WO2021260776A1 - Tool and tool production method - Google Patents

Tool and tool production method Download PDF

Info

Publication number
WO2021260776A1
WO2021260776A1 PCT/JP2020/024460 JP2020024460W WO2021260776A1 WO 2021260776 A1 WO2021260776 A1 WO 2021260776A1 JP 2020024460 W JP2020024460 W JP 2020024460W WO 2021260776 A1 WO2021260776 A1 WO 2021260776A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
tool
work
tool according
end mill
Prior art date
Application number
PCT/JP2020/024460
Other languages
French (fr)
Japanese (ja)
Inventor
泰助 東
高志 原田
暁 久木野
直樹 渡部
真有香 背川
Original Assignee
住友電工ハードメタル株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社, 住友電気工業株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to PCT/JP2020/024460 priority Critical patent/WO2021260776A1/en
Priority to JP2021555019A priority patent/JPWO2021260776A1/ja
Priority to TW110122545A priority patent/TW202206206A/en
Publication of WO2021260776A1 publication Critical patent/WO2021260776A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/34Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools milling cutters

Definitions

  • This disclosure relates to tools and tools manufacturing methods.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2017-119333 describes a ball end mill.
  • the ball end mill of Patent Document 1 has a main body portion and a blade portion.
  • the blade portion is attached to the tip of the main body portion.
  • the blade portion is formed of a diamond sintered body containing diamond particles and a binder.
  • the blade portion has a hemispherical shape.
  • the surface of the blade portion includes a concave portion and a convex portion.
  • the tool of the present disclosure has a tip formed of nanopolycrystalline diamond.
  • the tip has a surface that comes into contact with the work. At least a portion of the surface includes a plurality of first recesses and protrusions formed by contacting the ends of two adjacent first recesses with each other.
  • FIG. 1 is a side view of the ball end mill 100.
  • FIG. 2 is an enlarged view of region II of FIG.
  • FIG. 3 is a schematic plan view of the partial spherical surface 21a in the ball end mill 100.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a process diagram showing a manufacturing method of the ball end mill 100.
  • FIG. 6 is an enlarged side view of the vicinity of the tip portion 20 of the ball end mill 200.
  • FIG. 7 is a schematic plan view of the partial spherical surface 21a in the ball end mill 200.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG.
  • FIG. 9 is a process diagram showing a manufacturing method of the ball end mill 200.
  • FIG. 1 is a side view of the ball end mill 100.
  • FIG. 2 is an enlarged view of region II of FIG.
  • FIG. 3 is a schematic plan view of the partial
  • FIG. 10 is a perspective view of the cutting insert 300.
  • FIG. 11 is a cross-sectional view of the tip portion 20 of the cutting insert 300.
  • FIG. 12 is a process diagram showing a method of manufacturing the cutting insert 300.
  • FIG. 13 is a side view of the radius end mill 400.
  • FIG. 14 is a side view of the stylus 500.
  • the present disclosure provides a tool having improved contact with a work (a machining tool or a cutting tool with improved machining accuracy of the workpiece, or a measuring tool with reduced contact resistance with the workpiece). ..
  • the tool according to one aspect of the present disclosure includes a tip portion formed of nanopolycrystalline diamond.
  • the tip has a surface that comes into contact with the work. At least a portion of the surface includes a plurality of first recesses and protrusions formed by the ends of two adjacent first recesses coming into contact with each other. According to the tool according to one aspect of the present disclosure, the contact with the work can be improved.
  • the tool of (1) above may be a measuring tool for measuring the surface roughness or shape of the work. In this case, it is possible to reduce the contact resistance with the work when the tip portion is scanned along the surface of the work.
  • the tool of (1) above may be a machining tool for machining a work. In this case, it is possible to improve the processing accuracy when processing the work.
  • the surface may include a partial spherical surface.
  • the surface may include a groove and a cutting edge formed on the groove and the ridgeline of the partial spherical surface.
  • the tool of (1) above may be a cutting tool for cutting a work.
  • the surface may include a rake face, a flank, and a rake face and a cutting edge formed on the ridge of the flank. In this case, it is possible to improve the processing accuracy when processing the work.
  • the depth of the first recess may be 0.05 ⁇ m or more and 20 ⁇ m or less. In this case, it is possible to improve the processing accuracy when processing the work.
  • the arithmetic mean roughness of the surface of the first recess may be 0.05 ⁇ m or more and 1.5 ⁇ m or less. In this case, the durability of the tool can be improved.
  • the skewness parameter at the surface portion where the first recess and the protrusion are formed may exceed 0. In this case, the processing accuracy when processing the work can be further improved.
  • At least a part of the surface may include a second recess different from the first recess.
  • the depth of the second recess may be 1 ⁇ m or more. In this case, the durability of the tool can be improved.
  • the equivalent circle diameter of the second concave portion in a plan view may be 0.5 ⁇ m or more and 50 ⁇ m or less. In this case, the durability of the tool can be further improved.
  • the area ratio of the second recess on the surface may be 3% or more and 80% or less. In this case, the durability of the tool can be further improved.
  • a plurality of methods for manufacturing a tool include a step of preparing a tip portion formed of nanopolycrystalline diamond and a plurality of methods of irradiating a laser on at least a part of the surface of the tip portion.
  • the step of forming the first concave portion of the above is provided. By contacting the ends of two adjacent first concave portions, a protruding portion is formed on a part of the surface of the tip portion.
  • a step of forming a rake face and a flank surface connected to the rake face may be further provided on the surface of the tip portion by irradiating the laser.
  • the configuration of the tool according to the first embodiment will be described below.
  • the tool according to the first embodiment is a cutting tool for cutting a work. More specifically, the tool according to the first embodiment is a ball end mill 100. This work is made of, for example, cemented carbide.
  • FIG. 1 is a side view of the ball end mill 100.
  • FIG. 2 is an enlarged view of region II of FIG.
  • the ball end mill 100 has a rotation axis A.
  • the ball end mill 100 processes the work by being rotated around the rotation axis A.
  • the ball end mill 100 has a main body portion 10 and a tip portion 20.
  • the main body 10 is formed of, for example, a cemented carbide.
  • the main body portion 10 has a first end 10a and a second end 10b in a direction along the rotation axis A.
  • the second end 10b is the opposite end of the first end 10a.
  • the main body 10 has a shank 11 and a neck 12.
  • the shank 11 is on the first end 10a side and the neck 12 is on the second end 10b side.
  • the shank 11 extends along the axis of rotation A.
  • the shank 11 has a first end 11a and a second end 11b in a direction along the rotation axis A.
  • the first end 11a coincides with the first end 10a.
  • the second end 11b is the opposite end of the first end 11a.
  • the shank 11 has a circular shape in a cross-sectional view orthogonal to the rotation axis A.
  • the neck 12 extends from the second end 11b along the axis of rotation A.
  • the neck 12 has a first end 12a and a second end 12b in a direction along the rotation axis A.
  • the first end 12a is the end on the shank 11 side.
  • the second end 12b is the opposite end of the first end 12a and coincides with the second end 10b.
  • the neck 12 has a circular shape in a cross-sectional view orthogonal to the rotation axis A.
  • the cross-sectional area of the neck 12 is smaller than the cross-sectional area of the shank 11 in the cross-sectional view orthogonal to the rotation axis A.
  • the tip portion 20 is attached to the main body portion 10 by, for example, brazing. More specifically, the tip portion 20 is attached to the second end 10b via the connection layer 13.
  • the connection layer 13 is a brazing material.
  • the tip 20 is formed of nanopolycrystalline diamond.
  • Nanopolycrystalline diamond contains a plurality of diamond grains. The rest of the nanopolycrystalline diamond may contain graphite and unavoidable impurities, but no binder. That is, in the nanopolycrystalline diamond, each of the plurality of diamond crystal grains is directly bonded to each other.
  • the average grain size of diamond crystal grains is less than 1 ⁇ m. In nanopolycrystalline diamond, the average grain size of diamond crystal grains is preferably 10 nm or more and 500 nm or less. In nanopolycrystalline diamond, the average grain size of diamond crystal grains may be 100 nm or more and 500 nm or less, or 100 nm or more and 300 nm or less.
  • the average grain size of diamond crystal grains in nanopolycrystalline diamond is an observation condition in which grain boundaries can be seen using an electron microscope such as JSM-7800F manufactured by JEOL Ltd. after precision polishing the surface of the tip portion 20. Can be measured by setting, acquiring a backscattered electron microscope image, and analyzing the image.
  • the tip portion 20 has a surface 21.
  • the tip portion 20 has a hemispherical shape. That is, the surface 21 includes a partial spherical surface 21a.
  • the diameter of the hemisphere constituting the tip portion 20 is defined as the diameter R.
  • the surface 21 includes a groove 21b.
  • the surface 21 is recessed in the groove 21b.
  • the groove 21b extends radially from the vicinity of the central portion of the surface 21.
  • the ridgeline between the groove 21b and the partial spherical surface 21a is a cutting edge 21c.
  • the partial spherical surface 21a is a flank.
  • the surface of the groove 21b connected to the cutting edge 21c is a rake surface.
  • FIG. 3 is a schematic plan view of the partial spherical surface 21a in the ball end mill 100.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • a plurality of first recesses 22 are formed in the partial spherical surface 21a.
  • the partial spherical surface 21a is recessed in the first recess 22.
  • the first concave portion 22 has a hexagonal shape in a plan view (viewed from a direction orthogonal to the partial spherical surface 21a), but the planar shape of the first concave portion 22 is limited to this. I can't.
  • the first recess 22 is formed, for example, over the entire surface of the partial spherical surface 21a.
  • the first recess 22 may be formed only in a part of the partial spherical surface 21a.
  • a protrusion 23 is formed on the partial spherical surface 21a.
  • the protrusion 23 is formed by contacting the ends of two adjacent first recesses 22. Since the protrusion 23 is formed by contacting the ends of two adjacent first recesses 22, the tip thereof is sharp (the tip does not include a flat surface).
  • the first recess 22 has a depth D1.
  • the depth D1 is the distance between the bottom of the first recess 22 and the tip of the protrusion 23.
  • the depth D1 is preferably 0.05 ⁇ m or more and 20 ⁇ m or less.
  • the arithmetic mean roughness (Ra) of the partial spherical surface 21a in the first recess 22 is preferably 0.05 ⁇ m or more and 1.5 ⁇ m or less.
  • the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 is measured according to the JIS standard (JIS B 0601: 2013).
  • the skewness (Ssk) of the partial spherical surface 21a in the portion where the first concave portion 22 and the protruding portion 23 are formed is preferably more than 0 (a positive value).
  • the skewness of the partial spherical surface 21a in the portion where the first concave portion 22 and the protruding portion 23 are formed is measured according to the JIS standard (JIS B 061-2: 2018).
  • FIG. 5 is a process diagram showing a manufacturing method of the ball end mill 100. As shown in FIG. 5, it has a preparation step S1, a joining step S2, and a first recess forming step S3.
  • the members constituting the main body portion 10 and the tip portion 20 are prepared.
  • the first concave portion 22 and the protruding portion 23 are not formed on the surface 21 (partial spherical surface 21a) of the tip portion 20 prepared in the preparation step S1.
  • the joining step S2 for example, the main body portion 10 and the tip portion 20 are joined by brazing.
  • the first recess 22 is formed.
  • the first recess 22 is formed by irradiating the surface 21 (partial spherical surface 21a) with a laser. Since the protrusion 23 is formed by the ends of two adjacent first recesses 22 contacting each other, the protrusion 23 is also formed by forming the first recess 22 in the first recess forming step S3. ..
  • the coolant collects in the first recess 22 (the first recess 22 becomes an oil pool), so that the cutting resistance between the flank (partial spherical surface 21a) and the work.
  • the cooling effect of the coolant increases as the amount of coolant decreases. As a result, the durability of the ball end mill 100 is improved.
  • the cutting edge 21c not only cuts the work, but also the protruding portion 23 grinds the work, so that the machined surface (specifically, the work quality) is processed. Surface roughness of the work surface) is improved. As described above, according to the ball end mill 100, the processing accuracy for the work can be improved.
  • the protruding portion 23 becomes sharper, so that the processed quality of the surface to be machined is improved. Further, the larger the depth D1, the more easily the coolant accumulates in the first recess 22. On the other hand, the larger the depth D1, the easier it is for the protrusion 23 to break. Therefore, by setting the depth D1 to 0.05 ⁇ m or more and 20 ⁇ m or less, the processing accuracy for the work and the durability of the ball end mill 100 can be further improved.
  • samples 1 to 9 were used as the ball end mill 100. As shown in Table 1, the depth D1 was changed in Samples 1 to 9. Further, in Samples 1 to 9, the skewness of the partial spherical surface 21a in the portion where the first concave portion 22 and the protruding portion 23 are formed was changed. In Samples 1 to 9, the diameter R was set to 0.5 mm. In Samples 1 to 9, the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 was set to 0.10 ⁇ m.
  • first cutting test spherical processing was performed on the work made of cemented carbide VF20 using Samples 1 to 9. The first cutting test was performed under the conditions of 40,000 rotations / minute, a feed rate of 300 mm / min, a depth of cut of 0.005 mm, and a depth of cut of 0.002 mm. In the first cutting test, mist-like coolant was supplied.
  • the processing accuracy (dimensional accuracy) of the above spherical surface processing was evaluated as particularly good when the dimensional tolerance was within ⁇ 0.5 ⁇ m, and evaluated as good when the dimensional tolerance was within ⁇ 1 ⁇ m.
  • Table 2 shows the results of the first cutting test. As shown in Table 2, the spherical surface processing using the samples 1 to 6 showed particularly good processing accuracy. On the other hand, the processing accuracy of the spherical surface processing using the sample 7 and the sample 8 was good.
  • the depth D1 was in the range of 0.05 ⁇ m or more and 20 ⁇ m or less, while in Samples 7 and 8, the depth D1 was not in the range of 0.05 ⁇ m or more and 20 ⁇ m or less. From this comparison, it was experimentally clarified that the machining accuracy for the work can be further improved by setting the depth D1 to 0.05 ⁇ m or more and 20 ⁇ m or less.
  • samples 10 to 14 were used as the ball end mill 100.
  • Samples 10 to 14 as shown in Table 3, the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 was changed.
  • the diameter R is 0.5 mm
  • the depth D1 is 4 ⁇ m
  • the skewness of the partial spherical surface 21a at the portion where the first recess 22 and the protrusion 23 are formed is a positive value.
