WO2022000229A1 - Sensing interference reports - Google Patents

Sensing interference reports Download PDF

Info

Publication number
WO2022000229A1
WO2022000229A1 PCT/CN2020/099118 CN2020099118W WO2022000229A1 WO 2022000229 A1 WO2022000229 A1 WO 2022000229A1 CN 2020099118 W CN2020099118 W CN 2020099118W WO 2022000229 A1 WO2022000229 A1 WO 2022000229A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
signal
interference
measurement resource
reference signals
Prior art date
Application number
PCT/CN2020/099118
Other languages
French (fr)
Inventor
Qiaoyu Li
Yu Zhang
Hao Xu
Min Huang
Chao Wei
Jing Dai
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/099118 priority Critical patent/WO2022000229A1/en
Priority to US17/998,414 priority patent/US20230231637A1/en
Priority to PCT/CN2021/097865 priority patent/WO2022001563A1/en
Publication of WO2022000229A1 publication Critical patent/WO2022000229A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for transmitting and/or receiving sensing interference reports.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include receiving one or more reference signals associated with a sensing signal; and transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  • a method of wireless communication may include transmitting one or more reference signals associated with a sensing signal; and receiving a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  • a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to receive one or more reference signals associated with a sensing signal; and transmit a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  • a base station for wireless communication may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to transmit one or more reference signals associated with a sensing signal; and receive a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to receive one or more reference signals associated with a sensing signal; and transmit a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a base station, may cause the one or more processors to transmit one or more reference signals associated with a sensing signal; and receive a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  • an apparatus for wireless communication may include means for receiving one or more reference signals associated with a sensing signal; and means for transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  • an apparatus for wireless communication may include means for transmitting one or more reference signals associated with a sensing signal; and means for receiving a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, UE, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of space division multiplexing sensing signals and communication signals, in accordance with various aspects of the present disclosure.
  • Figs. 4 and 5 diagrams illustrating examples associated with transmitting and/or receiving sensing interference reports, in accordance with various aspects of the present disclosure.
  • Figs. 6 and 7 are diagrams illustrating example processes associated with transmitting and/or receiving sensing interference reports, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-7.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-7.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with transmitting and/or receiving sensing interference reports, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • UE 120 may include means for receiving one or more reference signals associated with a sensing signal, means for transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for transmitting one or more reference signals associated with a sensing signal, means for receiving a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Some wireless networks may use nodes, such as base stations, to jointly perform sensing services and communication services (e.g., joint SensComm services) .
  • the sensing services may include object detection that may be used, for example, to improve the communication services or to improve other services.
  • a UE that receives a sensing signal may use the sensing signal to detect objects for services such as assisted driving and/or steering of a vehicle (e.g., to avoid collisions) .
  • Jointly performing sensing services and communication services may support a synergistic design of communications systems and sensing systems (e.g., radio detection and ranging (radar) , object detection, and/or the like) that may use a common spectrum and/or common components.
  • sensing signals and communication signals may have different characteristics, which may cause difficulty for managing interference between the sensing signals and the communication signals.
  • communication signals may use OFDM waveforms and sensing signals may use impulsive signals, frequency-modulated continuous waveforms (FMCW) , phase-modulated continuous waveforms (PMCW) , and/or the like.
  • Differences in characteristics of sensing services and communication services may cause difficulty for managing interference between the sensing signals and the communication signals and/or to maintain integrity of the sensing service and/or the communication service.
  • precoding for a communication signal may be adjusted slot-by-slot to improve a signal-to-interference-plus-noise ratio (SINR) .
  • SINR signal-to-interference-plus-noise ratio
  • Sensing services may be improved by maintaining a constant precoding for transmissions of sensing signals over multiple slots. For example, maintaining a constant precoding for multiple slots may improve resolution of object detection.
  • only signals having a same precoding may be coherently used for Doppler estimation, and coherent Doppler estimation may require sensing signals transmitted for a duration that is longer than a slot of the communication signals.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • SDM space division duplexing
  • using SDM may allow a transmitting node to be spatially selective, to transmit the one or more communication signals and the one or more sensing signals using different beams to reduce interference without lowering Doppler resolution of the one or more sensing signals, degrading range resolution, and/or introducing scheduling restrictions as described when using FDM or SDM.
  • Fig. 3 is a diagram illustrating an example 300 of SDM sensing signals and communication signals, in accordance with various aspects of the present disclosure.
  • a base station may transmit signals for reception by a first UE, a second UE, and/or the like.
  • the base station, the first UE, and the second UE may be part of a wireless network.
  • the base station may transmit one or more sensing signals for reception by the first UE.
  • the sensing signal may be used to detect an object based at least in part on the one or more signals interacting with the object between transmission of the one or more signals by the base station and reception of the one or more signals by the first UE.
  • the object may cause reflection, refraction, a Doppler effect, and/or the like to the one or more signals.
  • the base station may transmit one or more communication signals to the second UE.
  • the base station may transmit one or more physical downlink control channel (PDCCH) communications, physical downlink shared channel (PDSCH) communications, reference signals, and/or the like.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the one or more sensing signals may cause interference with the one or more communication signals and/or the one or more communication signals may cause interference with the one or more sensing signals.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • a node e.g., a base station
  • SDM short term evolution
  • a node using SDM may have difficulty managing interference between sensing signals and communication signals based at least in part on, for example, different characteristics of the sensing signals and the communication signals.
  • a UE that uses a sensing service may provide a report that indicates how interference from a communication signal may be reduced and/or avoided.
  • the UE may be configured with a measurement resource (e.g., a sensing measurement resource (SMR) ) that is associated with a sensing beam (e.g., an active or already determined sensing beam) .
  • a measurement resource e.g., a sensing measurement resource (SMR)
  • SIMR sensing interference measurement resource
  • the UE may use the sensing interference resource to measure one or more reference signals as an interference reference and/or may use the sensing resource to measure one or more reference signals associated with a sensing signal.
  • the UE may use the measurements to generate an interference report for transmission to the base station.
  • the interference report may include one or more indications of how the base station may reduce and/or avoid interference from the communication signal.
  • the interference report may indicate a modulation order, a request for spatial parameters and/or power parameters for preferred spatial interference directions (e.g., associated with the communication signal) and/or spatial interference directions to be avoided.
  • the base station may have information to select one or more parameters for transmitting a communication signal to reduce interference, from the communication signal, for the sensing signal. This may allow the base station to use SDM for sensing services and communication services with improved Doppler resolution, range resolution, and scheduling when compared to FDM or TDM.
  • Fig. 4 is a diagram illustrating an example 400 associated with transmitting and/or receiving sensing interference reports, in accordance with various aspects of the present disclosure.
  • a base station e.g., base station 110
