WO2022000176A1 - 红外图像处理方法、电子设备及计算机可读存储介质 - Google Patents

红外图像处理方法、电子设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2022000176A1
WO2022000176A1 PCT/CN2020/098889 CN2020098889W WO2022000176A1 WO 2022000176 A1 WO2022000176 A1 WO 2022000176A1 CN 2020098889 W CN2020098889 W CN 2020098889W WO 2022000176 A1 WO2022000176 A1 WO 2022000176A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
infrared
pixel
infrared image
infrared images
Prior art date
Application number
PCT/CN2020/098889
Other languages
English (en)
French (fr)
Inventor
张青涛
曹子晟
庹伟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/098889 priority Critical patent/WO2022000176A1/zh
Priority to CN202080042493.9A priority patent/CN114009005A/zh
Priority to CN202080048259.7A priority patent/CN114072837A/zh
Priority to PCT/CN2020/132407 priority patent/WO2022000974A1/zh
Publication of WO2022000176A1 publication Critical patent/WO2022000176A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application relates to the technical field of image processing, and in particular, to an infrared image processing method, an electronic device, and a computer-readable storage medium.
  • infrared thermal imaging technology has been widely used in people's lives. If the surface temperature of the object exceeds absolute zero, electromagnetic waves will be radiated. As the temperature changes, the radiation intensity and wavelength distribution characteristics of the electromagnetic waves also change. The electromagnetic waves with wavelengths between 0.75 ⁇ m and 1000 ⁇ m are called "infrared rays". Infrared thermal imaging technology is to use photoelectric technology to detect the infrared specific band signal of the thermal radiation of the object, and then convert the signal into images and graphics that can be distinguished by human vision, and can further calculate the temperature value. Infrared thermal imaging technology enables humans to transcend visual barriers, so that people can "see" the temperature distribution on the surface of objects.
  • infrared cameras for acquiring infrared images are also gradually popularized.
  • people have higher and higher requirements for the accuracy of temperature measurement using infrared images.
  • the higher the resolution of the obtained infrared image the more information is reflected in the infrared image, and accordingly, the obtained temperature value is more accurate.
  • the infrared camera is usually The sensor is designed to be larger, thereby expanding the number of photosensitive units of the sensor, and the corresponding number of pixels will also increase, but the cost of increasing the sensor is high, and the volume of the infrared camera will also increase, which is inconvenient to carry, which is not conducive to User experience.
  • one of the objectives of the present application is to provide an infrared image processing method, an electronic device and a computer-readable storage medium.
  • an embodiment of the present application provides an infrared image processing method, including:
  • an electronic device including:
  • memory for storing processor-executable instructions
  • the processor invokes the executable instruction, and when the executable instruction is executed, is used to execute:
  • the transformed other infrared images are synthesized with the reference infrared images to generate a target infrared image.
  • embodiments of the present application provide a computer-readable storage medium on which computer instructions are stored, and when the instructions are executed by a processor, implement the method described in the first aspect.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an infrared image processing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a second infrared image processing method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a third infrared image processing method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a second electronic device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a third electronic device provided by an embodiment of the present application.
  • an embodiment of the present application provides an infrared image processing method, which can acquire multiple infrared images captured by a photographing device in a continuous time series due to jitter, and perform processing on the multiple infrared images. Processing and synthesis to obtain high-resolution infrared images of the target.
  • a target infrared image with high resolution can be acquired without acquiring a sensor of a larger size, which is beneficial to saving hardware expenditure costs.
  • the infrared image processing method of the embodiment of the present application can be applied to the fields of human body temperature measurement, industrial equipment detection, rescue scene, security inspection, power equipment maintenance and diagnosis, and railway inspection.
  • the photographing device 10 may be installed on a movable platform 11 (such as an unmanned aerial vehicle, a mobile robot, etc.), and the photographing device 10 may have an anti-shake performance lower than a preset threshold. If the movable platform 11 can carry the photographing device 10 for photographing, during the movement of the movable platform 11, the photographing device 10 may shake with the movement of the movable platform 11. The embodiment is to use this jitter phenomenon to realize the acquisition of the target infrared image with high resolution.
  • a movable platform 11 such as an unmanned aerial vehicle, a mobile robot, etc.
  • the movable platform 11 can obtain multiple infrared images captured by the photographing device 10 in a continuous time series due to jitter, and by processing and synthesizing the multiple infrared images, obtaining With a high-resolution target infrared image, the movable platform 11 stores the target infrared image or sends the target infrared image to the control terminal 20 (such as a mobile phone, computer, personal tablet, etc.) of the movable platform 11. Remote control with screen, etc.).
  • the control terminal 20 such as a mobile phone, computer, personal tablet, etc.
  • the movable platform 11 may transmit a plurality of infrared images captured by the photographing device 10 in a continuous time series due to jittering to the control terminal 20 of the movable platform 11, so that the The control terminal 20 may process and synthesize the plurality of infrared images to obtain target infrared images with high resolution.
  • the movable platform includes, but is not limited to, an unmanned aerial vehicle, an unmanned vehicle, an unmanned vessel, a movable robot, or a handheld pan/tilt.
  • the photographing device 10 is a handheld device.
  • the handheld device When the user is holding the handheld device for photography, the handheld device will shake correspondingly due to the shaking of the human hand. This jitter phenomenon is used to achieve the acquisition of target infrared images with high resolution.
  • the shooting device 10 shoots multiple infrared images in a continuous time series due to jitter and transmits them to a terminal (such as a mobile phone, a computer, a personal tablet, etc.) or a server connected to it, so that the terminal can Alternatively, the server may process and synthesize the plurality of infrared images to obtain a target infrared image with high resolution.
  • the photographing device 10 can also process and synthesize a plurality of consecutive images generated by shaking to obtain a target infrared image with higher resolution. The obtained infrared image of the target can be used to measure human body temperature and so on.
  • FIG. 2 is only used as an example of a handheld photographing device 10.
  • the user can directly hold the photographing device (such as a camera) to take pictures.
  • the above-mentioned shaking may be generated by the user.
  • the shooting device (such as a camera) can be installed on the handle/hand-held gimbal, and the user holds the handle/hand-held gimbal to control the camera to shoot, that is, the camera and the handle/hand-held gimbal are independent , in this case, the above-mentioned shaking can be generated by the user or by the handle/hand-held gimbal or by the camera; or, the shooting device is the handle/hand-held gimbal, and the handle/hand-held gimbal has its own camera, that is The camera and the handle/hand-held gimbal are integrated, and the user can directly hold the handle/hand-held gimbal to control the camera to shoot. In this case, the above jitter can be generated by the user or by the handle/hand-held gimbal.
  • the handle/hand-held gimbal can also have its own display screen, which can display the captured images.
  • an embodiment of the present application provides an infrared image processing method, and the method can be executed by an electronic device, and the electronic device includes but is not limited to a photographing device, a movable platform equipped with a photographing device, such as an unmanned aerial vehicle.
  • the method includes:
  • step S101 a plurality of infrared images photographed by the photographing device in a continuous time series due to the occurrence of shaking are acquired.
  • step S102 one of the plurality of infrared images is determined as a reference infrared image.
  • step S103 the offset of each pixel of other infrared images other than the reference infrared image relative to each pixel of the reference image is determined.
  • step S104 the other infrared images are transformed according to the offset.
  • step S105 the transformed other infrared images and the reference infrared images are synthesized to generate a target infrared image.
  • an acceleration sensor and/or an angular velocity sensor (and/or both or both) such as an IMU sensor (inertial measurement unit) may be installed on the photographing device, and then the measured acceleration data and/or the or angular velocity data to detect whether the camera shakes or the degree of shake of the camera.
  • the photographing device may be a handheld device or a photographing device device whose anti-shake performance is lower than a preset threshold.
  • the photographing device is a handheld device
  • the hand when the user holds the photographing device, since the human body cannot be completely still, the hand may shake randomly.
  • the photographing device held by the user will also randomly shake. , that is to say, the shaking may be generated when the user holds the photographing device for photographing.
  • the photographing device When the photographing device is a device whose anti-shake performance is lower than the preset threshold, the photographing device cannot maintain the same stable state as the stationary state in the case of motion or when carried by the moving movable platform, and A certain degree of jitter will occur due to inertia or other reasons, that is, the jitter is generated by the moving movable platform when carrying the shooting device for shooting, or the jitter is caused by the movement.
  • the photographing device is produced when photographing.
  • step S101 the shaking of the photographing device only produces a very small movement, and the normal vision of the human eye may not perceive the difference brought by the slight movement.
  • the photographing device is in a continuous time series.
  • the target object (human body, object or a certain area, etc.) photographed on the above is basically the same.
  • the photographing device can generate sub-pixel-level pixel values due to shaking, that is to say, the electronic device can find sub-pixel-level pixel values in multiple infrared images captured by the photographing device due to shaking. It is precisely by combining multiple infrared images that can find sub-pixel pixel values after processing to obtain a super-resolution infrared image of the target.
  • the photographing device may generate sub-pixel-level pixel values due to random jitter or a predetermined degree of jitter.
  • the photographing device is a handheld device, and the shaking when the human body holds the photographing device is an unpredictable random shaking process, then the photographing device may generate sub-pixel level pixels due to the random shaking. value.
  • the photographing device is a device whose anti-shake performance is lower than a preset threshold, when the photographing device moves at a preset speed, or when the movable platform moves with the photographing device at a preset speed , if other factors are not considered, the photographing device may generate a preset degree of shaking, and the photographing device may generate a sub-pixel level pixel value due to the preset degree of shaking.
  • a preset shaking device is installed on the photographing device, and the shaking device can drive the photographing device to generate a preset degree of shaking.
