction coincides with the vertical direction. In FIG. 2, the vertical direction of the paper surface is the stacking direction of the tubes 231a, and in FIG. 3, the left-right direction of the paper surface is the stacking direction of the tubes 231a. The fins 231b are joined to the adjacent tube 231a to increase the heat transfer area with the air and promote the heat exchange between the cooling water and the air. In the heat radiating unit 231, air can pass between the tubes 231a.
 タンク部232は、放熱部231におけるチューブ231aの長手方向の両端部に設けられている。本第1実施形態では、タンク部232は、放熱部231の上下方向の両端部に設けられている。 The tank portion 232 is provided at both ends of the tube 231a in the heat radiating portion 231 in the longitudinal direction. In the first embodiment, the tank portion 232 is provided at both ends of the heat radiating portion 231 in the vertical direction.
 タンク部232は、放熱部231の上側に設けられた上側タンク部と、放熱部231の下側に設けられた下側タンク部とからなる。タンク部232は、複数本のチューブ231aの端部に接続されており、チューブ231aと連通している。 The tank portion 232 includes an upper tank portion provided on the upper side of the heat radiating portion 231 and a lower tank portion provided on the lower side of the heat radiating portion 231. The tank portion 232 is connected to the end portions of a plurality of tubes 231a and communicates with the tubes 231a.
 タンク部232は、放熱部231を流通する冷却水の分配または集合の少なくとも一方を行う。本第1実施形態では、上側に設けられたタンク部232が放熱部231の各チューブ231aに冷却水を分配し、下側に設けられたタンク部232が放熱部231の各チューブ231aを流通した冷却水を集合させる。 The tank unit 232 distributes or aggregates the cooling water flowing through the heat radiating unit 231 at least one of them. In the first embodiment, the tank portion 232 provided on the upper side distributes the cooling water to each tube 231a of the heat radiating portion 231, and the tank portion 232 provided on the lower side circulates each tube 231a of the heat radiating portion 231. Collect the cooling water.
 インサート233は、放熱部231におけるチューブ231aの積層方向の両端部に設けられている。本第1実施形態では、インサート233は、放熱部231の水平方向の両端部に設けられている。 Inserts 233 are provided at both ends of the tube 231a in the heat dissipation portion 231 in the stacking direction. In the first embodiment, the inserts 233 are provided at both ends of the heat radiating portion 231 in the horizontal direction.
 インサート233は、放熱部231を補強する補強部材である。インサート233は、2つのタンク部232を結ぶ方向(つまり、上下方向)に配置されている。 The insert 233 is a reinforcing member that reinforces the heat radiating portion 231. The insert 233 is arranged in the direction connecting the two tank portions 232 (that is, in the vertical direction).
 次に、水散布冷却装置30を図2~図4を用いて説明する。水散布冷却装置30は、例えば樹脂材料や金属材料によって構成することができる。図2、図3に示すように、水散布冷却装置30は、供給部301、フレーム部302、ガイド部303を備えている。 Next, the water spray cooling device 30 will be described with reference to FIGS. 2 to 4. The water spray cooling device 30 can be made of, for example, a resin material or a metal material. As shown in FIGS. 2 and 3, the water spray cooling device 30 includes a supply unit 301, a frame unit 302, and a guide unit 303.
 供給部301は、散布用流路27から供給された水を熱交換器23に供給する。供給部301は、中空状部材であり、散布用流路27から供給された水を内部に貯蔵可能となっている。本第1実施形態では、供給部301を円筒形状としているが、中空状部材であればよく、形状は任意である。供給部301は、長手方向が水平となるように配置されている。 The supply unit 301 supplies the water supplied from the spray flow path 27 to the heat exchanger 23. The supply unit 301 is a hollow member, and can store the water supplied from the spraying flow path 27 inside. In the first embodiment, the supply unit 301 has a cylindrical shape, but any hollow member may be used, and the shape is arbitrary. The supply unit 301 is arranged so that the longitudinal direction is horizontal.
 供給部301は、内部の水を熱交換器23に供給するための供給孔301aが設けられている。供給部301の内部の水は、供給孔301aから外部に流出可能となっている。供給孔301aは複数設けられている。複数の供給孔301aは、供給部301の長手方向に沿って所定間隔で配置されている。供給孔301aは、送風方向Wにおいて、放熱部231と重ならない位置に設けられている。 The supply unit 301 is provided with a supply hole 301a for supplying the water inside to the heat exchanger 23. The water inside the supply unit 301 can flow out from the supply hole 301a. A plurality of supply holes 301a are provided. The plurality of supply holes 301a are arranged at predetermined intervals along the longitudinal direction of the supply portion 301. The supply hole 301a is provided at a position that does not overlap with the heat radiating portion 231 in the blowing direction W.
 本第1実施形態では、供給孔301aは供給部301における送風方向Wの下流側に設けられている。このため、供給孔301aは、供給部301における熱交換器23に対向する側に設けられている。 In the first embodiment, the supply hole 301a is provided on the downstream side of the ventilation direction W in the supply unit 301. Therefore, the supply hole 301a is provided on the side of the supply unit 301 facing the heat exchanger 23.
 フレーム部302は、供給部301を支持する支持部材である。フレーム部302は、車体または熱交換器23に固定されている。フレーム部302は、車体側からの振動等の入力を吸収し、供給部301への振動等の入力を抑制している。 The frame portion 302 is a support member that supports the supply portion 301. The frame portion 302 is fixed to the vehicle body or the heat exchanger 23. The frame unit 302 absorbs an input such as vibration from the vehicle body side and suppresses an input such as vibration to the supply unit 301.
 フレーム部302は、供給部301と一体成型してもよく、あるいは供給部301と別部材として供給部301に組み付けてもよい。供給部301およびフレーム部302を別部材とする場合は、これらを異種材料から構成してもよい。 The frame portion 302 may be integrally molded with the supply section 301, or may be assembled to the supply section 301 as a separate member from the supply section 301. When the supply unit 301 and the frame unit 302 are used as separate members, they may be made of different materials.
 供給部301には、ガイド部303が設けられている。ガイド部303は、供給部301の供給孔301aから供給される水を供給部301から離れた位置まで誘導し、放熱部231に散布する。供給部301から供給される水は、ガイド部303から液体の状態で放熱部231に散布される。 The supply unit 301 is provided with a guide unit 303. The guide unit 303 guides the water supplied from the supply hole 301a of the supply unit 301 to a position away from the supply unit 301 and sprays the water to the heat dissipation unit 231. The water supplied from the supply unit 301 is sprayed from the guide unit 303 to the heat dissipation unit 231 in a liquid state.
 ガイド部303は、供給部301の供給孔301aから重力が作用する方向の下方に向かって延びるように設けられている。このため、ガイド部303の先端部303aは、供給孔301aよりも重力方向下方に位置している。 The guide unit 303 is provided so as to extend downward from the supply hole 301a of the supply unit 301 in the direction in which gravity acts. Therefore, the tip portion 303a of the guide portion 303 is located below the supply hole 301a in the direction of gravity.
 ガイド部303は、複数の供給孔301aのそれぞれに対応して設けられている。複数のガイド部303は互いに交わらないように並列して配置されており、複数のガイド部303が櫛状に配置されている。 The guide unit 303 is provided corresponding to each of the plurality of supply holes 301a. The plurality of guide portions 303 are arranged in parallel so as not to intersect each other, and the plurality of guide portions 303 are arranged in a comb shape.
 図4に示すように、ガイド部303は板状部材である。ガイド部303は、板面が送風方向Wと平行となるように配置されている。 As shown in FIG. 4, the guide portion 303 is a plate-shaped member. The guide portion 303 is arranged so that the plate surface is parallel to the blowing direction W.
 ガイド部303には、溝部303bが設けられている。溝部303bは、ガイド部303の長手方向に沿って設けられている。本第1実施形態では、溝部303bは、ガイド部303における送風方向Wの下流側に設けられている。 The guide portion 303 is provided with a groove portion 303b. The groove portion 303b is provided along the longitudinal direction of the guide portion 303. In the first embodiment, the groove portion 303b is provided on the downstream side of the guide portion 303 in the blowing direction W.