  • UE e.g., UE 120
  • the base station and the UE may be part of a wireless network (e.g., wireless network 100) .
  • the UE may be configured to use one or more sensing signals from the base station to support a sensing service (e.g., an object detection service) .
  • a sensing service e.g., an object detection service
  • the base station may transmit, and the UE may receive, configuration information.
  • the UE may receive the configuration information from another device (e.g., from another base station, another UE, and/or the like) , from a specification of a communication standard, and/or the like.
  • the UE may receive the configuration information via one or more of radio resource control (RRC) signaling, medium access control (MAC) signaling (e.g., MAC control elements (MAC CEs) ) , and/or the like.
  • RRC radio resource control
  • MAC medium access control
  • the configuration information may include an indication of one or more configuration parameters (e.g., already known to the UE) for selection by the UE, explicit configuration information for the UE to use to configure the UE, and/or the like.
  • the configuration information may indicate that the UE is to receive one or more reference signals associated with a sensing signal, measure the one or more reference signals, determine a sensing interference report for reducing interference for the sensing signal, transmit the sensing interference report, and/or the like.
  • the configuration information may indicate that the UE is to receive the one or more reference signals based at least in part on an SMR and/or an SIMR.
  • the UE may configure the UE for communicating with the base station.
  • the UE may configure the UE based at least in part on the configuration information.
  • the UE may be configured to perform one or more operations described herein.
  • the base station may transmit, and the UE may receive, an indication of an SMR and/or an SIMR to use for measuring the one or more reference signals associated with the sensing signal.
  • the SMR may be associated with a configured sensing beam.
  • the SIMR may be associated with a non-precoded communication signal.
  • the SIMR may identify multiple spatially different beams.
  • the multiple spatially different beams may be associated with different reference signals or transmissions of a same reference signal.
  • the one or more reference signals may include a channel state information (CSI) reference signal, a CSI interference measurement (IM) reference signal, a synchronization signal block (SSB) , and/or the like.
  • the one or more reference signals may be time division multiplexed, frequency division multiplexed, and/or the like.
  • the SMR may be associated with a CSI measurement resource (MR) , a CSI configuration, and/or the like.
  • the base station may indicate that the UE is to use the SMR based at least in part on the indication of the SMR identifying the CSI-MR that is associated with the SMR.
  • the SIMR may be associated with a CSI-IM.
  • the base station may indicate that the UE is to use the SIMR based at least in part on the indication of the SMR identifying the CSI-MR that is associated with the SIMR. In this way, the base station may indicate the SMR and/or the SIMR without requiring additional signaling configurations.
  • the SMR and/or the SIMR may be based at least in part on enhanced reference signals that may, for example, represent characteristics of waveforms (e.g., impulsive, FMCW, PMCW, and/or the like) such as duty-cycle, periodicity, power, and/or the like.
  • the SMR and/or the SIMR may indicate a waveform type, a duty-cycle, a periodicity, a power metric, and/or the like for the one or more reference signals, the sensing signal, a communication signal, and/or the like.
  • the base station may transmit, and the UE may receive, one or more reference signals associated with a sensing signal.
  • the one or more reference signals may include one or more transmissions of the sensing signal, one or more reference signals associated with a communication signal that may cause interference with the sensing signal, one or more reference signals associated with the sensing signal (e.g., having one or more characteristics of the sensing signal such as waveform, duty cycle, power, and/or the like) , and/or the like.
  • the UE may receive a single reference signal (e.g., a single reference signal associated with the communication signal and/or the SIMR) , of the one or more reference signals, via multiple spatially different beams.
  • the UE may receive multiple reference signals (e.g., multiple reference signals associated with the communication signal and/or the SIMR) , of the one or more reference signals, via the multiple spatially different beams.
  • the UE may receive the single reference signal and/or the multiple reference signals using TDM and/or FDM.
  • the UE may receive at least one reference signal (e.g., that is associated with the sensing signals and/or the SMR) via repeated transmissions using a single beam (e.g., with a same spatial direction) .
  • the at least one reference signal may be a repeated CSI reference signal with a same quasi co-location (CQL) type (e.g., QCL-TypeD) .
  • CQL quasi co-location
  • the UE may determine (e.g., generate) a sensing interference report for reducing interference for the sensing signal.
  • the sensing interference report may indicate one or more parameters for reducing interference for the sensing signal.
  • the UE may determine the one or more parameters for reducing interference for the sensing signal based at least in part on the one or more reference signals associated with the sensing signal (e.g., associated with the SMR, the SIMR, the communication signal, the sensing signal, and/or the like) .
  • the UE may use the SIMR as an interference reference signal (e.g., to define the interference reference signal) and/or may use the SMR as a sensing reference signal (e.g., to define the sensing reference signal) .
  • the sensing interference report may indicate to avoid one or more spatial directions of a communication signal that may cause interference with the sensing signal, a preferred spatial direction for the communication signal, one or more power parameters to use for the communication signal, a modulation order to use for the communication signal, and/or the like.
  • the sensing interference report may provide the indications using one or more precoders in a predetermined and/or configured codebook or identification of a set of beams (e.g., based at least in part on a precoding matrix indicator (PMI) , a beam index (e.g., an SSB index, a CSI resource indicator (CRI) , and/or the like) , and/or the like) .
  • PMI precoding matrix indicator
  • CRI CSI resource indicator
  • the sensing interference report may provide an indication of a most preferred spatial interference direction, an indication of a least preferred spatial interference direction (e.g., associated with a communication signal) , an indication that all spatial interference directions (e.g., identified in the SIMR) are acceptable, an indication that none of the spatial interference directions are acceptable, and/or the like.
  • the UE may be configured (e.g., via configuration information, the SMR, the SIMR, and/or the like) to indicate only one of the most preferred spatial interference direction or the least preferred spatial interference direction.
  • the UE may be configured to indicate both of the most preferred spatial interference direction and the least preferred spatial interference direction.
  • the UE be configured to indicate which spatial interference direction is most preferred and which is least preferred based at least in part on formatting of the indication (e.g., locations or orders within the indication of identifications associated with the most preferred spatial interference direction and the least preferred spatial interference direction) , one or more explicit indications of which spatial interference direction is most preferred and which is least preferred, and/or the like.
  • the UE may be configured to indicate that all spatial interference directions are acceptable or unacceptable based at least in part on indicating all spatial interference directions or no spatial interference directions (e.g., using a PMI, a beam index, and/or the like) .
  • the sensing interference report may indicate a requested maximum modulation order (e.g., a Mod-Order) that may be applied to a communication signal.
  • a requested maximum modulation order e.g., a Mod-Order
  • the sensing interference report may use a CQI to indicate the requested maximum modulation order.
  • the sensing interference report may indicate a requested maximum transmission power of the communication signal based at least in part on, for example, an indicated transmission power parameter.
  • the sensing interference report may indicate a PMI that is based at least in part on at least one restricted rank index, explicit CSI feedback, and/or the like.
  • the restricted rank index may be based at least in part on a reception capability of the UE (e.g., implicitly determined based at least in part on configuration information, reception capabilities of the UE (such as a number of receiver antennas) , and/or the like) .
  • the explicit CSI feedback may include CSI (e.g., between the base station and the UE) that is based at least in part on the SMR, CSI that is based at least in part on the SIMR, and/or the like.
  • the UE may transmit, and the base station may receive, the sensing interference report.
  • the UE may transmit the sensing interference report using one or more of a MAC CE, a physical uplink control channel (PUCCH) message, a CSI report, an enhanced CSI report, and/or the like.