  • the sub-pixel-level pixel value may be determined according to the shaking amount of the photographing device; wherein, the shaking amount may be the shaking amount of the photographing device when random shaking occurs, or the shaking amount may be is the shake amount of the camera when a preset degree of shake occurs; that is, the shake amount is determined according to the camera when random shake occurs; or, the shake amount is determined according to the camera when random shake occurs. Determined when a preset degree of jitter is present.
  • the photographing device when the photographing device generates random shaking, since the degree of random shaking is unpredictable, there is a high possibility that the photographing device can generate sub-pixel-level pixel values due to random shaking;
  • the degree of jitter when the degree of jitter is set, since the preset degree of jitter can be controlled manually or by equipment, in order to allow the photographing device to generate sub-pixel-level pixel values due to the preset degree of jitter, and the sub-pixel-level pixel values is a value between any two pixel values, then it can be determined that the jitter amount includes the movement amount that is a non-integer multiple of the pixel spacing, so that the sub-pixel value between any two pixel values can be found from the captured infrared image. Pixel-level pixel value.
  • the preset resolution of the target infrared image to be generated can be preset, and then the electronic device can The preset resolution of the target infrared image, determining the number of infrared images captured by the shooting device when a preset degree of shaking occurs and/or (and/or representing both or one of the two) infrared images corresponding to each frame
  • the shaking amount of the photographing device can be controlled according to the determined shaking amount of the photographing device corresponding to each frame of infrared images or the number of infrared images to be photographed, and then the infrared images of this embodiment can be used to control the photographing device.
  • the processing method obtains a target infrared image with a preset resolution.
  • a target infrared image with a preset resolution that meets the user's requirements can be generated according to the actual needs of the user, which is beneficial to improve the user's use experience.
  • the sub-pixel-level pixel values found in the infrared images are also different, then the generated image is generated.
  • the resolution of the target infrared image is also different.
  • the shooting device shoots a plurality of infrared images in a continuous time series due to shaking, that is, each infrared image is obtained by the shooting device at different shaking positions, and the pixels in different infrared images are different due to the shooting.
  • the shaking of the device may produce a slight offset, that is to say, the amount of shaking of the photographing device is directly related to the offset between the pixels in the plurality of infrared images captured by the photographing device due to shaking , and different dithering amounts make the offsets between the pixels in the multiple infrared images also different.
  • the electronic device may acquire multiple infrared images captured by the camera in a continuous time series due to jitter, and then synthesize the multiple infrared images for which sub-pixel-level pixel values can be found, so as to be able to Acquire a high-resolution infrared image of the target.
  • the infrared image may be an unprocessed image (raw image) captured by the photographing device; or, in order to further improve the accuracy of the subsequent processing process, the infrared image may be a preprocessed image, here
  • the preprocessing includes, but is not limited to, correction processing (such as sensor responsivity correction, bias correction), noise removal processing, or dead pixel removal processing.
  • the electronic device may determine one of the multiple infrared images as a reference infrared image, so as to use the reference infrared image as a reference to determine other infrared images Offset of the pixels in the infrared images, so as to achieve alignment of the pixels in the plurality of infrared images.
  • the electronic device may determine the reference infrared image through any one of the following implementation manners:
  • the electronic device may randomly select one of a plurality of infrared images as the reference infrared image.
  • the electronic device may acquire image information of each of the infrared images, and determine the reference infrared image from the plurality of infrared images according to the image information.
  • the image information can be used to reflect the clarity of the infrared image, and the image information includes but is not limited to: signal-to-noise ratio, image gradient, local variance, or mean square error (Mean Square Error, MSE), etc.
  • the device may use the one with the most image information among the plurality of infrared images as the reference infrared image.
  • the infrared image with the most image information is used as the reference infrared image, and when the reference infrared image is used as a reference to determine the offset of pixels in other infrared images, the determination result is more accurate.
  • the embodiments of the present application do not impose any restrictions on the specific method of acquiring image information, and specific selections can be made according to actual application scenarios.
  • the image information is image gradient information
  • the Brenner gradient function and the Tenengrad gradient function can be used.
  • Laplacian gradient function, or energy gradient function, etc. to obtain the image gradient information of the infrared image.
  • the temperature range that users pay attention to for different target objects is also different, for example, the normal human body temperature range is 35 Between °C ⁇ 37.7°C, the temperature range that the user is concerned about may be between 33°C ⁇ 40°C, and the temperature value outside 33°C ⁇ 40°C may not be of interest to the user, then the electronic device can According to one or more temperature ranges of interest to the user, one of the plurality of infrared images is determined as the reference infrared image.
  • the electronic device may acquire one or more temperature ranges that the user is interested in.
  • the electronic device may provide an interactive interface on which input controls such as input boxes or selections are displayed. button, etc., the user can input one or more temperature ranges of interest to the user on the input controls of the interactive interface; after acquiring the one or more temperature ranges of interest to the user, for each of the infrared images, the The electronic device determines a target pixel corresponding to the one or more temperature ranges.
  • the electronic device may determine a corresponding target pixel according to a pre-stored correspondence relationship and the one or more temperature ranges, and the The corresponding relationship indicates the mapping relationship between different temperature values and different pixel values; then, the electronic device can acquire the image information of the infrared image according to the target pixel, and obtain the image information from the plurality of infrared images according to the image information.
  • the reference infrared image is determined.
  • the reference infrared image is determined according to the temperature range that the user is interested in, so as to ensure that the reference infrared image that best meets the user's needs is obtained and meets the user's personalized needs.
  • the image information includes but is not limited to: signal-to-noise ratio, image gradient, local variance or mean square error (Mean Square Error, MSE), etc.
  • the electronic device can an infrared image as the reference.
  • the infrared image with the most image information is used as the reference infrared image, and when the reference infrared image is used as a reference to determine the offset of pixels in other infrared images, the determination result is more accurate.
  • the electronic device may identify a target area where a preset shooting object is located in the infrared image, and then determine one of the plurality of infrared images according to the target area as the reference infrared image .
  • the electronic device may acquire image information of the infrared image according to the pixels corresponding to the target area, and determine the reference infrared image from the plurality of infrared images according to the image information.
  • an infrared image with the most image information can be used as a reference infrared image, and when the reference infrared image is used as a reference to determine the offset of pixels in other infrared images, the determination result is more accurate.
  • the electronic device obtains the information of the current photographed object, and then obtains the temperature range of the photographed object according to the information of the photographed object and a preset temperature correspondence, and the preset temperature corresponds to The relationship indicates different temperature ranges corresponding to different photographing objects, and the electronic device may determine one of the plurality of infrared images as the reference infrared image according to the temperature ranges of the photographing objects. Specifically, for each of the infrared images, the electronic device may determine a target pixel corresponding to the temperature range of the photographed object, and then the electronic device may acquire image information of the infrared image according to the target pixel , and the reference infrared image is determined from the plurality of infrared images according to the image information.
  • an infrared image with the most image information can be used as a reference infrared image, and when the reference infrared image is used as a reference to determine the offset of pixels in other infrared images, the determination result is more accurate.
  • the electronic device may determine the offset of each pixel of other infrared images other than the reference infrared image relative to each pixel of the reference image.
  • the offset includes an angular offset and/or a distance offset
  • the distance offset includes a horizontal distance offset and a vertical distance offset.
  • an IMU sensor is installed on the photographing device, and when the photographing device shakes, the IMU sensor also shakes together, and the measurement data of the IMU sensor can be used to reflect the The amount of shaking of the photographing device, the offset between the pixels of the infrared image is also caused by the shaking of the photographing device, then each pixel of the other infrared images can be determined according to the measurement data of the IMU sensor The offset of each pixel relative to the reference image. In this embodiment, the offset of the pixels in other infrared images is determined by the measurement data of the IMU sensor, and the determined result is more accurate.
  • the electronic device may acquire the alignment relationship between the other infrared images and the reference image respectively, and then use the alignment relationship to determine other infrared images other than the reference infrared image
  • the offset of each pixel of the reference image relative to each pixel of the reference image can be determined by an affine transformation matrix, a homography matrix and/or an affine transformation matrix between the other infrared images and the reference image.
  • motion vector the electronic device can use the affine transformation matrix, the homography matrix and/or the motion vector to determine relative to the reference image for each pixel of the infrared image other than the reference infrared image the offset of each pixel.
  • the offset of the pixels in the other infrared images is determined by the alignment relationship between the other infrared images and the reference image, which can effectively reduce the hardware expenditure cost while ensuring an accurate determination result.
  • step S104 after the electronic device determines the offset of each pixel of other infrared images other than the reference infrared image relative to each pixel of the reference image, the electronic device determines the offset of each pixel of the reference image according to the offset. Transform other infrared images, so as to realize the registration of the other infrared images and the reference infrared images; finally, in step S105, the electronic device performs the transformation between the other infrared images and the reference infrared images. Synthesized to generate an infrared image of the target.
