WO2022002164A1 - 一种无线充电芯片、无线充电器和无线电力传输*** - Google Patents

一种无线充电芯片、无线充电器和无线电力传输*** Download PDF

Info

Publication number
WO2022002164A1
WO2022002164A1 PCT/CN2021/103759 CN2021103759W WO2022002164A1 WO 2022002164 A1 WO2022002164 A1 WO 2022002164A1 CN 2021103759 W CN2021103759 W CN 2021103759W WO 2022002164 A1 WO2022002164 A1 WO 2022002164A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
analog
signal
input end
Prior art date
Application number
PCT/CN2021/103759
Other languages
English (en)
French (fr)
Inventor
黄冬其
贾立刚
黄达强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022002164A1 publication Critical patent/WO2022002164A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present application relates to the technical field of wireless power transmission, and in particular, to a wireless charging chip, a wireless charger and a wireless power transmission system.
  • Low-frequency wireless power transmission technology generally has a carrier frequency below 1MHz.
  • the operating frequency of a wireless power system based on the Qi standard is in the range of 100KHz to 205KHz.
  • Common foreign objects enter the transmitter or receiver of the wireless power transmission system.
  • the generated magnetic field will generate heat due to eddying dffect.
  • the heating of metal foreign objects will not only increase the transmission loss of the wireless charging system, but also cause serious safety hazards to the operation of the wireless charging system. Therefore, for low-frequency wireless power transmission systems It is very necessary to carry out foreign object detection (FOD).
  • FOD foreign object detection
  • Conventional FOD mainly includes Q value detection method, resonance frequency detection and power loss (PLOSS) detection. Since the Q value detection method and the resonant frequency detection are off-line detection, they are generally used as auxiliary FOD means.
  • PLOSS detection is the main POD method defined by the Qi standard. Its basic principle is to detect the transmit power of the transmitter and the receive power of the receiver. The receiver sends the calculated receive power to the transmitter. The foreign body loss threshold determines whether there is a hidden danger of foreign body heating in the system.
  • the wireless power transmission system When the wireless power transmission system is running, there will be transmission losses (transmission loss at the transmitting end and transmission loss at the receiving end) on the transmission path. If there is no transmission loss in the wireless power transmission system. For foreign objects, the difference between the transmit power and the received power is equal to the transmission loss. If there are metal foreign objects in the wireless power transmission system, the difference between the transmit power and the received power is greater than the transmission loss. Therefore, the transmission loss has a great influence on the FOD result, but the current transmission loss at the transmitter is calculated by multiplying the transmit power by the loss coefficient fitted by the transmitter. Similarly, the transmission loss at the receiver is calculated by multiplying the received power by the fitting at the receiver. The loss factor of . Therefore, the transmission loss value obtained in this way is inaccurate, and the accuracy of the FOD result obtained based on the transmission loss cannot be guaranteed.
  • the existing FOD method has the problem of low detection result accuracy.
  • the present application provides a wireless charging chip, a wireless charger and a wireless power transmission system for improving the detection accuracy of FOD.
  • an embodiment of the present application provides a wireless charging chip, which is applied to a wireless charger and is used to detect whether there is a metal foreign object in the wireless charger and a terminal connected to the wireless charger.
  • the wireless charger includes a transmitting coil, an inverter and a wireless charging chip.
  • the wireless charging chip may include: a sampling circuit, an analog-to-digital converter and a processing circuit.
  • the input end of the analog-to-digital converter is connected to the output end of the sampling circuit, and the output end of the analog-to-digital converter is connected to the processing circuit.
  • the circuit input end of the sampling circuit is used for connecting with the transmitting coil and sampling the current of the transmitting coil, and the two terminals of the voltage input end of the sampling circuit are used for connecting with both ends of the transmitting coil and sampling the voltage across the transmitting coil.
  • the processing circuit is used to calculate the received power and the first loss of the transmitting coil by using the digital signal output by the analog-to-digital converter, and determine the foreign body loss by using the received power of the transmitting coil, the first loss, the output power and the second loss of the receiving coil, Foreign Object Loss is used to indicate the presence of metallic foreign objects in wireless chargers and terminals.
  • the output power and the second loss of the receiving coil are calculated by using the current sampled from the receiving coil in the terminal and the voltage sampled from the receiving coil.
  • the current (transmitting coil current) and voltage (voltage across the transmitting coil) on the transmission path of the electric energy transmitted from the transmitting coil in the wireless charger to the terminal can be characterized by sampling and acquisition, and the loss of the electric energy transmission path and the voltage at both ends of the transmitting coil can be determined.
  • the wireless charging chip provided by the first aspect of the present application further includes: a multiplexer and a filter. Wherein, the output end of the sampling circuit is connected with the processing circuit through a multiplexer and a filter.
  • the input end of the multiplexer is connected with the output end of the sampling circuit
  • the output end of the multiplexer is connected with the input end of the filter
  • the multiplexer is used to sequentially output the current and voltage output by the sampling circuit
  • the output end is connected with the input end of the analog-to-digital converter
  • the filter is used for filtering the received current and voltage, and outputting the filtered current and voltage to the analog-to-digital converter.
  • a filter and a multiplexer can be connected between the sampling circuit and the analog-to-digital converter, so as to filter the current and voltage sampled by the sampling circuit, so as to eliminate interference signals and ensure the sampling current and voltage. Accuracy, improve the accuracy of metal foreign body detection results.
  • the digital signal output by the analog-to-digital converter includes: a current signal and a voltage signal, the current signal is the signal after the analog-to-digital conversion of the current of the transmitting coil, and the voltage signal is the analog-to-digital conversion of the voltage across the transmitting coil. signal after.
  • the processing circuit is specifically used to: calculate the receiving power and the first loss of the transmitting coil according to the current signal and the voltage signal; the first loss is the power consumed by the transmitting coil; Transmitting power; according to the output power of the receiving coil and the second loss, determine the receiving power of the receiving coil; use the difference between the transmitting power of the transmitting coil and the receiving power of the receiving coil to determine the foreign body loss.
  • the power transmitted during the transmission of electrical energy from the transmitting coil to the receiving coil and the transmission loss of the transmission path can be calculated, and according to the transmission power and transmission loss, the current wireless charger and the terminal can be accurately determined. Whether there is metal foreign matter.
  • the current signal and voltage signal and the received power P1 of the transmitting coil satisfy the following formula:
  • T is the preset duration
  • i1(t) is the current signal sampled at the target sampling moment in the preset duration
  • v1(t) is the voltage signal sampled at the target sampling moment in the preset duration
  • the first current signal, the first voltage signal and the first loss P2 satisfy the following formula:
  • X1 is the preset magnetic loss coefficient of the transmitting coil
  • R1 is the equivalent resistance of the transmitting coil
  • I1 is the effective value of the current signal obtained within T time.
  • the current and voltage sampled for a period of time can be used to determine whether there are metal foreign objects in the wireless charger and the terminal before the current moment.
  • the sampling circuit includes: a current sensor and a voltage sensor.
  • the input end of the current sensor is the current input end of the sampling circuit for connecting the transmitting coil, the output end of the current sensor is connected with the input end of the analog-to-digital converter;
  • the input end of the voltage sensor is the voltage input end of the sampling circuit, It is used for connecting both ends of the receiving coil, and the output end of the voltage sensor is connected with the input end of the analog-to-digital converter.
  • the current sensor can be used to sample the required current signal and the current sensor can be used to sample the required voltage signal.
  • an embodiment of the present application provides a wireless charger for charging a terminal.
  • the wireless charger includes: the wireless charging chip, the inverter, and the wireless charging chip provided in the first aspect of the present application and any possible design. transmitter coil.
  • the input end of the inverter is used to connect with the DC power supply, and the output end of the inverter is connected to the transmitting coil;
  • the wireless charging chip is connected to the transmitting coil, and is used to detect whether there is metal foreign matter in the wireless charger and the terminal.
  • the wireless charging chip can be used to periodically or real-time detect whether foreign objects exist in the wireless charger and the terminal, so as to ensure the safety of the wireless charger and the terminal and improve the charging efficiency of the wireless charger.
  • an embodiment of the present application provides a wireless power transmission system, where the wireless power transmission system includes: a wireless charger and a terminal.
  • the wireless charger includes a transmitting coil and an inverter
  • the terminal includes a rectifier and a receiving coil.
  • the system further includes: a first sampling circuit, a second sampling circuit, a first analog-to-digital converter, a second analog-to-digital converter, a first processing circuit, and a second processing circuit.
  • the current input end of the first sampling circuit is connected to the transmitting coil, and the two end points of the voltage input end of the first sampling circuit are connected to both ends of the transmitting coil.
  • the current input end of the second sampling circuit is connected to the receiving coil, and the voltage input end of the second sampling circuit is connected to both ends of the receiving coil.
  • the input end of the first analog-to-digital converter is connected to the output end of the first sampling circuit, and the output end of the first analog-to-digital converter is connected to the first processing circuit.
  • the input end of the second analog-to-digital converter is connected to the output end of the second sampling circuit, and the output end of the second analog-to-digital converter is connected to the second processing circuit.
  • the current input terminal of the first sampling circuit is used for sampling the current of the transmitting coil
  • the voltage input terminal of the first sampling circuit is used for sampling the voltage across the transmitting coil
  • the current input terminal of the second sampling circuit is used for sampling the current of the receiving coil
  • the voltage input terminal of the second sampling circuit is used for sampling the voltage across the receiving coil.
  • the first processing circuit is used to calculate the received power and the first loss of the transmitting coil by using the digital signal output by the first analog-to-digital converter, and use the received power of the transmitting coil, the first loss, the output power and the second loss of the receiving coil , to determine the foreign object loss, which is used to indicate the presence of metallic foreign objects in the wireless power transmission system.
  • the second processing circuit is used for calculating the output power and the second loss of the receiving coil using the digital signal output by the second analog-to-digital converter, and outputting the output power and the second loss of the receiving coil to the first processing circuit.
  • the wireless charging system provided by the third aspect of the embodiments of the present application further includes: a first multiplexer, a second multiplexer, a first filter, and a second filter.
  • the output end of the first sampling circuit is connected to the first analog-to-digital converter through the first multiplexer and the first filter, and the output end of the second sampling circuit is connected to the first analog-to-digital converter through the second multiplexer and the second filter.
  • a second analog-to-digital converter is connected.
  • the first input end of the first multiplexer is connected with the output end of the first sampling circuit, and the output end of the first multiplexer is connected with the input end of the first filter.
  • the first input end of the second multiplexer is connected to the output end of the second sampling circuit, and the output end of the second multiplexer is connected to the input end of the second filter.
  • the output end of the first filter is connected to the input end of the first analog-to-digital converter.
  • the output of the second filter is connected to the input of the second analog-to-digital converter.
  • the first multiplexer is used to sequentially output the current and voltage output by the first sampling circuit; the second multiplexer is used to sequentially output the current and voltage output by the second sampling circuit; the first filter is used to compare the received current and voltage.
  • the voltage is filtered, and the filtered current and voltage are output to the first analog-to-digital converter; the output end of the second filter is connected to the input end of the second analog-to-digital converter, and the second filter is used for receiving The current and voltage are filtered, and the filtered current and voltage are output to the second analog-to-digital converter.
  • the first filter and the first multiplexer can be connected between the first sampling circuit and the first analog-to-digital converter, and the first filter and the first multiplexer can be connected between the second sampling circuit and the second analog-to-digital converter.
  • the second filter and the second multiplexer are used to filter the current and voltage sampled by the first sampling circuit and the second sampling circuit to eliminate interference signals, ensure the accuracy of the sampled current and voltage, and improve the detection of metal foreign objects. the accuracy of the results.
  • the digital signal output by the first analog-to-digital converter includes: a first current signal and a first voltage signal, the first current signal is a signal obtained by analog-to-digital conversion of the transmitting coil current, and the first voltage signal It is the analog-to-digital converted signal of the voltage across the transmitting coil.
  • the digital signal output by the second analog-to-digital converter includes: a second current signal and a second voltage signal, the second current signal is the analog-to-digital converted signal of the current of the receiving coil, and the second voltage signal is the analog-to-digital voltage signal at both ends of the receiving coil. digitally converted signal.
  • the first processing circuit is specifically used to: calculate the received power and the first loss of the transmitting coil according to the first current signal and the first voltage signal; the first loss is the power consumed by the transmitting coil; The first loss is used to determine the transmitting power of the transmitting coil; the receiving power of the receiving coil is determined according to the output power of the receiving coil and the second loss; the foreign object loss is determined by the difference between the transmitting power of the transmitting coil and the receiving power of the receiving coil.
  • the second processing circuit is specifically used for: calculating the output power and the second loss of the receiving coil according to the second voltage signal and the second current signal; the second loss is the power consumed by the receiving coil; Two losses are sent to the first processing circuit.
  • the power transmitted during the transmission of electrical energy from the transmitting coil to the receiving coil and the transmission loss of the transmission path can be calculated, and according to the transmission power and transmission loss, it can be accurately determined whether the current wireless power transmission system is in the current wireless power transmission system. Metal foreign body is present.
  • the first current signal and the first voltage signal and the received power P1 of the transmitting coil satisfy the following formula:
  • T is the preset duration
  • i1(t) is the first current signal sampled at the target sampling time within the preset duration
  • v1(t) is the first voltage signal sampled at the target sampling time within the preset duration
  • the first current signal, the first voltage signal and the first loss P2 satisfy the following formula:
  • X1 is the preset magnetic loss coefficient of the transmitting coil
  • R1 is the equivalent resistance of the transmitting coil
  • I1 is the effective value of the first current signal obtained within T time
  • the second current signal and the second voltage signal and the output power P3 of the receiving coil satisfy the following formula:
  • i2(t) is the second current signal sampled at the target sampling time within the preset duration
  • v2(t) is the second voltage signal sampled at the target sampling time within the preset duration
  • the second current signal and the second voltage signal and the second loss P4 satisfy the following formula:
  • X2 is the preset magnetic loss coefficient of the receiving coil
  • R2 is the equivalent resistance of the receiving coil
  • I2 is the effective value of the second current signal obtained within T time.
  • the current and voltage sampled for a period of time can be used to determine whether there is a metal foreign body in the wireless power transmission system before the current time.
  • the first sampling circuit includes: a first current sensor and a first voltage sensor.
  • the input end of the first current sensor is the current input end of the first sampling circuit, which is connected to the transmitting coil, and the output end of the current sensor is connected to the input end of the first analog-to-digital converter; the input end of the voltage sensor is the first sampling circuit.
  • the voltage input end of the circuit is connected to both ends of the receiving coil, and the output end of the voltage sensor is connected to the input end of the first analog-to-digital converter.
  • the required current and voltage can be sampled by the first current sensor and the first voltage sensor.
  • the second sampling circuit includes: a second current sensor and a second voltage sensor.
  • the input end of the first current sensor is the current input end of the second sampling circuit, which is connected to the transmitting coil; the output end of the first current sensor is connected to the input end of the second analog-to-digital converter; the input end of the first voltage sensor is connected to the input end of the second analog-to-digital converter. It is the voltage input end of the second sampling circuit, which is connected to both ends of the receiving coil, and the output end of the second voltage sensor and the input end of the second analog-to-digital converter.
  • the required current and voltage can be sampled by the second current sensor and the second voltage sensor.
  • an embodiment of the present application provides a wireless charging chip, which is applied to a wireless charger, and the wireless charger is used for charging a terminal, wherein the wireless charger includes an inverter, a transmitting coil, and a wireless charging chip.
  • the wireless charging chip includes: a sampling circuit, an analog-to-digital converter and a processing circuit.
  • the input end of the analog-to-digital converter is connected to the output end of the sampling circuit, and the output end of the analog-to-digital converter is connected to the processing circuit.
  • the first current input terminal of the sampling circuit is used for connecting with the input terminal of the inverter and sampling the current of the input terminal of the inverter
  • the second current input terminal of the sampling circuit is used for connecting with the transmitting coil and sampling the transmitting coil current, sampling the current of the transmitting coil.
  • the two terminals of the first voltage input terminal of the circuit are connected to both ends of the input terminal of the inverter and the voltage across the input terminal of the inverter is sampled
  • the two terminals of the second voltage input terminal of the sampling circuit are connected to both ends of the transmitting coil and sampled voltage across the transmitter coil.
  • the processing circuit is used to calculate the received power and the first loss of the inverter using the digital signal output by the analog-to-digital converter, and to determine the foreign matter using the output power of the inverter, the first loss, the output power of the terminal and the second loss Loss, foreign matter loss is used to indicate whether there is metal foreign matter in the wireless charger and terminal, the output power of the terminal and the second loss are used to sample the current from the terminal's receiving coil, the current sampled from the rectifier, the voltage sampled from the receiving coil and the sample from the rectifier. voltage is calculated.
  • the current (inverter input current and transmitter coil current) and voltage (inverter input end) and voltage (inverter input end) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) and voltage (inverter input end current) on the transmission path of the wireless charger can be characterized by sampling.
  • the voltage at both ends and the voltage at both ends of the transmitting coil determine the loss and transmission power of the power transmission path, and according to the terminal output power and the second loss, which characterize the transmission power and transmission loss in the terminal power transmission process, can accurately determine the power from The power and transmission loss on the transmission path when the wireless charger is transmitted to the terminal, and according to the transmission power and transmission loss, it is determined and accurately detected whether there is any metal foreign matter in the wireless charger and the terminal at the current moment, therefore, the wireless charger and the terminal are improved. Accuracy of terminal metal foreign body detection results.
  • the wireless charging chip provided in the fourth aspect of the embodiments of the present application further includes: a multiplexer and a filter, wherein the output end of the sampling circuit is connected to the processing circuit through the multiplexer and the filter .
  • the input end of the multiplexer is connected with the output end of the sampling circuit
  • the output end of the multiplexer is connected with the input end of the filter
  • the multiplexer is used to sequentially output the current and voltage output by the sampling circuit
  • the output end is connected with the input end of the analog-to-digital converter
  • the filter is used for filtering the received current and voltage, and outputting the filtered current and voltage to the analog-to-digital converter.
  • a filter and a multiplexer can be connected between the sampling circuit and the analog-to-digital converter, so as to filter the current and voltage sampled by the sampling circuit, so as to eliminate interference signals and ensure the sampling current and voltage. Accuracy, improve the accuracy of metal foreign body detection results.
  • the digital signal output by the analog-to-digital converter includes: a first current signal, a second current signal, a first voltage signal and a second voltage signal, and the first current signal is the current through the input terminal of the inverter.
  • the signal after analog-to-digital conversion, the second current signal is the signal after the analog-to-digital conversion of the transmitting coil current, the first voltage signal is the signal after the analog-to-digital conversion of the voltage across the input terminal of the inverter, and the second voltage signal is the signal of the transmitting coil.
  • the analog-to-digital converted signal of the voltage across the coil is the analog-to-digital converted signal of the voltage across the coil.
  • the processing circuit is specifically used to: calculate the received power of the inverter according to the first current signal and the first voltage signal; calculate the first loss according to the second current signal and the second voltage signal; the first loss is the transmitting end coil and the power consumed by the inverter; determine the transmitting power of the transmitting coil according to the receiving power of the inverter and the first loss; determine the receiving power of the receiving coil according to the output power and the second loss; use the transmitting power of the transmitting coil and the receiving power The difference in the received power of the coil determines the foreign body loss.
  • the power transmitted during the transmission of electric energy from the inverter input end to the rectifier output end and the transmission loss of the transmission path can be calculated, and the current wireless charging can be accurately determined according to the transmission power and transmission loss.
  • the first current signal and the first voltage signal and the received power P1 of the inverter satisfy the following formula:
  • T is the preset duration
  • i1(t) is the first current signal sampled at the target sampling time within the preset duration
  • v1(t) is the first voltage signal sampled at the target sampling time within the preset duration
  • the second current signal and the second voltage signal and the first loss P2 satisfy the following formula:
  • v2(t) is the second voltage signal sampled at the target sampling time within the preset duration
  • X1 is the preset magnetic loss coefficient of the transmitting coil
  • R1 is the equivalent resistance of the transmitting coil and the inverter
  • I1 is the time T The acquired effective value of the second current signal.
  • the current and voltage sampled for a period of time can be used to determine whether there is a metal foreign body in the wireless power transmission device before the current time.
  • the sampling circuit includes: a first current sensor, a second current sensor, a second voltage sensor and a second voltage sensor.
  • the input end of the first current sensor is the first current input end of the sampling circuit for connecting the input end of the inverter, the input end of the first current sensor is connected with the input end of the analog-to-digital converter;
  • the second current sensor The input end of the sampling circuit is the second current input end of the sampling circuit, which is used to connect the transmitting coil, and the output end of the second current sensor is connected with the input end of the analog-to-digital converter;
  • the input end of the first voltage sensor is the first end of the sampling circuit.
  • the voltage input terminal is used to connect both ends of the inverter input terminal, the output terminal of the first voltage sensor is connected to the input terminal of the analog-to-digital converter; the input terminal of the second voltage sensor is the second voltage input terminal of the sampling circuit, For connecting two ends of the receiving coil, the output end of the second voltage sensor is connected with the input end of the analog-to-digital converter.
  • the required current signal can be sampled by the first current sensor and the second current sensor
  • the required voltage signal can be sampled by the first voltage sensor and the second voltage sensor
  • an embodiment of the present application provides a wireless charger for charging a terminal, and the wireless charger includes the wireless charging chip and inverter provided in the fourth aspect and any possible design of the embodiment of the present application and transmitter coil.
  • the input end of the inverter is used to connect with the DC power supply, and the output end of the inverter is connected to the transmitting coil;
  • the wireless charging chip is connected to the transmitting coil, and is used to detect whether there is metal foreign matter in the wireless charger and the terminal.
  • the wireless charging chip can be used to periodically or real-time detect whether foreign objects exist in the wireless charger and the terminal, so as to ensure the safety of the wireless charger and the terminal and improve the charging efficiency of the wireless charger.
  • an embodiment of the present application provides a wireless power transmission system, the wireless power transmission system includes a wireless charger and a terminal, the wireless charger includes a transmitting coil and an inverter, the terminal includes a rectifier and a receiving coil, and the system further includes : a first sampling circuit, a second sampling circuit, a first analog-to-digital converter, a second analog-to-digital converter, a first processing circuit and a second processing circuit.
  • the first current input terminal of the first sampling circuit is connected to the inverter input terminal
  • the second current input terminal of the first sampling circuit is connected to the transmitting coil
  • the two terminals of the first voltage input terminal of the first sampling circuit are connected to the inverter input terminal.
  • the two ends of the input end of the transformer are connected, and the two ends of the second voltage input end of the first sampling circuit are connected to the two ends of the transmitting coil.
  • the first current input terminal of the second sampling circuit is connected to the output terminal of the rectifier, the second current input terminal of the second sampling circuit is connected to the receiving coil, and the two terminals of the first voltage input terminal of the second sampling circuit are connected to both ends of the output terminal of the rectifier connection, the two end points of the second voltage input end of the second sampling circuit are connected to the two ends of the receiving coil.
  • the input end of the first analog-to-digital converter is connected to the output end of the first sampling circuit, and the output end of the first analog-to-digital converter is connected to the first processing circuit.
  • the input end of the second analog-to-digital converter is connected to the output end of the second sampling circuit, and the output end of the second analog-to-digital converter is connected to the second processing circuit.
  • the first current input terminal of the first sampling circuit is used to sample the current of the inverter input terminal
  • the second current input terminal of the first sampling circuit is used to sample the transmitting coil current
  • the first voltage input terminal of the first sampling circuit is used to sample the current of the transmitting coil.
  • the voltage across the input terminal of the inverter is sampled
  • the second voltage input terminal of the first sampling circuit is used for sampling the voltage across the transmitter coil.
  • the first current input terminal of the second sampling circuit is used to sample the current of the output terminal of the rectifier
  • the second current input terminal of the second sampling circuit is used to sample the current of the receiving coil
  • the first voltage input terminal of the second sampling circuit is used to sample the two output terminals of the rectifier.
  • the first processing circuit is configured to use the digital signal output by the first analog-to-digital converter to calculate the received power and the first loss of the inverter, and use the received power of the inverter, the first loss, the output power of the rectifier and the second Loss, to determine foreign body loss, foreign body loss is used to indicate the presence or absence of metallic foreign bodies in the wireless power transmission system.
  • the second processing circuit is used for calculating the output power and the second loss of the rectifier using the digital signal output by the second analog-to-digital converter, and outputting the output power and the second loss of the rectifier to the first processing circuit.
  • the wireless power transmission system provided by the sixth aspect of the embodiments of the present application further includes: a first multiplexer, a second multiplexer, a first filter, and a second filter.
  • the output end of the first sampling circuit is connected to the first analog-to-digital converter through the first multiplexer and the first filter, and the output end of the second sampling circuit is connected to the first analog-to-digital converter through the second multiplexer and the second filter.
  • a second analog-to-digital converter is connected.
  • the first input end of the first multiplexer is connected to the output end of the first sampling circuit, the output end of the first multiplexer is connected to the input end of the first filter, and the first multiplexer is used for sequentially Output the current and voltage output by the first sampling circuit;
  • the first input end of the second multiplexer is connected to the output end of the second sampling circuit, and the output end of the second multiplexer is connected to the input end of the second filter , the second multiplexer is used to sequentially output the current and voltage output by the second sampling circuit;
  • the output end of the first filter is connected to the input end of the first analog-to-digital converter, and the first filter is used for the received current and voltage.
  • the output end of the second filter is connected to the input end of the second analog-to-digital converter, and the second filter is used for the received current Perform filtering processing on the voltage and current, and output the filtered current and voltage to the second analog-to-digital converter.
  • the first filter and the first multiplexer can be connected between the first sampling circuit and the first analog-to-digital converter, and the first filter and the first multiplexer can be connected between the second sampling circuit and the second analog-to-digital converter.
  • the second filter and the second multiplexer are used to filter the current and voltage sampled by the first sampling circuit and the second sampling circuit to eliminate interference signals, ensure the accuracy of the sampled current and voltage, and improve the detection of metal foreign objects. the accuracy of the results.
  • the digital signal output by the first analog-to-digital converter includes: a first current signal, a second voltage signal, a first voltage signal and a second voltage signal, and the first current signal is an input terminal of the inverter
  • the signal of the current after analog-to-digital conversion, the second current signal is the signal of the transmitter coil current after the analog-to-digital conversion, the first voltage signal is the signal of the voltage across the input terminal of the inverter after the analog-to-digital conversion, the second voltage signal It is the analog-to-digital converted signal of the voltage across the transmitting coil.
  • the first processing circuit is specifically used for: calculating the input power of the inverter according to the first current signal and the first voltage signal; calculating the first loss according to the second current signal and the second voltage signal; the first loss is the transmission coil and The power consumed by the inverter; according to the input power of the inverter and the first loss, determine the transmitting power of the transmitting coil; according to the output power and the second loss of the rectifier, determine the receiving power of the receiving coil; using the transmitting power of the transmitting coil and The difference in the received power of the receiving coil determines the foreign body loss.
  • the digital signal output by the second analog-to-digital converter includes: a third current signal, a fourth current signal, a third voltage signal and a fourth voltage signal.
  • the fourth current signal is the analog-to-digital conversion signal of the current of the receiving coil
  • the third voltage signal is the analog-to-digital conversion signal of the voltage across the output end of the rectifier
  • the fourth voltage signal is the analog-to-digital conversion of the voltage across the receiving coil.
