WO2022001907A1 - 内折屏电子设备 - Google Patents

内折屏电子设备 Download PDF

Info

Publication number
WO2022001907A1
WO2022001907A1 PCT/CN2021/102577 CN2021102577W WO2022001907A1 WO 2022001907 A1 WO2022001907 A1 WO 2022001907A1 CN 2021102577 W CN2021102577 W CN 2021102577W WO 2022001907 A1 WO2022001907 A1 WO 2022001907A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flexible screen
casing
area
thickness
Prior art date
Application number
PCT/CN2021/102577
Other languages
English (en)
French (fr)
Inventor
吕城龄
陈文红
黄聪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21832543.9A priority Critical patent/EP4160576A4/en
Priority to US18/003,641 priority patent/US20230240119A1/en
Publication of WO2022001907A1 publication Critical patent/WO2022001907A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0226Hinges
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the technical field of terminal products, and in particular, to an electronic device with an inner folding screen.
  • the flexible screen includes an encapsulation layer and a light-emitting layer.
  • the light-emitting layer can emit light when electrified, so that the flexible screen can be displayed.
  • the encapsulation layer is used to encapsulate and protect the light-emitting layer. In the flexible screen, the bonding force between the encapsulation layer and the light-emitting layer is weak.
  • the flexible screen can be applied to the inner folding screen mobile phone. After the inner folding screen mobile phone is folded for many times, the encapsulation layer and the light emitting layer in some areas of the flexible screen are easily peeled off from each other, resulting in the failure of the flexible screen.
  • the present application provides an electronic device with an inner folding screen, which can reduce the risk of peeling off the encapsulation layer and the light-emitting layer in the flexible screen.
  • the present application provides an electronic device with an inner folding screen, comprising a first casing, a hinge, a second casing and a flexible screen; the hinge connects the first casing and the second casing, and the first casing passes through the hinge Rotate relative to the second shell; the flexible screen is installed on the first shell and the second shell, when the first shell and the second shell are closed, the flexible screen is bent and accommodated in the first shell and the second shell
  • the flexible screen has a connected bending area and a straight area;
  • the flexible screen includes an encapsulation layer, a light-emitting layer, a substrate, a back film and a support sheet stacked in sequence; the encapsulation layer is located on the side of the flexible screen away from the hinge, and the encapsulation layer There is an interface with the light-emitting layer, and the support sheet has a complete surface; the thickness of the back film is 15 ⁇ m-25 ⁇ m, and/or, the modulus of the back film is 3Gpa-5Gpa, and/
  • a hinge may be a mechanism composed of several components, and the hinge is capable of producing mechanism movement.
  • the mechanical movement of the hinge enables the first housing and the second housing to rotate relative to each other, so that the first housing can be unfolded or closed relative to the second housing, thereby realizing unfolding or folding of the inner folding screen electronic device.
  • the inner folding screen electronic device is in a folded state, the first casing and the second casing are closed, and the flexible screen is folded and accommodated in the casing.
  • Both the first casing and the second casing can be used as the appearance parts of the electronic device with the inner folding screen, that is, the exposed parts that can be directly observed by the user.
  • the inner folding screen electronic device may include a casing as an exterior part, and both the first casing and the second casing can be installed in the casing as non-exterior parts (eg, a middle frame).
  • the first casing and the second casing are used to carry the flexible screen and drive the flexible screen to bend and unfold.
  • the flexible screen can be divided into a first flat area, a bending area and a second flat area, and the bending area is connected between the first flat area and the second flat area. between the straight areas.
  • the first straight area and the second straight area are connected at both ends of the bending area, and the first straight area and the second straight area can be collectively called the straight area.
  • the first flat area may be fixed on the first housing, and the second flat area may be fixed on the second housing.
  • the bending area is not connected with the first casing and the second casing, and the bending area can keep a distance from the hinge in both the unfolded state and the bent state, so as to avoid mutual interference.
  • the first flat area and the second flat area are basically not deformed, and the original flat (or flat) state can be maintained; the bending area can be bent and unfolded .
  • the flexible screen in terms of the laminated structure of the flexible screen, includes an encapsulation layer, a light-emitting layer, a substrate, a back film and a support sheet, and the encapsulation layer, the light-emitting layer, the substrate, the back film and the support sheet are stacked in sequence, and The encapsulation layer is away from the hinge, and the support sheet is close to the hinge.
  • the substrate may be made of polyimide (PI), and a TFT array may or may not be formed on the substrate.
  • the modulus of the substrate is about 5Gpa-9Gpa.
  • the light-emitting layer is formed on the substrate. The light-emitting layer can emit light, so that the flexible display panel realizes display.
  • the light emitting layer may be an organic light emitting diode layer.
  • the modulus of the light-emitting layer is about 4Gpa-5Gpa.
  • the encapsulation layer covers the light-emitting layer, and encapsulates the light-emitting layer to block water and oxygen and ensure the performance and life of the light-emitting layer.
  • the encapsulation layer may be fabricated using a thin film encapsulation process.
  • the thickness of the encapsulation layer may be 11.6 ⁇ m.
  • the modulus of the encapsulation layer is about 25 Gpa (eg 25.17 Gpa).
  • the back film can be attached to the substrate, and the back film plays a protective role.
  • the backing film may be made of polyimide.
  • the thickness of the backing film can be between 15 ⁇ m and 25 ⁇ m (the thickness of the conventional backing film can be up to 50 ⁇ m or 75 ⁇ m).
  • the modulus of the back film can be 3Gpa-5Gpa (the modulus of the conventional back film can reach 5Gpa-8Gpa).
  • the support sheet can be attached to the back film.
  • the support sheet can be used as a support and load-bearing structure in the flexible screen.
  • the support sheet can be in the shape of a flat sheet when it is not bent, which can ensure the flatness of the flexible screen.
  • the surface of the support sheet is substantially free of structural features, such as holes, grooves, etc., obtained by removing material.
  • the thickness of the support sheet can be between 0.02mm-0.03mm (the thickness of the conventional support sheet can reach 0.03mm-0.05mm), and the structural strength and bending performance of the support sheet are good.
  • the modulus of the support sheet can be 180Gpa-210Gpa.
  • the bending area and the straight area can be separated.
  • the neutral layer of the adjacent area is adjusted to be located on the side of the interface between the encapsulation layer and the light-emitting layer away from the encapsulation layer, even if the neutral layer deviates from the interface in the direction close to the support sheet, the neutral layer is located Between this interface and the surface of the support layer remote from the backing film.
  • the interface will be subjected to reverse normal compressive stress, which will respectively The parts on both sides of the interface are pressed against the interface, which makes the parts on both sides of the interface not easy to peel off. Therefore, the problem of peeling off between the light-emitting layer and the encapsulation layer is improved.
  • the flexible screen further includes an adhesive layer, the back film is bonded to the substrate through the adhesive layer, and the modulus of the adhesive layer is 30Kpa-80Kpa (the modulus of the conventional adhesive layer can reach 80Kpa- 200Kpa).
  • the modulus of the adhesive layer is 30Kpa-80Kpa (the modulus of the conventional adhesive layer can reach 80Kpa- 200Kpa).
  • the adhesive layer is a pressure-sensitive adhesive layer or an optical adhesive layer.
  • the adhesive layer has stable performance, which is beneficial to ensure the reliability of the flexible screen.
  • the backing film is a polyimide film.
  • This kind of back film has stable performance, good protection performance and bending performance, which is beneficial to ensure the reliability of the flexible screen.
  • the modulus of the support sheet is 180Gpa-210Gpa.
  • the support sheet is impact-resistant and bending-resistant, which is beneficial to ensure the reliability of the flexible screen.
  • the support sheet is a metal sheet, for example, a stainless steel (eg, SUS stainless steel) sheet or a copper sheet.
  • the support sheet made of metal has high structural strength, good impact resistance and protection performance, and is conducive to improving the reliability of the flexible screen.
  • the bending area of the flexible screen is in the shape of a water drop in a bending state, that is, the shape of the bending area is similar to a water drop.
  • This kind of flexible screen is a mature structural form of the inner folding screen, and the mass production is good.
  • the conventional inner folding screen with the shape of water droplets is more likely to have peeling phenomenon in the area adjacent to the bending area and the straight area, and this implementation method can better adjust the design of the neutral layer through the above-mentioned design. It can effectively overcome the peeling problem and improve the reliability of the flexible screen.
  • the flexible screen further includes a laminated flexible cover plate and a polarizer, and the polarizer is located between the flexible cover plate and the encapsulation layer.
  • the flexible cover can be used as a protective layer for the flexible screen.
  • the thickness of the polarizer can be between 40 ⁇ m-73 ⁇ m.
  • the modulus of the polarizer may be less than or equal to 4 Gpa.
  • the flexible cover plate includes a cover plate protective layer and a cover plate base material layer that are stacked, and the cover plate base material layer is located between the cover plate protective layer and the polarizer; the thickness of the cover plate protective layer is 40 ⁇ m- 75 ⁇ m, the modulus of the cover plate protective layer is greater than or equal to 4Gpa; the thickness of the cover plate substrate layer is 40 ⁇ m-80 ⁇ m, and the modulus of the cover plate substrate layer is greater than or equal to 7Gpa.
  • the cover plate protective layer can be used as the outer layer protection structure of the flexible cover plate.
  • the thickness of the cover plate protective layer may be between 40 ⁇ m and 75 ⁇ m.
  • the modulus of the cover plate protective layer may be greater than or equal to 4 Gpa, and such a cover plate protective layer has better impact resistance.
  • the cover plate protective layer may have suitable hardness to provide a reasonable touch feeling.
  • the cover plate substrate layer can be used as the main force supporting structure of the flexible cover plate.
  • the thickness of the cover plate substrate layer may be between 40 ⁇ m and 80 ⁇ m.
  • the modulus of the cover plate substrate layer may be greater than or equal to 7 Gpa, and such a cover plate substrate layer may have better impact resistance.
  • the base material layer of the cover plate can be made of polyimide, and can also be made of other suitable materials such as ultra-thin glass.
  • This flexible screen has a mature design and good mass production. More importantly, by adjusting the design of the neutral layer above, the peeling problem of the flexible screen can be better overcome, and the reliability of the flexible screen can be improved.
  • the thickness of the back film is 15 ⁇ m-25 ⁇ m
  • the thickness of the support sheet is 0.02 mm-0.03 mm
  • the thickness of the polarizer is 40 ⁇ m-73 ⁇ m
  • the modulus of the polarizer is less than or equal to 4 Gpa.
  • Fig. 1 is a side view structural schematic diagram of the inner folding screen electronic device according to the first embodiment
  • Fig. 2 is the exploded structure schematic diagram of the inner folding screen electronic device in Fig. 1;
  • Fig. 3 is a side view structural schematic diagram of the flexible screen of the inner folding screen electronic device in a bent state
  • FIG. 4 is another side view structural schematic diagram of the flexible screen of the inner folding screen electronic device in a bent state
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a flexible screen in Embodiment 1;
  • FIG. 6 is a schematic cross-sectional structure diagram of the transition area B1 of the flexible screen in FIG. 3 , wherein the neutral layer of the transition area B1 and the related force analysis are shown;
  • Fig. 7 is the force analysis schematic diagram on the section M of the local area in the transition zone B1 in Fig. 6;
  • Fig. 8 is a schematic diagram of force analysis on the cross-section M of the partial region of the transition region B1' of other flexible screens.
  • the following embodiments of the present application provide an electronic device with an inner folding screen
  • the electronic device with an inner folding screen includes but is not limited to a mobile phone with an inner folding screen, a tablet computer with an inner folding screen, a wearable device with an inner folding screen, and the like.
  • the inner folding screen electronic device may include a casing and a flexible screen, and the flexible screen is carried on the casing. When the inner folding screen electronic device is in a folded state, the casing is closed, and the flexible screen is folded and accommodated in the casing. It will be described in detail below.
