WO2021258995A1 - 传感器装置、电子设备和降低信号噪声的方法 - Google Patents

传感器装置、电子设备和降低信号噪声的方法 Download PDF

Info

Publication number
WO2021258995A1
WO2021258995A1 PCT/CN2021/096727 CN2021096727W WO2021258995A1 WO 2021258995 A1 WO2021258995 A1 WO 2021258995A1 CN 2021096727 W CN2021096727 W CN 2021096727W WO 2021258995 A1 WO2021258995 A1 WO 2021258995A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
detection
sensor
signal
layer
Prior art date
Application number
PCT/CN2021/096727
Other languages
English (en)
French (fr)
Inventor
贾鹏
王雷
丁小梁
秦云科
张震
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/778,037 priority Critical patent/US12051706B2/en
Publication of WO2021258995A1 publication Critical patent/WO2021258995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the embodiments of the present disclosure relate to a sensor device, electronic equipment, and a method of reducing signal noise.
  • Under-screen fingerprint recognition that is, fingerprint recognition in the display screen, is a solution to realize the fingerprint recognition function under the trend of full-screen.
  • At least one embodiment of the present disclosure provides a sensor device including a first detection area and a second detection area
  • the first detection zone includes at least one detection unit
  • the detection unit includes a first detection electrode and a second detection electrode opposed to each other, and a first insulating layer,
  • the first detection electrode is electrically insulated from the second detection electrode by the first insulating layer
  • the second detection zone includes at least one sensor unit
  • the sensor unit includes a first sensor electrode, a second sensor electrode, and a first light sensing layer, and
  • the first light sensing layer is electrically connected to the first sensor electrode and the second sensor electrode.
  • the first detection area is around the second detection area and does not overlap with the second detection area.
  • the detection unit further includes a second light sensing layer, and the second light sensing layer is electrically insulated from the first detection electrode by the first insulating layer .
  • the detection unit further includes a second insulating layer, and the second light sensing layer is electrically insulated from the second detection electrode by the second insulating layer.
  • the second light sensing layer is sandwiched between the first detection electrode and the second detection electrode, and is included in the first detection electrode.
  • a first P-type semiconductor sublayer, a first intrinsic sublayer, and a first N-type semiconductor sublayer are sequentially stacked between the second detection electrode and the second detection electrode.
  • the first detection electrode is at least partially transparent; or the second detection electrode is at least partially transparent; or the first detection electrode and the second detection electrode All are at least partially transparent.
  • the detection unit further includes a first switching transistor, and the first electrode of the first switching transistor is connected to the first detection electrode or the second detection electrode. Electric connection.
  • the sensor device further includes a first gate signal line and a first signal reading line,
  • the first gate signal line is electrically connected to the gate of the first switching transistor
  • the first signal reading line is electrically connected to the second electrode of the first switch transistor.
  • the at least one detection unit includes a plurality of detection units, and the plurality of detection units are arranged in an array.
  • the first light sensing layer is sandwiched between the first sensor electrode and the second sensor electrode, and is included in the first sensor electrode.
  • a second P-type semiconductor sublayer, a second intrinsic sublayer and a second N-type semiconductor sublayer are sequentially stacked between the second sensor electrode and the second sensor electrode.
  • the first sensor electrode is at least partially transparent; or the second sensor electrode is at least partially transparent; or the first sensor electrode and the second sensor electrode All are at least partially transparent.
  • the sensor unit further includes a second switching transistor, and a first electrode of the second switching transistor is connected to the first sensor electrode or the second sensor electrode. Electric connection.
  • the sensor device further includes a second gate signal line and a second signal reading line,
  • the second gate signal line is electrically connected to the gate of the second switching transistor
  • the second signal reading line is electrically connected to the second electrode of the second switch transistor.
  • the at least one sensor unit includes a plurality of sensor units, and the plurality of sensor units are arranged in an array.
  • the first detection electrode and the first sensor electrode are formed in the same layer and have the same shape and size
  • the second detection electrode and the second sensor electrode are formed in the same layer and have the same shape and size.
  • the first detection electrode and the first sensor electrode are formed in the same layer and have the same shape and size
  • the second detection electrode and the second sensor electrode are formed in the same layer and have the same shape and size, and
  • the first light sensing layer and the second light sensing layer are formed in the same layer and have the same shape and size.
  • At least one embodiment of the present disclosure also provides an electronic device, which includes:
  • the sensor device and
  • the signal processing device is signal-connected to the sensor device and is configured to obtain a first signal through at least one detection unit in the first detection area and obtain a second signal through at least one sensor unit in the second detection area of the sensor device, and The first signal is used as a common mode noise signal of the second signal to perform a noise reduction operation on the second signal.
  • the electronic device further includes a display panel, wherein the display panel includes a display area and a peripheral area arranged around the display area, and the sensor device is arranged in the display area or arranged in the display area. In the surrounding area.
  • At least one embodiment of the present disclosure also provides a method for reducing signal noise, which includes:
  • the first signal is obtained through at least one detection unit in the first detection area, where the detection unit includes a first detection electrode, a second detection electrode, and a first insulating layer, and the first detection electrode passes through the first insulation.
  • the layer is electrically insulated from the second detection electrode;
  • the second signal is obtained by at least one sensor unit in the second detection area, where the sensor unit includes a first sensor electrode, a second sensor electrode, and a second light sensing layer, and the second light sensing layer and the first A sensor electrode is electrically connected to the second sensor electrode; and
  • the noise reduction operation is performed on the second signal.
  • FIG. 1A is a schematic block diagram of an example of a sensor device according to at least one embodiment of the present disclosure.
  • Fig. 1B is a schematic block diagram of another example of a sensor device according to at least one embodiment of the present disclosure.
  • Fig. 2 is a schematic structural diagram of an example of a detection unit according to at least one embodiment of the present disclosure.
  • Fig. 3 is a schematic structural diagram of another example of a detection unit according to at least one embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of another example of a detection unit according to at least one embodiment of the present disclosure.
  • Fig. 5 is a schematic structural diagram of an example of a sensor unit according to at least one embodiment of the present disclosure.
  • Fig. 6 is a cross-sectional view taken along the line L-L' in Fig. 1A.
  • FIG. 7 is a top view of a first detection area according to at least one embodiment of the present disclosure.
  • FIG. 8 is a top view of a second detection area according to at least one embodiment of the present disclosure.
  • Fig. 9 is a schematic structural diagram of an electronic device according to at least one embodiment of the present disclosure.
  • FIG. 10A is a top view of a display panel according to at least one embodiment of the present disclosure.
  • FIG. 10B is another top view of the display panel according to at least one embodiment of the present disclosure.
  • Fig. 11A is a cross-sectional view taken along the line S-S' in Fig. 10A.
  • Fig. 11B is another cross-sectional view taken along the line S-S' in Fig. 10A.
  • FIG. 12 is a schematic flowchart of a method for reducing signal noise according to at least one embodiment of the present disclosure.
  • non-responsive sensor units in order to reduce the signal noise of the sensor, non-responsive sensor units can be designed in the sensor array.
  • a light-shielding metal can be used to block the photodiode to prevent the photodiode from being irradiated by light, so that the blocked The photodiode functions as a non-responsive sensor unit.
  • the user may notice the reflection of the light-shielding metal, which may cause visualization problems and adversely affect the display effect.
  • the embodiments of the present disclosure provide a sensor device, an electronic device, and a method for reducing signal noise, so as to reduce the signal noise of the signal to be detected, improve the signal-to-noise ratio, and avoid the use of light-shielding metal, so as not to affect the display effect .
  • FIG. 1A is a schematic block diagram of an example of a sensor device according to at least one embodiment of the present disclosure
  • FIG. 1B is a schematic block diagram of another example of a sensor device according to at least one embodiment of the present disclosure.
  • the sensor device 10 may include a first detection area 11 and a second detection area 12. Although two first detection areas 11 and one second detection area 12 are shown in FIG. 1A and two first detection areas 11 and two second detection areas 12 are shown in FIG. 1B, it should be understood that The disclosed embodiment does not limit the number of the first detection area 11 and the second detection area 12.
  • the sensor device 10 may further include one first detection area 11 or more than three first detection areas 11, and the sensor device 10 may further include more than three second detection areas 12.
  • the first detection area 11 is around the second detection area 12 and does not overlap with the second detection area 12.
  • the first detection area 11 is shown on both sides of the second detection area 12 in FIG. 1A and the first detection area 11 and the second detection area 12 are alternately arranged in FIG. 1B, it should be understood that the implementation of the present disclosure The example does not limit the arrangement of the first detection area 11 and the second detection area 12.
  • the first detection area 11 may be arranged to surround the second detection area 12, for example, the first detection area 11 is provided around the second detection area 12; or the first detection area 11 and the second detection area 11
  • the area 12 is arranged in multiple rows and multiple columns.
  • the first detection zone 11 includes at least one detection unit A.
  • the embodiment of the present disclosure does not limit the arrangement of the detection units in the first detection area 11.
  • the plurality of detection units may be arranged in an array for ease of manufacturing and correspond to the arrangement of the sensor units in the second detection area (as described below). It should be understood that the number of detection units A shown in FIG. 1A is only exemplary, and the embodiment of the present disclosure does not limit this.
  • Fig. 2 is a schematic structural diagram of an example of a detection unit according to at least one embodiment of the present disclosure.
  • the detection unit includes a first detection electrode 111 and a second detection electrode 112 opposed to each other, and a first insulating layer 113.
  • the first detection electrode 111 is electrically insulated from the second detection electrode 112 by the first insulating layer 113.
  • the first detection electrode 111, the first insulating layer 113, and the second detection electrode 112 are planar and stacked together.
  • the orthographic projection of the first detection electrode 111 on the plane where the second detection electrode 112 is located may at least partially overlap the second detection electrode 112. That is, the first detection electrode 111 and the second detection electrode 112 form a capacitor through the first insulating layer 113.
  • the first insulating layer 113 is sandwiched between the first detection electrode 111 and the second detection electrode 112.
  • the materials of the first detection electrode 111 and the second detection electrode 112 may be the same or different, and both may be metals, alloys, conductive oxides, conductive polymers, or combinations thereof.
  • the first detection electrode 111 and the second detection electrode 112 are formed of different materials.
  • the material of one of the first detection electrode 111 and the second detection electrode 112 may include, but are not limited to, nickel (Ni), silver (Ag), gold (Au), platinum (Pt), palladium (Pd), selenium (Se), rhodium (Rh), ruthenium (Ru), iridium (Ir), rhenium (Re), tungsten (W), molybdenum (Mo), chromium (Cr), tantalum (Ta), niobium (Nb), aluminum (Al), iron (Fe), cobalt (Co), copper (Cu) and their alloys and oxides, or tin oxide, indium tin oxide (ITO), zinc oxide, titanium oxide, PEDOT:PSS(3,4- Ethylenedioxythiophene: poly(4-styrene sulfonic acid)), PANI (polyanisole), nickel (Ni), silver
  • examples of the material of the other of the first detection electrode 111 and the second detection electrode 112 may include, but are not limited to, magnesium (Mg), calcium (Ca), indium (In), lithium (Li), aluminum (Al) , Silver (Ag) or its alloys or fluorides, such as magnesium (Mg)-silver (Ag) alloys, lithium (Li)-fluorine compounds, lithium (Li)-oxygen (O) compounds, etc.
  • the first detection electrode 111 and the second detection electrode 112 may also be formed of the same material, and the comparison of the embodiments of the present disclosure is not limited.
  • the first detection electrode 111 may be at least partially transparent; or, the second detection electrode 112 may be at least partially transparent; or, both the first detection electrode 111 and the second detection electrode 112 are at least partially transparent. transparent.
  • the first insulating layer 113 may include any suitable insulating material.
  • suitable insulating material examples include, but are not limited to, silicon dioxide, silicon nitride, aluminum oxide, zirconium dioxide, yttrium trioxide, tantalum pentoxide, lanthanum oxide, titanium dioxide, or a combination thereof.
  • the detection unit may further include a second light sensing layer, and the first detection electrode 111 or the second detection electrode 112 is electrically insulated from the second light sensing layer by the first insulating layer.
  • the second light sensing layer may be sandwiched between the first detection electrode 111 and the second detection electrode 112, but it should be understood that the embodiments of the present disclosure are not limited thereto.
  • Fig. 3 is a schematic structural diagram of another example of a detection unit according to at least one embodiment of the present disclosure. Except that the detection unit in FIG. 3 also includes the second light sensing layer 114, the detection unit in FIG. 3 is basically the same as the detection unit in FIG. 2. The similarities between the embodiment shown in FIG. 2 and the embodiment shown in FIG. 3 will not be repeated.
  • the second light sensing layer 114 is electrically insulated from the first detection electrode 111 by the first insulating layer 113 and the second light sensing layer 114 is sandwiched between the first detection electrode 111 and the second detection electrode 112.
  • the second light sensing layer 114 can be electrically connected to the second detection electrode 112.
  • the second light sensing layer 114 can generate an electrical signal based on the light irradiating the second light sensing layer 114.
  • the second light sensing layer 114 may have a planar shape and be laminated with the first detection electrode 111, the first insulating layer 113, and the second detection electrode 112.
