WO2022001927A1 - 减少雷达和上行频段之间的干扰的方法和通信装置 - Google Patents

减少雷达和上行频段之间的干扰的方法和通信装置 Download PDF

Info

Publication number
WO2022001927A1
WO2022001927A1 PCT/CN2021/102654 CN2021102654W WO2022001927A1 WO 2022001927 A1 WO2022001927 A1 WO 2022001927A1 CN 2021102654 W CN2021102654 W CN 2021102654W WO 2022001927 A1 WO2022001927 A1 WO 2022001927A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar signal
network device
frequency band
radar
frequency domain
Prior art date
Application number
PCT/CN2021/102654
Other languages
English (en)
French (fr)
Inventor
张立文
李亮亮
王旭
徐舟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21834353.1A priority Critical patent/EP4164274A4/en
Publication of WO2022001927A1 publication Critical patent/WO2022001927A1/zh
Priority to US18/146,688 priority patent/US20230137479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • H04K3/22Countermeasures against jamming including jamming detection and monitoring
    • H04K3/224Countermeasures against jamming including jamming detection and monitoring with countermeasures at transmission and/or reception of the jammed signal, e.g. stopping operation of transmitter or receiver, nulling or enhancing transmitted power in direction of or at frequency of jammer
    • H04K3/226Selection of non-jammed channel for communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/82Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection
    • H04K3/822Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection by detecting the presence of a surveillance, interception or detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present application relates to the field of communication, and in particular, to a method and a communication device for reducing interference between a radar and an uplink frequency band.
  • FIG. 1 is a schematic diagram of the interference between the radar and the 5G system network system.
  • the radar's interference to the 5G system includes the fact that the radar transmit power and antenna main lobe gain are extremely large. In severe cases, such as when the base station is located in the radar main lobe direction and the distance between the two is relatively close, the circuit may be burned; On the one hand, when the radar interference is not enough to burn the circuit, the channel environment of the 5G terminal equipment/base station will deteriorate, and the bit error rate will increase. In addition, the interference of the 5G system to the radar, including the interference of the 5G terminal equipment/base station, degrades the sensitivity of the radar, and there are legal issues.
  • the present application provides a method and a communication device for reducing interference between a radar and an uplink frequency band, which solves the problem of coexistence between a 5G system and a radar in the same frequency band.
  • a method for reducing interference between a radar and an uplink frequency band includes: a first network device acquires a characteristic of a radar signal on an uplink frequency band; the first network device determines a protection measure according to the characteristic of the radar signal ; the first network device uses protective measures to reduce the interference between the radar signal and the uplink frequency band; the first network device communicates with one or more first terminal devices through the uplink frequency band.
  • the first network device determines the feature of the radar signal; or the first network device receives the feature of the radar signal from the second terminal device.
  • the characteristics of the radar signal can be determined by the network side or the terminal side.
  • the first network device transmits the characteristics of the radar signal to at least one surrounding second network device.
  • the first network device can send the determined radar signal characteristics to the surrounding network devices, so that other network devices can also use the radar signal according to the radar signal. Corresponding protection measures should be taken according to the signal characteristics.
  • the characteristics of the radar signal include: the transmission period of the radar signal, the location of the frequency domain resource of the radar signal, and/or the transmission period of the first network device and/or The energy of the interference received on the frequency domain resource.
  • the first network device stops the user scheduling of the cell corresponding to the uplink frequency band, or instructs one or more first terminal equipments in the transmission period
  • the uplink transmit power on the upper limit does not exceed the first threshold; or, the first network device adjusts the length and/or position of the CP so that the radar signal falls on the CP; or, the first network device adjusts the number of one or more GAP symbols and /or position such that the radar signal falls on one or more GAP symbols.
  • the protection measures are all carried out on the network side or the terminal side, and there is no need to have the right to control the radar, and methods such as reducing the terminal transmit power, so that when 5G communication and radar collide in the time domain and frequency domain of the uplink frequency band, The two can still coexist, thereby improving the utilization of wireless spectrum.
  • the intermediate radio frequency device corresponding to the frequency domain resource is deactivated, or the cell system bandwidth or partial bandwidth BWP on the uplink frequency band is adjusted to avoid the frequency domain resource, or indicate The uplink transmit power of one or more first terminal devices on the frequency domain resources does not exceed the second threshold; or, the first network device does not schedule the frequency domain resources, or preferentially allocates the frequency domain resources to the nearest neighbors of the cell corresponding to the uplink frequency band. Click User.
  • the protection measures are all carried out on the network side or the terminal side, and there is no need to have the right to control the radar, and methods such as reducing the terminal transmit power, so that when 5G communication and radar collide in the time domain and frequency domain of the uplink frequency band, The two can still coexist, thereby improving the utilization of wireless spectrum.
  • the downtilt angle of the antenna of the first network device is adjusted so that the interference of the first network device by the radar signal is less than a third threshold.
  • the first network device reuses the protection measure to reduce interference between the radar signal and the uplink frequency band.
  • a communication device in a second aspect, has a function of implementing the method in the first aspect or any possible implementation manners thereof.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the present application provides a network device including a processor, a memory and a transceiver.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the terminal device executes the method in the first aspect or any possible implementation manner thereof.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on a computer, the first aspect or any possible implementation thereof The method in the way is implemented.
  • the present application provides a computer program product, the computer program product comprising a computer program or code, when the computer program or code is run on a computer, as in the first aspect or any possible implementations thereof method is implemented.
  • the present application provides a communication device comprising a processor and a communication interface, the communication interface being configured to receive a signal and transmit the signal to the processor, the processor processing the signal so that A method as in the first aspect or any possible implementation thereof is performed.
  • the present application provides a wireless communication system, including the network device described in the third aspect.
  • Figure 1 Schematic diagram of interference between radar and 5G network system.
  • FIG. 2 is a schematic flow chart of reducing interference between radar and uplink frequency bands provided by the present application.
  • FIG. 3 is a schematic flowchart of the time domain protection measures provided by the present application.
  • FIG. 4 is a schematic flowchart of the frequency domain protection measures provided by the present application.
  • FIG. 5 is a schematic flow chart of the airspace protection measures provided by the present application.
  • FIG. 6 is a schematic block diagram of a communication apparatus 1000 provided by the present application.
  • FIG. 7 is a schematic structural diagram of the communication device 10 provided by the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G 5th generation
  • NR new radio
  • D2D device-to-device
  • the communication system may include at least one network device and at least one terminal device.
  • the network device and the terminal device can communicate via a wireless link.
  • the network device may be any device with a wireless transceiver function.
  • Network devices include but are not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), home base station (for example, home evolved Node B, Or home Node B, HNB), baseband unit (baseband unit, BBU), access point (access point, AP), wireless relay node, wireless backhaul node, transmission in wireless fidelity (wireless fidelity, WIFI) system
  • the transmission point (TP) or the transmission and reception point (TRP), etc. can also be the gNB or the transmission point (TRP or TP) in the 5G (such as NR) system, or the base station in the 5G system.
  • One or a group of antenna panels may be network nodes that constitute a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU), etc., or, also It can be a satellite or a satellite gateway, etc.
  • BBU baseband unit
  • DU distributed unit
  • the network device in this embodiment of the present application may also refer to a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU), or the network device may also be composed of a CU and a DU.
  • CU and DU can be understood as the division of the base station from the perspective of logical functions.
  • the CU and the DU may be physically separated, or may be deployed together, which is not specifically limited in this embodiment of the present application.
  • One CU can be connected to one DU, or multiple DUs can share one CU, which can save costs and facilitate network expansion.
  • the segmentation of CU and DU can be divided according to the protocol stack, one of the possible ways is to aggregate the radio resource control (radio resource control, RRC), service data adaptation protocol (service data adaptation protocol, SDAP) and packet data.
  • the protocol packet data convergence protocol, PDCP
  • the protocol packet data convergence protocol, PDCP
  • RLC radio link control
  • media access control media access control
  • MAC media access control
  • the present invention does not completely limit the above-mentioned protocol stack segmentation mode, and there may be other segmentation modes. For details, please refer to TR38.801v14.0.0.
  • the CU and DU are connected through the F1 interface.
  • CU represents the gNB is connected to the core network through the Ng interface.
  • the network device in this embodiment of the present application may refer to a centralized unit control plane (CU-CP) node or a centralized unit user plane (CU-UP) node, or the network device may also be a CU-CP and a CU-UP .
  • the CU-CP is responsible for the control plane function, mainly including RRC and PDCP-C.