 溝部303bは、一端側が供給孔301aに接続しており、他端側がガイド部303の先端部303aまで設けられている。つまり、溝部303bは、ガイド部303の上端から下端まで設けられている。本第1実施形態では、溝部303bの断面形状はU字状となっているが、これに限定されるものではなく、溝部303bの断面形状は任意に設定することができる。 One end of the groove 303b is connected to the supply hole 301a, and the other end is provided up to the tip 303a of the guide 303. That is, the groove portion 303b is provided from the upper end to the lower end of the guide portion 303. In the first embodiment, the cross-sectional shape of the groove portion 303b is U-shaped, but the cross-sectional shape is not limited to this, and the cross-sectional shape of the groove portion 303b can be arbitrarily set.
 供給孔301aから供給される水は、重力と溝部303bによって生じる表面張力によって、ガイド部303を伝って下方に移動し、ガイド部303の先端部303aまで誘導される。ガイド部303の先端部303aまで移動した水は、液滴に成長する前に熱交換器23の放熱部231を通過する空気流れによって先端部303aから離脱する。ガイド部303の先端部303aから離脱した水は、落下しながら送風方向Wに移動して熱交換器23の表面に散布される。 The water supplied from the supply hole 301a moves downward along the guide portion 303 due to gravity and the surface tension generated by the groove portion 303b, and is guided to the tip portion 303a of the guide portion 303. The water that has moved to the tip portion 303a of the guide portion 303 is separated from the tip portion 303a by the air flow passing through the heat dissipation portion 231 of the heat exchanger 23 before growing into droplets. The water separated from the tip portion 303a of the guide portion 303 moves in the blowing direction W while falling and is scattered on the surface of the heat exchanger 23.
 供給部301から供給された水は、ガイド部303によって供給部301から離れた位置まで誘導され、熱交換器23の表面に広範囲に散布される。ガイド部303から散布される水は、液滴に成長する前にガイド部303から離脱することから、熱交換器23の表面に均一に散布される。水散布冷却装置30から散布された水は、熱交換器23の表面で蒸発し、蒸発潜熱によって熱交換器23の冷却能力を向上させる。 The water supplied from the supply unit 301 is guided to a position away from the supply unit 301 by the guide unit 303, and is widely sprayed on the surface of the heat exchanger 23. The water sprayed from the guide portion 303 separates from the guide portion 303 before growing into droplets, so that the water is uniformly sprayed on the surface of the heat exchanger 23. The water sprayed from the water spray cooling device 30 evaporates on the surface of the heat exchanger 23, and the cooling capacity of the heat exchanger 23 is improved by the latent heat of vaporization.
 水散布冷却装置30において、供給部301およびフレーム部302は、送風方向Wにおける投影面積が大きい部位である。供給部301およびフレーム部302は、送風方向Wにおいて、熱交換器23の放熱部231と重ならない位置に設けられている。本第1実施形態では、供給部301およびフレーム部302は、送風方向Wにおいて、熱交換器23の上側に設けられたタンク部232と重なる位置に設けられている。これにより、供給部301およびフレーム部302が放熱部231の空気流れに影響を与えることを抑制でき、放熱部231を流れる空気の通風抵抗が増大することを抑制できる。 In the water spray cooling device 30, the supply unit 301 and the frame unit 302 are portions having a large projected area in the ventilation direction W. The supply unit 301 and the frame unit 302 are provided at positions that do not overlap with the heat dissipation unit 231 of the heat exchanger 23 in the air blowing direction W. In the first embodiment, the supply unit 301 and the frame unit 302 are provided at positions overlapping with the tank unit 232 provided on the upper side of the heat exchanger 23 in the air blowing direction W. As a result, it is possible to prevent the supply unit 301 and the frame unit 302 from affecting the air flow of the heat radiation unit 231 and to suppress an increase in the ventilation resistance of the air flowing through the heat radiation unit 231.
 ガイド部303は、供給部301から熱交換器23の放熱部231に向かって伸びるように設けられており、ガイド部303の先端部303aは放熱部231と重なる位置に設けられている。このため、ガイド部303の一端側はタンク部232と重なる位置にあり、ガイド部303の他端側は放熱部231と重なる位置にある。 The guide unit 303 is provided so as to extend from the supply unit 301 toward the heat radiation unit 231 of the heat exchanger 23, and the tip portion 303a of the guide unit 303 is provided at a position overlapping the heat radiation unit 231. Therefore, one end side of the guide portion 303 is located at a position where it overlaps with the tank portion 232, and the other end side of the guide portion 303 is located at a position where it overlaps with the heat radiating portion 231.
 ガイド部303は、供給部301およびフレーム部302と比べて、送風方向Wにおける投影面積が小さい部位である。このため、ガイド部303が放熱部231の空気流れに影響を与えることを抑制でき、放熱部231を流れる空気の通風抵抗が増大することを抑制できる。 The guide unit 303 is a portion having a smaller projected area in the blowing direction W than the supply unit 301 and the frame unit 302. Therefore, it is possible to suppress the influence of the guide portion 303 on the air flow of the heat radiating portion 231 and the increase of the ventilation resistance of the air flowing through the heat radiating portion 231.
 ここで、本第1実施形態の水散布冷却装置30を用いた場合の熱交換器23の通風抵抗および冷却性能を図5、図6を用いて説明する。図5、図6では、実線が本第1実施形態を示し、破線が比較例を示している。図5の一点鎖線は、本第1実施形態の送風機24の特性を示している。 Here, the ventilation resistance and the cooling performance of the heat exchanger 23 when the water spray cooling device 30 of the first embodiment is used will be described with reference to FIGS. 5 and 6. In FIGS. 5 and 6, the solid line shows the first embodiment, and the broken line shows a comparative example. The alternate long and short dash line in FIG. 5 shows the characteristics of the blower 24 of the first embodiment.
 本第1実施形態では、送風方向Wにおいて、水散布冷却装置30のうち供給部301とフレーム部302が放熱部231と重ならないように配置されている。これに対し、送風方向Wにおいて、水散布冷却装置30の全体が放熱部231と重なるように配置された構成を比較例としている。つまり、比較例では、送風方向Wにおいて、供給部301とフレーム部302が放熱部231と重なるように配置されている。 In the first embodiment, the supply unit 301 and the frame unit 302 of the water spray cooling device 30 are arranged so as not to overlap with the heat radiation unit 231 in the ventilation direction W. On the other hand, a comparative example is a configuration in which the entire water spray cooling device 30 is arranged so as to overlap the heat radiating unit 231 in the blowing direction W. That is, in the comparative example, the supply unit 301 and the frame unit 302 are arranged so as to overlap the heat radiation unit 231 in the ventilation direction W.
 図5に示すように、第1実施形態では、比較例よりも、放熱部231を通過する空気の通風抵抗が小さくなっており、風速が大きくなっている。つまり、本第1実施形態によれば、水散布冷却装置30を設けた場合であっても、放熱部231を通過する空気の通風抵抗の増大を抑制でき、風速の低下を抑制できている。 As shown in FIG. 5, in the first embodiment, the ventilation resistance of the air passing through the heat radiating unit 231 is smaller and the wind speed is higher than in the comparative example. That is, according to the first embodiment, even when the water spray cooling device 30 is provided, it is possible to suppress an increase in the ventilation resistance of the air passing through the heat radiation unit 231 and suppress a decrease in the wind speed.
 図6に示すように、第1実施形態では、比較例よりも、熱交換器23の冷却性能が高くなっている。つまり、本第1実施形態によれば、水散布冷却装置30を設けた場合であっても、熱交換器23の冷却性能の低下を抑制できている。 As shown in FIG. 6, in the first embodiment, the cooling performance of the heat exchanger 23 is higher than that in the comparative example. That is, according to the first embodiment, even when the water spray cooling device 30 is provided, the deterioration of the cooling performance of the heat exchanger 23 can be suppressed.
