WO2022002257A1 - 多频段共口径天线和通信设备 - Google Patents

多频段共口径天线和通信设备 Download PDF

Info

Publication number
WO2022002257A1
WO2022002257A1 PCT/CN2021/104286 CN2021104286W WO2022002257A1 WO 2022002257 A1 WO2022002257 A1 WO 2022002257A1 CN 2021104286 W CN2021104286 W CN 2021104286W WO 2022002257 A1 WO2022002257 A1 WO 2022002257A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna array
antenna
resonant circuit
reflector
dielectric
Prior art date
Application number
PCT/CN2021/104286
Other languages
English (en)
French (fr)
Inventor
沈龙
张关喜
白雪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21833420.9A priority Critical patent/EP4170822A4/en
Publication of WO2022002257A1 publication Critical patent/WO2022002257A1/zh
Priority to US18/148,874 priority patent/US20230137645A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/12Resonant antennas
    • H01Q11/14Resonant antennas with parts bent, folded, shaped or screened or with phasing impedances, to obtain desired phase relation of radiation from selected sections of the antenna or to obtain desired polarisation effect
    • H01Q11/18Resonant antennas with parts bent, folded, shaped or screened or with phasing impedances, to obtain desired phase relation of radiation from selected sections of the antenna or to obtain desired polarisation effect in which the selected sections are parallelly spaced
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/44Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions

Definitions

  • the present application relates to communication technologies, and in particular, to a multi-band common aperture antenna and communication equipment.
  • 5G fifth-generation
  • base station antennas need to meet multiple frequency band requirements at the same time.
  • the coaxial nesting of high and low frequency antennas is mainly used, so that antennas of different frequency bands are deployed in the same base station space to work without affecting each other.
  • the newly added 5G band antenna cannot be directly added to the existing antenna structure.
  • the traditional coaxial nested structure makes the low frequency antenna avoid the high frequency antenna as much as possible, thereby reducing the high and low frequency antennas. coupling between and avoid distortion of the high frequency pattern.
  • this structure requires a relatively large antenna frequency, which is not suitable for the coexistence design of 5G band antennas and 2G, 3G and 4G band antennas.
  • Advanced design system (ADS) technology is a new technology that can effectively reduce the coupling between antenna array elements.
  • ADS Advanced design system
  • the coupling between antenna elements can be effectively weakened by applying the ADS structure to the antenna array.
  • the above antenna structure needs to add a certain space to place the ADS on the basis of the current antenna aperture, which leads to an increase in the overall space occupied by the array antenna, and cannot achieve decoupling in the respective frequency bands for antennas with more than two frequency bands.
  • the present application provides a multi-band co-aperture antenna and a communication device, so as to realize the coexistence of high and low frequency antenna arrays and the effect that standing waves do not affect each other.
  • the present application provides a multi-band common aperture antenna, comprising: a first antenna array, a second antenna array and a reflector; the first antenna array and the second antenna array are both arranged on the reflector above; the frequency band of the first antenna array is lower than the frequency band of the second antenna array, and the highest point of the first antenna array is higher than the highest point of the second antenna array; wherein, the first antenna array It includes four first medium plates; the four first medium plates are all perpendicular to the reflecting plate; the four first medium plates enclose a hollow structure, and two adjacent first medium plates are perpendicular to each other;
  • the first antenna array includes four butterfly-shaped hollowed-out dipole units; any one of the dipole units includes two radiating arms, and the two radiating arms are respectively printed on two adjacent first a dielectric plate, and the included angle between the two radiation arms is 90°; any one of the radiation arms includes a first part perpendicular to the reflector plate and a second part parallel to the reflector plate, the The first antenna array It
  • the first feeding branch is connected to the reflecting plate;
  • the second part has a set width in a direction perpendicular to the reflecting plate;
  • the second antenna array includes A plurality of second dielectric plates, all of which are parallel to the reflector; any one of the second dielectric plates is provided with four loop coils, and any one of the loop coils is connected to one a second feeding branch; the second feeding branch is connected to the reflecting plate.
  • the multi-band common-aperture antenna provided in this embodiment is composed of a low-frequency antenna array (first antenna array) and a high-frequency antenna array (second antenna array), which realizes the coexistence of high-frequency and low-frequency antenna arrays and the effect that standing waves do not affect each other. .
  • the two dipole units on the diagonal in the first antenna array have the same polarization direction.
  • two adjacent dipole units in the first antenna array form a dipole direction of ⁇ 45°.
  • the second part presents a non-closed annular structure.
  • a lumped first resonant circuit is provided on the second part; the first resonant circuit includes two parallel slits provided on the second part, one of the Capacitors and inductors are arranged on the slits, and capacitors are arranged on the other slits.
  • a lumped resonant circuit is added, and slits are arranged on the radiation arm of the first antenna array at multiple positions parallel to the second part of the reflector, and capacitors and inductors are embedded in the slits to form a resonant circuit.
  • the resonant circuit consists of a parallel resonant circuit of a capacitor and an inductor in series with a capacitor to form a series resonant circuit.
  • the resonant circuit In the low frequency band, the resonant circuit performs series resonance, which is equivalent to a short-circuit state, so that it can maintain the complete performance of the low-frequency antenna.
  • the resonant circuit performs parallel resonance, which is equivalent to an open-circuit state.
  • the low-frequency antenna array is equivalent to an interrupted non-resonant structure, so the impact on the high-frequency antenna array can be further reduced, thereby achieving the effect of coexistence of the high-frequency and low-frequency antenna arrays with a common aperture.
  • the low-frequency antenna array is equivalent to a broken scattered metal sheet, this scattered metal sheet is equivalent to a decoupling surface, which has a reducing effect on the coupling between the high-frequency antenna arrays.
  • the low-frequency antenna array can also be used as a decoupling structure of the high-frequency antenna array, so that the coexistence of high-frequency antennas and the decoupling function of high-frequency antennas can be realized at the same time.
  • a distributed second resonant circuit is provided on the second part; the second resonant circuit includes an interdigital capacitor and an inductance, wherein the interdigital capacitor is composed of two comb-shaped capacitors. Microstrip crossings are formed; the inductor is formed by bending a microstrip line.
  • distributed resonant circuits are added, and resonant circuits are set at multiple positions on the radiating arm of the first antenna array parallel to the second part of the reflector, and distributed interdigital capacitors are used to replace the resonant circuits in the second embodiment.
  • the capacitance of the lumped resonant circuit is replaced by a distributed long-line inductance, which is easier to process.
  • the resonant circuit consists of a parallel resonant circuit of a capacitor and an inductor in series with a capacitor to form a series resonant circuit. In the low frequency band, the resonant circuit performs series resonance, which is equivalent to a short-circuit state, so that it can maintain the complete performance of the low-frequency antenna.
  • the resonant circuit performs parallel resonance, which is equivalent to an open-circuit state.
  • the low-frequency antenna array is equivalent to an interrupted non-resonant structure, so the impact on the high-frequency antenna array can be further reduced, thereby achieving the effect of coexistence of the high-frequency and low-frequency antenna arrays with a common aperture.
  • the low-frequency antenna array is equivalent to a broken scattered metal sheet, this scattered metal sheet is equivalent to a decoupling surface, which has a reducing effect on the coupling between the high-frequency antenna arrays.
  • the low-frequency antenna array can also be used as a decoupling structure of the high-frequency antenna array, so that the coexistence of high-frequency antennas and the decoupling function of high-frequency antennas can be realized at the same time.
  • the present application provides a multi-band co-aperture antenna, comprising: a first antenna array, a second antenna array and a reflector; the first antenna array and the second antenna array are both disposed on the above the reflector; the frequency band of the first antenna array is lower than the frequency band of the second antenna array; wherein the first antenna array includes a plurality of first dielectric plates, each of which is parallel to the reflective plate; any one of the first dielectric plates is provided with four annular coils evenly distributed around the center point of the first dielectric plate; two annular coils arranged opposite to form one a dipole unit; the dipole unit is connected to a Y-type feed structure; the second antenna array includes a plurality of second dielectric plates and a plurality of third dielectric plates, the plurality of second dielectric plates and all the The plurality of third medium plates are all parallel to the reflecting plate; the plurality of second medium plates and the plurality of third medium plates are in one-to-one correspondence, and the second medium plates are located in the
  • the multi-band common-aperture antenna provided in this embodiment is composed of a low-frequency antenna array (first antenna array) and a high-frequency antenna array (second antenna array), which realizes the coexistence of high-frequency and low-frequency antenna arrays and the effect that standing waves do not affect each other. .
  • the number of the plurality of J-type feeding structures is four.
  • a line connecting the center point of the first through hole and the center point of the second through hole is perpendicular to the reflector.
  • the method further includes: a third antenna array; the third antenna array is arranged above the reflector; the frequency band of the third antenna array is lower than the frequency band of the first antenna array, The highest position of the third antenna array is higher than the highest position of the first antenna array; wherein, the third antenna array includes four third dielectric plates; the four third dielectric plates are all connected to the reflector The plate is vertical; the four third dielectric plates enclose a hollow structure, and two adjacent third dielectric plates are perpendicular to each other; the third antenna array includes four butterfly-shaped hollowed-out dipole units; The dipole unit includes two radiating arms, the two radiating arms are respectively printed on the two adjacent third dielectric plates, and the included angle between the two radiating arms is 90°; The radiation arm includes a first part perpendicular to the reflection plate and a second part parallel to the reflection plate, the first part and the second part are connected; the first part is printed on the third medium plate A first feeding branch is arranged at the position of the first feeding branch, and
  • This embodiment is a common aperture antenna supporting three frequency bands, high, middle and low.
  • the antenna adopts a layered structure as a whole.
  • the upper low frequency antenna is similar to the first array antenna covering the 690-960 MHz frequency band in the first to third embodiments, and is embedded in the lower layer with a support structure.
  • the low-frequency antenna uses a distributed capacitance and inductance wave-transmitting structure, which generates series resonance for low-frequency signals to form a short circuit and works normally, and generates parallel resonance to form an open circuit in the middle and high frequency bands, so as to achieve the required low-frequency antenna to transmit waves to medium and high frequency signals. function, so that the medium and high frequency signals can be freely radiated, and the influence of the low frequency antenna on the pattern and gain of the medium and high frequency antenna is minimized.
  • the ADS decoupling function of the upper low frequency antenna can uniformly decouple the lower medium and high frequency antenna array. To a certain extent, the coupling between the lower antenna units is weakened and the distortion of the pattern is avoided.
  • the lower middle and high frequency array adopts the upper and lower coaxial structure
  • the upper middle frequency antenna covers the 1.71-2.69GHZ frequency band
  • the lower layer high frequency antenna covers the 3.3-3.8GHz frequency band. Pattern distortion due to high frequency antenna effects is minimized.
  • the three-band common aperture array antenna is realized by applying the capacitive and inductive structure wave transmission, ADS decoupling and FSS wave transmission technology respectively. The wave-transmitting and decoupling functions achieve excellent pattern performance and gain requirements.
  • the two dipole units on the diagonal in the third antenna array have the same polarization direction.
  • two adjacent dipole units in the third antenna array form a dipole direction of ⁇ 45°.
  • the second part presents a non-closed annular structure.
  • a lumped first resonant circuit is provided on the second part; the first resonant circuit includes two parallel slits provided on the second part, one of the Capacitors and inductors are arranged on the slits, and capacitors are arranged on the other slits.
  • a distributed second resonant circuit is provided on the second part; the second resonant circuit includes an interdigital capacitor and an inductance, wherein the interdigital capacitor is composed of two comb-shaped capacitors. Microstrip crossings are formed; the inductor is formed by bending a microstrip line.
  • the present application provides a communication device, including: the multi-band co-aperture antenna according to any one of the first to second aspects above.
  • Embodiment 1 of a multi-band common aperture antenna are schematic structural diagrams of Embodiment 1 of a multi-band common aperture antenna according to the present application;
  • Fig. 2 shows another exemplary structural schematic diagram of the second part of the radiation arm