  • the inner folding screen electronic device 10 of the first embodiment may include a first casing 11 , a hinge 12 , a second casing 13 and a flexible screen 14 .
  • the opposite sides of the hinge 12 are respectively connected with the first casing 11 and the second casing 13 .
  • the hinge 12 may be a mechanism composed of several parts, and the hinge 12 is capable of producing the mechanism movement.
  • the mechanical movement of the hinge 12 enables the first housing 11 and the second housing 13 to rotate relative to each other, so that the first housing 11 can be unfolded or closed relative to the second housing 13, thereby realizing unfolding or folding of the inner folding screen electronic device 10 .
  • Both the first casing 11 and the second casing 13 can be used as exterior parts of the electronic device 10 with a folding screen, that is, parts exposed to the outside that can be directly observed by the user.
  • the inner folding screen electronic device 10 may include a casing as an exterior part, and both the first casing 11 and the second casing 13 can be installed in the casing as non-exterior parts (eg, a middle frame).
  • the first casing 11 and the second casing 13 are used to carry the flexible screen 14 and drive the flexible screen 14 to bend and unfold.
  • the flexible screen 14 has flexible and bendable properties.
  • the flexible screen 14 can be folded and accommodated in the first casing 11 and the second casing 13.
  • Figures 2-4 both Figures 3 and 4 are side views of the flexible screen 14 in a bent state
  • the flexible screen 14 can be divided into a first flat screen
  • the straight area F1, the bending area B and the second straight area F2 and the bending area B is connected between the first straight area F1 and the second straight area F2.
  • the first straight area F1 and the second straight area F2 are connected at both ends of the bending area B.
  • the first flat area F1 can be fixed on the first casing 11
  • the second straight area F2 can be fixed on the second casing 13 .
  • the bending area B is not connected with the first casing 11 and the second casing 13 , and the bending area B can maintain a distance from the hinge 12 in both the unfolded state and the bent state to avoid mutual interference.
  • the first flat area F1 and the second flat area F2 are basically not deformed, and can maintain the original flat state; the bending area B can be bent and unfolded .
  • the first flat area F1 and the second flat area F2 may be substantially parallel.
  • the bending area B may be in a "water drop shape", that is, the bending area B is shaped like a water drop.
  • the bending area B may include a transition area B1, a main bending area B2 and a transition area B3, and the main bending area B2 is connected between the transition area B1 and the transition area B3.
  • the transition area B1 may be arc-shaped, and the transition area B1 may be curved toward the transition area B3, for example, the transition area B1 is concave downward in the viewing angle of FIG. 3 .
  • the transition area B1 smoothly connects the first straight area F1 and the main bending area B2.
  • the transition area B1 serves as the transition part between the first straight area F1 and the main bending area B2, and can also be used as the bending area B and the first bending area.
  • the transition area B1 may be tangent to both the first straight area F1 and the main bending area B2.
  • the transition region B3 may have an arc shape, and the transition region B3 may be curved toward the transition region B1 , for example, the transition region B3 is convex upward in the viewing angle of FIG. 3 .
  • the transition area B3 connects the second straight area F2 and the main bending area B2 smoothly.
  • the transition area B3 may be tangent to both the second straight area F2 and the main bending area B2.
  • the bending radius can be defined for the areas that need to be investigated.
  • the bending radius can be determined as follows: select a number of points on the outer surface of the "area that needs to be focused on" (referring to the outer surface of the inward folding screen electronic device 10). These points can be called fitting points.
  • the number of conjuncts may be, for example, three.
  • a certain fitting point can be used as the center of symmetry, and the rest of the fitting points are symmetrically distributed on both sides of the center of symmetry.
  • the bending radius may be defined at the most convex positions of the transition region B1, the main bending region B2, and the transition region B3, respectively.
  • the bending area B in the "water drop shape" wherein the bending radius of the transition area B1 may be R3, and the bending radius of the main bending area B2 may be R1.
  • the opening distance G and the bending arc length of the bending area B can also be defined.
  • the opening distance G may be the distance from the outer surface of the first flat region F1 to the outer surface of the second flat region F2.
  • the opening pitch G may be, for example, between 0.3 mm and 0.5 mm (including the end point value).
  • the bending arc length can be the length of the arc formed by the outer surface of the entire bending area B from the perspective of FIG. 3, that is, the outer surface of the transition area B1, the outer surface of the main bending area B2, and the transition area B3. The sum of the lengths of the three arcs formed by the outer surface.
  • the bending arc length can be, for example, 35 mm.
  • the flexible screen 14 when the flexible screen 14 is in a bent state, the first flat area F1 and the second flat area F2 are not parallel, and the ends of the two are far from the bending area B. Closer, the two ends connecting the bending area B are farther apart.
  • the flexible screen 14 may be in a "bat shape" as a whole, that is, the shape of the flexible screen 1 is similar to a bat hitting a baseball.
  • Such a flexible screen 14 may not have a transition area B1 and a transition area B3, and two ends of the bending area B are smoothly connected (eg, tangent) to the first flat area F1 and the second flat area F2, respectively.
  • FIG. 5 illustrates the cross-sectional structure of the electronic device 10 with an inner folding screen.
  • the flexible screen 14 and the first casing 11 and the second casing 13 are disassembled.
  • the flexible screen 14 may include a flexible cover plate 15 , a polarizer 143 , a flexible display panel 16 , a back film 147 and a support sheet 148 that are stacked in sequence.
  • the flexible cover plate 15 faces away from the first casing 11 and the second casing 13 , and the support sheet 148 is located between the back film 147 and the first casing 11 and the second casing 13 .
  • the thickness of the flexible screen 14 may be, for example, 321 ⁇ m or 363 ⁇ m.
  • the flexible cover 15 is used to protect the flexible display panel 16 .
  • the flexible cover plate 15 may include a cover plate protective layer 141 and a cover plate base material layer 142 which are attached to each other.
  • the cover plate protective layer 141 is away from the polarizer 143 , and the cover plate base material layer 142 can be attached to the polarizer 143 .
  • the cover plate protective layer 141 can serve as an outer layer protection structure of the flexible cover plate 15 .
  • the thickness of the cover plate protective layer 141 may be between 40 ⁇ m and 75 ⁇ m, for example, 40 ⁇ m, 60 ⁇ m or 75 ⁇ m.
  • the modulus of the cover plate protective layer 141 may be greater than or equal to 4 Gpa, such as 4.5 Gpa, 6 Gpa, etc. Such a cover plate protective layer 141 has better impact resistance.
  • the cover plate protective layer 141 may have suitable hardness to provide a reasonable touch feeling.
  • the cover substrate layer 142 can serve as the main force supporting structure of the flexible cover 15 .
  • the thickness of the cover substrate layer 142 may be between 40 ⁇ m and 80 ⁇ m, for example, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m or 80 ⁇ m.
  • the modulus of the cover plate base material layer 142 may be greater than or equal to 7 Gpa, for example, 8 Gpa, 15 Gpa, and such cover plate base material layer 142 may have better impact resistance.
  • the cover base material layer 142 can be made of polyimide (polyimide, PI), or can be made of other suitable materials such as ultrathin glass (ultrathin glass, UTG).
  • the polarizer 143 may be attached between the cover base material layer 142 and the flexible display panel 16 .
  • the thickness of the polarizer 143 may be between 40 ⁇ m-73 ⁇ m, such as 40 ⁇ m, 50 ⁇ m, 60 ⁇ m or 73 ⁇ m.
  • the modulus of the polarizer 143 may be less than or equal to 4 Gpa, such as 4 Gpa, 3 Gpa, and the like.
  • the flexible display panel 16 may include an encapsulation layer 144 , a light emitting layer 145 and a substrate 146 which are sequentially stacked.
  • the encapsulation layer 144 is located between the polarizer 143 and the light-emitting layer 145 , and the polarizer 143 can be attached to the encapsulation layer 144 .
  • the substrate 146 is located between the light-emitting layer 145 and the back film 147 , and the back film 147 can be attached to the substrate 146 .
  • the substrate 146 may be fabricated using PI, for example.
  • a thin film transistor (TFT) array may be formed on the substrate 146, and such a flexible display panel 16 may be an active matrix OLED (AMOLED) flexible display panel.
  • the TFT array may not be formed on the substrate 146, and such a flexible display panel 16 may be a passive matrix OLED (PMOLED) flexible display panel.
  • the thickness of the substrate 146 may be, for example, 16.3 ⁇ m (excluding the thickness of the thin film transistor array).
  • the modulus of the substrate 146 is about 5 Gpa-9 Gpa.
  • the thickness of the TFT array may be 7.34 ⁇ m, and the modulus of the TFT array is about 35 Gpa (eg, 36.3 Gpa).
  • the light emitting layer 145 is formed on the substrate 146 .
  • the light emitting layer 145 can emit light, so that the flexible display panel 16 realizes display.
  • the light-emitting layer 145 can be made of, for example, an organic light-emitting diode (organic light-emitting diode, OLED) material.
  • OLED organic light-emitting diode
  • the modulus of the light emitting layer 145 is about 4Gpa-5Gpa.
  • the encapsulation layer 144 covers the light-emitting layer 145 to encapsulate the light-emitting layer 145 to block water and oxygen, thereby ensuring the performance and life of the light-emitting layer 145 .
  • the encapsulation layer 144 may be fabricated by, for example, a thin film encapsulation (TFE) process.
  • the thickness of the encapsulation layer 144 may be, for example, 11.6 ⁇ m.
  • the modulus of the encapsulation layer 144 is about 25 Gpa (eg, 25.17 Gpa).
  • the back film 147 (base film, BF) can be attached to the substrate 146 by adhesive, and the back film 147 can protect the back of the flexible display panel 16 .
  • the thickness of the back film 147 may be between 15 ⁇ m and 25 ⁇ m, such as 15 ⁇ m, 20 ⁇ m or 25 ⁇ m.
  • the back film 147 of the first embodiment is thinner than the conventional back film, and the thickness of the conventional back film can be, for example, up to 50 ⁇ m or 75 ⁇ m.
  • the modulus of the back film 147 can be 3Gpa-8Gpa, and typical values can be 3Gpa, 5Gpa or 8Gpa.
  • the back film 147 may be made of polyimide.
  • the support sheet 148 can be attached to the back film 147 .
  • the support sheet 148 may serve as a support and load-bearing structure in the flexible screen 14 .
  • the support sheet 148 can be in the shape of a flat sheet when it is not bent, which can ensure the flatness of the flexible screen 14 .
  • the support sheet 148 may be made of metal, such as stainless steel (eg, SUS stainless steel) or copper.
  • the support sheet 148 may be a complete sheet-like structure, such a support sheet 148 has a complete and continuous surface, and the surface of the support sheet 148 is substantially free of structural features obtained by removing materials such as holes and grooves.
  • the thickness of the support sheet 148 may be between 0.02mm and 0.03mm, and typical values may be 0.02mm, 0.025mm or 0.03mm.
  • the support sheet 148 has good structural strength and bending performance.
  • the modulus of the support sheet 148 may be 180Gpa-210Gpa, and typical values may be 180Gpa, 200Gpa, and 210Gpa.
  • a conventional flexible screen of a conventional inner-folding screen electronic device having a “water drop shape” may have substantially the same structure as the flexible screen 14 shown in FIG. 3 . Therefore, the flexible screen of a conventional inner-folding screen electronic device can be described with reference to FIG.
  • the bonding force between the encapsulation layer 144 and the light-emitting layer 145 is weak.
  • the bending degree of the transition area B1 is relatively large.
  • the internal force in the transition area B1 is also relatively large.
  • the two sides of the interface between the encapsulation layer 144 and the light emitting layer 145 in the transition area B1 are subjected to relatively large pulling forces in opposite directions.
  • the above factors cause the encapsulation layer 144 and the light emitting layer 145 in the transition region B1 to be easily peeled off from each other after the conventional flexible screen is bent for many times.
  • the encapsulation layer 144 and the light emitting layer 145 located in the transition region B3 are also easily peeled off from each other.
  • FIG. 6 shows a schematic cross-sectional structure of the transition area B1 of the flexible screen 14 in FIG. 3 .
  • the transition area B1 is subjected to a bending moment, and the bending moment is indicated by an arc arrow, and the arc arrow indicates the bending tendency of the transition area B1 under the action of the bending moment.
  • the transition region B1 has a downwardly concave curvature. It can be understood that the transition region B1 in FIG. 6 is not in a curved shape, which is only an illustration for clear drawing.
