WO2022000263A1 - 触控结构及触控显示面板 - Google Patents

触控结构及触控显示面板 Download PDF

Info

Publication number
WO2022000263A1
WO2022000263A1 PCT/CN2020/099256 CN2020099256W WO2022000263A1 WO 2022000263 A1 WO2022000263 A1 WO 2022000263A1 CN 2020099256 W CN2020099256 W CN 2020099256W WO 2022000263 A1 WO2022000263 A1 WO 2022000263A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
dummy
finger
main
Prior art date
Application number
PCT/CN2020/099256
Other languages
English (en)
French (fr)
Inventor
何帆
仝可蒙
樊聪
董向丹
张顺
文平
张毅
王予
王思雨
刘庭良
罗昶
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/280,543 priority Critical patent/US11592947B2/en
Priority to EP20943491.9A priority patent/EP4053686A4/en
Priority to JP2022533552A priority patent/JP2023542444A/ja
Priority to CN202080001142.3A priority patent/CN114127671B/zh
Priority to PCT/CN2020/099256 priority patent/WO2022000263A1/zh
Publication of WO2022000263A1 publication Critical patent/WO2022000263A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • At least one of the plurality of second interdigitated fingers includes a second finger portion effective electrode and a second finger portion dummy electrode, and the second finger portion dummy electrode is located at the second finger portion effective electrode Inside and insulated from the effective electrode, the effective electrode of the second finger portion is connected to the second body portion.
  • each complementary portion and its adjacent virtual interdigital portion are juxtaposed along a third direction, and have the same largest dimension along a fourth direction, the third direction being different from the fourth direction.
  • FIG. 4 is a schematic diagram of a touch control structure provided by further embodiments of the present disclosure.
  • FIG. 9A is a schematic diagram of a touch display panel provided by at least one embodiment of the present disclosure.
  • the mutual capacitive touch structure includes a plurality of touch electrodes, and the plurality of touch electrodes include touch driving electrodes and touch sensing electrodes extending in different directions.
  • the touch driving electrodes Tx and the touch sensing electrodes Rx are in Mutual capacitances for touch sensing are formed at the intersections with each other.
  • the touch driving electrodes Tx are used for inputting excitation signals (touch driving signals), and the touch sensing electrodes Rx are used for outputting touch sensing signals.
  • the capacitance value reflecting the coupling points (for example, intersections) of the horizontal and vertical electrodes can be obtained.
  • a finger touches a touch screen (such as a cover glass)
  • the coupling between the touch driving electrodes and the touch sensing electrodes near the touch point is affected, thereby changing the mutual capacitance between the two electrodes at the intersection point. capacitance, resulting in changes in touch sensing signals.
  • the coordinates of the touch point can be calculated according to the data of the two-dimensional capacitance change of the touch screen based on the touch sensing signal.
  • the touch driving circuit 130 obtains the above-mentioned capacitance value through the touch sensing electrode RX, and compares it with the reference capacitance to obtain the capacitance value change amount. According to the data of the capacitance value change amount and the position coordinates of each touch capacitance, The coordinates of the touch point can be calculated.
  • the mutual capacitance between the finger and the touch electrode increases significantly, which seriously affects the touch sensing amount, resulting in false alarm points and false touches; when the touch structure is applied to flexible products, the cover film between the touch structure and the finger (cover film) is thinner, which will further increase the capacitance between the finger and the touch electrode, reducing the touch performance of the product.
  • One solution is to set dummy electrodes in the touch electrodes to reduce the effective area of the touch electrodes and thereby reduce the capacitance between the finger and the touch electrodes. becomes larger to reduce touch sensitivity.
  • FIG. 2 is a touch control structure 20 provided by an embodiment of the present disclosure.
  • the touch control structure includes a plurality of first touch electrodes 210 extending along the first direction D1 and a plurality of first touch electrodes 210 extending along the second direction D2 A plurality of second touch electrodes 220; the first direction D1 is different from the second direction D2, for example, the two are orthogonal.
  • the first touch electrodes 210 are touch sensing electrodes
  • the second touch electrodes 220 are touch driving electrodes.
  • the embodiments of the present disclosure do not limit this.
  • the first touch electrodes 210 may be touch driving electrodes
  • the second touch electrodes 220 may be touch sensing electrodes.
  • the touch electrode structure 20 further includes a first connection part 212 and a second connection part 222 , and the adjacent first touch electrode parts 211 in the first direction D1 are electrically connected through the first connection part 212 to form the first touch control
  • the adjacent second touch electrode parts 221 in the second direction D2 are electrically connected to form the second touch electrodes 220 through the second connection parts 222 .
  • the average side length of each touch unit 200 is P, which is called the pitch of the touch structure 20 .
  • the size range of the pitch P is 3.7mm-5mm, for example, 4mm; this is because the diameter of a human finger in contact with the touch panel is about 4mm.
  • the size of the pitch is the same as the average side length of each first touch electrode portion 211 and the average side length of each second touch electrode portion 221 , and is also the same as that of the adjacent first touch electrode portions 211 .
  • the center distance and the center distance of the adjacent second touch electrode portions 221 are the same.
  • the interdigital portion can increase the perimeter of the touch electrode portion with the same area, thus effectively improving the mutual capacitance without increasing the self-capacitance (capacitive load) of the touch electrode portion, thereby improving the touch sensitivity.
  • the shape of the main body portion 241 may be a circle or a polygon (eg, a rectangle or a rhombus), and the shape of the interdigital portion includes at least one of the following shapes: parallelogram (eg, rectangle), triangle, trapezoid, hexagon, Semicircle; that is, the outer contour of the touch electrode portion can be zigzag, wavy, or the like.
  • each interdigitated portion 242 is a convex shape, that is, a combination of two rectangles; this further increases the side length of the first touch electrode portion 211 compared to the shape of a single rectangle.
  • a plurality of interdigitated portions 242 are distributed around the main body portion 241 of the touch electrode portion.
  • the main body portion 241 is rectangular, and the number of interdigital portions 242 corresponding to each side is 3-10, for example, 6-10.
  • the main body portion may also be circular, and the plurality of interdigitated portions 242 are evenly distributed on the circumference of the circular shape.
  • each interdigitated portion 242 is 1/10-1/3 of the center distance of the adjacent first touch electrode portions 211 , that is, between the center points of the adjacent first touch electrode portions 211 . distance.
  • the center distance is the pitch P of the touch structure.
  • the length may be the average length, maximum length, or minimum length of the interdigitated portion 440 .
  • each interdigitated portion 242 is 1/10-1/4 of the center distance of the adjacent first touch electrode portions 211 , for example, 1/10-1/ of the pitch P of the touch structure. 4.
  • the width may be the average width, maximum width, or minimum width of the interdigitated portion 440 .
  • the distance between adjacent interdigitated portions 242 is 1/20-1/10 of the pitch P of the touch control structure.
  • the distance d may be the average distance, the maximum distance or the minimum distance of the interdigital portion 242 .
  • the first finger dummy electrode 252 and the first finger effective electrode 251 respectively include a plurality of metal meshes, and the two are insulated from each other by the fractures on the metal wires.
  • disposed on the same layer in the present disclosure means that two or more structures are formed by the same film layer through the same or different patterning processes, and therefore the materials are the same.
  • the first finger dummy electrode 252 is spaced apart from the main body portion 241 .
  • the first finger dummy electrode 252 is in a floating state, that is, it is not electrically connected to other structures or does not receive any electrical signals.
  • the outer contour of the first finger dummy electrode 252 may be a regular shape (eg, a rectangle, a diamond, etc.) or an irregular shape.
  • the outer contour refers to a shape obtained by connecting the ends of the first finger dummy electrodes 252 with straight lines.
  • FIG. 3A shows a schematic diagram of a touch control structure provided by another embodiment of the present disclosure, and the figure schematically shows two adjacent first touch electrode parts 211 in the first direction D2 and two adjacent first touch electrode parts 211 in the second direction The two adjacent second touch electrode portions 221 on D2 are electrically connected through the second connection portion 222 .
  • FIG. 3B shows an enlarged schematic view of the area A in FIG. 3A , where the area A corresponds to the boundary between the adjacent first touch electrode parts 211 and the second touch electrode parts 221 .
  • FIG. 3B shows the boundary between the first touch electrode part 211 and the second touch electrode part 221 with dashed lines, and shows the finger dummy electrodes in the interdigital part 242 with a dashed line frame.
  • the first touch electrode part 211 and the second touch electrode part 221 respectively include a plurality of metal meshes formed by connecting a plurality of metal lines.
  • the shape of the metal mesh is a polygon, such as a quadrilateral (eg, a rectangle or a rhombus), a pentagon, a hexagon, and the like.
  • the part of the first finger effective electrode 251 located on either side of the first finger dummy electrode 252 includes at least two signal channels 261 (an example of the first signal channel of the present disclosure), the The signal channel 261 is formed by connecting a plurality of metal lines in sequence, and there is no overlap between the plurality of signal channels (ie, there is no common metal line).
  • the outer contour of the first finger dummy electrode 252 is an irregular polygon, so as to ensure that the first finger effective electrode 251 is located on either side of the first finger dummy electrode 252 and the first finger dummy electrode 252.
  • the portion between the edges of the interdigital portion 242 where the dummy electrode 252 of a finger portion is located includes two signal channels 261 .
  • This arrangement ensures that the touch signal is effectively transmitted on the first effective electrode 251 of the finger, thereby preventing the setting of the dummy electrode from reducing the touch sensitivity.
  • the interdigitated portion 242 of the second touch electrode portion 221 can be similarly configured.
  • FIG. 3B shows the second finger dummy electrode 253 located in the interdigitated portion 242 of the second touch electrode portion 221 .
  • dummy electrodes may also be arranged on the main body of the touch electrode portion to further reduce the effective area of the touch electrodes, thereby reducing the capacitance between the finger and the touch electrodes, and improving the touch performance.
  • the main body portion 251 of the first touch electrode portion 211 includes a first main effective electrode 281 and a first main dummy electrode 282, and the first main effective electrode 281 and the first main dummy electrode 282 are insulated from each other; the The first main effective electrode 281 of the first touch electrode portion 211 and the first finger portion effective electrode 251 are electrically connected to each other to communicate with each other to form a signal channel.
  • the first main dummy electrode 282 is located inside the first main effective electrode 281 .
  • the first main dummy electrode 282 is in a floating state, that is, it is not electrically connected to other structures or does not receive any electrical signals.
  • the first main effective electrode 281 includes at least one strip electrode, and the strip electrode is electrically connected to the first finger effective electrode 251 of the interdigitated portion 242 to form the effective electrode of the first touch electrode portion 211 .
  • the first main dummy electrode 282 includes a plurality of dummy sub-electrodes, and the strip electrodes separate the plurality of dummy sub-electrodes from each other.
  • strip electrodes in the main body of the touch electrode portion By arranging strip electrodes in the main body of the touch electrode portion to separate a plurality of dummy sub-electrodes from each other, it is possible to avoid touch blind spots caused by the continuous arrangement of dummy electrodes. resistance of the touch electrodes.
  • each strip electrode 281b includes at least two signal channels 262 (an example of the second signal channel of the present disclosure), and each signal channel is formed by connecting a plurality of metal wires in sequence, thereby reducing the signal channel The resistance.
  • a signal path 262 is shown schematically in Figure 3C. There is no overlap (ie, no metal lines in common) between the multiple signal paths.
  • each strip-shaped electrode 281b is different from the first direction D1 or the second direction D2.
  • the two strip-shaped electrodes 281b are orthogonal to each other, and the two extending directions are respectively aligned with the first direction D1. 45-degree angle.
  • the two strip electrodes 281b are respectively parallel to the two sides of the main body portion 241 .
  • the strip electrodes 281b can be connected to both sides of the main body of the touch electrodes along the signal transmission direction. For example, as shown in FIG. 3A , the touch signals are transmitted along the first direction D1 on the first touch electrodes 210 . , each strip-shaped electrode 281b runs through both sides of the main body portion 251 along the first direction D1 (ie, the left and right sides in FIG. 3A ) to form a signal channel.