  • the second processing circuit is specifically used to: calculate the output power of the rectifier according to the third current signal and the third voltage signal; calculate the second loss according to the fourth current signal and the fourth voltage signal; the second loss is the consumption of the receiving coil and the rectifier The output power of the rectifier and the second loss are sent to the first processing circuit.
  • the power transmitted during the transmission process between the input of the inverter and the output of the rectifier can be calculated, as well as the transmission loss of the transmission path, and the current wireless power transmission system can be accurately determined according to the transmission power and transmission loss. Whether there is metal foreign matter in it.
  • the first current signal and the second voltage signal and the input power P1 of the inverter satisfy the following formula:
  • T is the preset duration
  • i1(t) is the first current signal sampled at the target sampling time within the preset duration
  • v1(t) is the first voltage signal sampled at the target sampling time within the preset duration
  • the second current signal and the second voltage signal and the first loss P2 satisfy the following formula:
  • X1 is the preset magnetic loss coefficient of the transmitting coil
  • v2(t) is the second voltage signal sampled at the target sampling time within the preset duration
  • R1 is the equivalent resistance of the transmitting coil and the inverter
  • I1 is the time T the acquired effective value of the second current signal
  • the third current signal and the third voltage signal and the output power P3 of the rectifier satisfy the following formula:
  • i3(t) is the third current signal sampled at the target sampling moment within the preset duration
  • v3(t) is the third voltage signal sampled at the target sampling moment within the preset duration
  • the fourth current signal and the fourth voltage signal and the second loss P4 satisfy the following formula:
  • X2 is the preset magnetic loss coefficient of the receiving coil
  • R2 is the equivalent resistance of the receiving coil and the rectifier
  • I4 is the effective value of the fourth current signal obtained within T time.
  • the current and voltage sampled for a period of time can be used to determine whether there is a metal foreign body in the wireless power transmission system before the current time.
  • the first sampling circuit includes: a first current sensor, a second current sensor, a first voltage sensor and a second voltage sensor.
  • the input end of the first current sensor is the first current input end of the first sampling circuit, which is connected to the input end of the inverter, and the output end of the first current sensor is connected to the input end of the first analog-to-digital converter;
  • the second The input end of the current sensor is the second current input end of the first sampling circuit, which is connected to the transmitting coil, and the output end of the second current sensor is connected to the input end of the first analog-to-digital converter;
  • the input end of the first voltage sensor is the first The first voltage input end of a voltage circuit is connected to both ends of the inverter input end, the input end of the first voltage sensor is connected to the input end of the first analog-to-digital converter;
  • the input end of the second voltage sensor is the first sampling end
  • the second voltage input end of the circuit is connected to both ends of the transmitting coil, and the output end of the second voltage sensor is connected to the input end of the first analog-to-digital converter.
  • the required current can be sampled by the first current sensor and the second current sensor
  • the required voltage can be sampled by the first voltage sensor and the second voltage sensor
  • the second sampling circuit includes: a third current sensor, a fourth current sensor, a third voltage sensor and a fourth voltage sensor.
  • the input end of the third current sensor is the first current input end of the second sampling circuit, which is connected to the output end of the rectifier, and the output end of the third current sensor is connected to the input end of the second analog-to-digital converter; the fourth current sensor
  • the input end of the second sampling circuit is the second current input end of the second sampling circuit, which is connected to the receiving coil; the output end of the fourth current sensor is connected to the input end of the second analog-to-digital converter; the input end of the third voltage sensor is the second sampling end.
  • the first voltage input end of the circuit is connected to both ends of the output end of the rectifier, the input end of the third voltage sensor is connected to the input end of the second analog-to-digital converter; the input end of the fourth voltage sensor is the second input end of the second sampling circuit The voltage input end is connected to both ends of the receiving coil, and the output end of the fourth voltage sensor is connected to the input end of the second analog-to-digital converter.
  • the required current can be sampled by the third current sensor and the fourth current sensor
  • the required voltage can be sampled by the third voltage sensor and the fourth voltage sensor.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram 1 of a wireless charging chip according to an embodiment of the present application.
  • FIG. 3 is a second schematic structural diagram of a wireless charging chip according to an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a sampling circuit according to an embodiment of the application.
  • FIG. 5 is a third schematic structural diagram of a wireless charging chip according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a wireless charger according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram 1 of a wireless power transmission system according to an embodiment of the application.
  • FIG. 8 is a second schematic structural diagram of another wireless power transmission system according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of another wireless charging chip according to an embodiment of the present application.
  • FIG. 10 is a second schematic structural diagram of another wireless charging chip according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another wireless charger according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram 1 of another wireless power transmission system according to an embodiment of the application.
  • FIG. 13 is a second schematic structural diagram of another wireless power transmission system according to an embodiment of the present application.
  • connection involved in this application describes the connection relationship between two objects, and can represent two connection relationships.
  • a and B are connected, which can represent: A is directly connected with B, and A is connected through C and B. condition.
  • FIG. 1 exemplarily shows an application scenario of a wireless charging chip.
  • the wireless power transmission system includes an inverter, a transmitting coil , receiver coil and rectifier.
  • the input end of the inverter is connected to the DC power supply, which is used to convert the DC power output from the DC power supply into AC power and then transmit it to the receiving coil through the transmitting coil.
  • the receiving coil receives the AC power transmitted by the transmitting coil and converts it into The DC power is then output to the electrical equipment or battery connected to the output end of the rectifier.
  • the inverter and the transmitting coil are used as the wireless charger to charge the terminal, and the receiving coil and the rectifier are used as the terminal to receive the electric energy output by the wireless charger.
  • the two devices constitute a wireless power transmission system.
  • the Qi protocol defines and calculates the transmit power of the transmitting coil and the received power of the receiving coil, compares the difference between the two powers and the set foreign body loss threshold, and determines whether there is a metal foreign body in the wireless power transmission system according to the comparison result.
  • Transmit power DC power input power - Tx self-loss.
  • Tx self-loss is the loss of the rectifier and transmitter coil, which can be expressed as:
  • Tx self loss inverter AC loss + LC resonator AC loss of Tx.
  • Received power received power of electrical equipment + Rx self-loss.
  • the Rx self-loss can be expressed as:
  • Rx self loss rectifier AC loss + LC resonator AC loss of Rx.
  • the Rx self-loss and the Tx self-loss are the transmission losses in the transmission process of the wireless power transmission system.
  • the metal foreign object detection device is connected to the input end of the inverter and the output end of the rectifier, and is used to sample the current and voltage of the input end of the inverter and the current and voltage of the output end of the rectifier.
  • the input power of the DC power supply is determined by the current and voltage of the input terminal of the inverter, and the Tx self-loss is obtained by multiplying the input power of the DC power supply by a preset Tx self-loss coefficient.
  • the received power of the electrical equipment is determined by using the current and voltage at the output end of the rectifier, and the Rx self-loss is obtained by multiplying the received power of the electrical equipment by the preset Rx self-loss coefficient.
  • the transmission loss has little correlation with the input power of the DC power supply and the received power of the electrical equipment, and once the application scenario of the wireless power transmission system changes (for example, the transmission power becomes larger), the preset Tx self-loss coefficient And the preset Rx self-loss coefficient will not meet the needs of new application scenarios, resulting in the accuracy of metal foreign body detection results cannot be guaranteed.
  • the embodiments of the present application provide a wireless charging chip, a wireless charger and a wireless power transmission system, which can improve the accuracy of the detection result of metal foreign objects and improve the transmission efficiency of the wireless power transmission system.
  • the wireless charging chip 200 is applied in a wireless charger, and the wireless charger includes an inverter, a transmitting coil and a wireless charging chip. Among them, the wireless charger is used to charge the terminal.
  • the wireless charging chip 200 includes: a sampling circuit 201 , an analog-to-digital converter 202 and a processing circuit 203 .
  • the current input terminal of the sampling circuit 201 is used to connect to the transmitting coil and sample the current of the transmitting coil, and the two terminals of the voltage input terminal of the sampling circuit 201 are used to connect to both ends of the transmitting coil and sample the voltage across the transmitting coil.
  • the processing circuit 203 is configured to use the digital signal output by the analog-to-digital converter 202 to calculate the received power and the first loss of the transmitting coil, and to use the received power of the transmitting coil, the first loss, the output power and the second loss of the receiving coil in the terminal , to determine foreign body loss.
  • the foreign object loss is used to indicate whether there are metal foreign objects in the wireless charger and terminal.
  • the output power and the second loss of the receiving coil are calculated by using the current sampled from the receiving coil in the terminal and the voltage sampled from the receiving coil.
  • the voltage at both ends of the transmitting coil is the same as the positive and negative directions of the voltage of the transmitting coil sampled by the sampling circuit 201, and the voltage at both ends of the transmitting coil is the same as the positive and negative directions of the voltage of the transmitting coil sampled by the sampling circuit 201, and its specific meaning can be: sampling Among the two terminals of the voltage output terminal of circuit 201, the terminal receiving high potential is connected to the high potential end of the transmitting coil, and the terminal receiving low potential is connected to the low potential end of the transmitting coil, and the potential difference between the two terminals is equal to the two ends of the transmitting coil. Voltage.
  • the current input terminal of the sampling circuit 201 is connected to the transmitting coil and samples the current of the transmitting coil, and the two terminals of the voltage input terminal of the sampling circuit 201 are connected to the transmitting coil.
  • the two ends are connected and the voltage at both ends of the transmitting coil is sampled;
  • the input end of the analog-to-digital converter 202 is connected with the output end of the sampling circuit 201, and the output ends of the analog-to-digital converter 202 are respectively connected with the processing circuit 203 for outputting the sampling circuit 201.
  • the current and voltage of the analog signal are converted into digital signals, and the output digital signals are output to the processing circuit 203; Using the received power of the transmit coil, the first loss, the output power of the receive coil in the terminal, and the second loss, the foreign body loss is determined.
  • the wireless charging chip 200 further includes a receiver (not shown) for receiving the output power and the second loss of the receiving coil sent by the transmitter (not shown) in the terminal, and converting the received output of the receiving coil
  • the power and the second loss are sent to the processing circuit 203 .
  • the output power and the second loss of the receiving coil are calculated by the processing circuit in the terminal through the current sampled from the receiving coil in the terminal and the voltage sampled from the receiving coil.
  • the foreign object loss is greater than a preset foreign object loss threshold, it is determined that there is a metallic foreign object in the wireless charger and the terminal.
  • the multiplexer 204 and the filter 205 can be used to coordinate the sampling
  • the current and voltage output by the circuit 201 are filtered, so as to eliminate the influence of the interference signal on the detection result.
  • the output end of the sampling circuit 201 is connected to the input end of the analog-to-digital converter 202 through the multiplexer 204 and the filter 205 .
  • the input end of the multiplexer 204 is connected to the output end of the sampling circuit 201
  • the output end of the multiplexer 204 is connected to the input end of the filter 205
  • the multiplexer 205 is used for The current and voltage output by the sampling circuit 201 are sequentially output.
  • the output end of the filter 205 is connected to the input end of the analog-to-digital converter 202 .
  • the filter 205 is used for filtering the received current and voltage, and outputting the filtered current and voltage to the analog-to-digital converter 202 .
  • the current input terminal and the voltage input terminal of the sampling circuit 201 are used as the input terminal of the wireless charging chip 200
  • the output terminal of the processing circuit 203 is used as the output terminal of the wireless charging chip 200
  • the output end of the processing circuit 203 may be connected to the processor in the wireless charger, or connected to other processors communicatively connected to the wireless charger.
  • the wireless charging chip 200 can be fixed on the wireless charger.
  • the wireless charging chip 200 can be set in a flexible and detachable form, that is, a fixed interface can be provided on the wireless charger, and the wireless charging chip 200 can communicate with the wireless power transmission system through the fixed interface on the wireless charger. Connection, in this case, the wireless charging chip 200 can be regarded as a device independent of the wireless charger.
  • the sampling circuit 201 , the analog-to-digital converter 202 , and the processing circuit 203 in the wireless charging chip 200 may use discrete devices, and are connected through data transmission.
  • the current input terminal of the sampling circuit 201 is used to connect with the transmitting coil and sample the current of the transmitting coil, and the two terminals of the voltage input terminal of the sampling circuit 201 are used to connect to the two ends of the transmitting coil and sample the voltage across the transmitting coil.
  • the sampling circuit 201 may include: a current sensor and a voltage sensor.
  • the input end of the current sensor is the current input end of the sampling circuit for connecting the transmitting coil, the output end of the current sensor is connected with the input end of the analog-to-digital converter;
  • the input end of the voltage sensor is the voltage input end of the sampling circuit, It is used for connecting both ends of the receiving coil, and the output end of the voltage sensor is connected with the input end of the analog-to-digital converter.
  • the function of setting the current sensor is to sample the current flowing through the transmitting coil through the current sensor; the function of setting the voltage sensor is to sample the voltage at both ends of the transmitting coil through the voltage sensor.
  • sampling circuit 201 For ease of understanding, a specific example of the sampling circuit 201 is given below.
  • FIG. 4 it is a schematic structural diagram of a current sampling circuit according to an embodiment of the present application.
  • a current sensor TA and a voltage sensor TV are included.
  • A, B and C are used as the input terminals of the sampling circuit 201 to be connected to the transmitting coil and both ends of the transmitting coil respectively
  • D and E are used as the output terminals of the sampling circuit 201 to output the current of the transmitting coil and the two ends of the transmitting coil. Voltage, energy from top to bottom.
  • sampling circuit 201 can also adopt other structures.
  • the sampling circuit 201 can be a data collector for sampling the current of the transmitting coil and the two ends of the transmitting coil. Voltage.
  • analog-to-digital converter 202 Second, the analog-to-digital converter 202
  • the input end of the analog-to-digital converter 202 is connected to the output end of the sampling circuit 201, and the output end of the analog-to-digital converter 202 is connected to the processing circuit 203, and the current and voltage sampled by the sampling circuit 201 are converted from analog signals to digital signals, And send the digital signal to the processing circuit 203 .
  • Processing circuit 203
  • the processing circuit 203 is connected to the output end of the analog-to-digital converter 202, and is used for calculating the received power and the first loss of the transmitting coil by using the digital signal output by the analog-to-digital converter 202, and using the received power, the first loss, and the first loss of the transmitting coil.
  • the output power and second loss of the receiving coil in the terminal determine the foreign body loss.
  • the foreign object loss is used to indicate whether there is a metal foreign object in the wireless charger and the terminal, wherein the output power and the second loss of the receiving coil are calculated using the current sampled from the receiving coil in the terminal and the voltage sampled from the receiving coil .
  • the processing circuit 203 may be electrically or communicatively connected with the processor in the terminal, so as to obtain the output power and the second loss of the receiving coil.
  • the wireless charger is charged to the processor in the wireless charger or the wireless charger.
  • the indication signal is used to instruct the processor to disconnect the DC power supply from the inverter for troubleshooting.
  • the value of the preset foreign body loss threshold can be set according to the Qi protocol.
  • the digital signal output by the analog-to-digital converter 202 includes: a current signal and a voltage signal.
  • the current signal is the signal converted by analog to digital of the current of the transmitting coil
  • the voltage signal is the signal converted by analog to digital of the voltage at both ends of the transmitting coil.
  • the processing circuit 203 is specifically used for: calculating the received power and the first loss of the transmitting coil according to the current signal and the voltage signal; the first loss is the power consumed by the transmitting coil; according to the receiving power and the first loss of the transmitting coil, Determine the transmitting power of the transmitting coil; determine the receiving power of the receiving coil according to the output power and the second loss of the receiving coil; use the difference between the transmitting power of the transmitting coil and the receiving power of the receiving coil to determine the foreign body loss.
  • the processing circuit 203 may be any one of a microcontroller unit (microcontroller unit, MCU), a central processing unit (central processing unit, CPU), and a digital signal processor (digital signal processor, DSP).
  • MCU microcontroller unit
  • CPU central processing unit
  • DSP digital signal processor
  • the specific form of the processing circuit 203 is not limited to the above examples.
  • an embodiment of the present application provides a wireless charging chip, as shown in FIG. 5 .
  • a current sensor TA and a voltage sensor TV are included in the sampling circuit.
  • the input end of TA is connected to the transmitting coil
  • the output end of TA is connected to the input end of the multiplexer K
  • the input end of the TV is connected to both ends of the transmitting coil
  • the output end of the TV is connected to the input end of the multiplexer K connect.
  • the input ends of the multiplexer K are respectively connected with the output ends of TA and TV, and the output end of the multiplexer K is connected with the input end of the filter.
  • the output end of the filter is connected with the input end of the analog-to-digital converter, and the output end of the analog-to-digital converter is connected with the processing circuit.
  • A, B and C are used as the input terminals of the wireless charging chip
  • F is used as the output terminal of the wireless charging chip.
  • the multiplexer K is connected behind the TA and TV, the filter is connected behind the K, the analog-to-digital converter is connected behind the filter, and the processing circuit is connected behind the analog-to-digital converter.
  • TA samples the current of the transmitting coil
  • TV samples the voltage across the transmitting coil
  • the current and voltage output by TA and TV are transmitted to the filter in a fixed order after K
  • the filter filters the current and voltage output by TA and TV processing to eliminate the interference in the current and voltage, and output the filtered current and voltage to the analog-to-digital converter for analog-to-digital conversion to obtain a digital signal
  • the processing circuit uses the digital signal and the signal sent by the terminal to obtain power transmission.
  • the transmission power and transmission loss during transmission from the transmitting coil to the receiving coil of the terminal, and the foreign body loss is determined using the transmitted power and transmission loss.
  • the digital signal includes: a first current signal i1 and a first voltage signal v1.
  • i1 is the signal after the analog-to-digital conversion of the current of the transmitting coil
  • v1 is the signal of the analog-to-digital conversion of the voltage at both ends of the transmitting coil.
  • the power P1 and the first loss P3 received by the transmitting coil are calculated using i1 and v1.
  • i1 and v1 and the power P1 received by the transmitting coil satisfy the following formula:
  • T is the preset duration
  • i1(t) is the first current signal sampled at the target sampling time within the preset duration
  • v1(t) is the first voltage signal sampled at the target sampling time within the preset duration
  • X1 is the preset magnetic loss coefficient of the transmitting coil
  • R1 is the equivalent resistance of the transmitting coil
  • I1 is the effective value of the first current signal obtained within T time.
  • the magnetic loss coefficient of the transmitting coil can be set according to the model of the transmitting coil, and no specific setting is made here in this application.
  • P2 may be calculated by sampling v1 n. Among them, n can be greater than or equal to 1.
  • the received power P3 and the second loss P4 of the receiving coil sent by the receiving terminal are calculated using the current sampled from the receiving coil in the terminal and the voltage sampled from the receiving coil.
  • i2 and v2 and the power P1 received by the transmitting coil satisfy the following formula: wherein, i2 is the sampled current of the receiving coil, and v2 is the sampled voltage across the receiving coil. Among them, i2 and v2 are digital signals.
  • i2(t) is the receiving coil current sampled at the target sampling time within the preset duration
  • v2(t) is the receiving coil voltage sampled at the target sampling time within the preset duration
  • X2 is the preset magnetic loss coefficient of the receiving coil
  • R2 is the equivalent resistance of the receiving coil
  • I2 is the effective value of the current of the receiving coil obtained within T time.
  • the sample can be calculated v2 n P2.
  • the PLOSS may be output directly to a processor of the wireless power transmission system or to other processors in communication with the wireless power transmission system.
  • the processor in the wireless charging or other processors in communication with the wireless charger when it is determined that there are metal foreign objects in the wireless charger and the terminal, and an indication signal is sent to the processor in the wireless charging or other processors in communication with the wireless charger. .
  • the indication signal is used to instruct the processor to disconnect the DC power supply from the inverter in the wireless charger for troubleshooting.
  • the wireless charger 600 includes the aforementioned wireless charging chip 200 , an inverter 601 and a transmitting coil 602 .
  • the input end of the inverter 601 is used for connecting with the DC power supply, and the output end of the inverter 601 is connected with the transmitting coil.
  • the wireless charging chip 200 is connected to the transmitting coil 602, and is used to detect whether there is a metal foreign object in the wireless charger 600 and the terminal.
  • the wireless power transmission system includes a wireless charger and a terminal.
  • the wireless charger includes a transmitting coil and an inverter
  • the terminal includes a rectifier and a receiving coil.
  • the terminal may also include a powered device.
  • the electrical device may be a battery in the terminal.
  • the wireless power transmission system further includes: a first sampling circuit 701 , a second sampling circuit 702 , a first analog-to-digital converter 703 , a second analog-to-digital converter 704 , a first processing circuit 705 and a second processing circuit 706 .
  • the current input terminal of the first sampling circuit 701 is connected to the transmitting coil, and the two terminals of the voltage input terminal of the first sampling circuit 701 are connected to both ends of the transmitting coil.
  • the current input terminal of the second sampling circuit 702 is connected to the receiving coil, and the two terminals of the voltage input terminal of the second sampling circuit 702 are connected to both ends of the receiving coil.
  • the input end of the first analog-to-digital converter 703 is connected to the output end of the first sampling circuit 701 , and the output end of the first analog-to-digital converter 703 is connected to the first processing circuit 705 .
  • the input end of the second analog-to-digital converter 704 is connected to the output end of the second sampling circuit, and the output end of the second analog-to-digital converter 704 is connected to the second processing circuit 706 .
  • the current input terminal of the first sampling circuit 701 is used to sample the current of the transmitting coil
  • the first sampling circuit 702 is used to sample the voltage across the transmitting coil
  • the current input terminal of the second sampling circuit 702 is used to sample the current of the receiving coil
  • the second sampling circuit 702 is used to sample the current of the receiving coil.
  • the voltage input terminal of the sampling circuit 702 is used for sampling the voltage across the receiving coil.
  • the first processing circuit 705 is configured to use the digital signal output by the first analog-to-digital converter 703 to calculate the received power and the first loss of the transmitting coil, and use the received power of the transmitting coil, the first loss, the output power of the receiving coil and the first loss. Second loss, determine the foreign body loss.
  • the foreign matter loss is used to indicate whether there is metal foreign matter in the wireless power transmission system 700 .
  • the second processing circuit 706 is configured to use the digital signal output by the second analog-to-digital converter 704 to calculate the output power and second loss of the receiving coil, and output the output power and second loss of the receiving coil to the first processing circuit 705 .
  • the voltage at both ends of the transmitting coil is the same as the positive and negative directions of the voltage of the transmitting coil sampled by the first sampling circuit 701
  • the voltage at both ends of the transmitting coil is the same as the positive and negative directions of the voltage of the transmitting coil sampled by the first sampling circuit 701 and its specific meaning It can be: among the two terminals of the voltage output terminal of the first sampling circuit 701, the terminal receiving the high potential is connected with one end of the high potential in the transmitting coil, the terminal receiving the low potential is connected with one end of the low potential in the transmitting coil, and the potential of the two terminals is connected.
  • the difference is equal to the voltage at both ends of the transmitting coil; similarly, the voltage at both ends of the receiving coil is the same as the positive and negative directions of the transmitting coil voltage sampled by the second sampling circuit 702, and the voltage at both ends of the receiving coil is the same as the receiving coil voltage sampled by the second sampling circuit 702.
  • the positive and negative directions are the same, and its specific meaning can be: among the two terminals of the voltage output terminal of the second sampling circuit 702, the terminal receiving the high potential is connected to one end of the high potential in the receiving coil, and the terminal receiving the low potential is connected with the low potential in the receiving coil. One end is connected, and the potential difference between the two ends is equal to the voltage across the receiving coil.
  • the current input terminal of the first sampling circuit 701 is connected to the transmitting coil and samples the current of the transmitting coil, and the two terminals of the voltage input terminal of the first sampling circuit 701 It is connected to both ends of the transmitting coil and samples the voltage of both ends of the transmitting coil; the current input end of the second sampling circuit 702 is connected to the receiving coil and samples the current of the receiving coil.
  • Two terminals of the voltage input terminal of the second sampling circuit 702 are connected to both ends of the receiving coil and sample the voltage across the receiving coil; the input terminal of the first analog-to-digital converter 703 is connected to the output terminal of the first sampling circuit 701, and the first analog-to-digital converter The output ends of the digital converter 706 are respectively connected to the first processing circuit 705 for converting the current and voltage output by the first sampling circuit 701 from analog signals to digital signals, and outputting the output digital signals to the first processing circuit 705 ;
  • the input end of the second analog-to-digital converter 704 is connected to the output end of the second sampling circuit 702, and the output end of the second analog-to-digital converter 704 is connected to the second processing circuit 706 for the output of the second sampling circuit 702.
  • the current and voltage are converted from analog signals to digital signals, and the output digital signals are output to the second processing circuit 706;
  • the first processing circuit 705 is used to use the digital signals output by the first analog-to-digital converter 703 to calculate the reception of the transmitting coil.
  • the power and the first loss, and using the received power of the transmit coil, the first loss, the output power of the receive coil, and the second loss, the foreign body loss is determined.
  • the second processing circuit 706 is configured to use the digital signal output by the second analog-to-digital converter 704 to calculate the output power and second loss of the receiving coil, and output the output power and second loss of the receiving coil to the first processing circuit 705 .
  • the wireless charger includes a receiver (not shown), and the terminal includes a transmitter (not shown).
  • the second processing circuit 706 calculates the output power and the second loss of the receiving coil, and can use the transmitter to convert The output power and the second loss of the receiving coil are sent to the receiver, and the receiver sends the output power and the second loss of the receiving coil to the first processing circuit 705 after receiving.
  • the foreign object loss is greater than a preset foreign object loss threshold, it is determined that there is a metallic foreign object in the wireless power transmission system 700 .
  • the foreign matter loss can also be calculated by using multiplexers and filters to filter the current and voltage output by the first sampling circuit 701 and the second sampling circuit 702, thereby eliminating the influence of interference signals on the detection results.
  • the output end of the first sampling circuit 701 is connected to the first analog-to-digital converter through the first multiplexer and the first filter, and the output end of the second sampling circuit 702 is connected through the second multiplexer and the second filter
  • the device is connected to the second analog-to-digital converter.
  • the first input end of the first multiplexer is connected to the output end of the first sampling circuit 701
  • the output end of the first multiplexer is connected to the input end of the first filter
  • the first multiplexer uses to sequentially output the current and voltage output by the first sampling circuit.
  • the first input end of the second multiplexer is connected to the output end of the second sampling circuit 702
  • the output end of the second multiplexer is connected to the input end of the second filter
  • the second multiplexer is used to sequentially output The current and voltage output by the second sampling circuit.
  • the output end of the first filter is connected to the input end of the first analog-to-digital converter 703, and the first filter is used to filter the received current and voltage, and output the filtered current and voltage to the first analog-to-digital converter Converter 703.
  • the output end of the second filter is connected to the input end of the second analog-to-digital converter 704, and the second filter is used for filtering the received current and voltage, and outputting the filtered current and voltage to the second analog-to-digital converter Converter 704.
  • each device in the wireless power transfer system 700 may be connected in the form of a sampling integrated circuit.
  • each device in the wireless power transmission system 700 may sample discrete devices, and each device may be connected through a data transmission line.
  • the first sampling circuit 701 , the second sampling circuit 702 , the first analog-to-digital converter 703 , the second analog-to-digital converter 704 , the first processing circuit 705 and the second processing circuit 706 in the wireless power transmission system 700 The specific structure is introduced.