  • the transition region B1 has the neutral layer L.
  • the neutral layer L is neither under tension nor pressure, and the neutral layer L does not elongate and shorten when it is bent.
  • the parts of the transition zone B1 on both sides of the neutral layer L are stretched and compressed respectively. For example, in the perspective of FIG. 6 , the part P1 on the upper side of the neutral layer L will be compressed, and the part P2 on the lower side of the neutral layer L will be compressed. stretched. The farther the portion is from the neutral layer L, the greater the degree of compression or tension.
  • any cross section in the portion P2 (parallel to the cross section of the neutral layer, such as the interface S between the light emitting layer 145 and the encapsulation layer 144 ) will be subjected to a reverse normal compressive stress .
  • the position of the neutral layer L can be calculated based on the relevant theory of material mechanics, and can be calculated with the help of a simulation platform in practical applications.
  • the necessary inputs may include: the three-dimensional model of the flexible screen 14, the modulus and thickness of the support sheet 148, the modulus and thickness of the back film 147, and the modulus of the substrate 146.
  • the modulus and thickness of the light emitting layer 145 the modulus and thickness of the encapsulation layer 144, the modulus and thickness of the polarizer 143, the modulus and thickness of the cover base material layer 142, the modulus and thickness of the cover plate protective layer 141 and thickness, bending radius R1, bending radius R3, opening distance G, and bending arc length of the flexible screen 14.
  • the neutral layer L can be located in the light emitting layer 145 , and the neutral layer L is closer to the support sheet 148 than the interface S.
  • the neutral layer L is located on the interface S.
  • the position of the neutral layer L shown in FIG. 6 is only an example.
  • the neutral layer L is not limited to being within the light-emitting layer 145 , for example, the neutral layer L may also be within the substrate 146 even within the backing film 147 or the support sheet 148.
  • the interface S since the interface S is in the part P2, the interface S will be subjected to reverse normal compressive stress (as shown in Figure 6), and the reverse normal compressive stress will separate the parts on both sides of the interface S respectively. Press toward the interface S, which makes the parts on both sides of the interface S not easy to peel off. Therefore, the problem of peeling off between the light emitting layer 145 and the encapsulation layer 144 is improved.
  • the thickness design of the back film 147 of the first embodiment can make the neutral layer of the transition region B1 farther from the interface S, so that the compressive stress on the interface S is larger, so that the light-emitting layer 145 and the encapsulation layer can be separated from each other. 144 is more difficult to peel off. The following will analyze in detail.
  • FIG. 7 is a force analysis diagram of the local area (including the back film 147 , the substrate 146 , the light emitting layer 145 and the encapsulation layer 144 ) in the transition region B1 in FIG. 6 .
  • the local area is subjected to the pressure exerted by the casing 11 .
  • the resultant force of the stress on the section M in the local area in the perspective of FIG. 7 , the section M is projected as a vertical line at the right end of the local area
  • the area located on one side of the neutral layer L (the upper side in the perspective of FIG. 7 ) is compressed and thus subjected to compressive stress; the area located on the other side of the neutral layer L (the upper side in the perspective of FIG. 7 ) is compressed
  • the area on the underside) is stretched and thus subjected to tensile stress.
  • Both compressive stress and tensile stress are represented by arrows.
  • the starting point of the arrow is on the section M.
  • the length of the arrow represents the magnitude of the compressive stress or tensile stress.
  • the arrow points to the inside of the local area to represent the compressive stress, and the arrow points to the outside of the local area to represent the tensile stress.
  • the line connecting the ends of the arrows representing the compressive stress and the ends of the arrows representing the tensile stress intersects the cross section M, and the position of the neutral layer L is indicated at the intersection.
  • two triangles are formed, and the areas of these two triangles represent the magnitude of the compressive stress and the tensile stress respectively.
  • the resultant force of the stress on the section M can be the normal compressive stress, so the area of the compressive stress triangle (the upper triangle in the perspective of FIG. 7 ) can be larger than the area of the tensile stress triangle (the lower triangle in the perspective of FIG. 7 ). area of the triangle).
  • the distance from the neutral layer L to the outer surface of the back film 147 is d.
  • Fig. 8 is a diagram of the force analysis obtained by replacing the back film 147 in Fig. 7 with a conventional back film 147' to obtain a partial area of the transition area B1', and then performing a force analysis on the local area of the transition area B1'.
  • the transition area B1' has the same meaning as the transition area B1, but for the convenience of description, different names are used to distinguish.
  • a conventional flexible screen uses a thicker conventional back film 147', for example, its thickness can reach 50 ⁇ m or 70 ⁇ m.
  • the conventional back film 147 ′ is thicker, the conventional flexible screen is also thicker.
  • the pressure exerted by the casing 11 on the local area of the conventional flexible screen will be larger. .
  • the position of the neutral layer L1 in the transition region B1 ′ can be determined according to the force analysis method described above. For example, it can be determined that the neutral layer L1 is located in the light-emitting layer 145 , but the neutral layer L1 is closer to the interface S than the neutral layer L. , that is, the distance d1 from the neutral layer L1 to the outer surface of the conventional back film 147 ′ is greater than the distance d from the neutral layer L to the outer surface of the back film 147 .
  • the neutral layer L1 shown in FIG. 8 is only an example. According to the different forces of conventional flexible screens, the neutral layer L1 can also be located below the interface S (“below” is based on the perspective of FIG. 8 ) For example, the neutral layer L1 may be in the encapsulation layer 144, and the distance d1 from the neutral layer L1 to the conventional back film 147' is greater than the distance d from the neutral layer L to the back film 147. The position of the neutral layer L1 of the above-mentioned conventional flexible screen can be verified by simulation calculation.
  • the interface S is subject to reverse tensile stress in this solution, which will increase the light-emitting layer 145 and the encapsulation layer on both sides of the interface S. 144 divestment risk.
  • the transition area B1 of the flexible screen is less prone to peeling problems than the transition area B1' of the conventional flexible screen, and the reliability of the flexible screen is higher.
  • the neutral layer L of the transition region B1 can be further away from the interface S (for example, the neutral layer L is located in the substrate 146), which is beneficial to further increase the Normal compressive stress on the large interface S, thereby further reducing the risk of peeling.
  • the thickness of the back film 147 is too small, the tensile force on the side of the neutral layer L in the transition region B1 will be too large, and this part will be easily damaged.
  • transition area B1 As the research object above, it is concluded that a thinner back film 147 can be used, which can improve the peeling phenomenon in the transition area B1 and improve the reliability of the flexible screen. It can be understood that this conclusion also applies to the transition region B3.
  • the flexible screen of a conventional internal folding screen electronic device with a "ball bat shape" will also be adjacent to the area of the bending area B adjacent to the first flat area F1 and the area of the bending area B adjacent to the second flat area F2, A phenomenon in which the encapsulation layer 144 and the light emitting layer 145 are peeled off from each other occurs.
  • the peeling phenomenon in the above two regions can also be improved.
  • the specific principle is the same as that described above, and will not be repeated here.
  • the back film 147 is thinned, so that the flexible screen 14 is not easily peeled off, thereby ensuring higher reliability of the flexible screen 14 .
  • the thickness of the flexible screen 14 is also smaller, which is beneficial to realize the lightness and thinness of the inner folding screen electronic device 10 .
  • the thinning of the back film 147 in the first embodiment essentially reduces the stiffness of the laminate (including the back film 147 and the support sheet 148 ) on the back of the flexible display panel 16 (compared to conventional flexible screens). After the stiffness is reduced, the laminate on the backside of the flexible display panel 16 is more easily deformed. Under the premise of ensuring the same "water drop shape", the pressure from the casing 11 on the transition area B1 of the flexible screen will be smaller than the pressure from the casing 11 on the transition area B1' of the conventional flexible screen. According to the above-mentioned related principles of material mechanics, and comparing Fig. 7 with Fig.
  • the position of the neutral layer L can also be adjusted to improve and avoid the peeling problem of the flexible screen.
  • the following will lead to other embodiments based on this design idea.
  • the thickness of the back film 147 in the second embodiment may be thicker, for example, 50 ⁇ m-75 ⁇ m.
  • the modulus of the back film 147 can take a smaller value, for example, 3Gpa-5Gpa, and typical values can be 3Gpa and 4Gpa.
  • the modulus of the conventional back film 147' may be 5 Gpa-8 Gpa (the modulus of the conventional back film 147' is not equal to that of the back film 147). Therefore, the stiffness of the stack on the back of the flexible display panel 16 of the second embodiment is smaller than that of the stack on the back of the flexible display panel 16 of the conventional flexible screen. According to the above conclusion, the flexible screen of the second embodiment can improve and avoid the peeling problem, and the reliability of the flexible screen is higher.
  • the thickness of the back film 147 can be reduced at the same time (for example, the thickness of the back film 147 is between 15 ⁇ m-25 ⁇ m), and the modulus of the back film 147 can be reduced (for example, the modulus of the back film 147 is 3 Gpa- 5Gpa) to further reduce the stiffness of the stack on the back of the flexible display panel 16, thereby further reducing the risk of peeling off the flexible screen.
  • the thickness of the conventional support sheet in the conventional flexible screen may be 0.03mm-0.05mm.
  • the thickness of the support sheet 148 can be reduced, for example, the thickness of the support sheet 148 can be 0.02mm-0.03mm, and the typical value can be 0.02mm or 0.025mm (supporting sheet 148).
  • the thickness of sheet 148 is different from that of conventional support sheets). This can also make the stiffness of the stack on the back of the flexible display panel 16 of the third embodiment smaller than that of the stack on the back of the flexible display panel 16 of the conventional flexible screen. According to the above conclusion, the flexible screen of the third embodiment can improve and avoid the peeling problem, and the reliability of the flexible screen is higher. In addition, since a thinner support sheet 148 is used, the thickness of the flexible screen 14 is also smaller, which is beneficial to realize the lightness and thinness of the inner folding screen electronic device 10 .
  • the back film 147 and the substrate 146 of the flexible display panel 16 may be connected by a lower modulus adhesive layer (a layer formed of adhesive).
  • the modulus of the adhesive layer may be, for example, 30Kpa-80Kpa.
  • the material of the adhesive layer can be, for example, pressure sensitive adhesive (PSA) or optically clear adhesive (OCA).
  • the modulus of the adhesive layer connecting the conventional back film 147 ′ and the flexible display panel 16 in the conventional flexible screen is usually larger, for example, up to 80Kpa-200Kpa (the modulus of the adhesive layer in the fourth embodiment, Different from the modulus of the adhesive layer in the conventional flexible screen).
  • the modulus of the adhesive layer in the fourth embodiment Different from the modulus of the adhesive layer in the conventional flexible screen.
  • the thickness and modulus of the back film 147 may be reduced; or the thickness of the back film 147 and the thickness of the support sheet 148 may be reduced; or the modulus of the back film 147 and the thickness of the support sheet 148 may be reduced; or the back film may be reduced 147 thickness, the modulus of the back film 147 and the thickness of the support sheet 148; or reduce the thickness of the back film 147 and the modulus of the adhesive layer; or reduce the thickness of the support sheet 148 and the modulus of the adhesive layer; or , to reduce the thickness of the back film 147 , the modulus of the back film 147 , the thickness of the support sheet 148 and the modulus of the adhesive layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种内折屏电子设备(10)具有柔性屏(14),柔性屏(14)包括依次层叠的封装层(144)、发光层(145)、衬底(146)、背膜(147)和支撑片(148)。封装层(144)与发光层(145)之间具有界面(S),支撑片(148)具有完整的表面。背膜(147)的厚度为15μm-25μm,和/或,背膜(147)的模量为3Gpa-5Gpa,和/或,支撑片(148)的厚度为0.02mm-0.03mm,以使柔性屏(14)在弯折状态下,弯折区(B)邻接平直区(F1,F2)的区域的中性层(L)位于封装层(144)与发光层(145)之间的界面(S)远离封装层(144)的一侧,使得柔性屏(14)的封装层(144)与发光层(145)不易剥离。

