WO2021258916A1 - Aau测试方法、装置、多探头吸波暗箱、存储介质及电子装置 - Google Patents

Aau测试方法、装置、多探头吸波暗箱、存储介质及电子装置 Download PDF

Info

Publication number
WO2021258916A1
WO2021258916A1 PCT/CN2021/094211 CN2021094211W WO2021258916A1 WO 2021258916 A1 WO2021258916 A1 WO 2021258916A1 CN 2021094211 W CN2021094211 W CN 2021094211W WO 2021258916 A1 WO2021258916 A1 WO 2021258916A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
probe
calibration
aau
index
Prior art date
Application number
PCT/CN2021/094211
Other languages
English (en)
French (fr)
Inventor
任辉
别业楠
段向阳
黄攀
王博明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021258916A1 publication Critical patent/WO2021258916A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to an AAU test method, device, multi-probe absorbing dark box, storage medium, and electronic device.
  • Traditional base station equipment (complete machine + metal filter) has a radio frequency port at the output of its own metal filter, and the test of its radio frequency index usually adopts a conductive test method, and the test interface is at the radio frequency port of the device.
  • AFU Antenna Filter Unified
  • 5G networks require more accurate active beam coverage in order to meet high-speed and large-capacity application scenarios.
  • This requires that the phase fluctuation error of the active antenna unit AAU (Active Antenna Unit) overall link is less than ⁇ 5°, and the dielectric filter has different channel phase fluctuations ⁇ (5-8)° due to its own characteristics, plus the antenna unit
  • the phase error caused by the influence of mutual coupling factors is far from being able to meet the requirements of accurate beam forming of the communication system; for this, the phase of the AAU must be tested and calibrated.
  • the mainstream of AAU supporting 5G networks is Multiple-Input Multiple-Output MIMO antenna array (multi-port array)-64 ports or 32 ports, and the single-probe test scheme has low efficiency and errors. big.
  • AAU is an integrated device of antenna feeder and active transceiver. The interface between them is an internal interface. In actual engineering, it is difficult to directly test the radio frequency port, which brings challenges to the AAU test. To test the AAU using the conduction test method of traditional base station equipment, the active part of the AAU and the antenna array need to be disassembled. For AAU, it destroys its integrated topology and affects the degree of equipment integration.
  • the wireless indicators of the AAU full front are tested through the standard far field or the compact field.
  • the site indicators are demanding, the construction cost is high, and the testing is complicated, and it cannot be used in mass production. testing.
  • the embodiments of the present application provide an AAU test method, device, multi-probe anechoic chamber, storage medium, and electronic device, to at least to some extent solve one of the related problems, including in some cases, the AAU passes the standard far-field or compaction When testing wireless performance in the field, the site requirements are strict, the construction cost is high, and the test is complicated, which cannot be applied to the problem of mass production testing.
  • an AAU test method which includes: obtaining the target calibration result of the multi-probe anechoic chamber corresponding to the current test frequency point according to the corresponding relationship between the pre-stored frequency point and the calibration result, wherein,
  • the calibration result is the calibration result obtained by calibrating the test environment; the test environment is compensated according to the target calibration result; in the compensated test environment, the test probe of the multi-probe absorbing chamber is treated Test the active antenna unit AAU to obtain the radio frequency index and wireless index of the AAU to be tested, wherein the AAU to be tested is set in the multi-probe anechoic chamber.
  • an AAU testing device including: an acquisition module configured to acquire the corresponding relationship between the frequency points stored in advance and the calibration results at the current test frequency point of the multi-probe absorbing dark box The target calibration result of the test environment, wherein the calibration result is the calibration result obtained by calibrating the test environment; the compensation module is set to compensate the test environment according to the target calibration result; the test module is set to compensate In the latter test environment, the active antenna unit AAU to be tested is tested by the test probe of the multi-probe anechoic chamber to obtain the radio frequency index and wireless index of the AAU to be tested, wherein the AAU to be tested is set In the multi-probe anechoic chamber, there are multiple test probes.
  • a multi-probe absorbing dark box including: a test probe, a tray clamping tool, a shielding box, and an antenna array, the test probe is arranged inside the shielding box, and Set on the top of the shielding box, the test probes are multiple; the pallet clamping tool is set to fix the AUU to be tested and then set inside the shielding box, and is located directly below the test probes
  • the antenna array which is the same as the antenna of the AAU to be tested, is set to calibrate the test environment under the control of the server to obtain a calibration result, wherein the calibration result is used by the server for the The test environment is compensated; the test probe is set to test the AAU to be tested after the test environment is compensated to obtain the radio frequency index and the wireless index of the AAU to be tested.
  • a computer-readable storage medium having a computer program stored in the computer-readable storage medium, wherein the computer program is configured to execute any of the above methods when running Steps in the embodiment.
  • an electronic device including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute any of the above Steps in the method embodiment.
  • FIG. 1 is a hardware structure block diagram of a mobile terminal of an AAU test method according to an embodiment of the present application
  • Fig. 2 is a flowchart of an AAU testing method according to an embodiment of the present application
  • Fig. 3 is a schematic diagram of an AAU according to this embodiment.
  • Figure 4 is a schematic diagram of a multi-probe anechoic chamber according to this embodiment.
  • Fig. 5 is a first schematic diagram of a multi-probe absorbing dark box according to an embodiment of the present application
  • Fig. 6 is a second schematic diagram of a multi-probe anechoic chamber according to an embodiment of the present application.
  • Fig. 7 is a third schematic diagram of a multi-probe anechoic chamber according to an embodiment of the present application.
  • Fig. 8 is a fourth schematic diagram of a multi-probe absorbing dark box according to an embodiment of the present application.
  • Fig. 9 is a fifth schematic diagram of a multi-probe absorbing dark box according to an embodiment of the present application.
  • Fig. 10 is a sixth schematic diagram of a multi-probe absorbing dark box according to an embodiment of the present application.
  • Fig. 11 is a structural block diagram of an AAU test device according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 1 is a block diagram of the hardware structure of the mobile terminal of the AAU test method according to the embodiment of the present application.
  • the mobile terminal may include one or more (only one is shown in FIG. 1 )
  • the processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data, wherein the above-mentioned mobile terminal may also include a communication function Transmission equipment 106 and input and output equipment 108.
  • FIG. 1 is only for illustration, and does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than shown in FIG. 1, or have a different configuration from that shown in FIG.
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the AAU test method in the embodiments of the present application.
  • the processor 102 executes the computer programs stored in the memory 104 by running the computer programs stored in the memory 104.
  • This kind of functional application and data processing realize the above-mentioned method.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is used to receive or send data via a network.
  • the above-mentioned specific examples of the network may include a wireless network provided by a communication provider of a mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 2 is a flowchart of the AAU test method according to an embodiment of the present application. As shown in FIG. 2, the process includes the following steps:
  • Step S202 obtaining a target calibration result corresponding to the current test frequency point of the multi-probe absorbing dark box according to the pre-stored corresponding relationship between the frequency point and the calibration result, where the calibration result is the calibration result obtained by calibrating the test environment;
  • Fig. 3 is a schematic diagram of an AAU according to this embodiment, as shown in Fig. 3, including a transceiver, an AAU antenna and a radome.
  • the foregoing step S202 may specifically include: performing a radio frequency index test on the radio frequency port of the AAU to be tested by the test probe to obtain the radio frequency index of the AAU to be tested;
  • the AAU to be tested performs a wireless index test, and the wireless index of the AAU to be tested is obtained.
  • Step S204 Compensate the test environment according to the target calibration result
  • Step S206 In the compensated test environment, the AAU to be tested is tested by the test probe of the multi-probe anechoic chamber to obtain the radio frequency index and the wireless index of the AAU to be tested.
  • the AAU to be tested is arranged in the multi-probe anechoic chamber, and there are multiple test probes.
  • the AAU is tested with multiple test probes, which can solve some cases when the AAU passes the standard far field or the tight field to test the wireless performance, the site index requirements are strict , The construction cost is high and the test is complicated, and it cannot be applied to the mass production test problem, thereby improving the test efficiency and reducing the cost, and can be applied to the mass production test of AAU.
  • the multi-probe absorbing dark box is performed at different frequency points. Calibration is performed in the test environment, the corresponding relationship between the frequency points and the calibration result is obtained, and the corresponding relationship between the frequency points and the calibration result is stored.
  • calibrating the test environment of the multi-probe anechoic chamber at different frequency points, and obtaining the corresponding relationship between the frequency points and the calibration result may specifically include:
  • the first phase value is normalized to obtain the first phase data, wherein the antenna array is set on the test turntable in the far field, and each unit of the antenna array and the vector network analyzer pass Radio frequency cable connection; adjust the positional relationship between each unit of the antenna array after phase calibration and the test probe through the three-dimensional platform of the multi-probe anechoic chamber, and perform the operation on each unit of the antenna array Phase test to obtain a second phase value, and normalize the second test value to obtain second phase data, wherein the antenna array after phase calibration is set in the multi-probe anechoic chamber Determine the difference between the second phase data and the first phase data as the phase calibration data of each unit of the antenna array, and obtain the corresponding relationship between the frequency points and the phase calibration data;
  • the phase-calibrated antenna array Based on the phase-calibrated antenna array, perform AAU radio frequency index test environment calibration on the multi-probe anechoic chamber at different frequency points to obtain the corresponding relationship between the frequency points and the radio frequency index calibration data.
  • the frequency point performs radio frequency index test environment insertion loss calibration on the dark box environment between the phase-calibrated antenna array and the test probe to obtain the corresponding relationship between the frequency point and the radio frequency index calibration data, wherein the antenna array
  • the structure and composition of the AAU are the same as the antenna array of the AAU to be tested. Specifically, the following steps are performed on different frequency points in the preset frequency band to obtain the corresponding relationship between the frequency points and the radio frequency index calibration data.
  • the frequency point being executed is called the current frequency point:
  • the vector network analyzer tests the S parameter between the external test port of the probe RF line of the test probe and the external test port of the antenna array RF line to obtain the second insertion loss;
  • the difference of the first insertion loss is determined as the radio frequency index calibration data corresponding to the current frequency point;
  • analog signals of different frequency points are transmitted through a signal source, and the following steps are performed for the analog signals of different frequency points to obtain the frequency points and the wireless indicators
  • the signal source is connected to the standard gain horn antenna through a radio frequency cable: the analog signal is received through the test probe, and The received signal power value of the analog signal is determined by a spectrum analyzer, wherein the spectrum analyzer is connected to the test probe through a radio frequency cable; the wireless index corresponding to the current frequency point is determined according to the received signal power value
  • Calibration data wherein the calibration result includes the phase calibration data, the radio frequency index calibration data, and the wireless index calibration data.