  • the embodiments of the present disclosure do not limit the number of strip electrodes included in the cross structure and the extending direction of each strip electrode, as long as the strip electrodes can form signal channels on both sides of the main body of the touch electrode along the signal transmission direction , and can form an electrical connection with the effective electrode in the interdigitated portion of the touch electrode.
  • the first main effective electrode 381 may include a strip electrode extending along the first direction
  • the first main dummy electrode 282 may include two dummy sub-electrodes separated by the strip electrode.
  • the effective area accounts for 52%-64% of the total area of the touch unit, that is, the area of the dummy electrodes (hollow areas) accounts for 36%-48% of the total area of the touch unit %.
  • An excessively large proportion of the area of the virtual electrodes will lead to an increase in the resistance of the touch electrodes, while an excessively small proportion of the area of the virtual electrodes cannot effectively improve the touch performance of the touch structure in a weakly grounded state.
  • FIG. 4 shows a schematic diagram of a touch control structure provided by another embodiment of the present disclosure, and the figure shows a schematic diagram of a touch control unit 200 .
  • each dummy sub-electrode 282 a in the first main dummy electrode 282 of the first touch electrode part 211 is connected to the interdigital part 242 .
  • the at least one first finger dummy electrode 252 is connected.
  • FIG. 5A shows an enlarged schematic view of the area C in FIG. 3A , the area C is the intersection of the first touch electrodes 210 and the second touch electrodes 220 , that is, the bridge area;
  • FIG. 5B is a section line I-I in FIG. 5A . ' Cutaway view.
  • FIG. 5A the boundary between the adjacent first touch electrode parts 211 and the second touch electrode parts 221 is shown by a dotted line.
  • the touch structure includes a first touch electrode layer 201 , a second touch electrode layer 202 and an insulating layer between the first touch electrode layer 201 and the second touch electrode layer 202 203 , the first touch electrode layer includes a plurality of first metal meshes 52 defined by a plurality of first metal lines 51 , and the second touch electrode layer includes a plurality of second metal meshes defined by a plurality of second metal lines 61 Grid 62.
  • the first touch electrode part 211 and the first connection part 212 of the first touch electrode 210 and the second touch electrode part 221 of the second touch electrode 220 are located in the first touch electrode layer 201 and respectively include multiple a first metal mesh 52 .
  • the second connection portion 222 of the second touch electrode 220 is located in the second touch electrode layer 202, and is electrically connected to the second touch electrode portion 221 through the via hole 230 in the insulating layer 203, so as to connect in the second direction D2
  • the two adjacent second touch electrode portions 221 are electrically connected.
  • the touch control structure 20 may further include a cover plate 34 located above the touch control structure, and the cover plate 34 is, for example, a glass cover plate or an organic flexible cover plate.
  • a transparent protective layer eg, transparent optical glue
  • cover plate 34 may be used instead of the cover plate 34 to protect the touch control structure 20 .
  • FIG. 6A and FIG. 6B respectively correspond to FIG. 5A and show the first touch electrode layer and the second touch electrode layer.
  • FIG. 6A the adjacent first touch electrode part 211 and the second touch electrode part 211 and the second touch electrode are shown by dotted lines.
  • the boundary of the control electrode portion 221 and the first connection portion 212 are marked with a dotted circle.
  • the adjacent second touch electrode parts 221 in the second direction D2 are electrically connected through two second connection parts 222 .
  • the setting of this dual-channel structure can effectively improve the yield of the device. For example, the position where the signal lines cross is prone to short-circuit failure due to electrostatic breakdown of the mutual capacitance.
  • the circuit structure can still work normally through another channel.
  • the orthographic projections of the plurality of first metal lines 51 in the at least two first metal meshes 52 in the second touch electrode part 221 on the second metal mesh layer 60 are respectively associated with each of the second connection parts 222
  • the plurality of second metal lines 61 in the at least two second metal meshes 62 in the at least two second metal meshes 62 overlap, so that the at least two first metal meshes 52 have a plurality of vertices overlapping with the at least two second metal meshes 62 , the via holes 230 are correspondingly arranged at the overlapping vertices, and the vertices corresponding to the via holes 230 are called connection vertices.
  • first metal wire/second metal wire in the present disclosure refers to a metal wire connected between two adjacent vertices of the first metal mesh/second metal mesh, that is, each The first metal line/second metal line corresponds to one edge of the first metal mesh/second metal mesh.
  • the first metal wire 51 directly connected to each connection vertex is complete, that is, connected between two vertexes of the first metal mesh 52 without a fracture therebetween.
  • the first metal mesh 52 where each connection vertex is located is complete, that is, all the first metal lines 51 in the first metal mesh 52 are complete. This arrangement can improve the transmission efficiency and effectiveness of the touch signal input from the second touch electrode portion 221 to the second connection portion 222 .
  • each second connection part 222 includes at least two signal channels 263 , and one signal channel 263 is exemplarily shown in FIG. 6B .
  • the signal channel 263 is composed of a plurality of second metal lines 61 connected end to end, and two ends of the signal channel 263 correspond to the vertices of a second metal mesh 62 respectively, and are connected to the first metal mesh through a via hole 230
  • the connection vertices of the grids 52 are electrically connected, thereby effectively transmitting signals between two adjacent second touch electrode parts 221 .
  • the plurality of signal channels 263 do not have overlapping (shared) second metal lines 61 with each other.
  • the second metal meshes 62 in the second connection portion 222 are all complete meshes, and none of the second metal wires 61 in the second metal meshes 62 have fractures. This is because the number of metal meshes in the second connection part 222 is small, which can improve the yield of the second connection part 222 and ensure the effective transmission of signals.
  • each first touch electrode portion 211 is electrically connected to the adjacent first connection portion 212 through at least one signal channel 264 formed by a plurality of first metal wires 51 connected end to end.
  • FIG. 6A shows that each first touch electrode portion 211 is electrically connected to an adjacent one of the first connecting portions 222 through three signal channels 264 , and each signal channel 264 includes three first metal lines 51 .
  • each first metal line 51 in the signal channel 264 overlaps with the second metal line 61 in the second connecting portion 222 in a direction perpendicular to the first touch electrode layer 201 , thereby Does not affect the pixel aperture ratio.
  • a plurality of signal channels 264 are spaced apart from each other.
  • a metal wire 51 forms the electrical connection.
  • This arrangement can minimize the overlap of the metal lines in the first touch electrode portion 211 and the second connection portion 222, thereby reducing the mutual capacitance between them.
  • the mutual capacitance value between the first touch electrode 210 and the second touch electrode 220 changes due to the touch signal, since the reference mutual capacitance value is small, the change amount is easier to detect, thereby improving the touch control detection sensitivity.
  • the edges of the first metal meshes 52 at the edges of the first connecting portion 212 are defective, for example, at least one edge is missing, so that the second metal lines 61 do not overlap with the first metal lines 51.
  • each of the second connection parts 222 includes second metal meshes 62 connected to each other, each of the second metal meshes includes a second metal line 61a parallel to the second direction D2, each The second metal lines 61 a do not overlap with the first metal lines 51 in a direction perpendicular to the first touch electrode layer 201 .
  • the second metal grids 62 are hexagonal, and each second metal grid includes two second metal lines 61a parallel to the second direction D2.
  • the first connection portion 212 includes, for example, an edge first metal wire with a central fracture, and the fracture separates a first metal wire 51 into two first metal wire segments, the two first metal wire segments are respectively It belongs to the first connection portion 212 and the second touch electrode portion 221 adjacent to the first connection portion 212 , thereby realizing the insulation of the first connection portion 212 and the second touch electrode portion 221 .
  • At least one embodiment of the present disclosure further provides a touch structure including a first touch electrode and a second touch electrode, the first touch electrode extending along a first direction, and the second touch electrode extending along a second direction , the first direction and the second direction intersect;
  • the first touch electrode includes a plurality of first touch electrode parts, each first touch electrode part includes a first main body part and a plurality of first interdigital parts, the A plurality of first interdigitated portions protrude from the first body portion.
  • the first main body portion includes a first main effective electrode and a first main dummy electrode, the first main dummy electrode is located inside the first main effective electrode and is insulated from the first main effective electrode;
  • the first main dummy electrode includes a virtual main body part and a plurality of virtual interdigitated parts, the virtual main body part is rectangular, the plurality of virtual interdigitated parts protrude from the four sides of the rectangle;
  • the first main virtual electrode also includes four complementary parts, the four complementary parts They are respectively arranged corresponding to the four vertices of the virtual main body part, so that the outer contour of the first main virtual electrode is a rectangle.
  • the structure of the first touch electrode in the touch structure of this embodiment can be applied to the touch structure provided by any of the foregoing embodiments.
  • FIG. 7 shows a schematic diagram of the first touch electrode portion in the touch control structure.
  • the first touch electrode part 211 includes a main body part 241 and a plurality of interdigitated parts 242 , and the plurality of first interdigitated parts 241 protrude from the main body part 241 .
  • the main body includes a first main effective electrode 281 and a first main dummy electrode 282 .
  • the first main dummy electrode 282 is located inside the first main effective electrode 281 and is insulated from the first main effective electrode 282 .
  • the first main dummy electrode 282 includes a dummy main body portion 291 and a plurality of dummy interdigital portions 292.
  • the outer contour of the dummy main body portion 291 is a rectangle.
  • a main active electrode 291 is nested and insulated from each other within the same layer.
  • the first main dummy electrode 282 further includes four complementary parts 250 , which are respectively disposed corresponding to the four vertices of the dummy main body part 291 , so that the outer contour of the first main dummy electrode is rectangular.
  • the outlines of the main body portion 241 , the dummy main body portion 291 , and the first main dummy electrode 282 of the first touch electrode portion are respectively indicated by dashed lines.
  • the virtual main body portion 291 is rectangular, including a first side 291a and a second side 291b crossing each other, the first side 291a and the second side 291b respectively extending along the third direction D3 and the fourth direction D4, the third direction D3 and the fourth direction D4 are different, for example, they are orthogonal.
  • the third direction D3 is different from the first direction D1 or the second direction D2; the fourth direction D4 is different from the first direction D1 or the second direction D2.
  • the third direction D3 forms an angle of 45 degrees with both the first direction D1 and the second direction D2
  • the fourth direction D4 forms an angle of 45 degrees with both the first direction D1 and the second direction D2.
  • a plurality of virtual interdigitated portions 292 protrude from the first side 291a along the fourth direction D4, and each virtual interdigitated portion 292 protruding from the first side 291a includes a side edge 292a parallel to the first side 291a;
  • a plurality of dummy interdigitated portions 292 protrude from the second side 292a in the third direction D3, and each dummy interdigitated portion 292 protruding from the second side 292b includes a side 292a parallel to the second side 291b.
  • each virtual interdigitated portion 292 is rectangular or trapezoidal.
  • the plurality of virtual interdigital parts 292 protruding from the same side of the virtual main body part 291 have the same maximum dimension in the protruding direction.
  • the plurality of dummy interdigital portions 292 protruding from the first side 291a are arranged in parallel along the third direction D3, and have the same maximum length along the fourth direction D4.
  • the average size of the plurality of virtual interdigital portions 292 protruding from the same side of the virtual main body portion 291 in the direction orthogonal to the protruding direction is the same.
  • the average dimensions of the plurality of virtual interdigital portions 292 protruding from the first side 291a along the third direction D3 are the same.
  • the main body portion 241 of the first touch electrode portion is a rectangle, and the rectangle is arranged along the third direction D3 and the fourth direction D4 .