  • the stacking sequence in FIG. 3 is only illustrative.
  • the first detection electrode 111, the first insulating layer 113, the second light sensing layer 114, and the second detection electrode 112 may be as shown in FIG.
  • the stacking order is reversed (that is, the first detection electrode 111 may be located at the lowest layer, and the second detection electrode 112 is located at the topmost layer), the embodiment of the present disclosure does not limit this.
  • the second light sensing layer 114 may include semiconductor materials such as silicon and germanium, and may be, for example, PN type, PIN type, or the like. In at least one embodiment, the second light sensing layer 114 may be, for example, a PIN type.
  • the second light sensing layer 114 may include a first P-type semiconductor sublayer 1141, a first intrinsic sublayer 1142, and a first N-type semiconductor sublayer 1143 that are sequentially stacked.
  • the first P-type semiconductor sub-layer 1141, the first intrinsic sub-layer 1142, and the first N-type semiconductor sub-layer 1143 can all be made of conventional materials in the art, which is not limited in the embodiments of the present disclosure.
  • the second light sensing layer 114 may be allowed to be irradiated by light.
  • the light emitted from the display panel or a separately provided light source for fingerprint recognition can pass through the first detection electrode 111 or the second detection electrode 112 after being reflected by the finger.
  • the second light sensing layer 114 since the first detection electrode 111 or the second detection electrode 112 is electrically insulated from the second light-sensitive layer 114 by the first insulating layer 113, the charge accumulated in the second light-sensitive layer 114 due to light cannot pass through the first detection.
  • the electrode 111 or the second detection electrode 112 is read out.
  • both the first detection electrode 111 and the second detection electrode 112 are electrically insulated from the second light sensing layer 114 by an insulating layer.
  • Fig. 4 is a schematic structural diagram of another example of a detection unit according to at least one embodiment of the present disclosure. Except that the detection unit in FIG. 4 also includes the second insulating layer 115, the detection unit in FIG. 4 is basically the same as the detection unit in FIG. 3. The similarities between the embodiment shown in FIG. 4 and the embodiment shown in FIG. 3 will not be repeated.
  • the second insulating layer 115 electrically insulates the second light sensing layer 114 from the first detection electrode 111.
  • the second insulating layer 115 can also be planar and laminated with the first detecting electrode 111, the first insulating layer 113, the second detecting electrode 112, and the second light sensing layer 114.
  • the second insulating layer 115 may include any suitable insulating material.
  • Examples of the material of the second insulating layer 115 may include, but are not limited to, silicon dioxide, silicon nitride, aluminum oxide, zirconium dioxide, yttrium trioxide, tantalum pentoxide, lanthanum oxide, titanium dioxide, or a combination thereof.
  • the first insulating layer 113 and the second insulating layer 115 are formed of the same or different materials, which is not limited in the embodiment of the present disclosure.
  • the second detection area 12 includes at least one sensor unit B.
  • the embodiment of the present disclosure does not limit the arrangement of the sensor units in the second detection area 12.
  • the plurality of sensor units can be arranged in an array for ease of manufacturing, and can facilitate the formation of a detection "image", which broadens the application range.
  • the number of sensor units B shown in FIG. 1A is only exemplary, and the embodiment of the present disclosure does not limit this.
  • Fig. 5 is a schematic structural diagram of an example of a sensor unit according to at least one embodiment of the present disclosure.
  • the sensor unit according to at least one embodiment of the present disclosure may include a first sensor electrode 121, a second sensor electrode 122 and a first light sensing layer 123.
  • the first light sensing layer 123 is electrically connected to the first sensor electrode 121 and the second sensor electrode 122 and is sandwiched between the first sensor electrode 121 and the second sensor electrode 122.
  • the materials of the first sensor electrode 121 and the second sensor electrode 122 may be the same or different, and both may be a metal, an alloy, a conductive oxide, a conductive polymer, or a combination thereof.
  • the first sensor electrode 121 and the second sensor electrode 122 may be formed of different materials.
  • the material of one of the first sensor electrode 121 and the second sensor electrode 122 may include, but are not limited to, nickel (Ni), silver (Ag), gold (Au), platinum (Pt), palladium (Pd), selenium ( Se), rhodium (Rh), ruthenium (Ru), iridium (Ir), rhenium (Re), tungsten (W), molybdenum (Mo), chromium (Cr), tantalum (Ta), niobium (Nb), aluminum ( Al), iron (Fe), cobalt (Co), copper (Cu) and their alloys and oxides, or tin oxide, indium tin oxide (ITO), zinc oxide, titanium oxide, PEDOT: PSS (3,4- Ethylenedioxythiophene: poly(4-styrene sulfonic acid)), PANI (polyaniline), etc.
  • examples of the material of the other of the first sensor electrode 121 and the second sensor electrode 122 may include, but are not limited to, magnesium (Mg), calcium (Ca), indium (In), lithium (Li), aluminum (Al) , Silver (Ag) or its alloys or fluorides, such as magnesium (Mg)-silver (Ag) alloys, lithium (Li)-fluorine compounds, lithium (Li)-oxygen (O) compounds, etc.
  • the first sensor electrode 121 and the second sensor electrode 122 can also be formed of the same material, and the comparison of the embodiments of the present disclosure is not limited.
  • the first sensor electrode 121 and the first detection electrode 111 may be formed of the same or different materials, and the second sensor electrode 122 and the second detection electrode 112 may be formed of the same or different materials, which are not limited in the embodiment of the present disclosure. .
  • the electrode located on the light entrance side of the first light sensing layer 123 may be at least partially transparent.
  • the first sensor electrode 121 may be at least partially transparent; or, the second sensor electrode 122 may be at least partially transparent; or, both the first sensor electrode 121 and the second sensor electrode 122 may be at least partially transparent.
  • the first sensor electrode 121, the first light sensing layer 123, and the second sensor electrode 122 may form a photodiode.
  • a voltage can be applied to the first sensor electrode 121 and the second sensor electrode 122 so that the photodiode has a small saturated reverse leakage current when there is no light irradiating the first photo-sensing layer 123, and the photodiode is cut off at this time;
  • the saturated reverse leakage current greatly increases, forming a photocurrent, and the photocurrent changes with the intensity of the incident light.
  • the first light sensing layer 123 may include semiconductor materials such as silicon and germanium, for example, PN type, PIN type, or the like. In at least one embodiment, the first light sensing layer 123 may be, for example, a PIN junction.
  • the first light sensing layer 123 may include a second P-type semiconductor sublayer 1231, a second intrinsic sublayer 1232, and a second N-type semiconductor sublayer 1233 that are sequentially stacked.
  • the second P-type semiconductor sub-layer 1231, the second intrinsic sub-layer 1232, and the second N-type semiconductor sub-layer 1233 can all be made of conventional materials in the art, which is not limited in the embodiments of the present disclosure.
  • the first P-type semiconductor sublayer 1141 and the second P-type semiconductor sublayer 1231 may be formed of the same or different materials; the second intrinsic sublayer 1142 and the second intrinsic sublayer 1232 may be formed of the same or different materials; and The one N-type semiconductor sub-layer 1143 and the second N-type semiconductor sub-layer 1233 can be formed of the same or different materials, which are not limited in the embodiments of the present disclosure.
  • the first light sensing layer 123 may be allowed to be irradiated by light.
  • the light emitted from the display panel or a separately provided light source for fingerprint recognition can pass through the first sensor electrode 121 or the second sensor electrode 122 after being reflected by the finger.
  • the first light sensing layer 123 Since the first sensor electrode 121 and the second sensor electrode 122 are electrically connected to the first light-sensing layer 123, the charge accumulated in the first light-sensing layer 123 by exposure to light can be passed through the first sensor electrode 121 or the second sensor electrode 122. read out.
  • Fig. 6 is a cross-sectional view taken along the line L-L' in Fig. 1A.
  • the detection unit A is shown as having the structure shown in FIG. 3.
  • the detection unit A may also have the structure shown in FIG. 2 and the structure shown in FIG.
  • the structure or other suitable structures are not limited in the embodiments of the present disclosure.
  • the detection unit A may further include a first switch transistor 210.
  • the first switching transistor 210 may include a first active layer 211, a first electrode 212, a first gate 213, and a second electrode 214.
  • the gate insulating layer 310 covers the first active layer 211, and the first active layer 211 is electrically insulated from the first gate 213 by the gate insulating layer 310.
  • the first interlayer insulating layer 320 covers the first gate 213.
  • the first electrode 212 and the second electrode 214 of the first switching transistor 210 are on the side of the first interlayer insulating layer 320 away from the gate insulating layer 310, and the first electrode 212 and the second electrode 214 of the first switching transistor 210 pass through the first interlayer insulating layer 320.
  • the via holes in the interlayer insulating layer 320 and the gate insulating layer 310 are electrically connected to the first active layer 211.
  • the second interlayer insulating layer 330 covers the first electrode 212 and the second electrode 214 of the first switching transistor 210.
  • the second detection electrode 112 is electrically connected to the first electrode 212 of the first switching transistor 210 through a via hole in the second interlayer insulating layer 330.
  • the sensor unit B may further include a second switching transistor 220.
  • the second switching transistor 220 may include a second active layer 221, a first electrode 222, a second gate 223, and a second electrode 224.
  • part or all of the corresponding film layers of the first switch transistor 210 and the second switch transistor 220 may be arranged in the same layer.
  • the first active layer 211 and the second active layer 221 may be provided in the same layer.
  • the first gate 213 and the second gate 223 may be provided in the same layer.
  • the first pole 212 of the first switching transistor 210 and the first pole 222 of the second switching transistor 220 may be arranged in the same layer.
  • the second pole 214 of the first switching transistor 210 and the second pole 224 of the second switching transistor 220 may be arranged in the same layer.
  • the film layer setting of the sensor device can be simplified and the thickness of the sensor device can be reduced.
  • part or all of the corresponding film layers of the first switch transistor 210 and the second switch transistor 220 may be provided in different layers, which is not limited in the embodiment of the present disclosure.
  • “same layer arrangement” or “same layer formation” and other similar expressions refer to the use of the same film forming process to form a film layer for forming a specific pattern, and then use the same mask to pass through once The layer structure formed by the patterning process.
  • a patterning process may include multiple exposure, development or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights. Or have different thicknesses.
  • the patterning or patterning process may include only a photolithography process, or include a photolithography process and an etching step, or may include other processes for forming predetermined patterns such as printing and inkjet.
  • the photolithography process refers to the process including film formation, exposure, development, etc., using photoresist, mask, exposure machine, etc. to form patterns.
  • the corresponding patterning process can be selected according to the structure formed in the embodiment of the present disclosure.
  • the gate insulating layer 310 may also cover the second active layer 221, and the second active layer 221 is electrically insulated from the second gate 223 by the gate insulating layer 310.
  • the first interlayer insulating layer 320 covers the second gate 223.
  • the first electrode 222 and the second electrode 224 of the second switching transistor 220 are on the side of the first interlayer insulating layer 320 away from the gate insulating layer 310, and the first electrode 222 and the second electrode 224 of the second switching transistor 220 pass through the first interlayer insulating layer 320.
  • the via holes in the interlayer insulating layer 320 and the gate insulating layer 310 are electrically connected to the second active layer 221.
  • the second interlayer insulating layer 330 covers the first electrode 222 and the second electrode 224 of the second switching transistor 220.
  • the second sensor electrode 122 is electrically connected to the first electrode 222 of the second switching transistor 220 through a via hole in the second interlayer insulating layer 330.
  • the transistors used in the embodiments of the present disclosure may be thin film transistors, field effect transistors, or other light-switching devices with the same characteristics.
  • thin film transistors are used as examples for description.
  • the source and drain of the transistor used here can be symmetrical in structure, so the source and drain of the transistor can be structurally indistinguishable.
  • one pole is directly described as the first pole and the other pole is the second pole.
  • the sensor device may further include a first gate signal line and a first signal read line.
  • the first gate signal line is electrically connected with the gate of the first switching transistor, and the first signal reading line is electrically connected with the second electrode of the first switching transistor.
  • FIG. 7 is a top view of a first detection area according to at least one embodiment of the present disclosure.
  • the sensor device may further include first gate signal lines G1-Gm and first signal read lines R1-Rn.
  • the first detection area includes a plurality of detection units A arranged in m rows * n columns (m and n are positive integers and at least one of them is greater than 1). Array.
  • the first detection area further includes a plurality of first switching transistors 210, and the plurality of switching transistors 210 are also arranged in an array having m rows*n columns.
  • the plurality of first switch transistors 210 are electrically connected to the plurality of detection units A in a one-to-one correspondence, for example, the first electrode of the first switch transistor 210 is electrically connected to the second detection electrode of the detection unit A.
  • Each first gate signal line G is electrically connected to the gate of a row of first switching transistors 210.
  • Each first signal reading line R is electrically connected to a column of first switching transistors 210.
  • the second pole of each first switching transistor 210 is electrically connected to the first signal connection line R.
  • the first gate signal lines G1-Gm are all connected to the first row scanning circuit 401 to receive scanning signals.
  • the first switching transistor 210 can be turned on or off under the control of the scan signal.
  • the first signal reading lines R1-Rn are all connected to the first signal processing circuit 402 to transmit the first signal detected by the detection unit A to the first signal processing circuit 402.
  • FIG. 8 is a top view of a second detection area according to at least one embodiment of the present disclosure.
  • the sensor device may further include a second gate signal line GL1-GLi and a first signal read line RL1-RLj.