  • the wireless indicator calibration data corresponding to the current frequency point may be determined according to the received signal power value in the following manner:
  • ⁇ G C is the wireless indicator calibration data
  • P t is the power value of the analog signal
  • P r is the received signal power
  • L 2 is the cable insertion loss between the spectrum analyzer and the test probe
  • G t is the gain of the horn antenna.
  • the above step S202 may specifically include: acquiring the target phase calibration data corresponding to the current test frequency according to the corresponding relationship between the frequency point and the phase calibration data; according to the frequency point and the radio frequency index calibration data Obtain the target radio frequency index calibration data corresponding to the current test frequency point, and obtain the target wireless index calibration data corresponding to the current test frequency point according to the corresponding relationship between the frequency point and the wireless index calibration data; correspondingly, the above Step S204 may specifically include: compensating the test environment according to the target phase calibration data, the target radio frequency index calibration data, and the target wireless index calibration data, wherein the target calibration result includes the target phase calibration Data, the target radio frequency index calibration data, and the target wireless index calibration data.
  • the multi-probe absorbing dark box can complete the radio frequency index test of the output port of the transceiver in the AAU and the wireless index test of the AAU radiation surface, including:
  • Antenna front unit phase calibration the antenna unit is phase-calibrated through a standard far field or compact field.
  • Calibration of the AAU radio frequency index test environment First, use a network analyzer and other instruments to calibrate the insertion loss of the test cable connected to the antenna array unit in the dark box; then place the phase-calibrated antenna array in the dark box and adjust the antenna array
  • the relative position of the surface unit and the test probe is used to perform radio frequency link insertion loss calibration and phase calibration on the dark box environment between each unit of the array surface and the probe by moving the three-dimensional translation table.
  • the unit structure and composition of the antenna array are the same as those of the tested AAU antenna feed part, and the test probe is a broadband dual-polarized probe antenna;
  • AAU wireless index test environment calibration Place the standard gain horn antenna in the dark box, and adjust the wireless position of the horn antenna and the test probe, and perform wireless link insertion in the dark box environment between the horn antenna and each test probe by moving the three-dimensional translation table Loss calibration.
  • the standard gain horn referred to here refers to an antenna calibrated in a standard field with a known gain.
  • AAU (active antenna unit) test Place the tested AAU in the dark box after the environment calibration and fix the relative position between the AAU and the test probe.
  • the test environment is the same as the test environment after the calibration of the absorbing dark box After the test environment is compensated according to the calibration result, the AAU is tested by the test probe to obtain the radio frequency and wireless indicators.
  • the phase calibration of the antenna array unit refers to the calibration test of the phases of each unit of the antenna array in the standard far field or compact field.
  • the antenna is used as the reference antenna
  • the test data is used as the test device-multi-probe dark box environment calibration. Benchmark data.
  • Fixing the relative position between the tested AAU and the test probe means make the polarization direction of the test probe the same direction as the polarization direction of the tested AAU, and the vertical distance between the AAU and the test probe: d ⁇ 2D 2 / ⁇ , where D is the aperture size of the unit, and ⁇ is the wavelength corresponding to the AAU working center frequency.
  • the multi-probe absorbing dark box in this embodiment includes a shielding box, absorbing material, connection table, tray clamping tooling, three-dimensional translation table, test probe, probe position adjustment unit, spectrum analyzer, radio frequency matrix switch, and radio frequency test cable .
  • the shielding box and the absorbing material are used to form a free wireless, non-reflective electromagnetic environment between the test probe and the tested AAU.
  • the docking station is set outside the shielding box and mainly realizes the entry and exit functions of the tested AAU.
  • the pallet clamping tooling mainly realizes the fixation and protection of the tested AAU during the test, and the material is a non-metallic material, which reduces the impact of reflection on the test.
  • There are six movable sliders on the tray (one for each front and two for each left and right). By adjusting the position of the slider on the tray, it can adapt to different sizes and/or different frequencies of AAU.
  • the three-dimensional platform is used to fix and adjust the vertical test distance between the tested AAU and the test probe.
  • the horizontal position of the tested AAU and the test probe can be changed during the test process to realize the AAU radio frequency and wireless index test of different ports.
  • the test probe is a broadband dual-polarized probe antenna. 4-8 test probes of the same specification can be installed in the anechoic chamber to realize parallel testing and improve test efficiency; the multi-probe anechoic chamber also includes a probe position adjustment unit and a radio frequency matrix A switch, the probe position adjustment unit includes a sliding guide set on the shielding box and a motor that can independently control the position movement of each probe, used to control the relative position change between the test probes, and can conveniently perform different frequency bands AAU testing requirements.
  • the radio frequency matrix switch adopts a mechanical switch to realize rapid switching of radio frequency links of different test probes, and to test the radio frequency and wireless indexes of the AAU of different ports under test.
  • the method according to the above embodiments can be implemented by means of software plus a general hardware platform, of course, it can also be implemented only by hardware, but in many cases the former is better. The best way to implement it.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present application.
  • FIG. 4 is a schematic diagram of the multi-probe anechoic chamber according to this embodiment. As shown in FIG. 4, it includes: a test probe 11, a tray clamp Holding tool 12, shielding box 13, antenna array (not shown in the figure), the test probe 11 is arranged inside the shielding box 13 and on the top of the shielding box 13, wherein the test probe 11 is more than one;
  • the pallet clamping tool 12 is used to fix the AUU to be tested and then is arranged inside the shielding box 13 and is located directly under the test probe 11;
  • the antenna array which is the same as the antenna of the AAU to be tested, is used to calibrate the test environment under the control of the server to obtain the calibration result, wherein the calibration result is used by the server for the test environment Make compensation
  • the test probe 11 is used to test the AAU to be tested after the test environment is compensated to obtain the radio frequency index and the wireless index of the AAU to be tested.
  • it further includes: a docking station, an antenna array radio frequency cable, a three-dimensional platform, a lifting frame, and a guide rail, wherein the AAU to be tested is set on the three-dimensional platform, and the three-dimensional platform passes through the The lifting frame is connected with the guide rail,
  • the docking station is arranged outside the shielding box 13 for controlling the AAU to be tested to enter and exit the shielding box 13;
  • the antenna array radio frequency cable is connected to the antenna array and external equipment, and is used to input or output the radio frequency signal of the antenna array;
  • a guide rail for controlling the movement track of the three-dimensional platform
  • a lifting frame for controlling the vertical distance between the three-dimensional platform and the test probe 11;
  • the probe position adjustment unit includes a sliding guide set on the shielding box 13 and a motor that independently controls the position movement of each test probe 11 to control the relative position of the test probe 11.
  • the pallet holding tool 12 includes a plurality of movable sliders, and by adjusting the positions of the plurality of movable sliders, the AAUs to be tested of different sizes and/or different frequencies are fixed.
  • the dielectric filter replaced the traditional metal filter and the dielectric filter has been moved up to the antenna.
  • the "whole machine + filter module" cannot perform ACPR, EVM and other radio frequency index tests at the conduction station, and the interface between the antenna and the transceiver is an internal interface, so the AAU radio frequency index needs to be tested by the OTA method.
  • Fig. 5 is a first schematic diagram of a multi-probe absorbing dark box according to an embodiment of the present application, as shown in Fig. 5, including:
  • the docking station 14 is set outside the dark room and mainly realizes the automatic entry and exit functions of the tested AAU.
  • the tray clamping tool 12 mainly realizes the fixation and protection of the tested AAU during the test.
  • the material is non-metallic material to reduce the impact of reflection on the test.
  • There are six movable sliders on the tray (one for each front and two for each left and right). By adjusting the position of the slider on the tray, it can adapt to the tested AAUs of different sizes.
  • shielding box + absorbing material 13 is set to form an electromagnetic environment similar to free wireless and no reflection between the test probe and the tested AAU;
  • the test probe antenna 11 is a broadband dual-polarized probe antenna. 8 test probes of the same specification can be installed in the absorbing dark box to realize parallel testing and improve test efficiency;
  • the probe radio frequency line 15 is set to input/output the radio frequency signal of the test probe.
  • the antenna array 16 which is exactly the same as the antenna part of the AAU under test, is set to be calibrated by the test device;
  • the three-dimensional platform 18 is set to fix and place the tested AAU or the tested antenna array.
  • the guide rail 19 is set to control the moving trajectory of the three-dimensional platform 18 to make it move at equal intervals, and to change the horizontal position of the tested AAU and the test probe during the test, so as to realize the AAU radio frequency and wireless index test of different ports.
  • the lifting frame 110 is set to control the vertical distance between the three-dimensional platform 18 and the test probe 11, so that the test device is suitable for AAU testing of different frequency bands;
  • the probe position adjustment unit 111 includes a sliding guide set on the shielding box and a motor that can independently control the position movement of each probe. It is used to control the change of the relative position of multiple test probes, and can easily carry out different sizes. AAU testing requirements.
  • the specific test process of the dark box In the shielding box 13, the AAU of the test piece is fixed by the tray clamping tool 12, and is sent to the 3D platform 18 through the docking station 14.
  • the relative relationship between the 3D platform 18 and the test probe 11 can be changed. Position, change the relative position between the tested AAU and the test probe antenna 11; there is a sliding guide under the three-dimensional platform, the platform slides on the guide, the guide has the function of limit and distance, to ensure that the test probe 11 can traverse and test the radio frequency of each port of the AAU And wireless indicators.
  • the antenna array 16 is exactly the same as the antenna part of the AAU under test, and is mainly used for the calibration of the test device.
  • Fig. 6 is a second schematic diagram of a multi-probe absorbing dark box according to an embodiment of the present application.
  • the AAU antenna array 16 has a total of 12*8 units, of which 3 units in the vertical direction are combined into 1 Channel output--corresponding to one RF port of AAU, a total of 64 RF ports are output, including 32 +45° ports and 32 -45° ports, the horizontal spacing between different columns is d2, and the vertical distance between 3 in 1 units is d2;
  • the entire array is divided into 4 test areas.
  • Fig. 7 is the third schematic diagram of the multi-probe absorbing dark box according to an embodiment of the present application.
  • the test probe 11 has a total of 2*4 probes in the probe array.
  • the horizontal distance between the probes is d2 and the vertical distance is d1.
  • the 8 probes are respectively located directly above the center unit of the 8 3-in-1 unit in the 16 test area of the antenna array, and the unit performance index test of the entire antenna array can be completed by moving the probe antenna 4 times in parallel.