  • the machining conditions of the second cutting test were the same as the machining conditions of the first cutting test.
  • the durability (tool life) of the samples 10 to 14 was evaluated by the time until the wear on the flank surface (that is, the partial spherical surface 21a) became 50 ⁇ m.
  • Table 4 shows the results of the second cutting test. As shown in Table 4, the tool life of the samples 10 to 13 exceeded the tool life of the sample 14.
  • the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 of the samples 10 to 13 was in the range of 0.05 ⁇ m or more and 1.5 ⁇ m or less.
  • the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 of the sample 14 was not within the range of 0.05 ⁇ m or more and 1.5 ⁇ m or less.
  • the durability of the ball end mill 100 can be improved by setting the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 to 0.05 ⁇ m or more and 1.5 ⁇ m or less. ..
  • the configuration of the tool according to the second embodiment will be described below.
  • the tool according to the second embodiment is a machining tool for machining a work. More specifically, the tool according to the second embodiment is a ball end mill 200.
  • the points different from the configuration of the ball end mill 100 will be mainly described, and the overlapping description will not be repeated.
  • the ball end mill 200 has a main body portion 10 and a tip portion 20.
  • the main body 10 has a shank 11 and a neck 12.
  • the tip portion 20 has a surface 21.
  • the surface 21 includes a partial spherical surface 21a.
  • the first concave portion 22 and the protruding portion 23 are formed on the partial spherical surface 21a.
  • the configuration of the ball end mill 200 is common to the configuration of the ball end mill 100.
  • FIG. 6 is an enlarged side view of the vicinity of the tip portion 20 of the ball end mill 200.
  • the groove 21b and the cutting edge 21c are not formed on the surface 21. That is, in the ball end mill 200, the surface 21 is composed of a partial spherical surface 21a.
  • FIG. 7 is a schematic plan view of the partial spherical surface 21a in the ball end mill 200.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG.
  • a second concave portion 24 is further formed on the partial spherical surface 21a.
  • the configuration of the ball end mill 200 is different from the configuration of the ball end mill 100.
  • the second recess 24 is a recess different from the first recess 22.
  • the partial spherical surface 21a is recessed.
  • the second recess 24 is formed in, for example, the first recess 22.
  • the depth of the second recess 24 is defined as the depth D2.
  • the depth D2 is 1 ⁇ m or more.
  • the depth D2 is, for example, 20 ⁇ m or less.
  • the equivalent circle diameter of the second recess 24 in a plan view is preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the equivalent circle diameter of the second recess 24 in the plan view is the square root of the value obtained by dividing the area of the second recess 24 in the plan view by ⁇ / 4.
  • the area ratio of the second recess 24 on the surface 21 is preferably 3% or more and 80% or less.
  • the area ratio of the second recess 24 on the surface 21 is a value obtained by dividing the area of the surface 21 on which the second recess 24 is formed by the area of the surface 21 on which the first recess 22 and the protrusion 23 are formed.
  • the manufacturing method of the ball end mill 200 will be described below. Here, the points different from the manufacturing method of the ball end mill 100 will be mainly described, and duplicate explanations will not be repeated.
  • FIG. 9 is a process diagram showing a manufacturing method of the ball end mill 200.
  • the manufacturing method of the ball end mill 200 includes a preparation step S1, a joining step S2, and a first recess forming step S3.
  • the manufacturing method of the ball end mill 200 is different from the manufacturing method of the ball end mill 100.
  • the method for manufacturing the ball end mill 200 further includes a second recess forming step S4.
  • the manufacturing method of the ball end mill 200 is different from the manufacturing method of the ball end mill 100.
  • the second recess 24 is formed.
  • the metal powder is arranged on the surface 21 (partial spherical surface 21a).
  • a metal having a high affinity for diamond for example, iron, cobalt, nickel is selected.
  • the above metal powder is reacted with the diamond contained in the tip portion 20.
  • diamond is removed from the surface 21 of the portion to which the metal powder has adhered, and the second recess 24 is formed.
  • the equivalent circle diameter of the second recess 24 can be changed by adjusting the particle size of the metal powder to be arranged, and the area ratio of the second recess 24 can be changed. Can be changed by adjusting the amount of the metal powder to be arranged.
  • the method of forming the second recess 24 is not limited to the above example.
  • the second recess 24 may be formed, for example, by irradiating the surface 21 (partial spherical surface 21a) with a laser.
  • the ball end mill 200 does not have a cutting edge 21c.
  • the second recess 24 acts as a fine cutting edge.
  • the first recess 22 also acts as a cutting edge.
  • the depth (depth D2) of the second recess 24 is less than 1 ⁇ m, the second recess 24 is unlikely to act as a cutting edge.
  • the depth D2 is less than 1 ⁇ m, chips generated from the work are clogged in the second recess 24, which tends to be the starting point of welding. As a result, wear of the surface 21 (partial spherical surface 21a) tends to proceed.
  • the work can be machined while ensuring the durability of the tool.
  • the equivalent circle diameter of the second recess 24 in a plan view is excessive, the second recess 24 is less likely to act as a cutting edge. Further, if the diameter corresponding to the circle of the second recess 24 in a plan view is too small, the second recess 24 is likely to be clogged with chips. Therefore, by setting the equivalent circle diameter of the second recess 24 in a plan view to 0.5 ⁇ m or more and 50 ⁇ m or less, the work can be machined while further improving the durability of the tool.
  • the area ratio of the second recess 24 is too small, the number of the second recess 24 that functions as a cutting edge is small. Further, if the area ratio of the second recess 24 is excessive, the ratio of the second recess 24 that functions as a cutting edge decreases, and the load per cutting edge (second recess 24) increases, so that the surface 21 Wear of (partial spherical surface 21a) is likely to progress. Therefore, by setting the area ratio of the second recess 24 to 3% or more and 80% or less, it is possible to process the work while further improving the durability of the tool.
  • ⁇ Third cutting test> A third cutting test was performed to confirm the influence of the depth of the second recess 24 (depth D2), the equivalent circle diameter of the second recess 24 and the area ratio of the second recess 24 in a plan view. The third cutting test will be described below.
  • samples 15 to 25 were used as the ball end mill 200.
  • the depth D2 the equivalent circle diameter of the second recess 24 in plan view, and the area ratio of the second recess 24 were changed.
  • the diameter R is 0.5 mm
  • the depth D1 is 4 ⁇ m
  • the skewness of the partial spherical surface 21a at the portion where the first recess 22 and the protrusion 23 are formed is a positive value.
  • the arithmetic average roughness of the partial spherical surface 21a in the first recess 22 was set to 0.10 ⁇ m.
  • the machining conditions of the third cutting test were the same as the machining conditions of the first cutting test.
  • the durability (tool life) of the samples 15 to 25 was evaluated by the time until the wear on the flank surface (that is, the partial spherical surface 21a) reached 50 ⁇ m.
  • the results of the third cutting test are shown in Table 6.
  • the tool life of samples 15 to 20 exceeded the tool life of sample 21.
  • the depth D2 of the samples 15 to 20 was within the range of 1 ⁇ m or more.
  • the depth D2 of sample 21 was not within the range of 1 ⁇ m or more. From this comparison, it was experimentally clarified that the tool life of the ball end mill 200 is improved by setting the depth D2 to 1 ⁇ m or more.
  • the tool life of samples 15 to 20 exceeded the tool life of samples 22 and 23.
  • the equivalent circle diameter of the second recess 24 of the samples 15 to 20 was within the range of 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the equivalent circle diameters of the second recesses 24 of the sample 22 and the sample 23 were not within the range of 0.5 ⁇ m or more and 50 ⁇ m or less. From this comparison, it was experimentally clarified that the tool life of the ball end mill 200 is improved by setting the equivalent circle diameter of the second recess 24 in a plan view to 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the tool life of samples 15 to 20 exceeded the tool life of samples 24 and 25.
  • the area ratio of the second recess 24 on the surface 21 of the samples 15 to 20 was within the range of 3% or more and 80% or less.
  • the area ratio of the second recess 24 on the surface 21 of the sample 22 and the sample 23 was not within the range of 3% or more and 80% or less. From this comparison, it was experimentally clarified that the tool life of the ball end mill 200 is improved by setting the area ratio of the second recess 24 on the surface 21 to 3% or more and 80% or less.
  • the ball end mill 200 does not have the groove 21b and the cutting edge 21c, but the ball end mill 200 may have the groove 21b and the cutting edge 21c.
  • the configuration of the tool according to the third embodiment will be described below.
  • the tool according to the third embodiment is a cutting tool for cutting a work. More specifically, the tool according to the third embodiment is a cutting insert 300.
  • FIG. 10 is a perspective view of the cutting insert 300.
  • FIG. 11 is a cross-sectional view of the tip portion 20 of the cutting insert 300. As shown in FIGS. 10 and 11, the cutting insert 300 has a substrate 30 and a tip portion 20.
  • the substrate 30 has a first surface 30a, a second surface 30b, and a side surface 30c.
  • the second surface 30b is the opposite surface of the first surface 30a.
  • the side surface 30c is continuous with the first surface 30a and the second surface 30b.
  • the substrate 30 has a mounting portion 31.
  • the mounting portion 31 is located at a corner portion of the substrate 30 when viewed from a direction orthogonal to the first surface 30a.
  • the distance between the first surface 30a and the second surface 30b located on the mounting portion 31 is smaller than the distance between the first surface 30a and the second surface 30b located outside the mounting portion 31. That is, a step is formed in the mounting portion 31 on the first surface 30a side of the substrate 30.
  • the substrate 30 is formed of, for example, a cemented carbide.
  • the tip portion 20 is attached to the attachment portion 31 by brazing or the like.
  • the surface 21 of the tip portion 20 has a rake surface 21d, a flank surface 21e, and a cutting edge 21f.
  • the rake face 21d is connected to the flank surface 21e.
  • the rake face 21d is connected to the first surface 30a on the side opposite to the flank surface 21e.
  • the flank 21e is connected to the side surface 30c on the opposite side of the rake face 21d.
  • the cutting edge 21f is formed on the ridgeline between the rake surface 21d and the flank surface 21e.
  • the rake face 21d has a first portion 21da and a second portion 21db.
  • the first portion 21da is a portion of the rake face 21d connected to the flank surface 21e.
  • the second portion 21db is a portion sandwiching the first portion 21da with the cutting edge 21f.
  • the first portion 21da is inclined with respect to the second portion 21db so as to form a negative angle with respect to the second portion 21db.
  • the first portion 21da has a negative angle with respect to the second portion 21db
  • the first portion is when the second portion 21db faces upward and the flank 21e faces to the left.
  • 21da is rotated counterclockwise with respect to the second portion 21db. From another point of view, the first part 21da is a negative land.
  • the first concave portion 22 and the protruding portion 23 are formed on the rake surface 21d and the flank surface 21e. More specifically, the first recess 22 and the protrusion 23 are formed on the first portion 21da and the flank 21e. A second recess 24 may be further formed on the rake face 21d (first portion 21da) and the flank 21e.
  • FIG. 12 is a process diagram showing a method of manufacturing the cutting insert 300.
  • the method for manufacturing the cutting insert 300 includes a preparation step S1, a joining step S2, a surface forming step S5, and a first recess forming step S3.
  • the method for manufacturing the cutting insert 300 may further include a second recess forming step S4.
  • the members constituting the substrate 30 and the tip portion 20 are prepared.
  • the first concave portion 22 and the protruding portion 23 are not formed on the surface 21 of the tip portion 20 prepared in the preparation step S1.
  • the joining step S2 for example, the substrate 30 and the tip portion 20 are joined by brazing.
  • the rake surface 21d and the flank surface 21e are formed on the surface 21.
  • the formation of the rake face 21d and the formation of the flank surface 21e are performed, for example, by irradiating the surface 21 with a laser.
  • the cutting edge 21f is also formed. Since the first recess forming step S3 and the second recess forming step S4 are as described above, the description thereof will be omitted here.
  • the coolant collects in the first recess 22 (the first recess 22 becomes an oil pool), so that the cutting resistance between the surface 21 and the work decreases and the coolant The cooling effect is enhanced. As a result, the durability of the cutting insert 300 is improved.
  • the cutting edge 21f not only cuts the work, but also the protrusion 23 formed on the flank surface 21e grinds the work, so that the machined surface is machined. Quality (surface roughness of the surface to be machined) is improved. As described above, according to the cutting insert 300, it is possible to improve the processing accuracy for the work.
  • FIG. 13 is a side view of the radius end mill 400.
  • the contents of the third embodiment described above can be applied to, for example, a radius end mill 400 as shown in FIG. More specifically, the first concave portion 22 and the protruding portion 23 are formed on the flank surface and the rake surface formed on the tip portion 20 of the radius end mill 400.
  • the configuration of the tool according to the fourth embodiment will be described below.
  • the tool according to the fourth embodiment is a measuring tool for measuring the surface roughness or shape of the work. More specifically, the tool according to the fourth embodiment is a stylus 500.
  • FIG. 14 is a side view of the stylus 500.
  • the stylus 500 has a tip 20.
  • the stylus 500 is scanned on the work so that the surface 21 is in contact with the surface of the work. As a result, the surface roughness or shape of the work is measured.
  • a first recess 22 and a protrusion 23 are formed on the surface 21.
  • a second recess 24 may be further formed on the surface 21.
  • the stylus 500 Since the first recess 22 and the protrusion 23 are formed on the surface 21, the contact resistance between the surface of the work and the surface 21 when scanning the stylus 500 can be reduced.
  • 10 Main body, 10a 1st end, 10b 2nd end, 11 shank, 11a 1st end, 11b 2nd end, 12 neck, 12a 1st end, 12b 2nd end, 13 connection layer, 20 tip, 21 surface , 21a partial spherical surface, 21b groove, 21c cutting edge, 21d rake surface, 21da first part, 21db second part, 21e flank surface, 21f cutting edge, 22 first recess, 23 protrusion, 24 second recess, 30 substrate , 30a 1st surface, 30b 2nd surface, 30c side surface, 31 mounting part, 100 ball end mill, 200 ball end mill, 300 cutting insert, 400 radius end mill, 500 stylus, A rotation axis, D1, D2 depth, R diameter, S1 preparation step, S2 joining step, S3 first recess forming step, S4 second recess forming step, S5 surface forming step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