 以上説明した本第1実施形態の水散布冷却装置30では、送風方向Wにおいて、投影面積が大きい供給部301およびフレーム部302を熱交換器23の放熱部231と重ならない位置に配置している。このため、水散布冷却装置30は、供給部301およびフレーム部302によって放熱部231を通過する空気の通風抵抗が増大することを抑制できる。 In the water spray cooling device 30 of the first embodiment described above, the supply unit 301 and the frame unit 302 having a large projected area are arranged at positions that do not overlap with the heat dissipation unit 231 of the heat exchanger 23 in the ventilation direction W. .. Therefore, the water spray cooling device 30 can suppress an increase in the ventilation resistance of the air passing through the heat radiating unit 231 due to the supply unit 301 and the frame unit 302.
 また、本第1実施形態の水散布冷却装置30では、ガイド部303を供給部301から熱交換器23の放熱部231に向かって伸びるように設けている。このガイド部303によって、供給部301から供給される水を供給部301から離れた位置まで誘導し、放熱部231に水を広範囲に散布することができる。 Further, in the water spray cooling device 30 of the first embodiment, the guide unit 303 is provided so as to extend from the supply unit 301 toward the heat dissipation unit 231 of the heat exchanger 23. The guide unit 303 can guide the water supplied from the supply unit 301 to a position away from the supply unit 301, and can disperse the water over a wide range to the heat dissipation unit 231.
 また、本第1実施形態の水散布冷却装置30では、ガイド部303を設けることで、供給孔301aから供給される水が大きな液滴に成長する前に熱交換器23に水を散布することができる。これにより、供給部301の供給孔301aから直接水を散布する場合よりも、水を放熱部231に均一に散布することができる。 Further, in the water spray cooling device 30 of the first embodiment, by providing the guide portion 303, water is sprayed on the heat exchanger 23 before the water supplied from the supply hole 301a grows into large droplets. Can be done. As a result, the water can be more uniformly sprayed on the heat radiating section 231 than when the water is sprayed directly from the supply hole 301a of the supply section 301.
 ガイド部303は、供給部301およびフレーム部302よりも送風方向Wにおける投影面積が小さい。このため、ガイド部303が送風方向Wからみて放熱部231と重なる位置に設けられていても、放熱部231を通過する空気の通風抵抗が増大することを抑制できる。 The guide section 303 has a smaller projected area in the blowing direction W than the supply section 301 and the frame section 302. Therefore, even if the guide unit 303 is provided at a position overlapping the heat radiating unit 231 when viewed from the ventilation direction W, it is possible to suppress an increase in the ventilation resistance of the air passing through the heat radiating unit 231.
 また、本第1実施形態のガイド部303は、板面が送風方向Wと平行になるように設けられている。これにより、ガイド部303の送風方向Wにおける投影面積をできるだけ小さくすることができ、ガイド部303によって放熱部231を通過する空気の通風抵抗が増大することを効果的に抑制できる。 Further, the guide portion 303 of the first embodiment is provided so that the plate surface is parallel to the blowing direction W. As a result, the projected area of the guide unit 303 in the ventilation direction W can be made as small as possible, and it is possible to effectively suppress an increase in the ventilation resistance of the air passing through the heat radiation unit 231 by the guide unit 303.
 また、本第1実施形態では、ガイド部303に溝部303bが設けられている。このため、供給部301の供給孔301aから供給される水は、重力と溝部303bによって生じる表面張力によって、供給孔301aに留まることなくガイド部303の先端まで移動しやすくなる。これにより、供給孔301aから供給される水が大きな液滴に成長する前に熱交換器23に水を散布することができ、熱交換器23の放熱部231に水を均一に散布できる。 Further, in the first embodiment, the guide portion 303 is provided with the groove portion 303b. Therefore, the water supplied from the supply hole 301a of the supply unit 301 can easily move to the tip of the guide portion 303 without staying in the supply hole 301a due to gravity and the surface tension generated by the groove portion 303b. As a result, the water can be sprayed on the heat exchanger 23 before the water supplied from the supply hole 301a grows into large droplets, and the water can be uniformly sprayed on the heat radiating portion 231 of the heat exchanger 23.
 また、本第1実施形態では、ガイド部303における送風方向Wの下流側に溝部303bを設けている。これにより、供給孔301aから供給された水が溝部303bを移動する際に、送風方向Wに流れる風の影響を受けにくくすることができる。このため、供給孔301aから供給された水をガイド部303の先端部303aまで確実に移動させることができる。 Further, in the first embodiment, the groove portion 303b is provided on the downstream side of the ventilation direction W in the guide portion 303. As a result, when the water supplied from the supply hole 301a moves through the groove 303b, it is possible to reduce the influence of the wind flowing in the blowing direction W. Therefore, the water supplied from the supply hole 301a can be reliably moved to the tip portion 303a of the guide portion 303.
 (第2実施形態)
 次に、本開示の第2実施形態を図7を用いて説明する。以下、上記第1実施形態と異なる部分についてのみ説明する。なお、図7では、紙面垂直方向が送風方向Wとなっている。
(Second Embodiment)
Next, the second embodiment of the present disclosure will be described with reference to FIG. Hereinafter, only the parts different from the first embodiment will be described. In FIG. 7, the direction perpendicular to the paper surface is the blowing direction W.
 図7に示すように、本第2実施形態の熱交換器23は、チューブ231aの長手方向が水平方向に一致するように配置されている。このため、タンク部232が放熱部231の水平方向の両端部に配置されており、インサート233が放熱部231の上下方向の両端部に配置されている。 As shown in FIG. 7, the heat exchanger 23 of the second embodiment is arranged so that the longitudinal direction of the tube 231a coincides with the horizontal direction. Therefore, the tank portion 232 is arranged at both ends in the horizontal direction of the heat radiating portion 231, and the insert 233 is arranged at both ends in the vertical direction of the heat radiating portion 231.
 供給部301およびフレーム部302は、送風方向Wからみて熱交換器23の放熱部231と重ならない位置に設けられている。本第2実施形態では、供給部301およびフレーム部302は、送風方向Wにおいて、インサート233と重なる位置に設けられている。図7に示す例では、供給部301およびフレーム部302は、送風方向Wにおいて、一部がインサート233と重なる位置に設けられており、他の部分が熱交換器23自体と重ならない位置に設けられている。 The supply unit 301 and the frame unit 302 are provided at positions that do not overlap with the heat dissipation unit 231 of the heat exchanger 23 when viewed from the air blowing direction W. In the second embodiment, the supply unit 301 and the frame unit 302 are provided at positions overlapping with the insert 233 in the ventilation direction W. In the example shown in FIG. 7, the supply unit 301 and the frame unit 302 are provided at a position where a part thereof overlaps with the insert 233 and the other part does not overlap with the heat exchanger 23 itself in the ventilation direction W. Has been done.
 以上説明した本第2実施形態においても、上記第1実施形態と同様、放熱部231を通過する空気の通風抵抗が増大することを抑制でき、さらに放熱部231に水を広範囲に散布することができる。 Also in the second embodiment described above, as in the first embodiment, it is possible to suppress an increase in the ventilation resistance of the air passing through the heat radiating unit 231 and further to spray water over a wide range on the heat radiating unit 231. can.
 (第3実施形態)
 次に、本開示の第3実施形態を図8、図9を用いて説明する。以下、上記各実施形態と異なる部分についてのみ説明する。
(Third Embodiment)
Next, the third embodiment of the present disclosure will be described with reference to FIGS. 8 and 9. Hereinafter, only the parts different from each of the above embodiments will be described.
 図8、図9に示すように、熱交換器23の放熱部231は、高風速領域231cと低風速領域231dとを含んでいる。低風速領域231dは、送風方向Wに放熱部231を通過する空気の風速が高風速領域231cよりも遅い領域である。 As shown in FIGS. 8 and 9, the heat dissipation portion 231 of the heat exchanger 23 includes a high wind speed region 231c and a low wind speed region 231d. The low wind speed region 231d is a region in which the wind speed of the air passing through the heat radiating unit 231 in the blowing direction W is slower than the high wind speed region 231c.
 高風速領域231cは、送風方向Wにおいて、放熱部231における送風機24と重なる領域である。低風速領域231dは、送風方向Wにおいて、放熱部231における送風機24と重ならない領域である。 The high wind speed region 231c is a region that overlaps with the blower 24 in the heat radiating unit 231 in the blowing direction W. The low wind speed region 231d is a region that does not overlap with the blower 24 in the heat radiating unit 231 in the blowing direction W.
