WO2021258837A1 - 液冷散热装置、液冷数据处理设备以及均温方法 - Google Patents

液冷散热装置、液冷数据处理设备以及均温方法 Download PDF

Info

Publication number
WO2021258837A1
WO2021258837A1 PCT/CN2021/088962 CN2021088962W WO2021258837A1 WO 2021258837 A1 WO2021258837 A1 WO 2021258837A1 CN 2021088962 W CN2021088962 W CN 2021088962W WO 2021258837 A1 WO2021258837 A1 WO 2021258837A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
outlet
cooling plate
plate
cooling
Prior art date
Application number
PCT/CN2021/088962
Other languages
English (en)
French (fr)
Inventor
刘方宇
陈前
高阳
巫跃凤
宁洪燕
Original Assignee
深圳比特微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010571752.9A external-priority patent/CN111625073A/zh
Priority claimed from CN202011312974.5A external-priority patent/CN112764499A/zh
Priority claimed from CN202011308704.7A external-priority patent/CN114518787A/zh
Application filed by 深圳比特微电子科技有限公司 filed Critical 深圳比特微电子科技有限公司
Priority to US17/912,407 priority Critical patent/US20230189477A1/en
Publication of WO2021258837A1 publication Critical patent/WO2021258837A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20772Liquid cooling without phase change within server blades for removing heat from heat source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control

Definitions

  • This application relates to the technical field of liquid cooling and heat dissipation, and in particular to a liquid cooling device, liquid cooling data processing equipment, and a temperature equalization method.
  • the liquid cooling method of liquid cooling plate can be adopted, that is, the liquid cooling plate is arranged in contact with the computing power plate of the electronic device or the mining machine, and then the cooling liquid circulates in the liquid cooling plate to make Electronic devices or hash boards that are in contact with the liquid cooling plate dissipate heat.
  • An embodiment of the present application provides a liquid-cooled heat dissipation device, the liquid-cooled heat dissipation device is used for liquid-cooled and heat-dissipated electronic equipment, and the liquid-cooled heat dissipation device includes:
  • a housing unit the housing unit is used to accommodate the electronic device
  • a first liquid cooling plate the first liquid cooling plate is placed in the housing unit, and the first liquid cooling plate has a first inlet joint and a first outlet joint;
  • the electronic device includes a first electronic unit and a second electronic unit
  • the first liquid-cooling plate has a first cooling surface and a second cooling surface disposed opposite to each other, and the first electronic unit is attached to the first cooling surface.
  • a cooling surface, the second electronic unit is attached to the second cooling surface;
  • Cooling liquid enters from the first inlet joint and flows out from the first outlet joint, so that the first liquid cooling plate simultaneously liquid-cools and dissipates the first electronic unit and the second electronic unit.
  • An embodiment of the present application also provides a liquid-cooled data processing device.
  • the liquid-cooled data processing device includes an electronic device and a liquid-cooled heat dissipation device carrying the electronic device, wherein the liquid-cooled heat dissipation device is the above-mentioned liquid-cooled heat dissipation device.
  • the electronic device includes a first electronic unit and a second electronic unit, wherein the first electronic unit and the second electronic unit are hash boards.
  • the embodiment of the present application additionally provides a temperature equalization method for a liquid-cooled heat dissipation device.
  • the temperature equalization method is applied to the liquid-cooled heat dissipation device, and the liquid-cooled heat dissipation device is used to compare the first electronic unit and the second
  • the electronic unit is cooled and includes a first liquid cooling plate, a second liquid cooling plate and a third liquid cooling plate located on both sides of the first liquid cooling plate; the first liquid cooling plate has a first cooling surface and a second liquid cooling plate.
  • the first electronic unit is located between the first liquid cooling plate and the second liquid cooling plate, and is attached to the first cooling surface of the first liquid cooling plate;
  • Two electronic units are located between the first liquid cooling plate and the third liquid cooling plate, and are attached to the second cooling surface of the first liquid cooling plate;
  • the temperature equalization method includes the following steps:
  • the first liquid cooling plate, the second liquid cooling plate, and the third liquid cooling plate are allowed to cool the first electronic unit and the second electronic unit, respectively.
  • FIG. 1 is a schematic diagram of the structure of the liquid-cooled heat dissipation device in an embodiment of the application
  • FIG. 2 is a schematic diagram of the structure of the liquid-cooled heat dissipation device in an embodiment of the application
  • FIG. 3 is a schematic diagram of the internal structure of the housing unit in an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of the electronic device attached to the first liquid cold plate unit in an embodiment of the application;
  • FIG. 5 is a schematic top view of the structure of FIG. 3;
  • Fig. 6 is a partial enlarged view of Fig. 3;
  • FIG. 7 is a schematic diagram of the structure of the connecting unit in an embodiment of the application.
  • FIG. 8 is a schematic diagram of a liquid-cooled heat dissipation device according to an embodiment of the application.
  • FIG. 9 is a perspective view of a liquid-cooled heat sink according to another embodiment of the application from one angle;
  • Fig. 10 is a perspective view of the liquid cooling device shown in Fig. 9 from another angle;
  • Figure 11 is a side view of the liquid cooling device shown in Figure 9;
  • FIG. 12 is a perspective view of the liquid-cooled heat dissipating device according to an embodiment of the application with the chassis cover removed; FIG.
  • Figure 13 is a top view of the liquid cooling device shown in Figure 12 with the chassis cover removed;
  • FIG. 14 is an exploded schematic diagram of the liquid cooling structure in the liquid cooling device shown in FIG. 12 clamping the first electronic unit and the second electronic unit;
  • FIG. 15 is a perspective view of an embodiment of the liquid-cooled heat sink shown in FIG. 12 with the chassis shell removed;
  • FIG. 16 is a perspective view of another embodiment of the liquid cooling device shown in FIG. 15 with the chassis shell removed;
  • Fig. 17 is a perspective view of the liquid-cooled heat sink shown in Fig. 15 from another angle with the case shell removed.
  • 100-liquid cooling device 110-first liquid cold plate, 111-first liquid inlet and outlet, 112-second liquid inlet and outlet, 120-second liquid cold plate, 121-third liquid inlet and outlet, 122-second Four liquid inlets and outlets, 130-third liquid cold plate, 131-fifth liquid inlet and outlet, 132-sixth liquid inlet and outlet;
  • 1000-liquid-cooled virtual currency mining machine 1210-liquid-cooled structure, 140-fourth liquid-cooled plate, A7-seventh liquid inlet and outlet, A8-eighth liquid-inlet and outlet, 1220-pipe structure, 1221-liquid-cooled pipe Group, 1222-first manifold, 1223-second manifold, 1224-inlet connector, 1225-outlet connector, 211-positive, 212-negative, 213-positive, 214-connection, 215-connection, 216-connection, 217-connection, 230-power supply, 231-input terminal, 240-connection component, 241-positive copper bar, 2411-positive fixing hole, 242-positive cable, 243-negative copper bar, 2441 -Negative fixing hole, 244-negative cable, 400-chassis housing, 410-carrying housing, 420-first side plate, 430-second side plate, 440-chassis cover.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. get in touch with.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • liquid cooling plates when liquid cooling plates are used for liquid cooling and heat dissipation of electronic equipment, liquid cooling plates are usually arranged on one or both sides of a hash board. That is, a hash board usually corresponds to one or two liquid cooling plates. Cold plate, in this way, when multiple hashrate plates are stacked for use, the number of liquid cooling plates is large, resulting in a large number of adapters, and there is a risk of coolant leakage at the adapters, which may cause coolant leakage There are more risk points. Therefore, under the premise of ensuring the heat dissipation effect of liquid cooling, how to effectively reduce the number of risk points of coolant leakage has become a problem to be solved.
  • the liquid cooling heat dissipation device includes a housing unit 10 and a first liquid cooling plate unit 20.
  • the housing unit may also be referred to as a carrying housing.
  • the housing unit 10 is used for accommodating electronic equipment, and the housing unit 10 has a first side plate 13 and a second side plate 14 opposite to each other.
  • the first liquid cold plate unit 20 is placed in the housing unit 10, and the first liquid cold plate unit 20 has a first inlet joint 25 and a first outlet joint 26.
  • the electronic device includes a first electronic unit 21 and a second electronic unit 22.
  • the first liquid cold plate unit 20 has a first heat dissipation surface and a second heat dissipation surface oppositely arranged.
  • the first electronic unit 21 is attached to the first heat dissipation surface
  • the second electronic unit 22 is attached to the second heat dissipation surface.
  • the first inlet connector 25 and the first outlet connector 26 protrude from the first side plate 13 and are used to communicate with the external cooling liquid system.
  • the cooling liquid enters from the first inlet connector 25 and flows out from the first outlet connector 26 to make the first
  • the liquid cooling plate unit 20 liquid-cools and dissipates the first electronic unit 21 and the second electronic unit 22 at the same time.
  • the heat dissipation surface is also referred to as a cooling surface.
  • the liquid-cooled heat dissipation device is used to carry electronic equipment and liquid-cool the electronic equipment to dissipate heat.
  • the housing unit 10 of the liquid cooling device has a first side plate 13 and a second side plate 14 opposite to each other.
  • the housing unit 10 is provided with a first liquid-cooling plate unit 20.
  • the first liquid-cooling plate unit 20 is, for example, in the shape of a plate and has two oppositely disposed heat dissipation surfaces, such as a first heat dissipation surface and a second heat dissipation surface.
  • the plate-shaped first liquid cold plate unit 20 has a cooling liquid flow channel for the cooling liquid to circulate inside.
  • the first outlet joint 26 protrudes from the first side plate 13 of the housing unit 10.
  • the first inlet connector 25 and the first outlet connector 26 are used to communicate with the external cooling liquid system. In this way, the cooling liquid enters the first liquid cold plate unit from the first inlet connector 25 and flows out from the first outlet connector 26, so that the first The liquid-cooling plate unit can liquid-cool and dissipate the electronic equipment placed on the two heat-dissipating surfaces.
  • the electronic device includes a first electronic unit 21 and a second electronic unit 22.
  • the first electronic unit 21 and the second electronic unit 22 may be, for example, the computing power board of a virtual currency mining machine (or referred to as computing power). Example board), or, according to actual needs, the first electronic unit 21 and the second electronic unit 22 can also be other heating devices that require liquid cooling and heat dissipation.
  • the electronic device may include a substrate and a heating element located on one side of the substrate.
  • the substrate is an aluminum substrate
  • the heating element is arranged on one side of the aluminum substrate. Due to packaging and patching, the thermal resistance of the heating element in the upward and downward directions is different in most cases. 80%-90% of the heat generated when the first electronic unit 2210 and the second electronic unit 2220 work are concentrated on the aluminum substrate.
  • the side of the aluminum substrate where the heating element is not arranged can be attached to the heat dissipation surface of the first liquid-cooling plate, that is, two electronic devices (for example, the first electronic unit 21 and the second The electronic unit 22) is arranged on the two heat dissipation surfaces of the first liquid cold plate unit 20 in such a manner that the heating element faces away from the first liquid cold plate unit 20, so that most of the heat generated by the heating element is conducted through the aluminum substrate To the first liquid cooling plate unit 20, liquid cooling and heat dissipation are realized.
  • two electronic devices for example, the first electronic unit 21 and the second The electronic unit 22
  • the two electronic units can also be mirroredly arranged on the two heat dissipation surfaces of the first liquid cold plate unit 20 in such a manner that the heating element faces the first liquid cold plate unit 20. At this time, the heating element The generated heat is directly transferred to the first liquid cooling plate unit 20 to realize liquid cooling and heat dissipation.
  • electronic devices such as hashrate boards
  • the first liquid-cooled plate unit 20 that is, two hashrate boards are arranged corresponding to one liquid-cooled plate unit.
  • a technically available hashrate board corresponds to one or two liquid-cooled boards.
  • the number of liquid-cooled board units can be greatly reduced, thereby greatly reducing the number of adapters, thereby effectively reducing The number of risk points of coolant leakage is realized, and the technical effect of greatly reducing the risk of coolant leakage under the premise of ensuring the cooling effect of liquid cooling is realized.
  • first liquid cooling plate units when there are multiple first liquid cooling plate units, two electronic devices can be arranged on the two heat dissipation surfaces of each first liquid cooling plate unit, and then the multiple first liquid cooling plate units can pass through the liquid collecting device Parallel setting.
  • the multiple first liquid cold plate units need to retain an inlet joint and an outlet joint for the cooling liquid to communicate with the external cooling liquid system.
  • the liquid cooling device is also used for liquid cooling and heat dissipation of the power supply device 31, the power supply device 31 is placed in the housing unit 10, and the power supply device 31 is electrically connected to the above-mentioned electronic device for supply powered by.
  • the power supply can also be referred to as a power supply.