  • the embodiment of the application provides an AAU (active antenna unit) OTA test method, which mainly includes: AAU antenna unit phase calibration, dark box radio frequency index test environment calibration, dark box wireless index test environment calibration, AAU (active antenna unit test.
  • Fig. 8 is a schematic diagram of a multi-probe absorbing dark box according to an embodiment of the present application.
  • the phase of the antenna array unit that is exactly the same as the antenna part of the tested AAU is calibrated in the standard far field.
  • the antenna array is used as the reference antenna, and the test data is used as the reference data for the phase calibration of the dark box environment.
  • Black box radio frequency index test environment calibration first, use a network analyzer or other instruments to calibrate the insertion loss of the radio frequency cable 17 connected to the antenna array in the black box; then place the above-mentioned phase-calibrated antenna array in the dark box, and adjust the antenna array With the wireless position of the test probe 11, the link insertion loss calibration and phase calibration are performed on the dark box environment between each unit of the array surface and the probe by moving the three-dimensional translation table 18.
  • the unit structure and composition of the antenna array are the same as those of the antenna array in the tested AAU, and the test probe is a broadband dual-polarized probe antenna;
  • Black box wireless index test environment calibration Place the standard gain horn antenna in the black box, adjust the wireless position of the horn antenna and the test probe, and perform link insertion loss in the dark box environment between the horn antenna and each test probe by moving the three-dimensional translation table calibration.
  • the standard gain horn mentioned here refers to an antenna with a calibrated and known gain.
  • the AAU under test is placed on the dark box three-dimensional platform 18 after the environmental calibration, and the wireless relationship between it and the test probe 11 is fixed.
  • the three-dimensional platform 18 is positioned and moved at equal intervals in the test device through the guide rail, and the radio frequency of the probe antenna
  • the line 15 can realize the input or output of radio frequency signals, and the AAU under test is used as a device under test (Device Under Test, referred to as DUT) to perform radio frequency and wireless index tests and obtain corresponding measurement results.
  • DUT Device Under Test
  • the calibration value is obtained, and the calibration value is compensated to the test environment.
  • the radio frequency and wireless index of the DUT—AAU are calculated.
  • AAU active antenna unit
  • step 1 place the antenna array on the test turntable in the far field, connect each unit of the antenna array with the vector network analyzer through the radio frequency cable, set the frequency points in the designated frequency band, and test the antenna
  • the phase values of the front unit are P 11, P 21 ,..., P nm , and normalized data based on one of the ports of the first unit: 0°, P 21 , ..., P nm ; at the same time, the antenna
  • the front is used as a reference antenna, and the test data "0°, P 21 return , ..., P nm return " are used as the reference data for the subsequent dark box phase calibration.
  • Step 2 Place the phase-calibrated antenna array in the multi-probe absorbing dark box as shown in Figure 2, and adjust the positional relationship between each port unit of the antenna array and the test probe 11 through the three-dimensional platform 18 to realize the alignment of the antenna array
  • Phase test of each unit in the surface test values P′ 11 , P′ 21 ,...,P′ nm and normalized data based on the first port: 0°, P′ 21 return ,...,P′ nm return .
  • Fig. 9 is a schematic diagram of a multi-probe absorbing dark box according to an embodiment of the present application.
  • a calibration environment is established.
  • the frequency points are set in the designated frequency band, and the vector network analyzer is used to test the test device.
  • the test port of the antenna array unit is connected to the two ends of the RF cable 17 (interface 2 and interface 3) for S-parameter testing, and the insertion loss of each RF line is L_23_nm (where n and m correspond to the antenna array in the AAU The serial number of the vibrator).
  • Step 4 Set the frequency point in the designated frequency band, and use the vector network analyzer to test-the S between the RF line 15 external test port (interface 1) of the test probe and the external test port 17 external test port (interface 3) of the antenna array RF line Parameters, the insertion loss of the radio frequency port of each port is obtained as L_13_nm (where n and m correspond to the serial number of the antenna port corresponding to the antenna array in the AAU).
  • n and m correspond to the sequence number of the AAU antenna unit.
  • Step 6 In the required test frequency band, you can select three frequency points of high, middle and low to repeat steps 4-5, or perform multi-frequency point calibration according to specific test requirements. Finally, do mathematical calculations such as interpolation on multiple sets of calibration data to obtain a one-dimensional table or curve corresponding to the calibration frequency and calibration value in the dark box test environment.
  • the calibration value ⁇ L C (that is, L_12_nm) at any frequency point in the designated frequency band in each port can be obtained by looking up the table, and the calibration value is the RF test link compensation value.
  • Fig. 10 is a schematic diagram of a multi-probe anechoic chamber according to an embodiment of the present application.
  • a calibration environment is established, and the dark box wireless index test environment calibration: the standard gain horn antenna 21 is placed in the multi-probe anechoic chamber
  • the three-dimensional platform 18 is connected to the signal source 23 through the radio frequency cable 22, and the test probe antenna 11 at the other end is connected to the spectrum analyzer 25 through the radio frequency cable 24.
  • the calibration process mainly includes the following steps:
  • Step 1 Adjust the horn antenna 21 to be located directly under the test probe 11 by moving the three-dimensional platform 18.
  • Step 2 Set the signal source 23 to emit a continuous analog signal.
  • Step 3 Receive the above-mentioned analog signal through the receiving probe 11, and obtain the corresponding received signal power through the spectrum analyzer 25.
  • the calculation method is as follows:
  • P t is the power value of the analog transmission signal, that is, the power value of the continuous signal output by the signal source 23;
  • P r is the received signal power value, corresponding to the received power value of the spectrum analyzer 25;
  • G r is the gain of the receiving probe antenna 14
  • G t is the gain of the horn antenna 21
  • L 1 is the insertion loss of the radio frequency cable 22
  • L 2 is the cable insertion loss between the spectrum analyzer and the test probe, that is, the insertion loss of the radio frequency cable 24:
  • L 0 is the wireless path loss in the dark box environment.
  • ⁇ G C P t -P r -L 2 +G t
  • the calibration value ⁇ G C is the compensation value for the dark box wireless index test.
  • the establishment of the test environment compared with the calibration test, replaces the antenna array and radio frequency line used for the calibration test with the tested AAU, including:
  • Step 1 Compensate the phase, radio frequency link, and wireless link of the AAU first.
  • the compensation values ⁇ P nm , ⁇ L C , and ⁇ G C of each port are checked through the calibration table in the calibration link.
  • Step 2 After the black box is compensated and calibrated, in accordance with the relevant test requirements of the 3GPP protocol, the AAU radio frequency port is tested for the radio frequency index through the test probe.
  • Step 3 After the black box compensation and calibration, in accordance with the relevant test requirements of the 3GPP protocol, the AAU is tested for wireless indicators through the test probe.
  • the wireless indicators include but not limited to phase and effective Isotropic Radiated Power (EIRP for short) ), Effective Isotropic Sensitivity (EIS), etc.
  • this embodiment solves the current AAU's no external radio frequency port and AFU new form test problem, effectively improves the test efficiency and reduces the test cost; the test method and device of this application can be applied to the AAU Mass production testing is in progress.
  • an AAU test device is also provided, which is used to implement the above-mentioned embodiments and implementation modes, and those that have been described will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 11 is a structural block diagram of an AAU test device according to an embodiment of the present application. As shown in Fig. 11, the device includes:
  • the acquiring module 112 is configured to acquire the target calibration result corresponding to the current test frequency point of the multi-probe absorbing dark box according to the corresponding relationship between the pre-stored frequency points and the calibration result, wherein the calibration result is obtained by calibrating the test environment Calibration result;
  • the compensation module 114 is configured to compensate the test environment according to the target calibration result
  • the test module 116 is configured to test the active antenna unit AAU to be tested through the test probe of the multi-probe anechoic chamber in the compensated test environment to obtain the radio frequency index and wireless index of the AAU to be tested , Wherein the AAU to be tested is set in the multi-probe anechoic chamber, and there are multiple test probes.
  • the device further includes:
  • the calibration module is configured to calibrate the test environment of the multi-probe anechoic chamber at different frequency points to obtain the corresponding relationship between the frequency points and the calibration result;
  • the storage module is configured to store the corresponding relationship between the frequency point and the calibration result.
  • the calibration module includes:
  • the phase calibration sub-module is configured to perform phase calibration on the antenna array in the multi-probe anechoic chamber at different frequency points to obtain the corresponding relationship between the frequency points and the phase calibration data;
  • the first calibration sub-module is configured to perform AAU radio frequency index test environment calibration on the multi-probe absorbing dark box at different frequency points based on the antenna array after phase calibration to obtain the frequency point and radio frequency index calibration data Correspondence;
  • the second calibration sub-module is configured to perform AAU wireless index test environment calibration on the multi-probe absorbing dark box at different frequency points to obtain the corresponding relationship between the frequency points and the wireless index calibration data;
  • the calibration result includes the phase calibration data, the radio frequency index calibration data, and the wireless index calibration data.
  • phase calibration sub-module includes:
  • the processing unit is configured to set different frequency points in a preset frequency band, test the first phase value of each unit of the antenna array, and normalize the first phase value to obtain the first phase Data, wherein the antenna array is set on a test turntable in the far field;
  • the test unit is configured to adjust the positional relationship between each unit of the antenna array after phase calibration and the test probe through the three-dimensional platform of the multi-probe anechoic chamber. Perform a phase test to obtain a second phase value, and perform normalization processing on the second test value to obtain second phase data, wherein the antenna array after phase calibration is set in the multi-probe anechoic chamber middle;
  • the determining unit is configured to determine the difference between the second phase data and the first phase data as the phase calibration data of each unit of the antenna array, and obtain the difference between the frequency point and the phase calibration data Correspondence.
  • the first calibration submodule includes:
  • the first calibration unit is configured to perform radio frequency index test environment calibration on the dark box environment between the phase-calibrated antenna array and the test probe at different frequency points to obtain the frequency point and radio frequency index calibration data Correspondence, wherein the structure and composition of the antenna array are the same as the antenna array of the AAU to be tested.
  • the first calibration unit is further configured to
  • the frequency point being executed is called the current frequency point:
  • the difference between the second insertion loss and the first insertion loss is determined as the radio frequency index calibration data corresponding to the current frequency point.