  • the interdigitated portions 242 arranged on two opposite sides of the rectangle are arranged in a staggered manner, that is, the interdigitated portions 242 arranged on one side of the rectangle correspond to the interdigitated portions 242 on the opposite side of the side. gap between.
  • the interdigitated portions 242 arranged on the opposite sides of the rectangle in the third direction D3 are staggered in the third direction D3; the interdigitated portions 242 arranged on the opposite sides of the rectangle in the fourth direction D4 are at They are staggered in the fourth direction D4.
  • the virtual interdigital parts 292 provided on two opposite sides of the virtual main body part 291 are in one-to-one correspondence.
  • each side edge of the virtual main body part 291 is provided with two virtual interdigital parts 292 , and the virtual interdigitated parts on the two opposite sides in the third direction or the fourth direction 292 are overlapped in a one-to-one correspondence in the third or fourth direction.
  • each complementary portion 250 is rectangular and includes two sides 250a parallel to the first side 291a and the second side 291b, respectively, and the two sides 250a are respectively located on the outer contour of the first main dummy electrode 282 superior.
  • each complementary portion 250 is juxtaposed with the dummy interdigital portion 292 adjacent to the complementary portion 250 and has the same maximum dimension along the protruding direction of the dummy interdigital portion 292 .
  • the average size of the complementary portion is larger than the average size of the adjacent virtual interdigitated portions 292 .
  • each complementary portion 250 and the virtual body portion 291 are spaced from each other or connected to each other.
  • the touch structure provided by the embodiments of the present disclosure is mainly described by taking the first touch electrode portion as an example, and the above description and arrangement of the first touch electrode portion are also applicable to the second touch electrode portion, which will not be repeated here.
  • the materials of the first touch electrode layer 201 and the second touch electrode layer 202 include metal materials such as aluminum, molybdenum, copper, and silver, or alloy materials of these metal materials, such as silver palladium copper (APC) material or Laminated structure of titanium aluminum titanium (Ti-Al-Ti).
  • metal materials such as aluminum, molybdenum, copper, and silver, or alloy materials of these metal materials, such as silver palladium copper (APC) material or Laminated structure of titanium aluminum titanium (Ti-Al-Ti).
  • the average line width of the first metal line 21 or the second metal line 22 is 3 micrometers.
  • the width (dimension along the length of the wire) of the fracture in the wire is 5.2 microns.
  • the material of the insulating layer 203 can be an inorganic insulating material, for example, the inorganic insulating material is a transparent material.
  • the inorganic insulating material is silicon oxide, silicon nitride, or silicon oxynitride such as silicon oxide, silicon nitride, and silicon oxynitride, or an insulating material including metal oxynitride, such as aluminum oxide and titanium nitride.
  • the material of the insulating layer 203 can also be an organic insulating material to obtain good bending resistance.
  • the organic insulating material is a transparent material.
  • the organic insulating material is OCA optical glue.
  • the organic insulating material may include polyimide (PI), acrylate, epoxy, polymethyl methacrylate (PMMA), and the like.
  • FIG. 8 is a schematic diagram of a touch panel provided by at least one embodiment of the present disclosure.
  • the touch panel 40 includes a touch area 301 and a non-touch area 302 located outside the touch area 301 , and the touch structure 20 is located in the touch area 301 .
  • the first touch electrodes 210 extend along the width direction of the rectangle
  • the second touch electrodes 220 extend along the length direction of the rectangle.
  • the structures of the first touch electrodes and the second touch electrodes are not shown in detail in the figures.
  • the touch panel 40 further includes a plurality of signal lines 450 located in the non-touch area 302 .
  • Each of the first touch electrodes 210 and each of the second touch electrodes 220 are electrically connected to a signal line 450 respectively, and are connected to a touch controller or a touch integrated circuit (not shown in the figure) through the signal line.
  • the first touch electrodes 210 are touch sensing electrodes
  • the second touch electrodes 220 are touch driving electrodes, but the embodiments of the present disclosure are not limited thereto.
  • the touch integrated circuit is, for example, a touch chip, which is used for providing touch driving signals to the second touch electrodes 220 in the touch panel 40 , receiving touch sensing signals from the first touch electrodes 210 , and for pairing
  • the touch sensing signal is processed, for example, the processed data/signal is provided to the system controller, so as to realize the touch sensing function.
  • one end of the plurality of signal lines 450 connected to the touch integrated circuit can be arranged on the same side of the touch control area 301 (eg, the lower side in FIG. 8 ), which can facilitate the connection with the touch control area 301 . Connection of touch integrated circuits.
  • At least one embodiment of the present disclosure further provides a touch display panel, which includes a base substrate, a display structure stacked on the base substrate in sequence, and the touch control structure 20 provided in any of the above embodiments.
  • FIG. 9A shows a schematic plan view of a touch display panel provided by at least one embodiment of the present disclosure
  • FIG. 9B shows a cross-sectional view of FIG. 9A along the section line II-II'.
  • the touch display panel 30 includes a base substrate 31 , a display structure 32 and the above-mentioned touch control structure 20 that are sequentially stacked on the base substrate 31 .
  • the touch control structure 20 is located on the side of the display structure 32 away from the base substrate 31 , and is closer to the user side during use.
  • the display structure 32 includes a plurality of sub-pixels arranged along an array, eg, the pixel array is arranged along a first direction D1 and a second direction D2.
  • the touch display panel is an OLED display panel
  • the plurality of sub-pixels include green sub-pixels (G), red sub-pixels (R) and blue sub-pixels (B).
  • Each sub-pixel includes a light-emitting element 23 and a pixel driving circuit that drives the light-emitting element 23 to emit light.
  • the embodiments of the present disclosure do not limit the type and specific composition of the pixel driving circuit.
  • the pixel driving circuit may be a current driving type or a voltage driving type, and may be a 2T1C (that is, two transistors and one capacitor, the two Each transistor includes a drive transistor and a data write transistor) drive circuit, which can be a drive circuit that further includes a compensation circuit (compensation transistor), a light-emitting control circuit (light-emitting control transistor), a reset circuit (reset transistor), etc. on the basis of 2T1C.
  • FIG. 9B only shows the first transistor 24 in the pixel driving circuit that is directly electrically connected to the light-emitting element 23.
  • the first transistor 24 may be a driving transistor configured to operate in a saturated state and control the driving to emit light. The magnitude of the current that the element 23 emits light.
  • the first transistor 24 may also be a light-emitting control transistor for controlling whether the current for driving the light-emitting element 23 to emit light flows.
  • the embodiment of the present disclosure does not limit the specific type of the first transistor.
  • the light-emitting element 23 is an organic light-emitting diode, and includes a first electrode 231 , a light-emitting layer 233 and a second electrode 232 .
  • One of the first electrode 231 and the second electrode 232 is an anode and the other is a cathode; for example, the first electrode 231 is an anode and the second electrode 232 is a cathode.
  • the light-emitting layer 233 is an organic light-emitting layer or a quantum dot light-emitting layer.
  • the light-emitting element 23 may include auxiliary functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer in addition to the light-emitting layer 233 .
  • the light emitting element 23 is a top emission structure
  • the first electrode 231 is reflective and the second electrode 232 is transmissive or semi-transmissive.
  • the first electrode 231 is a high work function material to act as an anode, such as an ITO/Ag/ITO stack structure
  • the second electrode 232 is a low work function material to act as a cathode, such as a semi-transmissive metal or metal alloy
  • the material is, for example, an Ag/Mg alloy material.
  • the first transistor 24 includes a gate electrode 341 , a gate insulating layer 342 , an active layer 343 , a first electrode 344 and a second electrode 345 , and the second electrode 345 is electrically connected to the first electrode 231 of the light emitting element 23 .
  • the embodiments of the present disclosure do not limit the type, material, and structure of the first transistor 24, for example, it may be a top-gate type, a bottom-gate type, etc., and the active layer 343 of the first transistor 24 may be amorphous silicon, polysilicon (low temperature polysilicon and high temperature polysilicon), oxide semiconductors (eg, indium gallium tin oxide (IGZO)), etc., and the first transistor 24 may be of N type or P type.
  • the transistors used in the embodiments of the present disclosure may all be thin film transistors, field effect transistors, or other switching devices with the same characteristics, and the thin film transistors are used as examples for description in the embodiments of the present disclosure.
  • the source and drain of the transistor used here may be symmetrical in structure, so the source and drain of the transistor may be indistinguishable in structure.
  • one pole is directly described as the first pole, and the other pole is the second pole.
  • the display structure 32 further includes a pixel defining layer 320, the pixel defining layer 320 is disposed on the first electrode 231 of the light-emitting element 23, and a plurality of openings 321 are formed therein, respectively exposing a plurality of sub-pixels
  • the first electrode 231 of each sub-pixel defines the pixel opening area of each sub-pixel
  • the light-emitting layer of the sub-pixel is formed in the pixel opening area
  • the second electrode 232 is formed as a common electrode (that is, shared by a plurality of sub-pixels); in FIG. 9A
  • the pixel opening area 310 of the green sub-pixel, the pixel opening area 320 of the red sub-pixel, and the pixel opening area 330 of the blue sub-pixel are illustrated.
  • the pattern in the second touch electrode layer 202 is not shown in FIG. 9B .
  • the second touch electrode layer 202 is located on the side of the first touch electrode layer 201 close to the base substrate 31 .
  • the orthographic projections of the plurality of first metal lines 51 in the first touch electrode layer 201 and the plurality of second metal lines 61 in the second touch electrode layer 202 on the base substrate 31 are located in the pixel openings of the plurality of sub-pixels
  • the area is outside the orthographic projection of the base substrate 21 , that is, the pixel separation area falling between the pixel opening areas is within the orthographic projection of the base substrate 21 , and the pixel separation area is also the non-opening area of the pixel defining layer 320 322.
  • the pixel separation area is used to separate the pixel opening areas of a plurality of sub-pixels and separate the light-emitting layers of each sub-pixel to prevent cross-color.
  • the meshes of the first metal mesh 52 or the second metal mesh 62 cover at least one pixel opening area.
  • the meshes of the first metal mesh 52 or the second metal mesh 62 cover the pixel opening areas 310 of the two green sub-pixels, and the pixel opening areas 310 of the two green sub-pixels are arranged in pairs and face each other in the second direction. Arranged side by side on D2.
  • the display structure 32 further includes a first encapsulation layer 33 located between the light-emitting element 23 and the touch-control structure 20 , and the encapsulation layer 33 is configured to seal the light-emitting element 23 to prevent external humidity
  • the permeation of gas and oxygen into the light-emitting element and the driving circuit causes damage to devices such as the light-emitting element 23 .
  • the encapsulation layer 33 may be a single-layer structure or a multi-layer structure, for example, including an organic thin film, an inorganic thin film, or a multi-layer structure including alternately stacked organic thin films and inorganic thin films.
  • the touch display panel 30 further includes a buffer layer 22 between the display structure 32 and the touch structure 20 .
  • the buffer layer 22 is formed on the first encapsulation layer 33 for improving the adhesion between the touch control structure 40 and the display structure 32 .
  • the buffer layer 22 is an inorganic insulating layer.
  • the material of the buffer layer 22 can be silicon nitride, silicon oxide or silicon oxynitride.
  • the buffer layer 22 may also include a structure in which silicon oxide layers and silicon nitride layers are alternately stacked.
  • At least one embodiment of the present disclosure further provides an electronic device including the above-mentioned touch display panel 30 .
  • the electronic device can be any product or component with display function and touch function, such as display, OLED panel, OLED TV, electronic paper, mobile phone, tablet computer, notebook computer, digital photo frame, navigator, etc.
  • display OLED panel
  • OLED TV electronic paper
  • mobile phone tablet computer
  • notebook computer digital photo frame, navigator, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控结构及触控显示面板,所述触控结构包括第一触控电极和第二触控电极,所述第一触控电极沿第一方向延伸,所述第二触控电极沿第二方向延伸,所述第一方向和所述第二方向交叉;所述第一触控电极包括串联的多个第一触控电极部,所述多个第一触控电极部的每个包括第一主体部和多个第一叉指部,所述多个第一叉指部从所述第一主体部突出;所述多个第一触控电极部的至少一个的至少一个第一叉指部包括第一指部有效电极和第一指部虚拟电极,所述第一指部虚拟电极与所述第一指部有效电极绝缘,所述第一指部有效电极与所述第一主体部连接。该触控结构可以有效提高触控性能。