  • the liquid-cooled heat dissipation device may further include a fourth liquid-cooled plate unit 30, the fourth liquid-cooled plate unit 30 is fixedly placed in the housing unit 10, and the fourth liquid-cooled plate unit 30 has a first side plate protruding from the first side plate 13. Two inlet joints 35 and a second outlet joint 36.
  • the fourth liquid cold plate unit 30 has a third heat dissipation surface, and the power supply device 31 is attached to the third heat dissipation surface.
  • first outlet joint 26 and the second inlet joint 35 can be communicated through an adapter tube 40, and the first inlet joint 25 and the second outlet joint 36 are communicated with an external cooling liquid system.
  • first inlet connector 25 and the second outlet connector 36 are communicated through the adapter tube 40, and the first outlet connector 26 and the second inlet connector 35 are communicated with the external cooling liquid system.
  • the first inlet connector 25 and the second inlet connector 35 are respectively connected to a first three-way connector
  • the first outlet connector 26 and the second outlet connector 36 are respectively connected to a second three-way connector
  • the first three-way connector Connect with the second three-way joint to the external coolant system.
  • the housing unit 10 of the liquid cooling device is also provided with a power supply device 31, and the power supply device 31 is used to supply power to the first electronic unit 21 and the second electronic unit 22.
  • the housing unit 10 is also provided with a fourth liquid cold plate unit 30, and a heat dissipation surface (the third heat dissipation surface) of the fourth liquid cold plate unit 30 is used to attach the power supply device 31, so that the fourth The liquid cooling plate unit 30 is used for liquid cooling and heat dissipation of the power supply device 31.
  • the first liquid cold plate unit 20 and the fourth liquid cold plate unit 30 may be connected in series, for example.
  • the first outlet joint 26 and the second inlet joint 35 are communicated through the adapter tube 40, so that the cooling liquid first flows through the first liquid cold plate unit and then flows through the fourth liquid cold plate unit; or, the first inlet The joint 25 and the second outlet joint 36 are communicated through the adapter tube 40.
  • the cooling liquid first flows through the fourth liquid cold plate unit and then flows through the first liquid cold plate unit; that is, in the embodiment of the present application, the The cooling liquid flows through the first liquid cold plate unit and the fourth liquid cold plate unit, and the order of cooling the electronic equipment and the power supply equipment can be determined according to actual needs.
  • first liquid cold plate unit 20 and the fourth liquid cold plate unit 30 may also be connected in parallel.
  • first inlet connector 25 and the second inlet connector 35 are respectively connected to a first three-way connector, and at the same time, the first outlet connector 26 and the second outlet connector 36 are respectively connected to a second three-way connector, and then the first three-way connector
  • the through joint and the second three-way joint are then connected to the external cooling liquid system; in this way, the cooling liquid flows through the first liquid cold plate unit and the fourth liquid cold plate unit at the same time.
  • the first liquid cold plate unit 20 and the fourth liquid cold plate unit 30 may specifically adopt the above-mentioned series connection mode or parallel connection mode according to actual needs.
  • the liquid-cooled heat sink can also dissipate heat from the liquid-cooled power supply equipment.
  • the power supply equipment is electrically connected to the above-mentioned electronic equipment.
  • the electronic equipment is a hashrate board. In this way, the hashrate board and the power supply device form an integral module. , Convenient for transportation and installation.
  • the liquid-cooled heat dissipation device further includes a connecting unit 50, and the first liquid-cooling plate unit 20 and the fourth liquid-cooling plate unit 30 are fixed in the housing unit 10 through the connecting unit 50, respectively.
  • the first liquid cooling plate unit and the fourth liquid cooling plate unit are respectively fixed in the housing unit through the connecting unit.
  • the first liquid cooling plate unit 20 and the fourth liquid cooling plate unit 30 are provided with adapter flanges 27 on both sides, and the connecting unit 50 is arranged on the first liquid cooling plate unit 20 and the fourth liquid cooling plate unit 20 and the fourth liquid cooling plate unit respectively. Both sides of the liquid cooling plate unit 30, and the connecting unit 50 has a guide groove 51 for inserting the adapter flange 27 into it.
  • the first liquid cooling plate unit 20 has adapter flanges 27 protruding from the electronic device on both sides, and then, referring to FIGS. 5, 6, and 7, the connecting unit 50 has an adapter flange 27 for inserting.
  • the two connecting units 50 are arranged on both sides of the first liquid-cooling plate unit 20, and the guide grooves 51 are arranged opposite to each other, so that the first liquid-cooling plate unit 20 can be inserted along the guide groove 51 Inside the housing unit 10; the way in which the fourth liquid cold plate unit 30 is fixed by the connecting unit 50 is similar to the first liquid cold plate unit, and will not be repeated.
  • the first liquid cold plate unit and the fourth liquid cold plate unit are fixed in the housing unit by inserting a guide groove, and the guide groove has a position limiting effect on the two liquid cold plate units, and Easy to disassemble.
  • the first liquid cold plate unit 20 and the fourth liquid cold plate unit 30 are arranged side by side, and the connection unit 50 between the first liquid cold plate unit 20 and the fourth liquid cold plate unit 30 is integrally arranged.
  • the first liquid cooling plate unit 20 and the fourth liquid cooling plate unit 30 are arranged side by side.
  • the adjacent connecting unit 50 between the two liquid cooling plates can be integrally arranged, that is, two guides
  • the slot 51 is opposite to the outer peripheral on an adapter.
  • locking screws 52 are provided at both ends of the guide groove 51. In this way, after the adapter flanges on both sides of the first liquid cooling plate unit and the fourth liquid cooling plate unit are inserted into the guide groove, the locking screws 52 are tightened at both ends of the guide groove 51 to align the two along the direction of the guide groove 51. A limit of the liquid-cooling plate unit to prevent the liquid-cooling plate unit from sliding.
  • the connecting unit 50 can be fixedly installed on the housing unit 10 through the screw hole 53 provided at the lower end of the bend, and then the above-mentioned guide groove 51 is located at the upper end of the bend of the connecting unit.
  • the housing unit 10 includes a supporting housing 11, the supporting housing 11 has a supporting groove, and the above-mentioned first side plate 13 and the second side plate 14 are installed at both ends of the supporting housing 11.
  • a mounting cover 15 is provided on the bearing tank.
  • the mounting cover can also be referred to as a chassis cover.
  • the carrying shell 11 is, for example, in the shape of a flat plate and both ends are bent upward to form a carrying groove, and the first liquid cooling plate unit 20 and the fourth liquid cooling plate unit 30 are fixedly placed in the carrying groove , And covered by the installation cover 15 in Figure 2.
  • a first side plate 13 and a second side plate 14 are encapsulated at both ends of the carrying tank.
  • the first side plate 13 has a through hole for the inlet and outlet joints of the liquid cooling plate to protrude, and then the inlet and outlet joints are connected to the external cooling liquid. system.
  • the electronic equipment inside the housing unit and the liquid cooling plate are separated from the joints of the external cooling liquid system through the first side plate, which can effectively prevent the plugging and unplugging of the joints connecting the external cooling liquid system and the inlet and outlet of the liquid cooling plate.
  • the coolant is sprayed on the surface of the electronic equipment, causing damage to the electronic equipment.
  • two ends of the second side plate 14 are respectively provided with a power adapter 16 and a communication connector 17.
  • the power adapter 16 can be electrically connected to the power supply device 31, for example, the power supply device 31 is electrically connected to the control board 60, and then the electronic device is electrically connected to the control board 60 through the copper bus 61; the communication connector 17 is electrically connected to the control board 60 ; In this way, the power cable and the communication cable are respectively connected from both ends of the second side plate 14 to prevent mutual interference between strong and weak currents and facilitate wiring.
  • the coolant connector and the electrical connector of the housing unit are respectively arranged on the opposite first side plate and the second side plate to realize the separation of water and electricity and improve the safety of use.
  • the two ends of the second side plate 14 are also protrudingly extended with fixed mounting plates 141, the fixed mounting plate 141 is provided with fixed mounting holes 142; the fixed mounting plate 141 is bent outwards with a lifting plate 143, the lifting plate 143 is provided with a lifting hole 144.
  • fixed mounting plates 141 protrude from both ends of the second side plate 14 and fixed mounting holes 142 are provided on the fixed mounting plate 141. In this way, it is convenient to pass through the fixed mounting holes 142.
  • the housing unit 10 is fixedly installed on the external cabinet body; then, the fixed installation plates 141 at both ends are also vertically bent outwards, for example, with lifting plates 143, and lifting holes 144 are provided on the lifting plates 143, so that it is convenient to carry operate.
  • the first electronic unit 21 and the second electronic unit 22 are respectively provided with a first protective plate 23 and a second protective plate 24 on the side facing away from the liquid cooling plate.
  • a first protective plate 23 and a second protective plate 24 are respectively provided on the heating element surfaces of the first electronic unit 21 and the second electronic unit 22, which can play a role in the heating element. To the protective effect.
  • a thermal conductive silicone grease is provided between the first electronic unit 21 and the first liquid cold plate unit 20, and/or, a thermal conductive silicone grease is provided between the second electronic unit 22 and the first liquid cold plate unit 20 There is thermal grease.
  • the thermal conductive silicone grease can facilitate heat conduction from the electronic device to the first liquid cooling plate unit, and improve the liquid cooling effect.
  • the first electronic unit 21 includes a first substrate
  • the second electronic unit 22 includes a second substrate
  • the first substrate is attached to the first heat dissipation surface
  • the second substrate is attached to the second heat dissipation surface
  • the first heat dissipation surface and the second heat dissipation surface are planes
  • the first substrate and the second substrate are aluminum substrates
  • the aluminum substrate is provided with heating elements on the side facing away from the first liquid cooling plate unit 20.
  • the substrates of the first electronic unit and the second electronic unit are aluminum substrates, and the side of the aluminum substrate with the heating element is set away from the first liquid-cooling plate unit.
  • the aluminum substrate is a kind of aluminum substrate with good heat dissipation.
  • the functional metal-based copper clad laminate, the aluminum substrate is attached to the heat dissipation surface of the first liquid cold plate unit, which can quickly and efficiently transfer the heat generated by the heating element to the first liquid cold plate unit, and then to the coolant, achieving rapid Efficient heat dissipation effect.
  • the power supply device supplies power to the hash boards; that is, the embodiment of the present application also discloses a liquid-cooled data Processing equipment, such as a virtual currency mining machine.
  • the liquid-cooled virtual currency mining machine includes a hashrate board and a liquid-cooled heat sink carrying the hashrate board, wherein the liquid-cooled heat sink is the above-mentioned liquid-cooled heat sink.
  • the virtual currency mining machine here is only an example, and the electronic equipment may also be other types of data processing equipment or supercomputer servers.
  • the embodiments of the present application provide a liquid-cooled heat sink and a liquid-cooled data processing device.
  • the liquid-cooled heat sink includes a housing unit and a first liquid cold plate unit arranged in the housing unit.
  • a first electronic unit and a second electronic unit are respectively arranged on the first heat dissipation surface and the second heat dissipation surface arranged opposite to each other, wherein the first electronic unit and the second electronic unit may be both hash boards, for example;
  • one liquid-cooling plate unit is correspondingly arranged with two hash boards. In this way, the number of liquid-cooling board units can be greatly reduced under the condition that the number of hash boards remains unchanged, thereby greatly reducing the number of adapters.
  • a water-cooled radiator cools the hashrate.
  • the water-cooled plate corresponding to each hashrate is designed with a single process and a single flow direction. Therefore, the flow of the coolant in the water-cooled plate is short.
  • the temperature difference between the coolant and the hashrate board is large. The coolant cannot effectively dissipate the hashrate board, which may cause the temperature of the hashrate board in the area to be unbalanced and affect the performance of the virtual currency mining machine.
  • an embodiment of the present application provides a liquid-cooled heat dissipation device 100.
  • the liquid-cooled heat dissipation device 100 is applied to liquid-cooled data processing equipment, such as a virtual currency mining machine, for cooling the first electronic unit 210 and the second electronic unit 220 of the electronic device 200 of the liquid-cooled virtual currency mining machine, To ensure the performance of the liquid-cooled virtual currency mining machine.
  • liquid-cooled virtual currency mining machine here can also be other types of data processing equipment.
  • the liquid-cooled heat dissipation device 100 can also be applied to other electronic devices 200 that need to be cooled.
  • the application of the liquid-cooled heat dissipation device 100 in a liquid-cooled virtual currency mining machine is taken as an example for description.
  • the heat dissipation device in the liquid-cooled virtual currency mining machine usually uses a water-cooled radiator.
  • a water-cooled radiator Generally, multiple identical water-cooled radiators are installed in parallel.
  • the temperature of the computing power board in the area is not balanced, which affects the performance of the virtual currency mining machine.