 高風速領域231cは、送風機24で生成する空気流れの影響を直接受けるため、通過する空気の風速が高くなる。一方、低風速領域231dは、送風機24で生成する空気流れの影響を受けにくく、通過する空気の風速が高くなりにくい。つまり、高風速領域231cは、低風速領域231dよりも通過する空気の風速が高く、冷却性能が高い領域である。低風速領域231dは、高風速領域231cよりも空気の風速が低く、冷却性能が低い領域である。 Since the high wind speed region 231c is directly affected by the air flow generated by the blower 24, the wind speed of the passing air becomes high. On the other hand, the low wind speed region 231d is not easily affected by the air flow generated by the blower 24, and the wind speed of the passing air is unlikely to increase. That is, the high wind speed region 231c is a region where the wind speed of the air passing through is higher than that of the low wind speed region 231d and the cooling performance is high. The low wind speed region 231d is a region where the wind speed of air is lower than that of the high wind speed region 231c and the cooling performance is low.
 図8、図9に示すように、水散布冷却装置30の供給部301は、送風方向Wにおいて、全体が放熱部231と重なるように設けられている。水散布冷却装置30の供給部301は、放熱部231における低風速領域231dに対応して設けられている。 As shown in FIGS. 8 and 9, the supply unit 301 of the water spray cooling device 30 is provided so as to overlap the heat radiation unit 231 as a whole in the ventilation direction W. The supply unit 301 of the water spray cooling device 30 is provided corresponding to the low wind speed region 231d in the heat dissipation unit 231.
 水散布冷却装置30のフレーム部302は、送風方向Wにおいて、一部が放熱部231と重なるように設けられており、残りの部位がタンク部232と重なるように設けられている。送風方向Wにおいて、フレーム部302が放熱部231と重なっている部位は、低風速領域231dに対応して設けられている。 The frame portion 302 of the water spray cooling device 30 is provided so that a part thereof overlaps with the heat radiation portion 231 and the remaining portion overlaps with the tank portion 232 in the blowing direction W. In the blowing direction W, the portion where the frame portion 302 overlaps the heat radiating portion 231 is provided corresponding to the low wind speed region 231d.
 水散布冷却装置30のガイド部303は、送風方向Wにおいて、放熱部231と重なる領域に設けられている。ガイド部303の先端部303aは、送風方向Wにおいて、放熱部231の高風速領域231cあるいは低風速領域231dに対応して設けられている。 The guide portion 303 of the water spray cooling device 30 is provided in a region overlapping the heat radiating portion 231 in the blowing direction W. The tip portion 303a of the guide portion 303 is provided corresponding to the high wind speed region 231c or the low wind speed region 231d of the heat dissipation portion 231 in the blowing direction W.
 以上説明した本第3実施形態の水散布冷却装置30では、供給部301を放熱部231の中で風速が低く、冷却性能が低い領域である低風速領域231dに対応する位置に設けている。このため、供給部301によって、放熱部231を通過する空気の通風抵抗が増大することを抑制でき、放熱部231の冷却性能が低下することを抑制できる。 In the water spray cooling device 30 of the third embodiment described above, the supply unit 301 is provided at a position corresponding to the low wind speed region 231d, which is a region where the wind speed is low and the cooling performance is low in the heat radiation unit 231. Therefore, it is possible to suppress an increase in the ventilation resistance of the air passing through the heat radiating unit 231 by the supply unit 301, and it is possible to suppress a decrease in the cooling performance of the heat radiating unit 231.
 また、本第3実施形態の水散布冷却装置30では、フレーム部302の一部のみを放熱部231に対応する位置に設けている。このため、フレーム部302によって放熱部231を通過する空気の通風抵抗が増大することを抑制でき、フレーム部302が放熱部231の冷却性能に影響を与えることを抑制できる。 Further, in the water spray cooling device 30 of the third embodiment, only a part of the frame portion 302 is provided at a position corresponding to the heat dissipation portion 231. Therefore, it is possible to suppress an increase in the ventilation resistance of the air passing through the heat radiating section 231 by the frame section 302, and it is possible to suppress the influence of the frame section 302 on the cooling performance of the radiating section 231.
 また、本第3実施形態の水散布冷却装置30では、供給部301から離れた位置に水を誘導するガイド部303を設けている。これにより、供給部301から供給される水を放熱部231に広範囲に散布することができる。さらに、ガイド部303によって、供給部301から供給される水を放熱部231に均一に散布することができる。 Further, in the water spray cooling device 30 of the third embodiment, a guide unit 303 for guiding water is provided at a position away from the supply unit 301. As a result, the water supplied from the supply unit 301 can be widely sprayed on the heat dissipation unit 231. Further, the guide unit 303 can uniformly disperse the water supplied from the supply unit 301 to the heat radiation unit 231.
 (第4実施形態)
 次に、本開示の第4実施形態を図10、図11を用いて説明する。以下、上記各実施形態と異なる部分についてのみ説明する。
(Fourth Embodiment)
Next, the fourth embodiment of the present disclosure will be described with reference to FIGS. 10 and 11. Hereinafter, only the parts different from each of the above embodiments will be described.
 図10、図11に示すように、本第4実施形態では、水散布冷却装置30の供給部301は、車両のバンパー3と熱交換器23の間に設けられている。バンパー3は、熱交換器23よりも送風方向Wの上流側に設けられ、かつ、送風方向Wの空気流れを妨げる風上側部材である。風上側部材は、放熱部231を流れる空気の通風抵抗を増大させる。なお、風上側部材は、バンパー3に限らず、図示しないフロントグリル等であってもよい。 As shown in FIGS. 10 and 11, in the fourth embodiment, the supply unit 301 of the water spray cooling device 30 is provided between the bumper 3 of the vehicle and the heat exchanger 23. The bumper 3 is provided on the upstream side of the heat exchanger 23 in the air blowing direction W, and is a windward member that obstructs the air flow in the air blowing direction W. The windward member increases the ventilation resistance of the air flowing through the heat radiating portion 231. The windward member is not limited to the bumper 3, and may be a front grill or the like (not shown).
 送風方向Wにおいて、放熱部231におけるバンパー3と重なる領域は、バンパー3によって空気流れが妨げられ、通過する空気の風速が低くなる。一方、送風方向Wにおいて、放熱部231におけるバンパー3と重ならない領域は、高風速領域231cは、バンパー3の影響が小さく、通過する空気の風速が低くなりにくい。つまり、送風方向Wにおいて、放熱部231におけるバンパー3と重なる領域は低風速領域231dであり、放熱部231におけるバンパー3と重ならない領域は高風速領域231cである。 In the air blowing direction W, the air flow is obstructed by the bumper 3 in the region overlapping the bumper 3 in the heat radiating portion 231 and the wind speed of the passing air becomes low. On the other hand, in the region that does not overlap with the bumper 3 in the heat radiating portion 231 in the blowing direction W, the influence of the bumper 3 is small in the high wind speed region 231c, and the wind speed of the passing air is unlikely to decrease. That is, in the air blowing direction W, the region overlapping the bumper 3 in the heat radiating unit 231 is the low wind speed region 231d, and the region not overlapping the bumper 3 in the heat radiating unit 231 is the high wind speed region 231c.
 図10、図11に示すように、水散布冷却装置30の供給部301は、送風方向Wにおいて、全体が放熱部231と重なるように設けられている。水散布冷却装置30の供給部301は、放熱部231における低風速領域231dに対応して設けられている。 As shown in FIGS. 10 and 11, the supply unit 301 of the water spray cooling device 30 is provided so as to overlap the heat radiation unit 231 as a whole in the ventilation direction W. The supply unit 301 of the water spray cooling device 30 is provided corresponding to the low wind speed region 231d in the heat dissipation unit 231.
 水散布冷却装置30のフレーム部302は、送風方向Wにおいて、一部が放熱部231と重なるように設けられており、残りの部位がタンク部232と重なるように設けられている。送風方向Wにおいて、フレーム部302が放熱部231と重なっている部位は、大部分が高風速領域231cに対応して設けられている。 The frame portion 302 of the water spray cooling device 30 is provided so that a part thereof overlaps with the heat radiation portion 231 and the remaining portion overlaps with the tank portion 232 in the blowing direction W. In the blowing direction W, most of the portions where the frame portion 302 overlaps the heat radiating portion 231 are provided corresponding to the high wind speed region 231c.