This tool comprises a tip portion that is formed from nano-polycrystalline diamond. The tip portion has a surface which comes into contact with a workpiece. At least a portion of said surface contains a plurality of first recesses, and protrusions that are each formed by the contact between the edges of two adjacent first recesses.

Description

工具及び工具の製造方法Tools and tool manufacturing methods
 本開示は、工具及び工具の製造方法に関する。 This disclosure relates to tools and tools manufacturing methods.
 特許文献1(特開2017-119333号公報)には、ボールエンドミルが記載されている。特許文献1のボールエンドミルは、本体部と、刃部とを有している。刃部は、本体部の先端に取り付けられている。刃部は、ダイヤモンド粒子及び結合材を含むダイヤモンド焼結体により形成されている。刃部は、半球形状を有している。刃部の表面は、凹部と、凸部とを含んでいる。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2017-119333) describes a ball end mill. The ball end mill of Patent Document 1 has a main body portion and a blade portion. The blade portion is attached to the tip of the main body portion. The blade portion is formed of a diamond sintered body containing diamond particles and a binder. The blade portion has a hemispherical shape. The surface of the blade portion includes a concave portion and a convex portion.
特開2017-119333号公報Japanese Unexamined Patent Publication No. 2017-119333
 本開示の工具は、ナノ多結晶ダイヤモンドにより形成された先端部を備えている。先端部は、ワークと接触する表面を有する。表面の少なくとも一部は、複数の第1凹部と、隣り合う2つの前記第1凹部の端が互いに接触することにより形成される突出部とを含む。 The tool of the present disclosure has a tip formed of nanopolycrystalline diamond. The tip has a surface that comes into contact with the work. At least a portion of the surface includes a plurality of first recesses and protrusions formed by contacting the ends of two adjacent first recesses with each other.
図1は、ボールエンドミル100の側面図である。FIG. 1 is a side view of the ball end mill 100. 図2は、図1の領域IIにおける拡大図である。FIG. 2 is an enlarged view of region II of FIG. 図3は、ボールエンドミル100における部分球面21aの模式的な平面図である。FIG. 3 is a schematic plan view of the partial spherical surface 21a in the ball end mill 100. 図4は、図3のIV-IVにおける断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 図5は、ボールエンドミル100の製造方法を示す工程図である。FIG. 5 is a process diagram showing a manufacturing method of the ball end mill 100. 図6は、ボールエンドミル200の先端部20近傍の拡大側面図である。FIG. 6 is an enlarged side view of the vicinity of the tip portion 20 of the ball end mill 200. 図7は、ボールエンドミル200における部分球面21aの模式的な平面図である。FIG. 7 is a schematic plan view of the partial spherical surface 21a in the ball end mill 200. 図8は、図7のVIII-VIIIにおける断面図である。FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG. 図9は、ボールエンドミル200の製造方法を示す工程図である。FIG. 9 is a process diagram showing a manufacturing method of the ball end mill 200. 図10は、切削インサート300の斜視図である。FIG. 10 is a perspective view of the cutting insert 300. 図11は、切削インサート300の先端部20における断面図である。FIG. 11 is a cross-sectional view of the tip portion 20 of the cutting insert 300. 図12は、切削インサート300の製造方法を示す工程図である。FIG. 12 is a process diagram showing a method of manufacturing the cutting insert 300. 図13は、ラジアスエンドミル400の側面図である。FIG. 13 is a side view of the radius end mill 400. 図14は、スタイラス500の側面図である。FIG. 14 is a side view of the stylus 500.
 [本開示が解決しようとする課題]
 本発明者らが見出した知見によると、特許文献1に記載のボールエンドミルは、ワークとの接触性に関して、改善の余地がある。
[Problems to be solved by this disclosure]
According to the findings found by the present inventors, the ball end mill described in Patent Document 1 has room for improvement in terms of contact with a work.
 本開示は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、本開示は、ワークとの接触性が改善された工具(ワークの加工精度が改善された加工工具ないし切削工具又はワークとの接触抵抗が低減された測定工具)を提供する。 This disclosure has been made in view of the problems of the prior art as described above. More specifically, the present disclosure provides a tool having improved contact with a work (a machining tool or a cutting tool with improved machining accuracy of the workpiece, or a measuring tool with reduced contact resistance with the workpiece). ..
 [本開示の効果]
 本開示の工具によると、ワークとの接触性を改善(加工工具ないし切削工具である場合にはワークの加工精度を改善、測定工具である場合にはワークとの接触抵抗の低減)することができる。
[Effect of this disclosure]
According to the tool of the present disclosure, it is possible to improve the contactability with the work (improve the machining accuracy of the work in the case of a machining tool or a cutting tool, and reduce the contact resistance with the work in the case of a measuring tool). can.
 [本開示の実施形態の説明]
 まず、本開示の実施形態を、列挙して説明する。
[Explanation of Embodiments of the present disclosure]
First, the embodiments of the present disclosure will be listed and described.
 (1)本開示の一態様に係る工具は、ナノ多結晶ダイヤモンドにより形成された先端部を備える。先端部は、ワークと接触する表面を有する。表面の少なくとも一部は、複数の第1凹部と、隣り合う2つの第1凹部の端が互いに接触することにより形成される突出部とを含む。本開示の一態様に係る工具によると、ワークとの接触性を改善することができる。 (1) The tool according to one aspect of the present disclosure includes a tip portion formed of nanopolycrystalline diamond. The tip has a surface that comes into contact with the work. At least a portion of the surface includes a plurality of first recesses and protrusions formed by the ends of two adjacent first recesses coming into contact with each other. According to the tool according to one aspect of the present disclosure, the contact with the work can be improved.
 (2)上記(1)の工具は、ワークの表面粗さ又は形状を測定するための測定工具であってもよい。この場合、先端部がワークの表面に沿って走査される際のワークとの接触抵抗を低減することができる。 (2) The tool of (1) above may be a measuring tool for measuring the surface roughness or shape of the work. In this case, it is possible to reduce the contact resistance with the work when the tip portion is scanned along the surface of the work.
 (3)上記(1)の工具は、ワークの加工を行うための加工工具であってもよい。この場合、ワークを加工する際の加工精度を改善することができる。 (3) The tool of (1) above may be a machining tool for machining a work. In this case, it is possible to improve the processing accuracy when processing the work.
 (4)上記(3)の工具において、表面は、部分球面を含んでいてもよい。
 (5)上記(4)の工具において、表面は、溝と、溝及び部分球面の稜線に形成された切れ刃とを含んでいてもよい。
(4) In the tool of (3) above, the surface may include a partial spherical surface.
(5) In the tool of (4) above, the surface may include a groove and a cutting edge formed on the groove and the ridgeline of the partial spherical surface.
 (6)上記(1)の工具は、ワークの切削を行うための切削工具であってもよい。表面は、すくい面と、逃げ面と、すくい面及び逃げ面の稜線に形成された切れ刃とを含んでいてもよい。この場合、ワークを加工する際の加工精度を改善することができる。 (6) The tool of (1) above may be a cutting tool for cutting a work. The surface may include a rake face, a flank, and a rake face and a cutting edge formed on the ridge of the flank. In this case, it is possible to improve the processing accuracy when processing the work.
 (7)上記(3)~(6)の工具において、第1凹部の深さは、0.05μm以上20μm以下であってもよい。この場合、ワークを加工する際の加工精度を改善することができる。 (7) In the tools (3) to (6) above, the depth of the first recess may be 0.05 μm or more and 20 μm or less. In this case, it is possible to improve the processing accuracy when processing the work.
 (8)上記(3)~(7)の工具において、第1凹部における表面の算術平均粗さは、0.05μm以上1.5μm以下であってもよい。この場合、工具の耐久性を改善することができる。 (8) In the tools (3) to (7) above, the arithmetic mean roughness of the surface of the first recess may be 0.05 μm or more and 1.5 μm or less. In this case, the durability of the tool can be improved.
 (9)上記(3)~(8)の工具において、第1凹部及び突出部が形成されている表面の部分におけるスキューネスパラメータは、0を超えていてもよい。この場合、ワークを加工する際の加工精度をさらに改善することができる。 (9) In the tools (3) to (8) above, the skewness parameter at the surface portion where the first recess and the protrusion are formed may exceed 0. In this case, the processing accuracy when processing the work can be further improved.
 (10)上記(3)~(9)の工具において、表面の少なくとも一部は、第1凹部とは別の第2凹部を含んでいてもよい。第2凹部の深さは、1μm以上であってもよい。この場合、工具の耐久性を改善することができる。 (10) In the tools (3) to (9) above, at least a part of the surface may include a second recess different from the first recess. The depth of the second recess may be 1 μm or more. In this case, the durability of the tool can be improved.
 (11)上記(10)の工具において、平面視における第2凹部の円相当径は、0.5μm以上50μm以下であってもよい。この場合、工具の耐久性をさらに改善することができる。 (11) In the tool of (10) above, the equivalent circle diameter of the second concave portion in a plan view may be 0.5 μm or more and 50 μm or less. In this case, the durability of the tool can be further improved.
 (12)上記(10)又は(11)の工具において、表面における第2凹部の面積割合は、3パーセント以上80パーセント以下であってもよい。この場合、工具の耐久性をさらに改善することができる。 (12) In the tool of (10) or (11) above, the area ratio of the second recess on the surface may be 3% or more and 80% or less. In this case, the durability of the tool can be further improved.
 (13)本開示の一態様に係る工具の製造方法は、ナノ多結晶ダイヤモンドにより形成された先端部を準備する工程と、レーザを照射することにより、先端部の表面の少なくとも一部に、複数の第1凹部を形成する工程とを備える。隣り合う2つの第1凹部の端が接することにより、先端部の表面の一部に、突出部が形成される。 (13) A plurality of methods for manufacturing a tool according to one aspect of the present disclosure include a step of preparing a tip portion formed of nanopolycrystalline diamond and a plurality of methods of irradiating a laser on at least a part of the surface of the tip portion. The step of forming the first concave portion of the above is provided. By contacting the ends of two adjacent first concave portions, a protruding portion is formed on a part of the surface of the tip portion.
 (14)上記(13)の工具の製造方法において、レーザを照射することにより、先端部の表面に、すくい面及びすくい面に連なる逃げ面を形成する工程をさらに備えていてもよい。 (14) In the tool manufacturing method of (13) above, a step of forming a rake face and a flank surface connected to the rake face may be further provided on the surface of the tip portion by irradiating the laser.
 [本開示の実施形態の詳細]
 次に、本開示の実施形態の詳細を、図面を参照しながら説明する。以下の図面においては、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さない。
[Details of Embodiments of the present disclosure]
Next, the details of the embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are designated by the same reference numerals, and duplicate explanations are not repeated.
 (第1実施形態)
 以下に、第1実施形態に係る工具の構成を説明する。第1実施形態に係る工具は、ワークに対する切削加工を行うための切削工具である。より具体的には、第1実施形態に係る工具は、ボールエンドミル100である。このワークは、例えば、超硬合金製である。
(First Embodiment)
The configuration of the tool according to the first embodiment will be described below. The tool according to the first embodiment is a cutting tool for cutting a work. More specifically, the tool according to the first embodiment is a ball end mill 100. This work is made of, for example, cemented carbide.
 図1は、ボールエンドミル100の側面図である。図2は、図1の領域IIにおける拡大図である。図1及び図2に示されるように、ボールエンドミル100は、回転軸Aを有している。ボールエンドミル100は、回転軸A回りに回転されることにより、ワークに対する加工を行う。ボールエンドミル100は、本体部10と、先端部20とを有している。 FIG. 1 is a side view of the ball end mill 100. FIG. 2 is an enlarged view of region II of FIG. As shown in FIGS. 1 and 2, the ball end mill 100 has a rotation axis A. The ball end mill 100 processes the work by being rotated around the rotation axis A. The ball end mill 100 has a main body portion 10 and a tip portion 20.
 本体部10は、例えば、超硬合金により形成されている。本体部10は、回転軸Aに沿う方向において、第1端10aと、第2端10bとを有している。第2端10bは、第1端10aの反対側の端である。本体部10は、シャンク11と、ネック12とを有している。シャンク11は第1端10a側にあり、ネック12は第2端10b側にある。 The main body 10 is formed of, for example, a cemented carbide. The main body portion 10 has a first end 10a and a second end 10b in a direction along the rotation axis A. The second end 10b is the opposite end of the first end 10a. The main body 10 has a shank 11 and a neck 12. The shank 11 is on the first end 10a side and the neck 12 is on the second end 10b side.
 シャンク11は、回転軸Aに沿って延在している。シャンク11は、回転軸Aに沿う方向において、第1端11aと、第2端11bとを有している。第1端11aは、第1端10aに一致している。第2端11bは、第1端11aの反対側の端である。シャンク11は、回転軸Aに直交する断面視において、円形形状である。 The shank 11 extends along the axis of rotation A. The shank 11 has a first end 11a and a second end 11b in a direction along the rotation axis A. The first end 11a coincides with the first end 10a. The second end 11b is the opposite end of the first end 11a. The shank 11 has a circular shape in a cross-sectional view orthogonal to the rotation axis A.
 ネック12は、回転軸Aに沿って、第2端11bから延在している。ネック12は、回転軸Aに沿う方向において、第1端12aと、第2端12bとを有している。第1端12aは、シャンク11側の端である。第2端12bは、第1端12aの反対側の端であり、第2端10bに一致している。ネック12は、回転軸Aに直交する断面視において、円形形状である。回転軸Aに直交する断面視において、ネック12の断面積は、シャンク11の断面積よりも小さい。 The neck 12 extends from the second end 11b along the axis of rotation A. The neck 12 has a first end 12a and a second end 12b in a direction along the rotation axis A. The first end 12a is the end on the shank 11 side. The second end 12b is the opposite end of the first end 12a and coincides with the second end 10b. The neck 12 has a circular shape in a cross-sectional view orthogonal to the rotation axis A. The cross-sectional area of the neck 12 is smaller than the cross-sectional area of the shank 11 in the cross-sectional view orthogonal to the rotation axis A.
 先端部20は、例えばろう付けにより、本体部10に取り付けられている。より具体的には、先端部20は、接続層13を介して、第2端10bに取り付けられている。接続層13は、ろう材である。 The tip portion 20 is attached to the main body portion 10 by, for example, brazing. More specifically, the tip portion 20 is attached to the second end 10b via the connection layer 13. The connection layer 13 is a brazing material.
 先端部20は、ナノ多結晶ダイヤモンドにより形成されている。ナノ多結晶ダイヤモンドは、複数のダイヤモンド結晶粒を含んでいる。ナノ多結晶ダイヤモンドの残部には、グラファイト及び不可避不純物が含まれていてもよいが、バインダは含まれていない。すなわち、ナノ多結晶ダイヤモンド中において、複数のダイヤモンド結晶粒の各々は、互いに直接結合されている。 The tip 20 is formed of nanopolycrystalline diamond. Nanopolycrystalline diamond contains a plurality of diamond grains. The rest of the nanopolycrystalline diamond may contain graphite and unavoidable impurities, but no binder. That is, in the nanopolycrystalline diamond, each of the plurality of diamond crystal grains is directly bonded to each other.