  • this application provides a new type of liquid-cooled heat dissipation device 100, which can optimize the heat dissipation effect of the electronic device 200, balance the temperature of the electronic device 200, and optimize the use of liquid-cooled virtual currency mining machines performance.
  • the specific structure of the liquid cooling device 100 is described in detail below.
  • the liquid cooling device 100 includes a first liquid cooling plate 110, and a second liquid cooling plate 120 and a third liquid cooling plate 130 symmetrically located on both sides of the first liquid cooling plate 110 .
  • the symmetry is, for example, top and bottom symmetry.
  • the first liquid cooling plate 110 has a first accommodating cavity, and a first liquid inlet and outlet 111 and a second liquid inlet and outlet 112 connected to the first accommodating cavity;
  • the second liquid cooling plate 120 has a third liquid inlet and outlet 121 and a fourth liquid inlet and outlet Port 122;
  • the third liquid cooling plate 130 has a fifth liquid inlet and outlet 131 and a sixth liquid inlet and outlet 132.
  • the first liquid cooling plate 110 has a first cooling surface and a second cooling surface.
  • the first electronic unit 210 is located between the first liquid cooling plate 110 and the second liquid cooling plate 120, and is attached to the first liquid cooling plate 110.
  • the first cooling surface; the second electronic unit 220 is located between the first liquid cooling plate 110 and the third liquid cooling plate 130, and is attached to the second cooling surface of the first liquid cooling plate 110.
  • the first liquid cooling plate 110 is the main cooling structure.
  • the first liquid cooling plate 110 has a first accommodating cavity and a first liquid inlet and outlet 111 and a second liquid inlet and outlet 112 communicating with the first accommodating cavity.
  • the first liquid inlet and outlet 111 and the second liquid inlet and outlet 112 are the liquid inlet and the liquid outlet of the first liquid cooling plate 110.
  • the second liquid inlet and outlet 112 is a liquid outlet.
  • the second liquid inlet and outlet 112 is a liquid inlet.
  • the first liquid cooling plate 110 has two cooling surfaces, which are a first cooling surface and a second cooling surface, respectively.
  • the first electronic unit 210 is attached to the first cooling surface
  • the second electronic unit 220 is attached to the second cooling surface.
  • the coolant in the first accommodating cavity will exchange heat with the first electronic unit 210 through the first cooling surface to reduce the temperature of the first electronic unit 210. At the same time, it will also heat up with the second electronic unit 220 through the second cooling surface. Exchange, lower the temperature of the second electronic unit 220.
  • the first liquid cooling plate 110 has a two-sided symmetrical structure; of course, in other embodiments of the present application, the structure of the two cooling surfaces of the first liquid cooling plate 110 may also be different, as long as the heat dissipation is ensured The effect can be.
  • the first electronic unit 210 and the second electronic unit 220 of the electronic device 200 can be, for example, the computing power board of a virtual currency mining machine, or, according to actual needs, the first electronic unit 210 and the second electronic unit 220
  • the second electronic unit 220 can also be other heating devices that require liquid cooling for heat dissipation. It can be understood that both the first electronic unit 210 and the second electronic unit 220 include a substrate and a heating element located on one side of the substrate.
  • the substrate is, for example, an aluminum substrate, and one side of the aluminum substrate is provided with heating elements.
  • the chip as a heating element heats up and down in two directions. Resistance is different. In other words, the surfaces of the first electronic unit 210 and the second electronic unit 220 away from the first liquid cooling plate 110 will also generate corresponding heat.
  • the liquid cooling device 100 of the present application is further provided with a second liquid cooling plate 120 and a third liquid cooling plate 130 on both sides of the first liquid cooling plate 110, and the second liquid cooling plate 120 is provided On the surface of the first electronic unit 210 facing away from the first liquid cooling plate 110, the third liquid cooling plate 130 is disposed on the surface of the second electronic unit 220 facing away from the first liquid cooling plate 110.
  • the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate 130 form a sandwich structure with the first electronic unit 210 and the second electronic unit 220, and the first liquid cold plate 110 is located in the middle position.
  • the second liquid cooling plate 120 and the third liquid cooling plate 130 are symmetrically arranged on both sides of the first liquid cooling plate 110, and the first electronic unit 210 is arranged between the first liquid cooling plate 110 and the second liquid cooling plate 120 , The second electronic unit 220 is disposed between the first liquid cooling plate 110 and the third liquid cooling plate 130.
  • the two surfaces of the first electronic unit 210 can be cooled by the first liquid cooling plate 110 and the second liquid cooling plate 120, and the second electronic unit 220 can be cooled by the first liquid cooling plate 110 and the third liquid cooling plate 130. Cooling on the two surfaces of the first electronic unit 210 and the second electronic unit 220 can optimize the cooling effect of the first electronic unit 210 and the second electronic unit 220, and reduce the temperature of the first electronic unit 210 and the second electronic unit 220, so that the first electronic unit 210 and the second electronic unit 220 can work more reliably.
  • first electronic unit 210 and the second electronic unit 220 are cooled by the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130, respectively, and the first electronic unit 210 and the second electronic unit 220 can also be cooled.
  • the temperature of the unit 220 is more balanced.
  • the second liquid cold plate 120 and the third liquid cold plate 130 are auxiliary cooling structures.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are used in combination.
  • the heat dissipation requirement is not high, only the first liquid cooling plate 110 can be retained, and the second liquid cooling plate 120 and the third liquid cooling plate 130 can be omitted. In this way, the production cost can be reduced while ensuring the heat dissipation requirement.
  • the second liquid cooling plate 120 has a second accommodating cavity, and a third liquid inlet and outlet 121 and a fourth liquid inlet and outlet 122 communicating with the second accommodating cavity.
  • the third liquid inlet and outlet 121 and the fourth liquid inlet and outlet 122 may be the liquid inlet and the liquid outlet of the second liquid cooling plate 120.
  • the fourth liquid inlet and outlet 122 is a liquid outlet.
  • the fourth liquid inlet and outlet 122 is a liquid inlet.
  • the cooling liquid exchanges heat with the electronic device 200 through the second liquid cooling plate 120 to cool the first electronic unit 210 of the electronic device 200.
  • One cooling surface of the second liquid cold plate 120 is a third cooling surface.
  • the third cooling surface faces the surface of the first electronic unit 210 away from the first liquid cooling plate 110.
  • the cooling liquid in the second accommodating cavity will exchange heat with the first electronic unit 210 through the third cooling surface to reduce the temperature of the first electronic unit 210.
  • the third liquid cooling plate 130 has a third accommodating cavity, and a fifth liquid inlet and outlet 131 and a sixth liquid inlet and outlet 132 communicating with the third accommodating cavity.
  • the fifth liquid inlet and outlet 131 and the sixth liquid inlet and outlet 132 may be the liquid inlet and the liquid outlet of the third liquid cooling plate 130.
  • the sixth liquid inlet and outlet 132 is a liquid outlet.
  • the sixth liquid inlet and outlet 132 is a liquid inlet.
  • the cooling liquid After the cooling liquid enters the third accommodating cavity of the third liquid cooling plate 130, the cooling liquid exchanges heat with the electronic device 200 through the third liquid cooling plate 130 to cool the second electronic unit 220 of the electronic device 200.
  • One cooling surface of the third liquid cold plate 130 is a fourth cooling surface.
  • the fourth cooling surface faces the surface of the second electronic unit 220 away from the first liquid cooling plate 110.
  • the cooling liquid in the third accommodating cavity will exchange heat with the second electronic unit 220 through the fourth cooling surface, thereby reducing the temperature of the second electronic unit 220.
  • the substrates of the first electronic unit 210 and the second electronic unit 220 are attached to the first cooling surface and the second cooling surface of the first liquid cooling plate 110.
  • the heat generated by the heating element during operation can be transferred to the first cooling surface and the second cooling surface through the substrate to realize liquid cooling and heat dissipation.
  • the second liquid cooling plate 120 can abut against the heating elements of the first electronic unit 210 to ensure the fixation and heat dissipation of the first electronic unit 210.
  • the third liquid cold plate 130 can abut against the heating elements of the second electronic unit 220 to ensure the fixation and heat dissipation of the second electronic unit 220.
  • the first electronic unit 210 and the second electronic unit 220 are symmetrically arranged on both sides of the first liquid cooling plate 110, and the first electronic unit 210 and the second electronic unit 220 are arranged separately.
  • a second liquid cooling plate 120 and a third liquid cooling plate 130 are respectively arranged on one side.
  • the two surfaces of the first electronic unit 210 are cooled by the first liquid cooling plate 110 and the second liquid cooling plate 120, and the two surfaces of the second electronic unit 220 are cooled by the first liquid cooling plate 110 and the third liquid cooling plate 130.
  • the surface is cooled; it effectively solves the problem of uneven heat dissipation of the hash plate caused by the current parallel water-cooled radiator group.
  • the first liquid cooling plate 110, the second liquid cooling plate 120 and the third liquid cooling plate 130 are respectively used to
  • the symmetrical heat dissipation on both sides of the electronic unit 210 and the second electronic unit 220 can effectively optimize the heat dissipation effect of the first electronic unit 210 and the second electronic unit 220, so that the heat dissipation between the first electronic unit 210 and the second electronic unit 220
  • the temperature is balanced to avoid temperature differences and optimize the performance of the liquid-cooled virtual currency mining machine.
  • the cooling liquid in the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 may be cooling water, cooling oil, liquid helium, or the like.
  • the second liquid-cooling plate 120 has a third cooling surface, and the third cooling surface has a protruding first fixing protrusion, the first fixing protrusion abuts the first electronic unit 210, and the second liquid The surface of the cold plate 120 and the first electronic unit 210 are enclosed to form a first heat dissipation channel for the first electronic unit 210 to dissipate heat.
  • the third cooling surface is the surface of the second liquid cooling plate 120 facing the first liquid cooling plate 110, and the first fixing protrusion abuts the heating element of the first electronic unit 210. The heat generated by the heating element of the first electronic unit 210 is transferred to the second liquid cooling plate 120 through the first fixing protrusion for cooling.
  • a first heat dissipation channel is formed between the third cooling surface of the second liquid cooling plate 120 and the substrate of the first electronic unit 210, and the heat emitted by the first electronic unit 210 when operating exists in the first heat dissipation channel.
  • the second liquid cold plate 120 can exchange heat with the heat in the first heat dissipation channel through the third cooling surface to cool the first electronic unit 210.
  • the first fixing protrusion is a protruding structure such as a boss or a boss.
  • the third cooling surface of the second liquid cooling plate 120 is a flat surface, and the first fixing protrusions protrude from the third cooling surface.
  • the third cooling surface is recessed with respect to the first fixing protrusion. In this way, the substrate of the first electronic unit 210 can be provided with higher-height devices, which can ensure sufficient installation space.
  • the third liquid cooling plate 130 has a fourth cooling surface
  • the fourth cooling surface has a second fixing protrusion protrudingly arranged
  • the second fixing protrusion abuts the second electronic unit 220
  • the third liquid The surface of the cold plate 130 and the second electronic unit 220 are enclosed to form a second heat dissipation channel for the second electronic unit 220 to dissipate heat.
  • the fourth cooling surface is the surface of the third liquid cooling plate 130 facing the first liquid cooling plate 110, and the second fixing protrusion abuts the heating element of the second electronic unit 220. The heat generated by the heating element of the second electronic unit 220 is transferred to the third liquid cooling plate 130 through the second fixing protrusion for cooling.
  • a second heat dissipation channel is enclosed between the fourth cooling surface of the third liquid cooling plate 130 and the substrate of the second electronic unit 220, and the heat emitted by the second electronic unit 220 during operation exists in the second heat dissipation channel.
  • the three-liquid cold plate 130 can exchange heat with the heat in the second heat dissipation channel through the fourth cooling surface to cool the second electronic unit 220.
  • the second fixing protrusion is a protruding structure such as a boss or a boss.
  • the fourth cooling surface of the third liquid cooling plate 130 is a flat surface, and the second fixing protrusions protrude from the fourth cooling surface.
  • the fourth cooling surface is concave with respect to the second fixing protrusion, so that a higher-height device can be arranged on the substrate of the second electronic unit 220, and sufficient installation space can be ensured.
  • the liquid cooling device 100 further includes a connector.
  • the substrate of the first electronic unit 210 is fixed on the first liquid-cooling plate 110 and the second liquid-cooling plate 120 by connecting members, so as to prevent the position of the first electronic unit 210 from shifting.
  • the substrate of the second electronic unit 220 is fixed on the first liquid-cooling plate 110 and the third liquid-cooling plate 130 by connecting members, so as to prevent the position of the second electronic unit 220 from shifting.