  • Fig. 3 shows the reflection coefficient curve of the simulation of the low frequency antenna array (the first antenna array);
  • FIG. 4 shows the H-plane pattern of the low-frequency antenna array (the first antenna array) at 800Mhz;
  • FIG. 5 shows the H-plane pattern of the high-frequency antenna array (the first antenna array) at 2 GHz;
  • FIGS. 6a-6c are schematic structural diagrams of Embodiment 2 of a multi-band common aperture antenna according to the present application;
  • Fig. 7 shows the reflection coefficient curve of the simulation of the low frequency antenna array (the first antenna array).
  • FIG. 8 shows the H-plane pattern of the low-frequency antenna array (first antenna array) at 800Mhz;
  • FIG. 9 shows the H-plane pattern of the high-frequency antenna array (the first antenna array) at 2 GHz;
  • 10a-10c are schematic structural diagrams of Embodiment 3 of a multi-band common aperture antenna according to the present application.
  • Fig. 11 shows the reflection coefficient curve of the simulation of the low frequency antenna array (the first antenna array);
  • Figure 12 shows the H-plane pattern of the low-frequency antenna array (first antenna array) at 800Mhz;
  • FIG. 13 shows the H-plane pattern of the high-frequency antenna array (first antenna array) at 2 GHz;
  • FIGS. 14a-14d are schematic structural diagrams of Embodiment 4 of a multi-band common aperture antenna according to the present application.
  • Figures 15a-15b show an exemplary schematic diagram of a multi-band co-aperture antenna array
  • Figure 16 shows the standing wave and isolation of an IF antenna array
  • Figure 17 shows the standing wave and isolation of a high frequency antenna array
  • Figures 18-20 show the patterns of the H-plane and V-plane of the antenna array at 2.2GHz, 3.6GHz, and 5GHz, respectively;
  • Figures 21-23 show the patterns of the H-plane and V-plane of the antenna array at 2.2GHz, 3.6GHz, and 5GHz, respectively;
  • Embodiment 5 of a multi-band common aperture antenna according to the present application.
  • FIG. 25 is a schematic structural diagram of an embodiment of a communication device of the present application.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • the antenna of this embodiment may include: a first antenna array 1, a second antenna array 2 and The reflector 3, the first antenna array 1 and the second antenna array 2 are all arranged above the reflector 3, the frequency band of the first antenna array 1 is lower than the frequency band of the second antenna array 2, and the highest point of the first antenna array 1 is higher than that of the second antenna array 2. The highest point of the second antenna array 2 .
  • the first antenna array 1 includes four first dielectric plates 11 - 14 , and the four first dielectric plates 11 - 14 are all perpendicular to the reflection plate 3 .
  • the four first dielectric plates 11-14 form a hollow structure, and two adjacent first dielectric plates are perpendicular to each other.
  • Vertical, the third dielectric board 13 and the fourth dielectric board 14 are vertical, and the fourth dielectric board 14 and the first dielectric board 11 are vertical.
  • the first antenna array 1 includes four butterfly-shaped hollowed-out dipole elements 15-18, wherein any one of the dipole elements, such as the dipole element 15, includes two radiating arms 151 and 152.
  • the two radiating arms 151 and 152 are respectively printed on two adjacent first dielectric boards.
  • the radiation arm 151 is printed on the first dielectric board 11
  • the radiation arm 152 is printed on the first dielectric board 12 . Since two adjacent first dielectric boards are perpendicular to each other, the included angle between the radiation arms printed on the two adjacent first dielectric boards is 90°, for example, the included angle between the radiation arm 151 and the radiation arm 152 is 90°.
  • the two radiating arms located on the same first dielectric plate are close to each other, which can play the role of broadening the bandwidth.
  • the radiation arm 151 includes a first part 151a perpendicular to the reflection plate and a second part 151b parallel to the reflection plate, and the first part 151a and the second part 151b are connected.
  • the first feeding branch 19 is provided at the position where the first part 151a is printed on the first dielectric board 11 , and the first feeding branch 19 and the first part 151a are located on two sides of the first dielectric board 11 respectively. 19 is connected to the reflector 3, and the first feeding branch 19 can be, for example, a microstrip balun.
  • the second portion 151b has a set width in the direction perpendicular to the reflection plate 3 .
  • the radiation arm 152 includes a first part 152a perpendicular to the reflection plate and a second part 152b parallel to the reflection plate, and the first part 152a and the second part 152b are connected.
  • the first feeding branch 20 is disposed at the position where the first part 152a is printed on the first dielectric board 12, and the first feeding branch 20 and the first part 152a are respectively located on two sides of the first dielectric board 12.
  • the first feeding branch 20 20 is connected to the reflector 3 .
  • the above-mentioned second part can have a non-closed annular structure. As shown in FIG.
  • the second part 151b has an up-down symmetrical annular structure, and a gap is arranged at the position of the symmetry axis to form a non-closed structure.
  • FIG. 2 shows another exemplary structural schematic diagram of the second part of the radiation arm. As shown in FIG. 2 , the second part 151 b has only the lower half compared with the structure shown in FIG. 1 b . That is, the structure of the second part of the radiation arm can be a non-closed annular structure with only one slit, or an open semi-annular structure.
  • the second part 151b has a set width in the direction perpendicular to the reflector 3, that is, the second part 151b cannot be in a straight state, and needs to have a certain width, so as to meet the radiation requirements of the antenna, so that the low-frequency antenna array (the first antenna The influence of the array 1) on the directional pattern and gain of the high-frequency antenna array (the second antenna array 2) is minimized, thereby realizing the effect of the high-frequency and low-frequency antennas working with a common aperture.
  • the two dipole elements on the diagonal of the first antenna array 1 may have the same polarization direction, and the two adjacent dipole elements form a dipole direction of ⁇ 45°.
  • the dipole unit 15 and the dipole unit 16 are adjacent, and the polarization directions of the two are ⁇ 45°;
  • the dipole unit 16 and the dipole unit 17 are adjacent, and the polarization directions of the two are respectively ⁇ 45°;
  • the dipole unit 17 and the dipole unit 18 are adjacent, and the polarization directions of the two are ⁇ 45° respectively;
  • the dipole unit 18 and the dipole unit 15 are adjacent, and the polarization directions of the two are adjacent. respectively ⁇ 45°.
  • the two dipole units 15 and 17 located on the diagonal line of the above hollow structure have the same polarization direction;
  • the two dipole units 16 and 17 located on the other diagonal line of the above hollow structure 18 have the same polarization direction.
  • the structures of the dipole units 16 - 18 in the first antenna array 1 are the same as the structure of the dipole unit 15 , and the above description about the dipole unit 15 can be referred to, which will not be repeated here.
  • the second antenna array 2 includes six second dielectric plates 21 - 26 , and the six second dielectric plates 21 - 26 are all parallel to the reflecting plate 3 .
  • Any second dielectric board such as the second dielectric board 21, is provided with four toroidal coils 211-214, wherein the toroidal coils 211-214 are respectively connected with a second feeding branch, for example, the toroidal coil 211 is connected with a A second feed branch 211a.
  • the second feeding branch (eg, the second feeding branch 211 a ) is connected to the reflection plate 3 . It should be noted that the number of the second dielectric plates included in the second antenna array 2 may be set to other values according to actual requirements, which is not specifically limited in this application.
  • the first antenna array 1 is disposed at the middle position of the six second dielectric plates of the second antenna array 2 , which covers the second dielectric plates 23 and 24 when viewed from the top.
  • the application can adjust the relative positions of the first antenna array 1 and the second antenna array 2 according to actual needs, the heights of the first antenna array 1 and the second antenna array 2 and the height difference between them, and /or, the spacing between each of the second dielectric plates in the second antenna array 2 is not specifically limited.
  • the number of the above-mentioned components included in the above-mentioned first antenna array 1 and the second antenna array 2 and the specific size of each component can be determined according to the horizontal beam width, vertical beam width, maximum radiation direction and gain of the antenna in practical applications. It is set according to the needs, and there is no specific limitation on this.
  • Figure 3 shows the simulated reflection coefficient curve of the low frequency antenna array (the first antenna array). As shown in Figure 3, the impedance bandwidth (
  • FIG. 4 shows the H-plane pattern of the low-frequency antenna array (first antenna array) at 800Mhz
  • FIG. 5 shows the H-plane pattern of the high-frequency antenna array (first antenna array) at 2GHz.
  • the solid lines in Figures 4 and 5 represent the simulated main polarization patterns, and the dashed lines represent the simulated cross-polarization patterns.
  • the multi-band common-aperture antenna provided in this embodiment is composed of a low-frequency antenna array (first antenna array) and a high-frequency antenna array (second antenna array), which realizes the coexistence of high-frequency and low-frequency antenna arrays and the effect that standing waves do not affect each other. .
  • FIGS 6a-6c are schematic structural diagrams of the second embodiment of the multi-band common aperture antenna of the present application.
  • the antenna structure of this embodiment is similar to the antenna structure of the above-mentioned first embodiment, and the differences are:
  • the second part eg, the second part 152b
  • the first resonant circuit 31 includes two parallel slits 311 and 312 provided on the second part 152b, one slit 311 A capacitor 311a and an inductor 311b are provided, and a capacitor 312a is provided on the other slit 312 .
  • the structures of the dipole units 16 - 18 in the first antenna array 1 are the same as the structure of the dipole unit 15 , and the above description about the dipole unit 15 can be referred to, which will not be repeated here.
  • Figure 7 shows the simulated reflection coefficient curve of the low frequency antenna array (the first antenna array). As shown in Figure 7, the impedance bandwidth (
  • FIG. 8 shows the H-plane pattern of the low-frequency antenna array (first antenna array) at 800Mhz
  • FIG. 9 shows the H-plane pattern of the high-frequency antenna array (first antenna array) at 2GHz.
  • the solid lines in Figures 8 and 9 represent simulated main polarization patterns, and the dashed lines represent simulated cross-polarization patterns.
  • a lumped resonant circuit is added on the basis of Embodiment 1, and slits are arranged at multiple positions on the radiation arm of the first antenna array parallel to the second part of the reflector, and capacitors and inductors are embedded in the slits , forming a resonant circuit.
  • the resonant circuit consists of a parallel resonant circuit of a capacitor and an inductor in series with a capacitor to form a series resonant circuit. In the low frequency band, the resonant circuit performs series resonance, which is equivalent to a short-circuit state, so that it can maintain the complete performance of the low-frequency antenna.
  • the resonant circuit performs parallel resonance, which is equivalent to an open-circuit state.
  • the low-frequency antenna array is equivalent to an interrupted non-resonant structure, so the impact on the high-frequency antenna array can be further reduced, thereby achieving the effect of coexistence of the high-frequency and low-frequency antenna arrays with a common aperture.
  • the low-frequency antenna array is equivalent to a broken scattered metal sheet, this scattered metal sheet is equivalent to a decoupling surface, which has a reducing effect on the coupling between the high-frequency antenna arrays.
  • the low-frequency antenna array can also be used as a decoupling structure of the high-frequency antenna array, so that the coexistence of high-frequency antennas and the decoupling function of high-frequency antennas can be realized at the same time.
  • FIGS 10a-10c are schematic structural diagrams of the third embodiment of the multi-band common aperture antenna of the present application.
  • the antenna structure of this embodiment is similar to the antenna structure of the above-mentioned first embodiment, and the differences are:
  • the second part eg, the second part 152b
  • the second resonant circuit 32 includes an interdigital capacitor 321 and an inductance 322, wherein the interdigital capacitor 321 is composed of two comb-shaped microscopic 321a and 321b are crossed, and the inductor 322 is formed by bending a microstrip line.
  • the structures of the dipole units 16 - 18 in the first antenna array 1 are the same as the structure of the dipole unit 15 , and the above description about the dipole unit 15 can be referred to, which will not be repeated here.