 ナノ多結晶ダイヤモンド中において、ダイヤモンド結晶粒の平均粒径は、1μm未満である。ナノ多結晶ダイヤモンド中において、ダイヤモンド結晶粒の平均粒径は、10nm以上500nm以下であることが好ましい。ナノ多結晶ダイヤモンド中において、ダイヤモンド結晶粒の平均粒径は、100nm以上500nm以下であってもよく、100nm以上300nm以下であってもよい。 In nanopolycrystalline diamond, the average grain size of diamond crystal grains is less than 1 μm. In nanopolycrystalline diamond, the average grain size of diamond crystal grains is preferably 10 nm or more and 500 nm or less. In nanopolycrystalline diamond, the average grain size of diamond crystal grains may be 100 nm or more and 500 nm or less, or 100 nm or more and 300 nm or less.
 ナノ多結晶ダイヤモンド中におけるダイヤモンド結晶粒の平均粒径は、先端部20の表面を精密研磨した上で、例えば、日本電子社製JSM-7800F等の電子顕微鏡を用いて、粒界が見える観察条件を設定し、反射電子顕微鏡像を取得し、画像解析することにより、測定することができる。 The average grain size of diamond crystal grains in nanopolycrystalline diamond is an observation condition in which grain boundaries can be seen using an electron microscope such as JSM-7800F manufactured by JEOL Ltd. after precision polishing the surface of the tip portion 20. Can be measured by setting, acquiring a backscattered electron microscope image, and analyzing the image.
 先端部20は、表面21を有している。先端部20は、半球形状を有している。すなわち、表面21には、部分球面21aが含まれている。先端部20を構成している半球の直径を、直径Rとする。ボールエンドミル100によりワークの加工が行われている際、表面21(部分球面21a)は、ワークに接触する。 The tip portion 20 has a surface 21. The tip portion 20 has a hemispherical shape. That is, the surface 21 includes a partial spherical surface 21a. The diameter of the hemisphere constituting the tip portion 20 is defined as the diameter R. When the work is being machined by the ball end mill 100, the surface 21 (partial spherical surface 21a) comes into contact with the work.
 表面21は、溝21bを含んでいる。表面21は、溝21bにおいて窪んでいる。溝21bは、表面21の中央部付近から、放射状に延在している。溝21bと部分球面21aとの稜線は、切れ刃21cになっている。部分球面21aは、逃げ面になっている。切れ刃21cに連なっている溝21bの表面は、すくい面になっている。 The surface 21 includes a groove 21b. The surface 21 is recessed in the groove 21b. The groove 21b extends radially from the vicinity of the central portion of the surface 21. The ridgeline between the groove 21b and the partial spherical surface 21a is a cutting edge 21c. The partial spherical surface 21a is a flank. The surface of the groove 21b connected to the cutting edge 21c is a rake surface.
 図3は、ボールエンドミル100における部分球面21aの模式的な平面図である。図4は、図3のIV-IVにおける断面図である。図3及び図4に示されるように、部分球面21aには、複数の第1凹部22が形成されている。部分球面21aは、第1凹部22において、窪んでいる。 FIG. 3 is a schematic plan view of the partial spherical surface 21a in the ball end mill 100. FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. As shown in FIGS. 3 and 4, a plurality of first recesses 22 are formed in the partial spherical surface 21a. The partial spherical surface 21a is recessed in the first recess 22.
 図3の例では、第1凹部22は、平面視において(部分球面21aに直交する方向から見て)、六角形形状を有しているが、第1凹部22の平面形状は、これに限られない。第1凹部22は、例えば、部分球面21aの全面にわたって形成されている。第1凹部22は、部分球面21aの一部のみに形成されていてもよい。 In the example of FIG. 3, the first concave portion 22 has a hexagonal shape in a plan view (viewed from a direction orthogonal to the partial spherical surface 21a), but the planar shape of the first concave portion 22 is limited to this. I can't. The first recess 22 is formed, for example, over the entire surface of the partial spherical surface 21a. The first recess 22 may be formed only in a part of the partial spherical surface 21a.
 部分球面21aには、突出部23が形成されている。突出部23は、隣り合う2つの第1凹部22の端が接することにより、形成されている。突出部23は、隣り合う2つの第1凹部22の端が接することにより形成されているため、その先端は、鋭利になっている(その先端に平坦面を含んでいない)。 A protrusion 23 is formed on the partial spherical surface 21a. The protrusion 23 is formed by contacting the ends of two adjacent first recesses 22. Since the protrusion 23 is formed by contacting the ends of two adjacent first recesses 22, the tip thereof is sharp (the tip does not include a flat surface).
 第1凹部22は、深さD1を有している。深さD1は、第1凹部22の底と突出部23の先端との間の距離である。深さD1は、好ましくは、0.05μm以上20μm以下である。 The first recess 22 has a depth D1. The depth D1 is the distance between the bottom of the first recess 22 and the tip of the protrusion 23. The depth D1 is preferably 0.05 μm or more and 20 μm or less.
 第1凹部22における部分球面21aの算術平均粗さ(Ra)は、好ましくは、0.05μm以上1.5μm以下である。第1凹部22における部分球面21aの算術平均粗さは、JIS規格(JIS B 0601:2013)にしたがって測定される。 The arithmetic mean roughness (Ra) of the partial spherical surface 21a in the first recess 22 is preferably 0.05 μm or more and 1.5 μm or less. The arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 is measured according to the JIS standard (JIS B 0601: 2013).
 第1凹部22及び突出部23が形成されている部分における部分球面21aのスキューネス(Ssk)は、0を超えている(正の値である)ことが好ましい。第1凹部22及び突出部23が形成されている部分における部分球面21aのスキューネスは、JIS規格(JIS B 0681-2:2018)にしたがって測定される。 The skewness (Ssk) of the partial spherical surface 21a in the portion where the first concave portion 22 and the protruding portion 23 are formed is preferably more than 0 (a positive value). The skewness of the partial spherical surface 21a in the portion where the first concave portion 22 and the protruding portion 23 are formed is measured according to the JIS standard (JIS B 061-2: 2018).
 以下に、ボールエンドミル100の製造方法を説明する。図5は、ボールエンドミル100の製造方法を示す工程図である。図5に示されるように、準備工程S1と、接合工程S2と、第1凹部形成工程S3とを有している。 The manufacturing method of the ball end mill 100 will be described below. FIG. 5 is a process diagram showing a manufacturing method of the ball end mill 100. As shown in FIG. 5, it has a preparation step S1, a joining step S2, and a first recess forming step S3.
 準備工程S1においては、本体部10及び先端部20を構成する部材が準備される。なお、準備工程S1において準備される先端部20の表面21(部分球面21a)には、第1凹部22及び突出部23が形成されていない。接合工程S2においては、例えば、ろう付けにより、本体部10と先端部20との接合が行われる。 In the preparation step S1, the members constituting the main body portion 10 and the tip portion 20 are prepared. The first concave portion 22 and the protruding portion 23 are not formed on the surface 21 (partial spherical surface 21a) of the tip portion 20 prepared in the preparation step S1. In the joining step S2, for example, the main body portion 10 and the tip portion 20 are joined by brazing.
 第1凹部形成工程S3においては、第1凹部22が形成される。第1凹部22は、レーザを表面21(部分球面21a)に照射することにより形成される。突出部23は、隣り合う2つの第1凹部22の端が互いに接することにより形成されるため、第1凹部形成工程S3において第1凹部22が形成されることにより、突出部23も形成される。 In the first recess forming step S3, the first recess 22 is formed. The first recess 22 is formed by irradiating the surface 21 (partial spherical surface 21a) with a laser. Since the protrusion 23 is formed by the ends of two adjacent first recesses 22 contacting each other, the protrusion 23 is also formed by forming the first recess 22 in the first recess forming step S3. ..
 以下に、ボールエンドミル100の効果を説明する。
 ボールエンドミル100によりワークの加工が行われている際、クーラントが第1凹部22に溜まる(第1凹部22が油溜まりになる)ため、逃げ面(部分球面21a)とワークとの間の切削抵抗が減少するとともにクーラントによる冷却効果が高まる。その結果、ボールエンドミル100の耐久性が改善されることになる。
The effect of the ball end mill 100 will be described below.
When the work is being machined by the ball end mill 100, the coolant collects in the first recess 22 (the first recess 22 becomes an oil pool), so that the cutting resistance between the flank (partial spherical surface 21a) and the work. The cooling effect of the coolant increases as the amount of coolant decreases. As a result, the durability of the ball end mill 100 is improved.
 また、ボールエンドミル100によりワークの加工が行われている際、切れ刃21cがワークを切削するのみならず、突出部23がワークを研削するため、被加工面の加工品位(具体的には、被加工面の面粗度)が改善される。このように、ボールエンドミル100によると、ワークに対する加工の精度を改善することができる。 Further, when the work is being machined by the ball end mill 100, the cutting edge 21c not only cuts the work, but also the protruding portion 23 grinds the work, so that the machined surface (specifically, the work quality) is processed. Surface roughness of the work surface) is improved. As described above, according to the ball end mill 100, the processing accuracy for the work can be improved.
 深さD1が大きくなるほど、突出部23がさらに鋭利になるため、被加工面の加工品位が改善される。また、深さD1が大きくなるほど、クーラントが第1凹部22に溜まりやすくなる。他方で、深さD1が大きくなるほど、突出部23が折損しやすくなる。そのため、深さD1を0.05μm以上20μm以下とすることにより、ワークに対する加工の精度及びボールエンドミル100の耐久性をさらに改善することができる。 As the depth D1 becomes larger, the protruding portion 23 becomes sharper, so that the processed quality of the surface to be machined is improved. Further, the larger the depth D1, the more easily the coolant accumulates in the first recess 22. On the other hand, the larger the depth D1, the easier it is for the protrusion 23 to break. Therefore, by setting the depth D1 to 0.05 μm or more and 20 μm or less, the processing accuracy for the work and the durability of the ball end mill 100 can be further improved.
 第1凹部22及び突出部23が形成されている部分における部分球面21aのスキューネスが大きくなるほど、ワークと接触する突出部23が多くなる。そのため、第1凹部22及び突出部23が形成されている部分における部分球面21aのスキューネスが0を超えている場合、ワークに対する加工の精度をさらに改善することができる。 The larger the skewness of the partial spherical surface 21a in the portion where the first concave portion 22 and the protruding portion 23 are formed, the more the protruding portion 23 comes into contact with the work. Therefore, when the skewness of the partial spherical surface 21a in the portion where the first concave portion 22 and the protruding portion 23 are formed exceeds 0, the accuracy of machining the work can be further improved.
 第1凹部22における部分球面21aの算術平均粗さが小さくなるほど、第1凹部22にワークが溶着しにくくなる。そのため、第1凹部22における算術平均粗さを0.05μm以上1.5μm以下とすることにより、ボールエンドミル100の耐久性を改善することができる。 The smaller the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22, the more difficult it is for the work to be welded to the first recess 22. Therefore, the durability of the ball end mill 100 can be improved by setting the arithmetic mean roughness of the first recess 22 to 0.05 μm or more and 1.5 μm or less.
 <第1切削試験>
 深さD1及び第1凹部22及び突出部23が形成されている部分における部分球面21aのスキューネスの影響を確認するために、第1切削試験を行った。以下に、この第1切削試験について説明を行う。
<First cutting test>
A first cutting test was performed to confirm the influence of the skewness of the partial spherical surface 21a on the portion where the depth D1 and the first recess 22 and the protrusion 23 are formed. The first cutting test will be described below.
 第1切削試験においては、ボールエンドミル100として、サンプル1~サンプル9が用いられた。表1に示されるように、サンプル1~サンプル9において、深さD1が変化された。また、サンプル1~サンプル9において、第1凹部22及び突出部23が形成されている部分における部分球面21aのスキューネスが変化された。サンプル1~サンプル9において、直径Rは、0.5mmとされた。サンプル1~サンプル9において、第1凹部22における部分球面21aの算術平均粗さは、0.10μmとされた。 In the first cutting test, samples 1 to 9 were used as the ball end mill 100. As shown in Table 1, the depth D1 was changed in Samples 1 to 9. Further, in Samples 1 to 9, the skewness of the partial spherical surface 21a in the portion where the first concave portion 22 and the protruding portion 23 are formed was changed. In Samples 1 to 9, the diameter R was set to 0.5 mm. In Samples 1 to 9, the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 was set to 0.10 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1切削試験においては、サンプル1~サンプル9を用いて、超硬合金VF20製のワークに対して、球面加工が行われた。第1切削試験は、40000回転/分、送り速度300mm/分、切り込み量0.005mm、切り込み幅0.002mmとの条件により行われた。第1切削試験においては、ミスト状のクーラントが供給された。 In the first cutting test, spherical processing was performed on the work made of cemented carbide VF20 using Samples 1 to 9. The first cutting test was performed under the conditions of 40,000 rotations / minute, a feed rate of 300 mm / min, a depth of cut of 0.005 mm, and a depth of cut of 0.002 mm. In the first cutting test, mist-like coolant was supplied.
 上記の球面加工の加工精度(寸法精度)は、寸法公差が±0.5μm以内である場合に特に良好と評価され、寸法公差が±1μm以内である場合に良好と評価された。 The processing accuracy (dimensional accuracy) of the above spherical surface processing was evaluated as particularly good when the dimensional tolerance was within ± 0.5 μm, and evaluated as good when the dimensional tolerance was within ± 1 μm.
 表2には、第1切削試験の結果が示されている。表2に示されるように、サンプル1~サンプル6を用いた球面加工は、特に良好な加工精度を示した。他方で、サンプル7及びサンプル8を用いた球面加工の加工精度は、良好であった。 Table 2 shows the results of the first cutting test. As shown in Table 2, the spherical surface processing using the samples 1 to 6 showed particularly good processing accuracy. On the other hand, the processing accuracy of the spherical surface processing using the sample 7 and the sample 8 was good.
 サンプル1~サンプル6においては深さD1が0.05μm以上20μm以下の範囲内にあった一方で、サンプル7及びサンプル8においては深さD1が0.05μm以上20μm以下の範囲内になかった。この比較から、深さD1を0.05μm以上20μm以下とすることによりワークに対する加工精度をさらに改善可能であることが実験的に明らかにされた。 In Samples 1 to 6, the depth D1 was in the range of 0.05 μm or more and 20 μm or less, while in Samples 7 and 8, the depth D1 was not in the range of 0.05 μm or more and 20 μm or less. From this comparison, it was experimentally clarified that the machining accuracy for the work can be further improved by setting the depth D1 to 0.05 μm or more and 20 μm or less.
 サンプル1~サンプル6を用いた球面加工は、サンプル9を用いた球面加工よりも良好な加工精度を示した。サンプル1~サンプル6においては、第1凹部22及び突出部23が形成されている部分での部分球面21aのスキューネスが、0を超えていた。サンプル9においては、第1凹部22及び突出部23が形成されている部分での部分球面21aのスキューネスが、0未満であった。 Spherical processing using Samples 1 to 6 showed better processing accuracy than spherical processing using Sample 9. In Samples 1 to 6, the skewness of the partial spherical surface 21a at the portion where the first concave portion 22 and the protruding portion 23 are formed exceeds 0. In sample 9, the skewness of the partial spherical surface 21a at the portion where the first concave portion 22 and the protruding portion 23 are formed was less than 0.
 この比較から、第1凹部22及び突出部23が形成されている部分での部分球面21aのスキューネスを正の値とすることにより、ワークに対する加工精度をさらに改善可能であることが実験的に明らかにされた。 From this comparison, it is experimentally clear that the machining accuracy for the work can be further improved by setting the skewness of the partial spherical surface 21a at the portion where the first concave portion 22 and the protruding portion 23 are formed to a positive value. Was made.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <第2切削試験>
 第1凹部22における部分球面21aの算術平均粗さの影響を確認するために、第2切削試験を行った。以下に、この第2切削試験について説明を行う。