  • a MAC CE a physical uplink control channel (PUCCH) message
  • PUCCH physical uplink control channel
  • the base station may determine one or more parameters for one or more signals. For example, the base station may determine one or more parameters for transmitting communication signals to an additional UE.
  • the one or more parameters may include a beam direction, a transmission power, a modulation order, a rank index, and/or the like.
  • the base station may transmit the sensing signal and additional signals.
  • the base station may transmit the communication signals, to an additional UE, based at least in part on the one or more parameters for reducing interference for the sensing signal, as indicated in the sensing interference report.
  • the base station may have information to select one or more parameters for transmitting a communication signal to reduce interference, from the communication signal, for the sensing signal, which may allow the base station to use SDM for sensing services and communication services with improved Doppler resolution, range resolution, and scheduling when compared to FDM or TDM.
  • the improved scheduling may conserve network resources that may otherwise have been wasted to avoid conflicting frequencies and/or transmission times (e.g., symbols, slots, and/or the like) between sensing signals and communication signals.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 associated with transmitting and/or receiving sensing interference reports, in accordance with various aspects of the present disclosure.
  • a base station may transmit signals for reception by a first UE.
  • the base station, the first UE, and one or more additional UEs may be part of a wireless network.
  • the base station may transmit one or more reference signals associated with an SMR (e.g., associated with a sensing signal) .
  • the base station may transmit the one or more reference signals via repeated transmission using a single beam.
  • the single beam may be an already-identified beam for object detection of a particular object.
  • the base station may transmit one or more reference signals associated with an SIMR (e.g., associated with one or more communication signals) .
  • the base station may transmit the one or more reference signals via multiple spatially different beams.
  • the base station may transmit the one or more reference signals using FDM or TDM so that the UE may differentiate multiple spatially different beams.
  • the UE may determine a preferred beam, or a beam to be avoided, based at least in part on the transmission via the SIMR.
  • the UE may determine one or more spatial directions to avoid for the communication signal, one or more preferred spatial directions for the communication signal, one or more power parameters to use for the communication signal, a modulation order to use for the communication signal, and/or the like.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with sensing interference reports.
  • the UE e.g., UE 120 and/or the like
  • process 600 may include receiving one or more reference signals associated with a sensing signal (block 610) .
  • the UE e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like
  • process 600 may include transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal (block 620) .
  • the UE e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the sensing interference report indicates the one or more parameters for reducing interference, for the sensing signal, based at least in part on a communication signal.
  • process 600 includes one or more of: receiving an indication of an SMR associated with the one or more reference signals, or receiving an indication of an SIMR associated with the one or more reference signals.
  • the SMR is associated with a configured sensing beam
  • the SIMR is associated with a non-precoded communication signal, or some combination thereof.
  • the SMR is associated with a CS-MR
  • the SIMR is associated with a CSI-IM resource, or some combination thereof.
  • one or more of the SMR or the SIMR is based at least in part on one or more of: a waveform type for the sensing signal, a duty-cycle for the sensing signal, a periodicity for the sensing signal, or a power metric for the sensing signal.
  • process 600 includes determining the sensing interference report based at least in part on using the SIMR as an interference reference signal and using the SMR as a sensing reference signal.
  • the SIMR identifies multiple spatially different beams.
  • process 600 includes receiving a single reference signal, of the one or more reference signals, via the multiple spatially different beams, or receiving different reference signals, of the one or more reference signals, via the multiple spatially different beams.
  • process 600 includes receiving at least one reference signal, of the one or more reference signals, that is associated with the SIMR via the multiple spatially different beams using one or more of TDM or FDM.
  • process 600 includes receiving at least one reference signal, of the one or more reference signals, that is associated with the SMR via repeated transmissions using a single beam.
  • the sensing interference report includes one or more of: an indication to avoid one or more spatial directions of a communication signal that may cause interference with the sensing signal, an indication of one or more preferred spatial directions for the communication signal, an indication of one or more power parameters to use for the communication signal, or an indication of a modulation order to use for the communication signal.
  • the one or more parameters for reducing interference for the sensing signal include a PMI that is based at least in part on one or more of: at least one restricted rank index, or an explicit CSI feedback.
  • process 600 includes determining the at least one restricted rank index based at least in part on one or more of: a reception capability of the UE, or configuration information received via a base station.
  • the explicit CSI feedback comprises one or more of: CSI, between a base station and the UE, that is based at least in part on an SMR, or CSI, between the base station and the UE, that is based at least in part on an SIMR.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with sensing interference reports.
  • the base station e.g., base station 110 and/or the like
  • process 700 may include transmitting one or more reference signals associated with a sensing signal (block 710) .
  • the base station e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like
  • process 700 may include receiving a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal (block 720) .
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the sensing interference report indicates the one or more parameters for reducing interference, for the sensing signal, based at least in part on a communication signal.
  • process 700 includes one or more of: transmitting an indication of an SMR associated with the one or more reference signals, or transmitting an indication of an SIMR associated with the one or more reference signals.
  • the SMR is associated with a configured sensing beam
  • the SIMR is associated with a non-precoded communication signal, or some combination thereof.
  • the SMR is associated with a CSI-MR
  • the SIMR is associated with a CSI-IM resource, or some combination thereof.
  • one or more of the SMR or the SIMR is based at least in part on one or more of: a waveform type for the sensing signal, a duty-cycle for the sensing signal, a periodicity for the sensing signal, or a power metric for the sensing signal.
  • the SIMR identifies multiple spatially different beams.
  • process 700 includes transmitting a single reference signal, of the one or more reference signals, via the multiple spatially different beams, or transmitting different reference signals, of the one or more reference signals, via the multiple spatially different beams.
  • process 700 includes transmitting at least one reference signal, of the one or more reference signals, that is associated with the SIMR via the multiple spatially different beams using one or more of TDM or FDM.
  • process 700 includes transmitting at least one reference signal, of the one or more reference signals, that is associated with the SMR via repeated transmissions using a single beam.
  • the sensing interference report includes one or more of: an indication to avoid one or more spatial directions of a communication signal that may cause interference with the sensing signal, an indication of one or more preferred spatial directions for the communication signal, an indication of one or more power parameters to use for the communication signal, or an indication of a modulation order to use for the communication signal.
  • the one or more parameters for reducing interference for the sensing signal includes a PMI that is based at least in part on one or more of: at least one restricted rank index; or an explicit CSI feedback.
  • the explicit CSI feedback comprises one or more of: CSI, between the base station and a UE, that is based at least in part on an SMR, or CSI, between the base station and a UE, that is based at least in part on an SIMR.
  • process 700 includes determining, based at least in part on the sensing interference report, one or more parameters for transmitting at least one additional signal; and transmitting the sensing signal and the at least one additional signal.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive one or more reference signals associated with a sensing signal, and transmit a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal. Numerous other aspects are provided.