  • Figure 11 shows the simulated reflection coefficient curve of the low frequency antenna array (the first antenna array). As shown in Figure 11, the impedance bandwidth (
  • FIG. 12 shows the H-plane pattern of the low-frequency antenna array (first antenna array) at 800Mhz
  • FIG. 13 shows the H-plane pattern of the high-frequency antenna array (first antenna array) at 2GHz.
  • the solid lines in Figures 12 and 13 represent simulated main polarization patterns, and the dashed lines represent simulated cross-polarization patterns.
  • distributed resonant circuits are added on the basis of Embodiment 1, and resonant circuits are set at multiple positions on the radiating arm of the first antenna array parallel to the second part of the reflector.
  • the inductance of the lumped resonant circuit is replaced by a distributed long-line inductance, which is easier to process.
  • the resonant circuit consists of a parallel resonant circuit of a capacitor and an inductor in series with a capacitor to form a series resonant circuit.
  • the resonant circuit In the low frequency band, the resonant circuit performs series resonance, which is equivalent to a short-circuit state, so that it can maintain the complete performance of the low-frequency antenna. In the high frequency band, the resonant circuit performs parallel resonance, which is equivalent to an open-circuit state. At this time, the low-frequency antenna array is equivalent to an interrupted non-resonant structure, so the impact on the high-frequency antenna array can be further reduced, thereby achieving the effect of coexistence of the high-frequency and low-frequency antenna arrays with a common aperture.
  • the low-frequency antenna array is equivalent to a broken scattered metal sheet, this scattered metal sheet is equivalent to a decoupling surface, which has a reducing effect on the coupling between the high-frequency antenna arrays.
  • the low-frequency antenna array can also be used as a decoupling structure of the high-frequency antenna array, so that the coexistence of high-frequency antennas and the decoupling function of high-frequency antennas can be realized at the same time.
  • Figures 14a-14d are schematic structural diagrams of Embodiment 4 of the multi-band common aperture antenna of the present application.
  • the antenna of this embodiment may include: a first antenna array 1, a second antenna array 2 and a reflector 3. Both the first antenna array 1 and the second antenna array 2 are disposed above the reflector 3 through a plurality of pillars. The frequency band of the first antenna array 1 is lower than the frequency band of the second antenna array 2 .
  • the first antenna array 1 includes a first dielectric plate 11 , the first dielectric plate 11 is parallel to the reflector 3 , and four annular coils evenly distributed around the center point 11 a of the first dielectric plate 11 are arranged on the first medium 11 . 111-114. Two annular coils disposed opposite to each other form a dipole unit. For example, the annular coil 111 and the annular coil 113 form a dipole unit, and the annular coil 112 and the annular coil 114 form a dipole unit.
  • a dipole unit is connected to a Y-shaped feed structure, for example, the toroidal coil 111 and the toroidal coil 113 form a dipole unit connected to a Y-shaped feed structure 115, and the toroidal coil 112 and the toroidal coil 114 form a The dipole unit is connected to a Y-feed structure 116 .
  • the second antenna array 2 includes a second dielectric plate 21 and a third dielectric plate 22. Both the second dielectric plate 21 and the third dielectric plate 22 are parallel to the reflecting plate 3, and the second dielectric plate 21 and the third dielectric plate 22 are in one-to-one correspondence. , the second medium 21 is located above the corresponding third medium plate 22 . A first through hole 21a and a metal layer 211 surrounding the first through hole 21a are disposed at the center of the second dielectric plate 21 . A second through hole 22a is disposed at the center of the third dielectric plate 22, and four J-shaped feeding structures 221-224 are evenly distributed around the second through hole 22a. The four J-shaped feeding structures 221-224 are connected to the feedback plate 3 through the second through holes 22a.
  • the number of J-type feeding structures may be 3, 4, etc., which is not specifically determined.
  • the connecting line between the center point of the first through hole 21a and the center point of the second through hole 22a is perpendicular to the reflector, that is, the first through hole 21a and the second through hole 22a are aligned up and down, so as to pass and connect the above-mentioned feeding structure to reflector 3.
  • the above-mentioned Y-shaped feeding structures 115 and 116 are connected to the reflection plate 3 through the first through hole 21a and the second through hole 22a.
  • the first dielectric plate 11 is located above the second dielectric plate 21 .
  • the first antenna array 1 is composed of two pairs of dipole units and two Y-shaped feeding structures, and its working frequency band is 1.71-2.69GHz.
  • the second antenna array 2 adopts the form of a differentially fed laminated patch antenna, which is composed of a driving patch (the second dielectric plate), a parasitic patch (the third dielectric plate) and four J-type feeding structures. Its working frequency band is 3.3-3.6GHz and 4.8-5GHz.
  • the first antenna array 1 and the second antenna array 2 both use coaxial feeding. In order to enable the coaxial line to reach the first dielectric plate directly, a through hole with the same radius is opened in the center of the second dielectric plate and the third dielectric plate. , the influence of the coaxial line on the second antenna array 2 can be reduced as much as possible.
  • the surface radiation patch of the upper first dielectric plate is designed as a frequency selective surface (FSS), as shown in Figure 14b, each pair of The pole arm is designed as a three-ring structure, the outer ring is used as a radiating element, and the double-ring structure loaded inside realizes the function of frequency selection.
  • the three-ring structure circuit can be equivalent to a resonant circuit with three capacitors and inductors in series, and the three series resonant circuits in parallel correspond to the three transmission zero points respectively.
  • the three parallel series resonant circuits can be equivalent Two parallel resonant circuits of capacitors and inductors are connected in parallel, that is to say, there must be one transmission pole in every two transmission zeros, so there are two transmission poles between the three transmission zeros, which can make the electromagnetic waves in the corresponding frequency band pass through normally. low frequency unit.
  • the positions of the three zero points are controlled by the side lengths of the three square rings, so the transmission frequency band can be properly adjusted by adjusting the size of the square rings.
  • Figures 15a-15b show an exemplary schematic diagram of a multi-band co-aperture antenna array.
  • the first antenna array 1 is a 1 ⁇ 4 low-frequency array
  • the second antenna array 2 is a 1 ⁇ 8 medium-high array frequency array
  • the first antenna array 1 and the second antenna array 2 are arranged on the reflector 3 in a coaxial layout
  • the odd-numbered units of the second antenna array 2 are placed under one of the units of the first antenna array 1.
  • the common aperture structure does not require additional installation space, which is equivalent to adding medium and high frequency antenna units on the basis of the original low frequency antenna array aperture, and ensures the normal operation of both.
  • the application can adjust the relative positions of the first antenna array 1 and the second antenna array 2 according to actual needs, the heights of the first antenna array 1 and the second antenna array 2 and the height difference between each other, the first antenna array 1 and the second antenna array 2
  • the distance between each first dielectric plate in an antenna array 1, the distance between each second dielectric plate in the second antenna array 2, and/or the distance between each third dielectric plate in the second antenna array 2 which is not specifically limited.
  • the number of the above-mentioned components included in the above-mentioned first antenna array 1 and the second antenna array 2 and the specific size of each component can be set according to the pattern, gain requirements and sidelobe requirements of the array antenna in practical applications , without any specific limitation.
  • Fig. 16 shows the standing wave and isolation of the intermediate frequency antenna array
  • Fig. 17 shows the standing wave and isolation of the high frequency antenna array
  • Figures 18-20 show the H-plane and V-plane patterns of the antenna array at 2.2GHz, 3.6GHz, and 5GHz, respectively.
  • Figures 21, 22, and 23 show the H-plane and V-plane patterns of the antenna array at 2.2GHz, 3.6GHz, and 5GHz, respectively.
  • the solid line in Figure 18-23 represents the simulated main polarization pattern
  • the single-dot dashed line represents the test main polarization pattern
  • the dashed line represents the simulated cross-polarization pattern
  • the double-dotted line represents the tested cross-polarization pattern.
  • FIG. 24 is a schematic structural diagram of Embodiment 5 of a multi-band common aperture antenna according to the present application.
  • the antenna structure of this embodiment is similar to the antenna structure of the above-mentioned Embodiment 4, and the difference is that it also includes a third antenna array 4.
  • the third antenna array 4 is arranged above the reflector 3 .
  • the frequency band of the third antenna array 4 is lower than that of the first antenna array 1
  • the highest point of the third antenna array 4 is higher than the highest point of the first antenna array 1 .
  • the third antenna array may adopt the structure of the first antenna array in Embodiments 1 to 3, and details are not described herein again.
  • This embodiment is a common aperture antenna supporting three frequency bands, high, middle and low.
  • the antenna adopts a layered structure as a whole.
  • the upper low frequency antenna is similar to the first array antenna covering the 690-960 MHz frequency band in the first to third embodiments, and is embedded in the lower layer with a support structure.
  • the low-frequency antenna uses a distributed capacitance and inductance wave-transmitting structure, which generates series resonance for low-frequency signals to form a short circuit and works normally, and generates parallel resonance to form an open circuit in the middle and high frequency bands, so as to achieve the required low-frequency antenna to transmit waves to medium and high frequency signals. function, so that the medium and high frequency signals can be freely radiated, and the influence of the low frequency antenna on the pattern and gain of the medium and high frequency antenna is minimized.
  • the ADS decoupling function of the upper low frequency antenna can uniformly decouple the lower medium and high frequency antenna array. To a certain extent, the coupling between the lower antenna units is weakened and the distortion of the pattern is avoided.
  • the lower middle and high frequency array adopts the upper and lower coaxial structure
  • the upper middle frequency antenna covers the 1.71-2.69GHZ frequency band
  • the lower layer high frequency antenna covers the 3.3-3.8GHz frequency band. Pattern distortion due to high frequency antenna effects is minimized.
  • the three-band common aperture array antenna is realized by applying the capacitive and inductive structure wave transmission, ADS decoupling and FSS wave transmission technology respectively. The wave-transmitting and decoupling functions achieve excellent pattern performance and gain requirements.
  • FIG. 25 is a schematic structural diagram of an embodiment of a communication device of the present application.
  • the communication device 2500 in this embodiment includes: a processor 2502 and a communication interface 2503 , wherein the communication interface 2503 may include the ones in the first to fifth embodiments above. Any one of the multi-band co-aperture antennas.
  • the communication device 2500 may further include a memory 2501 .
  • the communication device 2500 may also include a bus 2504 .
  • the communication interface 2503, the processor 2502 and the memory 2501 can be connected to each other through the bus 2504;
  • the bus 2504 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus etc.
  • the bus 2504 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 25, but it does not mean that there is only one bus or one type of bus.
  • the processor 2502 may execute various functions of the communication device 2500 by running or executing programs stored in the memory 2501 .
  • the communication device 2500 shown in FIG. 25 may be a cloud or a terminal involved in this embodiment of the present application.
  • the processor 2502 can execute the actions performed by the cloud in the above method examples by running or executing the program stored in the memory 2501 .
  • the processor 2502 can execute the actions performed by the terminal in the foregoing method examples by running or executing a program stored in the memory 2501 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供一种多频段共口径天线和通信设备。本申请多频段共口径天线,包括:第一天线阵列、第二天线阵列和反射板;第一天线阵列的频段低于第二天线阵列的频段;其中,第一天线阵列包括四个垂直于反射板的第一介质板;相邻两个第一介质板相互垂直;第一天线阵列包括四个蝶形镂空的偶极子单元;偶极子单元包括两个辐射臂,两个辐射臂分别印刷于相邻的两个第一介质板上;辐射臂包括第一部分和第二部分;在第一介质板上设置有第一馈电枝节;第二部分在垂直于反射板的方向上具有设定宽度;第二天线阵列包括多个第二介质板;任意一个第二介质板上设置有四个环状线圈,环状线圈连接有一个第二馈电枝节。实现高低频天线阵列的共存且驻波互不影响的效果。