  • PDCP-C is mainly responsible for encryption and decryption of control plane data, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP and PDCP-U.
  • SDAP is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • PDCP-U is mainly responsible for data plane encryption and decryption, integrity protection, header compression, serial number maintenance, data transmission, etc.
  • the CU-CP and CU-UP are connected through the E1 interface.
  • CU-CP represents that the gNB is connected to the core network through the Ng interface.
  • CU-UP is connected through F1-U (user plane) and DU.
  • F1-C control plane
  • CU-UP is connected through F1-U (user plane) and DU.
  • F1-C user plane
  • PDCP-C is also in CU-UP.
  • the CU may be classified as an access network device or as a core network (core network, CN) device, which is not limited in this application.
  • core network core network
  • a terminal device may also be referred to as user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local Wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, 5G Terminal equipment in the network, terminal equipment in a non-public network, etc.
  • a virtual reality (virtual reality, VR) terminal device an augmented reality (augmented reality, AR) terminal equipment
  • wireless terminals in industrial control wireless terminals in self driving, wireless
  • wearable devices can also be called wearable smart devices, which is a general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the radar system in FIG. 1 can also be replaced with other communication systems such as a WIFI system or a satellite system, which is not limited in this application.
  • FIG. 2 is a schematic flowchart of a method for reducing interference between a radar and an uplink frequency band provided by the present application.
  • the first network device acquires the characteristics of the radar signal on the new SUL frequency band.
  • the uplink frequency band may be a new SUL frequency band, and the new SUL frequency band in the embodiment of the present application may be replaced with an uplink frequency band.
  • the first network device detects the radar signal and generates the characteristic of the radar signal, or the first network device receives the characteristic of the radar signal from the second terminal device, which will be described separately below.
  • the first network device uses short-time Fourier transform or wavelet transform to process the signal collected in the new SUL frequency band, and detects the radar signal through the radar signal identification method to obtain the characteristics of the radar signal, wherein the radar signal is Recognition methods include methods such as threshold detection or pattern recognition.
  • the second terminal device uses short-time Fourier transform or wavelet transform to process the signal collected in the new SUL frequency band, and detects the radar signal through the radar signal identification method to obtain the characteristics of the radar signal.
  • the radar signal feature is sent to the first network device through an air interface cell (such as an RRC message), and correspondingly, the first network device acquires the new radar signal feature, wherein the second terminal device may be a device operating on the new SUL frequency band.
  • the terminal device may also be a terminal device that does not operate in the new SUL frequency band, as long as the terminal device can measure the characteristics of the radar signal on the SUL, which is not specifically limited in this application.
  • the characteristics of the radar signal include the transmission period of the radar signal, the location of the frequency domain resource of the radar signal, and/or the interference energy received by the first network device on the transmission period and/or the frequency domain resource.
  • the transmission period of the radar signal may be continuous or discontinuous.
  • the frequency domain resources of the radar signal are part or all of the new SUL frequency band. It can be understood that the frequency domain resources where the radar signal is located belong to the frequency domain resources of the new SUL frequency band, and the frequency domain resources where the radar signal and the new SUL frequency band overlap. , the first network device is interfered by the radar signal.
  • the first network device may also send the acquired characteristics of the radar signal to at least one second network device, wherein the second network device
  • the device is a network device surrounding the first network device.
  • the first network device can inform the surrounding base stations of the radar signal characteristics through the Xn port or the S1 port, and the surrounding base stations can take protective measures.
  • the surrounding base stations can take protective measures.
  • the first network device determines a protection measure according to the characteristic of the radar signal.
  • protection measures are used to reduce interference between radar signals and the new SUL frequency band.
  • the first network device may determine corresponding protection measures through three types of decision units, where the three types of decision units include: a time domain decision unit, a frequency domain decision unit, and an air domain decision unit.
  • time domain decision unit frequency domain decision unit
  • air domain decision unit may be virtual modules divided according to implementation functions, or may be physical modules in the first network device, which are not specifically limited in this application.
  • the second network device may also determine corresponding protection measures through a corresponding decision-making unit.
  • the present application provides specific implementations of the protection measures corresponding to the three types of decision-making units.
  • FIG. 3 is a schematic flowchart of the time domain protection measures provided by the present application.
  • the first network device judges in the time-domain decision-making unit whether it is currently in the emission period of the radar signal based on the characteristics of the radar signal (for example: the emission period of the radar), if so, skip to step (2), if not, skip to Go to step (3);
  • the first network device stops the user scheduling of the cell corresponding to the new SUL frequency band
  • the first network device indicates that the uplink transmit power of one or more first terminal devices in the transmit period does not exceed the first threshold (for example: the first threshold may be a conservative value (-20dB) of the uplink transmit power of the first terminal device) ), wherein the first terminal device is a terminal device that communicates with the first network device through the new SUL frequency band;
  • the first threshold may be a conservative value (-20dB) of the uplink transmit power of the first terminal device
  • the first threshold may be determined by the network device, or may be determined by the terminal device according to the actual situation, which is not limited in this application.
  • the first network device may send indication information to one or more first terminal devices, and the terminal device adjusts the uplink transmit power in the transmit period according to the indication information so that it does not exceed the first threshold.
  • the first network device adjusts the length and/or position of a cyclic prefix (cyclic prefix, CP) so that the radar signal falls within the CP.
  • a cyclic prefix cyclic prefix, CP
  • the frame offset is adjusted so that the radar signal falls within the CP.
  • the first network device may adjust the length of the CP, so that the length of the CP is greater than or equal to the transmission period of the radar;
  • the first network device adjusts the number and/or position of one or more GAP symbols so that the radar signal falls on one or more GAP symbols. For example, the first network device adjusts the frame structure and adds the GAP symbol of the call gap, so that the radar signal falls on the GAP symbol.
  • the one or more GAP symbols may be continuous symbols or discontinuous symbols, which are not limited in this embodiment of the present application.
  • one or more GAP symbols are continuous symbols
  • the first network device may adjust the length of one or more GAP symbols, so that the length of one or more GAP symbols is greater than or equal to the transmission period of the radar.
  • FIG. 4 is a schematic flowchart of the frequency domain protection measures provided by the present application.
  • the first network device determines in the frequency domain decision unit that the radar signal is in the new SUL frequency band based on the characteristics of the radar signal (for example, the frequency domain resource position of the radar signal and the energy of the interference received on the frequency domain resource). Whether the energy (or radar interference level) on the sensor exceeds the preset threshold value, if so, skip to step (2), if not, skip to step (3);
  • the cell system bandwidth or part of the bandwidth on the new SUL frequency band can avoid the frequency domain resources where the radar signal is located.
  • the second threshold may be determined by the network device, or may be determined by the terminal device according to the actual situation, which is not limited in this application.
  • the first network device preferentially allocates the interfered physical resource block (PRB) (that is, the radar signal frequency domain resource) in the new SUL frequency band to the near-point users of the cell corresponding to the new SUL frequency band;
  • PRB physical resource block
  • the first network device performs frequency-domain avoidance for the radar signal, and the frequency-domain avoidance includes not scheduling the interfered PRBs in the new SUL frequency band.
  • step (1) may not exist, that is, the first network device determines in the frequency domain decision-making unit based on the characteristics of the radar signal whether the energy of the radar signal in the new SUL frequency band exceeds the preset value. the threshold value, directly execute one or more frequency domain protection measures in steps (2) and (3).
  • FIG. 5 is a schematic flowchart of the airspace protection measures provided by the present application.
  • the first network device may adjust the downtilt angle of the antenna of the first network device, so that the interference of the first network device by the radar signal is less than a third threshold. For example, when the interference of the radar signal is less than the third threshold, it may be considered that the first network device cannot detect the radar interference (that is, the radar interference does not exist). The following describes the specific steps.
  • the first network device judges in the airspace decision unit whether the interference of the radar signal corresponding to the current downtilt angle of the antenna of the first network device exists based on the characteristics of the radar signal, and if so, skip to step (2), if not , then tasks such as user scheduling of the cell of the terminal device are normally performed.
  • the first network device adjusts the down-tilt angle of the antenna, wherein the down-tilt angle includes an electronic down-tilt angle and a mechanical down-tilt angle.
  • the first network device can correspondingly continuously increase the electronic downtilt angle in the background (for example, it is lowered by 1 degree each time, and the adjustment degree is not limited) to reduce the antenna reception gain and transmit gain of the network device in the direction of radar interference.