Description

SENSING INTERFERENCE REPORTS
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for transmitting and/or receiving sensing interference reports.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the  uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
 The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include receiving one or more reference signals associated with a sensing signal; and transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
In some aspects, a method of wireless communication, performed by a base station, may include transmitting one or more reference signals associated with a sensing signal; and receiving a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
In some aspects, a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to receive one or more reference signals associated with a sensing signal; and transmit a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
In some aspects, a base station for wireless communication may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to transmit one or more reference signals associated with a sensing signal; and receive a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to receive one or more reference signals associated with a sensing signal; and transmit a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a base station, may cause the one or more processors to transmit one or more reference signals associated with a sensing signal;  and receive a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
In some aspects, an apparatus for wireless communication may include means for receiving one or more reference signals associated with a sensing signal; and means for transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
In some aspects, an apparatus for wireless communication may include means for transmitting one or more reference signals associated with a sensing signal; and means for receiving a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, UE, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of space division multiplexing sensing signals and communication signals, in accordance with various aspects of the present disclosure.
Figs. 4 and 5 diagrams illustrating examples associated with transmitting and/or receiving sensing interference reports, in accordance with various aspects of the present disclosure.
Figs. 6 and 7 are diagrams illustrating example processes associated with transmitting and/or receiving sensing interference reports, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a  macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband  internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength  into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain  input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term "controller/processor" may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive  processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-7.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-7.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with transmitting and/or receiving sensing interference reports, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.  Memories  242 and 282 may store  data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, UE 120 may include means for receiving one or more reference signals associated with a sensing signal, means for transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for transmitting one or more reference signals associated with a sensing signal, means for receiving a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238,  controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Some wireless networks may use nodes, such as base stations, to jointly perform sensing services and communication services (e.g., joint SensComm services) . The sensing services may include object detection that may be used, for example, to improve the communication services or to improve other services. For example, a UE that receives a sensing signal may use the sensing signal to detect objects for services such as assisted driving and/or steering of a vehicle (e.g., to avoid collisions) .
Jointly performing sensing services and communication services may support a synergistic design of communications systems and sensing systems (e.g., radio detection and ranging (radar) , object detection, and/or the like) that may use a common spectrum and/or common components. However, sensing signals and communication signals may have different characteristics, which may cause difficulty for managing interference between the sensing signals and the communication signals. For example, communication signals may use OFDM waveforms and sensing signals may use impulsive signals, frequency-modulated continuous waveforms (FMCW) , phase-modulated continuous waveforms (PMCW) , and/or the like.
Differences in characteristics of sensing services and communication services may cause difficulty for managing interference between the sensing signals and the communication signals and/or to maintain integrity of the sensing service and/or the communication service. For example, precoding for a communication signal may be adjusted slot-by-slot to improve a signal-to-interference-plus-noise ratio (SINR) . Sensing services may be improved by maintaining a constant precoding for transmissions of sensing signals over multiple slots. For example, maintaining a constant precoding for multiple slots may improve resolution of object detection. In some examples, only signals having a same precoding may be coherently used for Doppler estimation, and coherent Doppler estimation may require sensing signals transmitted for a duration that is longer than a slot of the communication signals.
Using time division multiplexing (TDM) and/or frequency division multiplexing (FDM) to transmit the communication signals and the sensing signals may reduce interference between the communication signals and the sensing signals. However, using TDM may lower Doppler resolution of the one or more sensing signals and may cause scheduling restrictions for the one or more communication signals (e.g., to avoid simultaneous transmissions) . Similarly, using FDM may cause scheduling restrictions for the one or more communication signals (e.g., to avoid using same or related frequencies) and/or may degrade range resolution of the one or more sensing signals.
Although using space division duplexing (SDM) may cause difficulty for managing interference between the sensing signals and the communication signals and/or to maintain integrity of the sensing service and/or the communication service, using SDM may allow a transmitting node to be spatially selective, to transmit the one or more communication signals and the one or more sensing signals using different  beams to reduce interference without lowering Doppler resolution of the one or more sensing signals, degrading range resolution, and/or introducing scheduling restrictions as described when using FDM or SDM.
Fig. 3 is a diagram illustrating an example 300 of SDM sensing signals and communication signals, in accordance with various aspects of the present disclosure. As shown in Fig. 3, a base station may transmit signals for reception by a first UE, a second UE, and/or the like. The base station, the first UE, and the second UE may be part of a wireless network.
As shown by reference number 305, the base station may transmit one or more sensing signals for reception by the first UE. The sensing signal may be used to detect an object based at least in part on the one or more signals interacting with the object between transmission of the one or more signals by the base station and reception of the one or more signals by the first UE. For example, the object may cause reflection, refraction, a Doppler effect, and/or the like to the one or more signals.
As shown by reference number 310, the base station may transmit one or more communication signals to the second UE. For example, the base station may transmit one or more physical downlink control channel (PDCCH) communications, physical downlink shared channel (PDSCH) communications, reference signals, and/or the like.
As shown by reference number 315, the one or more sensing signals may cause interference with the one or more communication signals and/or the one or more communication signals may cause interference with the one or more sensing signals.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
As described above, a node (e.g., a base station) that jointly performs sensing services and communication services using SDM may provide advantages over TDM  and FDM, such as improved Doppler resolution, range resolution, and scheduling. However, a node using SDM may have difficulty managing interference between sensing signals and communication signals based at least in part on, for example, different characteristics of the sensing signals and the communication signals.
As described herein, a UE that uses a sensing service (e.g., a sensing UE) , based at least in part on sensing signals from a base station, may provide a report that indicates how interference from a communication signal may be reduced and/or avoided. For example, the UE may be configured with a measurement resource (e.g., a sensing measurement resource (SMR) ) that is associated with a sensing beam (e.g., an active or already determined sensing beam) . Additionally and/or alternatively, the UE may be configured with an interference measurement resource (e.g., a sensing interference measurement resource (SIMR) ) that is associated with a communication signal (e.g., a non-precoded communication signal) . In some aspects, the UE may use the sensing interference resource to measure one or more reference signals as an interference reference and/or may use the sensing resource to measure one or more reference signals associated with a sensing signal. The UE may use the measurements to generate an interference report for transmission to the base station.
The interference report may include one or more indications of how the base station may reduce and/or avoid interference from the communication signal. For example, the interference report may indicate a modulation order, a request for spatial parameters and/or power parameters for preferred spatial interference directions (e.g., associated with the communication signal) and/or spatial interference directions to be avoided.
Based at least in part on the UE transmitting a report based at least in part on reference signals associated with a sensing signal, the base station may have  information to select one or more parameters for transmitting a communication signal to reduce interference, from the communication signal, for the sensing signal. This may allow the base station to use SDM for sensing services and communication services with improved Doppler resolution, range resolution, and scheduling when compared to FDM or TDM.