Description

多频段共口径天线和通信设备
本申请要求于2020年7月3日提交中国专利局、申请号为202021278642.5、申请名称为“多频段共口径天线和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种多频段共口径天线和通信设备。
背景技术
随着第五代(5G)移动通信***迅速的发展,基站天线需要同时满足多个频段要求。目前主要采用高低频天线共轴嵌套的方式,使不同频段的天线部署在同一基站空间内工作而互不影响。受限于天线口径,新加入的5G频段天线无法直接加入现有天线结构中,这是由于传统的共轴嵌套结构是使低频天线尽可能的避开高频天线,从而减小高低频天线之间的耦合,并避免高频方向图的畸变。但是这种结构要求天线频率比较大,不适合用于5G频段天线与2G、3G和4G频段天线共存设计。
先进设计***(advanced design system,ADS)技术是一种能够有效减弱天线阵列单元之间耦合的新技术。在多频段共口径天线设计时,通过将ADS结构应用到天线阵列,能够有效的减弱天线单元之间的耦合。
但是上述天线结构需要在当前天线口径的基础上,增加一定的空间来放置ADS,从而导致阵列天线整体所占用的空间增大,且对两个以上频段的天线无法实现各自频段内去耦。
发明内容
本申请提供一种多频段共口径天线和通信设备,以实现高低频天线阵列的共存且驻波互不影响的效果。
第一方面,本申请提供一种多频段共口径天线,包括:第一天线阵列、第二天线阵列和反射板;所述第一天线阵列和所述第二天线阵列均设置于所述反射板上方;所述第一天线阵列的频段低于所述第二天线阵列的频段,所述第一天线阵列的最高处高于所述第二天线阵列的最高处;其中,所述第一天线阵列包括四个第一介质板;所述四个第一介质板均与所述反射板垂直;所述四个第一介质板围成中空结构,相邻两个所述第一介质板相互垂直;所述第一天线阵列包括四个蝶形镂空的偶极子单元;任意一个所述偶极子单元包括两个辐射臂,所述两个辐射臂分别印刷于相邻的两个所述第一介质板上,且所述两个辐射臂之间的夹角为90°;任意一个所述辐射臂包括垂直于所述反射板的第一部分和平行于所述反射板的第二部分,所述第一部分和所述第二部分连接;在所述第一介质板上印刷所述第一部分的位置设置有第一馈电枝节,所述第一馈电枝节与所述第一部分分别位于所述第一介质板的两个面上;所述第一馈电枝节连接至所述反射板;所述第二部分在垂直于所述反射板的方向上具有设定宽度;所述第二天线阵列包括多个第二介质板,所述多个第二介质板均与所述反射板平行;任意一个所述第二介质板上设置有四个环状线圈,任意一个所述 环状线圈连接有一个第二馈电枝节;所述第二馈电枝节连接至所述反射板。
本实施例提供的多频段共口径天线,由低频天线阵列(第一天线阵列)和高频天线阵列(第二天线阵列)组成,实现高低频天线阵列的共存、且驻波互不影响的效果。
在一种可能的实现方式中,所述第一天线阵列中对角线上的两个所述偶极子单元具有相同的极化方向。
在一种可能的实现方式中,所述第一天线阵列中相邻的两个所述偶极子单元组成±45°的双极方向。
在一种可能的实现方式中,所述第二部分呈现非闭合的环状结构。
在一种可能的实现方式中,所述第二部分上设置有集总的第一谐振电路;所述第一谐振电路包括在所述第二部分上设置的两条平行的缝隙,一个所述缝隙上设置电容和电感,另一个所述缝隙上设置电容。
本实施例加入集总的谐振电路,在第一天线阵列的辐射臂的上平行于反射板的第二部分的多处位置设置缝隙,并在缝隙中嵌入电容和电感,形成谐振电路。该谐振电路由一个电容和电感的并联谐振电路串联一个电容再形成串联谐振电路。在低频段,该谐振电路进行串联谐振,相当于短路状态,使其能保持低频天线的完整性能,在高频段,该谐振电路进行并联谐振,相当于开路状态,对于高频天线阵列来说,此时低频天线阵列相当于被打断的非谐振结构,因此对高频天线阵列的影响可以进一步减小,从而实现高低频天线阵列共口径共存的效果。另外,在高频段时,由于低频天线阵列相当于打断的分散金属片,这种分散的金属片相当于一个去耦表面,对高频天线阵列之间的耦合有减小的作用,因此此时低频天线阵列又可作为高频天线阵列的去解耦结构,从而可以同时实现高低频天线共存与高频天线间解耦的功能。
在一种可能的实现方式中,所述第二部分上设置有分布式的第二谐振电路;所述第二谐振电路包括交指电容和电感,其中,所述交指电容由两个梳状微带交叉形成;所述电感由一条微带线弯曲形成。
本实施例加入分布式的谐振电路,在第一天线阵列的辐射臂的上平行于反射板的第二部分的多处位置设置谐振电路,由分布式的交指电容代替了实施例二中的集总的谐振电路的电容,由分布式的长线电感代替了集总的谐振电路的电感,这种分布式的元件更易于加工。该谐振电路由一个电容和电感的并联谐振电路串联一个电容再形成串联谐振电路。在低频段,该谐振电路进行串联谐振,相当于短路状态,使其能保持低频天线的完整性能,在高频段,该谐振电路进行并联谐振,相当于开路状态,对于高频天线阵列来说,此时低频天线阵列相当于被打断的非谐振结构,因此对高频天线阵列的影响可以进一步减小,从而实现高低频天线阵列共口径共存的效果。另外,在高频段时,由于低频天线阵列相当于打断的分散金属片,这种分散的金属片相当于一个去耦表面,对高频天线阵列之间的耦合有减小的作用,因此此时低频天线阵列又可作为高频天线阵列的去解耦结构,从而可以同时实现高低频天线共存与高频天线间解耦的功能。
第二方面,本申请提供一种多频段共口径天线,包括:第一天线阵列和第二天线阵列和反射板;所述第一天线阵列和所述第二天线阵列均通过多个支柱设置于所述反射板上方;所述第一天线阵列的频段低于所述第二天线阵列的频段;其中,所述第一天线阵列包括多个第一介质板,所述多个第一介质板均与所述反射板平行;任意一个所述第一介质板 上设置有围绕着所述第一介质板的中心点均匀分布的四个环状线圈;相对设置的两个所述环状线圈组成一个偶极子单元;所述偶极子单元连接一个Y型馈电结构;所述第二天线阵列包括多个第二介质板和多个第三介质板,所述多个第二介质板和所述多个第三介质板均与所述反射板平行;所述多个第二介质板和所述多个第三介质板一一对应,所述第二介质板位于对应的所述第三介质板的上方;任意一个所述第二介质板的中心位置设置有第一通孔,以及围绕所述第一通孔的金属层;任意一个所述第三介质板的中心位置设置有第二通孔,以及围绕所述第二通孔均匀分布的多个J型馈电结构;所述多个J型馈电结构穿过所述第二通孔连接至所述反馈板;所述Y型馈电结构穿过所述第一通孔和所述第二通孔连接至所述反射板;所述多个第一介质板位于所述多个第二介质板的上方。
本实施例提供的多频段共口径天线,由低频天线阵列(第一天线阵列)和高频天线阵列(第二天线阵列)组成,实现高低频天线阵列的共存、且驻波互不影响的效果。
在一种可能的实现方式中,所述多个J型馈电结构的数量为4。
在一种可能的实现方式中,所述第一通孔的中心点和所述第二通孔的中心点的连线垂直于所述反射板。
在一种可能的实现方式中,还包括:第三天线阵列;所述第三天线阵列设置于所述反射板上方;所述第三天线阵列的频段低于所述第一天线阵列的频段,所述第三天线阵列的最高处高于所述第一天线阵列的最高处;其中,所述第三天线阵列包括四个第三介质板;所述四个第三介质板均与所述反射板垂直;所述四个第三介质板围成中空结构,相邻两个所述第三介质板相互垂直;所述第三天线阵列包括四个蝶形镂空的偶极子单元;任意一个所述偶极子单元包括两个辐射臂,所述两个辐射臂分别印刷于相邻的两个所述第三介质板上,且所述两个辐射臂的夹角为90°;任意一个所述辐射臂包括垂直于所述反射板的第一部分和平行于所述反射板的第二部分,所述第一部分和所述第二部分连接;在所述第三介质板上印刷所述第一部分的位置设置有第一馈电枝节,所述第一馈电枝节与所述第一部分分别位于所述第三介质板的两个面上;所述第一馈电枝节连接至所述反射板;所述第二部分在垂直于所述反射板的方向上具有设定宽度。
本实施例是支持高中低三个频带的共口径天线,该天线整体采用分层式结构,上层低频天线类似实施例一至三中覆盖690-960MHz频段的第一阵列天线,采用支撑式结构嵌入下层中频天线(实施例四中的第一阵列天线)和高频天线(实施例四中的第二阵列天线)阵列的间隙。其中,低频天线应用分布式电容和电感透波结构,对于低频信号产生串联谐振形成短路正常工作,在中高频段时产生并联谐振形成开路,从而实现所需要的低频天线对中高频信号的透波功能,使得中高频信号可以自由辐射,将低频天线对中高频天线的方向图和增益影响降到最小,另外上层低频天线的ADS解耦功能可以统一对下层的中高频天线阵列进行解耦,最大程度上削弱下层天线单元之间的耦合,避免方向图的畸变。下层的中高频阵列采用上下层同轴结构,上层的中频天线覆盖1.71-2.69GHZ频段,下层高频天线覆盖3.3-3.8GHz频段,其设计成FSS可以使得高频信号能够正常辐射,将中频天线对高频天线影响所造成的方向图畸变最小化。最终,作为低频天线与中高频天线分层嵌入,中高频天线同轴分层的整体结构,分别应用电容和电感结构透波、ADS解耦和FSS透波技术实现了该三频段共口径阵列天线的透波和解耦功能,获得了优异的方向图性能和增益需求。
在一种可能的实现方式中,所述第三天线阵列中对角线上的两个所述偶极子单元具有相同的极化方向。
在一种可能的实现方式中,所述第三天线阵列中相邻的两个所述偶极子单元组成±45°的双极方向。
在一种可能的实现方式中,所述第二部分呈现非闭合的环状结构。
在一种可能的实现方式中,所述第二部分上设置有集总的第一谐振电路;所述第一谐振电路包括在所述第二部分上设置的两条平行的缝隙,一个所述缝隙上设置电容和电感,另一个所述缝隙上设置电容。
在一种可能的实现方式中,所述第二部分上设置有分布式的第二谐振电路;所述第二谐振电路包括交指电容和电感,其中,所述交指电容由两个梳状微带交叉形成;所述电感由一条微带线弯曲形成。
第三方面,本申请提供一种通信设备,包括:上述第一至二方面中任一项所述的多频段共口径天线。
附图说明
图1a-1c为本申请多频段共口径天线实施例一的结构示意图图;
图2示出了辐射臂第二部分的另一个示例性的结构示意图;
图3示出了低频天线阵列(第一天线阵列)仿真的反射系数曲线;
图4示出了低频天线阵列(第一天线阵列)在800Mhz的H面方向图;
图5示出了高频天线阵列(第一天线阵列)在2GHz处的H面方向图;
图6a-6c为本申请多频段共口径天线实施例二的结构示意图图;
图7示出了低频天线阵列(第一天线阵列)仿真的反射系数曲线;
图8示出了低频天线阵列(第一天线阵列)在800Mhz的H面方向图;
图9示出了高频天线阵列(第一天线阵列)在2GHz处的H面方向图;
图10a-10c为本申请多频段共口径天线实施例三的结构示意图图;
图11示出了低频天线阵列(第一天线阵列)仿真的反射系数曲线;
图12示出了低频天线阵列(第一天线阵列)在800Mhz的H面方向图;
图13示出了高频天线阵列(第一天线阵列)在2GHz处的H面方向图;
图14a-14d为本申请多频段共口径天线实施例四的结构示意图图;
图15a-15b示出了多频段共口径天线阵列的一个示例性的示意图;
图16示出了中频天线阵列的驻波和隔离度;
图17示出了高频天线阵列的驻波和隔离度;
图18-20分别示出了在2.2GHz、3.6GHz、5GHz下天线阵列的H面和V面的方向图;
图21-23分别示出了在2.2GHz、3.6GHz、5GHz下天线阵列的H面和V面的方向图;
图24为本申请多频段共口径天线实施例五的结构示意图图;
图25为本申请通信设备实施例的结构示意图图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申 请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
图1a-1c为本申请多频段共口径天线实施例一的结构示意图图,如图1a、1b和1c所示,本实施例的天线可以包括:第一天线阵列1、第二天线阵列2和反射板3,第一天线阵列1和第二天线阵列2均设置于反射板3上方,第一天线阵列1的频段低于第二天线阵列2的频段,第一天线阵列1的最高处高于第二天线阵列2的最高处。
第一天线阵列1包括四个第一介质板11-14,该四个第一介质板11-14均与反射板3垂直。四个第一介质板11-14围成中空结构,相邻两个第一介质板相互垂直,例如第一介质板11和第二介质板12垂直,第二介质板12和第三介质板13垂直,第三介质板13和第四介质板14垂直,第四介质板14和第一介质板11垂直。