  • the second detection area includes a plurality of sensor units B arranged in rows with i rows * j columns (i and j are positive integers and at least one of them is greater than 1).
  • Array the second detection area further includes a plurality of second switching transistors 220, and the plurality of switching transistors 220 are also arranged in an array having i rows*j columns.
  • the plurality of second switch transistors 220 are electrically connected to the plurality of sensor units B in a one-to-one correspondence, for example, the first pole of the second switch transistor 220 is electrically connected to the second sensor electrode of the sensor unit B.
  • Each second gate signal line GL is electrically connected to the gate of a row of second switching transistors 220.
  • Each second signal read line RL is electrically connected to a column of second switching transistors 220.
  • the second pole of each second switch transistor 220 is electrically connected to the second signal connection line RL.
  • the second gate signal lines GL1-GLi are all connected to the second row scanning circuit 501 to receive scanning signals.
  • the second switching transistor 220 can be turned on or off under the control of the scan signal.
  • the second signal reading lines RL1-RLj are all connected to the second signal processing circuit 502 to transmit the second signal detected by the sensor unit B to the second signal processing circuit 502.
  • first gate signal lines G in the first detection area can also be shared as the second gate signal lines in the second detection area, and the first row scanning circuit 401 can also be shared as the second row scanning circuit 501. Therefore, a row of detection units A and a row of sensor units B connected to the shared first gate signal line G receive the same scanning signal from the first row scanning circuit 401.
  • at least part of the second gate signal lines GL in the second detection area may be shared as the first gate signal lines in the first detection area and the second row scanning circuit 501 may be shared as The first row scanning circuit 401 will not be described in detail in this article.
  • first signal processing circuit 402 and the second signal processing circuit 502 may also be integrated in the same signal processing circuit, which is not limited in the embodiment of the present disclosure.
  • first row scanning circuit 401, the first signal processing circuit 402, the second row scanning circuit 501, and the second signal processing circuit 502 may not be included in the sensor device, but may be implemented by circuits external to the sensor device. The example does not restrict this.
  • the detection unit A in the first detection area and the sensor unit B in the second detection area may receive substantially the same power signal.
  • the first detection electrode of the detection unit A and the first sensor electrode of the sensor unit B may be connected to the same power source through a power line to receive the same power signal.
  • the fluctuation of the power signal of the detection unit A in the first detection zone is the same as the fluctuation of the power signal of the sensor unit B in the second detection zone, so that the electric power of the first signal detected by the detection unit A in the first detection zone is the same.
  • Mode noise and the electrical common mode noise of the second signal detected by the sensor unit B in the second detection zone are examples of the second detection zone.
  • a noise reduction operation can be performed on the second signal detected by the sensor unit B in the second detection area based on the first signal detected by the detection unit A in the first detection area to reduce the signal noise of the second signal, Improve the signal-to-noise ratio.
  • the display effect will not be affected even when the sensor device according to the embodiment of the present disclosure is disposed in the display area of the display panel.
  • the aforementioned noise reduction operation may include, for example, subtracting the first signal from the second signal, but it should be understood that the embodiment of the present disclosure is not limited thereto.
  • the first detection electrode 111 and the first sensor electrode 121 can be formed in the same layer and have the same shape and size
  • the second detection electrode 112 and the second The sensor electrodes 122 can be formed in the same layer and have the same shape and size, thereby better performing noise reduction operations, improving the compatibility of the manufacturing process of the detection unit and the sensor unit, and simplifying the manufacturing process of the sensor device.
  • the first light-sensitive layer 123 and the second light-sensitive layer 114 may also be in the same layer. It is formed and has the same shape and size, thereby better performing noise reduction operation, improving the compatibility of the manufacturing process of the detection unit and the sensor unit, and simplifying the manufacturing process of the sensor device.
  • Fig. 9 is a schematic structural diagram of an electronic device according to at least one embodiment of the present disclosure.
  • the electronic device 20 may include a sensor device 21 and a signal processing device 22.
  • the sensor device 21 may be a sensor device according to any of the above-mentioned embodiments.
  • the signal processing device 22 is in signal connection with the sensor device 21, and the signal processing device 22 is configured to obtain a first signal by at least one detection unit of the first detection area of the sensor device and obtain a first signal by at least one sensor unit of the second detection area of the sensor device.
  • the second signal and by using the first signal as a common mode noise signal of the second signal, a noise reduction operation is performed on the second signal.
  • the noise reduction operation may be the same as the above noise reduction operation, which will not be repeated in the embodiments of the present disclosure.
  • the electronic device 20 may further include a display panel 23.
  • FIG. 10A is a top view of the display panel 23 according to at least one embodiment of the present disclosure.
  • FIG. 10B is another top view of the display panel 23 according to at least one embodiment of the present disclosure.
  • the display panel 23 may include a display area DA and a peripheral area PA provided around the display area DA.
  • the sensor device 21 may be provided in the display area DA, for example.
  • the sensor device 21 may be provided in the peripheral area PA, for example.
  • the display panel 23 may be, for example, a liquid crystal display panel, an organic light emitting diode display panel, a micro light emitting diode display panel, etc., which are not limited in the embodiments of the present disclosure.
  • the electronic device 20 may include products or components such as electronic paper, mobile phones, tablet computers, TVs, monitors, notebook computers, digital photo frames, navigators, watches and the like.
  • Fig. 11A is a cross-sectional view taken along the line S-S' in Fig. 10A.
  • the sensor device 21 may be integrated in the display panel 23.
  • the display panel 23 may include a display driving transistor 230 and a light-emitting unit.
  • the light-emitting unit may be an organic light-emitting unit, a quantum dot light-emitting unit, or the like.
  • the following takes the light-emitting unit as an organic light-emitting unit 240 as an example for description, but the embodiment of the present disclosure is this No restrictions.
  • the display driving transistor 230 is electrically connected to the organic light emitting unit 240 to drive the organic light emitting unit 240 to emit light.
  • the display panel 23 is shown as an organic light emitting diode display panel, but it should be understood that the embodiment of the present disclosure is not limited thereto.
  • the corresponding film layers of the display driving transistor 230 and the first switching transistor 210 and the second switching transistor 220 of the sensor device 21 may be arranged in the same layer.
  • the active layer 231 of the display driving transistor 230 may be provided in the same layer as the first active layer 211 of the first switching transistor 210 and the second active layer 221 of the second switching transistor 220.
  • the gate 233 of the display driving transistor 230 may be provided in the same layer as the first gate 213 of the first switching transistor 210 and the second gate 223 of the second switching transistor 220.
  • the first electrode 231 of the display driving transistor 230 may be arranged in the same layer as the first electrode 212 of the first switching transistor 210 and the first electrode 222 of the second switching transistor 220.
  • the second electrode 234 of the display driving transistor 230 may be arranged in the same layer as the second electrode 212 of the first switching transistor 210 and the second electrode 222 of the second switching transistor 220.
  • part or all of the corresponding film layers of the display driving transistor 230, the first switching transistor 210, and the second switching transistor 220 may be provided in different layers, and the embodiment of the present disclosure does not limit this. .
  • the flat layer 340 may cover the detection unit A and the sensor unit B.
  • the pixel defining layer 350 covers the flat layer 340.
  • the organic light emitting unit 240 includes a stacked anode 241, an organic light emitting layer 242, and a cathode 243.
  • the organic light emitting layer 242 is between the anode 241 and the cathode 243.
  • the anode 241 may be electrically connected to the first electrode 231 of the display driving transistor 230 through the switching electrode 251.
  • a part of the transfer electrode 251 is on the second interlayer insulating layer 330, and another part of the transfer electrode 251 passes through the via hole in the second interlayer insulating layer 330 to be electrically connected to the first electrode 231 of the display driving transistor 230.
  • a part of the anode 241 is on the flat layer 340 and another part of the anode 241 is electrically connected to the via electrode through the via hole in the flat layer 340.
  • the anode 241 and the organic light emitting layer 242 may be located in the opening of the pixel defining layer 350.
  • the organic light emitting unit 240 may also be provided on the same layer as the detection unit A and the sensor unit B.
  • the anode 241 is arranged in the same layer as the second detection electrode 112 and the second sensor electrode 122, and the pixel defining layer 350 can directly cover the detection unit A and the sensor unit B without the flat layer 340, which is not limited in the embodiment of the present disclosure.
  • the anode 241 may be formed of the same material as the second detection electrode 112 and the second sensor electrode 122.
  • examples of the material of the anode 241 may include, but are not limited to, nickel (Ni), silver (Ag), gold (Au), platinum (Pt), palladium (Pd), selenium (Se), rhodium (Rh), ruthenium (Ru), iridium (Ir), rhenium (Re), tungsten (W), molybdenum (Mo), chromium (Cr), tantalum (Ta), niobium (Nb), aluminum (Al), iron (Fe), cobalt (Co), copper (Cu) and their alloys and oxides, or tin oxide, indium tin oxide (ITO), zinc oxide, titanium oxide, PEDOT: PSS (3,4-ethylenedioxythiophene: poly(4) -Styrene sulfonic acid)), PANI (polyaniline) and so on.
  • the cathode 243 may be formed of the same material as the first detection electrode 111 and the first sensor electrode 121.
  • examples of the material of the cathode 243 may include, but are not limited to, magnesium (Mg), calcium (Ca), indium (In), lithium (Li), aluminum (Al), silver (Ag) or alloys or fluorides thereof, such as Magnesium (Mg)-silver (Ag) alloy, lithium (Li)-fluorine compound, lithium (Li)-oxygen (O) compound, etc.
  • the organic light-emitting layer 242 may emit red light, blue light, green light, yellow light, white light, etc., which are not limited in the embodiments of the present disclosure.
  • the material of the organic light emitting layer 242 in the embodiment of the present disclosure can be selected according to the color of the emitted light.
  • the material of the organic light-emitting layer 242 in the embodiments of the present disclosure includes fluorescent light-emitting materials or phosphorescent light-emitting materials.
  • a doping system is generally used, that is, a dopant material is mixed into the host light-emitting material to obtain a usable light-emitting material.
  • the host luminescent material may use metal complex materials, anthracene derivatives, aromatic diamine compounds, triphenylamine compounds, aromatic triamine compounds, benzidine diamine derivatives, or triarylamine polymers; more Specifically, for example, bis(2-methyl-8-hydroxyquinoline-N1,O8)-(1,1'-biphenyl-4-hydroxy)aluminum (Balq), 9,10-bis-(2-naphthalene Base) anthracene (ADN), 4,4'-bis(9-carbazole)biphenyl (CBP), 4,4',4”-tri-9-carbazolyl triphenylamine (TCTA) or N,N- Bis( ⁇ -naphthyl-phenyl)-4,4-biphenyldiamine (NPB), etc.
  • metal complex materials anthracene derivatives, aromatic diamine compounds, triphenylamine compounds, aromatic triamine compounds, benzidine diamine derivatives, or triarylamine polymers
  • Fluorescent materials or dopant materials include, for example, coumarin dyes (coumarin6, C-545T), quinacridone (DMQA), or 4-(dinitrile methylene)-2-methyl-6-(4-dimethylamino-styrene)-4H-pyran (DCM) series, etc.
  • Phosphorescent materials or doped materials for example, including luminescent materials based on metal complexes such as Ir, Pt, Ru, Cu, such as: FIrpic, Fir6, FirN4, FIrtaz, Ir(ppy)3, Ir(ppy)2(acac), PtOEP, (btp)2Iracac, Ir (piq)2(acac) or (MDQ)2Iracac, etc.
  • the material of the organic light-emitting layer 242 in the embodiments of the present disclosure may also include a dual host and doped.
  • the organic light emitting unit 240 may further include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, etc., which will not be repeated in the embodiments of the present disclosure.
  • the cathode 243, the pixel defining layer 350, and the first sensor electrode 121 may be at least partially transparent to allow light reflected by the user's finger to irradiate the first light sensing layer 123, so that fingerprint recognition can be performed.
  • the sensor device 21 can also be attached or directly prepared on the display panel 23.
  • Fig. 11B is another cross-sectional view taken along the line S-S' in Fig. 10A. As shown in FIG. 11B, the sensor device 21 may be located above the display panel 23. However, it should be understood that the sensor device 21 may also be located under the display panel 23, as long as it does not affect the realization of the function of the sensor device 21, which is not limited in the embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a method for reducing signal noise according to at least one embodiment of the present disclosure.
  • the method for reducing signal noise according to at least one embodiment of the present disclosure may be applicable to the sensor device according to any of the above-mentioned embodiments.
  • the method for reducing signal noise may include step S602-step S606.
  • Step S602 Obtain a first signal through at least one detection unit in the first detection area.
  • the detection unit may include a first detection electrode, a second detection electrode, and a first insulation layer, and the first detection electrode is electrically insulated from the second detection electrode by the first insulation layer.
  • Step S604 Obtain a second signal through at least one sensor unit in the second detection zone.
  • the sensor unit includes a first sensor electrode, a second sensor electrode, and a second light sensing layer, and the second light sensing layer is electrically connected to the first sensor electrode and the second sensor electrode.
  • Step S606 Perform a noise reduction operation on the second signal by using the first signal as the common mode noise signal of the second signal.
  • the noise reduction operation may include, for example, subtracting the first signal from the second signal, but it should be understood that the embodiment of the present disclosure is not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种传感器装置、电子设备和降低信号噪声的方法。该传感器装置(10)包括第一检测区(11)和第二检测区(12)。第一检测区(11)包括至少一个检测单元(A),该检测单元(A)包括对置的第一检测电极(111)和第二检测电极(112)以及第一绝缘层(113)。第一检测电极(111)通过第一绝缘层(113)与第二检测电极(112)电绝缘。第二检测区(12)包括至少一个传感器单元(B),该传感器单元(B)包括第一传感器电极(121)、第二传感器电极(122)和第一光感应层(123),以及第一光感应层(123)与第一传感器电极(121)和第二传感器电极(122)电连接。所述传感器装置、电子设备和降低信号噪声的方法能够减小待检测信号的信号噪声,提高信噪比,并且避免使用遮光金属,从而不会对显示效果造成影响。