Fig. 4 is a diagram illustrating an example 400 associated with transmitting and/or receiving sensing interference reports, in accordance with various aspects of the present disclosure. As shown in Fig. 4, a base station (e.g., base station 110) may communicate with a UE (e.g., UE 120) . The base station and the UE may be part of a wireless network (e.g., wireless network 100) . In some aspects, the UE may be configured to use one or more sensing signals from the base station to support a sensing service (e.g., an object detection service) .
As shown by reference number 405, the base station may transmit, and the UE may receive, configuration information. In some aspects, the UE may receive the configuration information from another device (e.g., from another base station, another UE, and/or the like) , from a specification of a communication standard, and/or the like. In some aspects, the UE may receive the configuration information via one or more of radio resource control (RRC) signaling, medium access control (MAC) signaling (e.g., MAC control elements (MAC CEs) ) , and/or the like. In some aspects, the configuration information may include an indication of one or more configuration parameters (e.g., already known to the UE) for selection by the UE, explicit configuration information for the UE to use to configure the UE, and/or the like.
In some aspects, the configuration information may indicate that the UE is to receive one or more reference signals associated with a sensing signal, measure the one or more reference signals, determine a sensing interference report for reducing  interference for the sensing signal, transmit the sensing interference report, and/or the like. In some aspects, the configuration information may indicate that the UE is to receive the one or more reference signals based at least in part on an SMR and/or an SIMR.
As shown by reference number 410, the UE may configure the UE for communicating with the base station. In some aspects, the UE may configure the UE based at least in part on the configuration information. In some aspects, the UE may be configured to perform one or more operations described herein.
As shown by reference number 415, the base station may transmit, and the UE may receive, an indication of an SMR and/or an SIMR to use for measuring the one or more reference signals associated with the sensing signal. In some aspects, the SMR may be associated with a configured sensing beam. In some aspects, the SIMR may be associated with a non-precoded communication signal. In some aspects, the SIMR may identify multiple spatially different beams. In some aspects, the multiple spatially different beams may be associated with different reference signals or transmissions of a same reference signal. In some aspects, the one or more reference signals may include a channel state information (CSI) reference signal, a CSI interference measurement (IM) reference signal, a synchronization signal block (SSB) , and/or the like. In some aspects, the one or more reference signals may be time division multiplexed, frequency division multiplexed, and/or the like.
In some aspects, the SMR may be associated with a CSI measurement resource (MR) , a CSI configuration, and/or the like. In some aspects, the base station may indicate that the UE is to use the SMR based at least in part on the indication of the SMR identifying the CSI-MR that is associated with the SMR. In some aspects, the SIMR may be associated with a CSI-IM. In some aspects, the base station may indicate  that the UE is to use the SIMR based at least in part on the indication of the SMR identifying the CSI-MR that is associated with the SIMR. In this way, the base station may indicate the SMR and/or the SIMR without requiring additional signaling configurations.
In some aspects, the SMR and/or the SIMR may be based at least in part on enhanced reference signals that may, for example, represent characteristics of waveforms (e.g., impulsive, FMCW, PMCW, and/or the like) such as duty-cycle, periodicity, power, and/or the like. In other words, the SMR and/or the SIMR may indicate a waveform type, a duty-cycle, a periodicity, a power metric, and/or the like for the one or more reference signals, the sensing signal, a communication signal, and/or the like.
As shown by reference number 420, the base station may transmit, and the UE may receive, one or more reference signals associated with a sensing signal. In some aspects, the one or more reference signals may include one or more transmissions of the sensing signal, one or more reference signals associated with a communication signal that may cause interference with the sensing signal, one or more reference signals associated with the sensing signal (e.g., having one or more characteristics of the sensing signal such as waveform, duty cycle, power, and/or the like) , and/or the like.
In some aspects, the UE may receive a single reference signal (e.g., a single reference signal associated with the communication signal and/or the SIMR) , of the one or more reference signals, via multiple spatially different beams. In some aspects, the UE may receive multiple reference signals (e.g., multiple reference signals associated with the communication signal and/or the SIMR) , of the one or more reference signals, via the multiple spatially different beams. In some aspects, the UE may receive the single reference signal and/or the multiple reference signals using TDM and/or FDM.
In some aspects, the UE may receive at least one reference signal (e.g., that is associated with the sensing signals and/or the SMR) via repeated transmissions using a single beam (e.g., with a same spatial direction) . For example, the at least one reference signal may be a repeated CSI reference signal with a same quasi co-location (CQL) type (e.g., QCL-TypeD) .
As shown by reference number 425, the UE may determine (e.g., generate) a sensing interference report for reducing interference for the sensing signal. In some aspects, the sensing interference report may indicate one or more parameters for reducing interference for the sensing signal. In some aspects, the UE may determine the one or more parameters for reducing interference for the sensing signal based at least in part on the one or more reference signals associated with the sensing signal (e.g., associated with the SMR, the SIMR, the communication signal, the sensing signal, and/or the like) . For example, the UE may use the SIMR as an interference reference signal (e.g., to define the interference reference signal) and/or may use the SMR as a sensing reference signal (e.g., to define the sensing reference signal) .
In some aspects, the sensing interference report may indicate to avoid one or more spatial directions of a communication signal that may cause interference with the sensing signal, a preferred spatial direction for the communication signal, one or more power parameters to use for the communication signal, a modulation order to use for the communication signal, and/or the like. In some aspects, the sensing interference report may provide the indications using one or more precoders in a predetermined and/or configured codebook or identification of a set of beams (e.g., based at least in part on a precoding matrix indicator (PMI) , a beam index (e.g., an SSB index, a CSI resource indicator (CRI) , and/or the like) , and/or the like) . For example, the sensing interference report may provide an indication of a most preferred spatial interference direction, an  indication of a least preferred spatial interference direction (e.g., associated with a communication signal) , an indication that all spatial interference directions (e.g., identified in the SIMR) are acceptable, an indication that none of the spatial interference directions are acceptable, and/or the like.
In some aspects, the UE may be configured (e.g., via configuration information, the SMR, the SIMR, and/or the like) to indicate only one of the most preferred spatial interference direction or the least preferred spatial interference direction. In some aspects, the UE may be configured to indicate both of the most preferred spatial interference direction and the least preferred spatial interference direction. The UE be configured to indicate which spatial interference direction is most preferred and which is least preferred based at least in part on formatting of the indication (e.g., locations or orders within the indication of identifications associated with the most preferred spatial interference direction and the least preferred spatial interference direction) , one or more explicit indications of which spatial interference direction is most preferred and which is least preferred, and/or the like. In some aspects, the UE may be configured to indicate that all spatial interference directions are acceptable or unacceptable based at least in part on indicating all spatial interference directions or no spatial interference directions (e.g., using a PMI, a beam index, and/or the like) .
In some aspects, the sensing interference report may indicate a requested maximum modulation order (e.g., a Mod-Order) that may be applied to a communication signal. For example, the sensing interference report may use a CQI to indicate the requested maximum modulation order. In some aspects, the sensing interference report may indicate a requested maximum transmission power of the  communication signal based at least in part on, for example, an indicated transmission power parameter.
In some aspects, the sensing interference report may indicate a PMI that is based at least in part on at least one restricted rank index, explicit CSI feedback, and/or the like. In some aspects, the restricted rank index may be based at least in part on a reception capability of the UE (e.g., implicitly determined based at least in part on configuration information, reception capabilities of the UE (such as a number of receiver antennas) , and/or the like) . In some aspects, the explicit CSI feedback may include CSI (e.g., between the base station and the UE) that is based at least in part on the SMR, CSI that is based at least in part on the SIMR, and/or the like.
As shown by reference number 430, the UE may transmit, and the base station may receive, the sensing interference report. In some aspects the UE may transmit the sensing interference report using one or more of a MAC CE, a physical uplink control channel (PUCCH) message, a CSI report, an enhanced CSI report, and/or the like.
As shown by reference number 435, the base station may determine one or more parameters for one or more signals. For example, the base station may determine one or more parameters for transmitting communication signals to an additional UE. The one or more parameters may include a beam direction, a transmission power, a modulation order, a rank index, and/or the like.