Description

内折屏电子设备
本申请要求于2020年06月29日提交中国专利局、申请号为202010605305.0、申请名称为“内折屏电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端产品技术领域,尤其涉及一种内折屏电子设备。
背景技术
柔性屏包括封装层和发光层。发光层在通电时能够发光,使柔性屏实现显示。封装层用于对发光层进行封装和防护。柔性屏中,封装层与发光层的结合力较弱。
柔性屏可以应用在内折屏手机中。内折屏手机经过多次折叠后,柔性屏的部分区域中的封装层与发光层容易相互剥离,导致柔性屏失效。
发明内容
本申请提供了一种内折屏电子设备,能够降低柔性屏中的封装层与发光层剥离的风险。
第一方面,本申请提供了一种内折屏电子设备,包括第一壳体、铰链、第二壳体和柔性屏;铰链连接第一壳体与第二壳体,第一壳体通过铰链相对第二壳体转动;柔性屏安装在第一壳体与第二壳体上,第一壳体与第二壳体闭合时,柔性屏弯折并收容在第一壳体与第二壳体之间;柔性屏具有相连的弯折区与平直区;柔性屏包括依次层叠的封装层、发光层、衬底、背膜和支撑片;封装层位于柔性屏远离铰链的一侧,封装层与发光层之间具有界面,支撑片具有完整的表面;背膜的厚度为15μm-25μm,和/或,背膜的模量为3Gpa-5Gpa,和/或,支撑片的厚度为0.02mm-0.03mm,以使柔性屏在弯折状态下,弯折区邻接平直区的区域的中性层位于界面远离封装层的一侧。
本申请中,铰链可以是由若干部件构成的机构,铰链能够产生机构运动。铰链的机构运动使得第一壳体与第二壳体能相对转动,使第一壳体能相对第二壳体展开或闭合,进而实现内折屏电子设备的展开或折叠。当该内折屏电子设备处于折叠状态时,第一壳体与第二壳体闭合,柔性屏被弯折收容在壳体内。第一壳体与第二壳体均可作为内折屏电子设备的外观件,即裸露在外能被用户直接观察到的部件。或者,内折屏电子设备可以包括作为外观件的外壳,第一壳体与第二壳体均可作为非外观件(例如中框)安装在该外壳内。第一壳体与第二壳体用于承载柔性屏,并驱动柔性屏弯折和展开。
本申请中,按照柔性屏的各部分的形变状况,可以将柔性屏分为第一平直区、弯折区和第二平直区,弯折区连接在第一平直区与第二平直区之间。第一平直区与第二平直区连接在弯折区的两端,第一平直区与第二平直区可以合称平直区。第一平直区可以固定在第一壳体上,第二平直区可以固定在第二壳体上。弯折区不与第一壳体和第二壳体连接,弯折区在展开状态与弯折状态下均可与铰链保持间隔,以避免相互干涉。在柔性屏的弯折与展开过程中,第一平直区与第二平直区基本不会形变,能够保持原有的平直(或平整)状态;弯折区则可以发生弯折与展开。
本申请中,从柔性屏的叠层结构来讲,柔性屏包括封装层、发光层、衬底、背膜和支撑片,封装层、发光层、衬底、背膜和支撑片依次层叠,且封装层远离铰链,支撑片靠近铰链。其中,衬底可以采用聚酰亚胺(polyimide,PI)制造,衬底上可以形成TFT阵列或不形成 TFT阵列。衬底的模量约为5Gpa-9Gpa。发光层形成在衬底上。发光层能够发光,以使柔性显示面板实现显示。发光层可以是有机发光二极管层。发光层的模量约为4Gpa-5Gpa。封装层覆盖发光层,对将发光层进行封装,以阻隔水氧,保证发光层的性能与寿命。封装层可以采用薄膜封装工艺制造。封装层的厚度可以是11.6μm。封装层的模量约25Gpa(例如25.17Gpa)。背膜可与衬底贴合,背膜起到防护作用。背膜可以由聚酰亚胺制造。背膜的厚度可以在15μm-25μm之间(常规背膜的厚度可达50μm或75μm)。背膜的模量可以是3Gpa-5Gpa(常规背膜的模量可达5Gpa-8Gpa)。支撑片可与背膜贴合。支撑片可作为柔性屏中的支撑和承重结构。支撑片在未弯折时可以呈平面片状,这可以保证柔性屏的平面度。支撑片的表面基本没有孔、槽等通过去除材料得到的结构特征。支撑片的厚度可以在0.02mm-0.03mm之间(常规支撑片的厚度可达0.03mm-0.05mm),此种支撑片的结构强度与弯折性能均较好。支撑片的模量可以是180Gpa-210Gpa。
本申请中,通过将背膜做薄、将背膜的模量降低,将支撑片做薄这三种设计中的任意一个、任意两个或三者,均能将弯折区与平直区相邻接的区域的中性层,调整至位于封装层与发光层之间的界面远离封装层的一侧,也即使该中性层朝靠近支撑片的方向偏离该界面,该中性层位于该界面与支撑层远离背膜的表面之间。根据材料力学的相关原理,弯折区与平直区相邻接的区域的中性层位于该位置后,该界面会受到反向的法向压应力,该反向的法向压应力分别将该界面两侧的部分压向界面,这使得该界面两侧的部分不容易剥离。因此,发光层与封装层之间相互剥离的问题得到改善。
在一种实现方式中,柔性屏还包括粘胶层,背膜通过粘胶层与衬底粘接,粘胶层的模量为30Kpa-80Kpa(常规的粘胶层的模量可达80Kpa-200Kpa)。通过降低粘胶层的模量,能减小衬底远离发光层的一侧的叠层的刚度。根据材料力学的相关原理,这也能使得该中性层位于该界面远离封装层的一侧,从而改善和避免剥离问题,提升柔性屏的可靠性。
在一种实现方式中,粘胶层为压敏胶层或光学胶层。此种粘胶层性能稳定,有利于保证柔性屏的可靠性。
在一种实现方式中,背膜为聚酰亚胺膜。此种背膜性能稳定,防护性能与弯折性能较好,有利于保证柔性屏的可靠性。
在一种实现方式中,支撑片的模量为180Gpa-210Gpa。此种支撑片抗冲击、耐弯折,有利于保证柔性屏的可靠性。
在一种实现方式中,支撑片为金属片,例如可以是不锈钢(如SUS不锈钢)片或铜片。采用金属制造的支撑片结构强度较高,具有较好的抗冲击性能与防护性能,有利于提升柔性屏的可靠性。
在一种实现方式中,柔性屏在弯折状态下弯折区呈水滴形态,也即弯折区的形状类似水滴。此种柔性屏为内折屏的成熟结构形态,量产性好。更为重要的是,具有水滴形态的常规内折屏更容易在弯折区与平直区相邻接的区域出现剥离现象,而本实现方式通过上述的调整中性层的设计,能够较好地克服剥离问题,提升柔性屏的可靠性。
在一种实现方式中,柔性屏还包括相层叠的柔性盖板和偏光片,偏光片位于柔性盖板与封装层之间。柔性盖板可作为柔性屏的防护层。偏光片的厚度可以在40μm-73μm之间。偏光片的模量可以小于或等于4Gpa。此种柔性屏设计成熟,量产性好。更为重要的是,通过上述的调整中性层的设计,能够较好地克服此种柔性屏的剥离问题,提升柔性屏的可靠性。
在一种实现方式中,柔性盖板包括相层叠的盖板保护层与盖板基材层,盖板基材层位于盖板保护层与偏光片之间;盖板保护层的厚度为40μm-75μm,盖板保护层的模量大于或等 于4Gpa;盖板基材层的厚度为40μm-80μm,盖板基材层的模量大于或等于7Gpa。
本实现方式中,盖板保护层可作为柔性盖板的外层保护结构。盖板保护层的厚度可以在40μm-75μm之间。盖板保护层的模量可以大于或等于4Gpa,这样的盖板保护层具有较好的抗冲击性能。盖板保护层可以具有合适的硬度,以提供合理的触摸手感。盖板基材层可作为柔性盖板的主要力量支撑结构。盖板基材层的厚度可以在40μm-80μm之间。盖板基材层的模量可以大于或等于7Gpa,这样的盖板基材层可以具有较好的抗冲击性能。盖板基材层可以采用聚酰亚胺制造,也可采用其他合适的材料如超薄玻璃制造。此种柔性屏设计成熟,量产性好。更为重要的是,通过上述的调整中性层的设计,能够较好地克服此种柔性屏的剥离问题,提升柔性屏的可靠性。
在一种实现方式中,背膜的厚度为15μm-25μm,支撑片的厚度为0.02mm-0.03mm,偏光片的厚度为40μm-73μm,偏光片的模量小于或等于4Gpa。此种柔性屏设计成熟,量产性好。更为重要的是,通过同时减薄背膜与支撑片,能够使中性层位于封装层与发光层之间的界面远离封装层的一侧,从而较好地克服柔性屏的剥离问题,提升柔性屏的可靠性。
附图说明
图1是实施例一的内折屏电子设备的一种侧视结构示意图;
图2是图1中的内折屏电子设备的分解结构示意图;
图3是图1中的内折屏电子设备的柔性屏在弯折状态下的一种侧视结构示意图;
图4是实施例一的内折屏电子设备的柔性屏在弯折状态下的另一种侧视结构示意图;
图5是实施例一中的柔性屏的横截面结构示意图;
图6是图3中的柔性屏的过渡区B1的横截面结构示意图,其中示出了过渡区B1的中性层及相关的受力分析;
图7是图6中的过渡区B1中的局部区域的截面M上的受力分析示意图;
图8是其他柔性屏的过渡区B1’的局部区域的截面M上的受力分析示意图。
具体实施方式
本申请以下实施例提供了一种内折屏电子设备,该内折屏电子设备包括但不限内折屏手机、内折屏平板电脑、内折屏可穿戴设备等。该内折屏电子设备可以包括壳体和柔性屏,柔性屏承载于壳体。当该内折屏电子设备处于折叠状态时,壳体闭合,柔性屏被弯折收容在壳体内。以下将具体描述。