Description

传感器装置、电子设备和降低信号噪声的方法
相关申请的交叉引用
本申请要求于2020年6月24日递交的第202010591767.1号中国专利申请的优先权,在此出于所有目的全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种传感器装置、电子设备和降低信号噪声的方法。
背景技术
屏下指纹识别,即在显示屏幕内识别指纹,是全面屏趋势下实现指纹识别功能的一种解决方案。
发明内容
本公开至少一个实施例提供了一种传感器装置,其包括第一检测区和第二检测区,
其中,所述第一检测区包括至少一个检测单元,
所述检测单元包括对置的第一检测电极和第二检测电极以及第一绝缘层,
所述第一检测电极通过所述第一绝缘层与所述第二检测电极电绝缘,
所述第二检测区包括至少一个传感器单元,
所述传感器单元包括第一传感器电极、第二传感器电极和第一光感应层,以及
所述第一光感应层与所述第一传感器电极和所述第二传感器电极电连接。
例如,在根据本公开至少一个实施例的传感器装置中,所述第一检测区在所述第二检测区周边且与所述第二检测区不重叠。
例如,在根据本公开至少一个实施例的传感器装置中,所述检测单元还包括第二光感应层,所述第二光感应层通过所述第一绝缘层与所述第一检测电极电绝缘。
例如,在根据本公开至少一个实施例的传感器装置中,所述检测单元还包括第二绝缘层,所述第二光感应层通过所述第二绝缘层与所述第二检测电极电绝缘。
例如,在根据本公开至少一个实施例的传感器装置中,所述第二光感应层夹置在所述第一检测电极和所述第二检测电极之间,且包括在所述第一检测电极和所述第二检测电极之间依次层叠的第一P型半导体子层、第一本征子层和第一N型半导体子层。
例如,在根据本公开至少一个实施例的传感器装置中,所述第一检测电极至少部分透明;或所述第二检测电极至少部分透明;或所述第一检测电极和所述第二检测电极均至少部分透明。
例如,在根据本公开至少一个实施例的传感器装置中,所述检测单元还包括第一开关 晶体管,所述第一开关晶体管的第一极与所述第一检测电极或所述第二检测电极电连接。
例如,根据本公开至少一个实施例的传感器装置还包括第一栅极信号线和第一信号读取线,
其中,所述第一栅极信号线与所述第一开关晶体管的栅极电连接,以及
所述第一信号读取线与所述第一开关晶体管的第二极电连接。
例如,在根据本公开至少一个实施例的传感器装置中,所述至少一个检测单元包括多个检测单元,所述多个检测单元布置成阵列。
例如,在根据本公开至少一个实施例的传感器装置中,所述第一光感应层夹置在所述第一传感器电极和所述第二传感器电极之间,且包括在所述第一传感器电极和所述第二传感器电极之间依次层叠的第二P型半导体子层、第二本征子层和第二N型半导体子层。
例如,在根据本公开至少一个实施例的传感器装置中,所述第一传感器电极至少部分透明;或所述第二传感器电极至少部分透明;或所述第一传感器电极和所述第二传感器电极均至少部分透明。
例如,在根据本公开至少一个实施例的传感器装置中,所述传感器单元还包括第二开关晶体管,所述第二开关晶体管的第一极与所述第一传感器电极或所述第二传感器电极电连接。
例如,根据本公开至少一个实施例的传感器装置还包括第二栅极信号线和第二信号读取线,
所述第二栅极信号线与所述第二开关晶体管的栅极电连接,以及
所述第二信号读取线与所述第二开关晶体管的第二极电连接。
例如,在根据本公开至少一个实施例的传感器装置中,所述至少一个传感器单元包括多个传感器单元,所述多个传感器单元布置成阵列。
例如,在根据本公开至少一个实施例的传感器装置中,所述第一检测电极与所述第一传感器电极同层形成且具有相同的形状和尺寸,
所述第二检测电极与所述第二传感器电极同层形成且具有相同的形状和尺寸。
例如,在根据本公开至少一个实施例的传感器装置中,所述第一检测电极与所述第一传感器电极同层形成且具有相同的形状和尺寸,
所述第二检测电极与所述第二传感器电极同层形成且具有相同的形状和尺寸,以及
所述第一光感应层与所述第二光感应层同层形成且具有相同的形状和尺寸。
本公开的至少一个实施例还提供了一种电子设备,其包括:
所述传感器装置;以及
信号处理装置,与所述传感器装置信号连接,并且配置为通过第一检测区的至少一个检测单元获得第一信号和通过传感器装置的第二检测区的至少一个传感器单元获得第二信号,且将所述第一信号作为所述第二信号的共模噪声信号,以对所述第二信号执行降噪操作。
例如,根据本公开至少一个实施例的电子设备还包括显示面板,其中,所述显示面板 包括显示区域以及设置在所述显示区域周边的周边区域,所述传感器装置设置于所述显示区域或设置于所述周边区域之中。
本公开的至少一个实施例还提供了一种降低信号噪声的方法,其包括:
通过第一检测区的至少一个检测单元获得第一信号,其中,所述检测单元包括第一检测电极、第二检测电极和第一绝缘层,以及所述第一检测电极通过所述第一绝缘层与所述第二检测电极电绝缘;
通过第二检测区的至少一个传感器单元获得第二信号,其中,所述传感器单元包括第一传感器电极、第二传感器电极和第二光感应层,以及所述第二光感应层与所述第一传感器电极电连接和所述第二传感器电极电连接;以及
通过将所述第一信号作为所述第二信号的共模噪声信号,对所述第二信号执行降噪操作。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A是根据本公开至少一个实施例的传感器装置的示例的示意性框图。
图1B是根据本公开至少一个实施例的传感器装置的另一示例的示意性框图。
图2是根据本公开至少一个实施例的检测单元的示例的结构示意图。
图3是根据本公开至少一个实施例的检测单元的另一示例的结构示意图。
图4是根据本公开至少一个实施例的检测单元的另一示例的结构示意图。
图5是根据本公开至少一个实施例的传感器单元的示例的结构示意图。
图6是沿图1A中的线L-L’的剖视图。
图7是根据本公开至少一个实施例的第一检测区的俯视图。
图8是根据本公开至少一个实施例的第二检测区的俯视图。
图9是根据本公开至少一个实施例的电子设备的结构示意图。
图10A是根据本公开至少一个实施例的显示面板的俯视图。
图10B是根据本公开至少一个实施例的显示面板的另一俯视图。
图11A是沿图10A中的线S-S’的剖视图。
图11B是沿图10A中的线S-S’的另一剖视图。
图12是根据本公开至少一个实施例的降低信号噪声的方法的示意性流程图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范 围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
在一些技术方案中,为了降低传感器的信号噪声,可在传感器阵列中设计无响应传感器单元。例如,在屏下指纹识别应用中,在使用将光敏二极管作为感光元件的传感器单元来进行指纹识别的情况下,可使用遮光金属来遮挡光敏二极管以防止光敏二极管被光照射到,使被遮挡的光敏二极管起到无响应传感器单元的作用,但是,由于遮光金属反光可能被用户注意到,由此会带来可视化的问题,从而会不利影响显示效果。
本公开的实施例提供了一种传感器装置、电子设备和降低信号噪声的方法,以减小待检测信号的信号噪声,提高信噪比,并且避免使用遮光金属,从而不会对显示效果造成影响。
在本公开中,将以传感器装置用于指纹识别为例来描述本公开的各实施例,然而,应理解根据本公开的实施例对此不作限制。
图1A是根据本公开至少一个实施例的传感器装置的示例的示意性框图,图1B是根据本公开至少一个实施例的传感器装置的另一示例的示意性框图。
如图1A和图1B所示,根据本公开至少一个实施例的传感器装置10可包括第一检测区11和第二检测区12。虽然在图1A中示出了两个第一检测区11和一个第二检测区12以及在图1B中示出了两个第一检测区11和两个第二检测区12,然而应理解本公开的实施例对第一检测区11和第二检测区12的数量并不进行限制。例如,在其他实施例中,传感器装置10还可包括一个第一检测区11或三个以上第一检测区11,以及传感器装置10还可包括三个以上第二检测区12。
例如,第一检测区11在第二检测区12周边且与第二检测区12不重叠。虽然在图1A中示出了第一检测区11在第二检测区12两侧以及在图1B中示出了第一检测区11与第二检测区12交替设置,然而应理解本公开的实施例对第一检测区11和第二检测区12的布置方式不进行限制。例如,在其他实施例中,第一检测区11可布置成围绕第二检测区12,例如,第二检测区12四周均设置有第一检测区11;或者第一检测区11和第二检测区12布置成多行多列。
第一检测区11包括至少一个检测单元A。本公开的实施例对第一检测区11中检测单 元的布置方式不作限制。例如,在第一检测区11包括多个检测单元的情况下,该多个检测单元可布置成阵列,以便于制造,且与第二检测区中传感器单元的设置对应(如下所述)。应理解图1A中示出的检测单元A的数量仅是示例性的,本公开的实施例对此不作限制。
图2是根据本公开至少一个实施例的检测单元的示例的结构示意图。检测单元包括对置的第一检测电极111和第二检测电极112以及第一绝缘层113。第一检测电极111通过第一绝缘层113与第二检测电极112电绝缘。例如,第一检测电极111、第一绝缘层113和第二检测电极112呈面状且层叠在一起。第一检测电极111在第二检测电极112所在平面上的正投影可与第二检测电极112至少部分重叠。也即,第一检测电极111和第二检测电极112通过第一绝缘层113形成电容器。例如,第一绝缘层113夹置在第一检测电极111和第二检测电极112之间。
第一检测电极111和第二检测电极112的材料可以相同或不相同,均可以是金属、合金、导电氧化物、导电聚合物或其组合。
例如,在至少一个实施例中,第一检测电极111和第二检测电极112采用不相同的材料形成。第一检测电极111和第二检测电极112中之一的材料的示例可包括但不限于包括镍(Ni)、银(Ag)、金(Au)、铂(Pt)、钯(Pd)、硒(Se)、铑(Rh)、钌(Ru)、铱(Ir)、铼(Re)、钨(W)、钼(Mo)、铬(Cr)、钽(Ta)、铌(Nb)、铝(Al)、铁(Fe)、钴(Co)、铜(Cu)以及其合金和氧化物,或氧化锡、氧化铟锡(ITO)、氧化锌、氧化钛、PEDOT:PSS(3,4-亚乙二氧基噻吩:聚(4-苯乙烯磺酸)),PANI(聚苯胺)等。