 水散布冷却装置30のガイド部303は、送風方向Wにおいて、放熱部231と重なる領域に設けられている。ガイド部303の先端部303aは、送風方向Wにおいて、放熱部231の高風速領域231cあるいは低風速領域231dに対応して設けられている。 The guide portion 303 of the water spray cooling device 30 is provided in a region overlapping the heat radiating portion 231 in the blowing direction W. The tip portion 303a of the guide portion 303 is provided corresponding to the high wind speed region 231c or the low wind speed region 231d of the heat dissipation portion 231 in the blowing direction W.
 以上説明した本第4実施形態の水散布冷却装置30では、上記第3実施形態と同様の効果を得ることができる。つまり、供給部301やフレーム部302によって、放熱部231を通過する空気の通風抵抗が増大することを抑制でき、放熱部231の冷却性能が低下することを抑制できる。さらに、ガイド部303によって、供給部301から供給される水を放熱部231に広範囲に散布することができ、さらに供給部301から供給される水を放熱部231に均一に散布することができる。 The water spray cooling device 30 of the fourth embodiment described above can obtain the same effect as that of the third embodiment. That is, the supply unit 301 and the frame unit 302 can suppress an increase in the ventilation resistance of the air passing through the heat radiation unit 231 and suppress the deterioration of the cooling performance of the heat radiation unit 231. Further, the guide unit 303 can disperse the water supplied from the supply unit 301 over a wide range to the heat dissipation unit 231 and can evenly disperse the water supplied from the supply unit 301 to the heat radiation unit 231.
 (第5実施形態)
 次に、本開示の第5実施形態を図12、図13を用いて説明する。以下、上記各実施形態と異なる部分についてのみ説明する。
(Fifth Embodiment)
Next, the fifth embodiment of the present disclosure will be described with reference to FIGS. 12 and 13. Hereinafter, only the parts different from each of the above embodiments will be described.
 図12、図13に示すように、本第5実施形態では、水散布冷却装置30の供給部301は、熱交換器23と燃料電池10の間に設けられている。燃料電池10は、熱交換器23よりも送風方向Wの空気流れ下流側に設けられ、かつ、送風方向Wの空気流れを妨げる風下側部材である。風下側部材は、放熱部231を流れる空気の通風抵抗を増大させる。なお、風下側部材は、燃料電池10に限らず、図示しないインバータ等であってもよい。 As shown in FIGS. 12 and 13, in the fifth embodiment, the supply unit 301 of the water spray cooling device 30 is provided between the heat exchanger 23 and the fuel cell 10. The fuel cell 10 is a sewage-side member provided on the downstream side of the air flow in the air blowing direction W with respect to the heat exchanger 23 and obstructing the air flow in the air blowing direction W. The leeward member increases the ventilation resistance of the air flowing through the heat radiating portion 231. The leeward member is not limited to the fuel cell 10, and may be an inverter or the like (not shown).
 送風方向Wにおいて、放熱部231における燃料電池10と重なる領域は、燃料電池10によって空気流れが妨げられ、通過する空気の風速が低くなる。一方、送風方向Wにおいて、放熱部231における燃料電池10と重ならない領域は、高風速領域231cは、バンパー3の影響が小さく、通過する空気の風速が低くなりにくい。つまり、送風方向Wにおいて、放熱部231における燃料電池10と重なる領域は低風速領域231dであり、放熱部231における燃料電池10と重ならない領域は高風速領域231cである。 In the air blowing direction W, the air flow is obstructed by the fuel cell 10 in the region of the heat radiating unit 231 that overlaps with the fuel cell 10, and the wind speed of the passing air becomes low. On the other hand, in the region where the heat dissipation portion 231 does not overlap with the fuel cell 10 in the ventilation direction W, the influence of the bumper 3 is small in the high wind speed region 231c, and the wind speed of the passing air is unlikely to decrease. That is, in the air blowing direction W, the region of the heat radiating unit 231 that overlaps with the fuel cell 10 is the low wind speed region 231d, and the region of the heat radiating unit 231 that does not overlap with the fuel cell 10 is the high wind speed region 231c.
 図12、図13に示すように、水散布冷却装置30の供給部301は、送風方向Wにおいて、全体が放熱部231と重なるように設けられている。水散布冷却装置30の供給部301は、放熱部231における低風速領域231dに対応して設けられている。 As shown in FIGS. 12 and 13, the supply unit 301 of the water spray cooling device 30 is provided so as to overlap the heat radiation unit 231 as a whole in the ventilation direction W. The supply unit 301 of the water spray cooling device 30 is provided corresponding to the low wind speed region 231d in the heat dissipation unit 231.
 水散布冷却装置30のフレーム部302は、送風方向Wにおいて、一部が放熱部231と重なるように設けられており、残りの部位がタンク部232と重なるように設けられている。送風方向Wにおいて、フレーム部302が放熱部231と重なっている部位は、大部分が高風速領域231cに対応して設けられている。 The frame portion 302 of the water spray cooling device 30 is provided so that a part thereof overlaps with the heat radiation portion 231 and the remaining portion overlaps with the tank portion 232 in the blowing direction W. In the blowing direction W, most of the portions where the frame portion 302 overlaps the heat radiating portion 231 are provided corresponding to the high wind speed region 231c.
 水散布冷却装置30のガイド部303は、送風方向Wにおいて、放熱部231と重なる領域に設けられている。ガイド部303の先端部303aは、送風方向Wにおいて、放熱部231の高風速領域231cあるいは低風速領域231dに対応して設けられている。 The guide portion 303 of the water spray cooling device 30 is provided in a region overlapping the heat radiating portion 231 in the blowing direction W. The tip portion 303a of the guide portion 303 is provided corresponding to the high wind speed region 231c or the low wind speed region 231d of the heat dissipation portion 231 in the blowing direction W.
 以上説明した本第5実施形態の水散布冷却装置30では、上記第3実施形態と同様の効果を得ることができる。つまり、供給部301やフレーム部302によって、放熱部231を通過する空気の通風抵抗が増大することを抑制でき、放熱部231の冷却性能が低下することを抑制できる。さらに、ガイド部303によって、供給部301から供給される水を放熱部231に広範囲に散布することができ、さらに供給部301から供給される水を放熱部231に均一に散布することができる。 The water spray cooling device 30 of the fifth embodiment described above can obtain the same effect as that of the third embodiment. That is, the supply unit 301 and the frame unit 302 can suppress an increase in the ventilation resistance of the air passing through the heat radiation unit 231 and suppress the deterioration of the cooling performance of the heat radiation unit 231. Further, the guide unit 303 can disperse the water supplied from the supply unit 301 over a wide range to the heat dissipation unit 231 and can evenly disperse the water supplied from the supply unit 301 to the heat radiation unit 231.
 (第6実施形態)
 次に、本開示の第6実施形態を図14、図15を用いて説明する。以下、上記各実施形態と異なる部分についてのみ説明する。なお、本第6実施形態では、上記各実施形態の熱交換器23を第1熱交換器23としている。
(Sixth Embodiment)
Next, the sixth embodiment of the present disclosure will be described with reference to FIGS. 14 and 15. Hereinafter, only the parts different from each of the above embodiments will be described. In the sixth embodiment, the heat exchanger 23 of each of the above embodiments is referred to as the first heat exchanger 23.
 図14、図15に示すように、本第6実施形態では、第1熱交換器23とは異なる第2熱交換器29が設けられている。第1熱交換器23および第2熱交換器29は、送風方向Wに並んで配置されている。図14、図15に示す例では、送風方向Wにおいて、第1熱交換器23の空気流れ上流側に第2熱交換器29が設けられている。第2熱交換器29は、第1熱交換器23よりも小型であり、第1熱交換器23よりも上下方向の長さが短くなっている。 As shown in FIGS. 14 and 15, in the sixth embodiment, a second heat exchanger 29 different from the first heat exchanger 23 is provided. The first heat exchanger 23 and the second heat exchanger 29 are arranged side by side in the air blowing direction W. In the example shown in FIGS. 14 and 15, the second heat exchanger 29 is provided on the upstream side of the air flow of the first heat exchanger 23 in the blowing direction W. The second heat exchanger 29 is smaller than the first heat exchanger 23 and has a shorter vertical length than the first heat exchanger 23.