  • first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are also fixedly connected by connecting members or connecting plates, connecting frames, and other connecting structures, so that the liquid cooling device 100 forms one
  • the overall module is convenient for later installation and use.
  • the first liquid inlet and outlet 111 and the second liquid inlet and outlet 112 may be arranged on the same side or on different sides.
  • the third liquid inlet and outlet port 121 and the fourth liquid inlet and outlet port 122 can be set on the same side or on different sides.
  • the fifth liquid inlet and outlet 131 and the sixth liquid inlet and outlet 132 can be set on the same side or on different sides.
  • first liquid inlet and outlet 111 and the second liquid inlet and outlet 112 are not limited in principle, and they can be arranged on the same side or on different sides.
  • first liquid inlet and outlet 111 and the second liquid inlet and outlet 112 may be respectively arranged on both sides of the first liquid cooling plate 110, as shown in FIG. 8; of course, the first liquid inlet and outlet 111 and the second liquid inlet and outlet The port 112 can also be arranged on the same side of the first liquid cooling plate 110, as shown in FIGS. 9 to 11.
  • the positions of the third liquid inlet and outlet opening 121 and the fourth liquid inlet and outlet opening 122 are not restricted in principle, and they can be arranged on the same side or on different sides.
  • the third liquid inlet and outlet 121 and the fourth liquid inlet and outlet 122 may be respectively arranged on both sides of the second liquid cooling plate 120, as shown in FIG. 8; of course, the third liquid inlet and outlet 121 and the fourth liquid inlet and outlet
  • the port 122 can also be arranged on the same side of the second liquid cooling plate 120, as shown in FIGS. 9 to 11.
  • the positions of the fifth liquid inlet and outlet port 131 and the sixth liquid inlet and outlet port 132 are not limited in principle, and they can be set on the same side or on different sides.
  • the fifth liquid inlet and outlet 131 and the sixth liquid inlet and outlet 132 may be respectively arranged on both sides of the third liquid cooling plate 130, as shown in FIG. 8; of course, the fifth liquid inlet and outlet 131 and the sixth liquid inlet and outlet The port 132 can also be arranged on the same side of the third liquid cooling plate 130, as shown in FIGS. 9 to 11.
  • the liquid-cooled heat-dissipating device 100 is configured to cooperate with an external cold source, and all the liquid inlet and outlet ports of the liquid-cooled heat-dissipating device 100 can be connected to the external cold source.
  • the external cold source delivers the cooling liquid to the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 of the liquid cooling device 100
  • the third liquid cooling plate 130 can cool the first electronic unit 210 and the second electronic unit 220.
  • the cooled coolant is returned to the external cold source, and the coolant is pre-cooled by the external cold source, so that the coolant can circulate and reduce the cost.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are connected in parallel.
  • the external cold source transports the cooling liquid to the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 respectively to cool the first electronic unit 210 and the second electronic unit 220.
  • the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131 are connected to the liquid outlet of the external cold source, and the second liquid inlet and outlet 112, the fourth liquid inlet and outlet 122, and The sixth liquid inlet and outlet 132 is connected to the liquid inlet of the external cold source.
  • the external cold source outputs the cooling liquid through the liquid outlet, and enters the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate through the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131, respectively.
  • the liquid cooling plate 130 flows back to the external cold source through the liquid inlet and outlet through the corresponding second liquid inlet and outlet 112, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132.
  • the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131 are connected to the liquid inlet of the external cold source
  • the fourth liquid inlet and outlet The liquid inlet and outlet 122 and the sixth liquid inlet and outlet 132 are connected to the liquid outlet of the external cold source.
  • the first liquid inlet and outlet 111, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132 are connected to the liquid outlet of the external cold source, and the second liquid inlet and outlet 112, the third liquid inlet and outlet 121, and The fifth liquid inlet and outlet 131 is connected to the liquid inlet of the external cold source.
  • the external cold source outputs the cooling liquid through the liquid outlet, and enters the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate through the first liquid inlet and outlet 111, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132, respectively.
  • the liquid cooling plate 130 then flows back to the external cold source through the liquid inlet and outlet through the corresponding second liquid inlet and outlet 112, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131.
  • the first liquid inlet and outlet 111, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132 can also be connected to the liquid inlet of the external cold source, and the second liquid inlet and outlet 112,
  • the three liquid inlet and outlet ports 121 and the fifth liquid inlet and outlet ports 131 are connected to the liquid outlet of the external cold source.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 may also be connected in series.
  • the first liquid cooling plate 110 is connected in series with the second liquid cooling plate 120 and then the third liquid cooling plate 130 is connected in series.
  • the external cold source transports the cooling liquid to the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 to cool the first electronic unit 210 and the second electronic unit 220.
  • the order in which the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are connected in series can also be changed.
  • the second liquid cooling plate 120 is connected in series.
  • the first liquid cold plate 110 is connected in series with the third liquid cold plate 130 and so on.
  • the flow directions of the cooling liquid in the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are the same. That is, the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131 are connected to the liquid outlet of the external cold source, and the second liquid inlet and outlet 112, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet are connected to the liquid outlet of the external cold source.
  • the liquid inlet and outlet 132 are connected to the liquid inlet of the external cold source.
  • the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131 may also be connected to the liquid inlet of the external cold source, and the second liquid inlet and outlet 112,
  • the fourth liquid inlet and outlet port 122 and the sixth liquid inlet and outlet port 132 are connected to the liquid outlet end of the external cold source.
  • the flow direction of the cooling liquid in the first liquid cooling plate 110 is different from the flow direction of the cooling liquid in the second liquid cooling plate 120 and the third liquid cooling plate 130. That is, the cooling liquid in the first liquid cooling plate 110 flows in one direction, and the cooling liquid in the second liquid cooling plate 120 and the third liquid cooling plate 130 flows in the other direction.
  • the first liquid inlet and outlet 111, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132 are connected to the liquid outlet of the external cold source
  • the second liquid inlet and outlet 112 the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet are connected to the liquid outlet of the external cold source.
  • the liquid inlet and outlet 131 are connected to the liquid inlet of the external cold source.
  • the first liquid inlet and outlet 111, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132 can also be connected to the liquid inlet of the external cold source, and the second liquid inlet and outlet 112,
  • the three liquid inlet and outlet ports 121 and the fifth liquid inlet and outlet ports 131 are connected to the liquid outlet of the external cold source.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are connected in series and then in parallel. Specifically, the first liquid cooling plate 110 is respectively connected in series to the second liquid cooling plate 120 and the third liquid cooling plate 130, and the second liquid cooling plate 120 and the third liquid cooling plate 130 are connected in parallel.
  • the external cold source delivers the cooling liquid to the first liquid cooling plate 110 to cool a surface of the first electronic unit 210 and a surface of the second electronic unit 220.
  • the cooling liquid flowing out of the first liquid cooling plate 110 flows into the second liquid cooling plate 120 and the third liquid cooling plate 130 respectively to cool the other surface of the first electronic unit 210 and the other surface of the second electronic unit 220 .
  • the first liquid inlet and outlet 111 is connected to the liquid outlet of the external cold source
  • the second liquid inlet 112 is respectively connected to the third liquid inlet and outlet 121 and the fifth liquid inlet and outlet 131
  • the six liquid inlet and outlet ports 132 are respectively connected to the liquid inlet of the external cold source.
  • the cooling liquid of the external cold source enters the first liquid cooling plate 110 through the liquid outlet end and the first liquid inlet and outlet 111.
  • the cooling liquid in the first liquid cooling plate 110 cools the first electronic unit 210 and the second electronic unit 220, it flows out from the second liquid inlet and outlet 112, and enters through the third liquid inlet and outlet 121 and the fifth liquid inlet and outlet 131 respectively Into the second liquid cold plate 120 and the third liquid cold plate 130, the first electronic unit 210 and the second electronic unit 220 are then cooled, and the liquid passes through the fourth liquid inlet and outlet port 122 and the sixth liquid inlet and outlet port 132. The end returns to the external cold source.
  • the first liquid inlet and outlet 111 are connected to the liquid outlet of the external cold source
  • the second liquid inlet and outlet 112 are respectively connected to the fourth liquid inlet and outlet port 122 and the sixth liquid inlet and outlet port 132.
  • the three liquid inlet and outlet ports 121 and the fifth liquid inlet and outlet ports 131 are respectively connected to the liquid inlet ends of the external cold source.
  • the present application also provides a temperature equalization method for the liquid-cooled heat dissipation device 100.
  • the temperature equalization method is applied to the liquid-cooled heat dissipation device 100.
  • the liquid-cooled heat dissipation device 100 includes a first liquid-cooling plate 110 and The second liquid cooling plate 120 and the third liquid cooling plate 130 on both sides of the plate 110; the first liquid cooling plate 110 has a first cooling surface and a second cooling surface, and the first electronic unit 210 is located on the first Between the liquid cooling plate 110 and the second liquid cooling plate 120 and attached to the first cooling surface of the first liquid cooling plate 110; the second electronic unit 220 is located in the first liquid cooling plate Between the plate 110 and the third liquid cooling plate 130 and attached to the second cooling surface of the first liquid cooling plate 110;
  • the temperature equalization method includes the following steps:
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are allowed to cool the first electronic unit 210 and the second electronic unit 220, respectively.
  • the liquid cooling device 100 further includes a controller, which is electrically connected to an external cold source for controlling the external cold source to deliver to the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate 130 Coolant.
  • a controller which is electrically connected to an external cold source for controlling the external cold source to deliver to the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate 130 Coolant.
  • the corresponding series-parallel manner of the liquid-cooled heat dissipation device 100 can be arranged in advance, which is specifically realized by different connection methods of cooling pipes. Different connection modes of the cooling pipes can make the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 form different connection modes.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 may be connected in parallel through a cooling pipe, or may be connected in series and then in parallel, or connected in parallel and then in series.
  • the first liquid cooling plate 110 is connected in series with the second liquid cooling plate 120, it is connected in parallel with the third liquid cooling plate 130; for another example, after the second liquid cooling plate 120 is connected in parallel with the third liquid cooling plate 130, The first liquid cold plate 110 and so on are connected in series.
  • the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate 130 can also be connected in series.
  • the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate 130 are directly connected to each other. Series connection, etc., or the sequence of the series connection of each liquid cooling plate can be adjusted according to actual working conditions, for example, the second liquid cooling plate 120 is connected in series with the first liquid cooling plate 110 and then the third liquid cooling plate 130 is connected in series.
  • the controller controls the external cold source to deliver the cooling liquid through the first liquid cold plate 110, the second liquid cold plate 120, and the second liquid cold plate.
  • the three-liquid cold plate 130 cools the first electronic unit 210 and the second electronic unit 220 respectively, and optimizes the heat dissipation effect of the first electronic unit 210 and the second electronic unit 220, so that the first electronic unit 210 and the second electronic unit 220 are The temperature is balanced to avoid temperature differences and optimize the performance of the liquid-cooled virtual currency mining machine.
  • the first liquid-cooling plate 110 has a first accommodating cavity, and a first liquid inlet and outlet 111 and a second liquid inlet and outlet 112 communicating with the first accommodating cavity;
  • the second liquid cold plate 120 There is a second accommodating cavity and a third liquid inlet and outlet 121 and a fourth liquid inlet and outlet 122 communicating with the second accommodating cavity;
  • the third liquid-cooling plate 130 has a third accommodating cavity and a third accommodating cavity The fifth liquid inlet and outlet 131 and the sixth liquid inlet and outlet 132;
  • the step of controlling the series connection and/or parallel connection of the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 includes:
  • One of the fifth liquid inlet and outlet port 131 and the sixth liquid inlet and outlet port 132 is controlled to be connected to the liquid outlet end of the external cold source, and the other is connected to the liquid inlet end of the external cold source.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are connected in parallel.
  • the external cold source transports the cooling liquid to the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 respectively to cool the first electronic unit 210 and the second electronic unit 220.
  • one of the first liquid inlet and outlet 111 and the second liquid inlet and outlet 112 is the liquid outlet
  • the other is the liquid inlet
  • the One of the three liquid inlet and outlet ports 121 and the fourth liquid inlet and outlet 122 is a liquid inlet and the other is a liquid outlet.
  • One of the fifth liquid inlet and outlet 131 and the sixth liquid inlet and outlet 132 is a liquid inlet and the other is a liquid outlet. It is ensured that the cooling liquids in the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are independent of each other, and no mixed flow occurs.
  • the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131 are connected to the liquid outlet of the external cold source
  • the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet are connected to the liquid outlet of the external cold source.
  • the liquid inlet and outlet 132 are connected to the liquid inlet of the external cold source.
  • the external cold source outputs the cooling liquid through the liquid outlet, and enters the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate through the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131, respectively.
  • the liquid cooling plate 130 flows back to the external cold source through the liquid inlet and outlet through the corresponding second liquid inlet and outlet 112, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132.