  • the plurality of infrared images are obtained when the photographing device shakes, and the shaking of the photographing device only produces very small movements, and the photographing device may generate sub-pixel level due to the shaking.
  • sub-pixel-level pixel values between pixels can be obtained in the transformed other infrared images.
  • the electronic device can perform one or more operations of contrast stretching, image enhancement or pseudo-color mapping on the target infrared image to obtain the processed target infrared image; in this embodiment, the above operations are used to improve The image quality of the target infrared image enables the processed target infrared image to have a better display effect, and the processed target infrared image can be used for sighting.
  • the embodiment of the present application also provides a second infrared image processing method, the method can be executed by the electronic device, and the method includes:
  • step S201 a plurality of infrared images photographed by the photographing device in a continuous time series due to shaking is acquired. Similar to step S101, details are not repeated here.
  • step S202 one of the plurality of infrared images is determined as a reference infrared image. Similar to step S102, details are not repeated here.
  • step S203 image enhancement processing is performed on the plurality of infrared images respectively to obtain enhanced infrared images.
  • step S204 the offset of each pixel of the enhanced other infrared image relative to each pixel of the enhanced reference infrared image is determined.
  • step S205 the other infrared images are transformed according to the offset.
  • step S206 the transformed other infrared images and the reference infrared images are synthesized to generate a target infrared image.
  • the electronic device in order to obtain a more accurate offset result, the electronic device first performs image enhancement processing on the plurality of infrared images respectively, and obtains the enhanced infrared images, the image enhancement processing includes: But not limited to at least one of the following operations: global contrast stretching, local contrast stretching, smoothing, or sharpening.
  • the image enhancement processing includes: But not limited to at least one of the following operations: global contrast stretching, local contrast stretching, smoothing, or sharpening.
  • the useful information in the infrared image can be enhanced, the overall or local characteristics of the infrared image can be further emphasized, the information content of the infrared image can be enriched, and the infrared image can be enhanced.
  • Image discrimination effect by performing image enhancement processing on the infrared image, the useful information in the infrared image can be enhanced, the overall or local characteristics of the infrared image can be further emphasized, the information content of the infrared image can be enriched, and the infrared image can be enhanced. Image
  • the electronic device determines, on the plurality of enhanced infrared images, the offset of each pixel of the other enhanced infrared images relative to each pixel of the enhanced reference infrared image.
  • the information content of the enhanced infrared image is enriched, and the useful information in the infrared image is also enhanced. Therefore, it is more accurate to determine the offset between pixels on the enhanced infrared image.
  • the image enhancement process is also a distorted process
  • some image information may be lost, making the temperature information reflected by the synthesized target infrared image inaccurate.
  • the image enhancement methods of each infrared image may be different. If the enhanced infrared images are synthesized, the non-uniform image enhancement methods may also bring certain errors.
  • the offset transforms the other infrared image (unenhanced infrared image), and finally transforms the transformed other infrared image (unenhanced infrared image) with the reference infrared image (unenhanced infrared image) Synthesizing and generating target infrared images, while obtaining high-resolution target infrared images, it also ensures that some image information will not be lost, and at the same time avoids errors caused by non-uniform image enhancement methods, ensuring that target infrared images are not lost.
  • the accuracy of the image, the infrared image of the target obtained in this way can be used for temperature measurement, so as to obtain a more accurate temperature measurement result.
  • the electronic device can perform one or more operations of contrast stretching, image enhancement or pseudo-color mapping on the target infrared image to obtain the processed target infrared image; in this embodiment, the above operations are used to improve The image quality of the target infrared image enables the processed target infrared image to have a better display effect, and the processed target infrared image can be used for sighting.
  • the embodiment of the present application also provides a third infrared image processing method, and the method can be executed by the electronic device, and the method includes:
  • step S301 a plurality of infrared images photographed by the photographing device in a continuous time series due to shaking is acquired. Similar to step S201, details are not repeated here.
  • step S302 one of the plurality of infrared images is determined as a reference infrared image. Similar to step S202, details are not repeated here.
  • step S304 the offset of each pixel of the enhanced other infrared image relative to each pixel of the enhanced reference infrared image is determined. Similar to step S204, details are not repeated here.
  • step S305 the other enhanced infrared images are transformed according to the offset to obtain an alignment image.
  • the electronic device can also transform the other enhanced infrared images according to the offset, obtain an aligned image, and then compare the aligned image with the enhanced infrared image.
  • the reference infrared images are synthesized to generate target infrared images for sighting.
  • this embodiment performs transformation and synthesis processing on the enhanced target infrared image.
  • the image enhancement process improves the Because of the image quality of the infrared image, a better display effect can be obtained, and the infrared image of the target obtained in this embodiment can be used for viewing.
  • an embodiment of the present application further provides an electronic device 40
  • the electronic device 40 includes but is not limited to a photographing device, a movable platform equipped with a photographing device, such as an unmanned aerial vehicle, a mobile robot, Unmanned vehicles or unmanned ships, terminals such as mobile phones, computers, remote controls, personal tablets or personal digital assistants (PDAs), servers or cloud servers and other devices with image processing functions.
  • the electronic device 40 includes: a processor 41 ; and a memory 42 for storing instructions executable by the processor 41 .
  • the processor 41 invokes the executable instruction, and when the executable instruction is executed, is used to execute: acquiring a plurality of infrared images captured by the photographing device in a continuous time series due to jitter; One of the infrared images is determined as the reference infrared image; the offset of each pixel of the other infrared images other than the reference infrared image relative to each pixel of the reference image is determined; The other infrared images are transformed; the transformed other infrared images are synthesized with the reference infrared images to generate a target infrared image.
  • the processor 41 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the photographing device is a handheld device, and the shaking is generated when a user holds the photographing device for photographing; or, the photographing device is a device whose anti-shake performance is lower than a preset threshold, The shaking is generated by the moving movable platform when carrying the photographing device for photographing, or the shaking is generated by the moving photographing device when photographing.
  • the photographing device may generate sub-pixel-level pixel values due to jitter.
  • the sub-pixel-level pixel value is determined according to the amount of shaking of the photographing device.
  • the shaking amount is determined according to the photographing device when random shaking occurs; or, the shaking amount is determined according to the photographing device when a preset degree of shaking occurs.
  • the shaking amount when a preset degree of shaking occurs in the photographing device, the shaking amount includes a movement amount that is a non-integer multiple of the pixel pitch.
  • the processor is further configured to: determine, according to the preset resolution of the infrared image of the target to be generated, the number and/or number of infrared images shot by the shooting device when a preset degree of shaking occurs. Or the shaking amount of the photographing device corresponding to each frame of infrared images.
  • the processor when performing image enhancement processing, is configured to perform at least one of the following operations on the plurality of infrared images: global contrast stretching, local contrast stretching, smoothing or sharpening.
  • the infrared image of the target is used for temperature measurement.
  • the processor 41 is further configured to: perform one or more of contrast stretching, image enhancement processing or pseudo-color mapping on the target infrared image to obtain an enhanced target infrared image; The processed and enhanced infrared image of the target is used for sighting.
  • the processor 41 is further configured to: transform the enhanced other infrared images according to the offset to obtain an aligned image; compare the aligned image with the enhanced reference infrared image; The images are synthesized to generate an infrared image of the target for viewing.
  • the offset includes an angular offset and/or a distance offset.
  • the processor 41 when determining a reference infrared image, is specifically configured to: acquire image information of each infrared image, and determine the infrared image from the plurality of infrared images according to the image information. Reference infrared image.
  • the processor 41 when determining the reference infrared image, is specifically configured to: acquire one or more temperature ranges that the user is interested in; A target pixel corresponding to a temperature range is obtained, and image information of the infrared image is acquired according to the target pixel; the reference infrared image is determined from the plurality of infrared images according to the image information.
  • the image information includes at least one of the following: signal-to-noise ratio, image gradient or local variance.
  • the reference infrared image is an image with the most image information among the plurality of infrared images.
  • an IMU sensor is installed on the photographing device
  • the offset of each pixel of the other infrared image relative to each pixel of the reference image is determined according to the measurement data mounted on the IMU sensor.
  • the processor 41 is specifically configured to: obtain an affine transformation matrix, a homography matrix and/or a motion vector between the other infrared images and the reference image respectively; use the affine transformation matrix A transformation matrix, a homography matrix and/or a motion vector to determine the offset of each pixel of the infrared image other than the reference infrared image relative to each pixel of the reference image.
  • the infrared image is a preprocessed image; the preprocessing includes at least one of the following operations: correction processing, noise removal or dead pixel removal.
  • the electronic device is the photographing device; or, please refer to FIG. 7 , the photographing device 43 is installed in the electronic device 40 ; or, please refer to FIG. 8 , the electronic device 40 also A communication module 44 is included, and the communication module 44 is configured to receive a plurality of infrared images captured by the capturing device.
  • the communication module 44 is configured to receive a plurality of infrared images captured by the capturing device.
  • non-transitory computer-readable storage medium such as a memory including instructions, executable by a processor of an electronic device to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the electronic device when the instructions in the storage medium are executed by the processor, the electronic device can execute the aforementioned infrared image processing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Radiation Pyrometers (AREA)
  • Image Processing (AREA)