 本第6実施形態では、2つの熱交換器23、29は、それぞれ異なる冷却水回路に設けられている。第1熱交換器23は、冷却水回路20に設けられており、燃料電池10を冷却する。第2熱交換器29は、図示しない冷却水回路に設けられており、例えば図示しない2次電池等を冷却する。 In the sixth embodiment, the two heat exchangers 23 and 29 are provided in different cooling water circuits. The first heat exchanger 23 is provided in the cooling water circuit 20 and cools the fuel cell 10. The second heat exchanger 29 is provided in a cooling water circuit (not shown), and cools, for example, a secondary battery (not shown).
 第1熱交換器23と第2熱交換器29は同様の構成を備えている。第1熱交換器23には、第1熱交換器放熱部231、第1熱交換器タンク部232、第1熱交換器インサート233が設けられている。第2熱交換器29には、第2熱交換器放熱部291、第2熱交換器タンク部292、第2熱交換器インサート293が設けられている。第2熱交換器放熱部291は空気が通過可能な部位であり、送風方向Wの空気流れを妨げない。第2熱交換器タンク部292および第2熱交換器インサート293は、空気が通過可能になっていない部位であり、送風方向Wの空気流れを妨げる。 The first heat exchanger 23 and the second heat exchanger 29 have the same configuration. The first heat exchanger 23 is provided with a first heat exchanger heat dissipation section 231, a first heat exchanger tank section 232, and a first heat exchanger insert 233. The second heat exchanger 29 is provided with a second heat exchanger heat dissipation section 291, a second heat exchanger tank section 292, and a second heat exchanger insert 293. The second heat exchanger heat dissipation unit 291 is a portion through which air can pass, and does not obstruct the air flow in the air blowing direction W. The second heat exchanger tank portion 292 and the second heat exchanger insert 293 are portions where air cannot pass, and obstruct the air flow in the air blowing direction W.
 本第6実施形態では、送風方向Wにおいて、第1熱交換器放熱部231の一部と上側に配置された第2熱交換器タンク部292とが重なり合っている。送風方向Wにおいて、第1熱交換器放熱部231における第2熱交換器タンク部292と重なる領域は、第2熱交換器タンク部292によって空気流れが妨げられ、通過する空気の風速が低くなる。一方、送風方向Wにおいて、第1熱交換器放熱部231における第2熱交換器タンク部292と重ならない領域は、第2熱交換器タンク部292の影響が小さく、通過する空気の風速が低くなりにくい。 In the sixth embodiment, in the air blowing direction W, a part of the first heat exchanger heat exchanger 231 and the second heat exchanger tank portion 292 arranged on the upper side overlap each other. In the air blowing direction W, in the region of the first heat exchanger radiating section 231 that overlaps with the second heat exchanger tank section 292, the air flow is obstructed by the second heat exchanger tank section 292, and the wind speed of the passing air becomes low. .. On the other hand, in the air blowing direction W, the region of the first heat exchanger radiating section 231 that does not overlap with the second heat exchanger tank section 292 is less affected by the second heat exchanger tank section 292, and the wind speed of the passing air is low. It's hard to become.
 つまり、送風方向Wにおいて、第1熱交換器放熱部231における第2熱交換器タンク部292と重なる領域は低風速領域231dである。送風方向Wにおいて、第1熱交換器放熱部231における第2熱交換器タンク部292と重ならない領域は高風速領域231cである。 That is, in the air blowing direction W, the region of the first heat exchanger heat exchanger 231 that overlaps with the second heat exchanger tank portion 292 is the low wind speed region 231d. In the air blowing direction W, the region of the first heat exchanger heat exchanger 231 that does not overlap with the second heat exchanger tank portion 292 is the high wind speed region 231c.
 本第6実施形態では、水散布冷却装置30は、第1熱交換器23と第2熱交換器29の間に設けられている。つまり、送風方向Wの上流側から第2熱交換器29、水散布冷却装置30、第1熱交換器23の順に配置されている。水散布冷却装置30は、送風方向Wの空気流れ下流側の第1熱交換器23に水を散布する。 In the sixth embodiment, the water spray cooling device 30 is provided between the first heat exchanger 23 and the second heat exchanger 29. That is, the second heat exchanger 29, the water spray cooling device 30, and the first heat exchanger 23 are arranged in this order from the upstream side of the air blowing direction W. The water spray cooling device 30 sprays water to the first heat exchanger 23 on the downstream side of the air flow in the ventilation direction W.
 図14、図15に示すように、水散布冷却装置30の供給部301は、送風方向Wにおいて、全体が第1熱交換器放熱部231と重なるように設けられている。水散布冷却装置30の供給部301は、第1熱交換器放熱部231における低風速領域231dに対応して設けられている。 As shown in FIGS. 14 and 15, the supply unit 301 of the water spray cooling device 30 is provided so as to overlap with the first heat exchanger heat dissipation unit 231 in the air blowing direction W. The supply unit 301 of the water spray cooling device 30 is provided corresponding to the low wind speed region 231d in the first heat exchanger heat dissipation unit 231.
 水散布冷却装置30のフレーム部302は、送風方向Wにおいて、一部が第1熱交換器放熱部231と重なるように設けられており、残りの部位が第1熱交換器タンク部232と重なるように設けられている。送風方向Wにおいて、フレーム部302が第1熱交換器放熱部231と重なっている部位は、大部分が高風速領域231cに対応して設けられている。 The frame portion 302 of the water spray cooling device 30 is provided so that a part thereof overlaps with the first heat exchanger heat dissipation section 231 in the air blowing direction W, and the remaining portion overlaps with the first heat exchanger tank section 232. It is provided as follows. In the ventilation direction W, most of the portions where the frame portion 302 overlaps with the first heat exchanger heat dissipation portion 231 are provided corresponding to the high wind speed region 231c.
 水散布冷却装置30のガイド部303は、送風方向Wにおいて、第1熱交換器放熱部231と重なる領域に設けられている。ガイド部303は、送風方向Wにおいて、第1熱交換器放熱部231の高風速領域231cおよび低風速領域231dに対応して設けられている。 The guide portion 303 of the water spray cooling device 30 is provided in a region overlapping the first heat exchanger heat dissipation portion 231 in the air blowing direction W. The guide unit 303 is provided in the air blowing direction W corresponding to the high wind speed region 231c and the low wind speed region 231d of the first heat exchanger heat dissipation unit 231.
 以上説明した本第6実施形態の水散布冷却装置30では、上記第3実施形態と同様の効果を得ることができる。つまり、供給部301やフレーム部302によって、第1熱交換器放熱部231を通過する空気の通風抵抗が増大することを抑制でき、第1熱交換器放熱部231の冷却性能が低下することを抑制できる。さらに、ガイド部303によって、供給部301から供給される水を第1熱交換器放熱部231に広範囲に散布することができ、さらに供給部301から供給される水を第1熱交換器放熱部231に均一に散布することができる。 The water spray cooling device 30 of the sixth embodiment described above can obtain the same effect as that of the third embodiment. That is, the supply unit 301 and the frame unit 302 can suppress an increase in the ventilation resistance of the air passing through the first heat exchanger heat dissipation unit 231, and the cooling performance of the first heat exchanger heat exchanger unit 231 deteriorates. Can be suppressed. Further, the guide unit 303 can spread the water supplied from the supply unit 301 to the first heat exchanger heat exchanger 231 over a wide range, and further, the water supplied from the supply unit 301 can be spread to the first heat exchanger heat exchanger unit 231. It can be evenly sprayed on 231.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure. In addition, the means disclosed in each of the above embodiments may be appropriately combined to the extent feasible.