如图1和图2所示,实施例一的内折屏电子设备10可以包括第一壳体11、铰链12、第二壳体13和柔性屏14。
铰链12的相对两侧分别与第一壳体11及第二壳体13连接。铰链12可以是由若干部件构成的机构,铰链12能够产生机构运动。铰链12的机构运动使得第一壳体11与第二壳体13能相对转动,使第一壳体11能相对第二壳体13展开或闭合,进而实现内折屏电子设备10的展开或折叠。
第一壳体11与第二壳体13均可作为内折屏电子设备10的外观件,即裸露在外能被用户直接观察到的部件。在其他实施例中,内折屏电子设备10可以包括作为外观件的外壳,第一壳体11与第二壳体13均可作为非外观件(例如中框)安装在该外壳内。第一壳体11与第二壳体13用于承载柔性屏14,并驱动柔性屏14弯折和展开。
柔性屏14具有柔性可弯折性能。内折屏电子设备10处于折叠状态时,柔性屏14可被弯 折收容在第一壳体11与第二壳体13内。如图2-图4所示(图3与图4均是处于弯折状态的柔性屏14的侧视图),按照柔性屏14的各部分的形变状况,可以将柔性屏14分为第一平直区F1、弯折区B和第二平直区F2,弯折区B连接在第一平直区F1与第二平直区F2之间。第一平直区F1与第二平直区F2连接在弯折区B的两端。第一平直区F1可以固定在第一壳体11上,第二平直区F2可以固定在第二壳体13上。弯折区B不与第一壳体11和第二壳体13连接,弯折区B在展开状态与弯折状态下均可与铰链12保持间隔,以避免相互干涉。在柔性屏14的弯折与展开过程中,第一平直区F1与第二平直区F2基本不会形变,能够保持原有的平直状态;弯折区B则可以发生弯折与展开。
其中,在图3所示的一种实施方式中,当柔性屏14处于弯折状态时,第一平直区F1与第二平直区F2可以基本平行。弯折区B可以呈“水滴形态”,即弯折区B的形状类似水滴。该弯折区B可以包括过渡区B1、主弯折区B2及过渡区B3,主弯折区B2连接在过渡区B1与过渡区B3之间。
过渡区B1可以为弧形,过渡区B1可以朝向过渡区B3弯曲,例如在图3视角中过渡区B1向下凹。过渡区B1平滑连接第一平直区F1与主弯折区B2,过渡区B1作为第一平直区F1与主弯折区B2之间的过渡部分,也可以作为弯折区B与第一平直区F1邻接的区域。过渡区B1可以与第一平直区F1、主弯折区B2均相切。
过渡区B3可以呈弧形,过渡区B3可以朝向过渡区B1弯曲,例如在图3视角中过渡区B3向上凸。过渡区B3平滑连接第二平直区F2与主弯折区B2,过渡区B3作为第二平直区F2与主弯折区B2之间的过渡部分,也可以作为弯折区B与第二平直区F2邻接的区域。过渡区B3可以与第二平直区F2、主弯折区B2均相切。
对于过渡区B1、主弯折区B2和过渡区B3,均可以对需要重点考察的区域定义弯折半径。弯折半径可以按照如下方式确定:在“需要重点考察的区域”的外表面(指朝内折屏电子设备10的外侧的表面)上选定若干点,这些点可称为拟合点,拟合点的数量例如可以是3个。若干拟合点中,可以某个拟合点作为对称中心,其余拟合点对称分布在该对称中心的两侧。确定经过该若干拟合点的拟合圆的半径,即可作为弯折半径。可以理解的是,弯折半径用于表征弯折形状,当需要重点考察的区域变化时弯折半径也会相应变化。
本实施例中,可以分别在过渡区B1、主弯折区B2和过渡区B3的最凸处定义弯折半径。如图3所示意的呈“水滴形态”的弯折区B,其中过渡区B1的弯折半径可以为R3,主弯折区B2的弯折半径可以为R1。R1>R3,例如R1可以为15mm,R3可以为3mm。
如图3所示,对于该呈“水滴形态”的弯折区B,还可以限定弯折区B的开口间距G与弯折弧长。其中,该开口间距G可以是第一平直区F1的外表面到第二平直区F2的外表面的间距。该开口间距G例如可以在0.3mm-0.5mm之间(包含端点值)。该弯折弧长可以是在图3视角下,整个弯折区B的外表面形成的弧线的长度,也即过渡区B1的外表面、主弯折区B2的外表面及过渡区B3的外表面形成的三段弧线的长度之和。该弯折弧长例如可以是35mm。
如图4所示,在另一种实施方式中,当柔性屏14处于弯折状态时,第一平直区F1与第二平直区F2不平行,二者远离弯折区B的一端相距较近,二者连接弯折区B的一端相距较远。柔性屏14整体可以呈“球棒形态”,即柔性屏1的形状类似击打棒球的球棒。此种柔性屏14可以没有过渡区B1与过渡区B3,弯折区B的两端分别与第一平直区F1及第二平直区F2平滑连接(例如相切)。
下文将以图3所示的柔性屏14为例继续描述。
图5示意的是内折屏电子设备10的横截面结构,其中为了清楚地表示柔性屏14与第一 壳体11、第二壳体13的位置关系,将柔性屏14与第一壳体11、第二壳体13分解开。
如图5所示,柔性屏14可以包括依次层叠的柔性盖板15、偏光片143、柔性显示面板16、背膜147及支撑片148。其中,柔性盖板15背离第一壳体11与第二壳体13,支撑片148位于背膜147与第一壳体11、第二壳体13之间。柔性屏14的厚度例如可以是321μm或363μm等。
柔性盖板15用于对柔性显示面板16进行防护。如图5所示,柔性盖板15可以包括相贴合的盖板保护层141与盖板基材层142。盖板保护层141背离偏光片143,盖板基材层142可与偏光片143贴合。
盖板保护层141可作为柔性盖板15的外层保护结构。盖板保护层141的厚度可以在40μm-75μm之间,例如40μm、60μm或75μm。盖板保护层141的模量可以大于或等于4Gpa,例如4.5Gpa、6Gpa等,这样的盖板保护层141具有较好的抗冲击性能。盖板保护层141可以具有合适的硬度,以提供合理的触摸手感。
盖板基材层142可作为柔性盖板15的主要力量支撑结构。盖板基材层142的厚度可以在40μm-80μm之间,例如40μm、50μm、60μm或80μm。盖板基材层142的模量可以大于或等于7Gpa,例如8Gpa、15Gpa,这样的盖板基材层142可以具有较好的抗冲击性能。盖板基材层142可以采用聚酰亚胺(polyimide,PI)制造,也可采用其他合适的材料如超薄玻璃(ultrathin glass,UTG)制造。
如图5所示,偏光片143可以贴合在盖板基材层142与柔性显示面板16之间。偏光片143的厚度可以在40μm-73μm之间,例如40μm、50μm、60μm或73μm。偏光片143的模量可以小于或等于4Gpa,例如4Gpa、3Gpa等。
如图5所示,柔性显示面板16可以包括依次层叠的封装层144、发光层145和衬底146。其中,封装层144位于偏光片143与发光层145之间,偏光片143可与封装层144贴合。衬底146位于发光层145与背膜147之间,背膜147可与衬底146贴合。
衬底146例如可以采用PI制造。衬底146上可以形成薄膜晶体管(thinfilmtransistor,TFT)阵列,这样的柔性显示面板16可以是主动驱动式有机发光二极管(active matrix oled,AMOLED)柔性显示面板。或者,衬底146上可以不形成TFT阵列,这样的柔性显示面板16可以是被动驱动式有机发光二极管(passive matrix oled,PMOLED)柔性显示面板。衬底146的厚度例如可以是16.3μm(不含薄膜晶体管阵列的厚度)。衬底146的模量约为5Gpa-9Gpa。对于PMOLED柔性显示面板,TFT阵列的厚度可以是7.34μm,TFT阵列的模量约为35Gpa(例如36.3Gpa)。
发光层145形成在衬底146上。发光层145能够发光,以使柔性显示面板16实现显示。发光层145例如可以由有机发光二极管(organic light-emitting diode,OLED)材料制造。发光层145的模量约为4Gpa-5Gpa。
封装层144覆盖发光层145,以将发光层145进行封装,以阻隔水氧,保证发光层145的性能与寿命。封装层144例如可以采用薄膜封装(thinfilm encapsulation,TFE)工艺制造。封装层144的厚度例如可以是11.6μm。封装层144的模量约25Gpa(例如25.17Gpa)。
如图5所示,背膜147(base film,BF)可与衬底146通过粘胶贴合,背膜147可以对柔性显示面板16的背部进行防护。背膜147的厚度可以在15μm-25μm之间,例如15μm、20μm或25μm。实施例一的背膜147比常规背膜薄,常规背膜的厚度例如可达50μm或75μm。背膜147的模量可以是3Gpa-8Gpa,典型值可以是3Gpa、5Gpa或8Gpa。背膜147可以由聚酰亚胺制造。