<Second cutting test>
A second cutting test was conducted to confirm the influence of the arithmetic mean roughness of the partial spherical surface 21a on the first recess 22. The second cutting test will be described below.
 第2切削試験においては、ボールエンドミル100として、サンプル10~サンプル14が用いられた。サンプル10~サンプル14において、表3に示されるように、第1凹部22における部分球面21aの算術平均粗さが変化された。サンプル10~サンプル14においては、直径Rが0.5mmとされ、深さD1が4μmとされ、第1凹部22及び突出部23が形成されている部分での部分球面21aのスキューネスが正の値とされた。 In the second cutting test, samples 10 to 14 were used as the ball end mill 100. In Samples 10 to 14, as shown in Table 3, the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 was changed. In the samples 10 to 14, the diameter R is 0.5 mm, the depth D1 is 4 μm, and the skewness of the partial spherical surface 21a at the portion where the first recess 22 and the protrusion 23 are formed is a positive value. Was said.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 第2切削試験の加工条件は、第1切削試験の加工条件と同一とされた。第2切削試験において、サンプル10~サンプル14の耐久性(工具寿命)は、逃げ面(すなわち、部分球面21a)における摩耗が50μmとなるまでの時間により評価された。 The machining conditions of the second cutting test were the same as the machining conditions of the first cutting test. In the second cutting test, the durability (tool life) of the samples 10 to 14 was evaluated by the time until the wear on the flank surface (that is, the partial spherical surface 21a) became 50 μm.
 表4には、第2切削試験の結果が示されている。表4に示されるように、サンプル10~サンプル13の工具寿命は、サンプル14の工具寿命を上回っていた。サンプル10~サンプル13の第1凹部22における部分球面21aの算術平均粗さは、0.05μm以上1.5μm以下の範囲内にあった。他方で、サンプル14の第1凹部22における部分球面21aの算術平均粗さは、0.05μm以上1.5μm以下の範囲内になかった。 Table 4 shows the results of the second cutting test. As shown in Table 4, the tool life of the samples 10 to 13 exceeded the tool life of the sample 14. The arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 of the samples 10 to 13 was in the range of 0.05 μm or more and 1.5 μm or less. On the other hand, the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 of the sample 14 was not within the range of 0.05 μm or more and 1.5 μm or less.
 この比較から、第1凹部22における部分球面21aの算術平均粗さを0.05μm以上1.5μm以下とすることによりボールエンドミル100の耐久性を改善可能であることが、実験的に示された。 From this comparison, it was experimentally shown that the durability of the ball end mill 100 can be improved by setting the arithmetic mean roughness of the partial spherical surface 21a in the first recess 22 to 0.05 μm or more and 1.5 μm or less. ..
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (第2実施形態)
 以下に、第2実施形態に係る工具の構成を説明する。第2実施形態に係る工具は、ワークに対する加工を行うための加工工具である。より具体的には、第2実施形態に係る工具は、ボールエンドミル200である。ここでは、ボールエンドミル100の構成と異なる点を主に説明し、重複する説明は繰り返さない。
(Second Embodiment)
The configuration of the tool according to the second embodiment will be described below. The tool according to the second embodiment is a machining tool for machining a work. More specifically, the tool according to the second embodiment is a ball end mill 200. Here, the points different from the configuration of the ball end mill 100 will be mainly described, and the overlapping description will not be repeated.
 ボールエンドミル200は、本体部10と、先端部20を有している。本体部10は、シャンク11と、ネック12とを有している。先端部20は、表面21を有している。表面21は、部分球面21aを含んでいる。部分球面21aには、第1凹部22及び突出部23が形成されている。これらの点に関して、ボールエンドミル200の構成は、ボールエンドミル100の構成と共通している。 The ball end mill 200 has a main body portion 10 and a tip portion 20. The main body 10 has a shank 11 and a neck 12. The tip portion 20 has a surface 21. The surface 21 includes a partial spherical surface 21a. The first concave portion 22 and the protruding portion 23 are formed on the partial spherical surface 21a. In these respects, the configuration of the ball end mill 200 is common to the configuration of the ball end mill 100.
 図6は、ボールエンドミル200の先端部20近傍の拡大側面図である。図6に示されるように、ボールエンドミル200においては、表面21に溝21b及び切れ刃21cが形成されていない。すなわち、ボールエンドミル200において、表面21は、部分球面21aにより構成されている。図7は、ボールエンドミル200における部分球面21aの模式的な平面図である。図8は、図7のVIII-VIIIにおける断面図である。図7及び図8に示されるように、部分球面21aには、第2凹部24がさらに形成されている。これらの点に関して、ボールエンドミル200の構成は、ボールエンドミル100の構成と異なっている。 FIG. 6 is an enlarged side view of the vicinity of the tip portion 20 of the ball end mill 200. As shown in FIG. 6, in the ball end mill 200, the groove 21b and the cutting edge 21c are not formed on the surface 21. That is, in the ball end mill 200, the surface 21 is composed of a partial spherical surface 21a. FIG. 7 is a schematic plan view of the partial spherical surface 21a in the ball end mill 200. FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG. As shown in FIGS. 7 and 8, a second concave portion 24 is further formed on the partial spherical surface 21a. In these respects, the configuration of the ball end mill 200 is different from the configuration of the ball end mill 100.
 第2凹部24は、第1凹部22とは別の凹部である。第2凹部24において、部分球面21aは、窪んでいる。第2凹部24は、例えば、第1凹部22内に形成されている。第2凹部24の深さを、深さD2とする。深さD2は、1μm以上である。深さD2は、例えば、20μm以下である。 The second recess 24 is a recess different from the first recess 22. In the second recess 24, the partial spherical surface 21a is recessed. The second recess 24 is formed in, for example, the first recess 22. The depth of the second recess 24 is defined as the depth D2. The depth D2 is 1 μm or more. The depth D2 is, for example, 20 μm or less.
 平面視における第2凹部24の円相当径は、0.5μm以上50μm以下であることが好ましい。平面視における第2凹部24の円相当径は、平面視における第2凹部24の面積をπ/4で除した値の平方根である。表面21における第2凹部24の面積比率は、3パーセント以上80パーセント以下であることが好ましい。表面21における第2凹部24の面積比率は、第2凹部24が形成されている表面21の面積を第1凹部22及び突出部23が形成されている表面21の面積で除した値である。 The equivalent circle diameter of the second recess 24 in a plan view is preferably 0.5 μm or more and 50 μm or less. The equivalent circle diameter of the second recess 24 in the plan view is the square root of the value obtained by dividing the area of the second recess 24 in the plan view by π / 4. The area ratio of the second recess 24 on the surface 21 is preferably 3% or more and 80% or less. The area ratio of the second recess 24 on the surface 21 is a value obtained by dividing the area of the surface 21 on which the second recess 24 is formed by the area of the surface 21 on which the first recess 22 and the protrusion 23 are formed.
 以下に、ボールエンドミル200の製造方法を説明する。ここでは、ボールエンドミル100の製造方法と異なる点を主に説明し、重複する説明は繰り返さないものとする。 The manufacturing method of the ball end mill 200 will be described below. Here, the points different from the manufacturing method of the ball end mill 100 will be mainly described, and duplicate explanations will not be repeated.
 図9は、ボールエンドミル200の製造方法を示す工程図である。図9に示されるように、ボールエンドミル200の製造方法は、準備工程S1と、接合工程S2と、第1凹部形成工程S3とを有している。この点に関して、ボールエンドミル200の製造方法は、ボールエンドミル100の製造方法と異なっている。ボールエンドミル200の製造方法は、第2凹部形成工程S4をさらに有している。この点に関して、ボールエンドミル200の製造方法は、ボールエンドミル100の製造方法と異なっている。 FIG. 9 is a process diagram showing a manufacturing method of the ball end mill 200. As shown in FIG. 9, the manufacturing method of the ball end mill 200 includes a preparation step S1, a joining step S2, and a first recess forming step S3. In this respect, the manufacturing method of the ball end mill 200 is different from the manufacturing method of the ball end mill 100. The method for manufacturing the ball end mill 200 further includes a second recess forming step S4. In this respect, the manufacturing method of the ball end mill 200 is different from the manufacturing method of the ball end mill 100.
 第2凹部形成工程S4においては、第2凹部24の形成が行われる。第2凹部24の形成においては、第1に、金属粉末が、表面21(部分球面21a)に配置される。この金属粉末には、ダイヤモンドと親和性の高い金属(例えば、鉄、コバルト、ニッケル)が選択される。 In the second recess forming step S4, the second recess 24 is formed. In the formation of the second recess 24, first, the metal powder is arranged on the surface 21 (partial spherical surface 21a). For this metal powder, a metal having a high affinity for diamond (for example, iron, cobalt, nickel) is selected.
 第2に、表面21を加熱することにより、上記の金属粉末と先端部20中に含まれているダイヤモンドとを反応させる。その結果、上記の金属粉末が付着していた部分の表面21からダイヤモンドが除去され、第2凹部24が形成される。 Second, by heating the surface 21, the above metal powder is reacted with the diamond contained in the tip portion 20. As a result, diamond is removed from the surface 21 of the portion to which the metal powder has adhered, and the second recess 24 is formed.
 上記の第2凹部24の形成方法から明らかなように、第2凹部24の円相当径は上記の配置する金属粉末の粒径を調整することにより変更可能であり、第2凹部24の面積比率は上記の配置する金属粉末の量を調整することにより変更可能である。なお、第2凹部24の形成方法は、上記の例に限られない。第2凹部24は、例えば表面21(部分球面21a)に対してレーザを照射することにより形成されてもよい。 As is clear from the method for forming the second recess 24, the equivalent circle diameter of the second recess 24 can be changed by adjusting the particle size of the metal powder to be arranged, and the area ratio of the second recess 24 can be changed. Can be changed by adjusting the amount of the metal powder to be arranged. The method of forming the second recess 24 is not limited to the above example. The second recess 24 may be formed, for example, by irradiating the surface 21 (partial spherical surface 21a) with a laser.
 以下に、ボールエンドミル200の効果を説明する。ここでは、ボールエンドミル100の効果と異なる点を主に説明し、重複する説明は繰り返さない。 The effect of the ball end mill 200 will be described below. Here, the points different from the effect of the ball end mill 100 will be mainly described, and the overlapping description will not be repeated.
 ボールエンドミル200は、切れ刃21cを有していない。しかしながら、第2凹部24が微少な切れ刃として作用する。また、第1凹部22も、切れ刃として作用する。他方で、第2凹部24の深さ(深さD2)が1μm未満である場合、第2凹部24が切れ刃として作用しにくい。また、深さD2が1μm未満である場合、ワークから発生する切屑が第2凹部24に詰まってしまい、溶着の起点になりやすい。その結果、表面21(部分球面21a)の摩耗が進行しやすい。このように、深さD2が1μm以上の第2凹部24を有するボールエンドミル200によると、工具の耐久性を確保しながら、ワークの加工を行うことができる。 The ball end mill 200 does not have a cutting edge 21c. However, the second recess 24 acts as a fine cutting edge. The first recess 22 also acts as a cutting edge. On the other hand, when the depth (depth D2) of the second recess 24 is less than 1 μm, the second recess 24 is unlikely to act as a cutting edge. Further, when the depth D2 is less than 1 μm, chips generated from the work are clogged in the second recess 24, which tends to be the starting point of welding. As a result, wear of the surface 21 (partial spherical surface 21a) tends to proceed. As described above, according to the ball end mill 200 having the second recess 24 having a depth D2 of 1 μm or more, the work can be machined while ensuring the durability of the tool.
 平面視における第2凹部24の円相当径が過大であると、第2凹部24が切れ刃として作用しにくくなる。また、平面視における第2凹部24の円相当径が過小であると、第2凹部24に切屑が詰まりやすくなる。そのため、平面視における第2凹部24の円相当径を0.5μm以上50μm以下とすることにより、工具の耐久性をさらに改善しつつ、ワークの加工を行うことができる。 If the equivalent circle diameter of the second recess 24 in a plan view is excessive, the second recess 24 is less likely to act as a cutting edge. Further, if the diameter corresponding to the circle of the second recess 24 in a plan view is too small, the second recess 24 is likely to be clogged with chips. Therefore, by setting the equivalent circle diameter of the second recess 24 in a plan view to 0.5 μm or more and 50 μm or less, the work can be machined while further improving the durability of the tool.
 第2凹部24の面積割合が過小であると、切れ刃として機能する第2凹部24の数が少ない。また、第2凹部24の面積割合が過大であると、切れ刃として機能する第2凹部24の割合が減少するとともに、切れ刃(第2凹部24)1つあたりの負荷が高くなり、表面21(部分球面21a)の摩耗が進行しやすくなる。そのため、第2凹部24の面積割合を3パーセント以上80パーセント以下することにより、工具の耐久性をさらに改善しつつ、ワークの加工を行うことができる。 If the area ratio of the second recess 24 is too small, the number of the second recess 24 that functions as a cutting edge is small. Further, if the area ratio of the second recess 24 is excessive, the ratio of the second recess 24 that functions as a cutting edge decreases, and the load per cutting edge (second recess 24) increases, so that the surface 21 Wear of (partial spherical surface 21a) is likely to progress. Therefore, by setting the area ratio of the second recess 24 to 3% or more and 80% or less, it is possible to process the work while further improving the durability of the tool.
 <第3切削試験>
 第2凹部24の深さ(深さD2)、平面視における第2凹部24の円相当径及び第2凹部24の面積割合の影響を確認するために、第3切削試験を行った。以下に、この第3切削試験について説明を行う。
<Third cutting test>
A third cutting test was performed to confirm the influence of the depth of the second recess 24 (depth D2), the equivalent circle diameter of the second recess 24 and the area ratio of the second recess 24 in a plan view. The third cutting test will be described below.
 第3切削試験においては、ボールエンドミル200として、サンプル15~サンプル25が用いられた。サンプル15~サンプル25において、表5に示されるように、深さD2、平面視における第2凹部24の円相当径及び第2凹部24の面積割合が変化された。サンプル15~サンプル25においては、直径Rが0.5mmとされ、深さD1が4μmとされ、第1凹部22及び突出部23が形成されている部分での部分球面21aのスキューネスが正の値とされ、第1凹部22における部分球面21aの算術平均粗さが0.10μmとされた。 In the third cutting test, samples 15 to 25 were used as the ball end mill 200. In Samples 15 to 25, as shown in Table 5, the depth D2, the equivalent circle diameter of the second recess 24 in plan view, and the area ratio of the second recess 24 were changed. In the samples 15 to 25, the diameter R is 0.5 mm, the depth D1 is 4 μm, and the skewness of the partial spherical surface 21a at the portion where the first recess 22 and the protrusion 23 are formed is a positive value. The arithmetic average roughness of the partial spherical surface 21a in the first recess 22 was set to 0.10 μm.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 第3切削試験の加工条件は、第1切削試験の加工条件と同一とされた。第3切削試験において、サンプル15~サンプル25の耐久性(工具寿命)は、逃げ面(すなわち、部分球面21a)における摩耗が50μmになるまでの時間により評価された。第3切削試験の結果は、表6に示されている。 The machining conditions of the third cutting test were the same as the machining conditions of the first cutting test. In the third cutting test, the durability (tool life) of the samples 15 to 25 was evaluated by the time until the wear on the flank surface (that is, the partial spherical surface 21a) reached 50 μm. The results of the third cutting test are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 サンプル15~サンプル20の工具寿命は、サンプル21の工具寿命を上回っていた。サンプル15~サンプル20の深さD2は、1μm以上の範囲内にあった。他方で、サンプル21の深さD2は、1μm以上の範囲内になかった。この比較から、深さD2を1μm以上とすることによりボールエンドミル200の工具寿命が改善されることが、実験的に明らかにされた。 The tool life of samples 15 to 20 exceeded the tool life of sample 21. The depth D2 of the samples 15 to 20 was within the range of 1 μm or more. On the other hand, the depth D2 of sample 21 was not within the range of 1 μm or more. From this comparison, it was experimentally clarified that the tool life of the ball end mill 200 is improved by setting the depth D2 to 1 μm or more.