  • the first network device After the first network device adjusts the downtilt angle, recalculate the interference of the radar signal to the first network device. At this time, if no radar interference is detected, the first network device stops adjusting the downtilt angle; if the radar can still be detected interference, continue to adjust the downtilt. It should be understood that if the first network device has traversed all the downtilts and still has radar signal interference, the downtilt angle with the least radar interference is determined among all the downtilts traversed by the first network device, and the downtilt angle corresponding to the minimum radar interference is used as The final downtilt angle of the first network device, thereby reducing the interference of radar signals.
  • step (1) it can also be determined whether the radar interference corresponding to the antenna of the first network device is less than the third threshold, and if it is not less than the third threshold, then jump to step (2) to adjust the downtilt angle of the first network device. , if it is less than the third threshold, tasks such as user scheduling of the cell of the terminal device are normally performed, which will not be repeated here.
  • the first network device may adopt one or more of the foregoing protection measures in the time domain, frequency domain, and air domain, which are not limited in this application.
  • S203 the first network device performs protection measures to reduce interference between the radar signal and the uplink frequency band.
  • the first network device communicates with one or more first terminal devices through the new SUL frequency band.
  • the first network device when the first network device implements the above protection measures, when the 5G communication and the radar collide in the time and frequency domain of the SUL frequency band, the two can still coexist, and also That is to say, the first network device can still communicate with the terminal on the new SUL frequency band, thereby improving the utilization rate of the wireless spectrum.
  • S205 after the first network device adopts the above protection measures, re-evaluates whether the interference of the radar signal still exists, and when the interference still exists, repeats the above protection measures to reduce the interference between the radar signal and the new SUL frequency band. interference.
  • the coexistence problem of the 5G system and the radar in the same frequency band is solved through the protection measures to reduce the interference between the radar and the uplink frequency domain in the time domain, frequency domain and air domain.
  • the technical solutions of the present application are all performed on the side of the network equipment and the terminal equipment, and do not need to have the right to control the radar.
  • the transmitting power of the radar is extremely large, and when the network equipment or the terminal equipment detects the existence of the radar interference signal, the SUL terminal equipment does not interfere with the radar, so there is no risk of violation of laws and regulations by using the present invention.
  • FIG. 6 is only an illustration, and there may be units in the first network device that correspond one-to-one with the steps in the above method.
  • FIG. 6 is a schematic block diagram of a communication apparatus 1000 provided in the present application. As shown in FIG. 6 , the communication apparatus 1000 includes a processing unit 1300 .
  • the processing unit 1300 is configured to acquire the characteristics of the radar signal on the uplink frequency band; determine protection measures according to the characteristics of the radar signal; use the protection measures to reduce interference between the radar signal and the uplink frequency band; communicate with one or more first terminals through the uplink frequency band devices to communicate.
  • the communication apparatus 1000 may further include a sending unit 1100 and a receiving unit 1200, which are respectively configured to perform the actions of sending and receiving performed by the first network device.
  • the processing unit 1300 is specifically configured for the first network device to determine the characteristic of the radar signal.
  • the receiving unit 1200 is configured to receive the characteristics of the radar signal from the second terminal device.
  • the sending unit 1100 is configured to send the characteristic of the radar signal to at least one peripheral second network device.
  • the transmission period of the radar signal, the position of the frequency domain resource of the radar signal, and/or the interference energy received by the first network device on the transmission period and/or the frequency domain resource is not limited
  • the processing unit 1300 is further configured to stop the user scheduling of the cell corresponding to the uplink frequency band, or instruct the uplink transmission power of one or more first terminal devices in the transmission period not to exceed the first threshold; or, the processing unit 1300 is further configured to adjust the length and/or position of the CP so that the radar signal falls on the CP; or, the processing unit 1300 is further configured to adjust the number and/or position of one or more GAP symbols , so that the radar signal falls on one or more GAP symbols.
  • the processing unit 1300 is further configured to deactivate the intermediate radio frequency device corresponding to the frequency domain resource, or adjust the cell system bandwidth or partial bandwidth BWP on the uplink frequency band to avoid the frequency domain resource, or indicate one or more The uplink transmit power of a terminal device on the frequency domain resource does not exceed the second threshold; or, the processing unit is further configured to not schedule the frequency domain resource, or to preferentially allocate the frequency domain resource to the near-point users of the cell corresponding to the uplink frequency band.
  • the processing unit 1300 is further configured to adjust the downtilt angle of the antenna of the first network device, so that the interference of the first network device by the radar signal is less than the third threshold.
  • the processing unit 1300 is further configured to repeatedly use the protection measures in the foregoing method embodiments to reduce interference between the radar signal and the uplink frequency band.
  • the sending unit 1100 and the receiving unit 1200 may also be integrated into a transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the communication apparatus 1000 may be the first network device in the method embodiment.
  • the sending unit 1100 may be a transmitter
  • the receiving unit 1200 may be a receiver.
  • the receiver and transmitter can also be integrated into a transceiver.
  • the processing unit 1300 may be a processing device.
  • the communication apparatus 1000 may be a chip or an integrated circuit installed in the first network device.
  • the sending unit 1100 and the receiving unit 1200 may be a communication interface or an interface circuit.
  • the sending unit 1100 is an output interface or an output circuit
  • the receiving unit 1200 is an input interface or an input circuit
  • the processing unit 1300 may be a processing device.
  • the processing device may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the processing apparatus may include a memory and a processor, wherein the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory, so that the communication apparatus 1000 executes the process executed by the first network device in each method embodiment. manipulation and/or processing.
  • the processing means may comprise only a processor, the memory for storing the computer program being located outside the processing means.
  • the processor is connected to the memory through circuits/wires to read and execute the computer program stored in the memory.
  • the processing device may be a chip or an integrated circuit.
  • FIG. 7 is a schematic structural diagram of a communication device 10 provided by the present application.
  • the communication device 10 includes: one or more processors 11 , one or more memories 12 and one or more communication interfaces 13 .
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that in each method embodiment of the present application, the first network device Executed processes and/or operations are performed.
  • the processor 11 may have the function of the processing unit 1300 shown in FIG. 6
  • the communication interface 13 may have the function of the transmitting unit 1100 and/or the receiving unit 1200 shown in FIG. 6 .
  • the processor 11 may be configured to perform processing or operations performed internally by the first network device in the foregoing method embodiments
  • the communication interface 13 may be configured to perform the sending and/or operations performed by the first network device in the foregoing method embodiments. received action.
  • the communication apparatus 10 may be the first network device in the method embodiment.
  • the communication interface 13 may be a transceiver.
  • a transceiver may include a receiver and a transmitter.
  • the processor 11 may be a baseband device, and the communication interface 13 may be a radio frequency device.
  • the communication apparatus 10 may be a chip installed in the first network device.
  • the communication interface 13 may be an interface circuit or an input/output interface.
  • processors and the memory in the foregoing apparatus embodiments may be physically independent units, or the memory may also be integrated with the processor, which is not limited herein.
  • the present application further provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on the computer, the operations performed by the first network device in each method embodiment of the present application are made. and/or processes are executed.
  • the present application also provides a computer program product.
  • the computer program product includes computer program codes or instructions.
  • the operations performed by the first network device in each method embodiment of the present application and/or the instructions are executed. or the process is executed.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is configured to execute the computer program stored in the memory, so that the operations and/or processing performed by the first network device in any one of the method embodiments are performed.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface or an interface circuit or the like.
  • the chip may further include the memory.
  • the present application also provides a communication system, including the terminal device and the first network device in the embodiments of the present application.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has the capability of processing signals.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in the embodiments of the present application may be directly embodied as executed by a hardware coding processor, or executed by a combination of hardware and software modules in the coding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable read-only memory (EPROM). Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种减少雷达和上行频段之间的干扰的方法,第一网络设备通过获取上行频段上的雷达信号的特征,并根据雷达信号特征确定相应的保护措施,减少所述雷达信号和所述上行频段之间的干扰,使得5G通信与雷达在上行频段的时域频域上发生碰撞时,两者仍能共存,从而提高了无线频谱的利用率。