  • the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131 are connected to the liquid inlet of the external cold source
  • the fourth liquid inlet and outlet The liquid inlet and outlet 122 and the sixth liquid inlet and outlet 132 are connected to the liquid outlet of the external cold source.
  • the first liquid inlet and outlet 111, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132 are connected to the liquid outlet of the external cold source, and the second liquid inlet and outlet 112, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet are connected to the liquid outlet of the external cold source.
  • the liquid inlet and outlet 131 are connected to the liquid inlet of the external cold source.
  • the external cold source outputs the cooling liquid through the liquid outlet, and enters the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate through the first liquid inlet and outlet 111, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132, respectively.
  • the liquid cooling plate 130 then flows back to the external cold source through the liquid inlet and outlet through the corresponding second liquid inlet and outlet 112, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131.
  • the first liquid inlet and outlet 111, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132 can also be connected to the liquid inlet of the external cold source, and the second liquid inlet and outlet 112,
  • the three liquid inlet and outlet ports 121 and the fifth liquid inlet and outlet ports 131 are connected to the liquid outlet of the external cold source.
  • the step of controlling the series connection and/or parallel connection of the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 includes:
  • the cooling liquid flowing out of the first liquid cooling plate 110 is controlled to flow into the second liquid cooling plate 120 and the third liquid cooling plate 130 respectively, so as to cool the other surface of the first electronic unit 210 and the first electronic unit 210.
  • the other surface of the second electronic unit 220 is controlled to flow into the second liquid cooling plate 120 and the third liquid cooling plate 130 respectively, so as to cool the other surface of the first electronic unit 210 and the first electronic unit 210.
  • the other surface of the second electronic unit 220 is controlled to flow into the second liquid cooling plate 120 and the third liquid cooling plate 130 respectively, so as to cool the other surface of the first electronic unit 210 and the first electronic unit 210.
  • the other surface of the second electronic unit 220 is controlled to flow into the second liquid cooling plate 120 and the third liquid cooling plate 130 respectively, so as to cool the other surface of the first electronic unit 210 and the first electronic unit 210.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are connected in series and then connected in parallel. Specifically, the first liquid cooling plate 110 is respectively connected in series to the second liquid cooling plate 120 and the third liquid cooling plate 130, and the second liquid cooling plate 120 and the third liquid cooling plate 130 are connected in parallel.
  • the external cold source delivers the cooling liquid to the first liquid cooling plate 110 to cool a surface of the first electronic unit 210 and a surface of the second electronic unit 220.
  • the cooling liquid flowing out of the first liquid cooling plate 110 flows into the second liquid cooling plate 120 and the third liquid cooling plate 130 respectively to cool the other surface of the first electronic unit 210 and the other surface of the second electronic unit 220 .
  • the cooling requirements of the first electronic unit 210 and the second electronic unit 220 can be better met, and The temperature balance of the first electronic unit 210 and the second electronic unit 220 is promoted.
  • the first liquid-cooling plate 110 has a first accommodating cavity, and a first liquid inlet and outlet 111 and a second liquid inlet and outlet 112 communicating with the first accommodating cavity;
  • the second liquid cold plate 120 There is a second accommodating cavity and a third liquid inlet and outlet 121 and a fourth liquid inlet and outlet 122 communicating with the second accommodating cavity;
  • the third liquid-cooling plate 130 has a third accommodating cavity and a third accommodating cavity The fifth liquid inlet and outlet 131 and the sixth liquid inlet and outlet 132;
  • the step of controlling the first liquid cooling plate 110 to connect the second liquid cooling plate 120 and the third liquid cooling plate 130 in series respectively includes:
  • the liquid port 112 and the fourth liquid inlet/outlet 122 enter the second liquid cold plate 120; the cooling liquid in the first liquid cold plate 110 passes through the second liquid inlet/outlet 112 and the sixth liquid cold plate 120.
  • the liquid port 132 enters the third liquid cold plate 130.
  • the first liquid inlet and outlet 111 is connected to the liquid outlet of the external cold source
  • the second liquid inlet 112 is respectively connected to the third liquid inlet and outlet 121 and the fifth liquid inlet and outlet 131
  • the six liquid inlet and outlet ports 132 are respectively connected to the liquid inlet of the external cold source.
  • the cooling liquid of the external cold source enters the first liquid cooling plate 110 through the liquid outlet end and the first liquid inlet and outlet 111.
  • the cooling liquid in the first liquid cooling plate 110 cools the first electronic unit 210 and the second electronic unit 220, it flows out from the second liquid inlet and outlet 112, and enters through the third liquid inlet and outlet 121 and the fifth liquid inlet and outlet 131 respectively Into the second liquid cooling plate 120 and the third liquid cooling plate 130, the first electronic unit 210 and the second electronic unit 220 are cooled, and the liquid is fed through the fourth liquid inlet and outlet port 122 and the sixth liquid inlet and outlet port 132. The end returns to the external cold source.
  • the first liquid inlet and outlet 111 are connected to the liquid outlet of the external cold source
  • the second liquid inlet and outlet 112 are respectively connected to the fourth liquid inlet and outlet port 122 and the sixth liquid inlet and outlet port 132.
  • the three liquid inlet and outlet ports 121 and the fifth liquid inlet and outlet ports 131 are respectively connected to the liquid inlet ends of the external cold source.
  • the cooling liquid of the external cold source enters the first liquid cooling plate 110 through the liquid outlet end and the first liquid inlet and outlet 111.
  • the coolant in the first liquid cooling plate 110 flows out from the second liquid inlet and outlet 112, and enters through the fourth liquid inlet and outlet 122 and the sixth liquid inlet and outlet 132, respectively.
  • the first electronic unit 210 and the second electronic unit 220 are cooled, and the liquid is fed through the third liquid inlet and outlet 121 and the fifth liquid inlet and outlet 131. The end returns to the external cold source.
  • the step of controlling the series connection and/or parallel connection of the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 includes:
  • the cooling liquid flowing out of the second liquid cooling plate 120 and the third liquid cooling plate 130 is controlled to flow into the first liquid cooling plate 110 to cool a surface of the first electronic unit 210 and the second liquid cooling plate. A surface of the electronic unit 220.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are connected in parallel and then connected in series. Specifically, the second liquid cooling plate 120 and the third liquid cooling plate 130 are first connected in parallel, and then the first liquid cooling plate 110 is connected in series. At this time, the external cold source delivers the cooling liquid to the second liquid cooling plate 120 and the third liquid cooling plate 130 to cool the surface of the first electronic unit 210 and the surface of the second electronic unit 220. The cooling liquid flowing out of the second liquid cooling plate 120 and the third liquid cooling plate 130 respectively flows into the first liquid cooling plate 110 to cool the other surface of the first electronic unit 210 and the other surface of the second electronic unit 220 .
  • the second liquid cooling plate 120 and the third liquid cooling plate 130 on both sides are connected in parallel with the first liquid cooling plate 110 in the middle to better meet the cooling requirements of the first electronic unit 210 and the second electronic unit 220 , And promote the temperature balance of the first electronic unit 210 and the second electronic unit 220.
  • the first liquid-cooling plate 110 has a first accommodating cavity, and a first liquid inlet and outlet 111 and a second liquid inlet and outlet 112 communicating with the first accommodating cavity;
  • the second liquid cold plate 120 There is a second accommodating cavity and a third liquid inlet and outlet 121 and a fourth liquid inlet and outlet 122 communicating with the second accommodating cavity;
  • the third liquid-cooling plate 130 has a third accommodating cavity and a third accommodating cavity The fifth liquid inlet and outlet 131 and the sixth liquid inlet and outlet 132;
  • the step of controlling the second liquid cooling plate 120 and the third liquid cooling plate 130 in parallel and then connecting the first liquid cooling plate 110 in series includes:
  • the liquid port 112 enters the first liquid cold plate 110.
  • the fourth liquid inlet and outlet port 122 and the sixth liquid inlet and outlet port 132 are respectively connected to the liquid outlet end of the external cold source, and the third liquid inlet and outlet port 121 and the fifth liquid inlet and outlet port 131 are respectively connected to the first liquid inlet and outlet port 111,
  • the second liquid inlet and outlet 112 is connected to the liquid inlet of the external cold source.
  • the cooling liquid of the external cold source enters the second liquid cold plate 120 and the third liquid cold plate 130 through the liquid outlet end, the fourth liquid inlet and outlet port 122 and the sixth liquid inlet and outlet port 132, respectively.
  • the coolant in the second liquid cold plate 120 and the third liquid cold plate 130 cools the first electronic unit 210 and the second electronic unit 220, it flows out from the third liquid inlet and outlet 121 and the fifth liquid inlet and outlet 131, and passes through the first
  • the two liquid inlet and outlet ports 112 enter the first liquid cooling plate 110 to cool the first electronic unit 210 and the second electronic unit 220, and return from the first liquid inlet and outlet port 111 to the external cold source through the liquid inlet.
  • the cooling liquid in the second liquid cold plate 120 and the third liquid cold plate 130 cools the first electronic unit 210 and the second electronic unit 220, and then passes through the third liquid inlet and outlet 121 and the fifth
  • the liquid inlet and outlet 131 flows out, and enters the first liquid cooling plate 110 through the first liquid inlet and outlet 111, and then cools the first electronic unit 210 and the second electronic unit 220, and enters through the second liquid inlet and outlet 112.
  • the liquid end returns to the external cold source.
  • the third liquid inlet and outlet port 121 and the fifth liquid inlet and outlet port 131 are respectively connected to the liquid outlet end of the external cold source
  • the fourth liquid inlet and outlet port 122 and the sixth liquid inlet and outlet port 132 are respectively connected to
  • the first liquid inlet and outlet 111 and the second liquid inlet and outlet 112 are connected to the liquid inlet of the external cold source.
  • the cooling liquid of the external cold source enters the second liquid cold plate 120 and the third liquid cold plate 130 through the liquid outlet end and the third liquid inlet and outlet port 121 and the fifth liquid inlet and outlet port 131, respectively.
  • the coolant in the three-liquid cold plate 130 cools the first electronic unit 210 and the second electronic unit 220, it flows out from the fourth liquid inlet and outlet 122 and the sixth liquid inlet and outlet 132, and enters the first liquid inlet and outlet 111 through the first liquid inlet and outlet 111.
  • a liquid cold plate 110 The cooling liquid in the first liquid cooling plate 110 cools the first electronic unit 210 and the second electronic unit 220, and flows out from the second liquid inlet and outlet 112 through the liquid inlet and returns to the external cold source.
  • the coolant in the second liquid cold plate 120 and the third liquid cold plate 130 cools the first electronic unit 210 and the second electronic unit 220, and then passes through the fourth liquid inlet and outlet 122 and the sixth
  • the liquid inlet and outlet 132 flows out and enters the first liquid cooling plate 110 through the second liquid inlet and outlet 112.
  • the cooling liquid in the first liquid cooling plate 110 cools the first electronic unit 210 and the second electronic unit 220, and flows out from the first liquid inlet and outlet 111 through the liquid inlet and returns to the external cold source.
  • the temperature equalization method further includes the following steps:
  • the flow direction of the cooling liquid in the first liquid cooling plate 110 is controlled to be the same as the flow direction of one of the second liquid cooling plate 120 and the third liquid cooling plate 130.
  • the flow direction of the plate 120 is opposite to that of the other of the third liquid cooling plates 130.
  • the flow directions of the cooling liquid in the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are the same. That is, the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131 are connected to the liquid outlet of the external cold source, and the second liquid inlet and outlet 112, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet The liquid inlet and outlet 132 are connected to the liquid inlet of the external cold source.
  • the first liquid inlet and outlet 111, the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet 131 may also be connected to the liquid inlet of the external cold source, and the second liquid inlet and outlet 112,
  • the fourth liquid inlet and outlet port 122 and the sixth liquid inlet and outlet port 132 are connected to the liquid outlet end of the external cold source.
  • the flow direction of the cooling liquid in the first liquid-cooling plate 110 is different from the flow direction of the cooling liquid in the second liquid-cooling plate 120 and the third liquid-cooling plate 130. That is, the cooling liquid in the first liquid cooling plate 110 flows in one direction, and the cooling liquid in the second liquid cooling plate 120 and the third liquid cooling plate 130 flows in the other direction.
  • the first liquid inlet and outlet 111, the fourth liquid inlet and outlet 122, and the sixth liquid inlet and outlet 132 are connected to the liquid outlet of the external cold source
  • the second liquid inlet and outlet 112 the third liquid inlet and outlet 121, and the fifth liquid inlet and outlet are connected to the liquid outlet of the external cold source.
  • the liquid inlet and outlet 131 are connected to the liquid inlet of the external cold source.