  • the current input terminal of the first sampling circuit 701 is used to connect with the transmitting coil and sample the current of the transmitting coil, and the two terminals of the voltage input terminal of the first sampling circuit 701 are used to connect to both ends of the transmitting coil and sample the voltage across the transmitting coil.
  • the first sampling circuit 701 may include: a first current sensor and a first voltage sensor.
  • the input end of the first current sensor is the current input end of the first sampling circuit 701, which is connected to the transmitting coil, and the output end of the current sensor is connected to the input end of the first analog-to-digital converter 703; the input end of the first voltage sensor It is the voltage input end of the first sampling circuit 701 , connected to both ends of the receiving coil, and the output end of the voltage sensor is connected to the input end of the first analog-to-digital converter 703 .
  • the function of setting the first current sensor is to sample the current flowing through the transmitting coil through the first current sensor; the function of setting the first voltage sensor is to transmit the voltage across the coil through the first voltage sensor.
  • the above description of the structure of the first sampling circuit 701 is only an example. In practical applications, the first sampling circuit 701 may also adopt other structures, for example, the first sampling circuit 701 may be a data collector.
  • the current input terminal of the second sampling circuit 702 is used to connect to the receiving coil and sample the current of the receiving coil, and the two terminals of the voltage input terminal of the second sampling circuit 702 are used to connect to both ends of the receiving coil and sample the voltage across the receiving coil.
  • the second sampling circuit 702 may include: a second current sensor and a second voltage sensor.
  • the input end of the second current sensor is the current input end of the second sampling circuit 702 , which is connected to the transmitting coil, and the output end of the first current sensor is connected to the input end of the second analog-to-digital converter 704 .
  • the input end of the second voltage sensor is the voltage input end of the second sampling circuit 702 , which is connected to both ends of the receiving coil, and the output end of the second voltage sensor is connected to the input end of the second analog-to-digital converter 704 .
  • the function of setting the second current sensor is to sample the current flowing through the receiving coil through the second current sensor; the function of setting the second voltage sensor is to receive the voltage at both ends of the coil through the second voltage sensor.
  • the above description of the structure of the second sampling circuit 702 is only an example.
  • the second sampling circuit 702 may also adopt other structures, for example, the second sampling circuit 702 may be a data collector.
  • the input end of the first analog-to-digital converter 703 is connected to the output end of the first sampling circuit 701 , and the output end of the first analog-to-digital converter 703 is connected to the first processing circuit 705 for sampling the current of the first sampling circuit 701
  • the sum voltage is converted from an analog signal to a digital signal, and the digital signal is sent to the first processing circuit 705 .
  • the input terminal of the second analog-to-digital converter 704 is connected to the output terminal of the second sampling circuit 702 , and the output terminal of the second analog-to-digital converter 703 is connected to the second processing circuit 706 for sampling the current of the second sampling circuit 702
  • the sum voltage is converted from an analog signal to a digital signal, and the digital signal is sent to the second processing circuit 706 .
  • the first processing circuit 705 is connected to the output end of the first analog-to-digital converter 703, and is used for calculating the received power and the first loss of the transmitting coil by using the digital signal output by the first analog-to-digital converter 703, and using the receiving power of the transmitting coil
  • the power, the first loss, the output power of the receiving coil and the second loss determine the foreign body loss.
  • the foreign matter loss is used to indicate whether there is metal foreign matter in the wireless power transmission system 700 .
  • the first processing circuit 705 may be electrically or communicatively connected to the second processing circuit 706, so as to obtain the output power and the second loss of the receiving coil.
  • the wireless power transmission system 700 After the foreign object loss of the wireless power transmission system 700 is determined, when it is determined that the foreign object loss is greater than the preset foreign object loss threshold, it is determined that there is a metallic foreign object in the wireless power transmission system, and the wireless power transmission system is charged to the processor in the wireless charger or the wireless charger. other processors to which the processor is communicatively connected to send indication signals.
  • the indication signal is used to instruct the processor to disconnect the DC power supply from the inverter for troubleshooting.
  • the value of the preset foreign body loss threshold can be set according to the Qi protocol.
  • the digital signal output by the first analog-to-digital converter 703 includes: a first current signal and a first voltage signal.
  • the first current signal is an analog-to-digital converted signal of the current of the transmitting coil
  • the first voltage signal is a signal of the analog-to-digital conversion of the voltage at both ends of the transmitting coil.
  • the first processing circuit 705 is specifically used to: calculate the received power and the first loss of the transmitting coil according to the first current signal and the first voltage signal; the first loss is the power consumed by the transmitting coil; Power and the first loss, determine the transmitting power of the transmitting coil; determine the receiving power of the receiving coil according to the output power and the second loss of the receiving coil; use the difference between the transmitting power of the transmitting coil and the receiving power of the receiving coil to determine the foreign body loss .
  • the first processing circuit 705 may be any one of MCU, CPU, and DSP.
  • the specific form of the first processing circuit 705 is not limited to the above examples.
  • the second processing circuit 706 is connected to the output end of the second analog-to-digital converter 704, and is used for calculating the output power and the second loss of the receiving coil by using the digital signal output by the second analog-to-digital converter 704, and converting the output of the receiving coil
  • the power and the second loss are output to the first processing circuit 705 .
  • the digital signal output by the second analog-to-digital converter 704 includes: a second current signal and a second voltage signal.
  • the second current signal is an analog-to-digital converted signal of the current of the receiving coil
  • the second voltage signal is a signal of the analog-to-digital conversion of the voltage across the receiving coil.
  • the second processing circuit 706 is specifically configured to: calculate the output power and the second loss of the receiving coil according to the second voltage signal and the second current signal, where the second loss is the power consumed by the receiving coil.
  • the received power of the receive coil and the second loss are sent to the first processing circuit 705 .
  • the second processing circuit 706 may be any one of MCU, CPU, and DSP.
  • the specific form of the second processing circuit 706 is not limited to the above examples.
  • an embodiment of the present application provides a wireless power transmission system, as shown in FIG. 8 .
  • a current sensor TA1 and a voltage sensor TV1 are included in the first sampling circuit.
  • the input end of TA1 is connected to the transmitting coil
  • the output end of TA1 is connected to the input end of the multiplexer K1
  • the input end of TV1 is connected to both ends of the transmitting coil
  • the output end of TV1 is connected to the input end of the multiplexer K1 connect.
  • a current sensor TA2 and a voltage sensor TV2 are included in the second sampling circuit.
  • the input end of TA2 is connected to the receiving coil, the output end of TA2 is connected to the input end of the multiplexer K2, the input end of TV2 is connected to both ends of the receiving coil, and the output end of TV2 is connected to the input end of K2.
  • the output end of K1 is connected to the first filter, the output end of the first filter is connected to the input end of the first analog-to-digital converter AD1, and the output end of AD1 is connected to the first processing circuit.
  • the output end of K2 is connected with the second filter, the output end of the second filter is connected with the output end of the second analog-to-digital converter AD2, and the output end of AD2 is connected with the second processing circuit.
  • K1 is connected behind TA1 and TV1
  • a first filter is connected behind K1
  • AD1 is connected behind the first filter
  • a first processing circuit is connected behind AD1.
  • K2 is connected behind TA2 and TV
  • a second filter is connected behind K2
  • AD2 is connected behind the second filter
  • a second processing circuit is connected behind AD2.
  • TA1 samples the current of the transmitting coil
  • TV1 samples the voltage at both ends of the transmitting coil
  • TA2 samples the current of the receiving coil
  • TV2 samples the voltage at both ends of the receiving coil
  • the current and voltage output by TA1, TV1, TA2 and TV2 are fixed according to K1 and K2.
  • the order of the current and voltage is transmitted to the first filter and the second filter respectively.
  • the first filter filters the current and voltage output by TA1 and TV1 to eliminate the interference in the current and voltage, and filters the current and voltage after filtering.
  • Output to AD1 for analog-to-digital conversion to obtain a digital signal.
  • the second filter filters the current and voltage output by TA2 and TV2 to eliminate interference in the current and voltage, and outputs the filtered current and voltage to AD2 for analog-to-digital conversion to obtain a digital signal.
  • the second processing circuit will use the digital signal output by AD2 to calculate the output power and the second loss of the receiving coil, and output the output power and the second loss of the receiving coil to the first processing circuit.
  • the first processing circuit uses the digital signal output by AD1 to calculate the received power and the first loss of the transmitting coil, and uses the received power of the transmitting coil, the first loss, the output power and the second loss of the receiving coil to determine the foreign object loss.
  • the digital signal output by AD1 includes: a first current signal i1 and a first voltage signal v1.
  • i1 is the signal after the analog-to-digital conversion of the current of the transmitting coil
  • v1 is the signal of the analog-to-digital conversion of the voltage at both ends of the transmitting coil.
  • the received power P1 and the first loss P2 of the transmitting coil are calculated using i1 and v1.
  • i1 and v1 and P1 satisfy the following formula:
  • T is the preset duration
  • i1(t) is the first current signal sampled at the target sampling time within the preset duration
  • v1(t) is the first voltage signal sampled at the target sampling time within the preset duration
  • X1 is the preset magnetic loss coefficient of the transmitting coil
  • R1 is the equivalent resistance of the transmitting coil
  • I1 is the effective value of the first current signal obtained within T time.
  • the magnetic loss coefficient of the transmitting coil can be set according to the model of the transmitting coil, and no specific setting is made here in this application.
  • P2 may be calculated by sampling v1 n.
  • T is N times the cycle of the AC signal of the wireless power transmission system.
  • N is a natural number greater than 0.
  • the digital signal output by AD2 includes: a second current signal i2 and a second voltage signal v2.
  • i2 is the signal after the analog-to-digital conversion of the current of the receiving coil
  • v2 is the signal of the voltage at both ends of the receiving coil after the analog-to-digital conversion.
  • the output power P3 and the second loss P4 of the receiving coil are calculated using i2 and v2.
  • i2 and v2 and P3 satisfy the following formula:
  • i2(t) is the second current signal sampled at the target sampling time within the preset duration
  • v2(t) is the second voltage signal sampled at the target sampling time within the preset duration
  • i2 and v2 and the second loss P4 satisfy the following formula:
  • X2 is the preset magnetic loss coefficient of the receiving coil
  • R2 is the equivalent resistance of the receiving coil
  • I2 is the effective value of the second current signal obtained within T time.
  • the magnetic loss coefficient of the receiving coil can be set according to the model of the receiving coil, which is not described in detail here in this application.
  • the sample can be calculated v2 n P4.
  • the PLOSS may be output directly to the wireless charger's processor or to other processors in communication with the wireless charger.
  • PLOSS is greater than a preset foreign object loss threshold
  • an indication signal is sent to the processor of the wireless charger or other processors in communication with the wireless charger.
  • the indication signal is used to instruct the processor to disconnect the DC power supply from the inverter in the wireless charger for troubleshooting.
  • an embodiment of the present application provides another wireless charging chip.
  • FIG. 9 a schematic structural diagram of a wireless charging chip provided by the present application.
  • the wireless charging chip 900 is applied to a wireless charger.
  • the charger includes: inverter, transmitting coil and wireless charging chip. Among them, wireless charging is used to charge the terminal.
  • the wireless charging chip 900 includes: a sampling circuit 901 , an analog-to-digital converter 902 and a processing circuit 903 .
  • the first current input terminal of the sampling circuit 901 is used to connect to the input terminal of the inverter
  • the second current input terminal of the sampling circuit 901 is used to connect to the transmitting coil
  • the two terminals of the first voltage input terminal of the sampling circuit 901 It is connected to both ends of the input end of the inverter, and the two ends of the second voltage input end of the sampling circuit 901 are connected to both ends of the transmitting coil.
  • the input end of the analog-to-digital converter 902 is connected to the output end of the sampling circuit 901
  • the output end of the analog-to-digital converter 902 is connected to the processing circuit 903 .
  • the first current input terminal of the sampling circuit 901 is used to sample the current of the inverter input terminal
  • the second current input terminal of the sampling circuit 901 is used to sample the transmitting coil current
  • the first voltage input terminal of the sampling circuit 901 is used to sample the inverter.
  • the voltage across the input terminal, the second voltage input terminal of the sampling circuit 901 is used to sample the voltage across the transmitting coil.
  • the processing circuit 903 is configured to use the digital signal output by the analog-to-digital converter 902 to calculate the received power and the first loss of the inverter, and to use the output power of the inverter, the first loss, the output power of the terminal and the second loss,
  • the foreign object loss is determined, where the foreign object loss is used to indicate whether there is a metal foreign object in the wireless charger and the terminal, and the output power of the terminal and the second loss are obtained by using the current sampled from the terminal's receiving coil, the current sampled by the rectifier, and the voltage sampled by the receiving coil and calculated from the voltage sampled from the rectifier.
  • the voltage at both ends of the transmitting coil is the same as the positive and negative directions of the voltage of the transmitting coil sampled by the sampling circuit 901, and the voltage at both ends of the transmitting coil is the same as the positive and negative directions of the voltage of the transmitting coil sampled by the sampling circuit 901, and its specific meaning can be: sampling Among the two terminals of the second voltage output terminal of circuit 901, the terminal receiving high potential is connected to the high potential end of the transmitting coil, the terminal receiving low potential is connected to the low potential end of the transmitting coil, and the potential difference between the two terminals is equal to the transmitting coil.
  • the voltage at both ends of the inverter input end is in the same positive and negative direction as the voltage at the input end of the inverter sampled by the sampling circuit 901 , and the voltage at both ends of the input end of the inverter is the same as the voltage at the inverter input end sampled by the sampling circuit 901
  • the positive and negative directions of the voltages at both ends of the input terminal are the same, and the specific meaning may be: among the two terminals of the first voltage output terminal of the sampling circuit 901, the terminal receiving a high potential is connected to the high potential end of the input terminal of the inverter, receiving a low potential The terminal of the inverter is connected to the low-potential end of the inverter input terminal, and the potential difference between the two terminals is equal to the voltage across the inverter input terminal.
  • the first current input terminal of the sampling circuit 901 is connected to the inverter input terminal and samples the current of the inverter input terminal, and the first current input terminal of the sampling circuit 901
  • the two current input terminals are connected to the transmitting coil and sample the current of the transmitting coil.
  • the two terminals of the first voltage input terminal of the sampling circuit 901 are connected to both ends of the inverter input terminal and sample the voltage across the inverter input terminal.
  • the circuit 903 is connected to convert the current and voltage output by the sampling circuit 901 from an analog signal to a digital signal, and output the output digital signal to the processing circuit 903; the processing circuit 903 uses the digital signal output by the analog-to-digital converter 902 to calculate The received power and the first loss of the inverter, and the foreign matter loss is determined using the output power of the inverter, the first loss, the output power of the terminal, and the second loss.
  • the wireless charging chip 900 further includes a receiver (not shown), configured to receive the output power and the second loss of the terminal sent by the transmitter (not shown) in the terminal, and compare the received output power and the output power of the terminal with the second loss.
  • the second loss is sent to processing circuit 903 .
  • the output power and second loss of the terminal are calculated by the processing circuit in the terminal using the current sampled from the receiving coil of the terminal, the current sampled by the rectifier, the voltage sampled by the receiving coil and the voltage sampled from the rectifier.
  • the foreign object loss is greater than a preset foreign object loss threshold, it is determined that there is a metallic foreign object in the wireless charger and the terminal.
  • the output end of the sampling circuit 901 is connected to the input end of the analog-to-digital converter 902 through a multiplexer and a filter.
  • the input end of the multiplexer is connected to the output end of the sampling circuit 901
  • the output end of the multiplexer is connected to the input end of the filter
  • the multiplexer is used to sequentially output the current and voltage output by the sampling circuit 901 .
  • the output end of the filter is connected to the input end of the analog-to-digital converter 902 , and the filter is used for filtering the received current and voltage, and outputting the filtered current and voltage to the analog-to-digital converter 902 .
  • the current input terminal and the voltage input terminal of the sampling circuit 901 are used as the input terminal of the wireless charging chip 900
  • the output terminal of the processing circuit 903 is used as the output terminal of the wireless charging chip 900
  • the output end of the processing circuit 903 may be connected to the processor in the wireless charger, or connected to other processors communicatively connected to the wireless charger.
  • the wireless charging chip 900 can be fixed on the wireless charger.
  • the wireless charging chip 900 can be set in a flexible and detachable form, that is, a fixed interface can be provided on the wireless charger, and the wireless charging chip 900 can be connected to the wireless charger through the fixed interface on the wireless charger , in this case, the wireless charging chip 900 can be regarded as a device independent of the wireless charger.
  • the sampling circuit 901 , the analog-to-digital converter 902 , and the processing circuit 903 in the wireless charging chip 900 may use discrete devices, and connect through data transmission.
  • the first current input terminal of the sampling circuit 901 is used for connecting with the input terminal of the inverter and sampling the current of the input terminal of the inverter
  • the second current input terminal of the sampling circuit 901 is used for connecting with the transmitting coil and sampling the transmitting coil current.
  • the two terminals of the first voltage input terminal of the circuit 901 are connected to both ends of the input terminal of the inverter and the voltage across the input terminal of the inverter is sampled
  • the two terminals of the second voltage input terminal of the sampling circuit 901 are connected to both ends of the transmitting coil. And sample the voltage across the transmitter coil.
  • the sampling circuit 901 may include: a first current sensor, a second current sensor, a first voltage sensor and a second voltage sensor.
  • the input end of the first current sensor is the first current input end of the sampling circuit 901 for connecting to the input end of the inverter, and the input end of the first current sensor is connected to the input end of the analog-to-digital converter 902;
  • the input end of the current sensor is the second current input end of the sampling circuit 901 for connecting the transmitting coil, the output end of the second current sensor is connected with the input end of the analog-to-digital converter 902;
  • the input end of the first voltage sensor is the sampling end
  • the first voltage input end of the circuit 901 is used to connect both ends of the inverter input end, the output end of the first voltage sensor is connected to the input end of the analog-to-digital converter 902;
  • the input end of the second voltage sensor is the sampling circuit 901
  • the second voltage input end of the second voltage sensor is used to connect the two ends of the receiving coil, and the output end of the second voltage sensor is connected with the input end of the analog-to-digital converter 902 .
  • the function of setting the first current sensor is: sampling the current flowing through the input terminal of the inverter through the first current sensor; setting the second current sensor is: sampling the current flowing through the transmitting coil through the second current sensor; setting the first current sensor
  • the function of a voltage sensor is: sampling the voltage across the input terminal of the inverter through the first voltage sensor; the function of setting the second voltage sensor is: sampling the voltage across the transmitting coil through the second voltage sensor.
  • sampling circuit 901 can also adopt other structures.
  • the input end of the analog-to-digital converter 902 is connected to the output end of the sampling circuit 901, and the output end of the analog-to-digital converter 902 is connected to the processing circuit 903, and the current and voltage sampled by the sampling circuit 901 are converted from analog signals to digital signals, And send the digital signal to the processing circuit 903 .
  • the processing circuit 903 is connected to the output end of the analog-to-digital converter 902, and uses the digital signal output by the analog-to-digital converter 902 to calculate the received power and the first loss of the inverter, and use the output power of the inverter, the first loss, The output power of the terminal and the second loss, determine the foreign body loss.
  • the foreign matter loss is used to indicate whether there is metal foreign matter in the wireless charger and the terminal, wherein the output power and the second loss of the terminal are obtained by using the current sampled from the receiving coil of the terminal, the current sampled by the rectifier, the voltage sampled by the receiving coil, and the voltage sampled from the receiving coil. Calculated from the voltage sampled by the rectifier.
  • the processing circuit 903 may be electrically or communicatively connected to the processor in the terminal, so as to obtain the output power and the second loss of the receiving coil.
  • the wireless charger is charged to the processor in the wireless charger or the wireless charger.
  • the indication signal is used to instruct the processor to disconnect the DC power supply from the inverter for troubleshooting.
  • the value of the preset foreign body loss threshold can be set according to the Qi protocol.
  • the processing circuit 903 may be any one of MCU, CPU, and DSP.
  • the specific form of the processing circuit 903 is not limited to the above examples.
  • an embodiment of the present application provides a wireless charging chip, as shown in FIG. 10 .
  • current sensors TA1 and TA1 and voltage sensors TV1 and TV2 are included.
  • the input end of TA1 is connected with the input end of the inverter
  • the output end of TA1 is connected with the input end of the multiplexer K
  • the input end of TA2 is connected with the transmitting coil
  • the input end of TA2 is connected with the input end of K
  • the input end of TV1 is connected to both ends of the input end of the inverter
  • the output end of TV1 is connected to the input end of K
  • the two ends of the transmitting coil of TV2 are connected.
  • the input end of K is respectively connected with the output end of TA1, TA2, TV1 and TV2, and the output end of K is connected with the input end of the filter.
  • the output end of the filter is connected with the input end of the analog-to-digital converter AD, and the output end of the AD is connected with the processing circuit.
  • A, B and C are used as the input terminals of the wireless charging chip
  • F is used as the output terminal of the wireless charging chip.
  • K is connected to the back of TA1, TA2, TV1 and TV2, the back of K is connected to the filter, the back of the filter is connected to AD, and the back of AD is connected to the processing circuit, and the energy is from left to right.
  • TA1 samples the inverter input current
  • TA2 samples the transmitting coil current
  • TV1 samples the voltage across the inverter input
  • TV2 samples the voltage across the transmitting coil
  • the currents and voltages output by TA1, TA2, TV1 and TV2 are After K, it is transmitted to the filter in a fixed order.
  • the filter filters the current and voltage output by TA1, TA2, TV1 and TV2 to eliminate the interference in the current and voltage, and outputs the filtered current and voltage to the
  • the analog-to-digital conversion is performed in AD to obtain a digital signal, and the processing circuit uses the digital signal and the signal sent by the terminal to obtain the transmission power and transmission loss during the transmission process of the power transmission from the inverter input end to the rectifier input end of the terminal, and The foreign body loss is determined using the transmitted power and transmission loss.
  • the digital signal includes: a first current signal i1, a second current signal i2, a first voltage signal v1 and a second voltage signal v2.
  • i1 is the signal after the analog-to-digital conversion of the current at the input terminal of the inverter
  • i2 is the signal after the analog-to-digital conversion of the current of the transmitting coil
  • v1 is the signal of the voltage at both ends of the input terminal of the inverter after the analog-to-digital conversion
  • v2 It is the analog-to-digital converted signal of the voltage across the transmitting coil.
  • the output power P1 of the inverter is calculated using i1 and v1 and the first loss P2 is calculated using i2 and v2.
  • i1 and v1 and the power P1 received by the transmitting coil satisfy the following formula:
  • T is the preset duration
  • i1(t) is the first current signal sampled at the target sampling time within the preset duration
  • v1(t) is the first voltage signal sampled at the target sampling time within the preset duration.
  • P1 can be obtained by multiplying i1 and v1 directly.
  • v2(t) is the second voltage signal sampled at the target sampling time within the preset duration
  • X1 is the preset magnetic loss coefficient of the transmitting coil
  • R1 is the equivalent resistance of the transmitting coil and the inverter
  • I1 is the time T The acquired effective value of the second current signal.
  • the magnetic loss coefficient of the transmitting coil can be set according to the model of the transmitting coil, and no specific setting is made here in this application.
  • the sample can be calculated v2 n P2.
  • P3 and P4 are calculated by using the current sampled from the receiving coil of the terminal, the current sampled by the rectifier, the voltage sampled by the receiving coil and the voltage sampled from the rectifier.
  • i3 and v3 and P3 satisfy the following relationship:
  • i3 is the output current of the sampled rectifier
  • v3 is the voltage across the output terminal of the sampled rectifier.
  • i3 and v3 are both digital signals
  • i3(t) is the rectifier output current sampled at the target sampling moment in the preset duration
  • v3(t) is the rectifier output voltage sampled at the target sampling moment in the preset duration.
  • P3 can be obtained by multiplying i3 and v3 directly.
  • i4 is the sampled receiving coil current
  • v4 is the sampled voltage across the receiving coil.
  • i4 and v4 are digital signals.
  • X2 is the preset magnetic loss coefficient of the receiving coil
  • R2 is the equivalent resistance of the receiving coil
  • I2 is the effective value of the current of the receiving coil obtained within T time.
  • P4 may be calculated by sampling v4 n.
  • the PLOSS may be output directly to a processor of the wireless power transmission system or to other processors in communication with the wireless power transmission system.
  • the processor in the wireless charging or other processors in communication with the wireless charger when it is determined that there are metal foreign objects in the wireless charger and the terminal, and an indication signal is sent to the processor in the wireless charging or other processors in communication with the wireless charger. .
  • the indication signal is used to instruct the processor to disconnect the DC power supply from the inverter in the wireless charger for troubleshooting.
  • the wireless charger 1100 includes the aforementioned wireless charging chip 900 , an inverter 1101 and a transmitting coil 1102 .
  • the input end of the inverter 1101 is used for connecting with the DC power supply, and the output end of the inverter 1101 is connected with the transmitting coil.
  • the wireless charging chip 900 is connected to the transmitting coil 1102, and is used to detect whether there is a metal foreign object in the wireless charger 1100 and the terminal.
  • the wireless power transmission system includes a wireless charger and a terminal.
  • the wireless charger includes a transmitting coil and an inverter
  • the terminal includes a rectifier and a receiving coil.
  • the terminal also includes a powered device.
  • the electrical device may be a battery in the terminal.
  • the wireless power transmission system further includes: a first sampling circuit 1201 , a second sampling circuit 1202 , a first analog-to-digital converter 1203 , a second analog-to-digital converter 1204 , a first processing circuit 1205 and a second processing circuit 1206 .
  • the first current input terminal of the first sampling circuit 1201 is connected to the inverter input terminal
  • the second current input terminal of the first sampling circuit 1201 is connected to the transmitting coil
  • two of the first voltage input terminals of the first sampling circuit 1201 The terminals are connected to both ends of the inverter input terminal, and the two terminals of the second voltage input terminal of the first sampling circuit 1201 are connected to both ends of the transmitting coil.
  • the first current input terminal of the second sampling circuit 1202 is connected to the output terminal of the rectifier, the second current input terminal of the second sampling circuit 1202 is connected to the receiving coil, and the two terminals of the first voltage input terminal of the second sampling circuit 1202 are connected to the output terminal of the rectifier The two terminals of the second voltage input terminal of the second sampling circuit 1202 are connected to both ends of the receiving coil.
  • the input end of the first analog-to-digital converter 1203 is connected to the output end of the first sampling circuit 1201 , and the output end of the first analog-to-digital converter 1203 is connected to the first processing circuit 1205 .
  • the input end of the second analog-to-digital converter 1204 is connected to the output end of the second sampling circuit 1202 , and the output end of the second analog-to-digital converter is connected to the second processing circuit 1206 .
  • the first current input terminal of the first sampling circuit 1201 is used to sample the current of the inverter input terminal
  • the second current input terminal of the first sampling circuit 1201 is used to sample the transmitting coil current
  • the first voltage of the first sampling circuit 1201 The input terminal is used for sampling the voltage across the input terminal of the inverter
  • the second voltage input terminal of the first sampling circuit 1201 is used for sampling the voltage across the transmitting coil.