Abstract

一种红外图像处理方法、电子设备及计算机可读存储介质,所述方法包括:获取拍摄装置由于产生抖动在连续的时间序列上拍摄的多张红外图像;将所述多张红外图像中的其中一张确定为参考红外图像;确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量;根据所述偏移量对所述其他红外图像进行变换;将变换后的所述其他红外图像与所述参考红外图像进行合成,生成目标红外图像。本发明能够获取高分辨率的红外图像。

Description

红外图像处理方法、电子设备及计算机可读存储介质 技术领域
本申请涉及图像处理技术领域,具体而言,涉及一种红外图像处理方法、电子设备及计算机可读存储介质。
背景技术
随着技术的发展,红外热成像技术已广泛应用于人们的生活中。物体表面温度如果超过绝对零度即会辐射出电磁波,随着温度变化,电磁波的辐射强度与波长分布特性也随之改变,波长介于0.75μm到1000μm间的电磁波称为“红外线”。红外热成像技术就是运用光电技术检测物体热辐射的红外线特定波段信号,然后将该信号转换成可供人类视觉分辨的图像和图形,并可以进一步计算出温度值。红外热成像技术使人类超越了视觉障碍,由此人们可以“看到”物体表面的温度分布状况。
目前,用于获取红外图像的红外相机也逐渐普及。随着技术的发展,人们对于利用红外图像测温的准确度要求也越来越高。通常,获取的红外图像的分辨率越高,该红外图像中反映的信息越多,相应的,得到的温度值也更为准确,而为了获取高分辨率的红外图像,通常会把红外相机中的传感器设计得更大,从而扩大所述传感器的感光单元的数量,相应的像素数量也会增多,但增大传感器的成本高昂,也会使得红外相机的体积增大,不便携带,从而不利于用户的使用体验。
发明内容
有鉴于此,本申请的目的之一是提供一种红外图像处理方法、电子设备及计算机可读存储介质。
第一方面,本申请实施例提供了一种红外图像处理方法,包括:
获取拍摄装置由于产生抖动在连续的时间序列上拍摄的多张红外图像;
将所述多张红外图像中的其中一张确定为参考红外图像;
确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各 像素的偏移量;
根据所述偏移量对所述其他红外图像进行变换;
将变换后的所述其他红外图像与所述参考红外图像进行合成,生成目标红外图像。
第二方面,本申请实施例提供了一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器调用所述可执行指令,当可执行指令被执行时,用于执行:
获取拍摄装置由于产生抖动在连续的时间序列上拍摄的多张红外图像;
将所述多张红外图像中的其中一张确定为参考红外图像;
确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量;
根据所述偏移量对所述其他红外图像进行变换;
将变换后的所述其他红外图像与所述参考红外图像进行合成,生成目标红外图像。
第三方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现第一方面所述的方法。
本申请实施例所提供的一种红外图像处理方法、电子设备及计算机可读存储介质,获取拍摄装置由于产生抖动在连续的时间序列上拍摄的多张红外图像,不同红外图像之间的像素因所述拍摄装置的抖动可能产生了细微的偏移,通过对这些红外图像进行处理及合成,可以获取具备高分辨率的目标红外图像,本申请身实施例无需获取更大尺寸的传感器即可获取具备高分辨率的目标红外图像,有利于节省硬件支出成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的一种应用场景示意图;
图2是本申请一个实施例提供的另一种应用场景示意图;
图3是本申请一个实施例提供的一种红外图像处理方法的流程示意图;
图4是本申请一个实施例提供的第二种红外图像处理方法的流程示意图;
图5是本申请一个实施例提供的第三种红外图像处理方法的流程示意图;
图6是本申请一个实施例提供的一种电子设备的结构示意图;
图7是本申请一个实施例提供的第二种电子设备的结构示意图;
图8是本申请一个实施例提供的第三种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
针对于相关技术中的问题,本申请实施例提供了一种红外图像处理方法,能够获取拍摄装置由于发生抖动在连续的时间序列上拍摄的多张红外图像,通过对所述多张红外图像进行处理及合成,获取具备高分辨率的目标红外图像。本申请实施例无需获取更大尺寸的传感器即可获取具备高分辨率的目标红外图像,有利于节省硬件支出成本。
本申请实施例的红外图像处理方法可应用于人体测温、工业设备检测、救援场景、安防巡检、电力设备检修诊断以及铁路巡检等领域。
在一示例性的应用场景中,请参阅图1,拍摄装置10可安装于可移动平台上11(比如无人飞行器、可移动机器人等),拍摄装置10可以是防抖性能低于预设阈值的设备,所述可移动平台11可以携带所述拍摄装置10进行拍摄,则在所述可移动平台11运动过程中,所述拍摄装置10可能会随着可移动平台11的运动产生抖动,本实施例就是利用这种抖动现象来实现具备高分辨率的目标红外图像的获取。作为其中一种实现方式,所述可移动平台11可获取所述拍摄装置10由于发生抖动在连续的时间序列上拍摄的多张红外图像,通过对所述多张红外图像进行处理及合成,获取具备高分辨率的目标红外图像,然后所述可移动平台11存储所述目标红外图像或者将所述目标红外图像发送给所述可移动平台11的控制终端20(比如手机、电脑、个人平板、带屏遥控器等)。作为另一种实现方式,所述可移动平台11可以将所述拍摄装置10由于发生抖动在连续的时间序列上拍摄的多张红外图像传输给所述可移动平台11的控制终端20,以便所述控制终端20可以对所述多张红外图像进行处理及合成,获取具备高分辨率的目标红外图像。其中,所述可移动平台包括但不限于无人飞行器、无人驾驶车辆、无人驾驶船只、可移动机器人或者手持云台等。
在另一示例性的应用场景中,请参阅图2,拍摄装置10为手持设备,在用户在拿着该手持设备进行拍摄时,手持设备会由于人手的抖动产生相应的抖动,本实施例就 是利用这种抖动现象来实现具备高分辨率的目标红外图像的获取。作为一种实现方式,所述拍摄装置10将由于发生抖动在连续的时间序列上拍摄多张红外图像传输给与之连接的终端(比如手机、电脑、个人平板等)或者服务器,以便所述终端或者服务器可以对所述多张红外图像进行处理及合成,获取具备高分辨率的目标红外图像。当然,也可以是拍摄装置10自身对因抖动产生的多张连续的图像进行处理及合成,获得具备更高分辨率的目标红外图像。获得的目标红外图像可以用来进行人体测温等。
需要说明的是,图2仅作为一种手持拍摄装置10的举例,在实际应用中,用户可以直接手持拍摄装置(例如相机)进行拍摄,这种情况下,上述抖动可以是由用户产生的,或者拍摄装置本身产生的;或者,拍摄装置(例如相机)可以安装在手柄/手持云台上,用户握持手柄/手持云台控制相机进行拍摄,即,相机和手柄/手持云台是独立的,这种情况下,上述抖动可以是由用户产生的或者由手柄/手持云台产生或者由相机产生;或者,拍摄装置为手柄/手持云台,且手柄/手持云台本身自带摄像头,即摄像头和手柄/手持云台是一体的,则用户可以直接手持手柄/手持云台控制摄像头进行拍摄,这种情况下,上述抖动可以是由用户产生的或者由手柄/手持云台产生,可选的,手柄/手持云台还可以自带显示屏,可以将拍摄的图像进行显示。
请参阅图3,本申请实施例提供了一种红外图像处理方法,所述方法可以由电子设备来执行,所述电子设备包括但不限于拍摄装置,搭载有拍摄装置的可移动平台如无人飞行器、可移动机器人、无人驾驶车辆或者无人驾驶船只等,终端如手机、电脑、遥控器、个人平板或者个人数字助理(PDA)等,服务器或者云端服务器等具备图像处理功能的设备。所述方法包括:
在步骤S101中,获取拍摄装置由于发生抖动在连续的时间序列上拍摄的多张红外图像。
在步骤S102中,将所述多张红外图像中的其中一张确定为参考红外图像。
在步骤S103中,确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量。
在步骤S104中,根据所述偏移量对所述其他红外图像进行变换。
在步骤S105中,将变换后的所述其他红外图像与所述参考红外图像进行合成,生成目标红外图像。
在一实施例中,所述拍摄装置上可以安装加速度传感器和/或角速度传感器(和/或表示两者或两者之一)比如IMU传感器(惯性测量单元),进而通过测量的加速度数据和/或角速度数据来检测所述拍摄装置是否产生了抖动或者所述拍摄装置抖动的 程度。所述拍摄装置可以为手持设备或者防抖性能低于预设阈值的拍照装置设备。
在所述拍摄装置为手持设备的情况下,用户在握持所述拍摄装置时由于人体本身无法做到完全静止,可能手会产生随机抖动,相应的,用户握持的拍摄装置也会产生随机抖动,即是说,所述抖动可以是由用户在握持所述拍摄装置进行拍摄时产生的。
在所述拍摄装置为防抖性能低于预设阈值的设备时,所述拍摄装置在运动情况下或者由运动的可移动平台携带的情况下,无法保持与静止情况下相同的稳定状态,而是会由于惯性或者其他原因会产生一定程度上的抖动,即是说,所述抖动是由运动的可移动平台在携带所述拍摄装置进行拍摄时产生的,或者,所述抖动是由运动的所述拍摄装置在拍摄时产生的。
对于步骤S101,所述拍摄装置的抖动只是产生了非常细微的移动,人眼正常视觉可能感受不到这种细微的移动所带来的差别,换句话说,所述拍摄装置在连续的时间序列上所拍摄的目标对象(人体、物体或者某一区域等)基本是相同的。
其中,所述拍摄装置因抖动能够产生亚像素级像素值,即是说,所述电子设备能够在所述拍摄装置因抖动拍摄的多张红外图像中找到亚像素级像素值,本申请实施例正是将能够找到亚像素级像素值的多张红外图像在处理后进行合成,从而得到超分辨率的目标红外图像。
在一实施例中,所述拍摄装置可以因随机抖动或者预设程度的抖动产生亚像素级像素值。在一个例子中,所述拍摄装置为手持设备,而人体握持所述拍摄装置时的抖动是一个不可预估的随机抖动过程,则所述拍摄装置可以因这种随机抖动产生亚像素级像素值。在一个例子中,所述拍摄装置为防抖性能低于预设阈值的设备,在所述拍摄装置以预设速度运动时,或者所述可移动平台以预设速度携带所述拍摄装置运动时,如果不考虑其他因素,则所述拍摄装置可以产生预设程度的抖动,则所述拍摄装置可以因这种预设程度的抖动产生亚像素级像素值。在一个例子中,所述拍摄装置上安装有预设的抖动装置,所述抖动装置可带动所述拍摄装置产生预设程度的抖动。