Description

触控结构及触控显示面板 技术领域
本公开实施例涉及一种触控结构及触控显示面板。
背景技术
近年来,为了达到携带便利、操作人性化等的目的,诸多电子产品已以触控面板作为输入设备来取代传统的键盘或鼠标。这些整合触控面板作为输入设备的电子装置中,以同时具有触控与显示功能的触控显示装置为现代备受瞩目的产品之一。用于实现触控功能的触控电极结构是影响用户体验的重要因素。
发明内容
本公开至少一实施例提供一种触控结构,包括第一触控电极和第二触控电极,所述第一触控电极沿第一方向延伸,所述第二触控电极沿第二方向延伸,所述第一方向和所述第二方向交叉;所述第一触控电极包括串联的多个第一触控电极部,所述多个第一触控电极部的每个包括第一主体部和多个第一叉指部,所述多个第一叉指部从所述第一主体部突出;所述多个第一触控电极部的至少一个包括虚拟电极,所述虚拟电极的至少部分位于所述至少一个第一触控电极部的至少一个第一叉指部中;所述至少一个第一触控电极部的所述至少一个第一叉指部包括第一指部有效电极,所述虚拟电极与所述第一指部有效电极绝缘,所述第一指部有效电极与所述至少一个第一触控电极部的第一主体部连接。
在一些示例中,所述虚拟电极位于所述至少一个第一叉指部中的部分为第一指部虚拟电极,所述第一指部虚拟电极位于所述第一指部有效电极内部。
在一些示例中,所述多个第一触控电极部和所述多个第二触控电极部分别包括多条金属线连接形成的多个金属网格。
在一些示例中,所述第一指部有效电极位于所述第一指部虚拟电极的任一侧的部分均包括至少两条第一信号通道,所述至少两条第一信号通道的每条由多条金属线依次连接形成。
在一些示例中,所述第一指部虚拟电极的外轮廓为不规则多边形。
所述第一指部有效电极位于所述第一指部虚拟电极的每条边与所述第一指部虚拟电极所在的第一叉指部的边缘之间的部分均包括至少 两条第一信号通道。
在一些示例中,所述第二触控电极包括串联的多个第二触控电极部,所述多个第二触控电极部的每个包括第二主体部和多个第二叉指部,所述多个第二叉指部从所述二主体部突出。
在一些示例中,所述多个第二叉指部中的至少一个包括第二指部有效电极和第二指部虚拟电极,所述第二指部虚拟电极位于所述第二指部有效电极内部并与所述有效电极绝缘,所述第二指部有效电极与所述第二主体部连接。
在一些示例中,所述多个第一叉指部和多个第二叉指部同层绝缘设置,且彼此嵌套排列。
在一些示例中,所述多个第一触控电极部的每个的第一主体部包括第一主要有效电极和第一主要虚拟电极,所述第一主要虚拟电极与所述第一主要有效电极绝缘;所述每个第一触控电极部的第一主要有效电极与第一指部有效电极电连接。
在一些示例中,所述第一主要有效电极包括至少一个条状电极,所述第一主要虚拟电极包括多个虚拟子电极,所述至少一个条状电极将所述多个虚拟子电极彼此分离。
在一些示例中,所述至少一个条状电极的每个包括至少两条第二信号通道,所述至少两条第二信号通道的每条由多条金属线依次连接形成。
在一些示例中,所述多个虚拟子电极中的一个与所述第一指部虚拟电极连接。
在一些示例中,所述第一主要虚拟电极包括虚拟主体部和多个虚拟叉指部,所述多个虚拟叉指部从所述虚拟主体部突出,并与所述第一主要有效电极在同一层内彼此嵌套绝缘。
在一些示例中,所述虚拟主体部为矩形,所述多个虚拟叉指部从所述矩形的四边突出。
在一些示例中,所述第一主要虚拟电极还包括四个互补部,所述四个互补部分别对应所述虚拟主体部的四个顶点设置,从而使得所述第一主要虚拟电极的外轮廓为矩形。
在一些示例中,所述多个第二触控电极部的至少一个的第二主体部包括第二主要有效电极和第二主要虚拟电极,所述第二主要虚拟电极与所述第二主要有效电极绝缘。
在一些示例中,所述第一触控电极与所述第二触控电极在交叉处形成触控单元,所述触控单元包括在交叉处连接的两个第一触控电极部各 自彼此相对的一半以及在所述交叉处连接的两个第二触控电极部各自彼此相对的一半、以及连接所述两个第一触控电极部的第一连接部和连接所述两个第二触控电极部的第二连接部,所述每个触控单元的有效面积占所述触控单元的总面积的36%-48%。
本公开至少一实施例还提供一种触控结构,包括第一触控电极和第二触控电极,所述第一触控电极沿第一方向延伸,所述第二触控电极沿第二方向延伸,所述第一方向和所述第二方向交叉;所述第一触控电极包括多个第一触控电极部,所述多个第一触控电极部的每个包括第一主体部和多个第一叉指部,所述多个第一叉指部从所述第一主体部突出;所述多个第一触控电极部的至少一个的第一主体部包括第一主要有效电极和第一主要虚拟电极;所述第一主要虚拟电极包括虚拟主体部和多个虚拟叉指部,所述虚拟主体部为矩形,所述多个虚拟叉指部从所述矩形的四边突出;所述第一主要虚拟电极还包括四个互补部,所述四个互补部分别对应于所述虚拟主体部的四个顶点设置,从而使得所述第一主要虚拟电极的外轮廓为矩形。
在一些示例中,所述每个互补部和与其相邻的虚拟叉指部沿第三方向并列设置,且沿第四方向的最大尺寸相同,所述第三方向与所述第四方向不同。
在一些示例中,所述四个互补部的每个与所述虚拟主体部彼此间隔或彼此连接。
本公开至少一实施例还提供一种触控显示面板,包括衬底基板以及层叠设置于所述衬底基板上的显示结构和以上任一实施例提供的触控结构。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,并非对本公开的限制。
图1为一种触控结构的工作原理示意图;
图2为本公开至少一实施例提供的触控结构的示意图;
图3A为本公开另一些实施例提供的触控结构的示意图;
图3B为图3A中区域A的放大示意图;
图3C为图图3A中区域B的放大示意图;
图4为本公开又一些实施例提供的触控结构的示意图;
图5A为图3A中区域C的放大示意图;
图5B为图5A沿剖面线I-I’的剖视图;
图6A和图6B分别示出了第一触控电极层和第二触控电极层;
图7为本公开再一些实施例提供的触控结构的示意图;
图8为本公开至少一实施例提供的触控面板的示意图;
图9A为本公开至少一实施例提供的触控显示面板的示意图;以及
图9B为图9A沿剖面线II-II’的剖视图。
具体实施方式
下面将结合附图,对本公开实施例中的技术方案进行清楚、完整地描述参考在附图中示出并在以下描述中详述的非限制性示例实施例,更加全面地说明本公开的示例实施例和它们的多种特征及有利细节。应注意的是,图中示出的特征不是必须按照比例绘制。本公开省略了已知材料、组件和工艺技术的描述,从而不使本公开的示例实施例模糊。所给出的示例仅旨在有利于理解本公开示例实施例的实施,以及进一步使本领域技术人员能够实施示例实施例。因而,这些示例不应被理解为对本公开的实施例的范围的限制。
除非另外特别定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。此外,在本公开各个实施例中,相同或类似的参考标号表示相同或类似的构件。
有机发光二极管(OLED)显示面板具有自发光、对比度高、能耗低、视角广、响应速度快、可用于挠曲性面板、使用温度范围广、制造简单等特点,具有广阔的发展前景。为了满足用户多样化的需求,在显示面板中集成多种功能,如触控功能、指纹识别功能等具有重要的意义。例如,在OLED显示面板中形成外挂式(on-cell)触控结构是一种实现方式,该方式通过将触控结构形成于OLED显示面板的封装膜之上,从而实现显示面板的触控功能。
例如,互容式触控结构包括多个触控电极,该多个触控电极包括不同方向延伸的触控驱动电极和触控感测电极,触控驱动电极Tx和触控感测电极Rx在彼此交叉处形成用于触控感测的互电容。触控驱动电极Tx用于输入激励信号(触控驱动信号),触控感测电极Rx用于输出触控感测信号。通过向例如纵向延伸的触控驱动电极输入激励信号,从例如横向延伸的触控感测电极接收触控感测信号,这样可以得到反映横向和纵向电极耦合点(例如交叉点)的电容值大小的检测信号。当手指触 摸到触摸屏(例如盖板玻璃)时,影响了触摸点附近的触控驱动电极和触控感测电极之间的耦合,从而改变了这两个电极之间在交叉点处互电容的电容量,从而导致触控感测信号出现变化。根据基于触控感测信号的触摸屏二维电容变化量的数据,可以计算出触摸点的坐标。
图1示出了一种互容式触控结构的原理图。如图1所示,在触控驱动电路130的驱动下,触控驱动电极Tx被施加触控驱动信号,并由此产生电场线E,该电场线E被触控感测电极Rx接收形成参考电容。当手指触摸到触摸屏110上,由于人体是导体,触控驱动电极Tx产生的一部分电场线E被引导至手指形成手指电容(Finger Capacitance),减少了触控感测电极Rx所接收的电场线E,因此触控驱动电极Tx和触控感测电极Rx之间的电容值减小。触控驱动电路130通过触控感测电极RX来获得上述的电容值大小,并与参考电容比较从而获得电容值变化量,根据该电容值变化量的数据以及结合各个触控电容的位置坐标,可以计算出触摸点的坐标。
在弱接地状态(Low Ground Mass,LGM)下,触控结构与大地之间的电容C0较小,电荷从触控结构转移至大地的难度增加,导致触控驱动电路采集的信号量较小,触控性能较弱甚至无法实现触控。研究发现,在弱接地状态下,触控性能与手指和触控电极之间的互电容有关,该互电容越大,触控性能越弱,例如在大手指触控、多指触控时,手指与触控电极间的互容显著增加,严重影响触控感应量,导致误报点、误触发生;当该触控结构应用于柔性产品时,由于触控结构与手指之间的覆盖膜(cover film)较薄,会进一步增加手指与触控电极之间的电容,降低产品的触控性能。
一种解决方案是在触控电极中设置虚拟电极,以降低触控电极的有效面积从而降低手指与触控电极之间的电容,然而,虚拟电极的面积过大又会导致触控电极的电阻变大,降低触控灵敏度。
本公开至少一实施例提供一种触控结构,包括第一触控电极和第二触控电极,所述第一触控电极沿第一方向延伸,所述第二触控电极沿第二方向延伸,所述第一方向和所述第二方向交叉;所述第一触控电极包括串联的多个第一触控电极部,所述多个第一触控电极部的每个包括第一主体部和多个第一叉指部,所述多个第一叉指部从所述第一主体部突出;至少一个第一触控电极部包括虚拟电极,该虚拟电极的至少部分位于至少一个第一叉指部,该至少一个第一叉指部包括第一指部有效电极,所述第一指部虚拟电极与所述有效电极绝缘,所述第一指部有效电极与所述第一主体部连接。
本公开实施例提供的触控结构,通过在触控电极的叉指部中设置虚拟电极以降低触控电极的有效面积,同时可以避免触控电极的主体部中因虚拟电极面积过大而导致电阻增大,从而提高了触控结构在弱接地状态下的触控性能。
图2是本公开实施例提供的一种触控结构20,如图2所示,该触控结构包括沿第一方向D1延伸的多条第一触控电极210和沿第二方向D2延伸的多条第二触控电极220;第一方向D1与第二方向D2不同,例如二者正交。例如,该第一触控电极210为触控感测电极,第二触控电极220为触控驱动电极。然而,本公开实施例并不对此进行限制。在其它示例中,第一触控电极210可以是触控驱动电极,而第二触控电极220为触控感测电极。
每条第一触控电极210包括沿第一方向D1依次布置且串联的第一触控电极部211,每条第二触控电极220包括沿第二方向D2依次布置且串联的第二触控电极部221。如图2所示,每个第一触控电极部211和第二触控电极部221的外轮廓均为菱形块状。在其它示例中,该第一触控电极部211和第二触控电极部221的外轮廓也可以是其它形状,如三角形、条形等形状。
该触控电极结构20还包括第一连接部212和第二连接部222,在第一方向D1上相邻的第一触控电极部211通过第一连接部212电连接形成该第一触控电极210,在第二方向D2上相邻的第二触控电极部221通过第二连接部222电连接形成该第二触控电极220。
每条第一触控电极210和每条第二触控电极220彼此绝缘交叉并在交叉处形成多个触控单元200,每个触控单元200包括在交叉处连接的两个第一触控电极部211的各一部分以及在该交叉处连接的两个第二触控电极部221的各至少一部分。图2在右侧示出了一个触控单元200的放大示意图。如图所示,每个触控单元20包括彼此邻接的两个第一触控电极部211的各一半区域以及彼此邻接的两个第二触控电极部221的各一半区域,也即平均包括一个第一触控电极部111的区域和一个第二触控电极部221区域,每个触控单元200中的第一触控电极部211与第二触控电极部221的交汇点(也即第一连接部与第二连接部的交叉处)形成用于计算坐标的基准点。当手指触摸到电容屏时,影响了触摸点附件第一触控电极和第二触控电极之间的耦合,从而改变了这两个电极之间的互电容量。根据触摸屏电容变化量数据,可以基于该基准点计算出每一个触摸点的坐标。例如,每个触控单元200的面积与人的手指与触控面板接触的面积相当,该触控单元的面积过大可能造成面板上出 现触控盲点,过小则会造成误触信号。
每个触控单元200的平均边长为P,称为该触控结构20的节距(Pitch)。例如,该节距P的大小范围为3.7mm-5mm,例如为4mm;这是因为人的手指与触控面板接触的直径为4mm左右。例如,该节距的大小与每个第一触控电极部211的平均边长以及每个第二触控电极部221的平均边长相同,也与相邻的第一触控电极部211的中心距离、相邻的第二触控电极部221的中心距离相同。
如图2所示,第一触控电极部211和第二触控电极部221分别包括主体部241(本公开第一主体部或第二主体部的一个示例)和从该主体部241突出的多个叉指部242(本公开第一叉指部或第二叉指部的一个示例),该第一触控电极部211的多个叉指部242与相邻的第二触控电极部221的多个叉指部242同层绝缘设置,且彼此嵌套排列。