如图5所示,支撑片148可与背膜147贴合。支撑片148可作为柔性屏14中的支撑和承重结构。支撑片148在未弯折时可以呈平面片状,这可以保证柔性屏14的平面度。支撑片148可以采用金属制造,例如不锈钢(如SUS不锈钢)或铜。支撑片148可以是完整的片状结构,此种支撑片148具有完整、连续的表面,支撑片148的表面基本没有孔、槽等通过去除材料得到的结构特征。支撑片148的厚度可以在0.02mm-0.03mm之间,典型值可以是0.02mm、0.025mm或0.03mm,此种支撑片148的结构强度与弯折性能均较好。支撑片148的模量可以是180Gpa-210Gpa,典型值可以是180Gpa、200Gpa、210Gpa。
具有“水滴形态”的常规内折屏电子设备的常规柔性屏,可以与图3所示的柔性屏14的结构基本相同,因此可参考图3描述常规内折屏电子设备的柔性屏。常规柔性屏中,封装层144与发光层145之间的结合力较弱。在常规柔性屏处于弯折状态时,过渡区B1的弯折程度较大。过渡区B1中的内力也较大,例如当常规柔性屏处于弯折状态时,位于过渡区B1的封装层144与发光层145的界面的两侧会受到方向相反的较大拉力。以上因素导致常规柔性屏在经过多次弯折后,位于过渡区B1的封装层144与发光层145容易相互剥离。基于同样的原因,位于过渡区B3的封装层144与发光层145也容易相互剥离。
该剥离现象会使常规柔性屏失效,例如导致显示异常。然而,通过提升封装层144与发光层145之间的结合力来改善剥离问题,难度较大。有鉴于此,本实施例一的方案通过调整背膜147的厚度,使得过渡区B1与过渡区B3的中性层的位置发生变化,从而改善剥离问题。调整背膜147的厚度以改变中性层的位置涉及到材料力学的相关原理,以下将详细描述。
图6表示图3中的柔性屏14的过渡区B1的示意性剖视结构。如图6所示,过渡区B1会受到弯矩,该弯矩使用弧线箭头表示,该弧线箭头表示在该弯矩的作用下过渡区B1具有的弯曲趋势。例如在图6视角中,过渡区B1具有向下凹的弯曲趋势。可以理解的是,图6中过渡区B1并未呈弯曲形态,这仅仅是出于清楚绘图所做的示意。
过渡区B1具有中性层L。中性层L既不受拉力,也不受压力,中性层L在弯曲时不会伸长和缩短。过渡区B1位于中性层L两侧的部分则分别被拉伸和压缩,例如在图6视角中,中性层L上侧的部分P1会被压缩,中性层L下侧的部分P2会被拉伸。距离中性层L越远的部分,则被压缩或被拉伸的程度越大。
被拉伸的部分P2的相对两侧受到反向的拉力。部分P2中距离中性层L越远的区域,其相对两侧受到的反向的拉力越大;反之,部分P2中距离中性层L越近的区域,其相对两侧受到的反向的拉力越小。在该反向的拉力的作用下,部分P2中的任一截面(平行于中性层的截面,例如发光层145与封装层144之间的界面S)上会受到反向的法向压应力。部分P2中距离中性层L越远的截面,其所受到的反向的法向压应力越大;反之,部分P2中距离中性层L越近的截面,其所受到的反向的法向压应力越小。
对于部分P1,有以下类似的结论:被压缩的部分P1的相对两侧受到反向的压力。部分P1中距离中性层L越远的区域,其相对两侧受到的反向的压力越大;反之,部分P1中距离中性层L越近的区域,其相对两侧受到的反向的压力越小。在该反向的压力的作用下,部分P1中的任一截面上会受到反向的拉应力。部分P1中距离中性层L越远的截面,其所受到的反向的拉应力越大;反之,部分P1中距离中性层L越近的截面,其所受到的反向的拉应力越小。
中性层L的位置可以基于材料力学的相关理论计算得出,在实际应用中可以借助仿真平台进行计算。在利用仿真平台对柔性屏14进行仿真计算时,必要的输入可以包括:柔性屏14的三维模型、支撑片148的模量与厚度、背膜147的模量与厚度、衬底146的模量与厚度、 发光层145的模量与厚度、封装层144的模量与厚度、偏光片143的模量与厚度、盖板基材层142的模量与厚度、盖板保护层141的模量与厚度、柔性屏14的弯折半径R1、弯折半径R3、开口间距G以及弯折弧长。
申请人经过大量仿真计算后发现,使用较薄的背膜147能够使过渡区B1的中性层比界面S更靠近支撑片148,也即中性层L位于界面S远离封装层144的一侧。例如图6所示,将背膜147的厚度设为15μm-25μm时,中性层L可以位于发光层145内,且中性层L比界面S更靠近支撑片148。以图6视角为例,可以认为中性层L位于界面S之上。图6所示的中性层L的位置仅仅是一种举例,实际根据背膜147的具体厚度不同,中性层L不限于在发光层145内,例如中性层L还可以在衬底146内,甚至在背膜147或支撑片148内。
根据上述理论可知,由于界面S在部分P2中,因此界面S上会受到反向的法向压应力(如图6所示),该反向的法向压应力分别将界面S两侧的部分压向界面S,这使得界面S两侧的部分不容易剥离。因此,发光层145与封装层144之间相互剥离的问题得到改善。
相较常规背膜,本实施例一的背膜147的厚度设计能使过渡区B1的中性层距离界面S更远,从而使界面S上的压应力更大,使发光层145与封装层144更不容易剥离。以下将具体分析。
图7是图6中的过渡区的B1中的局部区域(包含背膜147、衬底146、发光层145和封装层144)的受力分析图示。结合图1与图7所示,该局部区域会受到壳体11施加的压力。在该压力作用下,该局部区域中的截面M(在图7视角中,该截面M投影成一条位于该局部区域右端的竖线)上的应力的合力可以为法向压应力。
根据材料力学的相关原理,位于中性层L一侧(在图7视角中是上侧)的区域被压缩,因而受到压应力;位于中性层L的另一侧(在图7视角中是下侧)的区域被拉伸,因而受到拉应力。压应力与拉应力均使用箭头表示,箭头的起点在截面M上,箭头的长度代表压应力或拉应力的大小,箭头指向该局部区域内部表示压应力,箭头指向该局部区域外部表示拉应力。越远离中性层的位置,压应力或拉应力越大,这体现在越远离中性层的位置,箭头的长度越长。表示压应力的箭头的末端与表示拉应力的箭头的末端的连线与截面M相交,交点处表示中性层L的位置。此种图示方式会形成两个三角形,这两个三角形的面积分别代表压应力与拉应力的大小。由上所述,截面M上的应力的合力可以为法向压应力,因此压应力三角形(在图7视角中为上方的三角形)的面积可以大于拉应力三角形(在图7视角中为下方的三角形)的面积。另外,中性层L到背膜147的外表面的距离为d。
下面将结合图8对常规柔性屏做受力分析。其中,图8是将图7中的背膜147换成常规背膜147’得到过渡区B1’的局部区域,然后对过渡区B1’的局部区域进行受力分析得到的受力分析图示。其中,过渡区B1’与过渡区B1的含义相同,但为了便于描述,使用不同的名称进行区分。
如图8所示,常规柔性屏使用的是较厚的常规背膜147’,例如其厚度可以达到50μm或70μm。如图8所示,由于常规背膜147’较厚,使得常规柔性屏也较厚,为了能形成同样的“水滴形态”,常规柔性屏的该局部区域受到壳体11施加的压力会较大。这使得该局部区域中的截面M上受到的应力的合力依然为法向压应力,但法向压应力更大。因此,图8中的压应力三角形的面积加大,而拉应力三角形的面积会减小。根据上述的受力分析图示方法可以确定过渡区B1’的中性层L1的位置,例如可以确定中性层L1位于发光层145内,但中性层L1比中性层L更加靠近界面S,也即中性层L1到常规背膜147’的外表面的距离d1大于中性层L到背膜147的外表面的距离d。
当然,图8所示的中性层L1的位置仅仅是一种举例,根据常规柔性屏的受力不同,中性层L1还可以位于界面S以下(“以下”是以图8视角为例),例如中性层L1可以在封装层144中,此时中性层L1到常规背膜147’的距离d1,比中性层L到背膜147的距离d更大。上述的常规柔性屏的中性层L1的位置,可以通过仿真计算得到验证。
对比图7与图8可知,相较常规背膜147’,由于本实施例一的背膜147进行了减薄,使得中性层L距离背膜147更近。根据上述材料力学的相关原理,并分别结合图8与图6,以及图7与图6可知:图8的中性层L1在界面S之上,且距离界面S较近,因此图8中界面S上的反向的压应力较小;图7中的中性层L在界面S之上,且距离界面S较远,因此图7中界面S上的反向的法向压应力较大。当界面S上的反向的压应力较大时,界面S两侧的发光层145与封装层144不容易剥离。
对于中性层L1在界面S以下的常规柔性屏,根据上文所述材料力学原理,该方案中界面S上受反向的拉应力,这会增加界面S两侧的发光层145与封装层144的剥离风险。
所以,实施例一的方案通过将背膜147进行减薄,能使柔性屏的过渡区B1比常规柔性屏的过渡区B1’更加不易发生剥离问题,柔性屏的可靠性更高。
另外,根据以上分析可知,将背膜147的厚度进一步减小,可以使过渡区B1的中性层L距离界面S更远(例如中性层L位于衬底146内),这有利于进一步增大界面S上法向压应力,从而进一步减小剥离风险。但是,背膜147的厚度过小会导致过渡区B1的中性层L的一侧所受的拉力过大,容易导致该部分受损。经过申请人的大量验证,发现将背膜147的厚度设置在15μm-25μm这个合理区间内,既能改善剥离问题,又能避免柔性屏受到较大拉力,能综合提升柔性屏的可靠性。