  • the second calibration sub-module includes:
  • the adjustment unit is set to adjust the relative position of the standard gain horn antenna and the test probe;
  • the second calibration unit is configured to perform wireless test link insertion loss calibration on the dark box environment between the standard gain horn antenna and the test probe at different frequency points to obtain the wireless index calibration data, wherein The standard gain horn antenna is arranged in the multi-probe absorbing dark box.
  • the second calibration unit is further configured to
  • the wireless indicator calibration data corresponding to the current frequency point is determined according to the received signal power value.
  • the third calibration unit is further configured to determine the wireless indicator calibration data corresponding to the current frequency point according to the received signal power value in the following manner:
  • ⁇ G C is the wireless indicator calibration data
  • P t is the power value of the analog signal
  • P r is the received signal power value
  • L 2 is the cable insertion loss between the spectrum analyzer and the test probe
  • G t is the gain of the horn antenna.
  • the acquisition module includes:
  • the first acquiring sub-module is configured to acquire the target phase calibration data corresponding to the current test frequency point according to the corresponding relationship between the frequency point and the phase calibration data;
  • the second acquiring sub-module is configured to acquire the target radio frequency index calibration data corresponding to the current test frequency point according to the corresponding relationship between the frequency point and the radio frequency index calibration data;
  • the third acquiring submodule is configured to acquire the target wireless index calibration data corresponding to the current test frequency point according to the corresponding relationship between the frequency point and the wireless index calibration data;
  • the compensation module 114 includes:
  • the compensation sub-module is configured to compensate the test environment according to the target phase calibration data, the target radio frequency index calibration data, and the target wireless index calibration data.
  • test module 116 includes:
  • the first test sub-module is configured to perform a radio frequency index test on the radio frequency port of the AAU to be tested through the test probe to obtain the radio frequency index of the AAU to be tested;
  • the second test sub-module is configured to perform a wireless index test on the AAU to be tested through the test probe to obtain the wireless index of the AAU to be tested.
  • each of the above-mentioned modules can be implemented by software or hardware.
  • it can be implemented in the following way, but not limited to this: the above-mentioned modules are all located in the same processor; or, the above-mentioned modules are in any combination The forms are located in different processors.
  • the embodiment of the present application also provides a computer-readable storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the above-mentioned computer-readable storage medium may include, but is not limited to: U disk, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, RAM for short) , Mobile hard drives, magnetic disks or optical discs and other media that can store computer programs.
  • U disk Read-Only Memory
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Mobile hard drives magnetic disks or optical discs and other media that can store computer programs.
  • the embodiment of the present application also provides an electronic device, including a memory 1201 and a processor 1202, the memory 1201 stores a computer program, and the processor 1202 is configured to run the computer program to execute any of the above Steps in the method embodiment.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the AAU is tested with multiple test probes, which can solve some situations when the AAU tests the wireless performance through the standard far field or the compact field, the site requirements are strict and the construction cost is High and complex testing, which cannot be applied to mass production testing, thereby improving test efficiency and reducing costs, and can be applied to AAU mass production testing.
  • modules or steps of this application can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices. Above, they can be implemented with program codes executable by a computing device, so that they can be stored in a storage device for execution by the computing device, and in some cases, they can be executed in a different order than shown here. Or the described steps, or fabricate them into individual integrated circuit modules respectively, or fabricate multiple modules or steps of them into a single integrated circuit module to achieve. In this way, this application is not limited to any specific hardware and software combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

一种AAU测试方法、装置、多探头吸波暗箱、存储介质及电子装置,其中,该方法包括:根据预先存储的频点与校准结果的对应关系获取多探头吸波暗箱在当前测试频点对应的目标校准结果,其中,所述校准结果为对测试环境进行校准得到的校准结果(S202);根据所述目标校准结果对所述测试环境进行补偿(S204);在补偿后的所述测试环境中,通过所述多探头吸波暗箱的测试探头对待测有源天线单元AAU进行测试,得到所述待测AAU的射频指标及无线指标,其中,所述待测AAU设置于所述多探头吸波暗箱中(S206)。

Description

AAU测试方法、装置、多探头吸波暗箱、存储介质及电子装置
相关申请的交叉引用
本申请基于申请号为202010581635.0、申请日为2020年06月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及通信领域,具体而言,涉及一种AAU测试方法、装置、多探头吸波暗箱、存储介质及电子装置。