  • the first current input terminal of the second sampling circuit 1202 is used for sampling the rectifier output current
  • the second current input terminal of the second sampling circuit is used for sampling the receiving coil current
  • the first voltage input terminal of the second sampling circuit 1202 is used for sampling The voltage across the output terminal of the rectifier
  • the second voltage input terminal of the second sampling circuit 1202 is used to sample the voltage across the receiving coil.
  • the first processing circuit 1205 is configured to use the digital signal output by the first analog-to-digital converter 1203 to calculate the received power and the first loss of the inverter, and use the received power of the inverter, the first loss, the output power of the rectifier and the The second loss is to determine the foreign body loss.
  • the second processing circuit 1206 is configured to use the digital signal output by the second analog-to-digital converter 1204 to calculate the output power and the second loss of the rectifier, and output the output power and the second loss of the rectifier to the first processing circuit 1205 .
  • the foreign matter loss is used to indicate whether there is metal foreign matter in the wireless power transmission system.
  • the voltage at both ends of the transmitting coil is the same as the positive and negative directions of the voltage of the transmitting coil sampled by the first sampling circuit 1201, and the voltage at both ends of the transmitting coil is the same as the positive and negative directions of the voltage of the transmitting coil sampled by the first sampling circuit 1201, and its specific meaning It can be: among the two terminals of the second voltage input terminal of the first sampling circuit 1201, the terminal receiving high potential is connected to one end of high potential in the transmitting coil, the terminal receiving low potential is connected to one end of low potential in the transmitting coil, and the two The potential difference of the terminals is equal to the voltage across the transmitting coil; similarly, the voltage across the input terminal of the inverter is in the same positive and negative direction as the voltage at the input terminal of the inverter sampled by the first sampling circuit 1201, and the voltage across the input terminal of the inverter has the same positive and negative directions.
  • the terminal receiving the high potential is the same as the inverter.
  • the high-potential end of the input terminal of the inverter is connected, the terminal receiving the low-potential is connected to the low-potential end of the inverter input terminal, and the potential difference between the two terminals is equal to the voltage across the inverter input terminal.
  • the first current input terminal of the first sampling circuit 1201 is connected to the inverter input terminal, and the current at the inverter input terminal is sampled.
  • the second current input terminal of the circuit 1201 is connected to the transmitting coil and samples the current of the transmitting coil, and the two terminals of the first voltage input terminal of the first sampling circuit 1201 are connected to both ends of the inverter input terminal and sample both ends of the inverter input terminal voltage, the two terminals of the second voltage input terminal of the first sampling circuit 1201 are connected to both ends of the transmitting coil and sample the voltage at both ends of the transmitting coil;
  • the first current input terminal of the second sampling circuit 1202 is connected to the output terminal of the rectifier and samples the rectifier
  • the current of the input terminal, the second current input terminal of the second sampling circuit 1202 is connected to the receiving coil and samples the current of the receiving coil, and the two terminals of the first voltage input terminal of the second sampling circuit 1202 are connected to
  • the input end of the first analog-to-digital converter 1203 is connected to the output end of the first sampling circuit 1201 , and the output ends of the first analog-to-digital converter 1203 are respectively connected to the first processing circuit 1205 for The current and voltage are converted from analog signals to digital signals, and the output digital signals are output to the first processing circuit 1205 .
  • the input terminal of the second analog-to-digital converter 1204 is connected to the output terminal of the second sampling circuit 1202 , and the output terminal of the second analog-to-digital converter 1204 is connected to the second processing circuit 1206 for converting the current output by the second sampling circuit 1202
  • the sum voltage is converted from an analog signal to a digital signal, and the output digital signal is output to the second processing circuit 1206 .
  • the first processing circuit 1205 is configured to use the digital signal output by the first analog-to-digital converter 1203 to calculate the received power and the first loss of the inverter, and use the received power of the inverter, the first loss, the output power of the rectifier and the The second loss is to determine the foreign body loss.
  • the second processing circuit 1206 is configured to use the digital signal output by the second analog-to-digital converter 1204 to calculate the output power and the second loss of the rectifier, and output the output power and the second loss of the rectifier to the first processing circuit 1205 .
  • the wireless charger includes a receiver (not shown), and the terminal includes a transmitter (not shown).
  • the second processing circuit 1206 calculates the output power and the second loss of the rectifier, and the rectifier can be converted by the transmitter.
  • the output power and the second loss of the rectifier are sent to the receiver, and the receiver sends the output power and the second loss of the rectifier to the first processing circuit 1205 after receiving.
  • the foreign object loss is greater than a preset foreign object loss threshold, it is determined that there is a metallic foreign object in the wireless power transmission system 1200 .
  • the output end of the first sampling circuit 1201 is connected to the first analog-to-digital converter through the first multiplexer and the first filter, and the output end of the second sampling circuit 1202 is connected through the second multiplexer and the second filter
  • the device is connected to the second analog-to-digital converter.
  • the first input end of the first multiplexer is connected to the output end of the first sampling circuit 1201
  • the output end of the first multiplexer is connected to the input end of the first filter
  • the first multiplexer uses to sequentially output the current and voltage output by the first sampling circuit.
  • the first input terminal of the second multiplexer is connected to the output terminal of the second sampling circuit 1202
  • the output terminal of the second multiplexer is connected to the input terminal of the second filter
  • the second multiplexer is used to sequentially output The current and voltage output by the second sampling circuit 1202 .
  • the output end of the first filter is connected to the input end of the first analog-to-digital converter 1203, and the first filter is used to filter the received current and voltage, and output the filtered current and voltage to the first analog-to-digital converter Converter 1203.
  • the output end of the second filter is connected to the input end of the second analog-to-digital converter 1204, and the second filter is used for filtering the received current and voltage, and outputting the filtered current and voltage to the second analog-to-digital converter Converter 1204.
  • each device in the wireless power transmission system 1200 may be connected in the form of a sampling integrated circuit.
  • each device in the wireless power transmission system 1200 may sample discrete devices, and each device may be connected through a data transmission line.
  • the first sampling circuit 1201 , the second sampling circuit 1202 , the first analog-to-digital converter 1203 , the second analog-to-digital converter 1204 , the first processing circuit 1205 and the second processing circuit 1206 in the wireless power transmission system 1200 The specific structure is introduced.
  • the first current input terminal of the first sampling circuit 1201 is connected to the inverter input terminal and samples the current of the inverter input terminal.
  • the second current input terminal of the first sampling circuit 1201 is connected to the transmitting coil and is used to sample the transmitting coil current.
  • Two terminals of the first voltage input terminal of a sampling circuit 1201 are connected to both ends of the inverter input terminal and used to sample the voltage across the inverter input terminal, and two terminals of the second voltage input terminal of the first sampling circuit 1201 are connected to the transmitter Both ends of the coil are connected and the voltage across the transmitting coil is sampled.
  • the first sampling circuit 1201 may include: a first current sensor, a second current sensor, a first voltage sensor and a second voltage sensor.
  • the input end of the first current sensor is the first current input end of the first sampling circuit, which is connected to the input end of the inverter, and the output end of the first current sensor is connected to the input end of the first analog-to-digital converter;
  • the input end of the two current sensors is the second current input end of the first sampling circuit, which is connected to the transmitting coil, and the output end of the second current sensor is connected to the input end of the first analog-to-digital converter;
  • the input end of the first voltage sensor is The first voltage input end of the first voltage circuit is connected to both ends of the inverter input end, the input end of the first voltage sensor is connected to the input end of the first analog-to-digital converter;
  • the input end of the second voltage sensor is the first The second voltage input end of the sampling circuit is connected to both ends of the transmitting coil, and the output end of the second voltage sensor is connected to the input end of the first analog-to-digital converter.
  • the above description of the structure of the first sampling circuit 1201 is only an example. In practical applications, the first sampling circuit 1201 may also adopt other structures, for example, the first sampling circuit 1201 may be a data collector.
  • the first current input terminal of the second sampling circuit 1202 is connected to the output terminal of the rectifier and samples the current of the output terminal of the rectifier.
  • the second current input terminal of the second sampling circuit 1202 is connected to the receiving coil and used to sample the current of the receiving coil.
  • the second sampling circuit 1202 The two terminals of the first voltage input terminal of 1202 are connected to both ends of the rectifier output terminal and used to sample the voltage across the rectifier output terminal, and the two terminals of the second voltage input terminal of the second sampling circuit 1202 are connected to both ends of the receiving coil and sample the receiving coil. voltage across both ends.
  • the second sampling circuit 1202 may include: a third current sensor, a fourth current sensor, a third voltage sensor and a fourth voltage sensor.
  • the input end of the third current sensor is the first current input end of the second sampling circuit 1202, which is connected to the output end of the rectifier, and the output end of the third current sensor is connected to the input end of the second analog-to-digital converter 1204;
  • the input end of the four current sensors is the second current input end of the second sampling circuit 1202, which is connected to the receiving coil, and the output end of the fourth current sensor is connected to the input end of the second analog-to-digital converter 1204;
  • the input end of the third voltage sensor The terminal is the first voltage input terminal of the second electrical sampling circuit 1202, which is connected to both ends of the rectifier output terminal;
  • the input terminal of the third voltage sensor is connected to the input terminal of the second analog-to-digital converter 1204;
  • the input terminal of the fourth voltage sensor It is the second voltage input end of the second sampling circuit 1202 , which is connected to both ends of the receiving coil, and the output end of the fourth voltage sensor is connected to the input end of the second analog-to-digital converter 1204 .
  • the above description of the structure of the second sampling circuit 1202 is only an example.
  • the second sampling circuit 1202 may also adopt other structures, for example, the second sampling circuit 1202 may be a data collector.
  • the input end of the first analog-to-digital converter 1203 is connected to the output end of the first sampling circuit 1201 , and the output end of the first analog-to-digital converter 1203 is connected to the first processing circuit 1205 for sampling the current of the first sampling circuit 1201
  • the sum voltage is converted from an analog signal to a digital signal, and the digital signal is sent to the first processing circuit 1205 .
  • the input terminal of the second analog-to-digital converter 1204 is connected to the output terminal of the second sampling circuit 1202 , and the output terminal of the second analog-to-digital converter 1203 is connected to the second processing circuit 1206 for sampling the current of the second sampling circuit 1202
  • the sum voltage is converted from an analog signal to a digital signal, and the digital signal is sent to the second processing circuit 1206 .
  • the first processing circuit 1205 is connected to the output end of the first analog-to-digital converter 1203, and is used for calculating the received power and the first loss of the inverter using the digital signal output by the first analog-to-digital converter 703, and using the inverter
  • the received power, the first loss, the output power of the rectifier, and the second loss determine the foreign body loss.
  • the foreign matter loss is used to indicate whether there is metal foreign matter in the wireless power transmission system 1200 .
  • the first processing circuit 1205 may be electrically or communicatively connected to the second processing circuit 1206, so as to obtain the output power and the second loss of the receiving coil.
  • the processor in the wireless charger or the wireless Other processors to which the charger is communicatively connected send indication signals.
  • the indication signal is used to instruct the processor to disconnect the DC power supply from the inverter for troubleshooting.
  • the value of the preset foreign body loss threshold can be set according to the Qi protocol.
  • the digital signal output by the first analog-to-digital converter 1203 includes: a first current signal, a second current signal, a first voltage signal and a second voltage signal.
  • the first current signal is the analog-to-digital converted signal of the current at the input end of the inverter