第一天线阵列1包括四个蝶形镂空的偶极子单元15-18,其中任意一个偶极子单元,例如偶极子单元15,包括两个辐射臂151和152,该两个辐射臂151和152分别印刷于相邻的两个第一介质板上,例如,辐射臂151印刷于第一介质板11上,辐射臂152印刷于第一介质板12上。由于相邻两个第一介质板相互垂直,因此印刷于相邻的两个第一介质板上的辐射臂之间的夹角为90°,例如辐射臂151和辐射臂152之间的夹角为90°。位于同一第一介质板上的两个辐射臂彼此接近,可以起到展宽带宽的作用。辐射臂151,包括垂直于反射板的第一部151a和平行于反射板的第二部分151b,第一部分151a和第二部分151b连接。在第一介质板11上印刷第一部分151a的位置设置有第一馈电枝节19,第一馈电枝节19与第一部分151a分别位于第一介质板11的两个面上,第一馈电枝19连接至反射板3,该第一馈电枝节19例如可以采用微带巴伦。第二部分151b在垂直于反射板3的方向上具有设定宽度。辐射臂152,包括垂直于反射板的第一部152a和平行于反射板的第二部分152b,第一部分152a和第二部分152b连接。在第一介质板12上印刷第一部分152a的位置设置有第一馈电枝节20,第一馈电枝节20与第一部分152a分别位于第一介质板12的两个面上,第一馈电枝20连接至反射板3。上述第二部分可以呈现非闭合的环状结构,如图1b所示,第二部分151b呈现上下对称的环状结构,在对称轴位置设置一个缝隙形成非闭合结构。图2示出了辐射臂第二部分的另一个示例性的结构示意图,如图2 所示,该第二部分151b与图1b所示的结构相比较,只有下半部分。亦即,辐射臂第二部分的结构可以采用只有一个缝隙的非闭合环状结构,也可以采用开放式的半环状结构。第二部分151b在垂直于反射板3的方向上具有设定宽度,即该第二部分151b不能呈现直线状态,需要有一定的宽度,从而满足天线的辐射需求,使低频天线阵列(第一天线阵列1)对高频天线阵列(第二天线阵列2)的方向图和增益影响降到最小,从而实现高低频天线共口径工作的效果。
第一天线阵列1在对角线上的两个偶极子单元可以具有相同的极化方向,而相邻的两个偶极子单元组成±45°的双极方向。例如,偶极子单元15和偶极子单元16相邻,二者的极化方向分别为±45°;偶极子单元16和偶极子单元17相邻,二者的极化方向分别为±45°;偶极子单元17和偶极子单元18相邻,二者的极化方向分别为±45°;偶极子单元18和偶极子单元15相邻,二者的极化方向分别为±45°。由此可见,位于上述中空结构的对角线上的两个偶极子单元15和17具有相同的极化方向;位于上述中空结构的另一条对角线上的两个偶极子单元16和18具有相同的极化方向。
需要说明的是,第一天线阵列1中的偶极子单元16-18的结构与偶极子单元15的结构相同,均可参照上述关于偶极子单元15的描述,此处不再赘述。
第二天线阵列2包括六个第二介质板21-26,该六个第二介质板21-26均与反射板3平行。任意一个第二介质板上,例如第二介质板21,设置有四个环状线圈211-214,其中环状线圈211-214分别连接有一个第二馈电枝节,例如环状线圈211连接有一个第二馈电枝节211a。第二馈电枝节(例如第二馈电枝节211a)连接至反射板3。需要说明的是,第二天线阵列2包括的第二介质板的数量可以根据实际需求设置为其他值,本申请对此不做具体限定。
如图1c所示,第一天线阵列1设置于第二天线阵列2的六个第二介质板的中间位置,从俯视方向上看其覆盖了第二介质板23和24。
需要说明的是,本申请可以根据实际需求,调整第一天线阵列1和第二天线阵列2的相对位置,第一天线阵列1和第二天线阵列2各自的高度及彼此间的高度差,和/或,第二天线阵列2中各个第二介质板之间的间距,对此不做具体限定。而上述第一天线阵列1和第二天线阵列2中所包含的上述各个部件的数量,以及各个部件的具体尺寸可根据实际应用中该天线的水平波束宽度、垂直波束宽度、最大辐射方向和增益需求来设定,对此也不做具体限定。
图3示出了低频天线阵列(第一天线阵列)仿真的反射系数曲线,如图3所示,天线的阻抗带宽(|Γ|<-10dB)可以覆盖690Mhz-960Mhz。图4示出了低频天线阵列(第一天线阵列)在800Mhz的H面方向图,图5示出了高频天线阵列(第一天线阵列)在2GHz处的H面方向图。图4和5中的实线表示仿***极化方向图,虚线表示仿真的交叉极化方向图。
本实施例提供的多频段共口径天线,由低频天线阵列(第一天线阵列)和高频天线阵列(第二天线阵列)组成,实现高低频天线阵列的共存、且驻波互不影响的效果。
图6a-6c为本申请多频段共口径天线实施例二的结构示意图图,如图6a、6b和6c所示,本实施例的天线结构与上述实施例一中的天线结构类似,区别在于:第二部分(例如第二部分152b)上设置有集总的第一谐振电路31,该第一谐振电路31包括在第二部分 152b上设置的两条平行的缝隙311和312,一个缝隙311上设置电容311a和电感311b,另一个缝隙312上设置电容312a。
需要说明的是,第一天线阵列1中的偶极子单元16-18的结构与偶极子单元15的结构相同,均可参照上述关于偶极子单元15的描述,此处不再赘述。
图7示出了低频天线阵列(第一天线阵列)仿真的反射系数曲线,如图7所示,天线的阻抗带宽(|Γ|<-10dB)可以覆盖690Mhz-960Mhz。图8示出了低频天线阵列(第一天线阵列)在800Mhz的H面方向图,图9示出了高频天线阵列(第一天线阵列)在2GHz处的H面方向图。图8和9中的实线表示仿***极化方向图,虚线表示仿真的交叉极化方向图。
本实施例在实施例一的基础上加入集总的谐振电路,在第一天线阵列的辐射臂的上平行于反射板的第二部分的多处位置设置缝隙,并在缝隙中嵌入电容和电感,形成谐振电路。该谐振电路由一个电容和电感的并联谐振电路串联一个电容再形成串联谐振电路。在低频段,该谐振电路进行串联谐振,相当于短路状态,使其能保持低频天线的完整性能,在高频段,该谐振电路进行并联谐振,相当于开路状态,对于高频天线阵列来说,此时低频天线阵列相当于被打断的非谐振结构,因此对高频天线阵列的影响可以进一步减小,从而实现高低频天线阵列共口径共存的效果。另外,在高频段时,由于低频天线阵列相当于打断的分散金属片,这种分散的金属片相当于一个去耦表面,对高频天线阵列之间的耦合有减小的作用,因此此时低频天线阵列又可作为高频天线阵列的去解耦结构,从而可以同时实现高低频天线共存与高频天线间解耦的功能。
图10a-10c为本申请多频段共口径天线实施例三的结构示意图图,如图10a、10b和10c所示,本实施例的天线结构与上述实施例一中的天线结构类似,区别在于:第二部分(例如第二部分152b)上设置有分布式的第二谐振电路32,该第二谐振电路32包括交指电容321和电感322,其中,交指电容321由两个梳状微321a和321b交叉形成,电感322由一条微带线弯曲形成。
需要说明的是,第一天线阵列1中的偶极子单元16-18的结构与偶极子单元15的结构相同,均可参照上述关于偶极子单元15的描述,此处不再赘述。
图11示出了低频天线阵列(第一天线阵列)仿真的反射系数曲线,如图11所示,天线的阻抗带宽(|Γ|<-10dB)可以覆盖690Mhz-960Mhz。图12示出了低频天线阵列(第一天线阵列)在800Mhz的H面方向图,图13示出了高频天线阵列(第一天线阵列)在2GHz处的H面方向图。图12和13中的实线表示仿***极化方向图,虚线表示仿真的交叉极化方向图。
本实施例在实施例一的基础上加入分布式的谐振电路,在第一天线阵列的辐射臂的上平行于反射板的第二部分的多处位置设置谐振电路,由分布式的交指电容代替了实施例二中的集总的谐振电路的电容,由分布式的长线电感代替了集总的谐振电路的电感,这种分布式的元件更易于加工。该谐振电路由一个电容和电感的并联谐振电路串联一个电容再形成串联谐振电路。在低频段,该谐振电路进行串联谐振,相当于短路状态,使其能保持低频天线的完整性能,在高频段,该谐振电路进行并联谐振,相当于开路状态,对于高频天线阵列来说,此时低频天线阵列相当于被打断的非谐振结构,因此对高频天线阵列的影响可以进一步减小,从而实现高低频天线阵列共口径共存的效果。另外,在高频段时,由于 低频天线阵列相当于打断的分散金属片,这种分散的金属片相当于一个去耦表面,对高频天线阵列之间的耦合有减小的作用,因此此时低频天线阵列又可作为高频天线阵列的去解耦结构,从而可以同时实现高低频天线共存与高频天线间解耦的功能。
图14a-14d为本申请多频段共口径天线实施例四的结构示意图图,如图14a-14d所示,本实施例的天线可以包括:第一天线阵列1和第二天线阵列2和反射板3,第一天线阵1和第二天线阵列2均通过多个支柱设置于反射板3上方。第一天线阵列1的频段低于第二天线阵列2的频段。
第一天线阵列1包括第一介质板11,该第一介质板11与反射板3平行,第一介质11上设置有围绕着第一介质板11的中心点11a均匀分布的四个环状线圈111-114。相对设置的两个环状线圈组成一个偶极子单元,例如,环状线圈111和环状线圈113组成一个偶极子单元,环状线圈112和环状线圈114组成一个偶极子单元。一个偶极子单元连接一个Y型馈电结构,例如,环状线圈111和环状线圈113组成一个偶极子单元连接一个Y型馈电结构115,环状线圈112和环状线圈114组成一个偶极子单元连接一个Y型馈电结构116。
第二天线阵列2包括第二介质板21和第三介质板22,第二介质板21和第三介质板22均与反射板3平行,第二介质板21和第三介质板22一一对应,第二介质21位于对应的第三介质板22的上方。第二介质板21的中心位置设置有第一通孔21a,以及围绕第一通孔21a的金属层211。第三介质板22的中心位置设置有第二通孔22a,以及围绕第二通孔22a均匀分布的四个J型馈电结构221-224。该四个J型馈电结构221-224穿过第二通孔22a连接至反馈板3。J型馈电结构的数量可以是3个、4个等,对此不做具体下定。第一通孔21a的中心点和第二通孔22a的中心点的连线垂直于反射板,即第一通孔21a和第二通孔22a上下对齐,用于使上述馈电结构通过并连接至反射板3。
上述Y型馈电结构115和116穿过第一通孔21a和第二通孔22a连接至反射板3。第一介质板11位于第二介质板21的上方。
第一天线阵列1由两对偶极子单元和2个Y型馈电结构构成,其工作频段是1.71-2.69GHz。第二天线阵列2采用差分馈电的叠层贴片天线形式,是由一个驱动贴片(第二介质板),一个寄生贴片(第三介质板)和4个J型馈电结构构成,其工作频段是3.3-3.6GHz和4.8-5GHz。第一天线阵1和第二天线阵列2均采用同轴馈电,为了使同轴线能够直接到达第一介质板,在第二介质板和第三介质板中心各开一个同半径的通孔,可以尽可能的减小同轴线对第二天线阵列2的影响。为了避免第一天线阵1对第二天线阵列2的遮挡影响,将上层第一介质板的表面辐射贴片设计成频率选择表面(frequency selective surface,FSS),如图14b所示,每个偶极子臂设计成三环形结构,外方环作为辐射元件,内部加载的双环结构实现频率选择功能。该三环形结构电路可等效为三个电容和电感串联的谐振电路,并联三个串联的谐振电路分别对应三个传输零点,由基本电路知识可知,可将三个并联的串联谐振电路等效成两个并联的电容和电感并联谐振电路,也就是说每两个传输零点中必然有一个传输极点,因此该三个传输零点之间存在两个传输极点,可以使对应频段的电磁波正常穿过低频单元。三个零点的位置分别由三个方环的边长控制,因此,可以通过调整方环大小来适当得调整透射频段。
图15a-15b示出了多频段共口径天线阵列的一个示例性的示意图,如图15a和15b所示,第一天线阵列1为1×4低频阵列,第二天线阵列2为1×8中高频阵列,第一天线阵 列1和第二天线阵列2采用共轴布局方式设置于反射板3上,第二天线阵列2的奇数单元放置于第一天线阵列1其中一个单元的下方,二者采用共口径结构,不需要额外增加安装空间,相当于是在原有低频天线阵列口径的基础上加入中高频天线单元,并保证两者正常工作。
需要说明的是,本申请可以根据实际需求,调整第一天线阵列1和第二天线阵列2的相对位置,第一天线阵列1和第二天线阵列2各自的高度及彼此间的高度差,第一天线阵列1中各个第一介质板之间的间距,第二天线阵列2中各个第二介质板之间的间距,和/或,第二天线阵列2中各个第三介质板之间的间距,对此不做具体限定。而上述第一天线阵列1和第二天线阵列2中所包含的上述各个部件的数量,以及各个部件的具体尺寸可根据实际应用中该阵列天线的方向图、增益需求和副瓣需求来设定,对此也不做具体限定。
图16示出了中频天线阵列的驻波和隔离度,图17示出了高频天线阵列的驻波和隔离度。图18-20分别示出了在2.2GHz、3.6GHz、5GHz下天线阵列的H面和V面的方向图。图21、22、23分别示出了在2.2GHz、3.6GHz、5GHz下天线阵列的H面和V面的方向图。图18-23中的实线表示仿***极化方向图,单点虚线测试主极化方向图,虚线表示仿真的交叉极化方向图,双点虚线表示测试的交叉极化方向图。
图24为本申请多频段共口径天线实施例五的结构示意图图,如图24所示,本实施例的天线结构与上述实施例四中的天线结构类似,区别在于:还包括第三天线阵列4,第三天线阵4设置于反射板3上方。第三天线阵列4的频段低于第一天线阵列1的频段,第三天线阵列4的最高处高于第一天线阵列1的最高处。该第三天线阵列可以采用实施例一至三中的第一天线阵列的结构,此处不再赘述。