例如,第一检测电极111和第二检测电极112中的另一个的材料的示例可包括但不限于镁(Mg)、钙(Ca)、铟(In)、锂(Li),铝(Al)、银(Ag)或其合金或氟化物,例如镁(Mg)-银(Ag)合金、锂(Li)-氟化合物、锂(Li)-氧(O)化合物等。
或者,在至少一个实施例中,第一检测电极111和第二检测电极112也可采用相同的材料形成,本公开的实施例对比不作限制。
在至少一个实施例中,第一检测电极111可以是至少部分透明的;或者,第二检测电极112可以是至少部分透明的;或者,第一检测电极111和第二检测电极112均是至少部分透明的。
第一绝缘层113可包括任何合适的绝缘材料。第一绝缘层113的材料的示例可包括但不限于二氧化硅、氮化硅、氧化铝、二氧化锆、三氧化二钇、五氧化二钽、氧化镧、二氧化钛或其组合。
在至少一个实施例中,检测单元还可包括第二光感应层,并且第一检测电极111或第二检测电极112通过第一绝缘层与第二光感应层电绝缘。例如,第二光感应层可夹置在第一检测电极111和第二检测电极112之间,然而应理解本公开的实施例并不限于此。
图3是根据本公开至少一个实施例的检测单元的另一示例的结构示意图。除了图3中的检测单元还包括第二光感应层114之外,图3中的检测单元与图2中的检测单元基本相同。图2所示的实施例和图3所示的实施例的相同之处将不再赘述。
第二光感应层114通过第一绝缘层113与第一检测电极111电绝缘并且第二光感应层114夹置在第一检测电极111和第二检测电极112之间。第二光感应层114可与第二检测电极112形成电连接。第二光感应层114能够基于照射该第二光感应层114的光而生成电信号。例如,第二光感应层114可呈面状并与第一检测电极111、第一绝缘层113和第二检测电极112层叠在一起。
应理解,图3中的层叠顺序仅是示意性的,在一些实施例中,第一检测电极111、第一绝缘层113、第二光感应层114和第二检测电极112可以按照与图3中层叠顺序相反的顺序(即,第一检测电极111可位于最低层,而第二检测电极112位于最顶层),本公开的实施例对此不作限制。
第二光感应层114可包括硅、锗等半导体材料,例如可以为PN型、PIN型等。在至少一个实施例中,第二光感应层114例如可以是PIN型。例如,第二光感应层114可包括依次层叠的第一P型半导体子层1141、第一本征子层1142和第一N型半导体子层1143。第一P型半导体子层1141、第一本征子层1142和第一N型半导体子层1143均可采用本领域常规的材料,本公开的实施例对此不作限制。
在第一检测电极111或第二检测电极112或第一检测电极111和第二检测电极112为至少部分透明的情况下,可允许第二光感应层114被光线照射。例如,当传感器装置用于指纹识别的情况下,从显示面板或单独设置的用于指纹识别的光源出射的光在被手指反射后可穿过第一检测电极111或第二检测电极112照射至第二光感应层114。然而,由于第一检测电极111或第二检测电极112通过第一绝缘层113与第二光感应层114电绝缘,从而第二光感应层114中受光照而积累的电荷并不能经由第一检测电极111或第二检测电极112被读出。
在至少一个实施例中,第一检测电极111和第二检测电极112均通过绝缘层与第二光感应层114电绝缘。
图4是根据本公开至少一个实施例的检测单元的另一示例的结构示意图。除了图4中的检测单元还包括第二绝缘层115之外,图4中的检测单元与图3中的检测单元基本相同。图4所示的实施例和图3所示的实施例的相同之处将不再赘述。
第二绝缘层115将第二光感应层114与第一检测电极111电绝缘。第二绝缘层115也可呈面状与并与第一检测电极111、第一绝缘层113、第二检测电极112和第二光感应层114层叠在一起。
第二绝缘层115可包括任何合适的绝缘材料。第二绝缘层115的材料的示例可包括但不限于二氧化硅、氮化硅、氧化铝、二氧化锆、三氧化二钇、五氧化二钽、氧化镧、二氧化钛或其组合。第一绝缘层113与第二绝缘层115才采用相同或不同的材料形成,本公开的实施例对此不作限制。
如图1A所示,第二检测区12包括至少一个传感器单元B。本公开的实施例对第二检测区12中传感器单元的布置方式不作限制。例如,在第二检测区12包括多个传感器单元的情况下,该多个传感器单元可布置成阵列,以便于制造,且可以便于形成检测“图像”, 拓宽应用范围。应理解图1A中示出的传感器单元B的数量仅是示例性的,本公开的实施例对此不作限制。
图5是根据本公开至少一个实施例的传感器单元的示例的结构示意图。如图5所示,根据本公开至少一个实施例的传感器单元可包括第一传感器电极121、第二传感器电极122和第一光感应层123。第一光感应层123与第一传感器电极121、第二传感器电极122电连接,夹置在第一传感器电极121和第二传感器电极122之间。
第一传感器电极121和第二传感器电极122的材料可以相同或不相同,均可以是金属、合金、导电氧化物、导电聚合物或其组合。
例如,第一传感器电极121和第二传感器电极122可采用不同的材料形成。第一传感器电极121和第二传感器电极122之一的材料的示例可包括但不限于包括镍(Ni)、银(Ag)、金(Au)、铂(Pt)、钯(Pd)、硒(Se)、铑(Rh)、钌(Ru)、铱(Ir)、铼(Re)、钨(W)、钼(Mo)、铬(Cr)、钽(Ta)、铌(Nb)、铝(Al)、铁(Fe)、钴(Co)、铜(Cu)以及其合金和氧化物,或氧化锡、氧化铟锡(ITO)、氧化锌、氧化钛、PEDOT:PSS(3,4-亚乙二氧基噻吩:聚(4-苯乙烯磺酸)),PANI(聚苯胺)等。
例如,第一传感器电极121和第二传感器电极122中的另一个的材料的示例可包括但不限于镁(Mg)、钙(Ca)、铟(In)、锂(Li),铝(Al)、银(Ag)或其合金或氟化物,例如镁(Mg)-银(Ag)合金、锂(Li)-氟化合物、锂(Li)-氧(O)化合物等。
在至少一个实施例中,第一传感器电极121和第二传感器电极122也可采用相同的材料形成,本公开的实施例对比不作限制。
第一传感器电极121和第一检测电极111可采用相同或不同的材料形成,以及第二传感器电极122和第二检测电极112可采用相同或不同的材料形成,本公开的实施例对此不作限制。
在本公开的至少一个实施例中,位于第一光感应层123的进光侧的电极可以是至少部分透明的。例如,第一传感器电极121可以是至少部分透明的;或者,第二传感器电极122可以是至少部分透明的;或者,第一传感器电极121和第二传感器电极122均是至少部分透明的。
第一传感器电极121、第一光感应层123和第二传感器电极122可形成光敏二极管。可以通过在第一传感器电极121和第二传感器电极122施加电压,使得该光敏二极管在没有光照射第一光感应层123时,有很小的饱和反向漏电流,此时光敏二极管截止;当第一光感应层123被光照射时,饱和反向漏电流大大增加,形成光电流,光电流随着入射光强度的变化而变化。
第一光感应层123可包括硅、锗等半导体材料,例如可以为PN型、PIN型等。在至少一个实施例中,第一光感应层123例如可以是PIN结。例如,第一光感应层123可包括依次层叠的第二P型半导体子层1231、第二本征子层1232和第二N型半导体子层1233。第二P型半导体子层1231、第二本征子层1232和第二N型半导体子层1233均可采用本领域常规的材料,本公开的实施例对此不作限制。
第一P型半导体子层1141和第二P型半导体子层1231可采用相同或不同的材料形成;第二本征子层1142和第二本征子层1232可采用相同或不同的材料形成;以及第一N型半导体子层1143和第二N型半导体子层1233可采用相同或不同的材料形成,本公开的实施例对此不作限制。
在第一传感器电极121或第二传感器电极122或第一传感器电极121和第二传感器电极122为至少部分透明的情况下,可允许第一光感应层123被光线照射。例如,当传感器装置用于指纹识别的情况下,从显示面板或单独设置的用于指纹识别的光源出射的光在被手指反射后可穿过第一传感器电极121或第二传感器电极122照射至第一光感应层123。由于第一传感器电极121和第二传感器电极122与第一光感应层123电连接,从而第一光感应层123中受光照而积累的电荷可经由第一传感器电极121或第二传感器电极122被读出。
图6是沿图1A中的线L-L’的剖视图。作为示例,在图6中,检测单元A示出为具有图3所示的结构,然而应理解,在其他实施例中,检测单元A也可具有图2所示的结构、图4所示的结构或其他合适的结构,本公开的实施例对此不作限制。
如图6所示,根据本公开至少一个实施例,检测单元A还可包括第一开关晶体管210。第一开关晶体管210可包括第一有源层211、第一极212、第一栅极213和第二极214。栅绝缘层310覆盖第一有源层211,并且第一有源层211通过栅绝缘层310与第一栅极213电绝缘。第一层间绝缘层320覆盖第一栅极213。第一开关晶体管210的第一极212和第二极214在第一层间绝缘层320远离栅绝缘层310的一侧,并且第一开关晶体管210的第一极212和第二极214通过第一层间绝缘层320和栅绝缘层310中的过孔与第一有源层211电连接。
第二层间绝缘层330覆盖第一开关晶体管210的第一极212和第二极214。作为示例,在图6中,在检测单元A中,第二检测电极112通过第二层间绝缘层330中的过孔与第一开关晶体管210的第一极212电连接。
如图6所示,根据本公开至少一个实施例,传感器单元B还可包括第二开关晶体管220。第二开关晶体管220可包括第二有源层221、第一极222、第二栅极223和第二极224。
如图6所示,第一开关晶体管210和第二开关晶体管220的部分或全部对应膜层可同层设置。例如,第一有源层211和第二有源层221可同层设置。例如,第一栅极213和第二栅极223可同层设置。例如,第一开关晶体管210的第一极212和第二开关晶体管220的第一极222可同层设置。例如,第一开关晶体管210的第二极214和第二开关晶体管220的第二极224可同层设置。通过将第一开关晶体管210和第二开关晶体管220同层设置,可使得传感器装置的膜层设置简单,减小传感器装置的厚度。然而,应理解,在其他实施例中,第一开关晶体管210和第二开关晶体管220的部分或全部对应膜层可设置在不同层中,本公开的实施例对此不作限制。