  • the first liquid inlet/outlet 111, the fourth liquid inlet/outlet 122, and the sixth liquid inlet/outlet 132 can be connected to the liquid inlet of an external cold source, and the second liquid inlet/outlet 112, the third liquid inlet/outlet 121, and the fifth liquid inlet/outlet
  • the liquid port 131 is connected to the liquid outlet of the external cold source.
  • the first electronic unit 210 and the second electronic unit 210 can be better improved.
  • the uniform temperature effect of the electronic unit 220 Taking the first electronic unit 210 as an example, the flow direction of the cooling liquid in the first liquid cooling plate 110 on one surface of the first electronic unit 210 is different from that of the cooling liquid in the second liquid cooling plate 120 on the other surface. The flow direction is opposite.
  • the substrate of the first electronic unit 210 does not contact the water inlet end (low temperature end) or the water outlet end (high temperature end) of the first liquid cooling plate 110 and the second liquid cooling plate 120 at the same time, which is beneficial to The balance of chip temperature in different regions on the first electronic unit 210. Because the temperature of the cooling liquid increases along the flow direction, the first electronic unit 210 is close to the first liquid-cooling plate 110 on the side of the first liquid inlet and outlet 111, and the substrate temperature of the first electronic unit 210 is greatly reduced.
  • the temperature drop of the chip side of the unit 210 is small; while on the side of the first electronic unit 210 close to the second liquid inlet and outlet 112 of the first liquid cooling plate 110, the temperature drop of the substrate contacting the first electronic unit 210 is small, correspondingly
  • the temperature of the chip side of the first electronic unit 210 decreases greatly, so that the average temperature of the first electronic unit 210 near the first liquid inlet and outlet 111 and the second liquid inlet and outlet 112 is close.
  • the cooling effect of the second electronic unit 220 is the same, and will not be repeated here.
  • the flow direction of the coolant in the first liquid cold plate 110 is the same as the flow direction of one of the second liquid cold plate 120 and the third liquid cold plate 130, and one of the second liquid cold plate 120 and the third liquid cold plate 130
  • the flow direction of the other is different. That is, the cooling liquid in the first liquid cooling plate 110 flows in one direction, the cooling liquid of one of the second liquid cooling plate 120 and the third liquid cooling plate 130 flows in one direction, and the cooling liquid of the other flows in the other direction. Flow in one direction.
  • the flow direction of the cooling liquid in the first liquid cooling plate 110 is the same as the flow direction of the cooling liquid in the second liquid cooling plate 120, but is different from the flow direction of the cooling liquid in the third liquid cooling plate 130 .
  • the flow direction of the cooling liquid in the first liquid cooling plate 110 may be different from the flow direction of the cooling liquid in the second liquid cooling plate 120, but it is the same as the flow direction of the cooling liquid in the third liquid cooling plate 130.
  • the connection mode of the liquid inlet and outlet of each liquid cooling plate is essentially the same as the connection mode of the liquid inlet and outlet in the foregoing embodiments, and will not be repeated here.
  • controller of the liquid cooling device 100 can control the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate according to the temperature equalization effect of the first electronic unit 210 and the second electronic unit 220.
  • the cooling liquid in the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 can be controlled to flow in the same direction, or the cooling liquid in the first liquid cooling plate 110 can flow in one direction, and the second liquid cooling plate
  • the cooling liquid in the plate 120 and the third liquid cooling plate 130 flows in the other direction, or the cooling liquid in the first liquid cooling plate 110 flows in the same direction as the cooling liquid in the second liquid cooling plate 120 and is the same as that of the third liquid cooling plate 130.
  • the flow direction of the middle cooling liquid is opposite, or the flow direction of the cooling liquid in the first liquid cooling plate 110 is the same as the flow direction of the cooling liquid in the third liquid cooling plate 130 but opposite to that of the second liquid cooling plate 120, and so on.
  • the application also provides a liquid-cooled data processing device, such as a virtual currency mining machine, which includes an electronic device 200 and the liquid-cooled heat dissipation device 100 described in the above embodiment.
  • the electronic device 200 includes a first electronic unit 210 and a The second electronic unit 220, wherein the first electronic unit 210 and the second electronic unit 220 are computing power boards, and the liquid-cooled heat dissipation device 100 carries the computing power board to perform calculations on the computing power board. cool down.
  • the liquid-cooled virtual currency mining machine adopts the liquid-cooled heat dissipation device 100 of the above embodiment, the heat dissipation effect can be improved, thereby improving the reliability of the liquid-cooled virtual currency mining machine.
  • the liquid-cooled virtual currency mining machine can also be other types of processing equipment.
  • the number of liquid-cooled virtual currency mining machines is multiple. Multiple liquid-cooled virtual currency mining machines are arranged in a stack; or, multiple liquid-cooled virtual currency mining machines are arranged side by side. When the liquid-cooled virtual currency mining machine needs to increase its computing power, the number of electronic devices 200 will be increased to form a liquid-cooled cabinet machine. At this time, the first electronic unit 210 and the second electronic unit 220 of the electronic device 200 in each liquid-cooled virtual currency mining machine are arranged according to the above-mentioned liquid-cooled heat sink 100.
  • each liquid-cooled heat sink 100 clamps the electronic equipment 200 to form a liquid-cooled virtual currency mining machine
  • multiple liquid-cooled virtual currency mining machines can be stacked in the thickness direction, or can be deployed along the same plane to form a liquid-cooled cabinet machine .
  • the liquid-cooled heat dissipation device 100 improves the heat dissipation performance of the electronic device 200, thereby improving the performance of each liquid-cooled virtual currency mining machine.
  • the embodiment of the application provides a liquid-cooled virtual currency mining machine, a liquid-cooled heat dissipation device, and a temperature equalization method.
  • the first electronic unit and the second electronic unit are symmetrically arranged on both sides of the first liquid-cooled plate, and the first electronic
  • a second liquid cooling plate and a third liquid cooling plate are arranged on the other side of the unit and the second electronic unit.
  • the two surfaces of the first electronic unit are cooled by the first liquid cooling plate and the second liquid cooling plate, and the two surfaces of the second electronic unit are cooled by the first liquid cooling plate and the third liquid cooling plate;
  • the first, second, and third liquid cold plates are used to perform the first electronic unit and the second electronic unit on both sides. Heat dissipation can effectively improve the heat dissipation effect of the first electronic unit and the second electronic unit, make the temperature between the first electronic unit and the second electronic unit more balanced, reduce the temperature difference, and improve the use of liquid-cooled virtual currency mining machines performance.
  • an embodiment of the present application also provides a liquid-cooled heat dissipation device 100.
  • the liquid-cooled heat dissipation device 100 is applied to a liquid-cooled data processing device, such as a liquid-cooled virtual currency mining machine 1000, to cool the electronic equipment 200 of the liquid-cooled virtual currency mining machine 1000 to ensure liquid-cooled virtual currency mining The performance of the mining machine 1000.
  • the liquid cooling device 100 includes a liquid cooling structure 1210 and a pipe structure 1220.
  • the liquid cooling structure 1210 includes a first liquid cooling plate 110, a second liquid cooling plate 120, and a third liquid cooling plate 130.
  • the second liquid cooling plate 120 and the third liquid cooling plate 130 are symmetrically arranged on two sides of the first liquid cooling plate 110.
  • the first electronic unit 210 is arranged between the first liquid cooling plate 110 and the second liquid cooling plate 120
  • the second electronic unit 220 is arranged between the first liquid cooling plate 110 and the third liquid cooling plate 130.
  • the pipe structure 1220 connects the first liquid cooling plate 110, the second liquid cooling plate 120, the third liquid cooling plate 130 and an external cooling source, and is used for inputting and outputting cooling liquid.
  • the first liquid cooling plate 110 is the main cooling structure of the liquid cooling device 100.
  • the first liquid cold plate 110 has a first accommodating cavity for accommodating cooling liquid.
  • the first accommodating cavity of the first liquid cooling plate 110 may be a multi-flow channel in series and parallel, such as an S shape, etc., may also be a complete cavity, or may have other structures capable of supplying cooling liquid to flow.
  • the second liquid cooling plate 120 has a second accommodating cavity, and the cooling liquid flows in the second accommodating cavity.
  • the second containing cavity of the second liquid cooling plate 120 may be a multi-flow channel in series and parallel, such as an S shape, etc., may also be a complete cavity, or may be another structure capable of supplying cooling liquid to flow. After the cooling liquid enters the second accommodating cavity of the second liquid cooling plate 120, the cooling liquid exchanges heat with the electronic device 200 through the second liquid cooling plate 120 to cool the first electronic unit 210 of the electronic device 200.
  • the third liquid cooling plate 130 has a third accommodating cavity, and the cooling liquid flows in the third accommodating cavity.
  • the third containing cavity of the third liquid cooling plate 130 may be a multi-flow channel in series and parallel, such as an S shape, etc., may also be a complete cavity, or may have other structures capable of supplying cooling liquid to flow. After the cooling liquid enters the third accommodating cavity of the third liquid cooling plate 130, the cooling liquid exchanges heat with the electronic device 200 through the third liquid cooling plate 130 to cool the second electronic unit 220 of the electronic device 200.
  • the aluminum substrates of the first electronic unit 210 and the second electronic unit 220 are attached to the two surfaces of the first liquid cooling plate 110.
  • the heat generated by the heating element during operation can be transferred to the first liquid cooling plate 110 through the aluminum substrate to realize liquid cooling and heat dissipation.
  • the second liquid cooling plate 120 can abut against the heating elements of the first electronic unit 210, and the heat on the heating element side can be transferred to the second liquid cooling plate 120 to ensure the protection of the first electronic unit 210
  • the cooling effect realizes liquid cooling and heat dissipation.
  • the third liquid cold plate 130 and the heating element of the second electronic unit 220 can be abutted, and the heat on the side of the heating element can be transferred to the third liquid cold plate 130 to ensure the cooling effect of the second electronic unit 220 , Realize liquid cooling and heat dissipation.
  • the pipe structure 1220 connects the first liquid cooling plate 110, the second liquid cooling plate 120, the third liquid cooling plate 130 and an external cooling source.
  • the external cold source has a liquid inlet and a liquid outlet, and the pipe structure 1220 connects the liquid inlet and the liquid outlet.
  • the cooling liquid of the external cold source is delivered to the pipe structure 1220 through the liquid outlet, and is delivered to the first liquid cold plate 110, the second liquid cold plate 120, and the third liquid cold plate 130 through the pipe structure 1220, respectively.
  • the cooling liquid flows back to the pipe structure 1220 and returns through the liquid inlet To an external cold source.
  • the external cold source can cool the recovered cooling liquid, and then transport the cooling liquid to the pipeline structure 1220. In this way, the circulation of the cooling liquid is realized and the cooling cost is reduced.
  • the cooling liquid of the external cold source may be cooling water, cooling oil, liquid helium, or the like.
  • the pipe assembly transports the cooling liquid of the external cold source to the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130, through the first liquid cooling plate 110 ,
  • the second liquid cold plate 120 and the third liquid cold plate 130 cool the first electronic unit 210 and the second electronic unit 220, and the pipe assembly transports the cooled coolant to an external cold source, which can effectively solve the current chip heat dissipation
  • the efficiency is low and the temperature difference between the chips affects the performance of the computing power board.
  • the cooling efficiency of the first electronic unit 210 and the second electronic unit 220 is improved, and the heat dissipation effect is ensured, so that the first electronic unit 210 and the second electronic unit 220 are The temperature is balanced to avoid temperature differences and ensure the performance of the liquid-cooled virtual currency mining machine 1000.
  • the cooling capacity of the first liquid cooling plate 110 is greater than the cooling capacity of the second liquid cooling plate 120 and the third liquid cooling plate 130. Due to the structural limitations of the first electronic unit 210 and the second electronic unit 220, the heat dissipation of the aluminum substrate facing the first liquid cooling plate 110 is relatively large. The heat dissipation is small. In order to ensure the heat dissipation effect, the cooling capacity of the first liquid cooling plate 110 is increased to improve the heat dissipation capacity of the first liquid cooling plate 110 to the aluminum substrate. Correspondingly, the cooling capacity of the second liquid cooling plate 120 and the third liquid cooling plate 130 can be appropriately reduced. For example, it can be as long as the heat dissipation of the heating element is ensured. In this way, while ensuring the heat dissipation effect of the first electronic unit 210 and the second electronic unit 220, the complexity of the structure can be reduced, and the cost can be reduced.
  • the first liquid cooling plate 110 has a first accommodating cavity
  • the second liquid cooling plate 120 has a second accommodating cavity
  • the third liquid cooling plate 130 has a third accommodating cavity.
  • the heat dissipation area of the first containing cavity is larger than the heat dissipation area of the second containing cavity
  • the heat dissipation area of the first containing cavity is greater than the heat dissipation area of the third containing cavity.