背景技术
传统基站设备(整机+金属滤波器)在其自身金属滤波器输出端具有射频端口,其射频指标的测试通常采用传导测试方法,测试界面在设备的射频端口。
新形态的天线滤波一体化(Antenna Filter Unified,简称为AFU)天线出现后,介质滤波器代替传统金属滤波器且介质滤波器已经上移至天线。这时“整机+滤波器模块”就无法在传导工位进行射频指标测试。
同时5G网络为满足高速率、大容量应用场景,要求有源波束覆盖更为准确。这就要求有源天线单元AAU(Active Antenna Unit)整体链路的相位起伏误差小于±5°,而介质滤波器由于自身特点就存在不同通道相位起伏±(5-8)°,加之天线单元之间互耦因素影响产生的相位误差,已经远远不能满足通信***波束精准赋形要求;为此要对AAU的相位进行测试和校准。
现阶段5G网络配套的AAU,主流都是多输入多输出(Multiple-Input Multiple-Output)MIMO天线阵面(多端口阵面)--64端口或32端口,采用单探头测试方案效率低、误差大。
AAU是天馈和有源收发信机的一体化设备,他们之间的接口表现为内部接口,实际工程上难以直接进行射频端口测试,就对AAU测试带来了挑战。使用传统基站设备的传导测试方法来测试AAU,需要将AAU的有源部分和天线阵面拆开。对于AAU来说,破坏了其一体化的拓扑结构,影响了设备集成度。
在一些情况中,通过标准远场或紧缩场对AAU全阵面的无线指标进行测试,在标准远场或紧缩场中,场地指标要求严苛、建设费用高且测试复杂,不能应用在批量生产测试中。
发明内容
本申请实施例提供了一种AAU测试方法、装置、多探头吸波暗箱、存储介质及电子装置,以至少在一定程度上解决相关的问题之一,包括一些情况下AAU通过标准远场或紧缩场测试无线性能时,场地指标要求严苛、建设费用高且测试复杂,不能应用在批量生产测试的问题。
根据本申请的一个实施例,提供了一种AAU测试方法,包括:根据预先存储的频点与校准结果的对应关系获取多探头吸波暗箱在当前测试频点对应的目标校准结果,其中,所述校准结果为对测试环境进行校准得到的校准结果;根据所述目标校准结果对所述测试环境进行补偿;在补偿后的所述测试环境中,通过所述多探头吸波暗箱的测试探头对待测有源天线单元AAU进行测试,得到所述待测AAU的射频指标及无线指标,其中,所述待测AAU设置于所述多探头吸波暗箱中。
根据本申请的另一个实施例,还提供了一种AAU测试装置,包括:获取模块,被设置成根据预先存储的频点与校准结果的对应关系获取多探头吸波暗箱在当前测试频点对应的目标校准结果,其中,所述校准结果为对测试环境进行校准得到的校准结果;补偿模块,被设置成根据所述目标校准结果对所述测试环境进行补偿;测试模块,被设置成在补偿后的所述测试环境中,通过所述多探头吸波暗箱的测试探头对待测有源天线单元AAU进行测 试,得到所述待测AAU的射频指标及无线指标,其中,所述待测AAU设置于所述多探头吸波暗箱中,所述测试探头为多个。
根据本申请的另一个实施例,还提供了一种多探头吸波暗箱,包括:测试探头、托盘夹持工装、屏蔽箱、天线阵面,所述测试探头设置于所述屏蔽箱内部,且设置于所述屏蔽箱的顶部,所述测试探头为多个;所述托盘夹持工装,被设置成固定待测AUU之后设置于所述屏蔽箱的内部,且位于所述测试探头的正下方;所述天线阵面,与所述待测AAU的天线相同,被设置成在服务器的控制下,对测试环境进行校准,得到校准结果,其中,所述校准结果用于所述服务器对所述测试环境进行补偿;所述测试探头,被设置成在所述测试环境补偿之后,对所述待测AAU进行测试,得到所述待测AAU的射频指标及无线指标。
根据本申请的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是本申请实施例的AAU测试方法的移动终端的硬件结构框图;
图2是根据本申请实施例的AAU测试方法的流程图;
图3是根据本实施例的AAU的示意图;
图4是根据本实施例的多探头吸波暗箱的示意图;
图5是根据本申请一实施例的多探头吸波暗箱的示意图一;
图6是根据本申请一实施例的多探头吸波暗箱的示意图二;
图7是根据本申请一实施例的多探头吸波暗箱的示意图三;
图8是根据本申请一实施例的多探头吸波暗箱的示意图四;
图9是根据本申请一实施例的多探头吸波暗箱的示意图五;
图10是根据本申请一实施例的多探头吸波暗箱的示意图六;
图11是根据本申请一实施例的AAU测试装置的结构框图;
图12是根据本申请实施例的电子装置的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本申请实施例的AAU测试方法的移动终端的硬件结构框图,如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的AAU测试方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102 远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端或网络架构的AAU测试方法,图2是根据本申请实施例的AAU测试方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,根据预先存储的频点与校准结果的对应关系获取多探头吸波暗箱在当前测试频点对应的目标校准结果,其中,所述校准结果为对测试环境进行校准得到的校准结果;
图3是根据本实施例的AAU的示意图,如图3所示,包括收发信机、AAU天线和天线罩。
在示例性实施例中,上述步骤S202具体可以包括:通过所述测试探头对所述待测AAU的射频端口进行射频指标测试,得到所述待测AAU的射频指标;通过所述测试探头对所述待测AAU进行无线指标测试,得到所述待测AAU的无线指标。
步骤S204,根据所述目标校准结果对所述测试环境进行补偿;
步骤S206,在补偿后的所述测试环境中,通过所述多探头吸波暗箱的测试探头对待测有源天线单元AAU进行测试,得到所述待测AAU的射频指标及无线指标,其中,所述待测AAU设置于所述多探头吸波暗箱中,所述测试探头为多个。
通过上述步骤S202至S206,根据校准结果对测试环境进行补偿后,通过多个测试探头对AAU进行测试,可以解决一些情况中AAU通过标准远场或紧缩场测试无线性能时,场地指标要求严苛、建设费用高且测试复杂,不能应用在批量生产测试的问题,从而提高测试效率,且降低成本,并可以应用于AAU的批量生产测试中。
在示例性实施例中,在根据预先存储的频点与校准结果的对应关系获取多探头吸波暗箱在当前测试频点对应的目标校准结果之前,在不同频点对所述多探头吸波暗箱的测试环境进行校准,得到所述频点与校准结果的对应关系,存储所述频点与校准结果的对应关系。
本实施例中,在不同频点对所述多探头吸波暗箱的测试环境进行校准,得到所述频点与校准结果的对应关系具体可以包括:
在不同频点对所述多探头吸波暗箱中的天线阵面进行相位校准,得到所述频点与相位校准数据的对应关系,进一步的,在不同频点对所述多探头吸波暗箱中的天线阵面进行相位校准,得到所述频点与相位校准数据的对应关系,进一步的,在预先设置的频段内设置不同频点,测试所述天线阵面的各单元的第一相位值,并对所述第一相位值进行归一化处理,得到第一相位数据,其中,所述天线阵面设置于远场的测试转台上,所述天线阵面的各单元和矢量网络分析仪通过射频线缆连接;通过所述多探头吸波暗箱的三维平台调整相位校准后的所述天线阵面的各单元与所述测试探头之间的位置关系,对所述天线阵面的各单元进行相位测试,得到第二相位值,并对所述第二测试值进行归一化处理,得到第二相位数据,其中,相位校准后的所述天线阵面设置于所述多探头吸波暗箱中;将所述第二相位数据与所述第一相位数据的差值确定为所述天线阵面的各单元的所述相位校准数据,得到所述频点与相位校准数据的对应关系;
基于相位校准后的所述天线阵面,在不同频点对所述多探头吸波暗箱进行AAU射频指标测试环境校准,得到所述频点与射频指标校准数据的对应关系,进一步的,在不同频点对相位校准后的天线阵面与所述测试探头之间的暗箱环境进行射频指标测试环境插损校准,得到所述频点与射频指标校准数据的对应关系,其中,所述天线阵面的结构和组成方式与所述待测AAU的天线阵面相同,具体的,对在预先设置的频段内的不同频点执行以下步骤,得到所述频点与射频指标校准数据的对应关系,对于正在执行的频点称为当前频点: 使用矢量网络分析仪对所述天线阵面中各单元的测试端口连接的射频线缆的两端进行S参数测试,得到第一插损;使用所述矢量网络分析仪测试所述测试探头的探头射频线的外部测试端口和所述天线阵面射频线的外部测试端口之间的S参数,得到第二插损;将所述第二插损与所述第一插损的差值确定为所述当前频点对应的所述射频指标校准数据;
在不同频点对所述多探头吸波暗箱进行AAU无线指标测试环境校准,得到所述频点与无线指标校准数据的对应关系,进一步的,调整标准增益的喇叭天线与所述测试探头的相对位置,具体的,通过移动所述多探头吸波暗箱的三维平台,将所述标准增益的喇叭天线调整到所述测试探头的正下方,其中,所述标准增益的喇叭天线设置于所述三维平台上;在不同频点对所述标准增益的喇叭天线与所述测试探头之间的暗箱环境进行无线测试链路插损校准,得到所述无线指标校准数据,其中,所述标准增益的喇叭天线设置于所述多探头吸波暗箱中,具体的,通过信号源发射不同频点的模拟信号,针对不同频点的所述模拟信号,执行以下步骤,得到所述频点与所述无线指标校准数据的对应关系,其中,对于正在执行的频点称为当前频点,所述信号源通过射频线缆与所述标准增益的喇叭天线连接:通过所述测试探头接收所述模拟信号,并通过频谱仪确定所述模拟信号的接收信号功率值,其中,所述频谱仪通过射频线缆与所述测试探头连接;根据所述接收信号功率值确定所述当前频点对应的所述无线指标校准数据,其中,所述校准结果包括所述相位校准数据、所述射频指标校准数据以及所述无线指标校准数据。
本实施例中,可以通过以下方式根据所述接收信号功率值确定所述当前频点对应的所述无线指标校准数据:
ΔG C=P t-P r-L 2+G t
其中,ΔG C为所述无线指标校准数据,P t为所述模拟信号的功率值,P r为所述接收信号功率,L 2为所述频谱仪与测试探头之间的线缆插损,G t为所述喇叭天线的增益。
在示例性实施例中,上述步骤S202具体可以包括:根据所述频点与相位校准数据的对应关系获取所述当前测试频点对应的目标相位校准数据;根据所述频点与射频指标校准数据的对应关系获取所述当前测试频点对应的目标射频指标校准数据,根据所述频点与无线指标校准数据的对应关系获取所述当前测试频点对应的目标无线指标校准数据;对应的,上述步骤S204具体可以包括:根据所述目标相位校准数据、所述目标射频指标校准数据以及所述目标无线指标校准数据对所述测试环境进行补偿,其中,所述目标校准结果包括所述目标相位校准数据、所述目标射频指标校准数据以及所述目标无线指标校准数据。
本实施例采用多探头吸波暗箱能够完成对AAU中收发信机输出端***频指标测试、AAU辐射面无线指标测试,包括:
天线阵面单元相位校准:通过标准的远场或紧缩场,对所述天线单元进行相位校准。
AAU射频指标测试环境校准:首先通过网络分析仪等仪器对所述暗箱中连接天线阵面单元的测试线缆插损校准;随后将上述相位校准的天线阵面放置在暗箱中,并调整天线阵面单元与测试探头的相对位置,通过移动三维平移台对阵面各单元与探头之间的暗箱环境进行射频链路插损校准、相位校准。其中所述天线阵面的单元结构和组成方式与所述被测AAU天馈部分完成相同,所述测试探头为宽带双极化探头天线;
AAU无线指标测试环境校准:将标准增益喇叭天线放置在暗箱中,并调整喇叭天线与测试探头的无线位置,通过移动三维平移台对喇叭天线与各个测试探头之间的暗箱环境进行无线链路插损校准。其中所述的标准增益喇叭是指在经过标准场地标定且增益已知的天线。
AAU(有源天线单元)测试:将被测AAU置于所述环境校准后的暗箱中并固定AAU与测试探头之间的相对位置,其测试环境与所述吸波暗箱校准后的测试环境相同;根据所述校 准结果对测试环境进行补偿后,通过所述测试探头的对AAU进行测试,得到所述的射频及无线指标。
天线阵面单元相位校准,是指在标准的远场或紧缩场中对天线阵面各单元相位进行校准测试,同时将该天线作为参考天线,测试数据作为测试装置--多探头暗箱环境校准的基准数据。
固定所述被测AAU与所述测试探头之间的相对位置是指:使得所述测试探头的极化方向与所述被测AAU极化方向同向,AAU与测试探头之间垂直距离:d≥2D 2/λ,其中,D为单元口径尺寸,λ为AAU工作中心频率对应的波长。
本实施例中的多探头吸波暗箱包括屏蔽箱、吸波材料、接驳台、托盘夹持工装、三维平移台、测试探头、探头位置调整单元、频谱仪、射频矩阵开关、射频测试线缆。
所述屏蔽箱与吸波材料用于在所述测试探头与所述被测AAU之间的形成类似于自由无线、无反射的电磁环境。