应该理解,在本公开的实施例中,“同层设置”或“同层形成”等类似表述指的是采 用同一成膜工艺形成用于形成特定图案的膜层,然后利用同一掩模板通过一次构图工艺形成的层结构。根据特定图案的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的,这些特定图案还可能处于不同的高度或者具有不同的厚度。
在本公开的实施例中,构图或构图工艺可只包括光刻工艺,或包括光刻工艺以及刻蚀步骤,或者可以包括打印、喷墨等其他用于形成预定图形的工艺。光刻工艺是指包括成膜、曝光、显影等工艺过程,利用光刻胶、掩模板、曝光机等形成图案。可根据本公开的实施例中所形成的结构选择相应的构图工艺。
如图6所示,在第一开关晶体管210和第二开关晶体管220的各对应膜层同层设置的情况下,栅绝缘层310还可覆盖第二有源层221,并且第二有源层221通过栅绝缘层310与第二栅极223电绝缘。第一层间绝缘层320覆盖第二栅极223。第二开关晶体管220的第一极222和第二极224在第一层间绝缘层320远离栅绝缘层310的一侧,并且第二开关晶体管220的第一极222和第二极224通过第一层间绝缘层320和栅绝缘层310中的过孔与第二有源层221电连接。
第二层间绝缘层330覆盖第二开关晶体管220的第一极222和第二极224。作为示例,在图6中,在传感器单元B中,第二传感器电极122通过第二层间绝缘层330中的过孔与第二开关晶体管220的第一极222电连接。
需要说明的是,本公开的实施例中采用的晶体管均可以为薄膜晶体管或场效应晶体管或其他特性相同的开光器件,本公开的实施例中均以薄膜晶体管为例进行说明。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在结构上可以是没有区别的。
在本公开的实施例中,为了区分晶体管除栅极之外的两极(即源极和漏极),直接描述了其中一极为第一极,另一极为第二极。
根据本公开至少一个实施例的传感器装置还可包括第一栅极信号线和第一信号读取线。第一栅极信号线与第一开关晶体管的栅极电连接,以及第一信号读取线与第一开关晶体管的第二极电连接。
图7是根据本公开至少一个实施例的第一检测区的俯视图。如图7所示,根据本公开至少一个实施例的传感器装置还可包括第一栅极信号线G1-Gm和第一信号读取线R1-Rn。在图7所示的实施例中,第一检测区包括多个检测单元A,该多个检测单元A布置成具有m行*n列(m和n为正整数且至少之一大于1)的阵列。此外,第一检测区还包括多个第一开关晶体管210,该多个开关晶体管210也布置成具有m行*n列的阵列。该多个第一开关晶体管210与该多个检测单元A一一对应地电连接,例如第一开关晶体管210的第一极与检测单元A的第二检测电极电连接。
每个第一栅极信号线G与一行第一开关晶体管210的栅极电连接。每个第一信号读取线R与一列第一开关晶体管210电连接。例如,每个第一开关晶体管210的第二极与第一信号连接线R电连接。
例如,第一栅极信号线G1-Gm均连接至第一行扫描电路401,以接收扫描信号。第一开关晶体管210可在扫描信号的控制下导通或截止。
例如,第一信号读取线R1-Rn均连接至第一信号处理电路402,以将检测单元A检测的第一信号传输至第一信号处理电路402。
图8是根据本公开至少一个实施例的第二检测区的俯视图。如图8所示,根据本公开至少一个实施例的传感器装置还可包括第二栅极信号线GL1-GLi和第一信号读取线RL1-RLj。在图8所示的实施例中,第二检测区包括多个传感器单元B,该多个传感器单元B布置成具有i行*j列(i和j为正整数且至少之一大于1)的阵列。此外,第二检测区还包括多个第二开关晶体管220,该多个开关晶体管220也布置成具有i行*j列的阵列。该多个第二开关晶体管220与该多个传感器单元B一一对应地电连接,例如第二开关晶体管220的第一极与传感器单元B的第二传感器电极电连接。
每个第二栅极信号线GL与一行第二开关晶体管220的栅极电连接。每个第二信号读取线RL与一列第二开关晶体管220电连接。例如,每个第二开关晶体管220的第二极与第二信号连接线RL电连接。
例如,第二栅极信号线GL1-GLi均连接至第二行扫描电路501,以接收扫描信号。第二开关晶体管220可在扫描信号的控制下导通或截止。
例如,第二信号读取线RL1-RLj均连接至第二信号处理电路502,以将传感器单元B检测的第二信号传输至第二信号处理电路502。
此外,第一检测区中的至少部分第一栅极信号线G还可共用为第二检测区中的第二栅极信号线并且第一行扫描电路401也共用为第二行扫描电路501,从而与被共用的第一栅极信号线G连接一行检测单元A和一行传感器单元B从第一行扫描电路401接收相同的扫描信号。当然,在另一些实施例中,也可以是第二检测区中的至少部分第二栅极信号线GL共用为第一检测区中的第一栅极信号线并且第二行扫描电路501共用为第一行扫描电路401,本文中将不再赘述。
此外,第一信号处理电路402和第二信号处理电路502也可以集成在同一信号处理电路中,本公开的实施例对此不作限制。
应理解,第一行扫描电路401、第一信号处理电路402、第二行扫描电路501和第二信号处理电路502可不包括在传感器装置中,而由传感器装置外部的电路实现,本公开的实施例对此不作限制。
在本公开的至少一个实施例中,第一检测区中的检测单元A和第二检测区中的传感器单元B可接收基本相同的电源信号。例如,检测单元A的第一检测电极和传感器单元B的第一传感器电极可通过电源线连接至同一电源,以接收相同的电源信号。第一检测区中的检测单元A的电源信号的波动和第二检测区中的传感器单元B的电源信号的波动相同,从而第一检测区中的检测单元A检测到的第一信号的电学共模噪声与第二检测区中传感器单元B检测到的第二信号的电学共模噪声。因此,可基于第一检测区中的检测单元A检测到的第一信号,对第二检测区中传感器单元B检测到的第二信号执行降噪操作, 以减小第二信号的信号噪声,提高信噪比。此外,由于避免使用遮光金属,从而即便在根据本公开实施例的传感器装置设置在显示面板的显示区内时也不会影响显示效果。
在至少一个实施例中,上述的降噪操作例如可包括从第二信号中减去第一信号,然而应理解本公开的实施例并不限于此。
如图6-8所示,在本公开的至少一个实施例中,第一检测电极111和第一传感器电极121可同层形成且具有相同的形状和尺寸,以及第二检测电极112与第二传感器电极122可同层形成且具有相同的形状和尺寸,从而更好地执行降噪操作,提高检测单元和传感器单元的制备工艺兼容性,并简化传感器装置的制造工艺。
此外,如图6所示,在本公开的至少一个实施例中,在检测单元A包括第二光感应层114的情况下,第一光感应层123和第二光感应层114也可同层形成且具有相同的形状和尺寸,从而更好地执行降噪操作,提高检测单元和传感器单元的制备工艺兼容性,并简化传感器装置的制造工艺。
图9是根据本公开至少一个实施例的电子设备的结构示意图。如图9所示,根据本公开至少一个实施例的电子设备20可包括传感器装置21和信号处理装置22。传感器装置21可是根据上述任一实施例的传感器装置。
信号处理装置22与传感器装置21信号连接,并且信号处理装置22配置为通过传感器装置的第一检测区的至少一个检测单元获得第一信号和通过传感器装置的第二检测区的至少一个传感器单元获得第二信号,且通过将第一信号作为第二信号的共模噪声信号,对第二信号执行降噪操作。该降噪操作可与上述的降噪操作相同,本公开的实施例对此将不再赘述。
在至少一个实施例中,如图9所示,根据本公开至少一个实施例的电子设备20还可包括显示面板23。
图10A是根据本公开至少一个实施例的显示面板23的俯视图。图10B是根据本公开至少一个实施例的显示面板23的另一俯视图。
如图10A和图10B所示,显示面板23可包括显示区域DA以及设置在显示区域DA周边的周边区域PA。如图10A所示,传感器装置21例如可设置在显示区域DA中。如图10B所示,传感器装置21例如可设置在周边区域PA中。
显示面板23例如可以是液晶显示面板、有机发光二极管显示面板、微发光二极管显示面板等,本公开的实施例对此不作限制。
例如,电子设备20可以包括:电子纸、手机、平板电脑、电视、显示器、笔记本电脑、数码相框、导航仪、手表等产品或部件。
图11A是沿图10A中的线S-S’的剖视图。如图11A所示,传感器装置21可集成在显示面板23中。显示面板23可包括显示驱动晶体管230和发光单元,该发光单元可以为有机发光单元、量子点发光单元等,下面以发光单元为有机发光单元240为例进行说明,但本公开的实施例对此不作限制。显示驱动晶体管230与有机发光单元240电连接,以驱动有机发光单元240发光。在图11A所示的实施例中,显示面板23被示为有机发光二极 管显示面板,然而应理解本公开的实施例并不限于此。
如图11A所示,显示驱动晶体管230和传感器装置21的第一开关晶体管210和第二开关晶体管220的对应膜层可同层设置。例如,显示驱动晶体管230的有源层231可与第一开关晶体管210的第一有源层211和第二开关晶体管220的第二有源层221可同层设置。例如,显示驱动晶体管230的栅极233可与第一开关晶体管210的第一栅极213和第二开关晶体管220的第二栅极223可同层设置。例如,显示驱动晶体管230的第一极231可与第一开关晶体管210的第一极212和第二开关晶体管220的第一极222同层设置。例如,显示驱动晶体管230的第二极234可与第一开关晶体管210的第二极212和第二开关晶体管220的第二极222同层设置。通过将显示驱动晶体管230、第一开关晶体管210和第二开关晶体管220同层设置,可使得显示面板的膜层设置简单,减小传感器装置的厚度。
然而,应理解,在其他实施例中,显示驱动晶体管230、第一开关晶体管210和第二开关晶体管220的部分或全部对应膜层可设置在不同层中,本公开的实施例对此不作限制。
平坦层340可覆盖检测单元A和传感器单元B。像素限定层350覆盖平坦层340。有机发光单元240包括层叠的阳极241、有机发光层242和阴极243。有机发光层242在阳极241和阴极243之间。阳极241可通过经由转接电极251与显示驱动晶体管230的第一极231电连接。转接电极251的一部分在第二层间绝缘层330上,并且转接电极251的另一部分穿过第二层间绝缘层330中的过孔与显示驱动晶体管230的第一极231电连接。阳极241的一部分在平坦层340上并且阳极241的另一部分穿过平坦层340中的过孔与转接电极电连接。阳极241和有机发光层242可位于像素限定层350的开口中。然而,应理解,有机发光单元240也可与检测单元A和传感器单元B同层设置。例如,阳极241与第二检测电极112和第二传感器电极122同层设置,像素限定层350可直接覆盖检测单元A和传感器单元B而没有平坦层340,本公开的实施例对此不作限制。