Description

减少雷达和上行频段之间的干扰的方法和通信装置
本申请要求于2020年6月30日提交中国国家知识产权局、申请号为202010617244.X、申请名称为“减少雷达和上行频段之间的干扰的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且具体地,涉及一种减少雷达和上行频段之间的干扰的方法和通信装置。
背景技术
为了增强传统第五代(5th Generation,5G)***网络架构中上行能力,需要引入新频段。然而无线电频谱资源拥挤,引入的5G新频段会与雷达/无线保真(wireless fidelity,WIFI)***/卫星等互相干扰,导致各***间无法共存。目前虽然可以采用超级上行解决方案避免了基站对雷达的干扰,使得雷达与5G***的共存成为可能,但是雷达对基站、辅助上行(supplementary uplink,SUL)终端设备对雷达的干扰仍然存在。
参见图1,图1是雷达与5G***网络***间的干扰的示意图。如图1所示,雷达对5G***的干扰包括由于雷达发射功率及天线主瓣增益极大,在严重情况例如基站位于雷达主瓣方向且两者相隔距离较近时,可能造成电路烧毁;另一方面,当雷达干扰不足以烧毁电路时,造成5G终端设备/基站的信道环境变差,误码率增加。另外,5G***对雷达的干扰包括5G终端设备/基站的干扰使得雷达灵敏度劣化,存在法律问题。
发明内容
本申请提供一种减少雷达和上行频段之间的干扰的方法和通信装置,解决了5G***与雷达在同一频段的共存问题。
第一方面,提供了一种减少雷达和上行频段之间的干扰的方法,该方法包括:第一网络设备获取上行频段上的雷达信号的特征;第一网络设备根据雷达信号的特征确定保护措施;第一网络设备使用保护措施减少雷达信号和上行频段之间的干扰;第一网络设备通过上行频段与一个或者多个第一终端设备进行通信。
上述技术方案中,由于在上行频段上规避了网络设备和终端设备对雷达的干扰,极大降低了5G***对雷达的影响,同时保护措施均由网络侧发起,不需要具备控制雷达的权利。
结合第一方面,在第一方面的某些实现方式中,第一网络设备确定雷达信号的特征;或者第一网络设备从第二终端设备接收雷达信号的特征。
上述技术方案中,雷达信号的特征可以由网络侧确定,也可以由终端侧确定。
结合第一方面,在第一方面的某些实现方式中,第一网络设备向周边的至少一个第二 网络设备发送雷达信号的特征。
上述技术方案中,由于雷达可能同时对多个使用上行频段的网络设备产生干扰,因此,第一网络设备可以将确定的雷达信号特征发送给周边的网络设备,从而其他网络设备也可以根据该雷达信号特征进行相应的保护措施。
结合第一方面,在第一方面的某些实现方式中,雷达信号的特征包括:雷达信号的发射周期,雷达信号的频域资源的位置,和/或第一网络设备在发射周期和/或者频域资源上受到的干扰的能量。
结合第一方面,在第一方面的某些实现方式中,在雷达信号的发射周期,第一网络设备停止上行频段对应的小区的用户调度,或者指示一个或者多个第一终端设备在发射周期上的上行发射功率不超过第一阈值;或者,第一网络设备调整CP的长度和/或位置,使得雷达信号落在CP;或者,第一网络设备调整一个或者多个GAP符号的个数和/或位置,使得雷达信号落在一个或者多个GAP符号上。
上述技术方案中,保护措施均在网络侧或终端侧进行,不需要具备控制雷达的权利,且降低终端发射功率等方法,使得5G通信与雷达在上行频段的时域频域上发生碰撞时,两者仍能共存,从而提高了无线频谱的利用率。
结合第一方面,在第一方面的某些实现方式中,去激活频域资源对应的中射频器件,或者调整上行频段上的小区***带宽或部分带宽BWP,以避开频域资源,或者指示一个或者多个第一终端设备在频域资源上的上行发射功率不超过第二阈值;或者,第一网络设备不调度频域资源,或者将频域资源优先分配给上行频段对应的小区的近点用户。
上述技术方案中,保护措施均在网络侧或终端侧进行,不需要具备控制雷达的权利,且降低终端发射功率等方法,使得5G通信与雷达在上行频段的时域频域上发生碰撞时,两者仍能共存,从而提高了无线频谱的利用率。
结合第一方面,在第一方面的某些实现方式中,调整第一网络设备的天线的下倾角,使得第一网络设备受到雷达信号的干扰小于第三阈值。
上述技术方案中,通过调整网络设备的下倾角,使得5G通信与雷达在上行频段的时域频域上发生碰撞时,两者仍能共存,从而提高了无线频谱的利用率。
结合第一方面,在第一方面的某些实现方式中,第一网络设备重复使用保护措施减少雷达信号和上行频段之间的干扰。
第二方面,提供一种通信装置,所述通信装置具有实现第一方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第三方面,本申请提供一种网络设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使终端设备执行如第一方面或其任意可能的实现方式中的方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上被执行时,如第一方面或其任意可能的实现方式中的方法被实现。
第五方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序或代码,当所述计算机程序或代码在计算机上被运行时,如第一方面或其任意可能的实现方 式中的方法被实现。
第六方面,本申请提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收信号并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得如第一方面或其任意可能的实现方式中的方法被执行。
第七方面,本申请提供一种无线通信***,包括如第三方面所述的网络设备。
附图说明
图1雷达与5G网络***间的干扰示意图。
图2是本申请提供的减少雷达和上行频段之间的干扰的示意性流程图。
图3是本申请提供的时域保护措施的示意性流程图。
图4是本申请提供的频域保护措施的示意性流程图。
图5是本申请提供的空域保护措施的示意性流程图。
图6为本申请提供的通信装置1000的示意性框图。
图7为本申请提供的通信装置10的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)***或新无线(new radio,NR)、设备对设备(device-to-device,D2D)通信***、机器通信***、车联网通信***、卫星通信***或者未来的通信***等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信***。该通信***可以包括至少一个网络设备和至少一个终端设备。网络设备与终端设备可通过无线链路通信。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如NR)***中的gNB或传输点(TRP或TP),或者,5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等,或者,还可以为卫星或者卫星信关站等。
本申请实施例中的网络设备也可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU),或者,网络设备也可以是CU和DU组成的。CU和DU可以理解为是对基站从逻辑功能角度的划分。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。一个CU可以连接一个DU,或者也可以多个DU共用一个CU,可以节省成本,以及易于网络扩展。CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将无线资源控制(radio resource control,RRC)、业务数据适配协议栈(service data adaptation protocol,SDAP)以及分组数据汇聚协议(packet data convergence protocol,PDCP)层部署在CU,其余的无线链路控制(radio link control,RLC)层、介质访问控制(media access control,MAC)层以及物理层部署在DU。本发明中并不完全限定上述协议栈切分方式,还可以有其它的切分方式,具体可以参考TR38.801v14.0.0。CU和DU之间通过F1接口连接。CU代表gNB通过Ng接口和核心网连接。