 サンプル15~サンプル20の工具寿命は、サンプル22及びサンプル23の工具寿命を上回っていた。サンプル15~サンプル20の第2凹部24の円相当径は、0.5μm以上50μm以下の範囲内にあった。他方で、サンプル22及びサンプル23の第2凹部24の円相当径は、0.5μm以上50μm以下の範囲内になかった。この比較から、平面視における第2凹部24の円相当径を0.5μm以上50μm以下とすることによりボールエンドミル200の工具寿命が改善されることが、実験的に明らかにされた。 The tool life of samples 15 to 20 exceeded the tool life of samples 22 and 23. The equivalent circle diameter of the second recess 24 of the samples 15 to 20 was within the range of 0.5 μm or more and 50 μm or less. On the other hand, the equivalent circle diameters of the second recesses 24 of the sample 22 and the sample 23 were not within the range of 0.5 μm or more and 50 μm or less. From this comparison, it was experimentally clarified that the tool life of the ball end mill 200 is improved by setting the equivalent circle diameter of the second recess 24 in a plan view to 0.5 μm or more and 50 μm or less.
 サンプル15~サンプル20の工具寿命は、サンプル24及びサンプル25の工具寿命を上回っていた。サンプル15~サンプル20の表面21における第2凹部24の面積割合は、3パーセント以上80パーセント以下の範囲内にあった。他方で、サンプル22及びサンプル23の表面21における第2凹部24の面積割合は、3パーセント以上80パーセント以下の範囲内になかった。この比較から、表面21における第2凹部24の面積割合を3パーセント以上80パーセント以下とすることによりボールエンドミル200の工具寿命が改善されることが、実験的に明らかにされた。 The tool life of samples 15 to 20 exceeded the tool life of samples 24 and 25. The area ratio of the second recess 24 on the surface 21 of the samples 15 to 20 was within the range of 3% or more and 80% or less. On the other hand, the area ratio of the second recess 24 on the surface 21 of the sample 22 and the sample 23 was not within the range of 3% or more and 80% or less. From this comparison, it was experimentally clarified that the tool life of the ball end mill 200 is improved by setting the area ratio of the second recess 24 on the surface 21 to 3% or more and 80% or less.
 <変形例>
 上記の例においては、ボールエンドミル200が溝21b及び切れ刃21cを有しないとしたが、ボールエンドミル200は、溝21b及び切れ刃21cを有していてもよい。
<Modification example>
In the above example, the ball end mill 200 does not have the groove 21b and the cutting edge 21c, but the ball end mill 200 may have the groove 21b and the cutting edge 21c.
 (第3実施形態)
 以下に、第3実施形態に係る工具の構成を説明する。第3実施形態に係る工具は、ワークに対する切削加工を行うための切削工具である。より具体的には、第3実施形態に係る工具は、切削インサート300である。
(Third Embodiment)
The configuration of the tool according to the third embodiment will be described below. The tool according to the third embodiment is a cutting tool for cutting a work. More specifically, the tool according to the third embodiment is a cutting insert 300.
 図10は、切削インサート300の斜視図である。図11は、切削インサート300の先端部20における断面図である。図10及び図11に示されるように、切削インサート300は、基体30と、先端部20とを有している。 FIG. 10 is a perspective view of the cutting insert 300. FIG. 11 is a cross-sectional view of the tip portion 20 of the cutting insert 300. As shown in FIGS. 10 and 11, the cutting insert 300 has a substrate 30 and a tip portion 20.
 基体30は、第1面30aと、第2面30bと、側面30cとを有している。第2面30bは、第1面30aの反対面である。側面30cは、第1面30a及び第2面30bに連なっている。基体30は、取り付け部31を有している。取り付け部31は、第1面30aに直交する方向から見て、基体30の角部に位置している。 The substrate 30 has a first surface 30a, a second surface 30b, and a side surface 30c. The second surface 30b is the opposite surface of the first surface 30a. The side surface 30c is continuous with the first surface 30a and the second surface 30b. The substrate 30 has a mounting portion 31. The mounting portion 31 is located at a corner portion of the substrate 30 when viewed from a direction orthogonal to the first surface 30a.
 取り付け部31に位置する第1面30aと第2面30bとの間の距離は、取り付け部31以外に位置する第1面30aと第2面30bとの間の距離よりも小さくなっている。すなわち、基体30の第1面30a側には、取り付け部31において、段差が形成されている。基体30は、例えば、超硬合金により形成されている。 The distance between the first surface 30a and the second surface 30b located on the mounting portion 31 is smaller than the distance between the first surface 30a and the second surface 30b located outside the mounting portion 31. That is, a step is formed in the mounting portion 31 on the first surface 30a side of the substrate 30. The substrate 30 is formed of, for example, a cemented carbide.
 先端部20は、取り付け部31に、ろう付け等により取り付けられている。先端部20の表面21は、すくい面21dと、逃げ面21eと、切れ刃21fとを有している。すくい面21dは、逃げ面21eに連なっている。すくい面21dは、逃げ面21eとは反対側において、第1面30aに連なっている。逃げ面21eは、すくい面21dとは反対側において、側面30cに連なっている。切れ刃21fは、すくい面21dと逃げ面21eとの稜線に形成されている。 The tip portion 20 is attached to the attachment portion 31 by brazing or the like. The surface 21 of the tip portion 20 has a rake surface 21d, a flank surface 21e, and a cutting edge 21f. The rake face 21d is connected to the flank surface 21e. The rake face 21d is connected to the first surface 30a on the side opposite to the flank surface 21e. The flank 21e is connected to the side surface 30c on the opposite side of the rake face 21d. The cutting edge 21f is formed on the ridgeline between the rake surface 21d and the flank surface 21e.
 すくい面21dは、第1部分21daと、第2部分21dbとを有している。第1部分21daは、逃げ面21eに連なっているすくい面21dの部分である。第2部分21dbは、切れ刃21fとの間で第1部分21daを挟み込んでいる部分である。 The rake face 21d has a first portion 21da and a second portion 21db. The first portion 21da is a portion of the rake face 21d connected to the flank surface 21e. The second portion 21db is a portion sandwiching the first portion 21da with the cutting edge 21f.
 第1部分21daは、第2部分21dbに対して負角をなすように、第2部分21dbに対して傾斜している。第1部分21daが第2部分21dbに対して負角をなしている場合とは、第2部分21dbが上方を向いており、かつ逃げ面21eが左方を向いている際に、第1部分21daが第2部分21dbに対して反時計回りに回転している場合をいう。このことを別の観点から言えば、第1部分21daは、ネガランドになっている。 The first portion 21da is inclined with respect to the second portion 21db so as to form a negative angle with respect to the second portion 21db. When the first portion 21da has a negative angle with respect to the second portion 21db, the first portion is when the second portion 21db faces upward and the flank 21e faces to the left. The case where 21da is rotated counterclockwise with respect to the second portion 21db. From another point of view, the first part 21da is a negative land.
 第1凹部22及び突出部23は、すくい面21d及び逃げ面21eに形成されている。より具体的には、第1凹部22及び突出部23は、第1部分21da及び逃げ面21eに形成されている。すくい面21d(第1部分21da)及び逃げ面21eには、第2凹部24がさらに形成されていてもよい。 The first concave portion 22 and the protruding portion 23 are formed on the rake surface 21d and the flank surface 21e. More specifically, the first recess 22 and the protrusion 23 are formed on the first portion 21da and the flank 21e. A second recess 24 may be further formed on the rake face 21d (first portion 21da) and the flank 21e.
 以下に、切削インサート300の製造方法を説明する。
 図12は、切削インサート300の製造方法を示す工程図である。図12に示されるように、切削インサート300の製造方法は、準備工程S1と、接合工程S2と、面形成工程S5と、第1凹部形成工程S3とを有している。切削インサート300の製造方法は、第2凹部形成工程S4をさらに有していてもよい。
The manufacturing method of the cutting insert 300 will be described below.
FIG. 12 is a process diagram showing a method of manufacturing the cutting insert 300. As shown in FIG. 12, the method for manufacturing the cutting insert 300 includes a preparation step S1, a joining step S2, a surface forming step S5, and a first recess forming step S3. The method for manufacturing the cutting insert 300 may further include a second recess forming step S4.
 準備工程S1においては、基体30及び先端部20を構成する部材が準備される。準備工程S1において準備される先端部20の表面21には、第1凹部22及び突出部23が形成されていない。接合工程S2においては、例えば、ろう付けにより、基体30と先端部20との接合が行われる。 In the preparation step S1, the members constituting the substrate 30 and the tip portion 20 are prepared. The first concave portion 22 and the protruding portion 23 are not formed on the surface 21 of the tip portion 20 prepared in the preparation step S1. In the joining step S2, for example, the substrate 30 and the tip portion 20 are joined by brazing.
 面形成工程S5においては、表面21に、すくい面21d及び逃げ面21eが形成される。すくい面21dの形成及び逃げ面21eの形成は、例えば、表面21にレーザを照射することにより行われる。面形成工程S5においては、すくい面21d及び逃げ面21eが形成される結果、切れ刃21fも形成される。第1凹部形成工程S3及び第2凹部形成工程S4は、上記のとおりであるため、ここでは説明を省略する。 In the surface forming step S5, the rake surface 21d and the flank surface 21e are formed on the surface 21. The formation of the rake face 21d and the formation of the flank surface 21e are performed, for example, by irradiating the surface 21 with a laser. In the surface forming step S5, as a result of forming the rake face 21d and the flank surface 21e, the cutting edge 21f is also formed. Since the first recess forming step S3 and the second recess forming step S4 are as described above, the description thereof will be omitted here.
 以下に、切削インサート300の効果を説明する。
 切削インサート300によりワークの加工が行われている際、クーラントが第1凹部22に溜まる(第1凹部22が油溜まりになる)ため、表面21とワークとの間の切削抵抗が減少するとともにクーラントによる冷却効果が高まる。その結果、切削インサート300の耐久性が改善されることになる。
The effect of the cutting insert 300 will be described below.
When the work is being machined by the cutting insert 300, the coolant collects in the first recess 22 (the first recess 22 becomes an oil pool), so that the cutting resistance between the surface 21 and the work decreases and the coolant The cooling effect is enhanced. As a result, the durability of the cutting insert 300 is improved.
 また、切削インサート300によりワークの加工が行われている際、切れ刃21fがワークを切削するのみならず、逃げ面21eに形成された突出部23がワークを研削するため、被加工面の加工品位(被加工面の面粗度)が改善される。このように、切削インサート300によると、ワークに対する加工の精度を改善することができる。 Further, when the work is being machined by the cutting insert 300, the cutting edge 21f not only cuts the work, but also the protrusion 23 formed on the flank surface 21e grinds the work, so that the machined surface is machined. Quality (surface roughness of the surface to be machined) is improved. As described above, according to the cutting insert 300, it is possible to improve the processing accuracy for the work.
 <変形例>
 上記の第3実施形態の内容は、切削インサート300以外の切削工具にも適用することができる。図13は、ラジアスエンドミル400の側面図である。上記の第3実施形態の内容は、例えば、図13に示されるようなラジアスエンドミル400に適用することができる。より具体的には、ラジアスエンドミル400の先端部20に形成された逃げ面及びすくい面に第1凹部22及び突出部23が形成される。
<Modification example>
The contents of the above third embodiment can be applied to cutting tools other than the cutting insert 300. FIG. 13 is a side view of the radius end mill 400. The contents of the third embodiment described above can be applied to, for example, a radius end mill 400 as shown in FIG. More specifically, the first concave portion 22 and the protruding portion 23 are formed on the flank surface and the rake surface formed on the tip portion 20 of the radius end mill 400.
 (第4実施形態)
 以下に、第4実施形態に係る工具の構成を説明する。第4実施形態に係る工具は、ワークの表面粗さ又は形状を測定するための測定工具である。より具体的には、第4実施形態に係る工具は、スタイラス500である。
(Fourth Embodiment)
The configuration of the tool according to the fourth embodiment will be described below. The tool according to the fourth embodiment is a measuring tool for measuring the surface roughness or shape of the work. More specifically, the tool according to the fourth embodiment is a stylus 500.
 図14は、スタイラス500の側面図である。図14に示されるように、スタイラス500は、先端部20を有している。スタイラス500は、表面21がワークの表面に接触するようにワーク上において走査される。これにより、ワークの表面粗さ又は形状が測定される。表面21には、第1凹部22及び突出部23が形成されている。表面21には、第2凹部24がさらに形成されてもよい。 FIG. 14 is a side view of the stylus 500. As shown in FIG. 14, the stylus 500 has a tip 20. The stylus 500 is scanned on the work so that the surface 21 is in contact with the surface of the work. As a result, the surface roughness or shape of the work is measured. A first recess 22 and a protrusion 23 are formed on the surface 21. A second recess 24 may be further formed on the surface 21.
 以下に、スタイラス500の効果を説明する。
 表面21には第1凹部22及び突出部23が形成されているため、スタイラス500を走査する際のワークの表面と表面21との間の接触抵抗を減少させることができる。
The effect of the stylus 500 will be described below.
Since the first recess 22 and the protrusion 23 are formed on the surface 21, the contact resistance between the surface of the work and the surface 21 when scanning the stylus 500 can be reduced.
 今回開示された実施の形態は全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and are not restrictive. The scope of the present invention is shown by the scope of claims, not the embodiment described above, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10 本体部、10a 第1端、10b 第2端、11 シャンク、11a 第1端、11b 第2端、12 ネック、12a 第1端、12b 第2端、13 接続層、20 先端部、21 表面、21a 部分球面、21b 溝、21c 切れ刃、21d すくい面、21da 第1部分、21db 第2部分、21e 逃げ面、21f 切れ刃、22 第1凹部、23 突出部、24 第2凹部、30 基体、30a 第1面、30b 第2面、30c 側面、31 取り付け部、100 ボールエンドミル、200 ボールエンドミル、300 切削インサート、400 ラジアスエンドミル、500 スタイラス、A 回転軸、D1,D2 深さ、R 直径、S1 準備工程、S2 接合工程、S3 第1凹部形成工程、S4 第2凹部形成工程、S5 面形成工程。 10 Main body, 10a 1st end, 10b 2nd end, 11 shank, 11a 1st end, 11b 2nd end, 12 neck, 12a 1st end, 12b 2nd end, 13 connection layer, 20 tip, 21 surface , 21a partial spherical surface, 21b groove, 21c cutting edge, 21d rake surface, 21da first part, 21db second part, 21e flank surface, 21f cutting edge, 22 first recess, 23 protrusion, 24 second recess, 30 substrate , 30a 1st surface, 30b 2nd surface, 30c side surface, 31 mounting part, 100 ball end mill, 200 ball end mill, 300 cutting insert, 400 radius end mill, 500 stylus, A rotation axis, D1, D2 depth, R diameter, S1 preparation step, S2 joining step, S3 first recess forming step, S4 second recess forming step, S5 surface forming step.