  • the second current signal is the signal of the transmitter coil current after the analog-to-digital conversion
  • the first voltage signal is the voltage across the input end of the inverter
  • the second voltage signal is the analog-to-digital converted signal of the voltage at both ends of the transmitting coil.
  • the first processing circuit 1205 is specifically configured to: calculate the input power of the inverter according to the first current signal and the first voltage signal; calculate the first loss according to the second current signal and the second voltage signal; the first loss is the power consumed by the transmitting coil and the inverter; according to the input power of the inverter and the first loss, determine the transmitting power of the transmitting coil; according to the output power and the second loss of the rectifier, determine the receiving power of the receiving coil; use the transmitting coil The difference between the transmitting power and the receiving power of the receiving coil determines the foreign body loss.
  • the first processing circuit 1205 may be any one of MCU, CPU, and DSP.
  • the specific form of the first processing circuit 1205 is not limited to the above examples.
  • the second processing circuit 1206 is connected to the output end of the second analog-to-digital converter 1204, and is used for calculating the output power and the second loss of the receiving coil by using the digital signal output by the second analog-to-digital converter 1204, and converting the output of the receiving coil
  • the power and the second loss are output to the first processing circuit 1205 .
  • the digital signal output by the second analog-to-digital converter 1204 includes: a third current signal, a fourth current signal, a third voltage signal and a fourth voltage signal.
  • the third current signal is the analog-to-digital conversion signal of the current at the input terminal of the rectifier
  • the fourth current signal is the analog-to-digital conversion signal of the current of the receiving coil
  • the third voltage signal is the analog-to-digital conversion of the voltage across the input terminal of the inverter.
  • the signal after digital conversion, and the fourth voltage signal is the signal after analog-to-digital conversion of the voltage at both ends of the receiving coil.
  • the second processing circuit 1206 is specifically used to: calculate the output power of the rectifier according to the third current signal and the third voltage signal; calculate the second loss according to the fourth current signal and the fourth voltage signal; The power consumed by the coil and the rectifier; the output power of the rectifier and the second loss are sent to the first processing circuit 1205.
  • the second processing circuit 1206 may be any one of MCU, CPU, and DSP.
  • the specific form of the second processing circuit 1206 is not limited to the above examples.
  • an embodiment of the present application provides a wireless power transmission system, as shown in FIG. 13 .
  • current sensors TA1 and TA1 and voltage sensors TV1 and TV2 are included.
  • the input end of TA1 is connected with the input end of the inverter
  • the input end of TA1 is connected with the input end of the multiplexer K1
  • the input end of TA2 is connected with the transmitting coil
  • the output end of TA2 is connected with the input end of K1
  • the input end of TV1 is connected to both ends of the inverter input end
  • the input end of TV1 is connected to the input end of K1
  • the input end of TV2 is connected to both ends of the transmitting coil
  • the output end of TV2 is connected to the input end of K1.
  • TA3, TA4, TV3 and TV4 are included.
  • the input end of TA3 is connected with the input end of the rectifier
  • the input end of TA3 is connected with the input end of the multiplexer K2
  • the input end of TA4 is connected with the receiving coil
  • the output end of TA4 is connected with the input end of K2
  • the input end of TV3 is connected with the input end of the rectifier
  • the output end of TV3 is connected with the input end of K2
  • the input end of TV4 is connected with both ends of the receiving coil
  • the output end of TV4 is connected with the input end of K2.
  • the output end of K1 is connected with the first filter, the output end of the first filter is connected with the input end of the first analog-to-digital converter AD1, and the output end of AD1 is connected with the first processing circuit.
  • the output end of K2 is connected with the second filter, the output end of the second filter is connected with the output end of the second analog-to-digital converter AD2, and the output end of AD2 is connected with the second processing circuit.
  • TA1 samples the inverter input current
  • TA2 samples the transmitting coil current
  • TV1 samples the voltage across the inverter input
  • TV2 samples the voltage across the transmitting coil
  • TA3 samples the rectifier output current
  • TA4 samples the receiving coil current
  • TV3 samples the voltage across the input end of the rectifier
  • TV4 samples the voltage across the receiving coil
  • the current and voltage output by TA1, TV1, TA2 and TV2 are transmitted to the first filter in a fixed order after K1, TA3, TV3, TA4 and
  • the current and voltage output by TV4 are respectively transmitted to the second filter in a fixed order after K2.
  • the first filter performs filtering processing on the received current and voltage to eliminate the interference in the current and voltage.
  • the current and voltage are output to AD1 for analog-to-digital conversion to obtain a digital signal.
  • the second filter filters the received current and voltage to eliminate interference in the current and voltage, and outputs the filtered current and voltage to AD2 for analog-to-digital conversion to obtain a digital signal.
  • the second processing circuit will use the digital signal output by AD2 to calculate the output power and the second loss of the rectifier.
  • the first processing circuit uses the digital signal output by AD1 to calculate the received power and the first loss of the inverter, and uses the received power of the inverter, the first loss, the output power of the rectifier and the second loss to determine the foreign body loss.
  • the digital signal output by AD1 includes: a first current signal i1, a second current signal i2, a first voltage signal v1 and a second voltage signal v2.
  • i1 is the signal after the analog-to-digital conversion of the current at the input end of the inverter
  • i2 is the signal after the analog-to-digital conversion of the current of the transmitting coil
  • v1 is the signal of the voltage at both ends of the input end of the inverter after the analog-to-digital conversion
  • v1 It is the analog-to-digital converted signal of the voltage across the transmitting coil.
  • the input power P1 of the inverter is calculated using i1 and v1
  • the first loss P2 is calculated using i2 and v2.
  • i1 and v1 and P1 satisfy the following formula:
  • T is the preset duration
  • i1(t) is the first current signal sampled at the target sampling time within the preset duration
  • v1(t) is the first voltage signal sampled at the target sampling time within the preset duration.
  • P1 can be obtained by multiplying i1 and v1 directly.
  • i2 and v2 and the first loss P2 satisfy the following formula:
  • X1 is the preset magnetic loss coefficient of the transmitting coil
  • R1 is the equivalent resistance of the transmitting coil and the inverter
  • I1 is the effective value of the third current signal obtained within T time.
  • the magnetic loss coefficient of the transmitting coil can be set according to the model of the transmitting coil, and no specific setting is made here in this application.
  • the sample can be calculated v2 n P2.
  • the digital signal output by AD2 includes: a third current signal i3, a fourth current signal i4, a third voltage signal v3 and a fourth voltage signal v4.
  • i3 is the signal after the analog-to-digital conversion of the current at the output end of the rectifier
  • i4 is the signal after the analog-to-digital conversion of the current of the receiving coil
  • v3 is the signal of the voltage at the output end of the rectifier after the analog-to-digital conversion
  • v4 is the signal of the receiving coil two The signal of the terminal voltage after analog-to-digital conversion.
  • the output power P3 of the rectifier is calculated using i3 and v3
  • the second loss P4 is calculated using i4 and v4.
  • i3 and v3 and P3 satisfy the following formula:
  • i3(t) is the third current signal sampled at the target sampling time within the preset duration
  • v3(t) is the third voltage signal sampled at the target sampling time within the preset duration.
  • P3 can be obtained by multiplying i3 and v3 directly.
  • i4 and v4 and the second loss P4 satisfy the following formula:
  • X2 is the preset magnetic loss coefficient of the receiving coil
  • R2 is the equivalent resistance of the receiving coil and the rectifier
  • I2 is the effective value of the fourth current signal obtained within T time.
  • the magnetic loss coefficient of the receiving coil can be set according to the model of the receiving coil, which is not described in detail here in this application.
  • P4 may be calculated by sampling v4 n.
  • the PLOSS may be output directly to a processor of the wireless power transmission system or to other processors in communication with the wireless power transmission system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电芯片(200)、无线充电器(600)和无线电力传输***,用于提高金属异物检测准确度,包括:采样电路(201)、模数转换器(202)和处理电路(203);采样电路(201)的电流输入端用于与发射线圈连接,采样电路(201)的电压输入端的两个端点用于与发射线圈两端连接;模数转换器(202)的输入端与采样电路(201)的输出端连接,模数转换器(202)的输出端与处理电路(203)连接;处理电路(203)用于利用模数转换器(202)输出的数字信号,计算发射线圈的接收功率和第一损耗,以及利用发射线圈的接收功率、第一损耗、终端中接收线圈的输出功率和第二损耗,确定异物损耗,异物损耗用于指示无线充电器(600)和终端中是否存在金属异物。

Description

一种无线充电芯片、无线充电器和无线电力传输***
相关申请的交叉引用
本申请要求在2020年06月30日提交中国专利局、申请号为202010624404.3、申请名称为“一种无线充电芯片、无线充电器和无线电力传输***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线电力传输技术领域,尤其涉及到一种无线充电芯片、无线充电器和无线电力传输***。
背景技术
低频无线电力传输技术一般载波频率在1MHz以下,如基于Qi标准的无线电力***的工作频率约在100KHz~205KHz范围内,常见的异物(金属导体等)进入无线电力传输***的发射端或者接收端产生的磁场范围内会因涡流效应(eddying dffect)而发热,金属异物发热不仅会增加无线充电***的传输损耗,还会对无线充电***的运行造成严重的安全隐患,因此对于低频无线电力传输***来说非常有必要进行异物检测(foreign object detection,FOD)。
常规的FOD主要包括Q值检测法、谐振频率检测和功率损耗(power loss,PLOSS)检测。由于Q值检测法和谐振频率检测是离线式检测,因此它们一般是作为辅助FOD手段。PLOSS检测是Qi标准定义的主要POD方法,它的基本原理是检测发射端的发射功率和接收端的接收功率,接收端把计算出来的接收功率发送给发送端,发射端根据两个功率和设定的异物损耗阈值判定***是否存在异物发热隐患。
实际实施时,发射功率和接收功率之间存在传输路径,无线电力传输***在运行时,会在传输路径上产生传输损耗(发射端传输损耗和接收端传输损耗),若无线电力传输***中无异物,发射功率与接收功率的差值等于传输损耗,若无线电力传输***中存在金属异物,发射功率与接收功率的差值大于传输损耗。因此,传输损耗对于FOD结果的影响非常大,但是目前发射端的传输损耗是通过发射功率乘以发射端拟合的损耗系数计算得到,同理,接收端的传输损耗通过接收功率乘以接收端拟合的损耗系数计算得到。因此,通过该方式得到的传输损耗数值不准确,则基于传输损耗得到的FOD结果的准确度也无法保证。
因此,现有的FOD方式存在检测结果准确度低的问题。
发明内容
本申请提供了一种无线充电芯片、无线充电器和无线电力传输***,用于提高FOD的检测准确度。
第一方面,本申请实施例提供了一种无线充电芯片,应用于无线充电器中,用于检测无线充电器以及与无线充电器连接的终端是否存在金属异物。具体的,无线充电器中包括 发射线圈、逆变器和无线充电芯片。
其中,无线充电芯片中可以包括:采样电路、模数转换器和处理电路。
其中,模数转换器的输入端与采样电路的输出端连接,模数转换器的输出端与处理电路连接。
其中,采样电路的电路输入端用于与发射线圈连接并采样发射线圈电流,采样电路的电压输入端的两个端点用于与发射线圈两端连接并采样发射线圈两端电压。处理电路用于利用模数转换器输出的数字信号,计算发射线圈的接收功率和第一损耗,利用发射线圈的接收功率、第一损耗、接收线圈的输出功率和第二损耗,确定异物损耗,异物损耗用于指示无线充电器和终端中是否存在金属异物。其中,接收线圈的输出功率和第二损耗是利用从终端中的接收线圈采样的电流和从接收线圈采样的电压计算得到的。
采用上述芯片结构,可以通过采样采集表征电能从无线充电器中的发射线圈传输至终端的传输路径上的电流(发射线圈电流)和电压(发射线圈两端电压),确定电能传输路径的损耗以及传输功率,并根据表征终端电能传输过程中的传输功率和传输损耗的接收线圈的接收功率和第二损耗,准确的确定电能从无线充电器传输至终端时传输路径上的功率以及传输损耗,并根据传输功率和传输损耗,确定准确的检测出当前时刻无线充电器和终端中是否存在金属异物,因此,提高了无线充电器和终端金属异物检测结果的准确度。
在一种可能的设计中,本申请第一方面提供的无线充电芯片还包括:多路选择器和滤波器。其中,采样电路的输出端通过多路选择器和滤波器与处理电路连接。
其中,多路选择器的输入端与采样电路的输出端连接,多路选择器的输出端与滤波器的输入端连接,多路选择器用于依次输出采样电路输出的电流和电压;滤波器的输出端与模数转换器的输入端连接,滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给模数转换器。
采用上述芯片结构,可以在采样电路与模数转换器之间连接滤波器和多路选择器,实现对采样电路采样的电流和电压进行滤波处理,以消除干扰信号,保证采样的电流和电压的准确性,提高金属异物检测结果的准确度。
在一种可能的设计中,模数转换器输出的数字信号包括:电流信号和电压信号,电流信号为发射线圈电流经模数转换后的信号,电压信号为发射线圈两端电压经模数转换后的信号。
处理电路具体用于:根据电流信号和电压信号,计算发射线圈的接收功率和第一损耗;第一损耗为发射端线圈消耗的功率;根据发射线圈的接收功率和第一损耗,确定发射线圈的发射功率;根据接收线圈的输出功率和第二损耗,确定接收线圈的接收功率;利用发射线圈的发射功率与接收线圈的接收功率的差值,确定异物损耗。
采用上述芯片结构,可以计算出电能从发射线圈到接收线圈之间的传输过程中传输的功率,以及传输路径的传输损耗,并根据传输功率和传输损耗,准确的判定当前无线充电器和终端中是否存在金属异物。
在一种可能的设计中,电流信号和电压信号与发射线圈的接收功率P1满足以下公式:
Figure PCTCN2021103759-appb-000001
其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的电流信号,v1(t)为预设 时长内目标采样时刻采样的电压信号;
第一电流信号和第一电压信号与第一损耗P2满足以下公式:
Figure PCTCN2021103759-appb-000002
其中,X1为预设的发射线圈磁损系数,R1为发射线圈的等效电阻,I1为T时间内获取的电流信号的有效值。
采用上述芯片结构,由于传输过程中产生的数据会产生波动,为了避免检测失误,可以利用一段时间采样的电流和电压,确定当前时刻之前无线充电器和终端中是否存在金属异物。
在一种可能的设计中,采样电路包括:电流传感器和电压传感器。
其中,电流传感器的输入端为采样电路的电流输入端,以用于连接发射线圈,电流传感器的输出端与模数转换器的输入端连接;电压传感器的输入端为采样电路的电压输入端,以用于连接接收线圈两端,电压传感器的输出端与模数转换器的输入端连接。
采用上述芯片结构,可以采用电流传感器采样到需要的电流信号以及采用电流传感器采样到需求的电压信号。
第二方面,本申请实施例提供了一种无线充电器,用于为终端充电,该无线充电器包括:本申请第一方面以及任一可能的设计中提供的无线充电芯片、逆变器和发射线圈。
其中,逆变器的输入端用于与直流电源连接,逆变器的输出端与发射线圈连接;无线充电芯片与发射线圈连接,用于检测无线充电器和终端中是否存在金属异物。
采用上述无线充电器结构,可以使用无线充电芯片周期或者实时检测无线充电器和终端中是否存在异物,以保证无线充电器和终端的安全以及提高无线充电器的充电效率。
第三方面,本申请实施例提供了一种无线电力传输***,该无线电力传输***包括:无线充电器和终端。其中,无线充电器包括发射线圈和逆变器,终端包括整流器和接收线圈。
具体地,***还包括:第一采样电路、第二采样电路、第一模数转换器、第二模数转换器、第一处理电路和第二处理电路。
第一采样电路的电流输入端与发射线圈连接,第一采样电路的电压输入端的两个端点与发射线圈两端连接。第二采样电路的电流输入端与接收线圈连接,第二采样电路的电压输入端与接收线圈两端连接。第一模数转换器的输入端与第一采样电路的输出端连接,第一模数转换器的输出端与第一处理电路连接。第二模数转换器的输入端与第二采样电路的输出端连接,第二模数转换器的输出端与第二处理电路连接。
其中,第一采样电路的电流输入端用于采样发射线圈电流,第一采样电路的电压输入端用于采样发射线圈两端电压。第二采样电路的电流输入端用于采样接收线圈电流,第二采样电路的电压输入端用于采样接收线圈两端电压。第一处理电路用于利用第一模数转换器输出的数字信号,计算发射线圈的接收功率和第一损耗,以及利用发射线圈的接收功率、第一损耗、接收线圈的输出功率和第二损耗,确定异物损耗,异物损耗用于指示无线电力传输***中是否存在金属异物。第二处理电路用于利用第二模数转换器输出的数字信号,计算接收线圈的输出功率和第二损耗,并将接收线圈的输出功率和第二损耗输出给第一处理电路。
采用上述***结构,由于金属异物主要存在发射线圈和接收线圈之间,可以计算出通过无线充电器为终端充电过程中,电能从无线充电器的发射线圈传输至终端的接收线圈时电能传输过程中的传输功率和传输损耗,并根据传输功率和传输损耗,准确的判定当前无线电力传输***中是否存在金属异物。
在一种可能的设计中,本申请实施例第三方面提供的无线充电***中还包括:第一多路选择器、第二多路选择器、第一滤波器和第二滤波器。
其中,第一采样电路的输出端通过第一多路选择器和第一滤波器与第一模数转换器连接,第二采样电路的输出端通过第二多路选择器和第二滤波器与第二模数转换器连接。
其中,第一多路选择器的第一输入端与第一采样电路的输出端连接,第一多路选择器的输出端与第一滤波器的输入端连接。第二多路选择器的第一输入端与第二采样电路的输出端连接,第二多路选择器的输出端与第二滤波器的输入端连接。第一滤波器的输出端与第一模数转换器的输入端连接。第二滤波器的输出端与第二模数转换器的输入端连接。
其中,第一多路选择器用于依次输出第一采样电路输出的电流和电压;第二多路选择器用于依次输出第二采样电路输出的电流和电压;第一滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给第一模数转换器;第二滤波器的输出端与第二模数转换器的输入端连接,第二滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给第二模数转换器。
采用上述***结构,可以在第一采样电路与第一模数转换器之间连接第一滤波器和第一多路选择器,以及在第二采样电路和第二模数转换器之间连接第二滤波器和第二多路选择器,实现对第一采样电路和第二采样电路采样的电流和电压进行滤波处理,以消除干扰信号,保证采样的电流和电压的准确性,提高金属异物检测结果的准确度。
在一种可能的设计中,第一模数转换器输出的数字信号包括:第一电流信号和第一电压信号,第一电流信号为发射线圈电流经模数转换后的信号,第一电压信号为发射线圈两端电压经模数转换后的信号。第二模数转换器输出的数字信号包括:第二电流信号和第二电压信号,第二电流信号为接收线圈电流经模数转换后的信号,第二电压信号为接收线圈两端电压经模数转换后的信号。
其中,第一处理电路具体用于:根据第一电流信号和第一电压信号,计算发射线圈的接收功率和第一损耗;第一损耗为发射端线圈消耗的功率;根据发射线圈的接收功率和第一损耗,确定发射线圈的发射功率;根据接收线圈的输出功率和第二损耗,确定接收线圈的接收功率;利用发射线圈的发射功率与接收线圈的接收功率的差值,确定异物损耗。
其中,第二处理电路具体用于:根据第二电压信号和第二电流信号计算接收线圈的输出功率和第二损耗;第二损耗为接收线圈的消耗的功率;将接收线圈的接收功率和第二损耗发送给第一处理电路。
采用上述***结构,可以计算出电能从发射线圈到接收线圈之间的传输过程中传输的功率,以及传输路径的传输损耗,并根据传输功率和传输损耗,准确的判定当前无线电力传输***中是否存在金属异物。
在一种可能的设计中,第一电流信号和第一电压信号与发射线圈的接收功率P1满足以下公式:
Figure PCTCN2021103759-appb-000003
其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第一电压信号;
第一电流信号和第一电压信号与第一损耗P2满足以下公式:
Figure PCTCN2021103759-appb-000004
其中,X1为预设的发射线圈磁损系数,R1为发射线圈的等效电阻,I1为T时间内获取的第一电流信号的有效值;
第二电流信号和第二电压信号与接收线圈的输出功率P3满足以下公式:
Figure PCTCN2021103759-appb-000005
其中,i2(t)为预设时长内目标采样时刻采样的第二电流信号,v2(t)为预设时长内目标采样时刻采样的第二电压信号;
第二电流信号和第二电压信号与第二损耗P4满足以下公式:
Figure PCTCN2021103759-appb-000006
其中,X2为预设的接收线圈磁损系数,R2为接收线圈的等效电阻,I2为T时间内获取的第二电流信号的有效值。
采用上述***结构,由于传输过程中产生的数据会产生波动,为了避免检测失误,可以利用一段时间采样的电流和电压,确定当前时刻之前无线电力传输***中是否存在金属异物。