本申请实施例中的网络设备又可以是指集中式单元控制面(CU-CP)节点或者集中式单元用户面(CU-UP)节点,或者,网络设备也可以是CU-CP和CU-UP。其中CU-CP负责控制面功能,主要包含RRC和PDCP-C。PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含SDAP和PDCP-U。其中SDAP主要负责将核心网的数据进行处理并将flow映射到承载。PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等。其中CU-CP和CU-UP通过E1接口连接。CU-CP代表gNB通过Ng接口和核心网连接。通过F1-C(控制面)和DU连接。CU-UP通过F1-U(用户面)和DU连接。当然还有一种可能的实现是PDCP-C也在CU-UP。需要说明的是,CU可以被划分为接入网设备,也可以被划分为核心网(core network,CN)设备,本申请对此不做限定。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备、非公共网络中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如: 智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)***中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
应理解,图1中的雷达***也可以替换为WIFI***或卫星***等其他通信***,本申请对此不作限定。
下面以雷达***为例,详细介绍本申请的技术方案。
参见图2,图2是本申请提供的减少雷达和上行频段之间的干扰的方法的示意性流程图。
S201,第一网络设备获取SUL新频段上的雷达信号的特征。
可选的,这里上行频段可以为SUL新频段,本申请实施例中的SUL新频段均可以替换成上行频段。
第一网络设备检测雷达信号并生成雷达信号的特征,或者第一网络设备从第二终端设备接收雷达信号的特征,下面分别进行说明。
可选的,第一网络设备利用短时傅里叶变换或小波变换等处理在SUL新频段上采集到的信号,并通过雷达信号识别方法检测雷达信号,获取雷达信号的特征,其中,雷达信号识别方法包括门限检测或模式识别等方法。
可选的,第二终端设备利用短时傅里叶变换或小波变换等处理在SUL新频段上采集到的信号,并通过雷达信号识别方法检测雷达信号,获取雷达信号的特征,之后,终端设备将该雷达信号特征通过空口信元(比如RRC消息)发送给第一网络设备,对应的,第一网络设备获取该雷达新信号特征,其中,第二终端设备可以为工作在SUL新频段上的终端设备,也可以为不工作在SUL新频段上的终端设备,只要该终端设备可以测量SUL上雷达信号的特征即可,本申请对此不作具体限定。
可选的,雷达信号的特征包括雷达信号的发射周期,雷达信号的频域资源位置,和/或第一网络设备在发射周期和/或者频域资源上受到的干扰的能量。。
可选的,雷达信号的发射周期可以是连续的,也可以是不连续的。
应理解,雷达信号的频域资源为SUL新频段的一部分或全部,可以理解,雷达信号所在的频域资源属于SUL新频段的频域资源,在雷达信号和SUL新频段重叠的频域资源上,第一网络设备受到了雷达信号的干扰。
应理解,由于雷达的存在不会仅对一个网络设备产生干扰,因此,可选的,第一网络设备还可以向至少一个第二网络设备发送获取到的雷达信号的特征,其中,第二网络设备为第一网络设备周边的网络设备,例如:第一网络设备可以通过Xn口或S1口将雷达信号特征告知周边基站,周边基站可以采取保护措施,具体内容可以参考S202和S203的内容。
S202,第一网络设备根据雷达信号的特征确定保护措施。
其中,保护措施用于减少雷达信号和SUL新频段之间的干扰。
可选的,第一网络设备可以通过三类决策单元确定相应的保护措施,其中三类决策单元包括:时域决策单元、频域决策单元和空域决策单元。
应理解,上述时域决策单元、频域决策单元、空域决策单元可以为根据实现功能划分的虚拟模块,也可以为第一网络设备中的实体模块,本申请不做具体限定。
可选的,第二网络设备在获取到雷达信号特征之后,也可以根据通过相应的决策单元确定相应的保护措施。
下面,本申请给出三类决策单元对应的保护措施的具体实现方式。
参见图3,图3是本申请提供的时域保护措施的示意性流程图。
(1)第一网络设备基于雷达信号的特征(例如:雷达的发射周期)在时域决策单元中判断当前是否处于雷达信号的发射周期,如果是,跳转步骤(2),如果否,跳转步骤(3);
(2)如果当前处于雷达信号的发射周期,可以使用以下方法中的一种或多种以减小雷达信号的干扰:
①第一网络设备停止SUL新频段对应的小区的用户调度;
②第一网络设备指示一个或多个第一终端设备在发射周期上的上行发射功率不超过第一阈值(例如:第一阈值可以为第一终端设备的上行发射功率的保守值(-20dB)),其中,第一终端设备是通过SUL新频段与第一网络设备进行通信的终端设备;
可选的,第一阈值可以由网络设备确定,也可以由终端设备根据实际情况确定,本申请不做限定。例如,第一网络设备可以向一个或者多个第一终端设备发送指示信息,该终端设备根据该指示信息,调整在发射周期上的上行发射功率,使得其不超过第一阈值。
③第一网络设备调整循环前缀(cyclic prefix,CP)的长度和/或位置,使得雷达信号落在该CP内。
例如:当雷达信号的有效发射时间小于第一网络设备配置的CP,通过调整帧偏置使得雷达信号落在该CP内。
又例如,第一网络设备可以调整CP的长度,使得CP的长度大于等于雷达的发射周期;
④第一网络设备调整一个或者多个GAP符号的个数和/或位置,使得雷达信号落在一个或者多个GAP符号上。例如:第一网络设备调整帧结构,增加呼叫间隙GAP符号,使得雷达信号落在GAP符号上。
该一个或者多个GAP符号可以是连续的符号或者是不连续的符号,本申请实施例对此不作限定。
例如,一个或者多个GAP符号是连续的符号,第一网络设备可以调整一个或者多个GAP符号的长度,使得一个或者多个GAP符号的长度大于等于雷达的发射周期。
(3)在执行上述方法①或②后,如果当前不处于雷达信号的发射期间,则正常进行之前的SUL新频段对应的小区的用户调度,或者调整终端设备的上行发射功率至之前的正常值。
参见图4,图4是本申请提供的频域保护措施的示意性流程图。
(1)可选的,第一网络设备基于雷达信号的特征(例如:雷达信号的频域资源位置和频域资源上受到的干扰的能量)在频域决策单元中判断雷达信号在SUL新频段上的能量(或者雷达干扰电平)是否超过预设的门限值,如果是,跳转步骤(2),如果否,跳 转步骤(3);
(2)可以使用以下方法中的一种或多种以减小雷达信号的干扰:
①去激活SUL新频段中雷达信号频域资源对应的频点小区的中射频器件,或将第一网络设备直接下电,其中,去激活可以理解为不工作、断电或者进入休眠状态等状态;②调整SUL新频段上的小区***带宽或部分带宽(bandwidth part,BWP);
可选的,调整完SUL新频段上的小区***带宽或部分带宽后,SUL新频段上的小区***带宽或部分带宽可以避开雷达信号所在的频域资源。
③指示一个或多个第一终端设备在雷达信号的频域资源上的上行发射功率不超过第二阈值。
可选的,第二阈值可以由网络设备确定,也可以由终端设备根据实际情况确定,本申请不做限定。
关于第一网络设备的指示方式可以参考上述时域保护措施的内容。
(3)可以使用以下方法中的一种或多种以减小雷达信号的干扰:
①第一网络设备将SUL新频段中受干扰的物理资源块(physical resource block,PRB)(即雷达信号频域资源)优先分配给SUL新频段对应的小区的近点用户;
②第一网络设备对雷达信号进行频域避让,频域避让包括不调度SUL新频段中受干扰的PRB。