阳极241可与第二检测电极112和第二传感器电极122采用相同的材料形成。例如,阳极241的材料的示例可包括但不限于包括镍(Ni)、银(Ag)、金(Au)、铂(Pt)、钯(Pd)、硒(Se)、铑(Rh)、钌(Ru)、铱(Ir)、铼(Re)、钨(W)、钼(Mo)、铬(Cr)、钽(Ta)、铌(Nb)、铝(Al)、铁(Fe)、钴(Co)、铜(Cu)以及其合金和氧化物,或氧化锡、氧化铟锡(ITO)、氧化锌、氧化钛、PEDOT:PSS(3,4-亚乙二氧基噻吩:聚(4-苯乙烯磺酸)),PANI(聚苯胺)等。
阴极243可与第一检测电极111和第一传感器电极121采用相同的材料形成。例如,阴极243的材料的示例可包括但不限于镁(Mg)、钙(Ca)、铟(In)、锂(Li),铝(Al)、银(Ag)或其合金或氟化物,例如镁(Mg)-银(Ag)合金、锂(Li)-氟化合物、锂(Li)-氧(O)化合物等。
有机发光层242例如可发出红光、蓝光、绿光、黄光、白光等,本公开的实施例对此不作限制。本公开实施例中的有机发光层242的材料可以根据其发射光颜色的不同进行选择。
另外,根据需要,本公开实施例的有机发光层242的材料包括荧光发光材料或磷光发光材料,目前通常采用掺杂体系,即在主体发光材料中混入掺杂材料得到可用的发光材料。例如,主体发光材料可以采用金属配合物材料、蒽的衍生物、芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、或三芳胺聚合物等;更具体地,例如双(2-甲基-8-羟基喹啉-N1,O8)-(1,1'-联苯-4-羟基)铝(Balq)、9,10-二-(2-萘基)蒽(ADN)、4,4'-二(9-咔唑)联苯(CBP)、4,4',4”-三-9-咔唑基三苯胺(TCTA)或N,N-双(α-萘基-苯基)-4,4-联苯二胺(NPB)等。荧光发光材料或掺杂材料例如包括香豆素染料(coumarin6、C-545T)、喹吖啶酮(DMQA)、或4-(二腈亚甲叉)-2-甲基-6-(4-二甲胺基-苯乙烯)-4H-吡喃(DCM)系列等。磷光发光材料或掺杂材料例如包括基于Ir、Pt、Ru、Cu等金属配合物发光材料,比如:FIrpic、Fir6、FirN4、FIrtaz、Ir(ppy)3、Ir(ppy)2(acac)、PtOEP、(btp)2Iracac、Ir(piq)2(acac)或(MDQ)2Iracac等。另外,本公开实施例的有机发光层242的材料还可以包括双主体且进行掺杂的情形。
此外,有机发光单元240还可包括空穴注入层、空穴传输层、电子注入层、电子传输层等,本公开的实施例对此将不再赘述。
例如,阴极243、像素限定层350和第一传感器电极121可以是至少部分透明的,以允许被用户手指反射的光照射至第一光感应层123,从而可进行指纹识别。
在本公开的至少一个实施例中,传感器装置21也可贴合或直接制备在显示面板23上。图11B是沿图10A中的线S-S’的另一剖视图。如图11B所示,传感器装置21可位于显示面板23上方。然而,应理解,传感器装置21也可以位于显示面板23下方,只要不影响传感器装置21的功能实现即可,本公开的实施例对此不作限制。
需要说明的是,为表示清楚,并没有给出电子设备的全部结构。为实现电子设备的必要功能,本领域技术人员可以根据具体应用场景进行设置其他未示出的结构,本公开的实施例对此不作限制。本公开的实施例提供的电子设备的技术效果参见上述实施例描述的传感器装置的技术效果,在此不再赘述。
图12是根据本公开至少一个实施例的降低信号噪声的方法的示意性流程图。根据本公开至少一个实施例的降低信号噪声的方法可适用于根据上述任一实施例的传感器装置。
如图12所示,根据本公开至少一个实施例的降低信号噪声的方法可包括步骤S602-步骤S606。
步骤S602:通过第一检测区的至少一个检测单元获得第一信号。检测单元可包括第一检测电极、第二检测电极和第一绝缘层,以及第一检测电极通过第一绝缘层与第二检测电极电绝缘。
步骤S604:通过第二检测区的至少一个传感器单元获得第二信号。传感器单元包括第一传感器电极、第二传感器电极和第二光感应层,以及第二光感应层与第一传感器电极电连接和第二传感器电极电连接。
步骤S606:通过将第一信号作为第二信号的共模噪声信号,对第二信号执行降噪操作。该降噪操作例如可包括从第二信号中减去第一信号,然而应理解本公开的实施例并不 限于此。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种传感器装置,包括第一检测区和第二检测区,
    其中,所述第一检测区包括至少一个检测单元,
    所述检测单元包括对置的第一检测电极和第二检测电极以及第一绝缘层,
    所述第一检测电极通过所述第一绝缘层与所述第二检测电极电绝缘,
    所述第二检测区包括至少一个传感器单元,
    所述传感器单元包括第一传感器电极、第二传感器电极和第一光感应层,以及
    所述第一光感应层与所述第一传感器电极和所述第二传感器电极电连接。
  2. 根据权利要求1所述的传感器装置,其中,所述第一检测区在所述第二检测区周边且与所述第二检测区不重叠。
  3. 根据权利要求1或2所述的传感器装置,其中,所述检测单元还包括第二光感应层,所述第二光感应层通过所述第一绝缘层与所述第一检测电极电绝缘。
  4. 根据权利要求3所述的传感器装置,其中,所述检测单元还包括第二绝缘层,所述第二光感应层通过所述第二绝缘层与所述第二检测电极电绝缘。
  5. 根据权利要求3或4所述的传感器装置,其中,所述第二光感应层夹置在所述第一检测电极和所述第二检测电极之间,且包括在所述第一检测电极和所述第二检测电极之间依次层叠的第一P型半导体子层、第一本征子层和第一N型半导体子层。
  6. 根据权利要求1至5中任一项所述的传感器装置,其中,
    所述第一检测电极至少部分透明;或
    所述第二检测电极至少部分透明;或
    所述第一检测电极和所述第二检测电极均至少部分透明。
  7. 根据权利要求1至6中任一项所述的传感器装置,其中,所述检测单元还包括第一开关晶体管,
    所述第一开关晶体管的第一极与所述第一检测电极或所述第二检测电极电连接。
  8. 根据权利要求7所述的传感器装置,还包括第一栅极信号线和第一信号读取线,
    其中,所述第一栅极信号线与所述第一开关晶体管的栅极电连接,以及
    所述第一信号读取线与所述第一开关晶体管的第二极电连接。
  9. 根据权利要求1至8中任一项所述的传感器装置,其中,所述至少一个检测单元包括多个检测单元,所述多个检测单元布置成阵列。
  10. 根据权利要求1至9中任一项所述的传感器装置,其中,所述第一光感应层夹置在所述第一传感器电极和所述第二传感器电极之间,且包括在所述第一传感器电极和所述第二传感器电极之间依次层叠的第二P型半导体子层、第二本征子层和第二N型半导体子层。
  11. 根据权利要求1至10中任一项所述的传感器装置,其中,
    所述第一传感器电极至少部分透明;或
    所述第二传感器电极至少部分透明;或
    所述第一传感器电极和所述第二传感器电极均至少部分透明。
  12. 根据权利要求1至11中任一项所述的传感器装置,其中,所述传感器单元还包括第二开关晶体管,所述第二开关晶体管的第一极与所述第一传感器电极或所述第二传感器电极电连接。
  13. 根据权利要求12所述的传感器装置,还包括第二栅极信号线和第二信号读取线,
    所述第二栅极信号线与所述第二开关晶体管的栅极电连接,以及
    所述第二信号读取线与所述第二开关晶体管的第二极电连接。
  14. 根据权利要求1至13中任一项所述的传感器装置,其中,所述至少一个传感器单元包括多个传感器单元,所述多个传感器单元布置成阵列。
  15. 根据权利要求1至14中任一项所述的传感器装置,其中,所述第一检测电极与所述第一传感器电极同层形成且具有相同的形状和尺寸,
    所述第二检测电极与所述第二传感器电极同层形成且具有相同的形状和尺寸。
  16. 根据权利要求3所述的传感器装置,其中,所述第一检测电极与所述第一传感器电极同层形成且具有相同的形状和尺寸,
    所述第二检测电极与所述第二传感器电极同层形成且具有相同的形状和尺寸,
    所述第一光感应层与所述第二光感应层同层形成且具有相同的形状和尺寸。
  17. 一种电子设备,包括:
    所述传感器装置;以及
    信号处理装置,与所述传感器装置信号连接,并且配置为通过第一检测区的至少一个检测单元获得第一信号和通过传感器装置的第二检测区的至少一个传感器单元获得第二信号,且将所述第一信号作为所述第二信号的共模噪声信号,以对所述第二信号执行降噪操作。
  18. 根据权利要求17所述的电子设备,还包括显示面板,其中,所述显示面板包括显示区域以及设置在所述显示区域周边的周边区域,
    所述传感器装置设置于所述显示区域或设置于所述周边区域之中。
  19. 一种降低信号噪声的方法,包括:
    通过第一检测区的至少一个检测单元获得第一信号,其中,所述检测单元包括第一检测电极、第二检测电极和第一绝缘层,以及所述第一检测电极通过所述第一绝缘层与所述第二检测电极电绝缘;
    通过第二检测区的至少一个传感器单元获得第二信号,其中,所述传感器单元包括第一传感器电极、第二传感器电极和第二光感应层,以及所述第二光感应层与所述第一传感器电极电连接和所述第二传感器电极电连接;以及
    通过将所述第一信号作为所述第二信号的共模噪声信号,对所述第二信号执行降噪操作。
PCT/CN2021/096727 2020-06-24 2021-05-28 传感器装置、电子设备和降低信号噪声的方法 WO2021258995A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/778,037 US12051706B2 (en) 2020-06-24 2021-05-28 Sensor device, electronic apparatus, and method for reducing signal noise