在一种可能的设计中,第一采样电路包括:第一电流传感器和第一电压传感器。
其中,第一电流传感器的输入端为第一采样电路的电流输入端,与发射线圈连接,电流传感器的输出端与第一模数转换器的输入端连接;电压传感器的输入端为第一采样电路的电压输入端,与接收线圈两端连接,电压传感器的输出端与第一模数转换器的输入端连接。
采用上述***结构,可以采用第一电流传感器和第一电压传感器采样到需求的电流和电压。
在一种可能的设计中,第二采样电路包括:第二电流传感器和第二电压传感器。
其中,第一电流传感器的输入端为第二采样电路的电流输入端,与发射线圈连接,第一电流传感器的输出端与第二模数转换器的输入端连接;第一电压传感器的输入端为第二采样电路的电压输入端,与接收线圈两端连接,第二电压传感器的输出端与第二模数转换器的输入端。
采用上述***结构,可以采用第二电流传感器和第二电压传感器采样到需求的电流和电压。
第四方面,本申请实施例提供了一种无线充电芯片,应用于无线充电器中,无线充电器用于为终端充电,其中,无线充电器包括:逆变器、发射线圈和无线充电芯片。
具体地,无线充电芯片包括:采样电路、模数转换器和处理电路。
其中,模数转换器的输入端与采样电路的输出端连接,模数转换器的输出端与处理电路连接。
其中,采样电路的第一电流输入端用于与逆变器的输入端连接并采样逆变器输入端电流,采样电路的第二电流输入端用于与发射线圈连接并采样发射线圈电流,采样电路的第一电压输入端的两个端点与逆变器的输入端两端连接并采样逆变器输入端两端电压,采样电路的第二电压输入端的两个端点与发射线圈两端连接并采样发射线圈两端电压。处理电路用于利用模数转换器输出的数字信号,计算逆变器的接收功率和第一损耗,以及利用逆变器的输出功率、第一损耗、终端的输出功率和第二损耗,确定异物损耗,异物损耗用于指示无线充电器和终端中是否存在金属异物,终端的输出功率和第二损耗是利用从终端的接收线圈采样电流、整流器采样的电流、接收线圈采样的电压和从整流器采样的电压计算得到的。
采用上述芯片结构,可以通过采样表征电能从无线充电器中的逆变器输入端传输至终端的传输路径上的电流(逆变器输入端电流和发射线圈电流)和电压(逆变器输入端两端电压和发射线圈两端电压),确定电能传输路径的损耗以及传输功率,并根据表征终端电能传输过程中的传输功率和传输损耗的终端输出功率和第二损耗,可以准确的确定电能从无线充电器传输至终端时传输路径上的功率以及传输损耗,并根据传输功率和传输损耗,确定准确的检测出当前时刻无线充电器和终端中是否存在金属异物,因此,提高了无线充电器和终端金属异物检测结果的准确度。
在一种可能的设计中,本申请实施例第四方面提供的无线充电芯片还包括:多路选择器和滤波器,其中,采样电路的输出端通过多路选择器和滤波器与处理电路连接。
其中,多路选择器的输入端与采样电路的输出端连接,多路选择器的输出端与滤波器的输入端连接,多路选择器用于依次输出采样电路输出的电流和电压;滤波器的输出端与模数转换器的输入端连接,滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给模数转换器。
采用上述芯片结构,可以在采样电路与模数转换器之间连接滤波器和多路选择器,实现对采样电路采样的电流和电压进行滤波处理,以消除干扰信号,保证采样的电流和电压的准确性,提高金属异物检测结果的准确度。
在一种可能的设计中,模数转换器输出的数字信号包括:第一电流信号、第二电流信号、第一电压信号和第二电压信号,第一电流信号为逆变器输入端电流经模数转换后的信号,第二电流信号为发射线圈电流经模数转换后的信号,第一电压信号为逆变器输入端两端电压经模数转换后的信号,第二电压信号为发射线圈两端电压经模数转换后的信号。
其中,处理电路具体用于:根据第一电流信号和第一电压信号,计算逆变器的接收功率;根据第二电流信号和第二电压信号,计算第一损耗;第一损耗为发射端线圈和逆变器消耗的功率;根据逆变器的接收功率和第一损耗,确定发射线圈的发射功率;根据输出功率和第二损耗,确定接收线圈的接收功率;利用发射线圈的发射功率与接收线圈的接收功率的差值,确定异物损耗。
采用上述芯片结构,可以计算出电能从逆变器输入端到整流器输出端之间的传输过程中传输的功率,以及传输路径的传输损耗,并根据传输功率和传输损耗,准确的判定当前无线充电器和终端中是否存在金属异物。
在一种可能的设计中,第一电流信号和第一电压信号与逆变器的接收功率P1满足以 下公式:
Figure PCTCN2021103759-appb-000007
其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第一电压信号;
第二电流信号和第二电压信号与第一损耗P2满足以下公式:
Figure PCTCN2021103759-appb-000008
其中,v2(t)为预设时长内目标采样时刻采样的第二电压信号,X1为预设的发射线圈磁损系数,R1为发射线圈和逆变器的等效电阻,I1为T时间内获取的第二电流信号的有效值。
采用上述芯片结构,由于传输过程中产生的数据会产生波动,为了避免检测失误,可以利用一段时间采样的电流和电压,确定当前时刻之前无线电力传输装置中是否存在金属异物。
在一种可能的设计中,采样电路包括:第一电流传感器、第二电流传感器、第二电压传感器和第二电压传感器。
其中,第一电流传感器的输入端为采样电路的第一电流输入端,以用于连接逆变器输入端,第一电流传感器的输入端与模数转换器的输入端连接;第二电流传感器的输入端为采样电路的第二电流输入端,以用于连接发射线圈,第二电流传感器的输出端与模数转换器的输入端连接;第一电压传感器的输入端为采样电路的第一电压输入端,以用于连接逆变器输入端两端,第一电压传感器的输出端与模数转换器的输入端连接;第二电压传感器的输入端为采样电路的第二电压输入端,以用于连接接收线圈两端,第二电压传感器的输出端与模数转换器的输入端连接。
采用上述芯片结构,可以采用第一电流传感器和第二电流传感器采样到需要的电流信号以及采用第一电压传感器和第二电压传感器采样到需求的电压信号。
第五方面,本申请实施例提供了一种无线充电器,用于为终端充电,该无线充电器包括本申请实施例第四方面以及任一可能的设计中提供的无线充电芯片、逆变器和发射线圈。
其中,逆变器的输入端用于与直流电源连接,逆变器的输出端与发射线圈连接;无线充电芯片与发射线圈连接,用于检测无线充电器和终端中是否存在金属异物。
采用上述无线充电器结构,可以使用无线充电芯片周期或者实时检测无线充电器和终端中是否存在异物,以保证无线充电器和终端的安全以及提高无线充电器的充电效率。
第六方面,本申请实施例提供了一种无线电力传输***,该无线电力传输***包括无线充电器和终端,无线充电器包括发射线圈和逆变器,终端包括整流器和接收线圈,***还包括:第一采样电路、第二采样电路、第一模数转换器、第二模数转换器、第一处理电路和第二处理电路。
其中,第一采样电路的第一电流输入端与逆变器输入端连接,第一采样电路的第二电流输入端与发射线圈连接,第一采样电路的第一电压输入端的两个端点与逆变器输入端两端连接,第一采样电路的第二电压输入端的两个端点与发射线圈两端连接。第二采样电路 的第一电流输入端与整流器输出端连接,第二采样电路的第二电流输入端与接收线圈连接,第二采样电路的第一电压输入端的两个端点与整流器输出端两端连接,第二采样电路的第二电压输入端的两个端点与接收线圈两端连接。第一模数转换器的输入端与第一采样电路的输出端连接,第一模数转换器的输出端与第一处理电路连接。第二模数转换器的输入端与第二采样电路的输出端连接,第二模数转换器的输出端与第二处理电路连接。
其中,第一采样电路的第一电流输入端用于采样逆变器输入端电流,第一采样电路的第二电流输入端用于采样发射线圈电流,第一采样电路的第一电压输入端用于采样逆变器输入端两端电压,第一采样电路的第二电压输入端用于采样发射线圈两端电压。第二采样电路的第一电流输入端用于采样整流器输出端电流,第二采样电路的第二电流输入端用于采样接收线圈电流,第二采样电路的第一电压输入端采样整流器输出端两端电压,第二采样电路的第二电压输入端用于采样接收线圈两端电压。第一处理电路用于利用第一模数转换器输出的数字信号,计算逆变器的接收功率和第一损耗,并利用逆变器的接收功率、第一损耗、整流器的输出功率和第二损耗,确定异物损耗,异物损耗用于指示无线电力传输***中是否存在金属异物。第二处理电路用于利用第二模数转换器输出的数字信号,计算整流器的输出功率和第二损耗,并将整流器的输出功率和第二损耗输出给第一处理电路。
采用上述***结构,可以计算通过无线充电器为终端充电过程中,电能从无线充电器的逆变器输入端传输至终端的整流器的输出端时电能的传输过程中的传输功率和传输损耗,并根据传输功率和传输损耗,准确的判定当前无线电力传输***中是否存在金属异物。
在一种可能的设计中,本申请实施例第六方面提供的无线电力传输***还包括:第一多路选择器、第二多路选择器、第一滤波器和第二滤波器。其中,第一采样电路的输出端通过第一多路选择器和第一滤波器与第一模数转换器连接,第二采样电路的输出端通过第二多路选择器和第二滤波器与第二模数转换器连接。
其中,第一多路选择器的第一输入端与第一采样电路的输出端连接,第一多路选择器的输出端与第一滤波器的输入端连接,第一多路选择器用于依次输出第一采样电路输出的电流和电压;第二多路选择器的第一输入端与第二采样电路的输出端连接,第二多路选择器的输出端与第二滤波器的输入端连接,第二多路选择器用于依次输出第二采样电路输出的电流和电压;第一滤波器的输出端与第一模数转换器的输入端连接,第一滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给第一模数转换器;第二滤波器的输出端与第二模数转换器的输入端连接,第二滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给第二模数转换器。
采用上述***结构,可以在第一采样电路与第一模数转换器之间连接第一滤波器和第一多路选择器,以及在第二采样电路和第二模数转换器之间连接第二滤波器和第二多路选择器,实现对第一采样电路和第二采样电路采样的电流和电压进行滤波处理,以消除干扰信号,保证采样的电流和电压的准确性,提高金属异物检测结果的准确度。
在一种可能的设计中,第一模数转换器输出的数字信号包括:第一电流信号、第二电压信号、第一电压信号和第二电压信号,第一电流信号为逆变器输入端电流经模数转换后的信号,第二电流信号为发射线圈电流经模数转换后的信号,第一电压信号为逆变器输入端两端电压经模数转换后的信号,第二电压信号为发射线圈两端电压经模数转换后的信号。
第一处理电路具体用于:根据第一电流信号和第一电压信号,计算逆变器的输入功率;根据第二电流信号和第二电压信号,计算第一损耗;第一损耗为发射线圈和逆变器消耗的 功率;根据逆变器的输入功率和第一损耗,确定发射线圈的发射功率;根据整流器的输出功率和第二损耗,确定接收线圈的接收功率;利用发射线圈的发射功率与接收线圈的接收功率的差值,确定异物损耗。
第二模数转换器输出的数字信号包括:第三电流信号、第四电流信号,第三电压信号和第四电压信号,第三电流信号为整流器输出端电流经模数转换后的信号,第四电流信号为接收线圈电流经模数转换后的信号,第三电压信号为整流器输出端两端电压经模数转换后的信号,第四电压信号为接收线圈两端电压经模数转换后的信号。第二处理电路具体用于:根据第三电流信号和第三电压信号,计算整流器的输出功率;根据第四电流信号和第四电压信号,计算第二损耗;第二损耗为接收线圈和整流器消耗的功率;将整流器的输出功率和第二损耗发送给第一处理电路。
采用上述***结构,可以计算出电能从逆变器输入到整流器输出之间的传输过程中传输的功率,以及传输路径的传输损耗,并根据传输功率和传输损耗,准确的判定当前无线电力传输***中是否存在金属异物。
在一种可能的设计中,第一电流信号和第二电压信号与逆变器的输入功率P1满足以下公式:
Figure PCTCN2021103759-appb-000009
其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第一电压信号;
第二电流信号和第二电压信号与第一损耗P2满足以下公式:
Figure PCTCN2021103759-appb-000010
其中,X1为预设的发射线圈磁损系数,v2(t)为预设时长内目标采样时刻采样的第二电压信号,R1为发射线圈和逆变器的等效电阻,I1为T时间内获取的第二电流信号的有效值;
第三电流信号和第三电压信号与整流器的输出功率P3满足以下公式:
Figure PCTCN2021103759-appb-000011
其中,i3(t)为预设时长内目标采样时刻采样的第三电流信号,v3(t)为预设时长内目标采样时刻采样的第三电压信号;
第四电流信号和第四电压信号与第二损耗P4满足以下公式:
Figure PCTCN2021103759-appb-000012
其中,X2为预设的接收线圈磁损系数,R2为接收线圈和整流器的等效电阻,I4为T时间内获取的第四电流信号的有效值。
采用上述***结构,由于传输过程中产生的数据会产生波动,为了避免检测失误,可以利用一段时间采样的电流和电压,确定当前时刻之前无线电力传输***中是否存在金属异物。
在一种可能的设计中,第一采样电路包括:第一电流传感器、第二电流传感器、第一 电压传感器和第二电压传感器。
其中,第一电流传感器的输入端为第一采样电路的第一电流输入端,与逆变器输入端连接,第一电流传感器的输出端与第一模数转换器的输入端连接;第二电流传感器的输入端为第一采样电路的第二电流输入端,与发射线圈连接,第二电流传感器的输出端与第一模数转换器的输入端连接;第一电压传感器的输入端为第一电压电路的第一电压输入端,与逆变器输入端两端连接,第一电压传感器的输入端与第一模数转换器的输入端连接;第二电压传感器的输入端为第一采样电路的第二电压输入端,与发射线圈两端连接,第二电压传感器的输出端与第一模数转换器的输入端连接。
采用上述***结构,可以采用第一电流传感器和第二电流传感器采样到需求的电流,以及采用第一电压传感器和第二电压传感器采样到需求的电压。
在一种可能的设计中,第二采样电路包括:第三电流传感器、第四电流传感器、第三电压传感器和第四电压传感器。
其中,第三电流传感器的输入端为第二采样电路的第一电流输入端,与整流器输出端连接,第三电流传感器的输出端与第二模数转换器的输入端连接;第四电流传感器的输入端为第二采样电路的第二电流输入端,与接收线圈连接,第四电流传感器的输出端与第二模数转换器的输入端连接;第三电压传感器的输入端为第二采样电路的第一电压输入端,与整流器输出端两端连接,第三电压传感器的输入端与第二模数转换器的输入端连接;第四电压传感器的输入端为第二采样电路的第二电压输入端,与接收线圈两端连接,第四电压传感器的输出端与第二模数转换器的输入端连接。
采用上述***结构,可以采用第三电流传感器和第四电流传感器采样到需求的电流,以及采用第三电压传感器和第四电压传感器采样到需求的电压。
附图说明
图1为本申请实施例一种应用场景的示意图;
图2为本申请实施例的一种无线充电芯片的结构示意图一;
图3为本申请实施例的一种无线充电芯片的结构示意图二;
图4为本申请实施例的一种采样电路的结构示意图;
图5为本申请实施例的一种无线充电芯片的结构示意图三;
图6为本申请实施例的一种无线充电器的结构示意图;
图7为本申请实施例的一种无线电力传输***的结构示意图一;
图8为本申请实施例的另一种无线电力传输***的结构示意图二;
图9为本申请实施例的另一种无线充电芯片的结构示意图;
图10为本申请实施例的另一种无线充电芯片的结构示意图二;
图11为本申请实施例的另一种无线充电器的结构示意图;
图12为本申请实施例的另一种无线电力传输***的结构示意图一;
图13为本申请实施例的另一种无线电力传输***的结构示意图二。
具体实施方式
本申请实施例中“或”,描述关联对象的关联关系,表示可以存在两种关系,例如,A或B,可以表示:单独存在A,单独存在B的情况,其中A、B可以是单数或者复数。
本申请中所涉及术语“连接”,描述两个对象的连接关系,可以表示两种连接关系,例如,A和B连接,可以表示:A与B直接连接,A通过C和B连接这两种情况。
在本申请实施例中,“示例的”“在一些实施例中”“在另一实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案,需要说明的是,当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
本申请实施例提供的无线充电芯片可以应用于无线电力传输***,图1示例性示出了一种无线充电芯片的应用场景,如图1所示,无线电力传输***包括逆变器、发射线圈、接收线圈和整流器。其中,逆变器的输入端与直流电源连接,用于将直流电源输出的直流电能转换为交流电能后通过发射线圈传输给接收线圈,接收线圈接收发射线圈传输的交流电能,并通过整流器转换为直流电能后输出给与整流器输出端连接的用电设备或者电池。其中,逆变器和发射线圈作为无线充电器为终端充电,接收线圈和整流器作为终端接收无线充电器输出的电能,两个装置构成无线电力传输***。
Qi协议定义计算发射线圈的发送功率以及接收线圈的接收功率,根据两个功率的差值和设定的异物损耗阈值进行比较,根据比较结果确定无线电力传输***中是否存在金属异物。
其关系可以用下述公式表达:
发射功率=直流电源输入功率-Tx自损耗。
Tx自损耗为整流器和发射线圈的损耗,具体可以表示为:
Tx自损耗=逆变器交流损耗+Tx的LC谐振子交流损耗。
接收功率=用电设备接收功率+Rx自损耗。
相应地,Rx自损耗可以表示为:
Rx自损耗=整流器交流损耗+Rx的LC谐振子交流损耗。其中,Rx自损耗和Tx自损耗为无线电力传输***传输过程的传输损耗。
PLOSS定义为:PLOSS=发射功率-接收功率=异物损耗。
当PLOSS>预设的异物损耗阈值,确定无线电力传输***中存在金属异物。
实际使用时,金属异物检测装置与逆变器的输入端以及整流器的输出端连接,用于采样逆变器输入端的电流和电压以及整流器输出端的电流和电压。并通过逆变器输入端的电流和电压确定直流电源输入功率,以及利用直流电源输入功率与预设的Tx自损耗系数相乘得到Tx自损耗。同理,利用整流器输出端的电流和电压确定用电设备接收功率,以及利用用电设备接收功率与预设的Rx自损耗系数相乘得到Rx自损耗。
实际使用时,传输损耗与直流电源输入功率以及用电设备接收功率的关联不大,且一 旦无线电力传输***的应用场景发生改变(例如,传输功率变大),则预设的Tx自损耗系数和预设的Rx自损耗系数将无法满足新的应用场景的需求,导致金属异物检测结果的准确度无法保证。
因此,目前的金属异物检测方式存在检测准确度低的问题。
针对上述问题,本申请实施例提供了一种无线充电芯片、无线充电器和无线电力传输***,可以实现提高了金属异物检测结果的准确度以及提高无线电力传输***的传输效率。
参见图2所示,本申请提供的一种无线充电芯片的结构示意图,该无线充电芯片200应用于无线充电器中,无线充电器包括:逆变器、发射线圈和无线充电芯片。其中,该无线充电器用于为终端充电。
具体地,该无线充电芯片200包括:采样电路201、模数转换器202以及处理电路203。
其中,采样电路201的电流输入端用于与发射线圈连接并采样发射线圈电流,采样电路201的电压输入端的两个端点用于与发射线圈两端连接并采样发射线圈两端电压。处理电路203用于利用模数转换器202输出的数字信号,计算发射线圈的接收功率和第一损耗,以及利用发射线圈的接收功率、第一损耗、终端中接收线圈的输出功率和第二损耗,确定异物损耗。其中,异物损耗用于指示无线充电器和终端中是否存在金属异物。其中,接收线圈的输出功率和第二损耗是利用从终端中的接收线圈采样的电流和从接收线圈采样的电压计算得到的。
进一步的,发射线圈两端电压与采样电路201采样的发射线圈电压的正负方向相同,发射线圈两端电压与采样电路201采样的发射线圈电压的正负方向相同,其具体含义可以是:采样电路201电压输出端的两个端点中,接收高电位的端点与发射线圈中高电位的一端连接,接收低电位的端点与发射线圈中低电位的一端连接,两个端点的电位差等于发射线圈两端电压。
在无线充电芯片200用于检测无线充电器和终端中是否存在金属异物时,采样电路201的电流输入端与发射线圈连接并采样发射线圈电流,采样电路201的电压输入端的两个端点与发射线圈两端连接并采样发射线圈两端的电压;模数转换器202的输入端与采样电路201的输出端连接,模数转换器202的输出端分别与处理电路203连接,用于将采样电路201输出的电流和电压由模拟信号转换为数字信号,并将输出的数字信号输出给处理电路203;处理电路203利用模数转换器202输出的数字信号,计算发射线圈的接收功率和第一损耗,以及利用发射线圈的接收功率、第一损耗、终端中接收线圈的输出功率和第二损耗,确定异物损耗。
具体地,无线充电芯片200中还包括接收器(未示出),用于接收终端中发射器(未示出)发送的接收线圈的输出功率和第二损耗,并将接收的接收线圈的输出功率和第二损耗发送给处理电路203。其中,接收线圈的输出功率和第二损耗是终端中的处理电路通过从终端中的接收线圈采样的电流和从接收线圈采样的电压计算得到。
示例的,当异物损耗大于预设的异物损耗阈值时,确定无线充电器和终端中存在金属异物。
应理解,采用采样电路201采样的发射线圈电流和发射线圈两端电压中可能存在干扰信号,因此,为了保证准确的计算出异物损耗,还可以通过多路选择器204和滤波器205配合对采样电路201输出的电流和电压进行滤波处理,从而消除干扰信号对检测结果的影响。
其中,采样电路201的输出端通过多路选择器204和滤波器205与模数转换器202的输入端连接。
具体地,如图3所示,多路选择器204的输入端与采样电路201的输出端连接,多路选择器204的输出端与滤波器205的输入端连接,多路选择器205用于依次输出采样电路201输出的电流和电压。滤波器205的输出端与模数转换器202的输入端连接,滤波器205用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给模数转换器202。
具体实现时,采样电路201电流输入端以及电压输入端作为无线充电芯片200的输入端,处理电路203的输出端作为无线充电芯片200的输出端。具体实现时,处理电路203的输出端可以与无线充电器中的处理器连接,或者与无线充电器通信连接的其它处理器连接。
实际应用中,无线充电芯片200可以固定在无线充电器上。在另一种实现方式中,无线充电芯片200可以设置成灵活可拆卸的形式,即无线充电器上可以设置有固定接口,无线充电芯片200可以通过无线充电器上的固定接口与无线电力传输***连接,在这种情况下,无线充电芯片200可以视为独立于无线充电器的装置。
可选地,无线充电芯片200中的采样电路201、模数转换器202以及处理电路203可以采用分立器件,并通过数据传输实现连接。
下面,对无线充电芯片200中的采样电路201、模数转换器202以及处理电路203的具体结构进行介绍。
一、采样电路201
采样电路201的电流输入端用于与发射线圈连接并采样发射线圈电流,采样电路201的电压输入端的两个端点用于与发射线圈两端连接并采样发射线圈两端电压。
其中,采样电路201可以包括:电流传感器和电压传感器。
其中,电流传感器的输入端为采样电路的电流输入端,以用于连接发射线圈,电流传感器的输出端与模数转换器的输入端连接;电压传感器的输入端为采样电路的电压输入端,以用于连接接收线圈两端,电压传感器的输出端与模数转换器的输入端连接。
其中,设置电流传感器的作用为:通过电流传感器采样流过发射线圈的电流;设置电压传感器的作用为:通过电压传感器采样发射线圈两端的电压。
为了便于理解,下面给出采样电路201的具体示例。
参见图4所示,为本申请实施例提供的一种的电流采样电路的结构示意图。在图4所示的电路中,包括电流传感器TA和电压传感器TV。其中,A、B和C作为采样电路201的输入端,用于分别与发射线圈和发射线圈两端连接,D和E作为采样电路201的输出端,用于输出发射线圈电流和发射线圈两端电压,能量从上到下。
当然,以上对采样电路201的结构的介绍仅为示例,实际应用中,采样电路201也可以采用其它结构,例如采样电路201可以是数据采集器,用于采样发射线圈的电流以及发射线圈两端电压。
二、模数转换器202
模数转换器202的输入端与采样电路201的输出端连接,模数转换器202的输出端与处理电路203连接,用于对采样电路201采样的电流和电压由模拟信号转换为数字信号,并将数字信号发送给处理电路203。
三、处理电路203
处理电路203与模数转换器202的输出端连接,用于利用模数转换器202输出的数字信号,计算发射线圈的接收功率和第一损耗,以及利用发射线圈的接收功率、第一损耗、终端中接收线圈的输出功率和第二损耗,确定异物损耗。其中,异物损耗用于指示无线充电器和终端中是否存在金属异物,其中,接收线圈的输出功率和第二损耗是利用从终端中的接收线圈采样的电流和从接收线圈采样的电压计算得到的。
实际使用时,处理电路203可以与终端中的处理器电连接或者通信连接,以实现得到接收线圈的输出功率和第二损耗。
具体地,在确定无线电力传输***的异物损耗之后,在确定异物损耗大于预设异物损耗阈值时,确定无线充电器和终端中存在金属异物,以及向无线充电器中的处理器或者与无线充电器通信连接的其它处理器发送指示信号。其中,该指示信号用于指示处理器断开直流电源与逆变器的连接,进行故障排除。其中,预设异物损耗阈值的数值可以根据Qi协议进行设置。
具体地,模数转换器202输出的数字信号中包括:电流信号和电压信号。其中,电流信号为发射线圈电流经模数转换后的信号,电压信号为发射线圈两端电压经模数转换后的信号。
具体地,处理电路203具体用于:根据电流信号和电压信号,计算发射线圈的接收功率和第一损耗;第一损耗为发射端线圈消耗的功率;根据发射线圈的接收功率和第一损耗,确定发射线圈的发射功率;根据接收线圈的输出功率和第二损耗,确定接收线圈的接收功率;利用发射线圈的发射功率与接收线圈的接收功率的差值,确定异物损耗。
具体实现时,处理电路203可以是微控制单元(micro controller unit,MCU)、中央处理器(central processing unit,CPU)、数字信号处理器(digital singnal processor,DSP)中的任一种。当然,处理电路203的具体形态不限于上述举例。
结合以上描述,示例地,本申请实施例提供了一种无线充电芯片,如图5所示。
在采样电路中,包括电流传感器TA和电压传感器TV。其中,TA的输入端与发射线圈连接,TA的输出端与多路选择器K的输入端连接,TV的输入端与发射线圈两端连接,TV的输出端与多路选择器K的输入端连接。
多路选择器K的输入端分别与TA和TV的输出端连接,多路选择器K的输出端与滤波器的输入端连接。
滤波器的输出端与模数转换器的输入端连接,模数转换器的输出端与处理电路连接。
在图5所示的无线充电芯片用于检测无线充电器和终端中是否存在金属异物时,A、B和C作为无线充电芯片的输入端,F作为无线充电芯片的输出端。
其中,TA和TV的后面连接多路选择器K,K的后面连接滤波器、滤波器后面连接模数转换器、模数转换器后面连接处理电路。
具体地,TA采样发射线圈电流,TV采样发射线圈两端电压,TA和TV输出的电流和电压经K后依照固定的顺序传输给滤波器,滤波器对TA和TV输出的电流和电压进行滤波处理,以消除电流和电压中的干扰,并将滤波处理后的电流和电压输出给模数转换器中进行模数转换,得到数字信号,处理电路利用该数字信号以及终端发送的信号得到电能传输从发射线圈传输至终端的接收线圈传输过程中的传输功率以及传输的损耗,并利用传输的功率和传输损耗确定异物损耗。
下面,对异物损耗的确定过程进行详细说明。
数字信号中包括:第一电流信号i1和第一电压信号v1。其中,i1为发射线圈电流经模数转换后的信号,v1为发射线圈两端电压经模数转换后的信号。
具体地,利用i1和v1计算发射线圈接收的功率P1和第一损耗P3。
其中,i1和v1与发射线圈接收的功率P1满足以下公式:
Figure PCTCN2021103759-appb-000013
其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第一电压信号。
i1和v1与第一损耗P2满足以下公式:
Figure PCTCN2021103759-appb-000014
其中,X1为预设的发射线圈磁损系数,R1为发射线圈的等效电阻,I1为T时间内获取的第一电流信号的有效值。其中,发射线圈磁损系数可以根据发射线圈的型号进行设置,本申请这里不做具体设置。在一示例中,可以采样v1 n计算P2。其中,n可以大于等于1。
接收终端发送的接收线圈的接收功率P3和第二损耗P4。其中,P3和P4是利用从终端中的接收线圈采样的电流和从接收线圈采样的电压计算得到的。
其中,i2和v2与发射线圈接收的功率P1满足以下公式:其中,i2为采样的接收线圈电流,v2为采样的接收线圈两端电压。其中,i2和v2均为数字信号。
Figure PCTCN2021103759-appb-000015
其中,i2(t)为预设时长内目标采样时刻采样的接收线圈电流,v2(t)为预设时长内目标采样时刻采样的接收线圈电压;
i2和v2与第二损耗P4满足以下公式:
Figure PCTCN2021103759-appb-000016
其中,X2为预设的接收线圈磁损系数,R2为接收线圈的等效电阻,I2为T时间内获取的接收线圈电流的有效值。在一示例中,可以采样v2 n计算P2。
无线电力传输***的异物损耗PLOSS=P1-P2-(P3+P4)。
在一示例中,可以将PLOSS直接输出给无线电力输***的处理器或者与无线电力传输***通信连接的其它处理器中。
在另一示例中,在确定PLOSS大于预设的异物损耗阈值时,确定无线充电器和终端中存在金属异物,向无线充电中的处理器或者与无线充电器通信连接的其它处理器发送指示信号。其中,该指示信号用于指示处理器断开直流电源与无线充电器中逆变器的连接,进行故障排除。
基于同一发明构思,本申请实施例该提供一种无线充电器,用于为终端充电,参见图6,该无线充电器600包括前述无线充电芯片200、逆变器601和发射线圈602。
其中,逆变器601的输入端用于与直流电源连接,逆变器601的输出端与发射线圈连 接。无线充电芯片200与发射线圈602连接,用于检测无线充电器600和终端中是否存在金属异物。
基于同一发明构思,本申请实施例还提供一种无线电力传输***,参见图7,该无线电力传输***包括无线充电器和终端。其中,无线充电器中包括发射线圈和逆变器,终端中包括整流器和接收线圈。在一示例中,终端还可以包括用电设备。其中,用电设备可以为终端中的电池。
具体地,该无线电力传输***还包括:第一采样电路701、第二采样电路702、第一模数转换器703、第二模数转换器704、第一处理电路705和第二处理电路706。
其中,第一采样电路701的电流输入端与发射线圈连接,第一采样电路701的电压输入端的两个端点与发射线圈两端连接。第二采样电路702的电流输入端与接收线圈连接,第二采样电路702的电压输入端的两个端点与接收线圈两端连接。第一模数转换器703的输入端与第一采样电路701的输出端连接,第一模数转换器703的输出端与第一处理电路705连接。第二模数转换器704的输入端与第二采样电路的输出端连接,第二模数转换器704的输出端与第二处理电路706连接。
其中,第一采样电路701的电流输入端用于采样发射线圈电流,第一采样电路702用于采样发射线圈两端电压,第二采样电路702的电流输入端用于采样接收线圈电流,第二采样电路702的电压输入端用于采样接收线圈两端电压。第一处理电路705用于利用第一模数转换器703输出的数字信号,计算发射线圈的接收功率和第一损耗,以及利用发射线圈的接收功率、第一损耗、接收线圈的输出功率和第二损耗,确定异物损耗。其中,异物损耗用于指示无线电力传输***700中是否存在金属异物。第二处理电路706用于利用第二模数转换器704输出的数字信号,计算接收线圈的输出功率和第二损耗,并将接收线圈的输出功率和第二损耗输出给第一处理电路705。
进一步的,发射线圈两端电压与第一采样电路701采样的发射线圈电压的正负方向相同,发射线圈两端电压与第一采样电路701采样的发射线圈电压的正负方向相同,其具体含义可以是:第一采样电路701电压输出端的两个端点中,接收高电位的端点与发射线圈中高电位的一端连接,接收低电位的端点与发射线圈中低电位的一端连接,两个端点的电位差等于发射线圈两端电压;同样的,接收线圈两端电压与第二采样电路702采样的发射线圈电压的正负方向相同,接收线圈两端电压与第二采样电路702采样的接收线圈电压的正负方向相同,其具体含义可以是:第二采样电路702电压输出端的两个端点中,接收高电位的端点与接收线圈中高电位的一端连接,接收低电位的端点与接收线圈中低电位的一端连接,两个端点的电位差等于接收线圈两端电压。
在无线电力传输***700用于检测无线电力传输***是否存在金属异物时,第一采样电路701的电流输入端与发射线圈连接并采样发射线圈电流,第一采样电路701的电压输入端的两个端点与发射线圈两端连接并采样发射线圈两端的电压;第二采样电路702的电流输入端与接收线圈连接并采样接收线圈电流。第二采样电路702的电压输入端的两个端点与接收线圈两端连接并采样接收线圈两端电压;第一模数转换器703的输入端与第一采样电路701的输出端连接,第一模数转换器706的输出端分别与第一处理电路705连接,用于将第一采样电路701输出的电流和电压由模拟信号转换为数字信号,并将输出的数字信号输出给第一处理电路705;第二模数转换器704的输入端与第二采样电路702的输出端连接,第二模数转换器704的输出端与第二处理电路706连接,用于将第二采样电路702 输出的电流和电压由模拟信号转换为数字信号,并将输出的数字信号输出给第二处理电路706;第一处理电路705用于利用第一模数转换器703输出的数字信号,计算发射线圈的接收功率和第一损耗,以及利用发射线圈的接收功率、第一损耗、接收线圈的输出功率和第二损耗,确定异物损耗。第二处理电路706用于利用第二模数转换器704输出的数字信号,计算接收线圈的输出功率和第二损耗,并将接收线圈的输出功率和第二损耗输出给第一处理电路705。
具体地,无线充电器中包括接收器(未示出),终端中包括发射器(未示出),第二处理电路706在计算出接收线圈的输出功率和第二损耗,可以通过发射器将接收线圈的输出功率和第二损耗发送给接收器,接收器接收到接收线圈的输出功率和第二损耗后发送给第一处理电路705。
示例的,当异物损耗大于预设的异物损耗阈值时,确定无线电力传输***700中存在金属异物。
应理解,采用第一采样电路701采样的发射线圈电流和发射线圈两端电压,以及采用第二采样电流702采样的接收线圈电流和接收线圈两端电压中可能存在干扰信号,因此,为了保证准确的计算出异物损耗,还可以通过多路选择器和滤波器配合对第一采样电路701和第二采样电路702输出的电流和电压进行滤波处理,从而消除干扰信号对检测结果的影响。
其中,第一采样电路701的输出端通过第一多路选择器和第一滤波器与第一模数转换器连接,第二采样电路702的输出端通过第二多路选择器和第二滤波器与第二模数转换器连接。
具体地,第一多路选择器的第一输入端与第一采样电路701的输出端连接,第一多路选择器的输出端与第一滤波器的输入端连接,第一多路选择器用于依次输出第一采样电路输出的电流和电压。第二多路选择器的第一输入端与第二采样电路702的输出端连接,第二多路选择器的输出端与第二滤波器的输入端连接,第二多路选择器用于依次输出第二采样电路输出的电流和电压。第一滤波器的输出端与第一模数转换器703的输入端连接,第一滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给第一模数转换器703。第二滤波器的输出端与第二模数转换器704的输入端连接,第二滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给第二模数转换器704。
可选地,无线电力传输***700中各器件可以采样集成电路的形式连接。
可选地,无线电力传输***700中各器件可以采样分立器件,各器件可以通过数据传输线连接。