可选的,在上述图4的方法中,可以不存在步骤(1),即第一网络设备基于雷达信号的特征在频域决策单元中判断雷达信号在SUL新频段上的能量是否超过预设的门限值,直接执行步骤(2)和(3)中的一个或者多个频域保护措施。
参见图5,图5是本申请提供空域保护措施的示意性流程图。
在图5的方法中,第一网络设备可以调整所述第一网络设备的天线的下倾角,使得所述第一网络设备受到所述雷达信号的干扰小于第三阈值。例如,当所述雷达信号的干扰小于第三阈值时,可以认为第一网络设备检测不到雷达干扰(即雷达干扰不存在)。下面结合具体的步骤进行说明。
(1)第一网络设备基于雷达信号的特征在空域决策单元中判断第一网络设备的天线当前的下倾角对应的雷达信号的干扰是否存在,如果存在,跳转步骤(2),如果不存在,则正常进行终端设备的小区的用户调度等任务。
(2)第一网络设备调整天线下倾角,其中,下倾角包括电子下倾角和机械下倾角。以电子下倾角为例,第一网络设备可以在后台对应不断增大电子下倾角(例如每次下调1度,调整度数不限制),以降低雷达干扰方向的网络设备天线接收增益和发射增益。
(3)第一网络设备调整下倾角之后,重新计算雷达信号对第一网络设备的干扰情况,此时,如果检测不到雷达干扰,第一网络设备停止调整下倾角;如果仍能检测到雷达干扰,继续调整下倾角。应理解,如果第一网络设备已遍历所有下倾角仍存在雷达信号的干扰,则在第一网络设备遍历的所有下倾角中确定雷达干扰最小的下倾角,将雷达干扰最小时对应的下倾角作为第一网络设备最终的下倾角,从而降低雷达信号的干扰。
可选的,步骤(1)中也可以确定第一网络设备的天线对应的雷达干扰是否小于第三阈值,如果不小于第三阈值,则跳转步骤(2)调整第一网络设备的下倾角,如果小于第三阈值,则正常进行终端设备的小区的用户调度等任务,这里不再赘述。
可选的,第一网络设备可以采用上述时域、频域、空域的保护措施中的一种或多种措施,本申请不做限定。S203,第一网络设备执行保护措施以减少雷达信号和上行频段之间的干扰。
S204,第一网络设备通过SUL新频段与一个或者多个第一终端设备进行通信。
本申请所保护的技术方案,与现有技术相比,第一网络设备在执行上述保护措施时,5G通信与雷达在SUL频段的时域频域上发生碰撞时,两者仍能共存,也就是说,第一网络设备仍然可以在SUL新频段上与终端进行通信,从而提高了无线频谱的利用率。
可选的,S205,第一网络设备在采用上述保护措施后,重新评估雷达信号的干扰是否仍然存在,当干扰仍然存在时,重复使用上述保护措施减少所述雷达信号和SUL新频段之间的干扰。
上述技术方案中,通过时域频域和空域的减少雷达和上行频段之间的干扰的保护措施,解决了5G***与雷达在同一频段的共存问题。此外,本申请的技术方案均在网络设备及终端设备侧进行,不需要具备控制雷达的权利。同时雷达发射功率极大,网络设备或终端设备在检测出雷达干扰信号存在时,SUL终端设备对雷达无干扰,因此使用本发明无违法违规风险。
以上对本申请提供的减少雷达和上行频段之间的干扰的方法进行了详细说明,下面介绍本申请提供的通信装置。需要说明的是,图6仅仅是一种示意,第一网络设备中可以存在与上述方法中的步骤一一对应的单元。
参见图6,图6为本申请提供的通信装置1000的示意性框图。如图6,通信装置1000包括处理单元1300。
处理单元1300,用于获取上行频段上的雷达信号的特征;根据雷达信号的特征确定保护措施;使用保护措施减少雷达信号和上行频段之间的干扰;通过上行频段与一个或者多个第一终端设备进行通信。
可选地,通信装置1000还可以包括发送单元1100和接收单元1200,分别用于执行由第一网络设备执行的发送和接收的动作。
可选地,处理单元1300,具体用于第一网络设备确定雷达信号的特征。
可选地,接收单元1200,用于从第二终端设备接收雷达信号的特征。
可选地,发送单元1100,用于向周边的至少一个第二网络设备发送雷达信号的特征。
可选地,雷达信号的发射周期,雷达信号的频域资源的位置,和/或第一网络设备在发射周期和/或者频域资源上受到的干扰的能量。
可选地,在雷达信号的发射周期,处理单元1300,还用于停止上行频段对应的小区的用户调度,或者指示一个或者多个第一终端设备在发射周期上的上行发射功率不超过第一阈值;或者,处理单元1300,还用于调整CP的长度和/或位置,使得雷达信号落在CP;或者,处理单元1300,还用于调整一个或者多个GAP符号的个数和/或位置,使得雷达信号落在一个或者多个GAP符号上。
可选地,处理单元1300,还用于去激活频域资源对应的中射频器件,或者调整上行频段上的小区***带宽或部分带宽BWP,以避开频域资源,或者指示一个或者多个第一终端设备在频域资源上的上行发射功率不超过第二阈值;或者,处理单元,还用于不调度频域资源,或者将频域资源优先分配给上行频段对应的小区的近点用户。
可选地,处理单元1300,还用于调整第一网络设备的天线的下倾角,使得第一网络设备受到雷达信号的干扰小于第三阈值。
可选地,处理单元1300,还用于重复使用上述方法实施例中的保护措施减少雷达信号和上行频段之间的干扰。
可选地,发送单元1100和接收单元1200也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在一种实现方式中,通信装置1000可以为方法实施例中的第一网络设备。在这种实现方式中,发送单元1100可以为发射器,接收单元1200可以为接收器。接收器和发射器也可以集成为一个收发器。处理单元1300可以为处理装置。
在另一种实现方式中,通信装置1000可以为安装在第一网络设备中的芯片或集成电路。在这种实现方式中,发送单元1100和接收单元1200可以为通信接口或者接口电路。例如,发送单元1100为输出接口或输出电路,接收单元1200为输入接口或输入电路,处理单元1300可以为处理装置。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,使得通信装置1000执行各方法实施例中由第一网络设备执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。又例如,处理装置可以芯片或集成电路。
参见图7,图7为本申请提供的通信装置10的示意性结构图。如图7,通信装置10包括:一个或多个处理器11,一个或多个存储器12以及一个或多个通信接口13。处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以使得本申请各方法实施例中由第一网络设备执行的流程和/或操作被执行。
例如,处理器11可以具有图6中所示的处理单元1300的功能,通信接口13可以具有图6中所示的发送单元1100和/或接收单元1200的功能。具体地,处理器11可以用于执行上述方法实施例中中由第一网络设备内部执行的处理或操作,通信接口13用于执行上述方法实施例中由第一网络设备执行的发送和/或接收的动作。
在一种实现方式中,通信装置10可以为方法实施例中的第一网络设备。在这种实现方式中,通信接口13可以为收发器。收发器可以包括接收器和发射器。
可选地,处理器11可以为基带装置,通信接口13可以为射频装置。
在另一种实现中,通信装置10可以为安装在第一网络设备中的芯片。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
可选的,上述各装置实施例中的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本文不做限定。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由第一网络设备执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当 计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由第一网络设备执行的操作和/或流程被执行。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由第一网络设备器执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