Claims (14)

  1.  ナノ多結晶ダイヤモンドにより形成された先端部を備える工具であって、
     前記先端部は、ワークと接触する表面を有し、
     前記表面の少なくとも一部は、複数の第1凹部と、隣り合う2つの前記第1凹部の端が互いに接触することにより形成される突出部とを含む、工具。
    A tool with a tip formed of nanopolycrystalline diamond,
    The tip has a surface that comes into contact with the work.
    A tool, wherein at least a portion of the surface comprises a plurality of first recesses and protrusions formed by contacting the ends of two adjacent first recesses with each other.
  2.  前記工具は、前記ワークの表面粗さ又は形状を測定するための測定工具である、請求項1に記載の工具。 The tool according to claim 1, wherein the tool is a measuring tool for measuring the surface roughness or shape of the work.
  3.  前記工具は、前記ワークを加工するための加工工具である、請求項1に記載の工具。 The tool according to claim 1, wherein the tool is a machining tool for machining the work.
  4.  前記表面は、部分球面を含む、請求項3に記載の工具。 The tool according to claim 3, wherein the surface includes a partial spherical surface.
  5.  前記表面は、溝と、前記溝及び前記部分球面の稜線に形成された切れ刃とを含む、請求項4に記載の工具。 The tool according to claim 4, wherein the surface includes a groove and a cutting edge formed on the groove and the ridgeline of the partial spherical surface.
  6.  前記工具は、前記ワークの切削を行うための切削工具であり、
     前記表面は、すくい面と、前記すくい面に連なる逃げ面と、前記すくい面及び前記逃げ面の稜線に形成された切れ刃とを含む、請求項1に記載の工具。
    The tool is a cutting tool for cutting the work.
    The tool according to claim 1, wherein the surface includes a rake face, a flank connected to the rake face, and a cutting edge formed on the rake face and the ridgeline of the flank.
  7.  前記第1凹部の深さは、0.05μm以上20μm以下である、請求項3から請求項6のいずれか1項に記載の工具。 The tool according to any one of claims 3 to 6, wherein the depth of the first recess is 0.05 μm or more and 20 μm or less.
  8.  前記第1凹部における前記表面の算術平均粗さは、0.05μm以上1.5μm以下である、請求項3から請求項7のいずれか1項に記載の工具。 The tool according to any one of claims 3 to 7, wherein the arithmetic average roughness of the surface of the first recess is 0.05 μm or more and 1.5 μm or less.
  9.  前記第1凹部及び前記突出部が形成されている前記表面の部分におけるスキューネスパラメータは、0を超えている、請求項3から請求項8のいずれか1項に記載の工具。 The tool according to any one of claims 3 to 8, wherein the skewness parameter in the surface portion where the first recess and the protrusion are formed exceeds 0.
  10.  前記表面の少なくとも一部は、前記第1凹部とは別の第2凹部を含み、
     前記第2凹部の深さは、1μm以上である、請求項3から請求項9のいずれか1項に記載の工具。
    At least a part of the surface includes a second recess different from the first recess.
    The tool according to any one of claims 3 to 9, wherein the depth of the second recess is 1 μm or more.
  11.  平面視における前記第2凹部の円相当径は、0.5μm以上50μm以下である、請求項10に記載の工具。 The tool according to claim 10, wherein the diameter equivalent to a circle of the second concave portion in a plan view is 0.5 μm or more and 50 μm or less.
  12.  前記表面における前記第2凹部の面積割合は、3パーセント以上80パーセント以下である、請求項10又は請求項11に記載の工具。 The tool according to claim 10 or 11, wherein the area ratio of the second recess on the surface is 3% or more and 80% or less.
  13.  ナノ多結晶ダイヤモンドにより形成された先端部を準備する工程と、
     レーザを照射することにより、前記先端部の表面の少なくとも一部に、複数の第1凹部を形成する工程とを備え、
     隣り合う2つの前記第1凹部の端が接することにより、前記先端部の表面の一部に、突出部が形成される、工具の製造方法。
    The process of preparing the tip formed by nanopolycrystalline diamond,
    A step of forming a plurality of first recesses on at least a part of the surface of the tip portion by irradiating the laser is provided.
    A method for manufacturing a tool, in which a protrusion is formed on a part of the surface of the tip by contacting the ends of two adjacent first recesses.
  14.  レーザを照射することにより、前記先端部の前記表面に、すくい面及び前記すくい面に連なる逃げ面を形成する工程をさらに備える、請求項13に記載の工具の製造方法。 The method for manufacturing a tool according to claim 13, further comprising a step of forming a rake face and a flank surface connected to the rake face on the surface of the tip portion by irradiating the laser.
PCT/JP2020/024460 2020-06-22 2020-06-22 Tool and tool production method WO2021260776A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/024460 WO2021260776A1 (en) 2020-06-22 2020-06-22 Tool and tool production method
JP2021555019A JPWO2021260776A1 (en) 2020-06-22 2020-06-22
TW110122545A TW202206206A (en) 2020-06-22 2021-06-21 Tool and tool production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024460 WO2021260776A1 (en) 2020-06-22 2020-06-22 Tool and tool production method