以上以过渡区B1为研究对象,得到可使用较薄的背膜147,能改善过渡区B1中的剥离现象,提升柔性屏的可靠性的结论。可以理解的是,这一结论同样适用于过渡区B3。
另外,具有“球棒形态”的常规内折屏电子设备的柔性屏,也会在弯折区B邻接第一平直区F1的区域以及弯折区B邻接第二平直区F2的区域,发生封装层144与发光层145相互剥离的现象。通过使用较薄的背膜147,也能改善上述两区域的剥离现象。具体原理同上文所述,此处不再重复。
综上所述,本实施例一的方案通过将背膜147进行减薄,使得柔性屏14不易剥离,保证柔性屏14具有更高的可靠性。另外,由于使用了较薄的背膜147,柔性屏14的厚度也较小,这有利于实现内折屏电子设备10的轻薄化。
结合图6所示,实施例一中将背膜147减薄,实质是将柔性显示面板16背面的叠层(包括背膜147与支撑片148)的刚度降低(相较常规柔性屏)。刚度降低之后,柔性显示面板16背面的叠层更容易形变。在保证具有同样的“水滴形态”的前提下,柔性屏的过渡区B1受到的来自壳体11的压力,会比常规柔性屏的过渡区B1’受到的来自壳体11的压力小。根据上述所述的材料力学相关原理,并对比图7与图8可知,虽然此种情况下过渡区B1的截面M上的应力的合力,与过渡区B1’的截面M上的应力的合力均是法向压应力,但过渡区B1的截面M上的压应力三角形的面积,小于过渡区B1’的截面M上的压应力三角形的面积。因此,过渡区B1的中性层L比过渡区B1’的中性层L1更靠近背膜147,因而能改善甚至避免过渡区B1中的剥离问题。同理,降低柔性显示面板16背面的叠层刚度,也能改善过渡区B3中的剥离问题。并且,这一结论对具有“球棒形态”的柔性屏同样适用。
因此,从降低性柔性显示面板16背面的叠层的刚度的角度出发,同样能调节中性层L的位置,以改善和避免柔性屏的剥离问题。以下将基于这一设计思想引出其他实施例。
在实施例二中,与上述实施例一不同的是,实施例二中的背膜147的厚度可以较厚,例如为50μm-75μm。但是,背膜147的模量可以取较小值,例如为3Gpa-5Gpa,典型值可以为3Gpa、4Gpa。常规背膜147’的模量可以是5Gpa-8Gpa(常规背膜147’的模量与背膜147的模量不相等)。因此,实施例二的柔性显示面板16背面的叠层的刚度,小于常规柔性屏的柔性显示面板16背面的叠层的刚度。根据上述结论,实施例二的柔性屏能改善和避免剥离问题,柔性屏的可靠性更高。
作为进一步的改进,可以同时降低背膜147的厚度(例如使背膜147的厚度在15μm-25μm之间),并减小背膜147的模量(例如使得背膜147的模量为3Gpa-5Gpa),来进一步减小柔性显示面板16背面的叠层的刚度,从而进一步降低柔性屏剥离的风险。
常规柔性屏中的常规支撑片的厚度可以为0.03mm-0.05mm。在实施例三中,与上述实施例均不同的是,可以将支撑片148的厚度减小,例如使支撑片148的厚度为0.02mm-0.03mm,典型值可以是0.02mm或0.025mm(支撑片148的厚度与常规支撑片的厚度不同)。这也能使实施例三的柔性显示面板16背面的叠层的刚度,小于常规柔性屏的柔性显示面板16背面的叠层的刚度。根据上述结论,实施例三的柔性屏能改善和避免剥离问题,柔性屏的可靠性更高。另外,由于使用了较薄的支撑片148,柔性屏14的厚度也较小,这有利于实现内折屏电子设备10的轻薄化。
在实施例四中,背膜147与柔性显示面板16的衬底146可以通过较低模量的粘胶层(由粘胶形成的层)连接。该粘胶层的模量例如可以是30Kpa-80Kpa。该粘胶层的材料例如可以是压敏胶(pressure sensitive adhesive,PSA)或光学胶(optically clear adhesive,OCA)。
与之对比,常规柔性屏中连接常规背膜147’与柔性显示面板16的粘胶层的模量则通常较大,例如可达80Kpa-200Kpa(实施例四中的粘胶层的模量,与常规柔性屏中的粘胶层的模量不同)。通过降低粘胶层的模量,也能使实施例四的柔性显示面板16背面的叠层的刚度,小于常规柔性屏的柔性显示面板16背面的叠层的刚度。根据上述结论,实施例四的柔性屏能改善和避免剥离问题,柔性屏的可靠性更高。
在其他实施例中,可以同时组合以上实施例中的至少两个,以减小柔性显示面板16背面的叠层的刚度,进一步改善甚至完全避免剥离现象。例如,可以减小背膜147的厚度与模量;或者减小背膜147的厚度与支撑片148的厚度;或者减小背膜147的模量与支撑片148的厚度;或者减小背膜147的厚度、背膜147的模量以及支撑片148的厚度;或者减小背膜147的厚度与粘胶层的模量;或者减小支撑片148的厚度与粘胶层的模量;或者,减小背膜147的厚度、背膜147的模量、支撑片148的厚度以及粘胶层的模量。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种内折屏电子设备,其特征在于,
    包括第一壳体、铰链、第二壳体和柔性屏;所述铰链连接所述第一壳体与所述第二壳体,所述第一壳体通过所述铰链相对所述第二壳体转动;所述柔性屏安装在所述第一壳体与所述第二壳体上,所述第一壳体与所述第二壳体闭合时,所述柔性屏弯折并收容在所述第一壳体与所述第二壳体之间;所述柔性屏具有相连的弯折区与平直区;
    所述柔性屏包括依次层叠的封装层、发光层、衬底、背膜和支撑片;所述封装层位于所述柔性屏远离所述铰链的一侧,所述支撑片具有完整的表面;
    所述背膜的厚度为15μm-25μm,和/或,所述背膜的模量为3Gpa-5Gpa,和/或,所述支撑片的厚度为0.02mm-0.03mm,以使所述柔性屏在弯折状态下,所述弯折区邻接所述平直区的区域的中性层位于所述封装层与所述发光层之间的界面远离所述封装层的一侧。
  2. 根据权利要求1所述的内折屏电子设备,其特征在于,
    所述柔性屏还包括粘胶层,所述背膜通过所述粘胶层与所述衬底粘接,所述粘胶层的模量为30Kpa-80Kpa。
  3. 根据权利要求2所述的内折屏电子设备,其特征在于,
    所述粘胶层为压敏胶层或光学胶层。
  4. 根据权利要求1-3任一项所述的内折屏电子设备,其特征在于,
    所述背膜为聚酰亚胺膜。
  5. 根据权利要求1-4任一项所述的内折屏电子设备,其特征在于,
    所述支撑片的模量为180Gpa-210Gpa。
  6. 根据权利要求1-5任一项所述的内折屏电子设备,其特征在于,
    所述支撑片为金属片。
  7. 根据权利要求1-6所述的内折屏电子设备,其特征在于,
    所述柔性屏在弯折状态下所述弯折区呈水滴形态。
  8. 根据权利要求1-7任一项所述的内折屏电子设备,其特征在于,
    所述柔性屏还包括相层叠的柔性盖板和偏光片,所述偏光片位于所述柔性盖板与所述封装层之间。
  9. 根据权利要求8所述的内折屏电子设备,其特征在于,
    所述柔性盖板包括相层叠的盖板保护层与盖板基材层,所述盖板基材层位于所述盖板保护层与所述偏光片之间;所述盖板保护层的厚度为40μm-75μm,所述盖板保护层的模量大于或等于4Gpa;所述盖板基材层的厚度为40μm-80μm,所述盖板基材层的模量大于或等于7Gpa。
  10. 根据权利要求9所述的内折屏电子设备,其特征在于,
    所述背膜的厚度为15μm-25μm,所述支撑片的厚度为0.02mm-0.03mm,所述偏光片的厚度为40μm-73μm,所述偏光片的模量小于或等于4Gpa。
PCT/CN2021/102577 2020-06-29 2021-06-26 内折屏电子设备 WO2022001907A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21832543.9A EP4160576A4 (en) 2020-06-29 2021-06-26 ELECTRONIC DEVICE WITH INWARD-FOLDING SCREEN
US18/003,641 US20230240119A1 (en) 2020-06-29 2021-06-26 Inward Foldable Screen Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010605305.0A CN113936550B (zh) 2020-06-29 2020-06-29 内折屏电子设备
CN202010605305.0 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022001907A1 true WO2022001907A1 (zh) 2022-01-06