此外,本申请还提供一种通信***,包括本申请实施例中的终端设备和第一网络设备。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,A、B以及C均可以为单数或者复数,不作限定。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种减少雷达和上行频段之间的干扰的方法,其特征在于,包括:
    第一网络设备获取上行频段上的雷达信号的特征;
    所述第一网络设备根据所述雷达信号的特征确定保护措施;
    所述第一网络设备使用所述保护措施减少所述雷达信号和所述上行频段之间的干扰;
    所述第一网络设备通过所述上行频段与一个或者多个第一终端设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网络设备获取上行频段上的雷达信号的特征,包括:
    所述第一网络设备确定所述雷达信号的特征;或者
    所述第一网络设备从第二终端设备接收所述雷达信号的特征。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向周边的至少一个第二网络设备发送所述雷达信号的特征。
  4. 根据权利要求1-3中任一项所述方法,其特征在于,所述雷达信号的特征包括:所述雷达信号的发射周期,雷达信号的频域资源的位置,和/或所述第一网络设备在所述发射周期和/或者频域资源上受到的干扰的能量。
  5. 根据权利要求4所述方法,其特征在于,所述保护措施包括:
    在所述雷达信号的发射周期,所述第一网络设备停止所述上行频段对应的小区的用户调度,或者指示所述一个或者多个第一终端设备在所述发射周期上的上行发射功率不超过第一阈值;或者,
    所述第一网络设备调整所述CP的长度和/或位置,使得所述雷达信号落在所述CP;或者,
    所述第一网络设备调整一个或者多个GAP符号的个数和/或位置,使得所述雷达信号落在所述一个或者多个GAP符号上。
  6. 根据权利要求4或5所述方法,其特征在于,所述保护措施还包括:
    去激活所述频域资源对应的中射频器件,或者调整所述上行频段上的小区***带宽或部分带宽BWP,以避开所述频域资源,或者指示所述一个或者多个第一终端设备在所述频域资源上的上行发射功率不超过第二阈值;或者,所述第一网络设备不调度所述频域资源,或者将所述频域资源优先分配给所述上行频段对应的小区的近点用户。
  7. 根据权利要求4-6中任一项所述方法,其特征在于,所述保护措施包括:
    调整所述第一网络设备的天线的下倾角,使得所述第一网络设备受到所述雷达信号的干扰小于第三阈值。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一网络设备重复使用所述保护措施减少所述雷达信号和所述上行频段之间的干扰。
  9. 一种通信装置,其特征在于,包括:
    处理单元,用于获取上行频段上的雷达信号的特征;
    所述处理单元,还用于根据所述雷达信号的特征确定保护措施;
    所述处理单元,还用于使用所述保护措施减少所述雷达信号和所述上行频段之间的干 扰;
    所述处理单元,还用于通过所述上行频段与一个或者多个第一终端设备进行通信。
  10. 根据权利要求9所述的通信装置,其特征在于,所述处理单元具体用于:
    所述第一网络设备确定所述雷达信号的特征;或者
    所述通信装置还包括:接收单元,用于从第二终端设备接收所述雷达信号的特征。
  11. 根据权利要求9或10所述的通信装置,其特征在于,所述通信装置还包括:
    发送单元,用于向周边的至少一个第二网络设备发送所述雷达信号的特征。
  12. 根据权利要求9-11中任一项所述通信装置,其特征在于,所述雷达信号的特征包括:所述雷达信号的发射周期,雷达信号的频域资源的位置,和/或所述第一网络设备在所述发射周期和/或者频域资源上受到的干扰的能量。
  13. 根据权利要求12所述通信装置,其特征在于,所述保护措施包括:
    在所述雷达信号的发射周期,所述处理单元,还用于停止所述上行频段对应的小区的用户调度,或者指示所述一个或者多个第一终端设备在所述发射周期上的上行发射功率不超过第一阈值;或者,
    所述处理单元,还用于调整所述CP的长度和/或位置,使得所述雷达信号落在所述CP;或者,
    所述处理单元,还用于调整一个或者多个GAP符号的个数和/或位置,使得所述雷达信号落在所述一个或者多个GAP符号上。
  14. 根据权利要求12或13所述通信装置,其特征在于,所述保护措施还包括:
    所述处理单元,还用于去激活所述频域资源对应的中射频器件,或者调整所述上行频段上的小区***带宽或部分带宽BWP,以避开所述频域资源,或者指示所述一个或者多个第一终端设备在所述频域资源上的上行发射功率不超过第二阈值;或者,所述处理单元,还用于不调度所述频域资源,或者将所述频域资源优先分配给所述上行频段对应的小区的近点用户。
  15. 根据权利要求12-14中任一项所述通信装置,其特征在于,所述保护措施包括:
    所述处理单元,还用于调整所述第一网络设备的天线的下倾角,使得所述第一网络设备受到所述雷达信号的干扰小于第三阈值。
  16. 根据权利要求9-15中任一项所述的通信装置,其特征在于,所述处理单元,还用于重复使用所述保护措施减少所述雷达信号和所述上行频段之间的干扰。
  17. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置实现如权利要求1至8中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至8中任一项所述的方法被执行。
  19. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机执行指令,当所述计算机执行指令被执行时实现权利要求1至8中任一项所述的方法。
PCT/CN2021/102654 2020-06-30 2021-06-28 减少雷达和上行频段之间的干扰的方法和通信装置 WO2022001927A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21834353.1A EP4164274A4 (en) 2020-06-30 2021-06-28 METHOD FOR REDUCING INTERFERENCE BETWEEN RADAR AND UPLINK FREQUENCY BAND AND COMMUNICATION APPARATUS
US18/146,688 US20230137479A1 (en) 2020-06-30 2022-12-27 Method for reducing interference between radar and uplink frequency band and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010617244.X 2020-06-30
CN202010617244.XA CN113873526A (zh) 2020-06-30 2020-06-30 减少雷达和上行频段之间的干扰的方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/146,688 Continuation US20230137479A1 (en) 2020-06-30 2022-12-27 Method for reducing interference between radar and uplink frequency band and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022001927A1 true WO2022001927A1 (zh) 2022-01-06