As shown by reference number 440, the base station may transmit the sensing signal and additional signals. For example, the base station may transmit the communication signals, to an additional UE, based at least in part on the one or more parameters for reducing interference for the sensing signal, as indicated in the sensing interference report.
Based at least in part on the UE transmitting the sensing interference report, the base station may have information to select one or more parameters for transmitting a communication signal to reduce interference, from the communication signal, for the sensing signal, which may allow the base station to use SDM for sensing services and communication services with improved Doppler resolution, range resolution, and scheduling when compared to FDM or TDM. In some aspects, the improved scheduling may conserve network resources that may otherwise have been wasted to avoid conflicting frequencies and/or transmission times (e.g., symbols, slots, and/or the like) between sensing signals and communication signals.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 associated with transmitting and/or receiving sensing interference reports, in accordance with various aspects of the present disclosure. As shown in Fig. 5, a base station may transmit signals for reception by a first UE. The base station, the first UE, and one or more additional UEs may be part of a wireless network.
As shown by reference number 505, the base station may transmit one or more reference signals associated with an SMR (e.g., associated with a sensing signal) . The base station may transmit the one or more reference signals via repeated transmission using a single beam. The single beam may be an already-identified beam for object detection of a particular object.
As shown by reference number 510, the base station may transmit one or more reference signals associated with an SIMR (e.g., associated with one or more communication signals) . The base station may transmit the one or more reference signals via multiple spatially different beams. In some aspects, the base station may  transmit the one or more reference signals using FDM or TDM so that the UE may differentiate multiple spatially different beams.
As shown by reference number 515, the UE may determine a preferred beam, or a beam to be avoided, based at least in part on the transmission via the SIMR. In some aspects, the UE may determine one or more spatial directions to avoid for the communication signal, one or more preferred spatial directions for the communication signal, one or more power parameters to use for the communication signal, a modulation order to use for the communication signal, and/or the like.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 600 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with sensing interference reports.
As shown in Fig. 6, in some aspects, process 600 may include receiving one or more reference signals associated with a sensing signal (block 610) . For example, the UE (e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like) may receive one or more reference signals associated with a sensing signal, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal (block 620) . For example, the UE (e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like) may transmit a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the sensing interference report indicates the one or more parameters for reducing interference, for the sensing signal, based at least in part on a communication signal.
In a second aspect, alone or in combination with the first aspect, process 600 includes one or more of: receiving an indication of an SMR associated with the one or more reference signals, or receiving an indication of an SIMR associated with the one or more reference signals.
In a third aspect, alone or in combination with one or more of the first and second aspects, the SMR is associated with a configured sensing beam, the SIMR is associated with a non-precoded communication signal, or some combination thereof.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the SMR is associated with a CS-MR, the SIMR is associated with a CSI-IM resource, or some combination thereof.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, one or more of the SMR or the SIMR is based at least in part on one or more of: a waveform type for the sensing signal, a duty-cycle for the sensing signal, a periodicity for the sensing signal, or a power metric for the sensing signal.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 600 includes determining the sensing interference report based at least in part on using the SIMR as an interference reference signal and using the SMR as a sensing reference signal.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the SIMR identifies multiple spatially different beams.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 600 includes receiving a single reference signal, of the one or more reference signals, via the multiple spatially different beams, or receiving different reference signals, of the one or more reference signals, via the multiple spatially different beams.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 600 includes receiving at least one reference signal, of the one or more reference signals, that is associated with the SIMR via the multiple spatially different beams using one or more of TDM or FDM.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 600 includes receiving at least one reference signal, of the one or more reference signals, that is associated with the SMR via repeated transmissions using a single beam.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the sensing interference report includes one or more of: an indication to avoid one or more spatial directions of a communication signal that may cause interference with the sensing signal, an indication of one or more preferred spatial directions for the communication signal, an indication of one or more power parameters to use for the communication signal, or an indication of a modulation order to use for the communication signal.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the one or more parameters for reducing interference for the  sensing signal include a PMI that is based at least in part on one or more of: at least one restricted rank index, or an explicit CSI feedback.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, process 600 includes determining the at least one restricted rank index based at least in part on one or more of: a reception capability of the UE, or configuration information received via a base station.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the explicit CSI feedback comprises one or more of: CSI, between a base station and the UE, that is based at least in part on an SMR, or CSI, between the base station and the UE, that is based at least in part on an SIMR.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 700 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with sensing interference reports.
As shown in Fig. 7, in some aspects, process 700 may include transmitting one or more reference signals associated with a sensing signal (block 710) . For example, the base station (e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like) may transmit one or more reference signals associated with a sensing signal, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include receiving a sensing interference report that indicates one or more parameters for  reducing interference for the sensing signal (block 720) . For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may receive a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the sensing interference report indicates the one or more parameters for reducing interference, for the sensing signal, based at least in part on a communication signal.
In a second aspect, alone or in combination with the first aspect, process 700 includes one or more of: transmitting an indication of an SMR associated with the one or more reference signals, or transmitting an indication of an SIMR associated with the one or more reference signals.
In a third aspect, alone or in combination with one or more of the first and second aspects, the SMR is associated with a configured sensing beam, the SIMR is associated with a non-precoded communication signal, or some combination thereof.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the SMR is associated with a CSI-MR, the SIMR is associated with a CSI-IM resource, or some combination thereof.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, one or more of the SMR or the SIMR is based at least in part on one or more of: a waveform type for the sensing signal, a duty-cycle for the sensing signal, a periodicity for the sensing signal, or a power metric for the sensing signal.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the SIMR identifies multiple spatially different beams.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 700 includes transmitting a single reference signal, of the one or more reference signals, via the multiple spatially different beams, or transmitting different reference signals, of the one or more reference signals, via the multiple spatially different beams.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 700 includes transmitting at least one reference signal, of the one or more reference signals, that is associated with the SIMR via the multiple spatially different beams using one or more of TDM or FDM.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 700 includes transmitting at least one reference signal, of the one or more reference signals, that is associated with the SMR via repeated transmissions using a single beam.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the sensing interference report includes one or more of: an indication to avoid one or more spatial directions of a communication signal that may cause interference with the sensing signal, an indication of one or more preferred spatial directions for the communication signal, an indication of one or more power parameters to use for the communication signal, or an indication of a modulation order to use for the communication signal.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the one or more parameters for reducing interference for the  sensing signal includes a PMI that is based at least in part on one or more of: at least one restricted rank index; or an explicit CSI feedback.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the explicit CSI feedback comprises one or more of: CSI, between the base station and a UE, that is based at least in part on an SMR, or CSI, between the base station and a UE, that is based at least in part on an SIMR.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, process 700 includes determining, based at least in part on the sensing interference report, one or more parameters for transmitting at least one additional signal; and transmitting the sensing signal and the at least one additional signal.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used  to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used  interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (35)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving one or more reference signals associated with a sensing signal; and
    transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  2. The method of claim 1, wherein the sensing interference report indicates the one or more parameters for reducing interference, for the sensing signal, based at least in part on a communication signal.
  3. The method of claim 1, further comprising one or more of:
    receiving an indication of a sensing measurement resource associated with the one or more reference signals; or
    receiving an indication of a sensing interference measurement resource associated with the one or more reference signals.
  4. The method of claim 3, wherein the sensing measurement resource is associated with a configured sensing beam,
    wherein the sensing interference measurement resource is associated with a non-precoded communication signal, or
    some combination thereof.
  5. The method of claim 3, wherein the sensing measurement resource is associated with a channel state information measurement resource,
    wherein the sensing interference measurement resource is associated with a channel state information interference measurement resource, or
    some combination thereof.
  6. The method of claim 3, wherein one or more of the sensing measurement resource or the sensing interference measurement resource is based at least in part on one or more of:
    a waveform type for the sensing signal;
    a duty-cycle for the sensing signal;
    a periodicity for the sensing signal; or
    a power metric for the sensing signal.
  7. The method of claim 3, further comprising:
    determining the sensing interference report based at least in part on using the sensing interference measurement resource as an interference reference signal and using the sensing measurement resource as a sensing reference signal.
  8. The method of claim 3, wherein the sensing interference measurement resource identifies multiple spatially different beams.
  9. The method of claim 8, further comprising:
    receiving a single reference signal, of the one or more reference signals, via the multiple spatially different beams, or
    receiving different reference signals, of the one or more reference signals, via the multiple spatially different beams.
  10. The method of claim 8, further comprising:
    receiving at least one reference signal, of the one or more reference signals, that is associated with the sensing interference measurement resource via the multiple spatially different beams using one or more of time division multiplexing or frequency division multiplexing.
  11. The method of claim 3, further comprising:
    receiving at least one reference signal, of the one or more reference signals, that is associated with the sensing measurement resource via repeated transmissions using a single beam.
  12. The method of claim 1, wherein the sensing interference report includes one or more of:
    an indication to avoid one or more spatial directions of a communication signal that may cause interference with the sensing signal,
    an indication of one or more preferred spatial directions for the communication signal,
    an indication of one or more power parameters to use for the communication signal, or
    an indication of a modulation order to use for the communication signal.
  13. The method of claim 1, wherein the one or more parameters for reducing interference for the sensing signal includes a precoding matrix indicator that is based at least in part on one or more of:
    at least one restricted rank index; or
    an explicit channel state information feedback.
  14. The method of claim 13, further comprising determining the at least one restricted rank index based at least in part on one or more of:
    a reception capability of the UE, or
    configuration information received via a base station.
  15. The method of claim 13, wherein the explicit channel state information feedback comprises one or more of:
    channel state information, between a base station and the UE, that is based at least in part on a sensing measurement resource, or
    channel state information, between the base station and the UE, that is based at least in part on a sensing interference measurement resource.
  16. A method of wireless communication performed by a base station, comprising:
    transmitting one or more reference signals associated with a sensing signal; and
    receiving a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  17. The method of claim 16, wherein the sensing interference report indicates the one or more parameters for reducing interference, for the sensing signal, based at least in part on a communication signal.
  18. The method of claim 16, further comprising one or more of:
    transmitting an indication of a sensing measurement resource associated with the one or more reference signals; or
    transmitting an indication of a sensing interference measurement resource associated with the one or more reference signals.
  19. The method of claim 18, wherein the sensing measurement resource is associated with a configured sensing beam,
    wherein the sensing interference measurement resource is associated with a non-precoded communication signal, or
    some combination thereof.
  20. The method of claim 18, wherein the sensing measurement resource is associated with a channel state information measurement resource,
    wherein the sensing interference measurement resource is associated with a channel state information interference measurement resource, or
    some combination thereof.
  21. The method of claim 18, wherein one or more of the sensing measurement resource or the sensing interference measurement resource is based at least in part on one or more of:
    a waveform type for the sensing signal;
    a duty-cycle for the sensing signal;
    a periodicity for the sensing signal; or
    a power metric for the sensing signal.
  22. The method of claim 18, wherein the sensing interference measurement resource identifies multiple spatially different beams.
  23. The method of claim 22, further comprising:
    transmitting a single reference signal, of the one or more reference signals, via the multiple spatially different beams, or
    transmitting different reference signals, of the one or more reference signals, via the multiple spatially different beams.
  24. The method of claim 22, further comprising:
    transmitting at least one reference signal, of the one or more reference signals, that is associated with the sensing interference measurement resource via the multiple spatially different beams using one or more of time division multiplexing or frequency division multiplexing.
  25. The method of claim 18, further comprising:
    transmitting at least one reference signal, of the one or more reference signals, that is associated with the sensing measurement resource via repeated transmissions using a single beam.
  26. The method of claim 16, wherein the sensing interference report includes one or more of:
    an indication to avoid one or more spatial directions of a communication signal that may cause interference with the sensing signal,
    an indication of one or more preferred spatial directions for the communication signal,
    an indication of one or more power parameters to use for the communication signal, or
    an indication of a modulation order to use for the communication signal.
  27. The method of claim 16, wherein the one or more parameters for reducing interference for the sensing signal includes a precoding matrix indicator that is based at least in part on one or more of:
    at least one restricted rank index; or
    an explicit channel state information feedback.
  28. The method of claim 27, wherein the explicit channel state information feedback comprises one or more of:
    channel state information, between the base station and a user equipment (UE) , that is based at least in part on a sensing measurement resource, or
    channel state information, between the base station and a UE, that is based at least in part on a sensing interference measurement resource.
  29. The method of claim 16, further comprising:
    determining, based at least in part on the sensing interference report, one or more parameters for transmitting at least one additional signal; and
    transmitting the sensing signal and the at least one additional signal.
  30. A user equipment for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive one or more reference signals associated with a sensing signal; and
    transmit a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  31. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit one or more reference signals associated with a sensing signal; and
    receive a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  32. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment, cause the one or more processors to:
    receive one or more reference signals associated with a sensing signal; and
    transmit a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  33. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    transmit one or more reference signals associated with a sensing signal; and
    receive a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  34. An apparatus for wireless communication, comprising:
    means for receiving one or more reference signals associated with a sensing signal; and
    means for transmitting a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
  35. An apparatus for wireless communication, comprising:
    means for transmitting one or more reference signals associated with a sensing signal; and
    means for receiving a sensing interference report that indicates one or more parameters for reducing interference for the sensing signal.
PCT/CN2020/099118 2020-06-30 2020-06-30 Sensing interference reports WO2022000229A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/099118 WO2022000229A1 (en) 2020-06-30 2020-06-30 Sensing interference reports
US17/998,414 US20230231637A1 (en) 2020-06-30 2021-06-02 Channel state information reports and channel state information interference measurement reports associated with joint sensing and communication services
PCT/CN2021/097865 WO2022001563A1 (en) 2020-06-30 2021-06-02 Channel state information reports and channel state information interference measurement reports associated with joint sensing and communication services