所述的接驳台,设置在屏蔽箱外部,主要实现被测AAU的进入和退出功能。
所述的托盘夹持工装,主要实现对被测AAU在测试过程中的固定和保护,材料为非金属材料,减少反射对测试造成影响。托盘上有六个可移动滑块(前后各一个、左右各两个),通过调整滑块在托盘上的位置,来适应不同尺寸和/或不同频率的AAU。
所述的三维平台用于固定并调整被测AAU与测试探头的垂直测试距离,另外可在测试过程中改变被测AAU与测试探头的水平位置,实现不同端口AAU射频及无线指标测试。
所述测试探头为宽带双极化探头天线,吸波暗箱中可安装4-8个相同规格的测试探头,实现并行测试,提高测试效率;多探头吸波暗箱还包括探头位置调整单元和射频矩阵开关,所述探头位置调整单元包括设在所述屏蔽箱体上的滑动导轨和可独立控制每个探头位置移动的电机,用来控制测试探头之间相对位置的改变,可方便的进行不同频段AAU测试需求。所述的射频矩阵开关采用机械型开关,用来实现不同的测试探头射频链路快速切换,对所述被测不同端口AAU的射频及无线指标进行测试。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加通用硬件平台的方式来实现,当然也可仅通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
根据本申请的另一个实施例,还提供了一种多探头吸波暗箱,图4是根据本实施例的多探头吸波暗箱的示意图,如图4所示,包括:测试探头11、托盘夹持工装12、屏蔽箱13、天线阵面(图中未示出),所述测试探头11设置于所述屏蔽箱13内部,且设置于所述屏蔽箱13的顶部,其中,所述测试探头11为多个;
所述托盘夹持工装12,用于固定待测AUU之后设置于所述屏蔽箱13的内部,且位于所述测试探头11的正下方;
所述天线阵面,与所述待测AAU的天线相同,用于在服务器的控制下,对测试环境进行校准,得到校准结果,其中,所述校准结果用于所述服务器对所述测试环境进行补偿;
所述测试探头11,用于在所述测试环境补偿之后,对所述待测AAU进行测试,得到所述待测AAU的射频指标及无线指标。
在示例性实施例中,还包括:接驳台、天线阵面射频线缆、三维平台、升降架、导轨,其中,所述待测AAU设置于所述三维平台上,所述三维平台通过所述升降架与所述导轨连接,
所述接驳台,设置在所述屏蔽箱13外部,用于控制待测AAU进入和退出所述屏蔽箱 13;
所述天线阵面射频线缆,连接所述天线阵面和外部仪器,用于输入或输出所述天线阵面的射频信号;
导轨,用于控制所述三维平台的移动轨迹;
升降架,用于控制所述三维平台与所述测试探头11的垂直距离;
探头位置调整单元,包括设置于所述屏蔽箱13上的滑动导轨和独立控制每个测试探头11位置移动的电机,用于控制所述测试探头11的相对位置。
在示例性实施例中,所述托盘夹持工装12包括多个可移动滑块,通过调整所述多个可移动滑块的位置,固定不同尺寸和/或不同频率的所述待测AAU。
上述AFU天线出现后,介质滤波器代替传统金属滤波器且介质滤波器已经上移至天线。这时“整机+滤波器模块”就无法在传导工位进行ACPR、EVM等射频指标测试,同时天线与收发信机的接口表现为内部接口,因此AAU的射频指标需要通过OTA方法测试。
图5是根据本申请实施例的多探头吸波暗箱的示意图一,如图5所示,包括:
接驳台14,设置在暗室外部,主要实现被测AAU自动化的进入和退出功能。
托盘夹持工装12,主要实现对被测AAU在测试过程中的固定和保护,材料为非金属材料,减少反射对测试造成影响。托盘上有六个可移动滑块(前后各一个、左右各两个),通过调整滑块在托盘上的位置,来适应不同尺寸的被测AAU。
“屏蔽箱+吸波材料”13,被设置成在所述测试探头与所述被测AAU之间的形成类似于自由无线、无反射的电磁环境;
测试探头天线11,为宽带双极化探头天线,吸波暗箱中可安装8个相同规格的测试探头,实现并行测试,提高测试效率;
探头射频线15,被设置成输入/输出测试探头射频信号。
天线阵面16,与被测件AAU中的天线部分完全相同,被设置成测试装置校准;
天线阵面射频线缆17,连接天线阵面单元和外部连接器之间射频线缆,被设置成输入/输出天线阵面各单元的射频信号:
三维平台18,被设置成固定和放置被测AAU或被测天线阵面。
导轨19,被设置成控制三维平台18的移动轨迹,使其做等间距的平面移动,在测试过程中改变被测AAU与测试探头的水平位置,实现不同端口AAU射频及无线指标测试。
升降架110,被设置成控制三维平台18与测试探头11的垂直距离,可使测试装置适用于不同频段AAU的测试;
探头位置调整单元111,包括设在所述屏蔽箱体上的滑动导轨和可独立控制每个探头位置移动的电机,用来控制多个测试探头之间相对位置的改变,可方便的进行不同尺寸AAU测试需求。
暗箱具体测试过程:在屏蔽箱13中,被测件AAU用托盘夹持工装12固定,通过接驳台14送至到三维平台18上,可以通过改变三维平台18与测试探头11之间的相对位置,改变被测AAU和测试探头天线11之间的相对位置;三维平台下方具有滑动导轨,平台在导轨上滑动,导轨具有限位定距功能,保证测试探头11可以遍历测试AAU各个端口的射频及无线指标。天线阵面16作为测试装置的一部分,是和被测件AAU中天线部分完全相同的,主要用于测试装置的校准。
图6是根据本申请一实施例的多探头吸波暗箱的示意图二,如图6所示,AAU天线阵面16,该天线阵面共有12*8个单元,其中垂直方向3个单元合成1路输出--对应AAU一个射频端口,共输出64个射频端口,包括32个+45°端口和32个-45°端口,不同列水平间距d2,3合1单元之间的垂直距离为d2;同时根据8个探头的排列方式,将整个阵面分成4个测试区域。
图7是根据本申请一实施例的多探头吸波暗箱的示意图三,如图7所示,测试探头11,该探头阵列共2*4个探头,探头的水平间距d2,垂直间距d1,,单次测试时8个探头分别 位于上述天线阵面16测试区域中8个3合1单元中心单元的正上方,探头天线并行移动4次就可完成整个天线阵面的单元性能指标测试。
本申请实施例提供一种AAU(有源天线单元)的OTA测试方法,该测试方法主要包括:AAU天线单元相位校准、暗箱射频指标测试环境校准、暗箱无线指标测试环境校准、AAU(有源天线单元)测试。
该测试方法的具体测试过程描述如下:
1、AAU天线单元相位校准
图8是根据本申请一实施例的多探头吸波暗箱的示意图四,如图8所示,在标准的远场中对同被测AAU中天线部分完全相同的天线阵面单元相位进行校准测试,同时将该天线阵面作为参考天线,测试数据作为暗箱环境相位校准的基准数据。
2、暗箱射频指标测试环境校准
暗箱射频指标测试环境校准:首先通过网络分析仪等仪器对所述暗箱中连接天线阵面射频线缆17插损校准;随后将上述相位校准的天线阵面放置在暗箱中,并调整天线阵面与测试探头11的无线位置,通过移动三维平移台18对阵面各单元与探头之间的暗箱环境进行链路插损校准和相位校准。其中所述天线阵面的单元结构和组成方式与所述被测AAU中天线阵面部分完成相同,所述测试探头为宽带双极化探头天线;
3、暗箱无线指标测试环境校准
暗箱无线指标测试环境校准:将标准增益喇叭天线放置在暗箱中,并调整喇叭天线与测试探头的无线位置,通过移动三维平移台对喇叭天线与各个测试探头之间的暗箱环境进行链路插损校准。其中所述的标准增益喇叭是指经过标定且增益已知的天线。
4、AAU测试
将被测AAU置于所述环境校准后的暗箱三维平台18上,固定它与测试探头11之间的无线关系,三维平台18通过导轨在测试装置中做等间距的定位移动,通过探头天线射频线15可以实现射频信号的输入或输出,将被测件AAU作为被测试件(Device Under Test,简称为DUT)进行射频及无线指标测试并得到相应的测量结果。
通过天线单元相位校准表和射频、无线测试环境校准表,得到校准值,将其补偿到测试环境中,结合测量和校准数据计算出被测件--AAU的射频及无线指标。
以下将结合具体应用实例,对本申请的AAU(有源天线单元)OTA测试方法及装置的实施作进一步详细描述。
1、AAU天线单元相位校准
如图8所示,按步骤1,将天线阵面放置在位于远场的测试转台上,通过射频线缆连接天线阵面各单元和矢量网络分析仪,在指定频段内设置频点,测试天线阵面单元的相位值P 11,P 21,…,P nm,并以第一单元的其中一个端口为基准归一化数据:0°,P 21归,…,P nm归;同时将该天线阵面作为参考天线,测试数据“0°,P 21归,…,P nm归”作为后续暗箱相位校准的基准数据。
步骤2,将相位校准的天线阵面放置在如图2所示的多探头吸波暗箱中,通过三维平台18调整天线阵面各端口单元与测试探头11之间的位置关系,实现对天线阵面各单元相位测试,测试值P′ 11,P′ 21,…,P′ nm并以第一个端口为基准归一化数据:0°,P′ 21归,…,P′ nm归。测试装置中天线阵面各端口相位补偿值ΔP nm=P′ nm归-P nm归
2、暗箱射频指标测试环境校准
图9是根据本申请一实施例的多探头吸波暗箱的示意图五,如图9所示,建立校准环境,按照步骤3,在指定频段内设置频点,用矢量网络分析仪对测试装置中的天线阵面单 元测试端口连接射频线缆17的两端(界面2和界面3)进行S参数测试,得到各射频线的插损为L_23_nm(其中n、m对应AAU中天线阵面对应天线振子的序号)。
步骤4,在指定频段内设置频点,用矢量网络分析仪测试--测试探头的射频线15外部测试端口(界面1)和天线阵面射频线17外部测试端口(界面3)之间的S参数,得到各端***频端口的插损为L_13_nm(其中n、m对应AAU中天线阵面对应天线端口的序号)。
步骤705,计算出在该测试环境下,从测试探头11的测试端口和被测天线阵面测试端口之间的插损L_12_nm=L_13_nm-L_23_nm。
其中n、m对应AAU天线单元的排列序号。
步骤6,在要求的测试频段内,可以选择高中低三个频点重复步骤4-5,也可以根据具体测试要求进行多频点校准。最后对多组校准数据做插值等数学计算,得到暗箱测试环境下对应校准频率和校准值的一维表格或曲线。通过查表就可以得到各端口中指定频段内任意频点的校准值ΔL C(即为L_12_nm),该校准值为射频测试链路补偿值。
3、暗箱无线指标测试环境校准
图10是根据本申请一实施例的多探头吸波暗箱的示意图六,如图10所示,建立校准环境,暗箱无线指标测试环境校准:将标准增益喇叭天线21放置在多探头吸波暗箱的三维平台18上,并通过射频线缆22和信号源23相连,另一端测试探头天线11通过射频线缆24连接到频谱仪25。
校准过程主要包括以下步骤:
步骤1,通过移动三维平台18,调整喇叭天线21位于测试探头11的正下方。
步骤2,设置信号源23发射连续模拟信号。
步骤3,通过接收探头11接收上述模拟信号,并通过频谱仪25得到相应的接收信号功率,计算方法如下:
P t-P r=L 2+(L 1-G r+L 0)-G t
其中,P t为所述模拟发射信号功率值,即信号源23输出的连续信号功率值;
P r为接收信号功率值,对应频谱仪25的接收功率值;
G r为接收探头天线14增益;
G t为喇叭天线21的增益;
L 1为射频线缆22的插损;
L 2为频谱仪与测试探头之间的线缆插损,即射频线缆24的插损:
L 0为暗箱环境中无线路损。
其中,P t和G t已知,P r和L 2可以测量得到,通过公式计算可以得到无线链路(包括无线路损、线缆插损、接收天线增益等)的无线指标校准数据ΔG C:
ΔG C=P t-P r-L 2+G t,此校准数值ΔG C就是暗箱无线指标测试的补偿值。
4、射频及无线指标测试
如图5所示,建立测试环境,和校准测试比较,用被测AAU替代了校准测试用的天线阵面及射频线,包括:
步骤1,首先对AAU的相位、射频链路、无线链路进行补偿。各端口的补偿值ΔP nm、ΔL C、ΔG C通过校准环节中的校准表查得。
步骤2,对暗箱补偿校准后,按照3GPP协议相关测试要求,通过测试探头对AAU射频端口进行射频指标测试。
步骤3,对暗箱补偿校准后,按照3GPP协议的相关测试要求,通过测试探头对AAU进行无线指标测试,该无线指标包括但不限于相位、有效各向辐射功率(Effective Isotropic Radiated Power,简称为EIRP)、有效各向同性灵敏度(Effective Isotropic Sensitivity,简称为EIS)等。
综上所述,本实施例,在解决目前AAU没有外部射频端口、AFU新形态测试问题的基础上,有效提高了测试效率,降低了测试成本;本申请的测试方法和装置可以应用于AAU的批量生产测试中。
以上仅为本申请的一些实施案例而已,并不用于限制本申请,本申请还可有其他多种实施例,在不背离本申请精神及其实质的情况下,熟悉本领域的技术人员可根据本申请做出各种相应的改变和变形,但这些相应的改变和变形都应属于本申请所附的权利要求保护范围。