本实施例是支持高中低三个频带的共口径天线,该天线整体采用分层式结构,上层低频天线类似实施例一至三中覆盖690-960MHz频段的第一阵列天线,采用支撑式结构嵌入下层中频天线(实施例四中的第一阵列天线)和高频天线(实施例四中的第二阵列天线)阵列的间隙。其中,低频天线应用分布式电容和电感透波结构,对于低频信号产生串联谐振形成短路正常工作,在中高频段时产生并联谐振形成开路,从而实现所需要的低频天线对中高频信号的透波功能,使得中高频信号可以自由辐射,将低频天线对中高频天线的方向图和增益影响降到最小,另外上层低频天线的ADS解耦功能可以统一对下层的中高频天线阵列进行解耦,最大程度上削弱下层天线单元之间的耦合,避免方向图的畸变。下层的中高频阵列采用上下层同轴结构,上层的中频天线覆盖1.71-2.69GHZ频段,下层高频天线覆盖3.3-3.8GHz频段,其设计成FSS可以使得高频信号能够正常辐射,将中频天线对高频天线影响所造成的方向图畸变最小化。最终,作为低频天线与中高频天线分层嵌入,中高频天线同轴分层的整体结构,分别应用电容和电感结构透波、ADS解耦和FSS透波技术实现了该三频段共口径阵列天线的透波和解耦功能,获得了优异的方向图性能和增益需求。
图25为本申请通信设备实施例的结构示意图图,如图25所示,本实施例的通信设备2500包括:处理器2502和通信接口2503,其中,通信接口2503可以包括上述实施例一至五中的任意一个多频段共口径天线。
进一步地,该通信设备2500还可以包括存储器2501。可选的,通信设备2500还可以包括总线2504。其中,通信接口2503、处理器2502以及存储器2501可以通过总线2504 相互连接;总线2504可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线2504可以分为地址总线、数据总线、控制总线等。为便于表示,图25中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,处理器2502可以通过运行或执行存储在存储器2501内的程序,执行所述通信设备2500的各种功能。
示例性地,图25所示的通信设备2500可以是本申请实施例所涉及的云端或终端。
当通信设备2500为云端时,处理器2502可以通过运行或执行存储在存储器2501内的程序,执行上述各方法示例中由云端完成的动作。当通信设备2500为终端时,处理器2502可以通过运行或执行存储在存储器2501内的程序,执行上述各方法示例中由终端完成的动作。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种多频段共口径天线,其特征在于,包括:第一天线阵列、第二天线阵列和反射板;所述第一天线阵列和所述第二天线阵列均设置于所述反射板上方;所述第一天线阵列的频段低于所述第二天线阵列的频段,所述第一天线阵列的最高处高于所述第二天线阵列的最高处;其中,
    所述第一天线阵列包括四个第一介质板;所述四个第一介质板均与所述反射板垂直;所述四个第一介质板围成中空结构,相邻两个所述第一介质板相互垂直;所述第一天线阵列包括四个蝶形镂空的偶极子单元;任意一个所述偶极子单元包括两个辐射臂,所述两个辐射臂分别印刷于相邻的两个所述第一介质板上,且所述两个辐射臂之间的夹角为90°;任意一个所述辐射臂包括垂直于所述反射板的第一部分和平行于所述反射板的第二部分,所述第一部分和所述第二部分连接;在所述第一介质板上印刷所述第一部分的位置设置有第一馈电枝节,所述第一馈电枝节与所述第一部分分别位于所述第一介质板的两个面上;所述第一馈电枝节连接至所述反射板;所述第二部分在垂直于所述反射板的方向上具有设定宽度;
    所述第二天线阵列包括多个第二介质板,所述多个第二介质板均与所述反射板平行;任意一个所述第二介质板上设置有四个环状线圈,任意一个所述环状线圈连接有一个第二馈电枝节;所述第二馈电枝节连接至所述反射板。
  2. 根据权利要求1所述的天线,其特征在于,所述第一天线阵列中对角线上的两个所述偶极子单元具有相同的极化方向。
  3. 根据权利要求1或2所述的天线,其特征在于,所述第一天线阵列中相邻的两个所述偶极子单元组成±45°的双极方向。
  4. 根据权利要求1或2所述的天线,其特征在于,所述第二部分呈现非闭合的环状结构。
  5. 根据权利要求3所述的天线,其特征在于,所述第二部分呈现非闭合的环状结构。
  6. 根据权利要求1、2或5所述的天线,其特征在于,所述第二部分上设置有集总的第一谐振电路;所述第一谐振电路包括在所述第二部分上设置的两条平行的缝隙,一个所述缝隙上设置电容和电感,另一个所述缝隙上设置电容。
  7. 根据权利要求3所述的天线,其特征在于,所述第二部分上设置有集总的第一谐振电路;所述第一谐振电路包括在所述第二部分上设置的两条平行的缝隙,一个所述缝隙上设置电容和电感,另一个所述缝隙上设置电容。
  8. 根据权利要求4所述的天线,其特征在于,所述第二部分上设置有集总的第一谐振电路;所述第一谐振电路包括在所述第二部分上设置的两条平行的缝隙,一个所述缝隙上设置电容和电感,另一个所述缝隙上设置电容。
  9. 根据权利要求1、2或5所述的天线,其特征在于,所述第二部分上设置有分布式的第二谐振电路;所述第二谐振电路包括交指电容和电感,其中,所述交指电容由两个梳状微带交叉形成;所述电感由一条微带线弯曲形成。
  10. 根据权利要求3所述的天线,其特征在于,所述第二部分上设置有分布式的第二谐振电路;所述第二谐振电路包括交指电容和电感,其中,所述交指电容由两个梳状微带 交叉形成;所述电感由一条微带线弯曲形成。
  11. 根据权利要求4所述的天线,其特征在于,所述第二部分上设置有分布式的第二谐振电路;所述第二谐振电路包括交指电容和电感,其中,所述交指电容由两个梳状微带交叉形成;所述电感由一条微带线弯曲形成。
  12. 一种多频段共口径天线,其特征在于,包括:第一天线阵列和第二天线阵列和反射板;所述第一天线阵列和所述第二天线阵列均通过多个支柱设置于所述反射板上方;所述第一天线阵列的频段低于所述第二天线阵列的频段;其中,
    所述第一天线阵列包括多个第一介质板,所述多个第一介质板均与所述反射板平行;任意一个所述第一介质板上设置有围绕着所述第一介质板的中心点均匀分布的四个环状线圈;相对设置的两个所述环状线圈组成一个偶极子单元;所述偶极子单元连接一个Y型馈电结构;
    所述第二天线阵列包括多个第二介质板和多个第三介质板,所述多个第二介质板和所述多个第三介质板均与所述反射板平行;所述多个第二介质板和所述多个第三介质板一一对应,所述第二介质板位于对应的所述第三介质板的上方;任意一个所述第二介质板的中心位置设置有第一通孔,以及围绕所述第一通孔的金属层;任意一个所述第三介质板的中心位置设置有第二通孔,以及围绕所述第二通孔均匀分布的多个J型馈电结构;
    所述多个J型馈电结构穿过所述第二通孔连接至所述反馈板;所述Y型馈电结构穿过所述第一通孔和所述第二通孔连接至所述反射板;
    所述多个第一介质板位于所述多个第二介质板的上方。
  13. 根据权利要求12所述的天线,其特征在于,所述多个J型馈电结构的数量为4。
  14. 根据权利要求12或13所述的天线,其特征在于,所述第一通孔的中心点和所述第二通孔的中心点的连线垂直于所述反射板。
  15. 根据权利要求12或13所述的天线,其特征在于,还包括:第三天线阵列;所述第三天线阵列设置于所述反射板上方;所述第三天线阵列的频段低于所述第一天线阵列的频段,所述第三天线阵列的最高处高于所述第一天线阵列的最高处;其中,
    所述第三天线阵列包括四个第三介质板;所述四个第三介质板均与所述反射板垂直;所述四个第三介质板围成中空结构,相邻两个所述第三介质板相互垂直;所述第三天线阵列包括四个蝶形镂空的偶极子单元;任意一个所述偶极子单元包括两个辐射臂,所述两个辐射臂分别印刷于相邻的两个所述第三介质板上,且所述两个辐射臂的夹角为90°;任意一个所述辐射臂包括垂直于所述反射板的第一部分和平行于所述反射板的第二部分,所述第一部分和所述第二部分连接;在所述第三介质板上印刷所述第一部分的位置设置有第一馈电枝节,所述第一馈电枝节与所述第一部分分别位于所述第三介质板的两个面上;所述第一馈电枝节连接至所述反射板;所述第二部分在垂直于所述反射板的方向上具有设定宽度。
  16. 根据权利要求14所述的天线,其特征在于,还包括:第三天线阵列;所述第三天线阵列设置于所述反射板上方;所述第三天线阵列的频段低于所述第一天线阵列的频段,所述第三天线阵列的最高处高于所述第一天线阵列的最高处;其中,
    所述第三天线阵列包括四个第三介质板;所述四个第三介质板均与所述反射板垂直;所述四个第三介质板围成中空结构,相邻两个所述第三介质板相互垂直;所述第三天线阵 列包括四个蝶形镂空的偶极子单元;任意一个所述偶极子单元包括两个辐射臂,所述两个辐射臂分别印刷于相邻的两个所述第三介质板上,且所述两个辐射臂的夹角为90°;任意一个所述辐射臂包括垂直于所述反射板的第一部分和平行于所述反射板的第二部分,所述第一部分和所述第二部分连接;在所述第三介质板上印刷所述第一部分的位置设置有第一馈电枝节,所述第一馈电枝节与所述第一部分分别位于所述第三介质板的两个面上;所述第一馈电枝节连接至所述反射板;所述第二部分在垂直于所述反射板的方向上具有设定宽度。
  17. 根据权利要求15所述的天线,其特征在于,所述第三天线阵列中对角线上的两个所述偶极子单元具有相同的极化方向。
  18. 根据权利要求15所述的天线,其特征在于,所述第三天线阵列中相邻的两个所述偶极子单元组成±45°的双极方向。
  19. 根据权利要求16或17所述的天线,其特征在于,所述第三天线阵列中相邻的两个所述偶极子单元组成±45°的双极方向。
  20. 根据权利要求15所述的天线,其特征在于,所述第二部分呈现非闭合的环状结构。
  21. 根据权利要求16-18中任一项所述的天线,其特征在于,所述第二部分呈现非闭合的环状结构。
  22. 根据权利要求19所述的天线,其特征在于,所述第二部分呈现非闭合的环状结构。
  23. 根据权利要求15所述的天线,其特征在于,所述第二部分上设置有集总的第一谐振电路;所述第一谐振电路包括在所述第二部分上设置的两条平行的缝隙,一个所述缝隙上设置电容和电感,另一个所述缝隙上设置电容。
  24. 根据权利要求16-18、20、22中任一项所述的天线,其特征在于,所述第二部分上设置有集总的第一谐振电路;所述第一谐振电路包括在所述第二部分上设置的两条平行的缝隙,一个所述缝隙上设置电容和电感,另一个所述缝隙上设置电容。
  25. 根据权利要求19所述的天线,其特征在于,所述第二部分上设置有集总的第一谐振电路;所述第一谐振电路包括在所述第二部分上设置的两条平行的缝隙,一个所述缝隙上设置电容和电感,另一个所述缝隙上设置电容。
  26. 根据权利要求21所述的天线,其特征在于,所述第二部分上设置有集总的第一谐振电路;所述第一谐振电路包括在所述第二部分上设置的两条平行的缝隙,一个所述缝隙上设置电容和电感,另一个所述缝隙上设置电容。
  27. 根据权利要求15所述的天线,其特征在于,所述第二部分上设置有分布式的第二谐振电路;所述第二谐振电路包括交指电容和电感,其中,所述交指电容由两个梳状微带交叉形成;所述电感由一条微带线弯曲形成。
  28. 根据权利要求16-18、20、22中任一项所述的天线,其特征在于,所述第二部分上设置有分布式的第二谐振电路;所述第二谐振电路包括交指电容和电感,其中,所述交指电容由两个梳状微带交叉形成;所述电感由一条微带线弯曲形成。
  29. 根据权利要求19所述的天线,其特征在于,所述第二部分上设置有分布式的第二谐振电路;所述第二谐振电路包括交指电容和电感,其中,所述交指电容由两个梳状微 带交叉形成;所述电感由一条微带线弯曲形成。
  30. 根据权利要求21所述的天线,其特征在于,所述第二部分上设置有分布式的第二谐振电路;所述第二谐振电路包括交指电容和电感,其中,所述交指电容由两个梳状微带交叉形成;所述电感由一条微带线弯曲形成。
  31. 一种通信设备,其特征在于,包括:权利要求1-30中任一项所述的多频段共口径天线;
    所述通信设备通过所述多频段共口径天线接收或发送无线通信信号。
PCT/CN2021/104286 2020-07-03 2021-07-02 多频段共口径天线和通信设备 WO2022002257A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21833420.9A EP4170822A4 (en) 2020-07-03 2021-07-02 MULTI-BAND SHARED APERTURE ANTENNA AND COMMUNICATION DEVICE
US18/148,874 US20230137645A1 (en) 2020-07-03 2022-12-30 Multi-Band Shared-Aperture Antenna and Communication Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021278642.5 2020-07-03
CN202021278642.5U CN213366800U (zh) 2020-07-03 2020-07-03 多频段共口径天线和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/148,874 Continuation US20230137645A1 (en) 2020-07-03 2022-12-30 Multi-Band Shared-Aperture Antenna and Communication Device