Family

ID=78981607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102654 WO2022001927A1 (zh) 2020-06-30 2021-06-28 减少雷达和上行频段之间的干扰的方法和通信装置

Country Status (4)

Country Link
US (1) US20230137479A1 (zh)
EP (1) EP4164274A4 (zh)
CN (1) CN113873526A (zh)
WO (1) WO2022001927A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066996A1 (zh) * 2022-09-29 2024-04-04 华为技术有限公司 一种雷达信息传输方法、装置和***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105519160A (zh) * 2013-09-04 2016-04-20 高通股份有限公司 在使用频分双工的无线网络中管理雷达检测
US20160285611A1 (en) * 2011-08-17 2016-09-29 CBF Networks, Inc. Radio with oobe victim detection
CN108476410A (zh) * 2015-10-22 2018-08-31 瑞典爱立信有限公司 用于在共享频谱中的雷达检测的方法和***
CN109477885A (zh) * 2016-06-01 2019-03-15 索尼移动通讯有限公司 采用导频信号的雷达探测

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150063321A1 (en) * 2013-09-04 2015-03-05 Qualcomm Incorporated Radar detection
WO2016159852A1 (en) * 2015-03-27 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Radar detection and/or protection in a wireless communication system operating in a spectrum shared with at least one radar system
US9924519B2 (en) * 2015-09-24 2018-03-20 Qualcomm Incorporated Channel availability coordination for Wi-Fi and unlicensed bands using radio access network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285611A1 (en) * 2011-08-17 2016-09-29 CBF Networks, Inc. Radio with oobe victim detection
CN105519160A (zh) * 2013-09-04 2016-04-20 高通股份有限公司 在使用频分双工的无线网络中管理雷达检测
CN108476410A (zh) * 2015-10-22 2018-08-31 瑞典爱立信有限公司 用于在共享频谱中的雷达检测的方法和***
CN109477885A (zh) * 2016-06-01 2019-03-15 索尼移动通讯有限公司 采用导频信号的雷达探测

Also Published As

Publication number Publication date
EP4164274A1 (en) 2023-04-12
EP4164274A4 (en) 2023-09-13
US20230137479A1 (en) 2023-05-04
CN113873526A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US11546846B2 (en) State switching method and apparatus
EP3061299B1 (en) Apparatus and methods of bluetooth and wireless local area network coexistence
JP2017523716A (ja) Lte共存のためのwlanのパケット単位の帯域幅スケジューリング
WO2016101270A1 (zh) 非授权频谱的调度方法、用户设备及基站
WO2020087524A1 (zh) 非授权频段上ssb的传输方法和设备
EP3648530B1 (en) Data transmission methods and terminal device
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
WO2019072170A1 (zh) 通信方法和通信装置
US20220225274A1 (en) Paging message detection method, apparatus, and communication device
EP3158786B1 (en) Data radio bearer configuration in a heterogeneous network
WO2022001927A1 (zh) 减少雷达和上行频段之间的干扰的方法和通信装置
EP4017059A1 (en) Communication method and apparatus
US11368924B2 (en) Data transmission method, terminal device, and network device
WO2022147797A1 (zh) 信道接入方法及设备
WO2022027672A1 (zh) 通信方法和通信装置
CN109756920B (zh) 一种数据传输方法、终端及网络设备
WO2021127943A1 (zh) 无线通信方法和终端设备
WO2023280085A1 (zh) 频带范围上报的方法和通信装置
WO2024051428A1 (zh) 信息传输的方法和装置
US20240040655A1 (en) Parameter configuration method, terminal device and network device
WO2022021293A1 (zh) 信道侦听的方法及设备
US20240032069A1 (en) Method for configuring a sidelink resource and communication apparatus
WO2024131529A1 (zh) 一种通信方法及通信装置
WO2023087283A1 (zh) 无线通信方法, 终端设备及网络设备
WO2021128066A1 (zh) 一种处理无线信号的方法和装置以及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021834353

Country of ref document: EP

Effective date: 20230104

NENP Non-entry into the national phase

Ref country code: DE