进一步地,所述亚像素级像素值可以根据所述拍摄装置的抖动量所确定;其中,所述抖动量可以是所述拍摄装置在发生随机抖动时的抖动量,或者,所述抖动量可以是所述拍摄装置在发生预设程度的抖动时的抖动量;即是说,所述抖动量根据所述拍摄装置在发生随机抖动时确定;或者,所述抖动量根据所述拍摄装置在发生预设程度的抖动时确定。其中,在所述拍摄装置产生随机抖动时,由于随机抖动的抖动程度是无法预估的,有很大可能所述拍摄装置可以因随机抖动产生亚像素级像素值;在所述拍摄装置产生预设程度的抖动时,由于所述预设程度的抖动是可以人为或设备自主控 制的,为了让所述拍摄装置可以因预设程度的抖动一定产生亚像素级像素值,而亚像素级像素值是处于任意两个像素值之间的值,则可以确定所述抖动量包括像素间距的非整数倍的移动量,这样才可以从拍摄得到的红外图像中找到任意两个像素值之间的亚像素级像素值。
则在一实施例中,在可以控制所述拍摄装置的抖动程度的情况下,可以预先设置待生成的所述目标红外图像的预设分辨率,然后所述电子设备可以根据待生成的所述目标红外图像的预设分辨率,确定所述拍摄装置在发生预设程度的抖动时拍摄的红外图像的数量和/或(和/或表示两者或者两者之一)每帧红外图像对应的所述拍摄装置的抖动量,从而可以根据确定的每帧红外图像对应的所述拍摄装置的抖动量或者需要拍摄的红外图像的数量控制所述拍摄装置进行拍摄,进而通过本实施例的红外图像处理方法得到预设分辨率的目标红外图像。本实施例中,可以根据用户的实际需要生成满足用户要求的预设分辨率的目标红外图像,有利于提升用户的使用体验。
可以理解的是,在所述红外图像的数量不同和/或每帧红外图像对应的所述拍摄装置的抖动量不同时,在所述红外图像中找到的亚像素级像素值也不同,则生成的所述目标红外图像的分辨率也不同。
所述拍摄装置由于产生抖动在连续的时间序列上拍摄多张红外图像,即每张红外图像是所述拍摄装置在不同抖动位置上拍摄得到的,不同红外图像中的像素之间因所述拍摄装置的抖动可能产生了细微的偏移,即是说,所述拍摄装置的抖动量与所述拍摄装置因抖动拍摄得到的所述多张红外图像中像素之间的偏移量是直接相关的,不同的抖动量使得所述多张红外图像中像素之间的偏移量也有所不同。本实施例中,所述电子设备可以获取拍摄装置由于发生抖动在连续的时间序列上拍摄的多张红外图像,然后将可以找到亚像素级像素值的所述多张红外图像进行合成,从而能够获取高分辨率的目标红外图像。
其中,所述红外图像可以是所述拍摄装置拍摄的未经过处理的图像(raw图像);或者,为了进一步提高后续处理过程的准确性,所述红外图像可以是经过预处理后的图像,这里的预处理包括但不限于矫正处理(如传感器响应率矫正、偏置矫正)、噪声去除处理或者坏点去除处理等操作。
可以理解的是,本申请实施例对此所述红外图像的数量不做任何限制,可依据实际应用场景进行具体选择。对于步骤S102,在获取所述多张红外图像之后,所述电子设备可以将所述多张红外图像中的其中一张确定为参考红外图像,以便将所述参考红外图像作为参照物来确定其他红外图像中的像素的偏移,从而实现所述多张红外图像 中的像素的对齐。
其中,所述电子设备可以通过以下任意一种实现方式来确定所述参考红外图像:
在第一种实现方式中,所述电子设备可以从多张红外图像中随机选择其中一个作为所述参考红外图像。
在第二种实现方式中,电子设备可以获取每一所述红外图像的图像信息,并根据所述图像信息从所述多张红外图像中确定所述参考红外图像。所述图像信息可以用来反映所述红外图像的清晰度,所述图像信息包括但不限于:信噪比、图像梯度、局部方差或者均方误差(Mean Square Error,MSE)等,所述电子设备可以将所述多张红外图像中图像信息最多的一个作为所述参考红外图像。比如,所述红外图像的信噪比越大,表示混在图像信号里的噪声越小,则所述红外图像的清晰度越高,所述电子设备可以选择信噪比最大的一个作为所述参考红外图像。本实施例中,将图像信息最多的红外图像作为参考红外图像,当以该参考红外图像作为参照物来确定其他红外图像中的像素的偏移时,其确定的结果更为准确。
可以理解的是,本申请实施例对于获取图像信息的具体方式不做任何限制,可依据实际应用场景进行具体选择,例如所述图像信息为图像梯度信息时,可以通过Brenner梯度函数、Tenengrad梯度函数、Laplacian梯度函数或者能量梯度函数等方式来获取所述红外图像的图像梯度信息。
在第三种实现方式中,考虑到所述红外图像是用来获取拍摄的目标对象的温度值的,针对于不同的目标对象用户所关注的温度范围也有所不同,比如正常人体温度范围在35℃~37.7℃之间,用户所关注的温度范围可能是在33℃~40℃之间,对在33℃~40℃之外的温度值可能不是用户感兴趣的内容,则所述电子设备可以根据用户感兴趣的一个或多个温度范围,从多张红外图像中确定其中一个作为所述参考红外图像。
具体而言,所述电子设备可以获取用户感兴趣的一个或多个温度范围,在一个例子中,所述电子设备可以提供一个交互界面,所述交互界面上显示有输入控件比如输入框或者选择按钮等,可以由用户在交互界面的输入控件上输入用户感兴趣的一个或多个温度范围;在获取用户感兴趣的一个或多个温度范围之后,对于每一张所述红外图像,所述电子设备确定与所述一个或多个温度范围对应的目标像素,在一个例子中,所述电子设备可以根据预存的对应关系以及所述一个或多个温度范围来确定对应的目标像素,所述对应关系指示不同温度值与不同像素值之间的映射关系;接着,所述电子设备可以根据所述目标像素获取该红外图像的图像信息,并根据所述图像信息从所述多张红外图像中确定所述参考红外图像。本实施例中,根据用户感兴趣的温度范围 来确定所述参考红外图像,保证获取最符合用户需求的参考红外图像,满足用户的个性化需求。其中,所述图像信息包括但不限于:信噪比、图像梯度、局部方差或者均方误差(Mean Square Error,MSE)等,所述电子设备可以将所述多张红外图像中图像信息最多的一个作为所述参考红外图像。本实施例中,将图像信息最多的红外图像作为参考红外图像,当以该参考红外图像作为参照物来确定其他红外图像中的像素的偏移时,其确定的结果更为准确。
在第四种实现方式中,所述电子设备可以识别预设拍摄对象在所述红外图像中所在的目标区域,然后根据所述目标区域从多张红外图像中确定其中一个作为所述参考红外图像。具体而言,所述电子设备可以根据所述目标区域对应的像素获取该红外图像的图像信息,并根据所述图像信息从所述多张红外图像中确定所述参考红外图像。在一个例子中,可以将图像信息最多的红外图像作为参考红外图像,当以该参考红外图像作为参照物来确定其他红外图像中的像素的偏移时,其确定的结果更为准确。
在第五种实现方式中,所述电子设备获取当前拍摄的拍摄对象的信息,然后根据所述拍摄对象的信息以及预设温度对应关系获取所述拍摄对象的温度范围,所述预设温度对应关系指示不同的拍摄对象所对应的不同温度范围,则所述电子设备可以根据所述拍摄对象的温度范围,从多张红外图像中确定其中一个作为所述参考红外图像。具体而言,对于每一张所述红外图像,所述电子设备可以确定与所述拍摄对象的温度范围对应的目标像素,然后所述电子设备可以根据所述目标像素获取该红外图像的图像信息,并根据所述图像信息从所述多张红外图像中确定所述参考红外图像。在一个例子中,可以将图像信息最多的红外图像作为参考红外图像,当以该参考红外图像作为参照物来确定其他红外图像中的像素的偏移时,其确定的结果更为准确。
在确定了参考红外图像之后,在步骤S103中,所述电子设备可以确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量。所述偏移量包括角度偏移量和/或距离偏移量,所述距离偏移量包括水平距离偏移量和竖直距离偏移量。
在一种实现方式中,所述拍摄装置上安装有IMU传感器,在所述拍摄装置产生抖动时,所述IMU传感器也会随着一起抖动,则所述IMU传感器的测量数据可以用来体现所述拍摄装置的抖动量,所述红外图像的像素之间的偏移也是因为所述拍摄装置的抖动所产生的,则可以根据所述IMU传感器的测量数据来确定所述其他红外图像的各像素相对于所述参考图像的各像素的偏移量。本实施例中,通过IMU传感器的测量数据来确定其他红外图像中的像素的偏移,其确定的结果更为准确。
在另一种实现方式中,所述电子设备可以获取所述其他红外图像分别与所述参考图像之间的对齐关系,然后使用所述对齐关系来确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量;其中,所述对齐关系可以通过所述其他红外图像与所述参考图像之间的仿射变换矩阵、单应性矩阵和/或运动向量来体现,则所述电子设备可以使用所述仿射变换矩阵、单应性矩阵和/或运动向量来确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量。本实施例中通过所述其他红外图像分别与所述参考图像之间的对齐关系来确定其他红外图像中的像素的偏移,在保证准确的确定结果的同时也能够有效降低硬件支出成本。
接着,在步骤S104中,所述电子设备确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量之后,根据所述偏移量对所述其他红外图像进行变换,从而实现所述其他红外图像与所述参考红外图像的配准;最后,在步骤S105中,所述电子设备将变换后的所述其他红外图像与所述参考红外图像进行合成,生成目标红外图像。上述我们提到,所述多张红外图像是在所述拍摄装置在产生抖动时拍摄得到的,所述拍摄装置的抖动只是产生了非常细微的移动,所述拍摄装置可以因抖动产生亚像素级像素值则在根据所述偏移量对所述其他红外图像进行变换之后,变换后的所述其他红外图像中可以获得到像素与像素之间的亚像素级像素值,因此将变换后的所述其他红外图像与所述参考红外图像进行合成可以获得高分辨率的目标红外图像,这样的目标红外图像可以用来测温,从而获得更为准确的温度测量结果。
进一步地,所述电子设备可以将所述目标红外图像进行对比度拉伸、图像增强或伪彩映射中的一种或多种操作,获取处理后的目标红外图像;本实施例中通过上述操作改善所述目标红外图像的图像质量,使得处理后的所述处理后的目标红外图像具有更好的显示效果,则所述处理后的目标红外图像可以用于观瞄。