该叉指部可以在同等面积下提高触控电极部的周长,因此在不增大触控电极部的自电容(电容负载)的情形下有效提高互电容量,从而提高触控灵敏度。例如,该主体部241的形状可以是圆形或多边形(例如为矩形或菱形),该叉指部的形状包括如下形状至少之一:平行四边形(例如矩形)、三角形、梯形、六边形、半圆形;也即该触控电极部的外轮廓可以是锯齿形、波浪形等。如图2所示,每个叉指部242为凸字形,即两个矩形的组合;这比起单个矩形的形状更进一步增加了第一触控电极部211的边长。
例如,多个叉指部242分布在触控电极部的主体部241的周边。例如,该主体部241为矩形,每个边对应的叉指部242的数目为3-10,例如6-10。在另一些示例中,该主体部也可以是圆形,多个叉指部242均匀分布在该圆形的圆周上。
例如,每个叉指部242的长度为相邻的第一触控电极部211的中心距离的1/10-1/3,也即相邻的第一触控电极部211的中心点之间的距离。例如,该中心距离为该触控结构的节距P。对于不规则的叉指部,例如,该长度可以是该叉指部440的平均长度、最大长度或最小长度。
例如,每个叉指部242的宽度为相邻的第一触控电极部211的中心距离的1/10-1/4,例如为该触控结构的节距P的1/10-1/4。对于不规则的叉指部,例如,该宽度可以是该叉指部440的平均宽度、最大宽度或最小宽度。
例如,相邻叉指部242之间的间距为该触控结构的节距P的1/20-1/10。对于相邻叉指间距不均一的情形,例如,该间距d可以是该叉指部242的平均间距、最大间距或最小间距。
如图2所示,该第一触控电极部211的至少一个叉指部242包括第一指部有效电极251和第一指部虚拟电极252,该第一指部虚拟电极252与该第一指部有效电极251绝缘,该第一指部有效电极251与该第一触控电极部211的主体部241连接。该第一指部有效电极251为该第一触控电极部211中能够进行有效电连接并起到有效检测作用的部分。例如,该第一指部虚拟电极252位于该第一指部有效电极251的内部。例如,该第一指部虚拟电极252被该第一指部有效电极251完全包围;或者该第一指部虚拟电极252被该第一指部有效电极251部分包围,例如该第一指部虚拟电极252的至少一边可以不与该第一指部有效电极251直接相邻,例如该第一指部虚拟电极252的至少一边可以与该第一触控电极部211的主体部241相邻。例如,该第一指部虚拟电极252还以与位于该第一触控电极部211的主体部241中的虚拟电极连接。本公开实施例对此不作限制。例如,该第一指部虚拟电极252和该第一指部有效电极251同层设置且彼此绝缘,可以看作该第一指部有效电极251中存在镂空区域,该第一指部虚拟电极252位于该镂空区中并与该第一指部有效电极251间隔设置。
例如,该第一指部虚拟电极252和该第一指部有效电极251分别包括多个金属网格,且二者通过金属线上的断口彼此绝缘。
需要说明的是,本公开中的“同层设置”是指两个或多个结构由同一膜层经相同或不同的构图工艺形成,因此材料相同。
例如,该第一指部虚拟电极252与主体部241间隔。
例如,该第一指部虚拟电极252为浮置(floating)状态,也即不与其它结构电连接或者不接收任何电信号。
例如,第一指部虚拟电极252的外轮廓可以为规则形状(例如矩形、菱形等)或不规则形状。
例如,该外轮廓是指用直线将该第一指部虚拟电极252的端部连接起来得到的形状。
图3A示出了本公开另一实施例提供的触控结构的示意图,图中示意性地示出了在第一方向D2上相邻的两个第一触控电极部211和在第二方向D2上相邻的两个第二触控电极部221,该两个第二触控电极部221通过第二连接部222电连接。图中示意性地用虚线示出了相邻的触控电极部之间的分界。
图3B示出了图3A中区域A的放大示意图,该区域A对应于相邻的第一触控电极部211和第二触控电极部221的边界。图3B用虚线示出了第一触控电极部211和第二触控电极部221的边界,并用虚线框示 出了叉指部242中的指部虚拟电极。
例如,如图3B所示,第一触控电极部211和第二触控电极部221分别包括由多条金属线连接形成的多个金属网格。例如,该金属网格的形状为多边形,如四边形(例如矩形或菱形)、五边形、六边形等。
如图3B所示,该第一指部有效电极251位于该第一指部虚拟电极252的任一侧的部分均包括至少两条信号通道261(本公开第一信号通道的一个示例),该信号通道261由多条金属线依次连接形成,多条信号通道之间没有重叠(也即没有共用的金属线)。
例如,如图3B所示,该第一指部虚拟电极252的外轮廓为不规则的多边形,从而确保该第一指部有效电极251位于该第一指部虚拟电极252的任一边与该第一指部虚拟电极252所在的叉指部242的边缘之间的部分均包括两条信号通道261。
这种设置保证触控信号在该第一指部有效电极251上有效传输,从而避免引虚拟电极的设置降低了触控灵敏度。
例如,对于第二触控电极部221的叉指部242也可以进行类似的设置,图3B示出了位于第二触控电极部221的叉指部242中的第二指部虚拟电极253。具体描述可以参考关于第一指部虚拟电极252的描述,此处不再赘述。
例如,还可以在触控电极部的主体部设置虚拟电极以进一步降低触控电极的有效面积,从而降低手指与触控电极之间的电容,提高触控性能。
如图3A所示,第一触控电极部211的主体部251包括第一主要有效电极281和第一主要虚拟电极282,该第一主要有效电极281和第一主要虚拟电极282彼此绝缘;该第一触控电极部211的第一主要有效电极281与其第一指部有效电极251彼此电连接以彼此连通形成信号通道。例如,该第一主要虚拟电极282位于该第一主要有效电极281的内部。
例如,该第一主要虚拟电极282为浮置状态,也即不与其它结构电连接或者不接收任何电信号。
例如,该第一主要有效电极281包括至少一个条状电极,该条状电极与叉指部242的第一指部有效电极251电连接以形成该第一触控电极部211的有效电极。该第一主要虚拟电极282包括多个虚拟子电极,该条状电极将多个虚拟子电极彼此分离。
通过在触控电极部的主体部中设置条状电极将多个虚拟子电极彼此分离,可以避免虚拟电极连续设置而造成触控盲点,同时该交叉结构 在虚拟电极的内部形成有效信号通道,降低该触控电极的电阻。
图3C示出了图3A中区域B的放大示意图。结合图3A和图3C所示,该第一主要有效电极381包括彼此交叉连接的两个条状电极281a,该第一主要虚拟电极282包括四个虚拟子电极282a,该两个条状电极281a彼此交叉定义出四个区域,该四个虚拟子电极282a分别位于该四个区域中。例如,每个虚拟子电极282a均与位于叉指部242中的第一指部虚拟电极252彼此间隔。
例如,如图3C所示,每个条状电极281b包括至少两条信号通道262(本公开第二信号通道的一个示例),每条信号通道由多条金属线依次连接形成,从而降低信号通道的电阻。图3C中示意性地示出了一条信号通道262。多条信号通道之间没有重叠(也即没有共用的金属线)。
例如,每个条状电极281b的延伸方向与第一方向D1或第二方向D2均不相同,例如,该两个条状电极281b彼此正交,且二者延伸方向分别与第一方向D1成45度角。例如,该两个条状电极281b分别与该主体部241的两条边平行。
该条状电极281b可以将该触控电极的主体部沿信号传输方向的两侧形成连通,例如,如图3A所示,触控信号在该第一触控电极210上沿第一方向D1传输,每个条状电极281b均贯穿将该主体部251沿第一方向D1上的两侧(也即图3A中的左右两侧)形成信号通道。
本公开实施例对于交叉结构所包括的条状电极的数目以及各条状电极的延伸方向不作限制,只要该条状电极可以在该触控电极的主体部沿信号传输方向的两侧形成信号通道,并能与该触控电极的叉指部中的有效电极形成电连接即可。例如,在另一些示例中,该第一主要有效电极381可以包括沿第一方向延伸的一个条状电极,将第一主要虚拟电极282包括被该条状电极分离的两个虚拟子电极。
例如,对于每个触控单元200,有效面积占该触控单元的总面积的52%-64%,也即虚拟电极(镂空区)的面积占该触控单元的总面积的36%-48%。虚拟电极面积占比过大将导致触控电极的电阻增高,虚拟电极面积占比过小则不能有效提高弱接地状态下触控结构的触控性能。
图4示出了本公开又一实施例提供的触控结构的示意图,图中示出了一个触控单元200的示意图。与图3A所示实施例不同的是,图4所示的触控结构中,第一触控电极部211的第一主要虚拟电极282中的每个虚拟子电极282a均与叉指部242中的至少一个第一指部虚拟电极252连接。
图5A示出了图3A区域C的放大示意图,该区域C为第一触控电极210与第二触控电极220的交汇点,也即桥接区;图5B为图5A沿剖面线I-I’的剖视图。图5A中用虚线示出了相邻的第一触控电极部211与第二触控电极部221的边界。
结合参考图5A-5B,该触控结构包括第一触控电极层201、第二触控电极层202以及位于该第一触控电极层201和第二触控电极层202之间的绝缘层203,该第一触控电极层包括多条第一金属线51定义的多个第一金属网格52,第二触控电极层包括多条第二金属线61定义的多个第二金属网格62。第一触控电极210的第一触控电极部211和第一连接部212以及第二触控电极220的第二触控电极部221均位于该第一触控电极层201,且分别包括多个第一金属网格52。该第二触控电极220的第二连接部222位于第二触控电极层202,并通过绝缘层203中的过孔230与第二触控电极部221电连接,从而将在第二方向D2上相邻的两个第二触控电极部221电连接。
例如,如图5B所示,该触控结构20还可以包括位于该触控结构上方的盖板34,该盖板34例如为玻璃盖板或有机柔性盖板。
在另一些示例中,也可以采用透明保护层(如透明光学胶)代替该盖板34以对该触控结构20进行保护。
图6A和图6B分别对应图5A示出了该第一触控电极层和该第二触控电极层,图6A中用虚线示出了相邻的第一触控电极部211与第二触控电极部221的边界,并用虚线圈出了第一连接部212。
结合参考图5A-5B和图6A-6B,例如,在第二方向D2上相邻的第二触控触控电极部221通过两个第二连接部222电连接。这种双通道结构的设置这样可以有效提高器件的良率。例如,信号线交叉的位置容易因互电容发生静电击穿而导致短路不良,在检测过程中当检测到该两个第二连接部222的一个通道发生短路不良,即便将该通道切除(例如通过激光切割),电路结构仍可以通过另一个通道进行正常工作。
例如,第二触控电极部221中的至少两个第一金属网格52中的多条第一金属线51在第二金属网格层上60的正投影分别与每个第二连接部222中的至少两个第二金属网格62中的多条第二金属线61重叠,使得该至少两个第一金属网格52具有与该至少两个第二金属网格62重叠的多个顶点,过孔230即对应设置于该重叠的顶点处,该对应设置有过孔230的顶点称为连接顶点。
需要说明的是,本公开中的第一金属线/第二金属线指的是连接于第一金属网格/第二金属网格的相邻的两个顶点之间的金属线,也即每 条第一金属线/第二金属线对应于第一金属网格/第二金属网格的一条边。
例如,与每个连接顶点直接连接的第一金属线51都是完整的,也即连接于第一金属网格52的两个顶点之间而中间不存在断口。例如,每个连接顶点所在的第一金属网格52都是完整的,也即该第一金属网格52中的所有第一金属线51都是完整的。这种设置可以提高触控信号由该第二触控电极部221输入该第二连接部222的传输效率和有效性。
例如,每个第二连接部222包括至少两条信号通道263,图6B中示例性地示意出了一条信号通道263。该信号通道263由首尾依次相接的多条第二金属线61构成,且该信号通道263的两端分别对应一个第二金属网格62的顶点,并通过一个过孔230与第一金属网格52的连接顶点电连接,从而有效地将信号在相邻的两个第二触控电极部221之间进行传输。例如,多条信号通道263彼此之间没有重叠(共用)的第二金属线61。
例如,如图6B所示,第二连接部222中的第二金属网格62均为完整网格,且该第二金属网格62中的第二金属线61均不出现断口。这是由于第二连接部222中的金属网格数较少,这样可以提高第二连接部222的良率,保证信号的有效传输。
例如,如图6A所示,每个第一触控电极部211通过至少一条由首尾依次相接的多条第一金属线51构成的信号通道264与相邻的第一连接部212电连接。图6A示出了每个第一触控电极部211与相邻的一个第一连接部222通过三条信号通道264电连接,每条信号通道264包括三条第一金属线51。结合参考图5A和图6B,该信号通道264中的每条第一金属线51与第二连接部222中的第二金属线61在垂直于第一触控电极层201的方向上重叠,从而不影响像素开口率。
例如,如图6A所示,多条信号通道264彼此间隔设置。该第一触控电极部211中的第一金属网格52与第一连接部212中的第一金属网格52之间没有共用的第一金属线51,也即二者并不通过共用第一金属线51形成电连接。
这种设置可以尽量减小第一触控电极部211和第二连接部222中的金属线的重叠,从而减少二者之间的互电容。当第一触控电极210和第二触控电极220之间的互电容值由于触摸信号而发生变化时,由于基准互电容值较小,因此该变化量更容易得到检测,由此提高了触控检测的灵敏度。
例如,如图6A所示,位于第一连接部212边缘的边缘第一金属网 格52均出现了残缺,例如至少缺少一条边,从而使得第二金属线61不与第一金属线51重叠。