Family

ID=79272938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102577 WO2022001907A1 (zh) 2020-06-29 2021-06-26 内折屏电子设备

Country Status (4)

Country Link
US (1) US20230240119A1 (zh)
EP (1) EP4160576A4 (zh)
CN (1) CN113936550B (zh)
WO (1) WO2022001907A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114999329A (zh) * 2022-06-30 2022-09-02 武汉天马微电子有限公司 一种柔性显示模组及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887529A (zh) * 2015-12-15 2017-06-23 乐金显示有限公司 有机发光显示装置
CN107068895A (zh) * 2016-12-28 2017-08-18 上海天马微电子有限公司 一种显示面板及其显示器
CN108282560A (zh) * 2018-01-26 2018-07-13 努比亚技术有限公司 柔性屏组件以及移动终端
US20180269426A1 (en) * 2015-10-01 2018-09-20 Sharp Kabushiki Kaisha Electroluminescence device
CN208422962U (zh) * 2018-08-09 2019-01-22 京东方科技集团股份有限公司 可折叠的柔性显示面板和显示装置
CN109564985A (zh) * 2016-08-23 2019-04-02 3M创新有限公司 具有广义层机械兼容性的可折叠显示器设计
CN208737802U (zh) * 2018-08-21 2019-04-12 深圳市柔宇科技有限公司 电子装置及其柔性显示装置
CN109860251A (zh) * 2019-01-30 2019-06-07 武汉华星光电半导体显示技术有限公司 Oled折叠显示屏
CN110675755A (zh) * 2019-10-12 2020-01-10 武汉天马微电子有限公司 可折叠显示装置
CN111047992A (zh) * 2013-06-13 2020-04-21 三星显示有限公司 具有改进的弯曲属性的显示装置及其制造方法
CN111225088A (zh) * 2020-01-13 2020-06-02 Oppo广东移动通信有限公司 折叠屏组件以及电子设备
CN111276629A (zh) * 2020-01-22 2020-06-12 京东方科技集团股份有限公司 柔性显示屏、柔性显示装置及柔性显示屏的制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691925B2 (en) * 2011-09-23 2014-04-08 Az Electronic Materials (Luxembourg) S.A.R.L. Compositions of neutral layer for directed self assembly block copolymers and processes thereof
US9691615B2 (en) * 2015-08-28 2017-06-27 International Business Machines Corporation Chemoepitaxy-based directed self assembly process with tone inversion for unidirectional wiring
CN108470853A (zh) * 2018-04-12 2018-08-31 京东方科技集团股份有限公司 一种柔性显示面板及其制备方法和显示装置
CN112513772A (zh) * 2018-06-15 2021-03-16 深圳市柔宇科技股份有限公司 电子装置及其柔性屏支撑机构
CN109949707B (zh) * 2019-05-06 2021-05-07 惠州Tcl移动通信有限公司 可折叠显示装置
CN110164309B (zh) * 2019-05-24 2022-02-22 武汉天马微电子有限公司 可折叠显示装置
CN110992838B (zh) * 2020-01-03 2022-01-04 武汉华星光电半导体显示技术有限公司 可折叠显示装置及其制造方法
CN111179760B (zh) * 2020-02-21 2022-04-15 京东方科技集团股份有限公司 显示面板和显示面板的弯折方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111047992A (zh) * 2013-06-13 2020-04-21 三星显示有限公司 具有改进的弯曲属性的显示装置及其制造方法
US20180269426A1 (en) * 2015-10-01 2018-09-20 Sharp Kabushiki Kaisha Electroluminescence device
CN106887529A (zh) * 2015-12-15 2017-06-23 乐金显示有限公司 有机发光显示装置
CN109564985A (zh) * 2016-08-23 2019-04-02 3M创新有限公司 具有广义层机械兼容性的可折叠显示器设计
CN107068895A (zh) * 2016-12-28 2017-08-18 上海天马微电子有限公司 一种显示面板及其显示器
CN108282560A (zh) * 2018-01-26 2018-07-13 努比亚技术有限公司 柔性屏组件以及移动终端
CN208422962U (zh) * 2018-08-09 2019-01-22 京东方科技集团股份有限公司 可折叠的柔性显示面板和显示装置
CN208737802U (zh) * 2018-08-21 2019-04-12 深圳市柔宇科技有限公司 电子装置及其柔性显示装置
CN109860251A (zh) * 2019-01-30 2019-06-07 武汉华星光电半导体显示技术有限公司 Oled折叠显示屏
CN110675755A (zh) * 2019-10-12 2020-01-10 武汉天马微电子有限公司 可折叠显示装置
CN111225088A (zh) * 2020-01-13 2020-06-02 Oppo广东移动通信有限公司 折叠屏组件以及电子设备
CN111276629A (zh) * 2020-01-22 2020-06-12 京东方科技集团股份有限公司 柔性显示屏、柔性显示装置及柔性显示屏的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160576A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114999329A (zh) * 2022-06-30 2022-09-02 武汉天马微电子有限公司 一种柔性显示模组及其制备方法
CN114999329B (zh) * 2022-06-30 2023-10-03 武汉天马微电子有限公司 一种柔性显示模组及其制备方法

Also Published As

Publication number Publication date
EP4160576A1 (en) 2023-04-05
CN113936550A (zh) 2022-01-14
US20230240119A1 (en) 2023-07-27
CN113936550B (zh) 2023-02-14
EP4160576A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2020168972A1 (zh) 一种折叠组件、折叠显示终端
WO2021147714A1 (zh) 显示模组及电子设备
TWI640816B (zh) 可撓式電子裝置以及使用可撓式電子裝置的方法
KR102170023B1 (ko) 플렉시블 디스플레이 패널, 이것의 제조 방법 및 플렉시블 디스플레이 장치
US11380856B2 (en) Flexible element, flexible display device and manufacturing method thereof
US20200139672A1 (en) Display device and protective cover window
WO2022188441A1 (zh) 显示装置
WO2021147663A1 (zh) 显示模组及电子设备
WO2021147722A1 (zh) 显示模组及电子设备
WO2021169697A1 (zh) 显示模组及电子设备
US20230182460A1 (en) Display device and method for bonding the same
CN110675755B (zh) 可折叠显示装置
WO2022001907A1 (zh) 内折屏电子设备
WO2021147709A1 (zh) 电子设备
US11940846B2 (en) Display device
CN213342294U (zh) 可折叠电子设备及其显示模组
WO2021037029A1 (zh) 壳体及电子设备
WO2023087366A1 (zh) 柔性显示面板及显示装置
CN112396960A (zh) 缓冲层及显示装置
US12001242B2 (en) Electronic device
CN112562496A (zh) 显示模组及电子设备
CN112565485A (zh) 显示模组及其制作方法、电子设备
US20220058989A1 (en) Flexible display panel and electronic device
CN211980055U (zh) 柔性显示装置及电子设备
WO2022021095A1 (zh) 折叠显示面板、其制作方法及折叠显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021832543

Country of ref document: EP

Effective date: 20221228

NENP Non-entry into the national phase

Ref country code: DE