下面,对无线电力传输***700中的第一采样电路701、第二采样电路702、第一模数转换器703、第二模数转换器704、第一处理电路705和第二处理电路706的具体结构进行介绍。
一、第一采样电路701
第一采样电路701的电流输入端用于与发射线圈连接并采样发射线圈电流,第一采样电路701的电压输入端的两个端点用于与发射线圈两端连接并采样发射线圈两端电压。
其中,第一采样电路701可以包括:第一电流传感器和第一电压传感器。
其中,第一电流传感器的输入端为第一采样电路701的电流输入端,与发射线圈连接, 电流传感器的输出端与第一模数转换器703的输入端连接;第一电压传感器的输入端为第一采样电路701的电压输入端,与接收线圈两端连接,电压传感器的输出端与第一模数转换器703的输入端连接。
其中,设置第一电流传感器的作用为:通过第一电流传感器采样流过发射线圈的电流;设置第一电压传感器的作用为:通过第一电压传感器发射线圈两端的电压。
当然,以上对第一采样电路701的结构的介绍仅为示例,实际应用中,第一采样电路701也可以采用其它结构,例如第一采样电路701可以是数据采集器。
二、第二采样电路702
第二采样电路702的电流输入端用于与接收线圈连接并采样接收线圈电流,第二采样电路702的电压输入端的两个端点用于与接收线圈两端连接并采样接收线圈两端电压。
其中,第二采样电路702可以包括:第二电流传感器和第二电压传感器。
其中,第二电流传感器的输入端为第二采样电路702的电流输入端,与发射线圈连接,第一电流传感器的输出端与第二模数转换器704的输入端连接。第二电压传感器的输入端为第二采样电路702的电压输入端,与接收线圈两端连接,第二电压传感器的输出端与第二模数转换器704的输入端连接。
其中,设置第二电流传感器的作用为:通过第二电流传感器采样流过接收线圈的电流;设置第二电压传感器的作用为:通过第二电压传感器接收线圈两端的电压。
当然,以上对第二采样电路702的结构的介绍仅为示例,实际应用中,第二采样电路702也可以采用其它结构,例如第二采样电路702可以是数据采集器。
三、第一模数转换器703
第一模数转换器703的输入端与第一采样电路701的输出端连接,第一模数转换器703的输出端与第一处理电路705连接,用于对第一采样电路701采样的电流和电压由模拟信号转换为数字信号,并将数字信号发送给第一处理电路705。
四、第二模数转换器704
第二模数转换器704的输入端与第二采样电路702的输出端连接,第二模数转换器703的输出端与第二处理电路706连接,用于对第二采样电路702采样的电流和电压由模拟信号转换为数字信号,并将数字信号发送给第二处理电路706。
五、第一处理电路705
第一处理电路705与第一模数转换器703的输出端连接,用于利用第一模数转换器703输出的数字信号,计算发射线圈的接收功率和第一损耗,以及利用发射线圈的接收功率、第一损耗、接收线圈的输出功率和第二损耗,确定异物损耗。其中,异物损耗用于指示无线电力传输***700中是否存在金属异物。
实际使用时,第一处理电路705可以与第二处理电路706电连接或者通信连接,以实现得到接收线圈的输出功率和第二损耗。
具体地,在确定无线电力传输***700的异物损耗之后,在确定异物损耗大于预设异物损耗阈值时,确定无线电力传输***中存在金属异物,以及向无线充电器中的处理器或者与无线充电器通信连接的其它处理器发送指示信号。其中,该指示信号用于指示处理器断开直流电源与逆变器的连接,进行故障排除。其中,预设异物损耗阈值的数值可以根据Qi协议进行设置。
具体地,第一模数转换器703输出的数字信号中包括:第一电流信号和第一电压信号。其中,第一电流信号为发射线圈电流经模数转换后的信号,第一电压信号为发射线圈两端电压经模数转换后的信号。
具体地,第一处理电路705具体用于:根据第一电流信号和第一电压信号,计算发射线圈的接收功率和第一损耗;第一损耗为发射端线圈消耗的功率;根据发射线圈的接收功率和第一损耗,确定发射线圈的发射功率;根据接收线圈的输出功率和第二损耗,确定接收线圈的接收功率;利用发射线圈的发射功率与接收线圈的接收功率的差值,确定异物损耗。
具体实现时,第一处理电路705可以是MCU、CPU、DSP中的任一种。当然,第一处理电路705的具体形态不限于上述举例。
六、第二处理电路706
第二处理电路706与第二模数转换器704的输出端连接,用于利用第二模数转换器704输出的数字信号,计算接收线圈的输出功率和第二损耗,并将接收线圈的输出功率和第二损耗输出给第一处理电路705。
具体地,第二模数转换器704输出的数字信号中包括:第二电流信号和第二电压信号。其中,第二电流信号为接收线圈电流经模数转换后的信号,第二电压信号为接收线圈两端电压经模数转换后的信号。
具体地,第二处理电路706具体用于:根据第二电压信号和第二电流信号计算接收线圈的输出功率和第二损耗,第二损耗为接收线圈的消耗的功率。将接收线圈的接收功率和第二损耗发送给第一处理电路705。
具体实现时,第二处理电路706可以是MCU、CPU、DSP中的任一种。当然,第二处理电路706的具体形态不限于上述举例。
结合以上描述,示例地,本申请实施例提供了一种无线电力传输***,如图8所示。
在第一采样电路中,包括电流传感器TA1和电压传感器TV1。其中,TA1的输入端与发射线圈连接,TA1的输出端与多路选择器K1的输入端连接,TV1的输入端与发射线圈两端连接,TV1的输出端与多路选择器K1的输入端连接。
在第二采样电路中,包括电流传感器TA2和电压传感器TV2。其中,TA2的输入端与接收线圈连接,TA2的输出端与多路选择器K2的输入端连接,TV2的输入端与接收线圈两端连接,TV2的输出端与K2的输入端连接。
K1的输出端与第一滤波器连接,第一滤波器的输出端与第一模数转换器AD1的输入端连接,AD1的输出端与第一处理电路连接。
K2的输出端与第二滤波器连接,第二滤波器的输出端与第二模数转换器AD2的输出端连接,AD2的输出端与第二处理电路连接。
其中,TA1和TV1的后面连接K1,K1的后面连接第一滤波器,第一滤波器后面连接AD1,AD1后面连接第一处理电路。TA2和TV的后面连接K2,K2的后面连接第二滤波器,第二滤波器后面连接AD2,AD2后面连接第二处理电路。
具体地,TA1采样发射线圈电流,TV1采样发射线圈两端电压,TA2采样接收线圈电流,TV2采样接收线圈两端电压,TA1、TV1、TA2和TV2输出的电流和电压经K1和K2后依照固定的顺序分别传输给第一滤波器和第二滤波器,第一滤波器对TA1和TV1输出的电流和电压进行滤波处理,以消除电流和电压中的干扰,并将滤波处理后的电流和电压 输出给AD1中进行模数转换,得到数字信号。第二滤波器对TA2和TV2输出的电流和电压进行滤波处理,以消除电流和电压中的干扰,并将滤波处理后的电流和电压输出给AD2中进行模数转换,得到数字信号。第二处理电路将利用AD2输出的数字信号,计算接收线圈的输出功率和第二损耗,并将接收线圈的输出功率和第二损耗输出给第一处理电路。第一处理电路利用AD1输出的数字信号,计算发射线圈的接收功率和第一损耗,以及利用发射线圈的接收功率、第一损耗、接收线圈的输出功率和第二损耗,确定异物损耗。
下面,对异物损耗的确定过程进行详细介绍。
AD1输出的数字信号中包括:第一电流信号i1和第一电压信号v1。其中,i1为发射线圈电流经模数转换后的信号,v1为发射线圈两端电压经模数转换后的信号。
具体地,利用i1和v1计算发射线圈的接收功率P1和第一损耗P2。
其中,i1和v1与P1满足以下公式:
Figure PCTCN2021103759-appb-000017
其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第电压信号。
i1和v1与第一损耗P2满足以下公式:
Figure PCTCN2021103759-appb-000018
其中,X1为预设的发射线圈磁损系数,R1为发射线圈的等效电阻,I1为T时间内获取的第一电流信号的有效值。其中,发射线圈磁损系数可以根据发射线圈的型号进行设置,本申请这里不做具体设置。在一示例中,可以采样v1 n计算P2。
实际应用中,由于采样的i1和v1为交流信号,为了保证检测结果的准确度,T为N倍的无线电力传输***的交流信号的周期。N为大于0的自然数。
AD2输出的数字信号中包括:第二电流信号i2和第二电压信号v2。其中,i2为接收线圈电流经模数转换后的信号,v2为接收线圈两端电压经模数转换后的信号。
具体地,利用i2和v2计算接收线圈的输出功率P3和第二损耗P4。
其中,i2和v2与P3满足以下公式:
Figure PCTCN2021103759-appb-000019
其中,i2(t)为预设时长内目标采样时刻采样的第二电流信号,v2(t)为预设时长内目标采样时刻采样的第二电压信号。
其中,i2和v2与第二损耗P4满足以下公式:
Figure PCTCN2021103759-appb-000020
其中,X2为预设的接收线圈磁损系数,R2为接收线圈的等效电阻,I2为T时间内获取的第二电流信号的有效值。其中,接收线圈的磁损系数可以根据接收线圈的型号进行设置,本申请这里不做详细介绍。在一示例中,可以采样v2 n计算P4。
无线电力传输***的异物损耗PLOSS=P1-P2-(P3+P4)。
在一示例中,可以将PLOSS直接输出给无线充电器的处理器或者与无线充电器通信连接的其它处理器中。
在另一示例中,在确定PLOSS大于预设的异物损耗阈值时,确定无线电力传输***存在异物损耗,向无线充电器的处理器或者与无线充电器通信连接的其它处理器发送指示信号。其中,该指示信号用于指示处理器断开直流电源与无线充电器中逆变器的连接,进行故障排除。
基于同一发明构思,本申请实施例提供了另一种无线充电芯片,参见图9所示,本申请提供的一种无线充电芯片的结构示意图,该无线充电芯片900应用于无线充电器中,无线充电器包括:逆变器、发射线圈和无线充电芯片。其中,无线充电用于为终端充电。
具体地,该无线充电芯片900包括:采样电路901、模数转换器902以及处理电路903。
其中,采样电路901的第一电流输入端用于与逆变器的输入端连接,采样电路901的第二电流输入端用于与发射线圈连接,采样电路901的第一电压输入端的两个端点与逆变器的输入端两端连接,采样电路901的第二电压输入端的两个端点与发射线圈两端连接。模数转换器902的输入端与采样电路901的输出端连接,模数转换器902的输出端与处理电路903连接。
其中,采样电路901的第一电流输入端用于采样逆变器输入端电流,采样电路901的第二电流输入端采样发射线圈电流,采样电路901的第一电压输入端用于采样逆变器输入端两端电压,采样电路901的第二电压输入端用于采样发射线圈两端电压。处理电路903用于利用模数转换器902输出的数字信号,计算逆变器的接收功率和第一损耗,以及利用逆变器的输出功率、第一损耗、终端的输出功率和第二损耗,确定异物损耗,其中,异物损耗用于指示无线充电器和终端中是否存在金属异物,终端的输出功率和第二损耗是利用从终端的接收线圈采样电流、整流器采样的电流、接收线圈采样的电压和从整流器采样的电压计算得到的。
进一步的,发射线圈两端电压与采样电路901采样的发射线圈电压的正负方向相同,发射线圈两端电压与采样电路901采样的发射线圈电压的正负方向相同,其具体含义可以是:采样电路901第二电压输出端的两个端点中,接收高电位的端点与发射线圈中高电位的一端连接,接收低电位的端点与发射线圈中低电位的一端连接,两个端点的电位差等于发射线圈两端电压;同样的,逆变器输入端两端电压与采样电路901采样的逆变器输入端电压的正负方向相同,逆变器输入端两端电压与采样电路901采样的逆变器输入端两端电压的正负方向相同,其具体含义可以是:采样电路901第一电压输出端的两个端点中,接收高电位的端点与逆变器输入端中高电位的一端连接,接收低电位的端点与逆变器输入端中低电位的一端连接,两个端点的电位差等于逆变器输入端两端电压。
在无线充电芯片900用于检测无线充电器和终端中是否存在金属异物时,采样电路901的第一电流输入端与逆变器输入端连接并采样逆变器输入端电流,采样电路901的第二电流输入端与发射线圈连接并采样发射线圈电流,采样电路901的第一电压输入端的两个端点与逆变器输入端两端连接并采样逆变器输入端两端电压,采样电路901的第二电压输入端的两个端点与发射线圈两端连接并采样发射线圈两端的电压;模数转换器902的输入端与采样电路901的输出端连接,模数转换器902的输出端分别与处理电路903连接,用于将采样电路901输出的电流和电压由模拟信号转换为数字信号,并将输出的数字信号输出 给处理电路903;处理电路903利用模数转换器902输出的数字信号,计算逆变器的接收功率和第一损耗,以及利用逆变器的输出功率、第一损耗、终端的输出功率和第二损耗,确定异物损耗。
具体地,无线充电芯片900中还包括接收器(未示出),用于接收终端中发射器(未示出)发送的终端的输出功率和第二损耗,并将接收的终端的输出功率和第二损耗发送给处理电路903。其中,终端的输出功率和第二损耗是终端中的处理电路利用从终端的接收线圈采样电流、整流器采样的电流、接收线圈采样的电压和从整流器采样的电压计算得到的。
示例的,当异物损耗大于预设的异物损耗阈值时,确定无线充电器和终端中存在金属异物。
应理解,采用采样电路901采样的电流信号和电压信号中可能存在干扰信号,因此,为了保证准确的计算出异物损耗,还可以通过多路选择器和滤波器配合对采样电路901输出的电流和电压进行滤波处理,从而消除干扰信号对检测结果的影响。
其中,采样电路901的输出端通过多路选择器和滤波器与模数转换器902的输入端连接。
具体地,多路选择器的输入端与采样电路901的输出端连接,多路选择器的输出端与滤波器的输入端连接,多路选择器用于依次输出采样电路901输出的电流和电压。滤波器的输出端与模数转换器902的输入端连接,滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给模数转换器902。
具体实现时,采样电路901电流输入端以及电压输入端作为无线充电芯片900的输入端,处理电路903的输出端作为无线充电芯片900的输出端。具体实现时,处理电路903的输出端可以与无线充电器中的处理器连接,或者与无线充电器通信连接的其它处理器连接。
实际应用中,无线充电芯片900可以固定在无线充电器上。在另一种实现方式中,无线充电芯片900可以设置成灵活可拆卸的形式,即无线充电器上可以设置有固定接口,无线充电芯片900可以通过无线充电器上的固定接口与无线充电器连接,在这种情况下,无线充电芯片900可以视为独立于无线充电器的装置。
可选地,无线充电芯片900中的采样电路901、模数转换器902以及处理电路903可以采用分立器件,并通过数据传输实现连接。
下面,对无线充电芯片900中的采样电路901、模数转换器2902以及处理电路903的具体结构进行介绍。
一、采样电路901
采样电路901的第一电流输入端用于与逆变器的输入端连接并采样逆变器输入端电流,采样电路901的第二电流输入端用于与发射线圈连接并采样发射线圈电流,采样电路901的第一电压输入端的两个端点与逆变器的输入端两端连接并采样逆变器输入端两端电压,采样电路901的第二电压输入端的两个端点与发射线圈两端连接并采样发射线圈两端电压。
其中,采样电路901可以包括:第一电流传感器、第二电流传感器、第一电压传感和第二电压传感器。
其中,第一电流传感器的输入端为采样电路901的第一电流输入端,以用于连接逆变器输入端,第一电流传感器的输入端与模数转换器902的输入端连接;第二电流传感器的 输入端为采样电路901的第二电流输入端,以用于连接发射线圈,第二电流传感器的输出端与模数转换器902的输入端连接;第一电压传感器的输入端为采样电路901的第一电压输入端,以用于连接逆变器输入端两端,第一电压传感器的输出端与模数转换器902的输入端连接;第二电压传感器的输入端为采样电路901的第二电压输入端,以用于连接接收线圈两端,第二电压传感器的输出端与模数转换器902的输入端连接。
其中,设置第一电流传感器的作用为:通过第一电流传感器采样流过逆变器输入端的电流;设置第二电流传感器的作用为:通过第二电流传感器采样流过发射线圈的电流;设置第一电压传感器的作用为:通过第一电压传感器采样逆变器输入端两端电压;设置第二电压传感器的作用为:通过第二电压传感器采样发射线圈两端的电压。
当然,以上对采样电路901的结构的介绍仅为示例,实际应用中,采样电路901也可以采用其它结构,例如采样电路901可以是数据采集器,用于采样逆变器输入端电流、发射线圈的电流、逆变器输入端两端电压以及发射线圈两端电压。
二、模数转换器902
模数转换器902的输入端与采样电路901的输出端连接,模数转换器902的输出端与处理电路903连接,用于对采样电路901采样的电流和电压由模拟信号转换为数字信号,并将数字信号发送给处理电路903。
三、处理电路903
处理电路903与模数转换器902的输出端连接,利用模数转换器902输出的数字信号,计算逆变器的接收功率和第一损耗,以及利用逆变器的输出功率、第一损耗、终端的输出功率和第二损耗,确定异物损耗。其中,异物损耗用于指示无线充电器和终端中是否存在金属异物,其中,终端的输出功率和第二损耗是利用从终端的接收线圈采样电流、整流器采样的电流、接收线圈采样的电压和从整流器采样的电压计算得到的。
实际使用时,处理电路903可以与终端中的处理器电连接或者通信连接,以实现得到接收线圈的输出功率和第二损耗。
具体地,在确定无线电力传输***的异物损耗之后,在确定异物损耗大于预设异物损耗阈值时,确定无线充电器和终端中存在金属异物,以及向无线充电器中的处理器或者与无线充电器通信连接的其它处理器发送指示信号。其中,该指示信号用于指示处理器断开直流电源与逆变器的连接,进行故障排除。其中,预设异物损耗阈值的数值可以根据Qi协议进行设置。
具体实现时,处理电路903可以是MCU、CPU、DSP中的任一种。当然,处理电路903的具体形态不限于上述举例。
结合以上描述,示例地,本申请实施例提供了一种无线充电芯片,如图10所示。
在采样电路中,包括电流传感器TA1和TA1以及电压传感器TV1、TV2。其中,TA1的输入端与逆变器的输入端连接,TA1的输出端与多路选择器K的输入端连接,TA2的输入端与发射线圈连接,TA2的输入端与K的输入端连接,TV1的输入端与逆变器输入端两端连接,TV1的输出端与K的输入端连接,TV2的发射线圈两端连接。
K的输入端分别与TA1、TA2、TV1和TV2的输出端连接,K的输出端与滤波器的输入端连接。
滤波器的输出端与模数转换器AD的输入端连接,AD的输出端与处理电路连接。
在图10所示的无线充电芯片用于检测无线充电器和终端中是否存在金属异物时,A、B和C作为无线充电芯片的输入端,F作为无线充电芯片的输出端。
其中,TA1、TA2、TV1和TV2的后面连接K,K的后面连接滤波器、滤波器后面连接AD、AD后面连接处理电路,能量从左到右。
具体地,TA1采样逆变器输入端电流,TA2采样发射线圈电流,TV1采样逆变器输入端两端电压,TV2采样发射线圈两端电压,TA1、TA2、TV1和TV2输出的电流和电压经K后依照固定的顺序传输给滤波器,滤波器对TA1、TA2、TV1和TV2输出的电流和电压进行滤波处理,以消除电流和电压中的干扰,并将滤波处理后的电流和电压输出给AD中进行模数转换,得到数字信号,处理电路利用该数字信号以及终端发送的信号得到电能传输从逆变器输入端传输至终端的整流器输入端的传输过程中的传输功率以及传输的损耗,并利用传输的功率和传输损耗确定异物损耗。
下面,对异物损耗的确定过程进行详细说明。
数字信号中包括:第一电流信号i1、第二电流信号i2、第一电压信号v1和第二电压信号v2。其中,i1为逆变器输入端电流经模数转换后的信号,i2为发射线圈电流经模数转换后的信号,v1为逆变器输入端两端电压经模数转换后的信号,v2为发射线圈两端电压经模数转换后的信号。
具体地,利用i1和v1计算逆变器的输出功率P1以及利用i2和v2第一损耗P2。
其中,i1和v1与发射线圈接收的功率P1满足以下公式:
Figure PCTCN2021103759-appb-000021
其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第一电压信号。在一示例中,可以直接通过i1与v1相乘得到P1。
i2和v2与第一损耗P2满足以下公式:
Figure PCTCN2021103759-appb-000022
其中,v2(t)为预设时长内目标采样时刻采样的第二电压信号,X1为预设的发射线圈磁损系数,R1为发射线圈和逆变器的等效电阻,I1为T时间内获取的第二电流信号的有效值。其中,发射线圈磁损系数可以根据发射线圈的型号进行设置,本申请这里不做具体设置。在一示例中,可以采样v2 n计算P2。
接收终端发送的接收功率P3和第二损耗P4。其中,P3和P4是利用从终端的接收线圈采样电流、整流器采样的电流、接收线圈采样的电压和从整流器采样的电压计算得到的。
其中,i3和v3与P3满足下述关系式:
Figure PCTCN2021103759-appb-000023
其中,i3为采样的整流器的输出电流,v3为采样的整流器输出端两端电压。其中,i3和v3均为数字信号,i3(t)为预设时长内目标采样时刻采样的整流器输出电流,v3(t)为预设 时长内目标采样时刻采样的整流器输出电压。在一示例中,可以直接通过i3与v3相乘得到P3。
I4和v4与第二损耗P4满足以下公式:
Figure PCTCN2021103759-appb-000024
其中,i4为采样的接收线圈电流,v4为采样的接收线圈两端电压。其中,i4和v4均为数字信号。其中,X2为预设的接收线圈磁损系数,R2为接收线圈的等效电阻,I2为T时间内获取的接收线圈电流的有效值。在一示例中,可以采样v4 n计算P4。
无线电力传输***的异物损耗PLOSS=P1-P2-(P3+P4)。
在一示例中,可以将PLOSS直接输出给无线电力输***的处理器或者与无线电力传输***通信连接的其它处理器中。
在另一示例中,在确定PLOSS大于预设的异物损耗阈值时,确定无线充电器和终端中存在金属异物,向无线充电中的处理器或者与无线充电器通信连接的其它处理器发送指示信号。其中,该指示信号用于指示处理器断开直流电源与无线充电器中逆变器的连接,进行故障排除。
基于同一发明构思,本申请实施例该提供一种无线充电器,用于为终端充电,参见图11,该无线充电器1100包括前述无线充电芯片900、逆变器1101和发射线圈1102。
其中,逆变器1101的输入端用于与直流电源连接,逆变器1101的输出端与发射线圈连接。无线充电芯片900与发射线圈1102连接,用于检测无线充电器1100和终端中是否存在金属异物。
基于同一发明构思,本申请实施例还提供一种无线电力传输***,参见图12,该无线电力传输***包括无线充电器和终端。其中,无线充电器中包括发射线圈和逆变器,终端中包括整流器和接收线圈。在一示例中,终端还包括用电设备。其中,用电设备可以为终端中的电池。
具体地,该无线电力传输***还包括:第一采样电路1201、第二采样电路1202、第一模数转换器1203、第二模数转换器1204、第一处理电路1205和第二处理电路1206。
其中,第一采样电路1201的第一电流输入端与逆变器输入端连接,第一采样电路1201的第二电流输入端与发射线圈连接,第一采样电路1201的第一电压输入端的两个端点与逆变器输入端两端连接,第一采样电路1201的第二电压输入端的两个端点与发射线圈两端连接。第二采样电路1202的第一电流输入端与整流器输出端连接,第二采样电路1202的第二电流输入端与接收线圈连接,第二采样电路1202的第一电压输入端的两个端点与整流器输出端两端连接,第二采样电路1202的第二电压输入端的两个端点与接收线圈两端连接。第一模数转换器1203的输入端与第一采样电路1201的输出端连接,第一模数转换器1203的输出端与第一处理电路1205连接。第二模数转换器1204的输入端与第二采样电路1202的输出端连接,第二模数转换器的输出端与第二处理电路1206连接。
其中,第一采样电路1201的第一电流输入端用于采样逆变器输入端电流,第一采样电路1201的第二电流输入端用于采样发射线圈电流,第一采样电路1201的第一电压输入端用于采样逆变器输入端两端电压,第一采样电路1201的第二电压输入端用于采样发射 线圈两端电压。第二采样电路1202的第一电流输入端用于采样整流器输出端电流,第二采样电路的第二电流输入端用于采样接收线圈电流,第二采样电路1202的第一电压输入端用于采样整流器输出端两端电压,第二采样电路1202的第二电压输入端并用于采样接收线圈两端电压。第一处理电路1205用于利用第一模数转换器1203输出的数字信号,计算逆变器的接收功率和第一损耗,并利用逆变器的接收功率、第一损耗、整流器的输出功率和第二损耗,确定异物损耗。第二处理电路1206用于利用第二模数转换器1204输出的数字信号,计算整流器的输出功率和第二损耗,并将整流器的输出功率和第二损耗输出给第一处理电路1205。其中,异物损耗用于指示无线电力传输***中是否存在金属异物。
进一步的,发射线圈两端电压与第一采样电路1201采样的发射线圈电压的正负方向相同,发射线圈两端电压与第一采样电路1201采样的发射线圈电压的正负方向相同,其具体含义可以是:第一采样电路1201的第二电压输入端的两个端点中,接收高电位的端点与发射线圈中高电位的一端连接,接收低电位的端点与发射线圈中低电位的一端连接,两个端点的电位差等于发射线圈两端电压;同样的,逆变器输入端两端电压与第一采样电路1201采样的逆变器输入端电压的正负方向相同,逆变器输入端两端电压与第一采样电路1201采样的逆变器输入端电压的正负方向相同,其具体含义可以是:第一采样电路1201的第一电压输入端的两个端点中,接收高电位的端点与逆变器输入端中高电位的一端连接,接收低电位的端点与逆变器输入端中低电位的一端连接,两个端点的电位差等于逆变器输入端两端电压。
在无线电力传输***1200用于检测无线电力传输***是否存在金属异物时,第一采样电路1201的第一电流输入端与逆变器输入端连接,并采样逆变器输入端电流,第一采样电路1201的第二电流输入端与发射线圈连接并采样发射线圈电流,第一采样电路1201的第一电压输入端的两个端点与逆变器输入端两端连接并采样逆变器输入端两端电压,第一采样电路1201的第二电压输入端的两个端点与发射线圈两端连接并采样发射线圈两端的电压;第二采样电路1202的第一电流输入端与整流器的输出端连接并采样整流器输入端电流,第二采样电路1202的第二电流输入端与接收线圈连接并采样接收线圈电流,第二采样电路1202的第一电压输入端的两个端点与整流器输出端两端连接并采样整流器输入端两端电压,第二采样电路1202的第二电压输入端的两个端点与接收线圈两端连接并采样接收线圈两端电压。第一模数转换器1203的输入端与第一采样电路1201的输出端连接,第一模数转换器1203的输出端分别与第一处理电路1205连接,用于将第一采样电路1201输出的电流和电压由模拟信号转换为数字信号,并将输出的数字信号输出给第一处理电路1205。第二模数转换器1204的输入端与第二采样电路1202的输出端连接,第二模数转换器1204的输出端与第二处理电路1206连接,用于将第二采样电路1202输出的电流和电压由模拟信号转换为数字信号,并将输出的数字信号输出给第二处理电路1206。第一处理电路1205用于利用第一模数转换器1203输出的数字信号,计算逆变器的接收功率和第一损耗,并利用逆变器的接收功率、第一损耗、整流器的输出功率和第二损耗,确定异物损耗。第二处理电路1206用于利用第二模数转换器1204输出的数字信号,计算整流器的输出功率和第二损耗,并将整流器的输出功率和第二损耗输出给第一处理电路1205。
具体地,无线充电器中包括接收器(未示出),终端中包括发射器(未示出),第二处理电路1206在计算出整流器的输出功率和第二损耗,可以通过发射器将整流器的输出功率和第二损耗发送给接收器,接收器接收到整流器的输出功率和第二损耗后发送给第一处 理电路1205。
示例的,当异物损耗大于预设的异物损耗阈值时,确定无线电力传输***1200中存在金属异物。
应理解,采用第一采样电路1201采样的电流和电压,以及采用第二采样电流1202采样的电流和电压中可能存在干扰信号,因此,为了保证准确的计算出异物损耗,还可以通过多路选择器和滤波器配合对第一采样电路1201和第二采样电路1202输出的电流和电压进行滤波处理,从而消除干扰信号对检测结果的影响。
其中,第一采样电路1201的输出端通过第一多路选择器和第一滤波器与第一模数转换器连接,第二采样电路1202的输出端通过第二多路选择器和第二滤波器与第二模数转换器连接。
具体地,第一多路选择器的第一输入端与第一采样电路1201的输出端连接,第一多路选择器的输出端与第一滤波器的输入端连接,第一多路选择器用于依次输出第一采样电路输出的电流和电压。第二多路选择器的第一输入端与第二采样电路1202的输出端连接,第二多路选择器的输出端与第二滤波器的输入端连接,第二多路选择器用于依次输出第二采样电路1202输出的电流和电压。第一滤波器的输出端与第一模数转换器1203的输入端连接,第一滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给第一模数转换器1203。第二滤波器的输出端与第二模数转换器1204的输入端连接,第二滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给第二模数转换器1204。
可选地,无线电力传输***1200中各器件可以采样集成电路的形式连接。
可选地,无线电力传输***1200中各器件可以采样分立器件,各器件可以通过数据传输线连接。
下面,对无线电力传输***1200中的第一采样电路1201、第二采样电路1202、第一模数转换器1203、第二模数转换器1204、第一处理电路1205和第二处理电路1206的具体结构进行介绍。
一、第一采样电路1201
第一采样电路1201的第一电流输入端与逆变器输入端连接并采样逆变器输入端电流,第一采样电路1201的第二电流输入端与发射线圈连接并用于采样发射线圈电流,第一采样电路1201的第一电压输入端的两个端点与逆变器输入端两端连接并用于采样逆变器输入端两端电压,第一采样电路1201的第二电压输入端的两个端点与发射线圈两端连接并采样发射线圈两端电压。
其中,第一采样电路1201可以包括:第一电流传感器、第二电流传感器、第一电压传感器和第二电压传感器。
具体地,第一电流传感器的输入端为第一采样电路的第一电流输入端,与逆变器输入端连接,第一电流传感器的输出端与第一模数转换器的输入端连接;第二电流传感器的输入端为第一采样电路的第二电流输入端,与发射线圈连接,第二电流传感器的输出端与第一模数转换器的输入端连接;第一电压传感器的输入端为第一电压电路的第一电压输入端,与逆变器输入端两端连接,第一电压传感器的输入端与第一模数转换器的输入端连接;第二电压传感器的输入端为第一采样电路的第二电压输入端,与发射线圈两端连接,第二电 压传感器的输出端与第一模数转换器的输入端连接。
当然,以上对第一采样电路1201的结构的介绍仅为示例,实际应用中,第一采样电路1201也可以采用其它结构,例如第一采样电路1201可以是数据采集器。
二、第二采样电路1202
第二采样电路1202的第一电流输入端与整流器输出端连接并采样整流器输出端电流,第二采样电路1202的第二电流输入端与接收线圈连接并用于采样接收线圈电流,第二采样电路1202的第一电压输入端的两个端点与整流器输出端两端连接并用于采样整流器输出端两端电压,第二采样电路1202的第二电压输入端的两个端点与接收线圈两端连接并采样接收线圈两端电压。
其中,第二采样电路1202可以包括:第三电流传感器、第四电流传感器、第三电压传感器和第四电压传感器。
具体地,第三电流传感器的输入端为第二采样电路1202的第一电流输入端,与整流器输出端连接,第三电流传感器的输出端与第二模数转换器1204的输入端连接;第四电流传感器的输入端为第二采样电路1202的第二电流输入端,与接收线圈连接,第四电流传感器的输出端与第二模数转换器1204的输入端连接;第三电压传感器的输入端为第二电采样电路1202的第一电压输入端,与整流器输出端两端连接,第三电压传感器的输入端与第二模数转换器1204的输入端连接;第四电压传感器的输入端为第二采样电路1202的第二电压输入端,与接收线圈两端连接,第四电压传感器的输出端与第二模数转换器1204的输入端连接。
当然,以上对第二采样电路1202的结构的介绍仅为示例,实际应用中,第二采样电路1202也可以采用其它结构,例如第二采样电路1202可以是数据采集器。
三、第一模数转换器1203
第一模数转换器1203的输入端与第一采样电路1201的输出端连接,第一模数转换器1203的输出端与第一处理电路1205连接,用于对第一采样电路1201采样的电流和电压由模拟信号转换为数字信号,并将数字信号发送给第一处理电路1205。
四、第二模数转换器1204
第二模数转换器1204的输入端与第二采样电路1202的输出端连接,第二模数转换器1203的输出端与第二处理电路1206连接,用于对第二采样电路1202采样的电流和电压由模拟信号转换为数字信号,并将数字信号发送给第二处理电路1206。
五、第一处理电路1205
第一处理电路1205与第一模数转换器1203的输出端连接,用于利用第一模数转换器703输出的数字信号,计算逆变器的接收功率和第一损耗,并利用逆变器的接收功率、第一损耗、整流器的输出功率和第二损耗,确定异物损耗。其中,异物损耗用于指示无线电力传输***1200中是否存在金属异物。
实际使用时,第一处理电路1205可以与第二处理电路1206电连接或者通信连接,以实现得到接收线圈的输出功率和第二损耗。
具体地,在确定无线电力传输***1200的异物损耗之后,在确定异物损耗大于预设异物损耗阈值时,确定无线电力传输***1200中存在金属异物,以及向无线充电器中的 处理器或者与无线充电器通信连接的其它处理器发送指示信号。其中,该指示信号用于指示处理器断开直流电源与逆变器的连接,进行故障排除。其中,预设异物损耗阈值的数值可以根据Qi协议进行设置。
具体地,第一模数转换器1203输出的数字信号中包括:第一电流信号、第二电流信号、第一电压信号和第二电压信号。其中,第一电流信号为逆变器输入端电流经模数转换后的信号,第二电流信号为发射线圈电流经模数转换后的信号,第一电压信号为逆变器输入端两端电压,第二电压信号为发射线圈两端电压经模数转换后的信号。
具体地,第一处理电路1205具体用于:根据第一电流信号和第一电压信号,计算逆变器的输入功率;根据第二电流信号和第二电压信号,计算第一损耗;第一损耗为发射线圈和逆变器消耗的功率;根据逆变器的输入功率和第一损耗,确定发射线圈的发射功率;根据整流器的输出功率和第二损耗,确定接收线圈的接收功率;利用发射线圈的发射功率与接收线圈的接收功率的差值,确定异物损耗。
具体实现时,第一处理电路1205可以是MCU、CPU、DSP中的任一种。当然,第一处理电路1205的具体形态不限于上述举例。
六、第二处理电路1206
第二处理电路1206与第二模数转换器1204的输出端连接,用于利用第二模数转换器1204输出的数字信号,计算接收线圈的输出功率和第二损耗,并将接收线圈的输出功率和第二损耗输出给第一处理电路1205。
具体地,第二模数转换器1204输出的数字信号中包括:第三电流信号、第四电流信号和第三电压信号和第四电压信号。其中,第三电流信号为整流器输入端电流经模数转换后的信号,第四电流信号为接收线圈电流经模数转换后的信号,第三电压信号为逆变器输入端两端电压经模数转换后的信号,第四电压信号为接收线圈两端电压经模数转换后的信号。
具体地,第二处理电路1206具体用于:据第三电流信号和第三电压信号,计算整流器的输出功率;根据第四电流信号和第四电压信号,计算第二损耗;第二损耗为接收线圈和整流器消耗的功率;将整流器的输出功率和第二损耗发送给第一处理电路1205。
具体实现时,第二处理电路1206可以是MCU、CPU、DSP中的任一种。当然,第二处理电路1206的具体形态不限于上述举例。
结合以上描述,示例地,本申请实施例提供了一种无线电力传输***,如图13所示。