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010591767.1 2020-06-24
CN202010591767.1A CN113836987A (zh) 2020-06-24 2020-06-24 传感器装置、电子设备和降低信号噪声的方法

Publications (1)

Publication Number Publication Date
WO2021258995A1 true WO2021258995A1 (zh) 2021-12-30

Family

ID=78964818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096727 WO2021258995A1 (zh) 2020-06-24 2021-05-28 传感器装置、电子设备和降低信号噪声的方法

Country Status (2)

Country Link
CN (1) CN113836987A (zh)
WO (1) WO2021258995A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178526A1 (zh) * 2022-03-22 2023-09-28 京东方科技集团股份有限公司 显示面板及其制作方法、环境光强度检测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566840A (zh) * 2010-11-02 2012-07-11 爱特梅尔公司 电容式传感器、装置及方法
US20170193265A1 (en) * 2015-12-30 2017-07-06 Mstar Semiconductor, Inc. Capacitive sensing device, fingerprint sensing device and method for manufacturing capacitive sensing device
CN107004126A (zh) * 2015-11-02 2017-08-01 深圳市汇顶科技股份有限公司 具有反指纹欺骗光学传感的多功能指纹传感器
CN107633234A (zh) * 2017-09-26 2018-01-26 北京集创北方科技股份有限公司 指纹识别***的检测方法及装置
CN108321152A (zh) * 2018-04-04 2018-07-24 京东方科技集团股份有限公司 指纹识别传感器及其制备方法以及指纹识别设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566840A (zh) * 2010-11-02 2012-07-11 爱特梅尔公司 电容式传感器、装置及方法
CN107004126A (zh) * 2015-11-02 2017-08-01 深圳市汇顶科技股份有限公司 具有反指纹欺骗光学传感的多功能指纹传感器
US20170193265A1 (en) * 2015-12-30 2017-07-06 Mstar Semiconductor, Inc. Capacitive sensing device, fingerprint sensing device and method for manufacturing capacitive sensing device
CN107633234A (zh) * 2017-09-26 2018-01-26 北京集创北方科技股份有限公司 指纹识别***的检测方法及装置
CN108321152A (zh) * 2018-04-04 2018-07-24 京东方科技集团股份有限公司 指纹识别传感器及其制备方法以及指纹识别设备

Also Published As

Publication number Publication date
US20220415940A1 (en) 2022-12-29
CN113836987A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
JP7522665B2 (ja) 表示パネル及び表示装置
US20240138220A1 (en) Display panel and display apparatus
CN111370458B (zh) 显示基板及其制备方法、显示装置
CN110323256B (zh) 显示单元、制造显示单元的方法以及电子设备
US8890124B2 (en) Organic EL device and electronic apparatus
CN107017279B (zh) 显示设备
JP2021039342A (ja) 表示装置、表示モジュール、及び電子機器
US11943970B2 (en) Light emitting device, display device, photoelectric conversion device, electronic device, illumination device, and mobile device with first transistor connected to light emitting element anode, second transistor connected to first transistor gate electrode, and third transistor connected to first transistor
KR20120133955A (ko) 유기전계 발광소자 및 이의 제조 방법
CN110767826B (zh) 显示面板和显示终端
US11538848B2 (en) Fingerprint identification substrate and manufacturing method therefor, identification method and display apparatus
CN114616690A (zh) 有机装置及其制造方法、显示装置、光电转换装置、电子设备、照明装置和移动体
WO2021258995A1 (zh) 传感器装置、电子设备和降低信号噪声的方法
US20230165052A1 (en) Display panel, method for manufacturing same, and display device
WO2024022084A1 (zh) 显示基板及显示装置
US11735605B2 (en) Display substrate and method for manufacturing the same, and display apparatus
US12051706B2 (en) Sensor device, electronic apparatus, and method for reducing signal noise
CN110164946A (zh) 显示基板及制造方法、显示装置
KR20240044514A (ko) 표시 장치의 보정 방법, 및 표시 장치
CN113345947A (zh) 显示基板及其制备方法、显示装置
US20240107804A1 (en) Display substrate and display device
WO2023017349A1 (ja) 表示装置、表示モジュール及び電子機器
WO2022162493A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022175781A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2023050347A1 (zh) 显示基板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828353

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21828353

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21828353

Country of ref document: EP

Kind code of ref document: A1