为了进一步提高获取的目标红外图像的准确性,请参阅图4,本申请实施例还提供了第二种红外图像处理方法,所述方法可由所述电子设备来执行,所述方法包括:
在步骤S201中,获取拍摄装置由于产生抖动在连续的时间序列上拍摄的多张红外图像。与步骤S101类似,此处不再赘述。
在步骤S202中,将所述多张红外图像中的其中一张确定为参考红外图像。与步骤S102类似,此处不再赘述。
在步骤S203中,对所述多张红外图像分别进行图像增强处理,获取增强后的红外 图像。
在步骤S204中,确定增强后的其他红外图像的各像素相对于增强后的参考红外图像的各像素的偏移量。
在步骤S205中,根据所述偏移量对所述其他红外图像进行变换。
在步骤S206中,将变换后的所述其他红外图像与所述参考红外图像进行合成,生成目标红外图像。
在一实施例中,为了能够获取到更为准确的偏移量结果,所述电子设备先对所述多张红外图像分别进行图像增强处理,获取增强后的红外图像,所述图像增强处理包括但不限于以下至少一项操作:全局对比度拉伸、局部对比度拉伸、平滑处理或者锐化处理。本实施例中,通过对所述红外图像进行图像增强处理,可以将红外图像中的有用信息增强了,进一步强调了红外图像中的整体或局部特性,丰富了红外图像的信息量,能够加强红外图像的判别效果。
在此基础上,所述电子设备在增强后的多张红外图像上,确定增强后的其他红外图像的各像素相对于增强后的参考红外图像的各像素的偏移量。上述我们提到,增强后的红外图像的信息量丰富了,红外图像中的有用信息也增强了,因此,在增强后的红外图像上确定像素之间的偏移量更为精准。
另外,考虑到图像增强过程也是一个失真的过程,如果在增强后的红外图像上进行合成,可能会丢失掉某些图像信息,使得合成的目标红外图像所反映的温度信息不准确,另一方面,各个红外图像之间的图像增强方式可能有所不同,如果在增强后的红外图像上进行合成,不统一的图像增强方式也可能会带来一定的误差,因此,本实施例中根据所述偏移量对所述其他红外图像(未增强的红外图像)进行变换,最后将变换后的所述其他红外图像(未增强的红外图像)与所述参考红外图像(未增强的红外图像)进行合成,生成目标红外图像,实现了在获取高分辨率的目标红外图像的同时,也保证不会丢失掉某些图像信息,同时也避免了不统一的图像增强方式带来的误差,保证目标红外图像的准确性,这样获得的所述目标红外图像可以用来测温,从而获取更为准确的温度测量结果。
进一步地,所述电子设备可以将所述目标红外图像进行对比度拉伸、图像增强或伪彩映射中的一种或多种操作,获取处理后的目标红外图像;本实施例中通过上述操作改善所述目标红外图像的图像质量,使得处理后的所述处理后的目标红外图像具有更好的显示效果,则所述处理后的目标红外图像可以用于观瞄。
相应的,请参阅图5,本申请实施例还提供了第三种红外图像处理方法,所述方 法可由所述电子设备来执行,所述方法包括:
在步骤S301中,获取拍摄装置由于产生抖动在连续的时间序列上拍摄的多张红外图像。与步骤S201类似,此处不再赘述。
在步骤S302中,将所述多张红外图像中的其中一张确定为参考红外图像。与步骤S202类似,此处不再赘述。
在步骤S303中,对所述多张红外图像分别进行图像增强处理,获取增强后的红外图像。与步骤S203类似,此处不再赘述。
在步骤S304中,确定增强后的其他红外图像的各像素相对于增强后的参考红外图像的各像素的偏移量。与步骤S204类似,此处不再赘述。
在步骤S305中,根据所述偏移量对所述增强后的其他红外图像进行变换,获取对齐图像。
在步骤S306中,将所述对齐图像与所述增强后的参考红外图像进行合成,生成用于观瞄的目标红外图像。
在本实施例中,在确定增强后的其他红外图像的各像素相对于增强后的参考红外图像的各像素的偏移量之后,除了可以在未增强的红外图像上进行变换以及后续的合成处理以获得用于测温的目标红外图像外,所述电子设备还可以根据所述偏移量对所述增强后的其他红外图像进行变换,获取对齐图像,然后将所述对齐图像与所述增强后的参考红外图像进行合成,生成用于观瞄的目标红外图像。上述提到,由于图像增强过程是一个失真的过程,本实施例在增强后的目标红外图像上进行变换和合成处理,虽然获取的目标红外图像不能用来测温,但由于图像增强过程改善了所述红外图像的图像质量,因此可以获取更好的显示效果,则本实施例中获得的目标红外图像可以用来观瞄。
相应的,请参阅图6,本申请实施例还提供了一种电子设备40,所述电子设备40包括但不限于拍摄装置,搭载有拍摄装置的可移动平台如无人飞行器、可移动机器人、无人驾驶车辆或者无人驾驶船只等,终端如手机、电脑、遥控器、个人平板或者个人数字助理(PDA)等,服务器或者云端服务器等具备图像处理功能的设备。所述电子设备40包括:处理器41;用于存储处理器41可执行指令的存储器42。
其中,所述处理器41调用所述可执行指令,当可执行指令被执行时,用于执行:获取拍摄装置由于产生抖动在连续的时间序列上拍摄的多张红外图像;将所述多张红外图像中的其中一张确定为参考红外图像;确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量;根据所述偏移量对所述其他红 外图像进行变换;将变换后的所述其他红外图像与所述参考红外图像进行合成,生成目标红外图像。
所述处理器41可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器42存储所述红外图像处理方法的可执行指令计算机程序,所述存储器42可以包括至少一种类型的存储介质,存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,所述电子设备40可以与通过网络连接执行存储器42的存储功能的网络存储装置协作。存储器42可以是电子设备40的内部存储单元,例如电子设备40的硬盘或内存。存储器42也可以是电子设备40的外部存储设备,例如电子设备40上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器42还可以既包括电子设备40的内部存储单元也包括外部存储设备。存储器42用于存储计算机程序以及设备所需的其他程序和数据。存储器42还可以用于暂时地存储已经输出或者将要输出的数据。
这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由控制器执行。
在一实施例中,所述拍摄装置为手持设备,所述抖动是由用户在握持所述拍摄装置进行拍摄时产生的;或者,所述拍摄装置为防抖性能低于预设阈值的设备,所述抖动是由运动的可移动平台在携带所述拍摄装置进行拍摄时产生的,或者,所述抖动是由运动的所述拍摄装置在拍摄时产生的。
在一实施例中,所述拍摄装置因抖动可产生亚像素级像素值。
在一实施例中,所述亚像素级像素值根据所述拍摄装置的抖动量所确定。
所述抖动量根据所述拍摄装置在发生随机抖动时确定;或者,所述抖动量根据所述拍摄装置在发生预设程度的抖动时确定。
在一实施例中,在所述拍摄装置发生预设程度的抖动时,所述抖动量包括像素间距的非整数倍的移动量。
在一实施例中,所述处理器还用于:根据待生成的所述目标红外图像的预设分辨率,确定所述拍摄装置在发生预设程度的抖动时拍摄的红外图像的数量和/或每帧红外图像对应的所述拍摄装置的抖动量。
在一实施例中,红外图像的数量不同和/或每帧红外图像对应的所述拍摄装置的抖动量不同,生成的所述目标红外图像的分辨率也不同。在一实施例中,所述处理器41还用于:对所述多张红外图像分别进行图像增强处理,获取增强后的红外图像;确定增强后的其他红外图像的各像素相对于增强后的参考红外图像的各像素的偏移量。
在一实施例中,在进行图像增强处理时,所述处理器用于对所述多张红外图像分别进行以下至少一项操作:全局对比度拉伸、局部对比度拉伸、平滑处理或者锐化处理。
在一实施例中,所述目标红外图像用于测温。
在一实施例中,所述处理器41还用于:将所述目标红外图像进行对比度拉伸、图像增强处理或伪彩映射中的一种或多种,获取增强处理后的目标红外图像;所述处理增强后的目标红外图像用于观瞄。
在一实施例中,所述处理器41还用于:根据所述偏移量对所述增强后的其他红外图像进行变换,获取对齐图像;将所述对齐图像与所述增强后的参考红外图像进行合成,生成用于观瞄的目标红外图像。
在一实施例中,所述偏移量包括角度偏移量和/或距离偏移量。
在一实施例中,在确定参考红外图像时,所述处理器41具体用于:获取每一所述红外图像的图像信息,并根据所述图像信息从所述多张红外图像中确定所述参考红外图像。
在一实施例中,在确定参考红外图像时,所述处理器41具体用于:获取用户感兴趣的一个或多个温度范围;对于每一张所述红外图像,确定与所述一个或多个温度范围对应的目标像素,并根据所述目标像素获取该红外图像的图像信息;根据所述图像信息从所述多张红外图像中确定所述参考红外图像。
在一实施例中,所述图像信息包括以下至少一项:信噪比、图像梯度或者局部方差。
在一实施例中,所述参考红外图像为所述多张红外图像中图像信息最多的图像。
在一实施例中,所述拍摄装置上安装有IMU传感器;
所述其他红外图像的各像素相对于所述参考图像的各像素的偏移量根据安装于所述IMU传感器的测量数据所确定。
在一实施例中,所述处理器41具体用于:获取所述其他红外图像分别与所述参考图像之间的仿射变换矩阵、单应性矩阵和/或运动向量;使用所述仿射变换矩阵、单应性矩阵和/或运动向量,确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量。
在一实施例中,所述红外图像为经过预处理后的图像;所述预处理包括以下至少一项操作:矫正处理、噪声去除或者坏点去除。
在一实施例中,所述电子设备为所述拍摄装置;或者,请参阅图7,所述拍摄装置43安装于所述电子设备40中;或者,请参阅图8,所述电子设备40还包括有通信模块44,所述通信模块44用于接收所述拍摄装置拍摄的多张红外图像。对于设备实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由电子设备的处理器执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
其中,当所述存储介质中的指令由所述处理器执行时,使得电子设备能够执行前述红外图像处理方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (42)