在本实施例中还提供了一种AAU测试装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图11是根据本申请实施例的AAU测试装置的结构框图,如图11所示,该装置包括:
获取模块112,被设置成根据预先存储的频点与校准结果的对应关系获取多探头吸波暗箱在当前测试频点对应的目标校准结果,其中,所述校准结果为对测试环境进行校准得到的校准结果;
补偿模块114,被设置成根据所述目标校准结果对所述测试环境进行补偿;
测试模块116,被设置成在补偿后的所述测试环境中,通过所述多探头吸波暗箱的测试探头对待测有源天线单元AAU进行测试,得到所述待测AAU的射频指标及无线指标,其中,所述待测AAU设置于所述多探头吸波暗箱中,所述测试探头为多个。
在示例性实施例中,所述装置还包括:
校准模块,被设置成在不同频点对所述多探头吸波暗箱的测试环境进行校准,得到所述频点与校准结果的对应关系;
存储模块,被设置成存储所述频点与校准结果的对应关系。
在示例性实施例中,所述校准模块包括:
相位校准子模块,被设置成在不同频点对所述多探头吸波暗箱中的天线阵面进行相位校准,得到所述频点与相位校准数据的对应关系;
第一校准子模块,被设置成基于相位校准后的所述天线阵面,在不同频点对所述多探头吸波暗箱进行AAU射频指标测试环境校准,得到所述频点与射频指标校准数据的对应关系;
第二校准子模块,被设置成在不同频点对所述多探头吸波暗箱进行AAU无线指标测试环境校准,得到所述频点与无线指标校准数据的对应关系;
其中,所述校准结果包括所述相位校准数据、所述射频指标校准数据以及所述无线指标校准数据。
在示例性实施例中,所述相位校准子模块包括:
处理单元,被设置成在预先设置的频段内设置不同频点,测试所述天线阵面的各单元的第一相位值,并对所述第一相位值进行归一化处理,得到第一相位数据,其中,所述天线阵面设置于远场的测试转台上;
测试单元,被设置成通过所述多探头吸波暗箱的三维平台调整相位校准后的所述天线阵面的各单元与所述测试探头之间的位置关系,对所述天线阵面的各单元进行相位测试,得到第二相位值,并对所述第二测试值进行归一化处理,得到第二相位数据,其中,相位校准后的所述天线阵面设置于所述多探头吸波暗箱中;
确定单元,被设置成将所述第二相位数据与所述第一相位数据的差值确定为所述天线阵面的各单元的所述相位校准数据,得到所述频点与相位校准数据的对应关系。
在示例性实施例中,所述第一校准子模块包括:
第一校准单元,被设置成在不同频点对相位校准后的所述天线阵面与所述测试探头之间的暗箱环境进行射频指标测试环境校准,得到所述频点与射频指标校准数据的对应关系,其中,所述天线阵面的结构和组成方式与所述待测AAU的天线阵面相同。
在示例性实施例中,所述第一校准单元,还被设置成
对在预先设置的频段内的不同频点执行以下步骤,得到所述频点与射频指标校准数据的对应关系,对于正在执行的频点称为当前频点:
使用矢量网络分析仪对相位校准后的所述天线阵面中各单元的测试端口连接的射频线缆的两端进行S参数测试,得到第一插损;
使用所述矢量网络分析仪测试所述测试探头的探头射频线的外部测试端口和所述天线阵面射频线的外部测试端口之间的S参数,得到第二插损;
将所述第二插损与所述第一插损的差值确定为所述当前频点对应的所述射频指标校准数据。
在示例性实施例中,所述第二校准子模块包括:
调整单元,被设置成调整标准增益的喇叭天线与所述测试探头的相对位置;
第二校准单元,被设置成在不同频点对所述标准增益的喇叭天线与所述测试探头之间的暗箱环境进行无线测试链路插损校准,得到所述无线指标校准数据,其中,所述标准增益的喇叭天线设置于所述多探头吸波暗箱中。
在示例性实施例中,所述第二校准单元,还被设置成
通过信号源发射不同频点的模拟信号,针对不同频点的所述模拟信号,执行以下步骤,得到所述频点与所述无线指标校准数据的对应关系,其中,对于正在执行的频点称为当前频点,所述信号源通过射频线缆与所述标准增益的喇叭天线连接:
通过所述测试探头接收所述模拟信号,并通过频谱仪确定所述模拟信号的接收信号功率值,其中,所述频谱仪通过射频线缆与所述测试探头连接;
根据所述接收信号功率值确定所述当前频点对应的所述无线指标校准数据。
在示例性实施例中,所述第三校准单元,还被设置成通过以下方式根据所述接收信号功率值确定所述当前频点对应的所述无线指标校准数据:
ΔG C=P t-P r-L 2+G t
其中,ΔG C为所述无线指标校准数据,P t为所述模拟信号的功率值,P r为所述接收信号功率值,L 2为所述频谱仪与测试探头之间的线缆插损,G t为所述喇叭天线的增益。
在示例性实施例中,所述获取模块包括:
第一获取子模块,被设置成根据所述频点与相位校准数据的对应关系获取所述当前测试频点对应的目标相位校准数据;
第二获取子模块,被设置成根据所述频点与射频指标校准数据的对应关系获取所述当前测试频点对应的目标射频指标校准数据;
第三获取子模块,被设置成根据所述频点与无线指标校准数据的对应关系获取所述当前测试频点对应的目标无线指标校准数据;
对应的,所述补偿模块114包括:
补偿子模块,被设置成根据所述目标相位校准数据、所述目标射频指标校准数据以及所述目标无线指标校准数据对所述测试环境进行补偿。
在示例性实施例中,所述测试模块116包括:
第一测试子模块,被设置成通过所述测试探头对所述待测AAU的射频端口进行射频指标测试,得到所述待测AAU的射频指标;
第二测试子模块,被设置成通过所述测试探头对所述待测AAU进行无线指标测试,得到所述待测AAU的无线指标。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本申请的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
参照图12,本申请的实施例还提供了一种电子装置,包括存储器1201和处理器1202,该存储器1201中存储有计算机程序,该处理器1202被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
通过本申请,根据校准结果对测试环境进行补偿后,通过多个测试探头对AAU进行测试,可以解决一些情况中AAU通过标准远场或紧缩场测试无线性能时,场地指标要求严苛、建设费用高且测试复杂,不能应用在批量生产测试的问题,从而提高测试效率,且降低成本、并可应用于AAU批量生产测试中。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的一些实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种AAU测试方法,包括:
    根据预先存储的频点与校准结果的对应关系获取多探头吸波暗箱在当前测试频点对应的目标校准结果,其中,所述校准结果为对测试环境进行校准得到的校准结果;
    根据所述目标校准结果对所述测试环境进行补偿;
    在补偿后的所述测试环境中,通过所述多探头吸波暗箱的测试探头对待测有源天线单元AAU进行测试,得到所述待测AAU的射频指标及无线指标,其中,所述待测AAU设置于所述多探头吸波暗箱中,所述测试探头为多个。
  2. 根据权利要求1所述的方法,其中,在根据预先存储的频点与校准结果的对应关系获取多探头吸波暗箱在当前测试频点对应的目标校准结果之前,所述方法还包括:
    在不同频点对所述多探头吸波暗箱的测试环境进行校准,得到所述频点与校准结果的对应关系;
    存储所述频点与校准结果的对应关系。
  3. 根据权利要求2所述的方法,其中,在不同频点对所述多探头吸波暗箱的测试环境进行校准,得到所述频点与校准结果的对应关系包括:
    在不同频点对所述多探头吸波暗箱中的天线阵面进行相位校准,得到所述频点与相位校准数据的对应关系;
    基于相位校准后的所述天线阵面,在不同频点对所述多探头吸波暗箱进行AAU射频指标测试环境校准,得到所述频点与射频指标校准数据的对应关系;
    在不同频点对所述多探头吸波暗箱进行AAU无线指标测试环境校准,得到所述频点与无线指标校准数据的对应关系;
    其中,所述校准结果包括所述相位校准数据、所述射频指标校准数据以及所述无线指标校准数据。
  4. 根据权利要求3所述的方法,其中,在不同频点对所述多探头吸波暗箱的天线阵面进行相位校准,得到所述频点与相位校准数据的对应关系包括:
    在预先设置的频段内设置不同频点,测试所述天线阵面的各单元的第一相位值,并对所述第一相位值进行归一化处理,得到第一相位数据,其中,所述天线阵面设置于远场的测试转台上;
    通过所述多探头吸波暗箱的三维平台调整相位校准后的所述天线阵面的各单元与所述测试探头之间的位置关系,对所述天线阵面的各单元进行相位测试,得到第二相位值,并对所述第二测试值进行归一化处理,得到第二相位数据,其中,相位校准后的所述天线阵面设置于所述多探头吸波暗箱中;
    将所述第二相位数据与所述第一相位数据的差值确定为所述天线阵面的各单元的所述相位校准数据,得到所述频点与相位校准数据的对应关系。
  5. 根据权利要求3所述的方法,其中,基于相位校准后的所述天线阵面,在不同频点对所述多探头吸波暗箱进行AAU射频指标测试环境校准,得到所述频点与射频指标校准数据的对应关系包括:
    在不同频点对相位校准后的所述天线阵面与所述测试探头之间的暗箱环境进行射频指标测试环境校准,得到所述频点与射频指标校准数据的对应关系,其中,所述天线阵面的结构和组成方式与所述待测AAU的天线阵面相同。
  6. 根据权利要求5所述的方法,其中,在不同频点对相位校准后的所述天线阵面与所述测试探头之间的暗箱环境进行射频指标测试环境插损校准,得到所述频点与射频指标校准数据的对应关系包括:
    对在预先设置的频段内的不同频点执行以下步骤,得到所述频点与射频指标校准数据的对应关系,对于正在执行的频点称为当前频点:
    使用矢量网络分析仪对相位校准后的所述天线阵面中各单元的测试端口连接的射频线缆的两端进行S参数测试,得到第一插损;
    使用所述矢量网络分析仪测试所述测试探头的探头射频线的外部测试端口和所述天线阵面射频线的外部测试端口之间的S参数,得到第二插损;
    将所述第二插损与所述第一插损的差值确定为所述当前频点对应的所述射频指标校准数据。
  7. 根据权利要求3所述的方法,其中,在不同频点对所述多探头吸波暗箱进行AAU无线指标测试环境校准,得到所述频点与无线指标校准数据的对应关系包括:
    调整标准增益的喇叭天线与所述测试探头的相对位置;
    在不同频点对所述标准增益的喇叭天线与所述测试探头之间的暗箱环境进行无线测试链路插损校准,得到所述无线指标校准数据,其中,所述标准增益的喇叭天线设置于所述多探头吸波暗箱中。
  8. 根据权利要求7所述的方法,其中,在不同频点对所述喇叭天线与所述测试探头之间的暗箱环境进行无线测试链路插损校准,得到所述无线指标校准数据包括:
    通过信号源发射不同频点的模拟信号,针对不同频点的所述模拟信号,执行以下步骤,得到所述频点与所述无线指标校准数据的对应关系,其中,对于正在执行的频点称为当前频点,所述信号源通过射频线缆与所述标准增益的喇叭天线连接:
    通过所述测试探头接收所述模拟信号,并通过频谱仪确定所述模拟信号的接收信号功率值,其中,所述频谱仪通过射频线缆与所述测试探头连接;
    根据所述接收信号功率值确定所述当前频点对应的所述无线指标校准数据。
  9. 根据权利要求8所述的方法,还包括:
    通过以下方式根据所述接收信号功率值确定所述当前频点对应的所述无线指标校准数据:
    ΔG C=P t-P r-L 2+G t
    其中,ΔG C为所述无线指标校准数据,P t为所述模拟发射信号功率值,P r为所述接收信号功率值,L 2为所述频谱仪与测试探头之间的线缆插损,G t为所述喇叭天线的增益。
  10. 根据权利要求3至9中任一项所述的方法,其中,
    根据预先存储的频点与校准结果的对应关系获取所述多探头吸波暗箱在当前测试频点对应的目标校准结果包括:
    根据所述频点与相位校准数据的对应关系获取所述当前测试频点对应的目标相位校准数据;
    根据所述频点与射频指标校准数据的对应关系获取所述当前测试频点对应的目标射频指标校准数据;
    根据所述频点与无线指标校准数据的对应关系获取所述当前测试频点对应的目标无线指标校准数据;
    根据所述目标校准结果对所述测试环境进行补偿包括:
    根据所述目标相位校准数据、所述目标射频指标校准数据以及所述目标无线指标校准数据对所述测试环境进行补偿。
  11. 根据权利要求1至9中任一项所述的方法,其中,通过所述多探头吸波暗箱的测试探头对待测AAU进行测试,得到所述待测AAU的射频指标及无线指标包括:
    通过所述测试探头对所述待测AAU的射频端口进行射频指标测试,得到所述待测AAU的射频指标;
    通过所述测试探头对所述待测AAU进行无线指标测试,得到所述待测AAU的无线指标。
  12. 一种AAU测试装置,包括:
    获取模块,被设置成根据预先存储的频点与校准结果的对应关系获取多探头吸波暗箱在当前测试频点对应的目标校准结果,其中,所述校准结果为对测试环境进行校准得到的校准结果;
    补偿模块,被设置成根据所述目标校准结果对所述测试环境进行补偿;
    测试模块,被设置成在补偿后的所述测试环境中,通过所述多探头吸波暗箱的测试探头对待测有源天线单元AAU进行测试,得到所述待测AAU的射频指标及无线指标,其中,所述待测AAU设置于所述多探头吸波暗箱中,所述测试探头为多个。
  13. 一种多探头吸波暗箱,包括:测试探头、托盘夹持工装、屏蔽箱、天线阵面,所述测试探头设置于所述屏蔽箱内部,且设置于所述屏蔽箱的顶部,其中,所述测试探头为多个;
    所述托盘夹持工装,被设置成固定待测AUU之后设置于所述屏蔽箱的内部,且位于所述测试探头的正下方;
    所述天线阵面,与所述待测AAU的天线相同,被设置成在服务器的控制下,对测试环境进行校准,得到校准结果,其中,所述校准结果用于所述服务器对所述测试环境进行补偿;
    所述测试探头,被设置成在所述测试环境补偿之后,对所述待测AAU进行测试,得到所述待测AAU的射频指标及无线指标。
  14. 根据权利要求13所述的多探头吸波暗箱,还包括:接驳台、天线阵面射频线缆、三维平台、升降架、导轨,其中,所述待测AAU设置于所述三维平台上,所述三维平台通过所述升降架与所述导轨连接,
    所述接驳台,设置在所述屏蔽箱外部,被设置成控制待测AAU进入和退出所述屏蔽箱;
    所述天线阵面射频线缆,连接所述天线阵面和外部仪器,被设置成输入或输出所述天线阵面的射频信号;
    导轨,被设置成控制所述三维平台的移动;
    升降架,被设置成控制所述三维平台与所述测试探头的垂直距离;
    探头位置调整单元,包括设置于所述屏蔽箱上的滑动导轨和独立控制所述测试探头位置移动的电机,被设置成控制所述测试探头之间的相对位置。
  15. 根据权利要求13或14所述的多探头吸波暗箱,其中,
    所述托盘夹持工装包括多个可移动滑块,通过调整所述多个可移动滑块的位置,固定不同尺寸和/或不同频率的所述待测AAU。
  16. 一种计算机可读存储介质,其中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至11任一项中所述的方法。
  17. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至11任一项中所述的方法。
PCT/CN2021/094211 2020-06-23 2021-05-17 Aau测试方法、装置、多探头吸波暗箱、存储介质及电子装置 WO2021258916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010581635.0 2020-06-23
CN202010581635.0A CN113242572A (zh) 2020-06-23 2020-06-23 Aau测试方法、装置以及多探头吸波暗箱

Publications (1)

Publication Number Publication Date
WO2021258916A1 true WO2021258916A1 (zh) 2021-12-30

Family

ID=77129825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094211 WO2021258916A1 (zh) 2020-06-23 2021-05-17 Aau测试方法、装置、多探头吸波暗箱、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN113242572A (zh)
WO (1) WO2021258916A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097220A (zh) * 2022-07-20 2022-09-23 中国电子科技集团公司第三十八研究所 一种有源天线模块微型暗室测试***及测试方法
CN116482509A (zh) * 2023-03-09 2023-07-25 深圳市燕麦科技股份有限公司 一种射频电路测试方法、装置及相关设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116366173A (zh) * 2023-03-15 2023-06-30 北京中微普业科技有限公司 一种5g aau基站高低温温循ota产线测试***
CN116436538B (zh) * 2023-06-12 2023-11-21 西安弘捷电子技术有限公司 多通道tr组件测试自动校准方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830298A (zh) * 2012-07-27 2012-12-19 中兴通讯股份有限公司 一种有源天线***射频指标及无线指标的测试方法与装置
CN102857310A (zh) * 2012-07-27 2013-01-02 中兴通讯股份有限公司 一种有源天线***无线指标的测试方法及装置
CN102857309A (zh) * 2012-07-27 2013-01-02 中兴通讯股份有限公司 一种有源天线***射频指标的测试方法和装置
EP2547059A1 (en) * 2011-07-13 2013-01-16 Harris Corporation Transmitter including calibration of an in-phase/Quadrature (I/Q) modulator and associated methods
US20140333459A1 (en) * 2013-05-13 2014-11-13 Renesas Electronics Corporation Electronic system and operating method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206292264U (zh) * 2016-12-12 2017-06-30 北京中科国技信息***有限公司 通用ota测试暗箱
CN108508393A (zh) * 2018-07-03 2018-09-07 上海益麦电磁技术有限公司 一种多探头天线测试***探头校准***和校准方法
CN208872779U (zh) * 2018-08-21 2019-05-17 湖北三江航天险峰电子信息有限公司 一种天线温漂相位稳定性测试箱及测试***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2547059A1 (en) * 2011-07-13 2013-01-16 Harris Corporation Transmitter including calibration of an in-phase/Quadrature (I/Q) modulator and associated methods
CN102830298A (zh) * 2012-07-27 2012-12-19 中兴通讯股份有限公司 一种有源天线***射频指标及无线指标的测试方法与装置
CN102857310A (zh) * 2012-07-27 2013-01-02 中兴通讯股份有限公司 一种有源天线***无线指标的测试方法及装置
CN102857309A (zh) * 2012-07-27 2013-01-02 中兴通讯股份有限公司 一种有源天线***射频指标的测试方法和装置
US20140333459A1 (en) * 2013-05-13 2014-11-13 Renesas Electronics Corporation Electronic system and operating method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097220A (zh) * 2022-07-20 2022-09-23 中国电子科技集团公司第三十八研究所 一种有源天线模块微型暗室测试***及测试方法
CN115097220B (zh) * 2022-07-20 2024-04-30 中国电子科技集团公司第三十八研究所 一种有源天线模块微型暗室测试***及测试方法
CN116482509A (zh) * 2023-03-09 2023-07-25 深圳市燕麦科技股份有限公司 一种射频电路测试方法、装置及相关设备
CN116482509B (zh) * 2023-03-09 2023-10-27 深圳市燕麦科技股份有限公司 一种射频电路测试方法、装置及相关设备

Also Published As

Publication number Publication date
CN113242572A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2021258916A1 (zh) Aau测试方法、装置、多探头吸波暗箱、存储介质及电子装置
US10177862B2 (en) System and method for performing over-the-air tests for massive multi-input/multi-output wireless system
JP5947978B2 (ja) アクティブアンテナシステム無線周波数インデックスの試験方法及び装置
US9596039B2 (en) Method and device for testing radio frequency index and wireless index of active antenna system
US8502546B2 (en) Multichannel absorberless near field measurement system
CN102857310B (zh) 一种有源天线***无线指标的测试方法及装置
US7672640B2 (en) Multichannel absorberless near field measurement system
US7135941B1 (en) Triple probe automatic slide screw load pull tuner and method
CN108768553B (zh) 一种通用性全自动阵列收发模块幅相测试***及其测试方法
US10333631B2 (en) Test arrangement and test method
CN103412227B (zh) 一种基于绕射抑制的频选雷达天线罩传输性能测试***及其方法
KR20210008379A (ko) 어레이 안테나의 총 복사 전력을 측정하기 위한 방법, 장치 및 시스템
KR102572513B1 (ko) 시험 장치
CN111707877A (zh) 一种射频发射机杂散辐射测试***及测试方法
WO2009046516A1 (en) Multichannel absorberless near field measurement system
CN110311739A (zh) 多通道rru的定标测试***、方法、装置和存储介质
CN110007157B (zh) 天线测量***以及天线测量方法
CN112698113B (zh) 接收通道的幅度校准方法、装置和网络设备
CN114414904A (zh) 一种5g nr基站ota幅相一致性测试校准装置
Hu et al. Over the air testing and error analysis of 5G active antenna system base station in compact antenna test range
CN115913421A (zh) 射频指标测量方法、装置、***、电子设备及存储介质
CN111865444B (zh) 相控阵天线校准***及校准方法
CN216900720U (zh) 一种5g nr基站ota幅相一致性测试校准装置
Joseph et al. An improved method to determine the antenna factor
CN219085119U (zh) 一种采用平面扫描的多频段自由空间测试***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21830057

Country of ref document: EP

Kind code of ref document: A1