Publications (1)

Publication Number Publication Date
WO2022002257A1 true WO2022002257A1 (zh) 2022-01-06

Family

ID=76139199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104286 WO2022002257A1 (zh) 2020-07-03 2021-07-02 多频段共口径天线和通信设备

Country Status (4)

Country Link
US (1) US20230137645A1 (zh)
EP (1) EP4170822A4 (zh)
CN (1) CN213366800U (zh)
WO (1) WO2022002257A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115051142A (zh) * 2022-06-16 2022-09-13 华南理工大学 一种多频基站天线单元及通信设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688052B (zh) * 2019-10-18 2022-04-26 华为技术有限公司 共孔径天线及通信设备
CN213366800U (zh) * 2020-07-03 2021-06-04 华为技术有限公司 多频段共口径天线和通信设备
CN115173070A (zh) * 2021-04-02 2022-10-11 康普技术有限责任公司 辐射元件和多频带基站天线
CN113571901B (zh) * 2021-06-10 2022-06-21 中兴通讯股份有限公司 基站天线
CN115799814A (zh) * 2021-08-27 2023-03-14 普罗斯通信技术(苏州)有限公司 一种辐射元件以及天线
TWM628581U (zh) * 2022-01-11 2022-06-21 和碩聯合科技股份有限公司 陣列天線
CN115296017B (zh) * 2022-06-29 2023-07-25 电子科技大学 基于频率选择表面的高效率共口径强耦合超宽带阵列天线
CN115441186B (zh) * 2022-08-31 2024-04-09 西安电子科技大学 提高端口互隔离度的天线阵列
CN117220036A (zh) * 2023-10-10 2023-12-12 南通大学 一种基于频率选择表面的非对称电磁透明基站天线及阵列

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201199545Y (zh) * 2008-05-28 2009-02-25 摩比天线技术(深圳)有限公司 一种宽频双极化天线阵子
CN101548434A (zh) * 2006-09-11 2009-09-30 Kmw株式会社 用于移动通信的双波段双极化基站天线
CN202839949U (zh) * 2012-08-13 2013-03-27 佛山市健博通电讯实业有限公司 一种lte宽带双极化天线振子
CN205985359U (zh) * 2016-07-18 2017-02-22 广东欧珀移动通信有限公司 缝隙天线及智能终端
JP2017118455A (ja) * 2015-12-25 2017-06-29 Kddi株式会社 アンテナ装置
CN109994817A (zh) * 2019-03-14 2019-07-09 重庆大学 一种超宽带双极化基站天线
CN213366800U (zh) * 2020-07-03 2021-06-04 华为技术有限公司 多频段共口径天线和通信设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134793A (ko) * 2012-05-31 2013-12-10 엘에스전선 주식회사 이중대역용 이중편파 다이폴 안테나 및 안테나 어레이
KR101690085B1 (ko) * 2013-11-05 2016-12-27 주식회사 케이엠더블유 다중대역 다중편파 무선 통신 안테나
DE102016011890A1 (de) * 2016-10-05 2018-04-05 Kathrein-Werke Kg Mobilfunk-Antenne
CN109713433B (zh) * 2019-01-15 2022-11-04 武汉虹信科技发展有限责任公司 分体式辐射单元、天线阵列及基站天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548434A (zh) * 2006-09-11 2009-09-30 Kmw株式会社 用于移动通信的双波段双极化基站天线
CN201199545Y (zh) * 2008-05-28 2009-02-25 摩比天线技术(深圳)有限公司 一种宽频双极化天线阵子
CN202839949U (zh) * 2012-08-13 2013-03-27 佛山市健博通电讯实业有限公司 一种lte宽带双极化天线振子
JP2017118455A (ja) * 2015-12-25 2017-06-29 Kddi株式会社 アンテナ装置
CN205985359U (zh) * 2016-07-18 2017-02-22 广东欧珀移动通信有限公司 缝隙天线及智能终端
CN109994817A (zh) * 2019-03-14 2019-07-09 重庆大学 一种超宽带双极化基站天线
CN213366800U (zh) * 2020-07-03 2021-06-04 华为技术有限公司 多频段共口径天线和通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170822A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115051142A (zh) * 2022-06-16 2022-09-13 华南理工大学 一种多频基站天线单元及通信设备
CN115051142B (zh) * 2022-06-16 2023-08-22 华南理工大学 一种多频基站天线单元及通信设备

Also Published As

Publication number Publication date
EP4170822A4 (en) 2023-12-13
CN213366800U (zh) 2021-06-04
US20230137645A1 (en) 2023-05-04
EP4170822A1 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
WO2022002257A1 (zh) 多频段共口径天线和通信设备
Zhou et al. Triband dual-polarized shared-aperture antenna for 2G/3G/4G/5G base station applications
CN207074712U (zh) 一种辐射***及天线阵列
JP4205758B2 (ja) 指向性可変アンテナ
JP5658359B2 (ja) 多帯域アンテナの2重偏波放射素子
CN103872464B (zh) 用于双频带蜂窝基站天线的超宽带180度混合电路
TWI423524B (zh) 具切換不同輻射場形之特性的天線結構與製作方法
US20080258993A1 (en) Metamaterial Antenna Arrays with Radiation Pattern Shaping and Beam Switching
CN111262005B (zh) 适用于5g基站的双极化宽带磁电偶极子天线单元及天线阵列
US20090295665A1 (en) Electromagnetic Band-Gap Structure
WO2008048210A2 (en) Compact dual-band antenna system
CN112038758A (zh) 超宽频双极化辐射单元、天线及天线阵列
WO2009056001A1 (en) Broadband annular dual-polarization radiation element and line shape antenna array
CN110233332B (zh) 基于枝节加载和寄生结构的基站天线
US20130120209A1 (en) Systems and methods providing planar antennas including reflectors
KR101541374B1 (ko) 다중대역 다이폴 안테나 및 시스템
WO2024146248A1 (zh) 阵列天线
CN112563741B (zh) 一种适于5g全频带的双频双极化微基站天线和双天线***
US7170463B1 (en) Broadband omnidirectional array antenna system
CN114976619A (zh) 一种基于多耦合贴片结构的双极化滤波天线
CN115051142A (zh) 一种多频基站天线单元及通信设备
WO2024146305A1 (zh) 辐射单元和基站天线
WO2021136187A1 (zh) 一种阵列天线及通信设备
CN108666742B (zh) 多频天线及通信设备
KR101557765B1 (ko) 집적도 증가와 간섭 저감을 위한, 메타재질 0차 공진형 전기장 분포를 갖는 소형 mimo 안테나와 그의 다중 배치 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021833420

Country of ref document: EP

Effective date: 20230118

NENP Non-entry into the national phase

Ref country code: DE