  1. 一种红外图像处理方法,其特征在于,包括:
    获取拍摄装置由于发生抖动在连续的时间序列上拍摄的多张红外图像;
    将所述多张红外图像中的其中一张确定为参考红外图像;
    确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量;
    根据所述偏移量对所述其他红外图像进行变换;
    将变换后的所述其他红外图像与所述参考红外图像进行合成,生成目标红外图像。
  2. 根据权利要求1所述的方法,其特征在于,所述拍摄装置为手持设备,所述抖动是由用户在握持所述拍摄装置进行拍摄时产生的;或者,
    所述拍摄装置为防抖性能低于预设阈值的设备,所述抖动是由运动的可移动平台在携带所述拍摄装置进行拍摄时产生的,或者,所述抖动是由运动的所述拍摄装置在拍摄时产生的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述拍摄装置因抖动产生亚像素级像素值。
  4. 根据权利要求3所述的方法,其特征在于,所述亚像素级像素值根据所述拍摄装置的抖动量所确定;
    所述抖动量根据所述拍摄装置在发生随机抖动时确定;或者,所述抖动量根据所述拍摄装置在发生预设程度的抖动时确定。
  5. 根据权利要求4所述的方法,其特征在于,在所述拍摄装置发生预设程度的抖动时,所述抖动量包括像素间距的非整数倍的移动量。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    根据待生成的所述目标红外图像的预设分辨率,确定所述拍摄装置在发生预设程度的抖动时拍摄的红外图像的数量和/或每帧红外图像对应的所述拍摄装置的抖动量。
  7. 根据权利要求5或6所述的方法,其特征在于,所述红外图像的数量不同和/或每帧红外图像对应的所述拍摄装置的抖动量不同,生成的所述目标红外图像的分辨率也不同。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,在确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考红外图像的各像素的位置偏移量之前,还包括:
    对所述多张红外图像分别进行图像增强处理,获取增强后的红外图像;
    所述确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考红外图像的各像素的偏移量,包括:
    确定增强后的其他红外图像的各像素相对于增强后的参考红外图像的各像素的偏移量。
  9. 根据权利要求8所述的方法,其特征在于,所述对所述多张红外图像分别进行图像增强处理,包括:
    对所述多张红外图像分别进行以下至少一项操作:全局对比度拉伸、局部对比度拉伸、平滑处理或者锐化处理。
  10. 根据权利要求1至9任意一项所述的方法,其特征在于,所述目标红外图像用于测温。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,还包括:
    将所述目标红外图像进行对比度拉伸、图像增强或伪彩映射中的一种或多种,获取处理后的目标红外图像;所述处理后的目标红外图像用于观瞄。
  12. 根据权利要求8所述的方法,其特征在于,所述根据所述偏移量对所述其他红外图像进行变换,还包括:
    根据所述偏移量对所述增强后的其他红外图像进行变换,获取对齐图像;
    所述将变换后的所述其他红外图像与所述参考红外图像进行合成,还包括:
    将所述对齐图像与所述增强后的参考红外图像进行合成,生成用于观瞄的目标红外图像。
  13. 根据权利要求1所述的方法,其特征在于,所述偏移量包括角度偏移量和/或距离偏移量。
  14. 根据权利要求1所述的方法,其特征在于,所述将所述多张红外图像中的其中一张确定为参考红外图像,包括:
    获取每一所述红外图像的图像信息,并根据所述图像信息从所述多张红外图像中确定所述参考红外图像。
  15. 根据权利要求1所述的方法,其特征在于,所述将所述多张红外图像中的其中一张确定为参考红外图像,包括:
    获取用户感兴趣的一个或多个温度范围;
    对于每一张所述红外图像,确定与所述一个或多个温度范围对应的目标像素,并根据所述目标像素获取该红外图像的图像信息;
    根据所述图像信息从所述多张红外图像中确定所述参考红外图像。
  16. 根据权利要求14或15所述的方法,其特征在于,所述图像信息包括以下至少一项:信噪比、图像梯度或者局部方差。
  17. 根据权利要求16所述的方法,其特征在于,所述参考红外图像为所述多张红外图像中图像信息最多的图像。
  18. 根据权利要求1所述的方法,其特征在于,所述拍摄装置上安装有IMU传感器;
    所述其他红外图像的各像素相对于所述参考图像的各像素的偏移量根据所述IMU传感器的测量数据所确定。
  19. 根据权利要求1所述的方法,其特征在于,所述确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量,包括:
    获取所述其他红外图像分别与所述参考图像之间的仿射变换矩阵、单应性矩阵和/或运动向量;
    使用所述仿射变换矩阵、单应性矩阵和/或运动向量,确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量。
  20. 根据权利要求1所述的方法,其特征在于,所述红外图像为经过预处理后的图像;
    所述预处理包括以下至少一项操作:矫正处理、噪声去除或者坏点去除。
  21. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器调用所述可执行指令,当可执行指令被执行时,用于执行:
    获取拍摄装置由于发生抖动在连续的时间序列上拍摄的多张红外图像;
    将所述多张红外图像中的其中一张确定为参考红外图像;
    确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量;
    根据所述偏移量对所述其他红外图像进行变换;
    将变换后的所述其他红外图像与所述参考红外图像进行合成,生成目标红外图像。
  22. 根据权利要求21所述的设备,其特征在于,所述拍摄装置为手持设备,所述抖动是由用户在握持所述拍摄装置进行拍摄时产生的;或者,
    所述拍摄装置为防抖性能低于预设阈值的设备,所述抖动是由运动的可移动平台在携带所述拍摄装置进行拍摄时产生的,或者,所述抖动是由运动的所述拍摄装置在拍摄时产生的。
  23. 根据权利要求21或22所述的设备,其特征在于,所述拍摄装置因抖动可产生亚像素级像素值。
  24. 根据权利要求23所述的设备,其特征在于,所述亚像素级像素值根据所述拍摄装置的抖动量所确定;
    所述抖动量根据所述拍摄装置在发生随机抖动时确定;或者,所述抖动量根据所述拍摄装置在发生预设程度的抖动时确定。
  25. 根据权利要求24所述的设备,其特征在于,在所述拍摄装置发生预设程度的抖动时,所述抖动量包括像素间距的非整数倍的移动量。
  26. 根据权利要求25所述的设备,其特征在于,所述处理器还用于:根据待生成的所述目标红外图像的预设分辨率,确定所述拍摄装置在发生预设程度的抖动时拍摄的红外图像的数量和/或每帧红外图像对应的所述拍摄装置的抖动量。
  27. 根据权利要求25或26所述的设备,其特征在于,红外图像的数量不同和/或每帧红外图像对应的所述拍摄装置的抖动量不同,生成的所述目标红外图像的分辨率也不同。
  28. 根据权利要求21至27任一项所述的设备,其特征在于,所述处理器还用于:对所述多张红外图像分别进行图像增强处理,获取增强后的红外图像;确定增强后的其他红外图像的各像素相对于增强后的参考红外图像的各像素的偏移量。
  29. 根据权利要求28所述的设备,其特征在于,在进行图像增强处理时,所述处理器用于对所述多张红外图像分别进行以下至少一项操作:全局对比度拉伸、局部对比度拉伸、平滑处理或者锐化处理。
  30. 根据权利要求21至29任意一项所述的设备,其特征在于,所述目标红外图像用于测温。
  31. 根据权利要求21至30任一项所述的设备,其特征在于,所述处理器还用于:将所述目标红外图像进行对比度拉伸、图像增强处理或伪彩映射中的一种或多种,获取增强处理后的目标红外图像;所述处理增强后的目标红外图像用于观瞄。
  32. 根据权利要求28所述的设备,其特征在于,所述处理器还用于:根据所述偏移量对所述增强后的其他红外图像进行变换,获取对齐图像;将所述对齐图像与所述增强后的参考红外图像进行合成,生成用于观瞄的目标红外图像。
  33. 根据权利要求21所述的设备,其特征在于,所述偏移量包括角度偏移量和/或距离偏移量。
  34. 根据权利要求21所述的设备,其特征在于,在确定参考红外图像时,所述处理器具体用于:获取每一所述红外图像的图像信息,并根据所述图像信息从所述多张红外图像中确定所述参考红外图像。
  35. 根据权利要求21所述的设备,其特征在于,在确定参考红外图像时,所述处理器具体用于:获取用户感兴趣的一个或多个温度范围;对于每一张所述红外图像,确定与所述一个或多个温度范围对应的目标像素,并根据所述目标像素获取该红外图像的图像信息;根据所述图像信息从所述多张红外图像中确定所述参考红外图像。
  36. 根据权利要求34或35所述的设备,其特征在于,所述图像信息包括以下至少一项:信噪比、图像梯度或者局部方差。
  37. 根据权利要求36所述的设备,其特征在于,所述参考红外图像为所述多张红外图像中图像信息最多的图像。
  38. 根据权利要求21所述的设备,其特征在于,所述拍摄装置上安装有IMU传感器;
    所述其他红外图像的各像素相对于所述参考图像的各像素的偏移量根据安装于所述IMU传感器的测量数据所确定。
  39. 根据权利要求21所述的设备,其特征在于,所述处理器具体用于:获取所述其他红外图像分别与所述参考图像之间的仿射变换矩阵、单应性矩阵和/或运动向量;使用所述仿射变换矩阵、单应性矩阵和/或运动向量,确定除所述参考红外图像以外的其他红外图像的各像素相对于所述参考图像的各像素的偏移量。
  40. 根据权利要求21所述的设备,其特征在于,所述红外图像为经过预处理后的图像;所述预处理包括以下至少一项操作:矫正处理、噪声去除或者坏点去除。
  41. 根据权利要求21所述的设备,其特征在于,所述电子设备为所述拍摄装置;或者,所述拍摄装置安装于所述电子设备中;或者,所述电子设备还包括有通信模块,所述通信模块用于接收所述拍摄装置拍摄的多张红外图像。
  42. 一种计算机可读存储介质,其特征在于,其上存储有计算机指令,该指令被处理器执行时实现权利要求1至20任意一项所述的方法。
PCT/CN2020/098889 2020-06-29 2020-06-29 红外图像处理方法、电子设备及计算机可读存储介质 WO2022000176A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/098889 WO2022000176A1 (zh) 2020-06-29 2020-06-29 红外图像处理方法、电子设备及计算机可读存储介质
CN202080042493.9A CN114009005A (zh) 2020-06-29 2020-06-29 红外图像处理方法、电子设备及计算机可读存储介质
CN202080048259.7A CN114072837A (zh) 2020-06-29 2020-11-27 红外图像处理方法、装置、设备及存储介质
PCT/CN2020/132407 WO2022000974A1 (zh) 2020-06-29 2020-11-27 红外图像处理方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098889 WO2022000176A1 (zh) 2020-06-29 2020-06-29 红外图像处理方法、电子设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022000176A1 true WO2022000176A1 (zh) 2022-01-06