例如,结合参考图6A和图6B,每个第二连接部222包括彼此连接的第二金属网格62,每个第二金属网格包括与第二方向D2平行的第二金属线61a,每条第二金属线61a均与第一金属线51在垂直于第一触控电极层201的方向上不重叠。例如,该第二金属网格62为六边形,每个第二金属网格包括与第二方向平行D2的两条第二金属线61a。
例如,如图6A所示,该第一连接部212的边缘第一金属线中,除了与信号通道264进行电连接的第一金属线,其余都在远离该第一连接部212的端部形成了断口(缺口)。如图6A所示,该第一连接部212例如包括具有中部断口的边缘第一金属线,该断口将一条第一金属线51分离为两条第一金属线段,该两条第一金属线段分别属于该第一连接部212以及与该第一连接部212相邻的第二触控电极部221,由此实现该第一连接部212与该第二触控电极部221的绝缘。
本公开至少一实施例还提供一种触控结构,包括第一触控电极和第二触控电极,该第一触控电极沿第一方向延伸,该第二触控电极沿第二方向延伸,该第一方向和第二方向交叉;该第一触控电极包括多个第一触控电极部,每个第一触控电极部包括第一主体部和多个第一叉指部,该多个第一叉指部从所述第一主体部突出。该第一主体部包括第一主要有效电极和第一主要虚拟电极,该第一主要虚拟电极位于该第一主要有效电极的内部并与该第一主要有效电极绝缘;该第一主要虚拟电极包括虚拟主体部和多个虚拟叉指部,该虚拟主体部为矩形,该多个虚拟叉指部从该矩形的四边突出;该第一主要虚拟电极还包括四个互补部,该四个互补部分别对应于该虚拟主体部的四个顶点设置,从而使得该第一主要虚拟电极的外轮廓为矩形。
本实施例的触控结构中的第一触控电极的结构可以应用于前述任一实施例提供的触控结构。
图7示出了该触控结构中第一触控电极部的示意图。如图7所示,该第一触控电极部211包括主体部241和多个叉指部242,多个第一叉指部241从该主体部241突出。该主体部包括第一主要有效电极281和第一主要虚拟电极282,该第一主要虚拟电极282位于该第一主要有效电极281的内部并与该第一主要有效电极282绝缘。该第一主要虚拟电极282包括虚拟主体部291和多个虚拟叉指部292,该虚拟主体部291的外轮廓为矩形,多个虚拟叉指部292从该矩形的四边突出,并与该第一主要有效电极291在同一层内彼此嵌套绝缘。该第一主要虚拟电极282 还包括四个互补部250,该四个互补部250分别对应于该虚拟主体部291的四个顶点设置,从而使得该第一主要虚拟电极的外轮廓为矩形。图7中分别用虚线示意出了该第一触控电极部的主体部241、虚拟主体部291以及第一主要虚拟电极282的外轮廓。
例如,该虚拟主体部291为矩形,包括彼此交叉的第一边291a和第二边291b,该第一边291a和第二边291b分别沿第三方向D3和第四方向D4延伸,第三方向D3和第四方向D4不同,例如二者正交。例如,第三方向D3与第一方向D1或第二方向D2不同;第四方向D4与第一方向D1或第二方向D2不同。例如,第三方向D3与第一方向D1和第二方向D2均成45度角,第四方向D4与第一方向D1和第二方向D2均成45度角。
例如,多个虚拟叉指部292从该第一边291a沿第四方向D4突出,从该第一边291a突出的每个虚拟叉指部292包括与该第一边291a平行的侧边292a;多个虚拟叉指部292从该第二边292a沿第三方向D3突出,从该第二边292b突出的每个虚拟叉指部292包括与该第二边291b平行的侧边292a。例如,位于该虚拟主体部291的同一边上的多个虚拟叉指部292的侧边292a彼此对齐,并列地位于一条虚拟直线上,该虚拟直线即为该第一主要虚拟电极282的外轮廓的一部分。例如,每个虚拟叉指部292为矩形或梯形。
例如,从该虚拟主体部291的同一侧边突出的多个虚拟叉指部292沿突出方向的最大尺寸相同。例如,如图7所示,从该第一边291a突出的多个虚拟叉指部292沿第三方向D3并列设置,并沿第四方向D4的最大长度相同。
例如,从该虚拟主体部291的同一侧边突出的多个虚拟叉指部292沿与突出方向正交的方向的平均尺寸相同。例如,如图7所示,从该第一边291a突出的多个虚拟叉指部292沿第三方向D3的平均尺寸相同。
例如,如图7所示,该第一触控电极部的主体部241为矩形,该矩形沿第三方向D3和第四方向D4布置。在该矩形相对的两个边上布置的叉指部242交错设置,也即在该矩形的一条侧边上设置的叉指部242对应于与该侧边相对的侧边上的叉指部242间的间隙。例如,该矩形在第三方向D3相对的两个边上布置的叉指部242在第三方向D3上交错设置;该矩形在第四方向D4相对的两个边上布置的叉指部242在第四方向D4上交错设置。
例如,如图7所示,该虚拟主体部291的相对的两条侧边上设置的虚拟叉指部292一一对应。例如,如图7所示,该虚拟主体部291的每 条侧边上设置有两个虚拟叉指部292,在第三方向或第四方向上相对的两条侧边上的虚拟叉指部292在该第三方向或第四方向一一对应重叠。
例如,每个互补部250为矩形,并包括与该第一边291a和第二边291b分别平行的两个侧边250a,该两个侧边250a分别位于该第一主要虚拟电极282的外轮廓上。
例如,每个互补部250和与该互补部250相邻的虚拟叉指部292并列且沿该虚拟叉指部292的突出方向的最大尺寸相同。
例如,对于每个互补部250,在与该互补部250相邻的虚拟叉指部292的突出方向(例如图7所示第三方向D3或第四方向D4)的正交的方向(例如图7所示第四方向D4或第三方向D3)上,该互补部的平均尺寸比该相邻的虚拟叉指部292的平均尺寸大。
例如,如图7所示,每个互补部250与该虚拟主体部291彼此间隔或彼此连接。
本公开实施例提供的触控结构主要以第一触控电极部为例进行说明,上述对第一触控电极部的描述和设置同样适用于第二触控电极部,此处不再赘述。
例如,该第一触控电极层201和第二触控电极层202的材料包括铝、钼、铜、银等金属材料或者这些金属材料的合金材料,例如为银钯铜合金(APC)材料或钛铝钛(Ti-Al-Ti)的层叠结构。
例如,第一金属线21或第二金属线22的平均线宽为3微米。例如,金属线上的断口的宽度(沿所在金属线长度方向的尺寸)为5.2微米。
例如,该绝缘层203的材料可以为无机绝缘材料,例如该无机绝缘材料为透明材料。例如该无机绝缘材料为氧化硅、氮化硅、氮氧化硅等硅的氧化物、硅的氮化物或硅的氮氧化物,或者氧化铝、氮化钛等包括金属氮氧化物绝缘材料。
例如,该绝缘层203的材料也可以是有机绝缘材料,以获得良好的耐弯折性。例如,该有机绝缘材料为透明材料。例如,该有机绝缘材料为OCA光学胶。例如,该有机绝缘材料可以包括聚酰亚胺(PI)、丙烯酸酯、环氧树脂、聚甲基丙烯酸甲酯(PMMA)等。
本公开实施例还提供一种触控面板,包括上述触控结构。图8为本公开至少一实施例提供的触控面板的示意图。如图8所示,该触控面板40包括触控区301和位于该触控区301以外的非触控区302,该触控结构20位于该触控区301。例如,该第一触控电极210沿该矩形的宽度方向延伸,该第二触控电极220沿该矩形的长度方向延伸。为了清楚起见,图中并未详细示出该第一触控电极和第二触控电极的结构。
例如,如图8所示,该触控面板40还包括位于该非触控区302的多条信号线450。每条第一触控电极210和每条第二触控电极220分别与一条信号线450电连接,并通过该信号线连接至触控控制器或触控集成电路(图中未示出)。例如,第一触控电极210为触控感测电极,第二触控电极220为触控驱动电极,然而本公开实施例并不对此进行限制。
该触控集成电路例如为触控芯片,用于为向该触控面板40中的第二触控电极220提供触控驱动信号并从该第一触控电极210接收触控感测信号以及对该触控感测信号进行处理,例如将处理的数据/信号提供给***控制器,以实现触控感应功能。
例如,如图8所示,该多条信号线450与该触控集成电路连接的一端可以均布置在该触控区301的同一侧(例如图8中的下侧),这样可以便于与该触控集成电路的连接。
本公开至少一实施例还提供一种触控显示面板,包括衬底基板以及依次层叠设置于该衬底基板上的显示结构和上述任一实施例提供的触控结构20。
图9A示出了本公开至少一实施例提供的触控显示面板的平面示意图,图9B示出了图9A沿剖面线II-II’的剖视图。
结合参考图9A和图9B,该触控显示面板30包括衬底基板31以及依次层叠设置于衬底基板31上的显示结构32和上述触控结构20。触控结构20位于显示结构32远离衬底基板31的一侧,并且在使用过程中更接近用户一侧。
例如,该显示结构32包括沿阵列排布的多个子像素,例如该像素阵列沿第一方向D1和第二方向D2布置。例如,例如该触控显示面板为OLED显示面板,该多个子像素包括绿色子像素(G)、红色子像素(R)和蓝色子像素(B)。每个子像素包括发光元件23以及驱动该发光元件23发光的像素驱动电路。本公开的实施例对于像素驱动电路的类型以及具体组成不作限制,例如,该像素驱动电路可以是电流驱动型也可以是电压驱动驱动型,可以是2T1C(即两个晶体管和一个电容,该两个晶体管包括驱动晶体管以及数据写入晶体管)驱动电路,可以是在2T1C的基础进一步包括补偿电路(补偿晶体管)、发光控制电路(发光控制晶体管)、复位电路(复位晶体管)等的驱动电路。
为了清楚起见,图9B仅示出了该像素驱动电路中与该发光元件23直接电连接的第一晶体管24,该第一晶体管24可以是驱动晶体管,配置为工作在饱和状态下并控制驱动发光元件23发光的电流的大小。例 如,该第一晶体管24也可以为发光控制晶体管,用于控制驱动发光元件23发光的电流是否流过。本公开的实施例对第一晶体管的具体类型不作限制。
例如,发光元件23为有机发光二极管,包括第一电极231、发光层233和第二电极232。第一电极231和第二电极232之一为阳极,另一个为阴极;例如,第一电极231为阳极,第二电极232为阴极。例如,发光层233为有机发光层或量子点发光层。例如,发光元件23除了发光层233之外还可以包括空穴注入层、空穴传输层、电子注入层、电子传输层等辅助功能层。例如,发光元件23为顶发射结构,第一电极231具有反射性而第二电极232具有透射性或半透射性。例如,第一电极231为高功函数的材料以充当阳极,例如为ITO/Ag/ITO叠层结构;第二电极232为低功函数的材料以充当阴极,例如为半透射的金属或金属合金材料,例如为Ag/Mg合金材料。
第一晶体管24包括栅极341、栅极绝缘层342、有源层343、第一极344和第二极345,该第二极345与发光元件23的第一电极231电连接。本公开的实施例对于第一晶体管24类型、材料、结构不作限制,例如其可以为顶栅型、底栅型等,第一晶体管24的有源层343可以为非晶硅、多晶硅(低温多晶硅与高温多晶硅)、氧化物半导体(例如,氧化铟镓锡(IGZO))等,且第一晶体管24可以为N型或P型。
本公开的实施例中采用的晶体管均可以为薄膜晶体管或场效应晶体管或其他特性相同的开关器件,本公开的实施例中均以薄膜晶体管为例进行说明。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管除栅极之外的两极,直接描述了其中一极为第一极,另一极为第二极。
结合图9A和图9B所示,该显示结构32还包括像素界定层320,该像素界定层320设置于该发光元件23的第一电极231上,其中形成多个开口321,分别暴露多个子像素的第一电极231,从而定义出每个子像素的像素开口区,子像素的发光层形成在该像素开口区,而第二电极232形成为公共电极(即为多个子像素共享);图9A中示意出了绿色子像素的像素开口区310、红色子像素的像素开口区320、以及蓝色子像素的像素开口区330。
图9B中未示出第二触控电极层202中的图案。例如,该第二触控电极层202位于第一触控电极层201靠近衬底基板31的一侧。
该第一触控电极层201中的多条第一金属线51和第二触控电极层 202中的多条第二金属线61在衬底基板31上的正投影位于多个子像素的像素开口区在衬底基板21的正投影之外,也即落入像素开口区之间的像素分隔区在衬底基板21的正投影内,该像素分隔区也即该像素界定层320的非开口区322。该像素分隔区用于将多个子像素的像素开口区分隔开,将各个子像素的发光层分隔开,防止串色。
例如,第一金属网格52或第二金属网格62的网孔覆盖至少一个像素开口区。例如,第一金属网格52或第二金属网格62的网孔覆盖两个绿色子像素的像素开口区310,该两个绿色子像素的像素开口区310成对设置,并在第二方向D2上并列排布。
如图9B所示,该显示结构32还包括位于该发光元件23与该触控结构20之间的第一封装层33,该封装层33配置为对发光元件23进行密封,以防止外界的湿气和氧向该发光元件及驱动电路的渗透,而造成对例如发光元件23等器件的损坏。例如,封装层33可以是单层结构或多层结构,例如包括有机薄膜、无机薄膜或者包括有机薄膜及无机薄膜交替层叠的多层结构。
例如,如图9B所示,该触控显示面板30还包括位于显示结构32和触控结构20之间的缓冲层22。例如,该缓冲层22形成于该第一封装层33上,用于提高触控结构40和显示结构32之间的粘合力。例如,该缓冲层22为无机绝缘层,例如,该缓冲层22的材料可以是氮化硅、氧化硅或者硅的氮氧化物。例如,该缓冲层22也可以包括氧化硅层和氮化硅层交替堆叠的结构。
本公开至少一实施例还提供一种电子装置,包括上述触控显示面板30。
例如,该电子装置可以为显示器、OLED面板、OLED电视、电子纸、手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能和触控功能的产品或部件。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (21)