Publications (1)

Publication Number Publication Date
WO2021260776A1 true WO2021260776A1 (en) 2021-12-30

Family

ID=79282275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024460 WO2021260776A1 (en) 2020-06-22 2020-06-22 Tool and tool production method

Country Status (3)

Country Link
JP (1) JPWO2021260776A1 (en)
TW (1) TW202206206A (en)
WO (1) WO2021260776A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028861A (en) * 2007-07-27 2009-02-12 Kyocera Corp Cutting insert, and cutting tool and cutting method using it
WO2012141171A1 (en) * 2011-04-11 2012-10-18 住友電気工業株式会社 Cutting tool and process for producing same
JP2013212572A (en) * 2012-03-07 2013-10-17 Toyota Central R&D Labs Inc Cutting tool, method of manufacturing the same, and method of manufacturing cut article
JP5567622B2 (en) * 2012-06-28 2014-08-06 オグラ宝石精機工業株式会社 stylus
JP2017119333A (en) * 2015-12-28 2017-07-06 日進工具株式会社 End mill and manufacturing method thereof
JP2017132025A (en) * 2016-01-30 2017-08-03 独立行政法人国立高等専門学校機構 Cutting tool
WO2018116524A1 (en) * 2016-12-20 2018-06-28 住友電工ハードメタル株式会社 Cutting tool and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045635A (en) * 2010-08-24 2012-03-08 Mitsubishi Materials Corp Cutting insert with excellent deposition resistance
JP5764181B2 (en) * 2013-10-31 2015-08-12 ユニオンツール株式会社 Hard film coated cutting tool
US11141799B2 (en) * 2017-06-13 2021-10-12 Sumitomo Electric Hardmetal Corp. Drill

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028861A (en) * 2007-07-27 2009-02-12 Kyocera Corp Cutting insert, and cutting tool and cutting method using it
WO2012141171A1 (en) * 2011-04-11 2012-10-18 住友電気工業株式会社 Cutting tool and process for producing same
JP2013212572A (en) * 2012-03-07 2013-10-17 Toyota Central R&D Labs Inc Cutting tool, method of manufacturing the same, and method of manufacturing cut article
JP5567622B2 (en) * 2012-06-28 2014-08-06 オグラ宝石精機工業株式会社 stylus
JP2017119333A (en) * 2015-12-28 2017-07-06 日進工具株式会社 End mill and manufacturing method thereof
JP2017132025A (en) * 2016-01-30 2017-08-03 独立行政法人国立高等専門学校機構 Cutting tool
WO2018116524A1 (en) * 2016-12-20 2018-06-28 住友電工ハードメタル株式会社 Cutting tool and method for producing same

Also Published As

Publication number Publication date
JPWO2021260776A1 (en) 2021-12-30
TW202206206A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
CA2554824C (en) Cbn cutting tool for high-quality, high-efficiency cutting
JP4228557B2 (en) Throwaway tip
WO2016043127A1 (en) Cutting insert and manufacturing method therefor
KR101343703B1 (en) Diamond cutting member and method of making the same
US20070172321A1 (en) Ball endmill
KR102214373B1 (en) Cutting insert
JP6657547B2 (en) Cutting tool and manufacturing method thereof
JP5814611B2 (en) End mill
WO2021261316A1 (en) Tool and tool production method
JP6191839B2 (en) Diamond sintered ball end mill and manufacturing method thereof
CN106573314B (en) Cutting tool and method of making a cutting tool
WO2021260778A1 (en) Tool and tool production method
WO2021260776A1 (en) Tool and tool production method
WO2021260777A1 (en) Tool and tool production method
JP4443177B2 (en) Throwaway tip
JP2003175408A (en) Polycrystal hard sintered body throw-away tip
JP4048685B2 (en) Throwaway tip
JP2000071110A (en) Throwaway tip
WO2021261380A1 (en) Cutting tool
JP7106010B2 (en) single crystal diamond cutting tools
JP4179766B2 (en) Whetstone with shaft
JP5906750B2 (en) cBN sintered body cutting tool and method of manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021555019

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942401

Country of ref document: EP

Kind code of ref document: A1