 例えば、上記各実施形態では、本開示の水散布冷却システムを燃料電池車両に適用した例について説明したが、本開示の水散布冷却システムを内燃機関を駆動源とする車両に適用してもよい。 For example, in each of the above embodiments, an example in which the water spray cooling system of the present disclosure is applied to a fuel cell vehicle has been described, but the water spray cooling system of the present disclosure may be applied to a vehicle having an internal combustion engine as a drive source. ..
 また、上記各実施形態では、本開示の水散布冷却システムでラジエータとしての熱交換器23に水を散布するように構成したが、本開示の水散布冷却システムをラジエータ以外の熱交換器(例えばコンデンサ)に水を散布するにしてもよい。 Further, in each of the above embodiments, the water spray cooling system of the present disclosure is configured to spray water to the heat exchanger 23 as a radiator, but the water spray cooling system of the present disclosure is configured to spray heat exchangers other than the radiator (for example,). Water may be sprayed on the condenser).
 また、上記各実施形態では、供給部301の供給孔301aを送風方向Wの下流側に設けたが、供給孔301aを送風方向Wの下流側以外の部位に設けてもよい。 Further, in each of the above embodiments, the supply hole 301a of the supply unit 301 is provided on the downstream side of the air blowing direction W, but the supply hole 301a may be provided on a portion other than the downstream side of the air blowing direction W.
 また、上記各実施形態では、ガイド部303を板状に形成したが、ガイド部303を板状以外の形状としてもよい。 Further, in each of the above embodiments, the guide portion 303 is formed in a plate shape, but the guide portion 303 may have a shape other than the plate shape.
 また、上記各実施形態では、ガイド部303の溝部303bを送風方向Wの下流側に設けたが、ガイド部303の溝部303bを送風方向の下流側以外に設けてもよい。 Further, in each of the above embodiments, the groove portion 303b of the guide portion 303 is provided on the downstream side of the blowing direction W, but the groove portion 303b of the guide portion 303 may be provided on a side other than the downstream side in the blowing direction.
 また、上記各実施形態では、複数のガイド部303をすべて同じ長さとしたが、これに限らず、長さが異なる複数種類のガイド部303を設けてもよい。例えば、長さが異なる2種類のガイド部303を交互に設けることができる。このように、隣接するガイド部303は長さが異なる構成は、隣接するガイド部303の長さが同じである構成に比べて、隣接するガイド部303の先端部303aの間隔が大きくなる。このため、隣接するガイド部303が近接配置された場合であっても、隣接するガイド部303から散布される水が結合しにくい。このため、供給部301の供給孔301aの間隔を狭くすることができ、熱交換器23の放熱部231に水を均一に散布しやすくなる。 Further, in each of the above embodiments, the plurality of guide portions 303 have the same length, but the present invention is not limited to this, and a plurality of types of guide portions 303 having different lengths may be provided. For example, two types of guide portions 303 having different lengths can be provided alternately. As described above, in the configuration in which the adjacent guide portions 303 have different lengths, the distance between the tip portions 303a of the adjacent guide portions 303 is larger than in the configuration in which the adjacent guide portions 303 have the same length. Therefore, even when the adjacent guide portions 303 are arranged close to each other, it is difficult for the water sprayed from the adjacent guide portions 303 to combine. Therefore, the distance between the supply holes 301a of the supply unit 301 can be narrowed, and it becomes easy to uniformly spray water on the heat dissipation unit 231 of the heat exchanger 23.
 また、上記各実施形態では、供給部301の複数の供給孔301aのすべてにガイド部303を設けたが、これに限らず、少なくとも一部の供給孔301aにガイド部303が設けられていればよい。つまり、ガイド部303が設けられていない供給孔301aが存在してもよい。 Further, in each of the above embodiments, the guide unit 303 is provided in all of the plurality of supply holes 301a of the supply unit 301, but the present invention is not limited to this, as long as the guide unit 303 is provided in at least a part of the supply holes 301a. good. That is, there may be a supply hole 301a in which the guide portion 303 is not provided.
 また、上記第6実施形態では、第2熱交換器29を第1熱交換器23よりも送風方向Wの上流側に設けたが、第2熱交換器29を第1熱交換器23よりも送風方向Wの下流側に設けてもよい。この場合には、送風方向Wの上流側から水散布冷却装置30、第1熱交換器23、第2熱交換器29の順に配置される。 Further, in the sixth embodiment, the second heat exchanger 29 is provided on the upstream side of the air blowing direction W from the first heat exchanger 23, but the second heat exchanger 29 is more than the first heat exchanger 23. It may be provided on the downstream side of the ventilation direction W. In this case, the water spray cooling device 30, the first heat exchanger 23, and the second heat exchanger 29 are arranged in this order from the upstream side of the air blowing direction W.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, although various combinations and forms are shown in this disclosure, other combinations and forms that include only one element, more, or less are also within the scope of this disclosure. It is a thing.

Claims (8)

  1.  所定の送風方向(W)に流れる空気と内部を流通する熱媒体との間で熱交換を行う放熱部(231)を有する熱交換器(23)に対し、前記送風方向の上流側から水を散布して前記熱交換器を冷却する水散布冷却装置であって、
     前記放熱部に散布される水を貯蔵する供給部(301)と、
     前記供給部に接続され、前記供給部から供給される水を前記供給部から離れた位置まで誘導して前記放熱部に散布するガイド部(303)と、
     を備え、
     前記放熱部は、前記送風方向に流れる空気が通過可能になっており、
     前記供給部は、前記送風方向において、前記放熱部と重ならない位置に設けられている水散布冷却装置。
    Water is supplied from the upstream side in the blowing direction to the heat exchanger (23) having the heat exchanger (231) that exchanges heat between the air flowing in the predetermined blowing direction (W) and the heat medium flowing inside. A water spray cooling device that sprays and cools the heat exchanger.
    A supply unit (301) for storing water sprayed on the heat radiation unit, and a supply unit (301).
    A guide unit (303) connected to the supply unit, guiding the water supplied from the supply unit to a position away from the supply unit, and spraying the water to the heat dissipation unit.
    Equipped with
    The heat radiating portion allows air flowing in the blowing direction to pass through.
    The supply unit is a water spray cooling device provided at a position that does not overlap with the heat radiation unit in the air blowing direction.
  2.  前記熱交換器は、前記放熱部と内部が連通し、前記放熱部を流通する熱媒体の分配または集合の少なくとも一方を行うタンク部(232)を備え、
     前記供給部は、前記送風方向において、前記タンク部と重なる位置に設けられている請求項1に記載の水散布冷却装置。
    The heat exchanger includes a tank portion (232) in which the heat radiating portion and the inside communicate with each other to distribute or assemble the heat medium flowing through the heat radiating portion.
    The water spray cooling device according to claim 1, wherein the supply unit is provided at a position overlapping the tank unit in the air blowing direction.
  3.  前記熱交換器は、前記放熱部の端部に沿って設けられ、前記放熱部を補強するインサート(233)を備え、
     前記供給部は、前記送風方向において、前記インサートと重なる位置に設けられている請求項1に記載の水散布冷却装置。
    The heat exchanger is provided along the end of the heat radiating portion and includes an insert (233) for reinforcing the heat radiating portion.
    The water spray cooling device according to claim 1, wherein the supply unit is provided at a position overlapping the insert in the blowing direction.
  4.  所定の送風方向(W)に流れる空気と内部を流通する熱媒体との間で熱交換を行う放熱部(231)を有する熱交換器(23)に対し、前記送風方向の上流側から水を散布して前記熱交換器を冷却する水散布冷却装置であって、
     前記放熱部に散布される水を貯蔵する供給部(301)と、
     前記供給部から供給される水を前記供給部から離れた位置に誘導して前記放熱部に散布するガイド部(303)と、
     を備え、
     前記放熱部は、前記送風方向に流れる空気が通過可能になっており、
     前記放熱部は、高風速領域(231c)と、前記送風方向に流れる空気の風速が前記高風速領域よりも遅い低風速領域(231d)とを含んでおり、
     前記供給部は、前記送風方向において、前記放熱部の前記低風速領域と重なる位置に設けられている水散布冷却装置。
    Water is supplied from the upstream side in the blowing direction to the heat exchanger (23) having the heat exchanger (231) that exchanges heat between the air flowing in the predetermined blowing direction (W) and the heat medium flowing inside. A water spray cooling device that sprays and cools the heat exchanger.