  • the heat dissipation area here refers to the area that can be effectively cooled.
  • the flow channel area inside the first liquid cooling plate 110 is larger than the flow channel area inside the second liquid cooling plate 120 and the third liquid cooling plate 130.
  • the area of the flow channel inside the first liquid cooling plate 110 may be larger, and the area of the flow channel inside the second liquid cooling plate 120 and the third liquid cooling plate 130 may be smaller. This can reduce the manufacturing cost while ensuring the heat dissipation effect.
  • heat dissipation protrusions or heat dissipation fins may be provided in the first accommodating cavity, and the heat dissipation capability of the first liquid cooling plate 110 is increased by the heat dissipation protrusions or heat dissipation fins, thereby improving the cooling effect of the first liquid cooling plate 110.
  • the electronic device 200 further includes a power supply 230
  • the liquid cooling structure 1210 further includes a fourth liquid cooling plate 140 connected to the pipe structure 1220
  • the fourth liquid cooling plate 140 has a fifth cooling surface
  • the fifth cooling surface is connected to the
  • the power supply 230 is attached and used for cooling the power supply 230.
  • the power supply 230 supplies power to the first electronic unit 210 and the second electronic unit 220 to ensure that the first electronic unit 210 and the second electronic unit 220 can work normally.
  • the power supply 230 has an input terminal 231 for connecting to an external power source.
  • the fourth liquid cooling plate 140 has a fourth accommodating cavity, and the cooling liquid flows in the fourth accommodating cavity.
  • the fourth containing cavity of the fourth liquid cooling plate 140 can be a multi-flow channel series-parallel channel such as an S-shaped, etc., can also be a complete cavity, and can also be another structure capable of supplying cooling liquid to flow. .
  • the cooling liquid exchanges heat with the electronic device 200 through the fourth liquid cooling plate 140 to cool the power supply 230 of the electronic device 200.
  • the fourth liquid cold plate 140 has a fifth cooling surface.
  • the fifth cooling surface is set toward the power supply 230. In other words, the fifth cooling surface abuts against the surface of the power supply 230.
  • the cooling liquid in the fourth accommodating cavity will exchange heat with the power supply 230 through the fifth cooling surface to reduce the temperature of the power supply 230.
  • the first liquid cold plate 110 has a first liquid inlet and outlet 111 and a second liquid inlet and outlet 112; the second liquid cold plate 120 has a third liquid inlet and outlet 121 and a fourth liquid inlet and outlet 122;
  • the liquid cold plate 130 has a fifth liquid inlet and outlet 131 and a sixth liquid inlet and outlet 132, and the fourth liquid cold plate 140 has a seventh liquid inlet and outlet A7 and an eighth liquid inlet and outlet A8.
  • the pipeline structure 1220 connects each liquid inlet and outlet in series and/or in parallel.
  • the first liquid cooling plate 110 has a first liquid inlet and outlet 111 and a second liquid inlet and outlet 112 communicating with the first containing cavity.
  • the second liquid cooling plate 120 has a third liquid inlet and outlet 121 and a fourth liquid inlet and outlet 122 that communicate with the second containing cavity.
  • the third liquid cooling plate 130 has a fifth liquid inlet and outlet 131 and a sixth liquid inlet and outlet 132 that communicate with the third accommodating cavity.
  • the fourth liquid cooling plate 140 has a seventh liquid inlet and outlet port A7 and an eighth liquid inlet and outlet port A8 that communicate with the fourth accommodating cavity.
  • the seventh liquid inlet and outlet port A7 and the eighth liquid inlet and outlet port A8 are, for example, the liquid inlet and the liquid outlet of the fourth liquid cooling plate 140.
  • the eighth liquid inlet and outlet A8 is the liquid outlet.
  • the eighth liquid inlet and outlet A8 is a liquid inlet.
  • each liquid cooling plate The inlet and outlet ports of each liquid cooling plate are connected through the pipe structure 1220 to realize the input and output of the cooling liquid.
  • the connection mode between the various liquid cooling plates is not limited in principle, as long as the electronic device 200 can be cooled.
  • the two liquid inlets and outlets of each liquid cold plate can be separately connected to an external cold source.
  • the first liquid cold plate 110, the second liquid cold plate 120, the third liquid cold plate 130, and the The fourth liquid cooling plate 140 is connected in parallel.
  • the external cold source respectively transports the cooling liquid to each liquid cooling plate.
  • first liquid cold plate 110, the second liquid cold plate 120, the third liquid cold plate 130, and the fourth liquid cold plate 140 can also be connected in series through the pipe structure 1220, and the cooling liquid delivered by the external cold source flows to each one in sequence.
  • the cooling liquid delivered by the external cold source flows to each one in sequence.
  • one or more of the liquid cooling plates may also be connected in series, and connected in parallel with the remaining liquid cooling plates.
  • first liquid inlet and outlet port 111 and the second liquid inlet and outlet port 112 may be arranged on the same side or on different sides.
  • the third liquid inlet and outlet opening 121 and the fourth liquid inlet and outlet opening 122 can be arranged on the same side or on different sides.
  • the fifth liquid inlet and outlet 131 and the sixth liquid inlet and outlet 132 can be set on the same side or on different sides.
  • the seventh liquid inlet and outlet A7 and the eighth liquid inlet and outlet A8 can be set on the same side or on different sides.
  • the positions of the seventh liquid inlet and outlet A7 and the eighth liquid inlet and outlet A8 are not restricted in principle, and they can be set on the same side or on different sides.
  • the seventh liquid inlet and outlet A7 and the eighth liquid inlet and outlet A8 may be respectively arranged on both sides of the fourth liquid cooling plate 140; of course, the seventh liquid inlet and outlet A7 and the eighth liquid inlet and outlet A8 may also be arranged on The same side of the fourth liquid cooling plate 140 is shown in FIG. 15.
  • the fourth liquid cooling plate 140 is connected in series or in parallel with the first liquid cooling plate 110, the second liquid cooling plate 120 and the third liquid cooling plate 130.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are a whole, and the fourth liquid cooling plate 140 can be connected in parallel or in series.
  • the piping structure 1220 connects the fourth liquid cooling plate 140 with the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 in series.
  • the cooling liquid may enter the fourth liquid cooling plate 140 first, and then enter the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130.
  • the fourth liquid cold plate 140 used to cool the power supply 230 can be used as the inlet of the coolant, first participates in heat exchange, and then interacts with the first liquid cold plate 110 and the first liquid cold plate.
  • the two liquid cold plates 120 and the third liquid cold plate 130 are connected in series to transport the cooling liquid.
  • the cooling liquid may also enter the fourth liquid cooling plate 140 last.
  • the piping structure 1220 connects the fourth liquid cooling plate 140 with the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 in parallel. That is to say, the cooling liquid flows into the whole constituted by the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 and the fourth liquid cooling plate 140 through the pipe structure 1220, respectively.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are connected in series or in parallel; or, the first liquid cooling plate 110 is connected in series with the second liquid cooling plate 120 and the third liquid cooling plate 120, respectively.
  • the liquid cooling plate 130, and the second liquid cooling plate 120 and the third liquid cooling plate 130 are connected in parallel.
  • the fourth liquid cooling plate 140 is connected in series with the integrated first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 as an example for description.
  • the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are connected in parallel.
  • the cooling liquid output by the fourth liquid cooling plate 140 is respectively delivered to the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130, so as to affect the first electronic unit 210 and the second electronic unit. 220 for cooling.
  • the first electronic unit 210 and the second electronic unit 220 are combined in series and in parallel by the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130, so that the cooling liquid flows between the first electronic unit 210 and the second electronic unit 210.
  • the electronic units 220 reciprocate to improve the heat dissipation efficiency of the first electronic unit 210 and the second electronic unit 220, and reduce the temperature difference between the coolant and the highest temperature of the first electronic unit 210 or the second electronic unit 220, thereby Increasing the temperature of the coolant can meet the requirements of waste heat recovery.
  • the pipeline structure 1220 includes an inlet connector 1224, an outlet connector 1225, a liquid-cooled pipeline group 1221, a first manifold 1222, and a second manifold 1223.
  • the liquid cooling pipe group 1221 can be connected to the first liquid cooling plate 110, the second liquid cooling plate 120, the third liquid cooling plate 130, and the fourth liquid cooling plate 140 through the first manifold 1222 and the second manifold 1223.
  • the liquid cooling pipe group 1221 is also connected to an external cold source through an inlet connector 1224 and an outlet connector 1225.
  • the inlet connector 1224 and the outlet connector 1225 are used to connect the liquid cooling pipe group 1221 with an external cold source.
  • the inlet connector 1224 is connected to the liquid outlet end of the external cold source
  • the outlet connector 1225 is connected to the liquid inlet end of the external cold source.
  • the cooling liquid in the external cold source enters the liquid cooling pipe group 1221 through the liquid outlet end and the inlet connector 1224, and the cooling liquid in the liquid cooling pipe group 1221 flows back to the external cold source through the outlet connector 1225 and the liquid inlet end.
  • the liquid cooling pipe group 1221 includes a plurality of cooling pipes, and the cooling pipes are respectively connected to the respective liquid inlet and outlet ports of the first liquid cooling plate 110, the second liquid cooling plate 120, the third liquid cooling plate 130, and the fourth liquid cooling plate 140, and pass through
  • the first manifold 1222 and the second manifold 1223 are connected in series and parallel with each liquid cooling plate to meet different cooling requirements.
  • each cooling pipe is a hard pipe or a customized special-shaped pipe fitting.
  • the first manifold 1222 has a first connector, a second connector, and a third connector.
  • the first manifold 1222 realizes the serial and parallel connection of the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 through the first joint, the second joint, and the third joint.
  • the first joint is connected to the second liquid inlet and outlet 112 of the first liquid cold plate 110
  • the second joint is connected to the fourth liquid inlet and outlet 122 of the second liquid cold plate 120
  • the third joint is connected to the third liquid cold plate 130.
  • the sixth liquid inlet and outlet 132 Each liquid inlet and outlet are connected with the joints through cooling pipes.
  • the first joint, the second joint, and the third joint may be arranged on the same side or on different sides.
  • the second manifold 1223 has a fourth joint, a fifth joint, and a sixth joint.
  • the second manifold 1223 realizes the output of the cooling liquid after the first liquid cooling plate 110, the second liquid cooling plate 120, and the third liquid cooling plate 130 are connected in series and parallel through the fourth joint, the fifth joint, and the sixth joint.
  • the fourth joint is connected to the third liquid inlet and outlet 121 of the second liquid cold plate 120
  • the fifth joint is connected to the fifth liquid inlet and outlet 131 of the third liquid cold plate 130
  • the sixth joint is connected to the outlet joint 1225.
  • Each liquid inlet and outlet are connected with the joints through cooling pipes.
  • the fourth joint, the fifth joint, and the sixth joint may be arranged on the same side or on different sides.
  • the joints of the first manifold 1222 and the second manifold 1223 may have different functions because of the different cooling pipes connected.
  • the first manifold 1222 is a liquid separator
  • the second manifold 1223 is a liquid collector.
  • the functions of the first manifold 1222 and the second manifold 1223 can be changed by changing the connection mode of the cooling pipe. As shown in Figure 12, when the coolant first enters the second liquid cold plate 120 and the third liquid cold plate 130 from the third liquid inlet and outlet port 121 and the fifth liquid inlet and outlet port 131, the first manifold 1222 is a liquid collector.
  • the second liquid separator 1223 is a liquid separator.
  • the second manifold 1223 and the first manifold 1222 are arranged separately, as shown in FIG. 15; of course, the second manifold 1223 and the first manifold 1222 can also be an integrated structure, As shown in Figure 16. In other embodiments of the present application, the first manifold 1222 and the second manifold 1223 may also be three-way valves (or three-way joints) and the like.
  • the inlet connector 1224 is connected to the seventh liquid inlet and outlet A7 of the fourth liquid cooling plate 140, and the eighth liquid inlet and outlet A8 of the fourth liquid cooling plate 140 is connected to the first liquid cooling plate.
  • the first liquid inlet and outlet 111 of 110, the second liquid inlet 112 of the first liquid cooling plate 110 are respectively connected to the fourth liquid inlet and outlet 122 of the second liquid cooling plate 120 and the third liquid cooling plate through the first manifold 1222
  • the sixth liquid inlet and outlet 132 of 130, the third liquid inlet and outlet 121 of the second liquid cooling plate 120 and the fifth liquid inlet and outlet 131 of the third liquid cooling plate 130 are connected to an outlet connector 1225 through a second manifold 1223.