Family

ID=79317358

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/098889 WO2022000176A1 (zh) 2020-06-29 2020-06-29 红外图像处理方法、电子设备及计算机可读存储介质
PCT/CN2020/132407 WO2022000974A1 (zh) 2020-06-29 2020-11-27 红外图像处理方法、装置、设备及存储介质

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132407 WO2022000974A1 (zh) 2020-06-29 2020-11-27 红外图像处理方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (2) CN114009005A (zh)
WO (2) WO2022000176A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW569617B (en) * 2001-12-31 2004-01-01 Rung-Sen Jang Image synthesizing method of multi-lens array CCD camera
JP2007036750A (ja) * 2005-07-27 2007-02-08 Sharp Corp 撮像装置
CN104320596A (zh) * 2014-09-30 2015-01-28 北京智谷技术服务有限公司 超分辨率图像的获取方法和获取装置
CN106713737A (zh) * 2015-11-17 2017-05-24 纬创资通股份有限公司 电子装置与影像处理方法
CN109963082A (zh) * 2019-03-26 2019-07-02 Oppo广东移动通信有限公司 图像拍摄方法、装置、电子设备、计算机可读存储介质
CN110035206A (zh) * 2019-03-26 2019-07-19 Oppo广东移动通信有限公司 图像处理方法和装置、电子设备、计算机可读存储介质
CN110728644A (zh) * 2019-10-11 2020-01-24 厦门美图之家科技有限公司 图像生成方法、装置、电子设备和可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546665A (zh) * 2012-07-11 2014-01-29 北京博雅华录视听技术研究院有限公司 基于多摄像头的图像清晰度增强方法
CN103217221B (zh) * 2013-03-22 2015-03-11 北京航空航天大学 一种基于图像拼接的空冷凝汽器散热面温度场测量方法
TWI530909B (zh) * 2013-12-31 2016-04-21 財團法人工業技術研究院 影像合成系統及方法
US9665927B2 (en) * 2015-06-03 2017-05-30 Samsung Electronics Co., Ltd. Method and apparatus of multi-frame super resolution robust to local and global motion
CN105046676A (zh) * 2015-08-27 2015-11-11 上海斐讯数据通信技术有限公司 一种基于智能终端的图像融合方法及设备
CN108900766A (zh) * 2018-06-15 2018-11-27 北京华捷艾米科技有限公司 一种全景图像自动增强装置和方法、以及应用该装置的全景相机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW569617B (en) * 2001-12-31 2004-01-01 Rung-Sen Jang Image synthesizing method of multi-lens array CCD camera
JP2007036750A (ja) * 2005-07-27 2007-02-08 Sharp Corp 撮像装置
CN104320596A (zh) * 2014-09-30 2015-01-28 北京智谷技术服务有限公司 超分辨率图像的获取方法和获取装置
CN106713737A (zh) * 2015-11-17 2017-05-24 纬创资通股份有限公司 电子装置与影像处理方法
CN109963082A (zh) * 2019-03-26 2019-07-02 Oppo广东移动通信有限公司 图像拍摄方法、装置、电子设备、计算机可读存储介质
CN110035206A (zh) * 2019-03-26 2019-07-19 Oppo广东移动通信有限公司 图像处理方法和装置、电子设备、计算机可读存储介质
CN110728644A (zh) * 2019-10-11 2020-01-24 厦门美图之家科技有限公司 图像生成方法、装置、电子设备和可读存储介质

Also Published As

Publication number Publication date
CN114009005A (zh) 2022-02-01
CN114072837A (zh) 2022-02-18
WO2022000974A1 (zh) 2022-01-06

Similar Documents

Publication Publication Date Title
US10645284B2 (en) Image processing device, image processing method, and recording medium storing program
WO2018214365A1 (zh) 图像校正方法、装置、设备、***及摄像设备和显示设备
CN107113376B (zh) 一种图像处理方法、装置及摄像机
US8818101B1 (en) Apparatus and method for feature matching in distorted images
US20200027222A1 (en) Panoramic photographing method for unmanned aerial vehicle and unmanned aerial vehicle using the same
JP6398472B2 (ja) 画像表示システム、画像表示装置、画像表示方法、およびプログラム
CN108769528A (zh) 图像补偿方法和装置、计算机可读存储介质和电子设备
WO2018210318A1 (zh) 图像虚化处理方法、装置、存储介质及电子设备
US10545215B2 (en) 4D camera tracking and optical stabilization
CN112085775B (zh) 图像处理的方法、装置、终端和存储介质
US20180124378A1 (en) Enhanced depth map images for mobile devices
CN114125411B (zh) 投影设备校正方法、装置、存储介质以及投影设备
WO2021168804A1 (zh) 图像处理方法、图像处理装置和图像处理***
CN112470192A (zh) 双摄像头标定方法、电子设备、计算机可读存储介质
JP7205332B2 (ja) 診断処理装置、診断システム、診断処理方法、及びプログラム
WO2021035524A1 (zh) 图像处理方法和装置、电子设备、计算机可读存储介质
EP2648157A1 (en) Method and device for transforming an image
WO2020124517A1 (zh) 拍摄设备的控制方法、拍摄设备的控制装置及拍摄设备
KR100513789B1 (ko) 디지털 카메라의 렌즈 왜곡 보정과 정사영상 생성방법 및이를 이용한 디지털 카메라
CN114390186A (zh) 视频拍摄方法及电子设备
CN117115267A (zh) 免标定的图像处理方法、装置、电子设备和存储介质
WO2022000176A1 (zh) 红外图像处理方法、电子设备及计算机可读存储介质
US20100302403A1 (en) Generating Images With Different Fields Of View
JP2014160998A (ja) 画像処理システム、画像処理方法、画像処理プログラム、及び記録媒体
KR100736565B1 (ko) 파노라마 영상 촬영 방법 및 이를 수행하기 위한이동통신단말기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943081

Country of ref document: EP

Kind code of ref document: A1