    A supply unit (301) for storing water sprayed on the heat radiation unit, and a supply unit (301).
    A guide unit (303) that guides the water supplied from the supply unit to a position away from the supply unit and sprays the water to the heat radiation unit.
    Equipped with
    The heat radiating portion allows air flowing in the blowing direction to pass through.
    The heat radiating portion includes a high wind speed region (231c) and a low wind speed region (231d) in which the wind speed of the air flowing in the blowing direction is slower than the high wind speed region.
    The supply unit is a water spray cooling device provided at a position overlapping the low wind speed region of the heat radiation unit in the air blowing direction.
  5.  前記放熱部は、送風機(24)によって送風される空気が通過可能となっており、
     前記低風速領域は、前記送風方向において、前記放熱部における前記送風機と重ならない領域である請求項4に記載に水散布冷却装置。
    The air radiating section allows air blown by the blower (24) to pass through.
    The water spray cooling device according to claim 4, wherein the low wind speed region is a region that does not overlap with the blower in the heat radiating portion in the blowing direction.
  6.  前記熱交換器の前記送風方向における上流側に空気流れを妨げる風上側部材(3)が設けられており、
     前記低風速領域は、前記送風方向において、前記放熱部における前記風上側部材と重なる領域である請求項4に記載に水散布冷却装置。
    A windward member (3) that obstructs the air flow is provided on the upstream side of the heat exchanger in the blowing direction.
    The water spray cooling device according to claim 4, wherein the low wind speed region is a region that overlaps with the windward member in the heat radiating portion in the blowing direction.
  7.  前記熱交換器の前記送風方向における下流側に空気流れを妨げる風下側部材(10)が設けられており、
     前記低風速領域は、前記送風方向において、前記放熱部における前記風下側部材と重なる領域である請求項4に記載に水散布冷却装置。
    A leeward member (10) that obstructs the air flow is provided on the downstream side of the heat exchanger in the blowing direction.
    The water spray cooling device according to claim 4, wherein the low wind speed region is a region that overlaps with the leeward member in the heat radiating portion in the blowing direction.
  8.  前記熱交換器を第1熱交換器とし、前記放熱部を第1熱交換器放熱部とした場合に、前記第1熱交換器とは異なる第2熱交換器(29)が設けられており、
     前記第2熱交換器は、前記送風方向に流れる空気と内部を流通する熱媒体との間で熱交換を行う第2熱交換器放熱部(291)と、前記第2熱交換器放熱部と内部が連通し、前記第2熱交換器放熱部を流通する熱媒体の分配または集合の少なくとも一方を行う第2熱交換器タンク部(292)とを有しており、
     前記低風速領域は、前記送風方向において、前記第1熱交換器放熱部における前記第2熱交換器タンク部と重なる領域である請求項4に記載の水散布冷却装置。
    When the heat exchanger is the first heat exchanger and the heat radiating section is the first heat exchanger radiating section, a second heat exchanger (29) different from the first heat exchanger is provided. ,
    The second heat exchanger includes a second heat exchanger heat exchanger unit (291) that exchanges heat between the air flowing in the air blowing direction and a heat medium flowing inside, and the second heat exchanger heat exchanger unit. It has a second heat exchanger tank unit (292) that communicates with the inside and distributes or assembles at least one of the heat media flowing through the second heat exchanger heat dissipation unit.
    The water spray cooling device according to claim 4, wherein the low wind speed region is a region that overlaps with the second heat exchanger tank portion in the first heat exchanger heat dissipation portion in the blowing direction.
PCT/JP2021/018570 2020-06-30 2021-05-17 Water spray cooling device WO2022004157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112572A JP2022022624A (en) 2020-06-30 2020-06-30 Water spraying cooling device
JP2020-112572 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004157A1 true WO2022004157A1 (en) 2022-01-06

Family

ID=79315892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018570 WO2022004157A1 (en) 2020-06-30 2021-05-17 Water spray cooling device

Country Status (2)

Country Link
JP (1) JP2022022624A (en)
WO (1) WO2022004157A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210207891A1 (en) * 2018-09-28 2021-07-08 Toyota Jidosha Kabushiki Kaisha Water-spraying cooling device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184419A (en) * 2000-12-14 2002-06-28 Nissan Motor Co Ltd Cooling device for vehicle with fuel battery mounted thereon
JP2002372385A (en) * 2001-04-11 2002-12-26 Denso Corp Heat exchanging system
JP2006127968A (en) * 2004-10-29 2006-05-18 Toyota Motor Corp Cooling system of fuel cell vehicle
JP2013057309A (en) * 2011-09-09 2013-03-28 Hyundai Motor Co Ltd Cooling apparatus for fuel cell vehicle
JP2017116201A (en) * 2015-12-25 2017-06-29 株式会社デンソー Heat exchange device
JP2017129048A (en) * 2016-01-19 2017-07-27 トヨタ自動車株式会社 Vehicle radiator device
JP2019045000A (en) * 2017-08-30 2019-03-22 株式会社デンソー Water spray cooling device
JP2019044999A (en) * 2017-08-30 2019-03-22 株式会社デンソー Water spray cooling device
JP2020056564A (en) * 2018-09-28 2020-04-09 株式会社デンソー Water spraying cooling device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184419A (en) * 2000-12-14 2002-06-28 Nissan Motor Co Ltd Cooling device for vehicle with fuel battery mounted thereon
JP2002372385A (en) * 2001-04-11 2002-12-26 Denso Corp Heat exchanging system
JP2006127968A (en) * 2004-10-29 2006-05-18 Toyota Motor Corp Cooling system of fuel cell vehicle
JP2013057309A (en) * 2011-09-09 2013-03-28 Hyundai Motor Co Ltd Cooling apparatus for fuel cell vehicle
JP2017116201A (en) * 2015-12-25 2017-06-29 株式会社デンソー Heat exchange device
JP2017129048A (en) * 2016-01-19 2017-07-27 トヨタ自動車株式会社 Vehicle radiator device
JP2019045000A (en) * 2017-08-30 2019-03-22 株式会社デンソー Water spray cooling device
JP2019044999A (en) * 2017-08-30 2019-03-22 株式会社デンソー Water spray cooling device
JP2020056564A (en) * 2018-09-28 2020-04-09 株式会社デンソー Water spraying cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210207891A1 (en) * 2018-09-28 2021-07-08 Toyota Jidosha Kabushiki Kaisha Water-spraying cooling device
US12018896B2 (en) * 2018-09-28 2024-06-25 Denso Corporation Water-spraying cooling device

Also Published As

Publication number Publication date
JP2022022624A (en) 2022-02-07

Similar Documents

Publication Publication Date Title
CN104347910B (en) Battery cooling system
JP5117861B2 (en) Evaporative cooling of fuel cell reactant gases and freeze protection during operation
US12018896B2 (en) Water-spraying cooling device
EP1176651B1 (en) Fuel cell
JP2002372385A (en) Heat exchanging system
KR102609395B1 (en) Humidification and cooling device for fuel cell
JP2006315578A (en) Vehicular fuel cell system
US7267900B2 (en) Fuel cell system
JP4939786B2 (en) Fuel cell and fuel cell system
WO2022004157A1 (en) Water spray cooling device
JP2012099394A (en) Fuel cell system
JP6569522B2 (en) Heat exchanger
US20100086818A1 (en) Recooling and humidification device for use in fuel cells
JP2006240475A (en) Cooling device for fuel cell electric vehicle
KR102598949B1 (en) Humidifier for fuel cell
JP2019044999A (en) Water spray cooling device
JP4565950B2 (en) Power supply
KR102595244B1 (en) Humidification and cooling device for fuel cell
JP5876057B2 (en) Battery compartment for vehicles
JP5543292B2 (en) In-vehicle fuel cell system
JP2003036878A (en) Air supply system for fuel cell
WO2020066864A1 (en) Water-spraying cooling device
JP2022178998A (en) Water sprinkle cooling device
US20220132699A1 (en) Air conditioner
JP2019045000A (en) Water spray cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831885

Country of ref document: EP

Kind code of ref document: A1