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099118 WO2022000229A1 (en) 2020-06-30 2020-06-30 Sensing interference reports

Publications (1)

Publication Number Publication Date
WO2022000229A1 true WO2022000229A1 (en) 2022-01-06

Family

ID=79317675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099118 WO2022000229A1 (en) 2020-06-30 2020-06-30 Sensing interference reports

Country Status (1)

Country Link
WO (1) WO2022000229A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225994A1 (en) * 2022-05-27 2023-11-30 Qualcomm Incorporated Feasibility of sensing in a sensing-communication system
WO2024026595A1 (en) * 2022-07-30 2024-02-08 Huawei Technologies Co., Ltd. Methods, apparatus, and system for communication-assisted sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282879A (en) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 Data transmission method and device
US20200068576A1 (en) * 2017-05-09 2020-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmitting and receiving data
WO2020055764A1 (en) * 2018-09-10 2020-03-19 Qualcomm Incorporated Interference detection, signaling, and mitigation techniques for low latency transmissions
CN111194040A (en) * 2018-11-15 2020-05-22 成都华为技术有限公司 Method and device for reporting beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282879A (en) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 Data transmission method and device
US20200068576A1 (en) * 2017-05-09 2020-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmitting and receiving data
WO2020055764A1 (en) * 2018-09-10 2020-03-19 Qualcomm Incorporated Interference detection, signaling, and mitigation techniques for low latency transmissions
CN111194040A (en) * 2018-11-15 2020-05-22 成都华为技术有限公司 Method and device for reporting beam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Potential phy procedure designs for NR unlicensed", 3GPP DRAFT; R1-1804831 7.6.4 POTENTIAL PHY PROCEDURE DESIGN FOR NR UNLICENSED, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 7 April 2018 (2018-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051414186 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225994A1 (en) * 2022-05-27 2023-11-30 Qualcomm Incorporated Feasibility of sensing in a sensing-communication system
WO2024026595A1 (en) * 2022-07-30 2024-02-08 Huawei Technologies Co., Ltd. Methods, apparatus, and system for communication-assisted sensing

Similar Documents

Publication Publication Date Title
US11705952B2 (en) Periodic channel state information reference signal beam management scheduling
WO2021119648A1 (en) Downlink control information based beam and pathloss reference signal configuration activation
WO2022000229A1 (en) Sensing interference reports
US11871422B2 (en) Frequency allocation for channel state information reference signals
WO2022027417A1 (en) Channel state information report type configuration
WO2022000228A1 (en) Sensing signal configuration and scheduling
WO2022000236A1 (en) Directional sensing signal request
WO2021225959A1 (en) Resource identification for uplink scheduled transmission after cancellation indication receipt
WO2022001563A1 (en) Channel state information reports and channel state information interference measurement reports associated with joint sensing and communication services
WO2022000227A1 (en) Channel state information reports and channel state information interference measurement reports associated with joint sensing and communication services
US11558221B2 (en) Sounding reference signal resource indicator group indication
WO2022040654A1 (en) Uplink beam management using mixed downlink and uplink reference signals
EP4098003A1 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
WO2022000235A1 (en) Precoding for joint sensing and communication services
US11665683B2 (en) User equipment reporting for full duplex multi-beam selection
WO2022147676A1 (en) Uplink mode switching
US11936579B2 (en) Beam refinement procedure
US11621818B2 (en) Transmission configuration indicator state configuration
WO2022226969A1 (en) Beam failure detection evaluation on two transmission configuration indicator states
WO2022213344A1 (en) Long-term measurement for receiver-assisted channel access
WO2022246676A1 (en) Partial sounding for line of sight multiple input multiple output multiplexing
WO2022205087A1 (en) Beam switching gap based on user equipment capability
WO2021115358A1 (en) Quasi-colocation configuration
WO2022000224A1 (en) Backhaul aware bandwidth management
WO2022217482A1 (en) Semi-persistent channel state information reference signal activation in a direct secondary cell activation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942571

Country of ref document: EP

Kind code of ref document: A1