在第一采样电路中,包括电流传感器TA1和TA1以及电压传感器TV1和TV2。其中,TA1的输入端与逆变器的输入端连接,TA1的输入端与多路选择器K1的输入端连接,TA2的输入端与发射线圈连接,TA2的输出端与K1的输入端连接,TV1的输入端与逆变器输入端两端连接,TV1的输入端与K1的输入端连接,TV2的输入端与发射线圈两端连接,TV2的输出端与K1的输入端连接。
在第二采样电路中,包括TA3、TA4、TV3和TV4。其中,TA3的输入端与整流器的输入端连接,TA3的输入端与多路选择器K2的输入端连接,TA4的输入端与接收线圈连接,TA4的输出端与K2的输入端连接,TV3的输入端与整流器的输入端连接,TV3的输出端与K2的输入端连接,TV4的输入端与接收线圈两端连接,TV4的输出端与K2的输入端连接。
K1的输出端与第一滤波器连接,第一滤波器的输出端与第一模数转换器AD1的输入 端连接,AD1的输出端与第一处理电路连接。
K2的输出端与第二滤波器连接,第二滤波器的输出端与第二模数转换器AD2的输出端连接,AD2的输出端与第二处理电路连接。
具体地,TA1采样逆变器输入端电流,TA2采样发射线圈电流,TV1采样逆变器输入端两端电压,TV2采样发射线圈两端电压,TA3采样整流器输出端电流,TA4采样接收线圈电流,TV3采样整流器输入端两端电压,TV4采样接收线圈两端电压,TA1、TV1、TA2和TV2输出的电流和电压经K1后依照固定的顺序分别传输给第一滤波器,TA3、TV3、TA4和TV4输出的电流和电压经K2后依照固定的顺序分别传输给第二滤波器,第一滤波器对接收的电流和电压进行滤波处理,以消除电流和电压中的干扰,并将滤波处理后的电流和电压输出给AD1中进行模数转换,得到数字信号。第二滤波器对接收的电流和电压进行滤波处理,以消除电流和电压中的干扰,并将滤波处理后的电流和电压输出给AD2中进行模数转换,得到数字信号。第二处理电路将利用AD2输出的数字信号,计算整流器的输出功率和第二损耗。第一处理电路利用AD1输出的数字信号,计算逆变器的接收功率和第一损耗,并利用逆变器的接收功率、第一损耗、整流器的输出功率和第二损耗,确定异物损耗。
下面,对异物损耗的确定过程进行说明。
AD1输出的数字信号中包括:第一电流信号i1、第二电流信号i2、第一电压信号v1和第二电压信号v2。其中,i1为逆变器输入端电流经模数转换后的信号,i2为发射线圈电流经模数转换后的信号,v1为逆变器输入端两端电压经模数转换后的信号,v1为发射线圈两端电压经模数转换后的信号。
具体地,利用i1和v1计算逆变器的输入功率P1,以及利用i2和v2计算第一损耗P2。
其中,i1和v1与P1满足以下公式:
Figure PCTCN2021103759-appb-000025
其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第一电压信号。在一示例中,可以直接通过i1与v1相乘得到P1。
其中,i2和v2与第一损耗P2满足以下公式:
Figure PCTCN2021103759-appb-000026
其中,X1为预设的发射线圈磁损系数,R1为发射线圈和逆变器的等效电阻,I1为T时间内获取的第三电流信号的有效值。其中,发射线圈磁损系数可以根据发射线圈的型号进行设置,本申请这里不做具体设置。在一示例中,可以采样v2 n计算P2。
AD2输出的数字信号包括:第三电流信号i3、第四电流信号i4,第三电压信号v3和第四电压信号v4。其中,i3为整流器输出端电流经模数转换后的信号,i4为接收线圈电流经模数转换后的信号,v3为整流器输出端两端电压经模数转换后的信号,v4为接收线圈两端电压经模数转换后的信号。
具体地,利用i3和v3计算整流器的输出功率P3,以及利用i4和v4计算第二损耗P4。
其中,i3和v3与P3满足以下公式:
Figure PCTCN2021103759-appb-000027
其中,i3(t)为预设时长内目标采样时刻采样的第三电流信号,v3(t)为预设时长内目标采样时刻采样的第三电压信号。在一示例中,可以直接通过i3与v3相乘得到P3。
其中,i4和v4与第二损耗P4满足以下公式:
Figure PCTCN2021103759-appb-000028
其中,X2为预设的接收线圈磁损系数,R2为接收线圈和整流器的等效电阻,I2为T时间内获取的第四电流信号的有效值。其中,接收线圈的磁损系数可以根据接收线圈的型号进行设置,本申请这里不做详细介绍。在一示例中,可以采样v4 n计算P4。
无线电力传输***的异物损耗PLOSS=P1-P2-(P3+P4)。
在一示例中,可以将PLOSS直接输出给无线电力输***的处理器或者与无线电力传输***通信连接的其它处理器中。
在另一示例中,在确定PLOSS大于预设的异物损耗阈值时,确定无线电力传输***存在异物损耗,向无线充电器中的处理器或者与无线充电器通信连接的其它处理器发送指示信号。其中,该指示信号用于指示处理器断开直流电源与逆变器的连接,进行故障排除。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离权利要求的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种无线充电芯片,应用于无线充电器中,所述无线充电器用于为终端充电,所述无线充电器包括:逆变器、发射线圈和所述无线充电芯片,其特征在于,所述无线充电芯片包括:采样电路、模数转换器和处理电路;
    所述采样电路的电流输入端用于与所述发射线圈连接并采样所述发射线圈电流,所述采样电路的电压输入端的两个端点用于与所述发射线圈两端连接并采样所述发射线圈两端电压;
    所述模数转换器的输入端与所述采样电路的输出端连接,所述模数转换器的输出端与所述处理电路连接;
    所述处理电路用于利用所述模数转换器输出的数字信号,计算所述发射线圈的接收功率和第一损耗,以及利用所述发射线圈的接收功率、所述第一损耗、所述终端中接收线圈的输出功率和第二损耗,确定异物损耗,所述异物损耗用于指示所述无线充电器和所述终端中是否存在金属异物,所述接收线圈的输出功率和所述第二损耗是利用从所述终端中的所述接收线圈采样的电流和从所述接收线圈采样的电压计算得到的。
  2. 如权利要求1所述的无线充电芯片,其特征在于,所述无线充电芯片还包括:多路选择器和滤波器,所述采样电路的输出端通过所述多路选择器和所述滤波器与所述处理电路连接;
    所述多路选择器的输入端与所述采样电路的输出端连接,所述多路选择器的输出端与所述滤波器的输入端连接,所述多路选择器用于依次输出所述采样电路输出的电流和电压;
    所述滤波器的输出端与所述模数转换器的输入端连接,所述滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给所述模数转换器。
  3. 如权利要求1或2所述的无线充电芯片,其特征在于,所述模数转换器输出的数字信号包括:电流信号和电压信号,所述电流信号为所述发射线圈电流经模数转换后的信号,所述电压信号为所述发射线圈两端电压经模数转换后的信号;
    所述处理电路具体用于:根据所述电流信号和所述电压信号,计算所述发射线圈的接收功率和所述第一损耗;所述第一损耗为所述发射端线圈消耗的功率;
    根据所述发射线圈的接收功率和所述第一损耗,确定所述发射线圈的发射功率;
    根据所述接收线圈的输出功率和所述第二损耗,确定所述接收线圈的接收功率;
    利用所述发射线圈的发射功率与所述接收线圈的接收功率的差值,确定所述异物损耗。
  4. 如权力要求3所述的无线充电芯片,其特征在于,所述电流信号和所述电压信号与所述发射线圈的接收功率P1满足以下公式:
    Figure PCTCN2021103759-appb-100001
    其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的电流信号,v1(t)为预设时长内目标采样时刻采样的电压信号;
    所述第一电流信号和所述第一电压信号与所述第一损耗P2满足以下公式:
    Figure PCTCN2021103759-appb-100002
    其中,X1为预设的发射线圈磁损系数,所述R1为所述发射线圈的等效电阻,所述I1 为所述T时间内获取的电流信号的有效值。
  5. 如权利要求1-4中任一项所述的无线充电芯片,其特征在于,所述采样电路包括:电流传感器和电压传感器;
    所述电流传感器的输入端为所述采样电路的电流输入端,以用于连接所述发射线圈,所述电流传感器的输出端与所述模数转换器的输入端连接;
    所述电压传感器的输入端为所述采样电路的电压输入端,以用于连接所述接收线圈两端,所述电压传感器的输出端与所述模数转换器的输入端连接。
  6. 一种无线充电器,用于为终端充电,其特征在于,包括:如权利要求1-5中任一项所述的无线充电芯片、逆变器和发射线圈;
    所述逆变器的输入端用于与直流电源连接,所述逆变器的输出端与发射线圈连接;
    所述无线充电芯片与所述发射线圈连接,用于检测所述无线充电器和所述终端中是否存在金属异物。
  7. 一种无线电力传输***,所述无线电力传输***包括:无线充电器和终端,所述无线充电器包括发射线圈和逆变器,所述终端包括整流器和接收线圈,其特征在于,所述***还包括:第一采样电路、第二采样电路、第一模数转换器、第二模数转换器、第一处理电路和第二处理电路;
    所述第一采样电路的电流输入端与所述发射线圈连接并用于采样所述发射线圈电流,所述第一采样电路的电压输入端的两个端点与所述发射线圈两端连接并用于采样所述发射线圈两端电压;
    所述第二采样电路的电流输入端与所述接收线圈连接并用于采样所述接收线圈电流,所述第二采样电路的电压输入端的两个端点与所述接收线圈两端连接并用于采样所述接收线圈两端电压;
    所述第一模数转换器的输入端与所述第一采样电路的输出端连接,所述第一模数转换器的输出端与所述第一处理电路连接;
    所述第二模数转换器的输入端与所述第二采样电路的输出端连接,所述第二模数转换器的输出端与所述第二处理电路连接;
    所述第一处理电路用于利用所述第一模数转换器输出的数字信号,计算所述发射线圈的接收功率和第一损耗,以及利用所述发射线圈的接收功率、所述第一损耗、所述接收线圈的输出功率和第二损耗,确定异物损耗,所述异物损耗用于指示所述无线电力传输***中是否存在金属异物;
    第二处理电路用于利用所述第二模数转换器输出的数字信号,计算所述接收线圈的输出功率和所述第二损耗,并将所述接收线圈的输出功率和所述第二损耗输出给所述第一处理电路。
  8. 如权利要求7所述的***,其特征在于,所述***还包括:第一多路选择器、第二多路选择器、第一滤波器和第二滤波器;
    所述第一采样电路的输出端通过所述第一多路选择器和所述第一滤波器与所述第一模数转换器连接,所述第二采样电路的输出端通过所述第二多路选择器和所述第二滤波器与所述第二模数转换器连接;
    所述第一多路选择器的第一输入端与所述第一采样电路的输出端连接,所述第一多路选择器的输出端与所述第一滤波器的输入端连接,所述第一多路选择器用于依次输出所述 第一采样电路输出的电流和电压;
    所述第二多路选择器的第一输入端与所述第二采样电路的输出端连接,所述第二多路选择器的输出端与所述第二滤波器的输入端连接,所述第二多路选择器用于依次输出所述第二采样电路输出的电流和电压;
    所述第一滤波器的输出端与所述第一模数转换器的输入端连接,所述第一滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给所述第一模数转换器;
    所述第二滤波器的输出端与所述第二模数转换器的输入端连接,所述第二滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给所述第二模数转换器。
  9. 如权利要求7或8所述的***,其特征在于,所述第一模数转换器输出的数字信号包括:第一电流信号和第一电压信号,所述第一电流信号为所述发射线圈电流经所述模数转换后的信号,所述第一电压信号为所述发射线圈两端电压经所述模数转换后的信号;
    所述第一处理电路具体用于:根据所述第一电流信号和所述第一电压信号,计算所述发射线圈的接收功率和所述第一损耗;所述第一损耗为所述发射线圈消耗的功率;
    根据所述发射线圈的接收功率和所述第一损耗,确定所述发射线圈的发射功率;
    根据所述接收线圈的输出功率和所述第二损耗,确定所述接收线圈的接收功率;
    利用所述发射线圈的发射功率与所述接收线圈的接收功率的差值,确定所述异物损耗;
    所述第二模数转换器输出的数字信号包括:第二电流信号和第二电压信号,所述第二电流信号为所述接收线圈电流经所述模数转换后的信号,所述第二电压信号为所述接收线圈两端电压经所述模数转换后的信号;
    所述第二处理电路具体用于:根据所述第二电压信号和所述第二电流信号计算所述接收线圈的输出功率和第二损耗;所述第二损耗为所述接收线圈的消耗的功率;
    将所述接收线圈的接收功率和所述第二损耗发送给所述第一处理电路。
  10. 如权力要求9所述的***,其特征在于,所述第一电流信号和所述第一电压信号与所述发射线圈的接收功率P1满足以下公式:
    Figure PCTCN2021103759-appb-100003
    其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第一电压信号;
    所述第一电流信号和所述第一电压信号与所述第一损耗P2满足以下公式:
    Figure PCTCN2021103759-appb-100004
    其中,i2(t)为预设时长内目标采样时刻采样的第二电流信号,v2(t)为预设时长内目标采样时刻采样的第二电压信号;
    所述第二电流信号和所述第二电压信号与所述接收线圈的输出功率P3满足以下公式:
    Figure PCTCN2021103759-appb-100005
    其中,X1为预设的发射线圈磁损系数,所述R1为所述发射线圈的等效电阻,所述I1 为所述T时间内获取的第一电流信号的有效值;
    所述第二电流信号和所述第二电压信号与所述第二损耗P4满足以下公式:
    Figure PCTCN2021103759-appb-100006
    其中,X2为预设的接收线圈磁损系数,所述R2为所述接收线圈的等效电阻,所述I2为所述T时间内获取的第二电流信号的有效值。
  11. 如权利要求7-10中任一项所述的***,其特征在于,所述第一采样电路包括:第一电流传感器和第一电压传感器;
    所述第一电流传感器的输入端为所述第一采样电路的电流输入端,与所述发射线圈连接,所述电流传感器的输出端与所述第一模数转换器的输入端连接;
    所述第一电压传感器的输入端为所述第一采样电路的电压输入端,与所述接收线圈两端连接,所述电压传感器的输出端与所述第一模数转换器的输入端连接。
  12. 如权利要求7-11中任一项所述的***,其特征在于,所述第二采样电路包括:第二电流传感器和第二电压传感器;
    所述第二电流传感器的输入端为所述第二采样电路的电流输入端,与所述发射线圈连接,所述第一电流传感器的输出端与所述第二模数转换器的输入端连接;
    所述第二电压传感器的输入端为所述第二采样电路的电压输入端,与所述接收线圈两端连接,所述第二电压传感器的输出端与所述第二模数转换器的输入端连接。
  13. 一种无线充电芯片,应用于无线充电器中,所述无线充电器用于为终端充电,所述无线充电器包括:逆变器、发射线圈和所述无线充电芯片,其特征在于,所述无线充电芯片包括:采样电路、模数转换器和处理电路;
    所述采样电路的第一电流输入端用于与逆变器的输入端连接并采样所述逆变器输入端电流,所述采样电路的第二电流输入端用于与所述发射线圈连接并采样所述发射线圈电流,所述采样电路的第一电压输入端的两个端点与所述逆变器的输入端两端连接并采样所述逆变器输入端两端电压,所述采样电路的第二电压输入端的两个端点与所述发射线圈两端连接并采样所述发射线圈两端电压;
    所述模数转换器的输入端与所述采样电路的输出端连接,所述模数转换器的输出端与所述处理电路连接;
    所述处理电路用于利用所述模数转换器输出的数字信号,计算所述逆变器的接收功率和第一损耗,以及利用所述逆变器的输出功率、第一损耗、所述终端的输出功率和第二损耗,确定异物损耗,所述异物损耗用于指示所述无线充电器和所述终端中是否存在金属异物,所述终端的输出功率和所述第二损耗是利用从所述终端的接收线圈采样电流、整流器采样的电流、所述接收线圈采样的电压和从所述整流器采样的电压计算得到的。
  14. 如权利要求13所述的无线充电芯片,其特征在于,所述无线充电芯片还包括:多路选择器和滤波器,所述采样电路的输出端通过所述多路选择器和所述滤波器与所述处理电路连接;
    所述多路选择器的输入端与所述采样电路的输出端连接,所述多路选择器的输出端与所述滤波器的输入端连接,所述多路选择器用于依次输出所述采样电路输出的电流和电压;
    所述滤波器的输出端与所述模数转换器的输入端连接,所述滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给所述模数转换器。
  15. 如权利要求13或14所述的无线充电芯片,其特征在于,所述模数转换器输出的数字信号包括:第一电流信号、第二电流信号、第一电压信号和第二电压信号,所述第一电流信号为所述逆变器输入端电流经模数转换后的信号,所述第二电流信号为所述发射线圈电流经模数转换后的信号,所述第一电压信号为所述逆变器输入端两端电压经模数转换后的信号,所述第二电压信号为所述发射线圈两端电压经模数转换后的信号;
    所述处理电路具体用于:根据所述第一电流信号和所述第一电压信号,计算所述逆变器的接收功率;
    根据所述第二电流信号和所述第二电压信号,计算所述第一损耗;所述第一损耗为所述发射端线圈和所述逆变器消耗的功率;
    根据所述逆变器的接收功率和所述第一损耗,确定所述发射线圈的发射功率;
    根据所述输出功率和所述第二损耗,确定所述接收线圈的接收功率;
    利用所述发射线圈的发射功率与所述接收线圈的接收功率的差值,确定所述异物损耗。
  16. 如权利要求15所述的无线充电芯片,其特征在于,
    所述第一电流信号和所述第一电压信号与所述逆变器的接收功率P1满足以下公式:
    Figure PCTCN2021103759-appb-100007
    其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第一电压信号;
    所述第二电流信号和所述第二电压信号与所述第一损耗P2满足以下公式:
    Figure PCTCN2021103759-appb-100008
    其中,v2(t)为预设时长内目标采样时刻采样的第二电压信号,X1为预设的发射线圈磁损系数,所述R1为所述发射线圈和所述逆变器的等效电阻,所述I1为所述T时间内获取的第二电流信号的有效值。
  17. 如权利要求13-16中任一项所述的无线充电芯片,其特征在于,所述采样电路包括:第一电流传感器、第二电流传感器、第一电压传感器和第二电压传感器;
    所述第一电流传感器的输入端为所述采样电路的第一电流输入端,以用于连接所述逆变器输入端,所述第一电流传感器的输入端与所述模数转换器的输入端连接;
    所述第二电流传感器的输入端为所述采样电路的第二电流输入端,以用于连接所述发射线圈,所述第二电流传感器的输出端与所述模数转换器的输入端连接;
    所述第一电压传感器的输入端为所述采样电路的第一电压输入端,以用于连接所述逆变器输入端两端,所述第一电压传感器的输出端与所述模数转换器的输入端连接;
    所述第二电压传感器的输入端为所述采样电路的第二电压输入端,以用于连接所述接收线圈两端,所述第二电压传感器的输出端与所述模数转换器的输入端连接。
  18. 一种无线充电器,用于为终端充电,其特征在于,包括如权利要求13-17中任一项所述的无线充电芯片、逆变器和发射线圈;
    所述逆变器的输入端用于与直流电源连接,所述逆变器的输出端与发射线圈连接;
    所述无线充电芯片与所述发射线圈连接,用于检测所述无线充电器和所述终端中是否存在金属异物。
  19. 一种无线电力传输***,所述无线电力传输***包括无线充电器和终端,所述无线 充电器包括发射线圈和逆变器,所述终端包括整流器和接收线圈,其特征在于,所述***还包括:第一采样电路、第二采样电路、第一模数转换器、第二模数转换器、第一处理电路和第二处理电路;
    所述第一采样电路的第一电流输入端与所述逆变器输入端连接并用于采样所述逆变器输入端电流,所述第一采样电路的第二电流输入端与所述发射线圈连接并用于采样所述发射线圈电流,所述第一采样电路的第一电压输入端的两个端点与所述逆变器输入端两端连接并用于采样逆变器输入端两端电压,所述第一采样电路的第二电压输入端的两个端点与所述发射线圈两端连接并用于采样所述发射线圈两端电压;
    所述第二采样电路的第一电流输入端与所述整流器输出端连接并用于采样所述整流器输出端电流,所述第二采样电路的第二电流输入端与所述接收线圈连接并用于采样所述接收线圈电流,所述第二采样电路的第一电压输入端的两个端点与所述整流器输出端两端连接并用于采样整流器输出端两端电压,所述第二采样电路的第二电压输入端的两个端点与所述接收线圈两端连接并采样用于所述接收线圈两端电压;
    所述第一模数转换器的输入端与所述第一采样电路的输出端连接,所述第一模数转换器的输出端与所述第一处理电路连接;
    所述第二模数转换器的输入端与所述第二采样电路的输出端连接,所述第二模数转换器的输出端与所述第二处理电路连接;
    所述第一处理电路用于利用所述第一模数转换器输出的数字信号,计算所述逆变器的接收功率和第一损耗,并利用所述逆变器的接收功率、所述第一损耗、所述整流器的输出功率和第二损耗,确定异物损耗,所述异物损耗用于指示所述无线电力传输***中是否存在金属异物;
    第二处理电路用于利用所述第二模数转换器输出的数字信号,计算所述整流器的输出功率和所述第二损耗,并将所述整流器的输出功率和所述第二损耗输出给所述第一处理电路。
  20. 如权利要求19所述的***,其特征在于,所述***还包括:第一多路选择器、第二多路选择器、第一滤波器和第二滤波器;
    所述第一采样电路的输出端通过所述第一多路选择器和所述第一滤波器与所述第一模数转换器连接,所述第二采样电路的输出端通过所述第二多路选择器和所述第二滤波器与所述第二模数转换器连接;
    所述第一多路选择器的第一输入端与所述第一采样电路的输出端连接,所述第一多路选择器的输出端与所述第一滤波器的输入端连接,所述第一多路选择器用于依次输出所述第一采样电路输出的电流和电压;
    所述第二多路选择器的第一输入端与所述第二采样电路的输出端连接,所述第二多路选择器的输出端与所述第二滤波器的输入端连接,所述第二多路选择器用于依次输出所述第二采样电路输出的电流和电压;
    所述第一滤波器的输出端与所述第一模数转换器的输入端连接,所述第一滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给所述第一模数转换器;
    所述第二滤波器的输出端与所述第二模数转换器的输入端连接,所述第二滤波器用于对接收的电流和电压进行滤波处理,并将滤波处理后的电流和电压输出给所述第二模数转 换器。
  21. 如权利要求19或20所述的***,其特征在于,所述第一模数转换器输出的数字信号包括:第一电流信号、第二电压信号、第一电压信号和第二电压信号,所述第一电流信号为所述逆变器输入端电流经模数转换后的信号,所述第二电流信号为所述发射线圈电流经模数转换后的信号,所述第一电压信号为所述逆变器输入端两端电压经模数转换后的信号,所述第二电压信号为所述发射线圈两端电压经模数转换后的信号;
    所述第一处理电路具体用于:根据所述第一电流信号和所述第一电压信号,计算所述逆变器的输入功率;
    根据所述第二电流信号和所述第二电压信号,计算所述第一损耗;所述第一损耗为所述发射线圈和所述逆变器消耗的功率;
    根据所述逆变器的输入功率和所述第一损耗,确定所述发射线圈的发射功率;
    根据所述整流器的输出功率和所述第二损耗,确定所述接收线圈的接收功率;
    利用所述发射线圈的发射功率与所述接收线圈的接收功率的差值,确定所述异物损耗;
    所述第二模数转换器输出的数字信号包括:第三电流信号、第四电流信号,第三电压信号和第四电压信号,所述第三电流信号为所述整流器输出端电流经模数转换后的信号,所述第四电流信号为所述接收线圈电流经模数转换后的信号,所述第三电压信号为所述整流器输出端两端电压经模数转换后的信号,所述第四电压信号为所述接收线圈两端电压经模数转换后的信号;
    所述第二处理电路具体用于:根据所述第三电流信号和所述第三电压信号,计算所述整流器的输出功率;
    根据所述第四电流信号和所述第四电压信号,计算所述第二损耗;所述第二损耗为所述接收线圈和所述整流器消耗的功率;
    将所述整流器的输出功率和所述第二损耗发送给所述第一处理电路。
  22. 如权利要求21所述的***,其特征在于,所述第一电流信号和所述第二电压信号与所述逆变器的输入功率P1满足以下公式:
    Figure PCTCN2021103759-appb-100009
    其中,T为预设时长,i1(t)为预设时长内目标采样时刻采样的第一电流信号,v1(t)为预设时长内目标采样时刻采样的第一电压信号;
    所述第二电流信号和所述第二电压信号与所述第一损耗P2满足以下公式:
    Figure PCTCN2021103759-appb-100010
    其中,X1为预设的发射线圈磁损系数,v2(t)为预设时长内目标采样时刻采样的第二电压信号,所述R1为所述发射线圈和所述逆变器的等效电阻,所述I1为所述T时间内获取的第二电流信号的有效值;
    所述第三电流信号和所述第三电压信号与所述整流器的输出功率P3满足以下公式:
    Figure PCTCN2021103759-appb-100011
    其中,i3(t)为预设时长内目标采样时刻采样的第三电流信号,v3(t)为预设时长内目标 采样时刻采样的第三电压信号;
    所述第四电流信号和所述第四电压信号与所述第二损耗P4满足以下公式:
    Figure PCTCN2021103759-appb-100012
    其中,X2为预设的接收线圈磁损系数,所述R2为所述接收线圈和所述整流器的等效电阻,所述I2为所述T时间内获取的第四电流信号的有效值。
  23. 如权利要求要求19-22中任一项所述的***,其特征在于,所述第一采样电路包括:第一电流传感器、第二电流传感器、第一电压传感器和第二电压传感器;
    所述第一电流传感器的输入端为所述第一采样电路的第一电流输入端,与所述逆变器输入端连接,所述第一电流传感器的输出端与所述第一模数转换器的输入端连接;
    所述第二电流传感器的输入端为所述第一采样电路的第二电流输入端,与所述发射线圈连接,所述第二电流传感器的输出端与所述第一模数转换器的输入端连接;
    所述第一电压传感器的输入端为所述第一电压电路的第一电压输入端,与所述逆变器输入端两端连接,所述第一电压传感器的输入端与所述第一模数转换器的输入端连接;
    所述第二电压传感器的输入端为所述第一采样电路的第二电压输入端,与所述发射线圈两端连接,所述第二电压传感器的输出端与所述第一模数转换器的输入端连接。
  24. 如权利要求要求19-23中任一项所述的***,其特征在于,所述第二采样电路包括:第三电流传感器、第四电流传感器、第三电压传感器和第四电压传感器;
    所述第三电流传感器的输入端为所述第二采样电路的第一电流输入端,与所述整流器输出端连接,所述第三电流传感器的输出端与所述第二模数转换器的输入端连接;
    所述第四电流传感器的输入端为所述第二采样电路的第二电流输入端,与所述接收线圈连接,所述第四电流传感器的输出端与所述第二模数转换器的输入端连接;
    所述第三电压传感器的输入端为所述第二采样电路的第一电压输入端,与所述整流器输出端两端连接,所述第三电压传感器的输入端与所述第二模数转换器的输入端连接;
    所述第四电压传感器的输入端为所述第二采样电路的第二电压输入端,与所述接收线圈两端连接,所述第四电压传感器的输出端与所述第二模数转换器的输入端连接。
PCT/CN2021/103759 2020-06-30 2021-06-30 一种无线充电芯片、无线充电器和无线电力传输*** WO2022002164A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010624404.3A CN113872339A (zh) 2020-06-30 2020-06-30 一种无线充电芯片、无线充电器和无线电力传输***
CN202010624404.3 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022002164A1 true WO2022002164A1 (zh) 2022-01-06

Family

ID=78981038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103759 WO2022002164A1 (zh) 2020-06-30 2021-06-30 一种无线充电芯片、无线充电器和无线电力传输***

Country Status (2)

Country Link
CN (1) CN113872339A (zh)
WO (1) WO2022002164A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852631A (zh) * 2014-01-11 2014-06-11 深圳市普林泰克科技有限公司 一种无线充电器金属异物间接检测算法
CN103852665A (zh) * 2014-01-10 2014-06-11 深圳市普林泰克科技有限公司 一种无线充电器金属异物直接检测算法
US20170093214A1 (en) * 2015-09-29 2017-03-30 Rohm Co., Ltd. Wireless power transmitter, control circuit thereof, charger, and calibration method of foreign object detection by power loss method
US20190068001A1 (en) * 2017-08-30 2019-02-28 Nxp Usa, Inc. Methods And Systems For Foreign Objection Detection In Wireless Energy Transfer Systems
CN110146927A (zh) * 2019-05-16 2019-08-20 京东方科技集团股份有限公司 充电***、异物检测方法及组件、充电控制方法及装置
CN111245107A (zh) * 2018-11-28 2020-06-05 集成装置技术公司 无线电力传送***中利用线圈电流感测的增强型异物检测

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852665A (zh) * 2014-01-10 2014-06-11 深圳市普林泰克科技有限公司 一种无线充电器金属异物直接检测算法
CN103852631A (zh) * 2014-01-11 2014-06-11 深圳市普林泰克科技有限公司 一种无线充电器金属异物间接检测算法
US20170093214A1 (en) * 2015-09-29 2017-03-30 Rohm Co., Ltd. Wireless power transmitter, control circuit thereof, charger, and calibration method of foreign object detection by power loss method
US20190068001A1 (en) * 2017-08-30 2019-02-28 Nxp Usa, Inc. Methods And Systems For Foreign Objection Detection In Wireless Energy Transfer Systems
CN111245107A (zh) * 2018-11-28 2020-06-05 集成装置技术公司 无线电力传送***中利用线圈电流感测的增强型异物检测
CN110146927A (zh) * 2019-05-16 2019-08-20 京东方科技集团股份有限公司 充电***、异物检测方法及组件、充电控制方法及装置

Also Published As

Publication number Publication date
CN113872339A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
TWI489729B (zh) 適用於無線電力系統的電力計算的方法
US8204531B2 (en) Power transmission control device, power transmission device, electronic instrument, and non-contact power transmission system
CN103852665A (zh) 一种无线充电器金属异物直接检测算法
WO2020125112A1 (zh) 一种接收端的相位校准电路、方法及接收端
CN105048643A (zh) 输入寄生金属检测
CN110208597B (zh) 一种基于单绕组电流互感器的自供电无线电流监测***
WO2012132412A1 (ja) 電力伝送システム
KR20130033704A (ko) 무선 전력을 이용한 통신 시스템
KR20200064934A (ko) 무선 전력 전송 시스템들에서 코일 전류 감지로의 강화된 이물질 검출
CN103746461A (zh) 无线电力接收机电路及其测量可用电力的方法
CN111030266A (zh) 基于电磁超材料的无线充电***及恒流恒压充电控制方法
CN110837040A (zh) 一种用真实线圈模拟Qi标准无线充电的充电器主板测试设备
CN110146927A (zh) 充电***、异物检测方法及组件、充电控制方法及装置
CN107947307A (zh) 无线充电***及无线充电方法
WO2022002164A1 (zh) 一种无线充电芯片、无线充电器和无线电力传输***
WO2012073472A1 (ja) 電力伝送システム
CN114256897A (zh) 电源提供装置、电源提供方法以及电源提供***
CN107656133B (zh) 一种无线充电***发射端谐振电流检测方法及装置
CN111355311A (zh) 无线功率传输装置的距离检测方法及***
CN212134876U (zh) 一种用真实线圈模拟Qi标准无线充电的充电器主板测试设备
CN105659471A (zh) 用于无线电力传输***中的使用隔离的谐振器的阻抗匹配的方法和装置
US20130151184A1 (en) Meter Device
CN110568291A (zh) 基于电力载波的智能停电检测***及方法
CN106329737A (zh) 一种具有电量分享功能的手机
CN112186818A (zh) 一种用于在高压架空线路进行高电位在线取能的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832371

Country of ref document: EP

Kind code of ref document: A1