  1. 一种触控结构,包括第一触控电极和第二触控电极,
    其中,所述第一触控电极沿第一方向延伸,所述第二触控电极沿第二方向延伸,所述第一方向和所述第二方向交叉;
    所述第一触控电极包括串联的多个第一触控电极部,所述多个第一触控电极部的每个包括第一主体部和多个第一叉指部,所述多个第一叉指部从所述第一主体部突出;
    所述多个第一触控电极部的至少一个包括虚拟电极,所述虚拟电极的至少部分位于所述至少一个第一触控电极部的至少一个第一叉指部中;
    所述至少一个第一触控电极部的所述至少一个第一叉指部包括第一指部有效电极,所述虚拟电极与所述第一指部有效电极绝缘,所述第一指部有效电极与所述至少一个第一触控电极部的第一主体部连接。
  2. 如权利要求1所述的触控结构,其中,所述虚拟电极位于所述至少一个第一叉指部中的部分为第一指部虚拟电极,所述第一指部虚拟电极位于所述第一指部有效电极内部。
  3. 如权利要求2所述的触控结构,其中,所述多个第一触控电极部和所述多个第二触控电极部分别包括多条金属线连接形成的多个金属网格。
  4. 如权利要求3所述的触控结构,其中,所述第一指部有效电极位于所述第一指部虚拟电极的任一侧的部分均包括至少两条第一信号通道,
    所述至少两条第一信号通道的每条由多条金属线依次连接形成。
  5. 如权利要求3所述的触控结构,其中,所述第一指部虚拟电极的外轮廓为不规则多边形,
    所述第一指部有效电极位于所述第一指部虚拟电极的每条边与所述第一指部虚拟电极所在的第一叉指部的边缘之间的部分均包括至少两条第一信号通道。
  6. 如权利要求2-5任一所述的触控结构,其中,所述第二触控电极包括串联的多个第二触控电极部,所述多个第二触控电极部的每个包括第二主体部和多个第二叉指部,所述多个第二叉指部从所述第二主体部突出。
  7. 如权利要求6所述的触控结构,其中,所述多个第二触控电极部的至少一个的至少一个第二叉指部包括第二指部有效电极和第二指 部虚拟电极,所述第二指部虚拟电极与所述有效电极绝缘,所述第二指部有效电极与所述第二主体部连接。
  8. 如权利要求6或7所述的触控结构,其中,所述多个第一叉指部和多个第二叉指部同层绝缘设置,且彼此嵌套排列。
  9. 如权利要求2-8任一所述的触控结构,其中,所述虚拟电极还包括位于所述至少一个第一触控电极部的第一主体部中的第一主要虚拟电极,所述至少一个第一触控电极部的第一主体部包括第一主要有效电极,所述第一主要虚拟电极与所述第一主要有效电极绝缘;
    所述每个第一触控电极部的第一主要有效电极与第一指部有效电极电连接。
  10. 如权利要求9所述的触控结构,其中,所述第一主要有效电极包括至少一个条状电极,所述第一主要虚拟电极包括多个虚拟子电极,所述至少一个条状电极将所述多个虚拟子电极彼此分离。
  11. 如权利要求10所述的触控结构,其中,所述至少一个条状电极的每个包括至少两条第二信号通道,所述至少两条第二信号通道的每条由多条金属线依次连接形成。
  12. 如权利要求10或11所述的触控结构,其中,所述多个虚拟子电极中的一个与所述第一指部虚拟电极连接。
  13. 如权利要求9-12任一所述的触控结构,其中,所述第一主要虚拟电极包括虚拟主体部和多个虚拟叉指部,所述多个虚拟叉指部从所述虚拟主体部突出,并与所述第一主要有效电极在同一层内彼此嵌套绝缘。
  14. 如权利要求13所述的触控结构,其中,所述虚拟主体部为矩形,所述多个虚拟叉指部从所述矩形的四边突出。
  15. 如权利要求14所述的触控结构,其中,所述第一主要虚拟电极还包括四个互补部,
    所述四个互补部分别对应所述虚拟主体部的四个顶点设置,从而使得所述第一主要虚拟电极的外轮廓为矩形。
  16. 如权利要求9-15任一所述的触控结构,其中,所述多个第二触控电极部的至少一个的第二主体部包括第二主要有效电极和第二主要虚拟电极,
    所述第二主要虚拟电极位于所述第二主要有效电极内部并与所述第二主要有效电极绝缘。
  17. 如权利要求16所述的触控结构,其中,所述第一触控电极与所述第二触控电极在交叉处形成触控单元,所述触控单元包括在交叉处 连接的两个第一触控电极部各自彼此相对的一半以及在所述交叉处连接的两个第二触控电极部各自彼此相对的一半、以及连接所述两个第一触控电极部的第一连接部和连接所述两个第二触控电极部的第二连接部,
    所述每个触控单元的有效面积占所述触控单元的总面积的36%-48%。
  18. 一种触控结构,包括第一触控电极和第二触控电极,
    其中,所述第一触控电极沿第一方向延伸,所述第二触控电极沿第二方向延伸,所述第一方向和所述第二方向交叉;
    所述第一触控电极包括多个第一触控电极部,所述多个第一触控电极部的每个包括第一主体部和多个第一叉指部,所述多个第一叉指部从所述第一主体部突出;
    所述第一主体部包括彼此绝缘的第一主要有效电极和第一主要虚拟电极;
    所述多个第一触控电极部的至少一个的第一主要虚拟电极包括虚拟主体部和多个虚拟叉指部,所述虚拟主体部为矩形,所述多个虚拟叉指部从所述矩形的四边突出;
    所述第一主要虚拟电极还包括四个互补部,所述四个互补部分别对应于所述虚拟主体部的四个顶点设置,从而使得所述第一主要虚拟电极的外轮廓为矩形。
  19. 如权利要求18所述的触控结构,其中,
    所述每个互补部和与其相邻的虚拟叉指部沿第三方向并列设置,且沿第四方向的最大尺寸相同,所述第三方向与所述第四方向不同。
  20. 如权利要求18或19所述的触控结构,其中,所述四个互补部的每个与所述虚拟主体部彼此间隔或彼此连接。
  21. 一种触控显示面板,包括:
    衬底基板,
    显示结构,以及
    如权利要求1-20任一所述的触控结构,
    其中,所述显示结构和所述触控结构依次层叠设置于所述衬底基板上。
PCT/CN2020/099256 2020-06-30 2020-06-30 触控结构及触控显示面板 WO2022000263A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/280,543 US11592947B2 (en) 2020-06-30 2020-06-30 Touch structure and touch display panel
EP20943491.9A EP4053686A4 (en) 2020-06-30 2020-06-30 TOUCH STRUCTURE AND TOUCH DISPLAY PANEL
JP2022533552A JP2023542444A (ja) 2020-06-30 2020-06-30 タッチ構造及びタッチ表示パネル
CN202080001142.3A CN114127671B (zh) 2020-06-30 2020-06-30 触控结构及触控显示面板
PCT/CN2020/099256 WO2022000263A1 (zh) 2020-06-30 2020-06-30 触控结构及触控显示面板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099256 WO2022000263A1 (zh) 2020-06-30 2020-06-30 触控结构及触控显示面板

Publications (1)

Publication Number Publication Date
WO2022000263A1 true WO2022000263A1 (zh) 2022-01-06

Family

ID=79317671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099256 WO2022000263A1 (zh) 2020-06-30 2020-06-30 触控结构及触控显示面板

Country Status (5)

Country Link
US (1) US11592947B2 (zh)
EP (1) EP4053686A4 (zh)
JP (1) JP2023542444A (zh)
CN (1) CN114127671B (zh)
WO (1) WO2022000263A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126822B (zh) * 2021-04-12 2022-09-09 武汉华星光电半导体显示技术有限公司 触控显示面板及显示装置
US20230325043A1 (en) * 2022-04-08 2023-10-12 Apple Inc. Touch sensor panel with staggered touch electrodes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170160870A1 (en) * 2015-12-03 2017-06-08 Samsung Display Co., Ltd. Touch sensing device and method of manufacturing the same
CN108415629A (zh) * 2017-02-09 2018-08-17 晶门科技(中国)有限公司 一种结合了电容式触控传感器的装置及其制造方法
CN109656407A (zh) * 2018-11-28 2019-04-19 武汉华星光电半导体显示技术有限公司 金属网格触控电极组件
CN110727373A (zh) * 2019-09-30 2020-01-24 武汉华星光电半导体显示技术有限公司 显示装置
CN111258462A (zh) * 2020-01-09 2020-06-09 京东方科技集团股份有限公司 一种触控面板及显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9519383B2 (en) * 2012-08-06 2016-12-13 Stmicroelectronics Asia Pacific Pte Ltd ITO pattern for capacitive touchscreen applications
KR102101887B1 (ko) * 2012-10-05 2020-04-21 삼성디스플레이 주식회사 터치 스크린 패널
CN104111759B (zh) 2013-04-18 2017-07-04 联胜(中国)科技有限公司 触控面板
US10379689B2 (en) * 2015-06-24 2019-08-13 Sharp Kabushiki Kaisha Touch panel including an insulating substrate and display device for the same
JP6537960B2 (ja) * 2015-12-01 2019-07-03 日本航空電子工業株式会社 絶縁層の形成方法、電子デバイスの生産方法及び電子デバイス
KR102555153B1 (ko) 2015-12-03 2023-07-14 삼성디스플레이 주식회사 터치 패널
CN106020557B (zh) * 2016-06-20 2020-10-09 上海天马微电子有限公司 一种触控显示面板、驱动方法和触控显示装置
KR102508329B1 (ko) 2016-08-31 2023-03-09 엘지디스플레이 주식회사 플렉서블 표시 장치
CN110383222A (zh) 2017-03-06 2019-10-25 富士胶片株式会社 导电性部件及触摸面板
EP3707585A4 (en) 2017-11-09 2021-06-30 BOE Technology Group Co., Ltd. TOUCH SUBSTRATE AND TOUCH CONTROL DISPLAY DEVICE
KR102408330B1 (ko) 2018-03-15 2022-06-10 동우 화인켐 주식회사 터치 센서 및 이를 포함하는 화상 표시 장치
CN108874228B (zh) 2018-07-03 2022-02-01 京东方科技集团股份有限公司 触控器件、触控显示基板及显示装置
CN110764636B (zh) 2018-07-25 2021-09-21 京东方科技集团股份有限公司 一种触控模组、触控显示基板和触控显示装置
CN109871157B (zh) 2019-02-01 2022-07-19 云谷(固安)科技有限公司 触控显示面板和触控显示装置
US11226709B2 (en) * 2020-03-13 2022-01-18 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch substrate and touch screen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170160870A1 (en) * 2015-12-03 2017-06-08 Samsung Display Co., Ltd. Touch sensing device and method of manufacturing the same
CN108415629A (zh) * 2017-02-09 2018-08-17 晶门科技(中国)有限公司 一种结合了电容式触控传感器的装置及其制造方法
CN109656407A (zh) * 2018-11-28 2019-04-19 武汉华星光电半导体显示技术有限公司 金属网格触控电极组件
CN110727373A (zh) * 2019-09-30 2020-01-24 武汉华星光电半导体显示技术有限公司 显示装置
CN111258462A (zh) * 2020-01-09 2020-06-09 京东方科技集团股份有限公司 一种触控面板及显示装置

Also Published As

Publication number Publication date
US20220197439A1 (en) 2022-06-23
CN114127671A (zh) 2022-03-01
EP4053686A4 (en) 2023-01-18
JP2023542444A (ja) 2023-10-10
EP4053686A1 (en) 2022-09-07
CN114127671B (zh) 2024-04-23
US11592947B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2021147175A1 (zh) 触控显示面板及电子装置
WO2019218866A1 (zh) 触控结构及触控屏
US11340745B2 (en) Touch structure and method for manufacturing the same, touch substrate and touch display device
WO2021196076A1 (zh) 触控结构、触控显示面板及电子装置
WO2021196083A1 (zh) 触控结构、触控显示面板及电子装置
WO2022000263A1 (zh) 触控结构及触控显示面板
US20240220060A1 (en) Touch structure, display panel and electronic device
WO2021196082A1 (zh) 触控结构、触控显示面板及电子装置
WO2022052778A1 (zh) 触控结构、显示面板及电子装置
WO2022178817A1 (zh) 触控结构、触控显示面板和显示装置
WO2022183438A1 (zh) 触控电极结构、显示面板及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533552

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020943491

Country of ref document: EP

Effective date: 20220531

NENP Non-entry into the national phase

Ref country code: DE