  • the liquid outlet end of the external cold source is connected to the seventh liquid inlet and outlet A7 of the fourth liquid cold plate 140 through the inlet connector 1224, and the eighth liquid inlet and outlet A8 of the fourth liquid cold plate 140 is connected to the first inlet and outlet of the first liquid cold plate 110 Liquid port 111, the second liquid inlet and outlet 112 of the first liquid cold plate 110 is connected to the fourth liquid inlet and outlet 122 of the second liquid cold plate 120 and the sixth liquid inlet and outlet of the third liquid cold plate 130 through the first manifold 1222 ⁇ 132.
  • the third liquid inlet and outlet 121 of the second liquid cold plate 120 and the fifth liquid inlet and outlet 131 of the third liquid cold plate 130 are connected to the liquid inlet of the external cold source through the second manifold 1223 through the outlet connector 1225.
  • the cooling liquid output by the external cold source first enters the fourth liquid cooling plate 140 through the inlet connector 1224 and the liquid cooling pipe group 1221, and the power supply 230 is cooled by the fourth liquid cooling plate 140.
  • the cooling liquid after heat exchange with the power supply 230 flows into the first liquid cooling plate 110 through the liquid cooling pipe group 1221, and passes through the first liquid cooling plate 110 to respectively contact a surface of the first electronic unit 210 and a surface of the second electronic unit 220. The surface is cooled.
  • the cooling liquid flows out of the first liquid-cooling plate 110 through the first manifold 1222 and is divided into the second liquid-cooling plate 120 and the third liquid-cooling plate 130 respectively, and then the other surface of the first electronic unit 210 and the second The other surface of the electronic unit 220 is cooled.
  • the cooled cooling liquid flows out of the second liquid cooling plate 120 and the third liquid cooling plate 130, is collected by the second manifold 1223 to the outlet joint 1225, and then flows back to the external cooling source.
  • the flow direction of the cooling liquid in the first liquid cooling plate 110 is the same as that of the second liquid cooling plate 120
  • the flow direction of the cooling liquid in the third liquid cooling plate 130 may be opposite. In this way, it can be ensured that the flow directions of the cooling liquid on both sides of the first electronic unit 210 are different, and opposite flows are formed on both sides of the first electronic unit 210, so that the temperature of the first electronic unit 210 is balanced, and the cooling liquid can be reduced.
  • the temperature difference with the first electronic unit 210 the sum of the resistances of the second liquid cooling plate 120 and the third liquid cooling plate 130 is substantially the same as the sum of the resistances of the first liquid cooling plate 110, ensuring the flow velocity in the entire liquid cooling structure 1210 Unanimous.
  • connection modes of the liquid inlet and outlet ports of each liquid cooling plate and the flow direction of the cooling liquid can be adjusted appropriately, and the connection modes and principles are substantially the same, and will not be repeated here.
  • the present application also provides a liquid-cooled virtual currency mining machine 1000, which includes an electronic device 200 and the liquid-cooled heat dissipation device 100 in the above-mentioned embodiment.
  • the electronic device 200 includes a first electronic unit 210, a second electronic unit 220, and a power supply 230.
  • the liquid-cooled heat dissipation device cools the first electronic unit 210, the second electronic unit 220, and the power supply 230.
  • the liquid-cooled virtual currency mining machine 1000 of the present application adopts the liquid-cooled heat dissipation device 100 of the foregoing embodiment, the heat dissipation effect of the electronic device 200 can be ensured, and thus the reliability of the liquid-cooled virtual currency mining machine 1000 can be ensured.
  • the liquid-cooled virtual currency mining machine 1000 can also be other types of data processing equipment.
  • the liquid-cooled virtual currency mining machine 1000 further includes a chassis shell 400, and the electronic device 200 and the liquid-cooled structure 1210 and the pipe structure 1220 of the liquid-cooled heat sink 100 are all disposed in the chassis shell 400.
  • the chassis shell 400 is the shell of the liquid cooling device 100.
  • the case shell 400 has an installation space for installing the electronic unit, the liquid cooling structure 1210 and the pipeline structure 1220 of the electronic device 200 of the virtual currency mining machine.
  • the chassis shell 400 also plays a protective role to prevent foreign objects from entering, and at the same time prevent foreign objects from touching the electronic device 200, ensuring that the electronic device 200 can work normally.
  • the chassis shell 400 can also make the various parts of the liquid cooling device 100 form a whole, which is convenient for use.
  • the chassis housing 400 includes a carrying case 410, a first side plate 420, a second side plate 430, and a chassis cover 440 disposed on the carrying housing 410, the first side plate 420 and the second side plate 430 is arranged oppositely, the case cover 440 is arranged on the top of the carrying case 410, the input terminal 231 of the electronic device 200 is arranged on the first side plate 420, and the inlet connector 1224 and the outlet connector 1225 of the duct structure 1220 are arranged on the second side plate 430.
  • the supporting shell 410 is U-shaped.
  • the first side panel 420 and the second side panel 430 are arranged on two opposite sides of the carrying bottom shell, and the chassis cover 440 is arranged on the carrying shell 410. In this way, the first side panel 420, the second side panel 430, and the carrying
  • the housing 410 and the case cover 440 may form a box with installation space.
  • the inlet connector 1224 and the outlet connector 1225 extend through the second side plate 430 and are used to connect an external cold source.
  • the input terminal of the power supply 230 extends through the first side plate 420 to facilitate connection with an external power source.
  • a fixing member is provided inside the first side plate 420, and the fixing member fixes the first manifold 1222 and the second manifold 1223.
  • the liquid-cooled virtual currency mining machine 1000 further includes a connecting component 240 that connects the first electronic unit 210 and the second electronic unit 220 to the power supply 230 respectively.
  • the connecting component 240 electrically connects the first electronic unit 210 and the power supply 230, and electrically connects the second electronic unit 220 and the power supply 230.
  • the power supply 230 supplies power to the first electronic unit 210 and the second electronic unit 220, so that the first electronic unit 210 and the second electronic unit 220 work normally.
  • connection assembly 240 includes a copper bar and a connection cable, and the first electronic unit 210 is connected to the power supply 230 through the copper bar and the connection cable. Two ends of the copper bar are respectively electrically connected to the first electronic unit 210 and the second electronic unit 220, and one end of the copper bar is electrically connected to the power supply 230 through a connecting cable.
  • the connection assembly 240 includes a positive copper bar 241, a negative copper bar 243, a positive cable 242 and a negative cable 244.
  • the positive electrode copper bar 241 and the negative electrode copper bar 243 are arranged to cross each other.
  • the positive electrode 213 of the first electronic unit 210 is provided with a positive copper bar 241
  • the negative electrode 212 of the first electronic unit 210 is provided with a negative copper bar 243
  • the positive electrode 211 of the second electronic unit 220 is provided with a positive copper bar 241
  • the negative electrode of the second electronic unit 220 (Not shown in the figure) a negative copper bar 243 is provided.
  • the positive electrode 213 of the first electronic unit 210 and the negative electrode of the second electronic unit 220 are arranged at the same end of the positive copper bar 241 and the negative copper bar 243.
  • the negative electrode 212 of the first electronic unit 210 and the positive electrode 211 of the second electronic unit 220 are arranged at The negative copper bar 243 has the same end as the positive copper bar 241.
  • the positive copper bar 241 has a positive fixing hole 2411 connected with the positive cable 242, and the positive fixing hole 2411 is located inside the positive copper bar 241; the negative copper bar 243 has a negative fixing hole 2441 connected with the negative cable 244 to fix the negative
  • the hole 2441 is located outside the negative copper bar 243.
  • the inner position means that the positive electrode fixing hole 2411 is located at the connection 217 of the positive copper bar 241 and the positive electrode 213 of the first electronic unit 210 and the connection position of the positive copper bar 241 and the positive electrode 211 of the second electronic unit 220
  • the position between 215; the outer position here means that the negative electrode fixing hole 2441 is located at the connection 214 of the negative electrode copper bar 243 and the negative electrode 212 of the first electronic unit 210, and the negative electrode copper bar 243 is connected to the negative electrode of the second electronic unit 220 At a location other than 216.
  • the length of the positive cable 242 is greater than the length of the negative cable 244.
  • the components of the positive electrode and the negative electrode can be prevented from being reversed, and the first electronic unit 210 and the second electronic unit 220 can be prevented from being burned out, and the safety of use can be ensured.
  • the connection structure of the positive electrode and the negative electrode may also be different to achieve the purpose of preventing the reverse connection of the positive and negative electrodes.
  • the first liquid-cooled plate, the second liquid-cooled plate, and the third liquid-cooled plate of the liquid-cooled structure are connected through a pipeline structure, and the first liquid-cooled A first electronic unit and a second electronic unit are respectively arranged on both sides of the board, and a second liquid cooling plate and a third liquid cooling plate are also arranged outside the first electronic unit and the second electronic unit.
  • the piping assembly transports the cooling liquid of the external cold source to the first liquid cold plate, the second liquid cold plate and the third liquid cold plate, and the first liquid cold plate, the second liquid cold plate and the third liquid cold plate
  • An electronic unit and a second electronic unit are cooled, and the pipe assembly transports the cooled coolant to an external cold source.
  • each component or each step can be decomposed and/or recombined.
  • decompositions and/or recombinations shall be regarded as equivalent solutions of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请实施例公开了一种液冷散热装置、液冷数据处理设备以及均温方法,该液冷散热装置包括壳体单元和设于壳体单元内的第一液冷板,然后,在第一液冷板相对设置的第一冷却表面和第二冷却表面分别布置第一电子单元和第二电子单元,其中,该第一电子单元和第二电子单元例如可均为算力板;即,本申请实施例的液冷散热装置中,一个液冷板对应布置两个算力板。

Description

液冷散热装置、液冷数据处理设备以及均温方法
本申请要求2020年6月22日提交的申请号为202010571752.9的中国专利申请、2020年11月20日提交的申请号为202011312974.5的中国专利申请、2020年11月20日提交的申请号为202011308704.7的中国专利申请的优先权,所述申请的内容通过引用并入本申请中。
技术领域
本申请涉及液冷散热技术领域,尤其涉及一种液冷散热装置、液冷数据处理设备以及均温方法。
背景技术
电子设备,特别是各种数据处理设备,例如虚拟货币挖矿机中发热元件的散热对于保证其正常运行有重要影响。针对上述散热需求,可以采用液冷板的液冷散热方式,即,在电子设备或者挖矿机算力板上接触地布置液冷板,然后通过冷却液在液冷板内循环流动,从而使得与液冷板接触的电子设备或算力板等散热。
发明内容
本申请实施例提供了一种液冷散热装置,所述液冷散热装置用于给电子设备液冷散热,所述液冷散热装置包括:
壳体单元,所述壳体单元用于容纳所述电子设备;
第一液冷板,所述第一液冷板置于所述壳体单元内,所述第一液冷板具有第一进口接头和第一出口接头;
其中,所述电子设备包括第一电子单元和第二电子单元,所述第一液冷板具有相对设置的第一冷却表面和第二冷却表面,所述第一电子单元贴附于所述第一冷却表面,所述第二电子单元贴附于所述第二冷却表面;
冷却液从所述第一进口接头进入并从所述第一出口接头流出,以使所述第一液冷板同时对所述第一电子单元和所述第二电子单元液冷散热。
本申请实施例还提供了一种液冷数据处理设备,所述液冷数据处理设备包括电子设备和承载所述电子设备的液冷散热装置,其中,所述液冷散热装置为上述液冷散热装置,所述电子设备包括第一电子单元与第二电子单元,其中所述第一电子单元与所述第二电子单元为算力板。
本申请实施例另外提供了一种液冷散热装置的均温方法,所述均温方法应用于液冷散热装置中,所述液冷散热装置用于对电子设备的第一电子单元与第二电子单元进行冷却,包括第一液冷板以及位于所述第一液冷板两侧的第二液冷板与第三液冷板;所述第一液冷板具有第一冷却表面与第二冷却表面,所述第一电子单元位于所述第一液冷板与所述第二液冷板之间,并贴附于所述第一液冷板的所述第一冷却表面;所述第二电子单元位于所述第一液冷板与所述第三液冷板之间,并贴附于所述第一液冷板的所述第二冷却表面;
所述均温方法包括如下步骤:
控制所述第一液冷板、所述第二液冷板以及所述第三液冷板串联和/或并联连接;
控制外部冷源向所述第一液冷板、第二液冷板以及所述第三液冷板输送冷却液;
使所述第一液冷板、所述第二液冷板以及所述第三液冷板分别对所述第一电子单元与所述第二电子 单元进行冷却。
附图说明
图1为本申请实施例中所述液冷散热装置的结构示意图;
图2为本申请实施例中所述液冷散热装置的结构示意图;
图3为本申请实施例中所述壳体单元内部结构示意图;
图4为本申请实施例中所述电子设备贴附于所述第一液冷板单元的结构示意图;
图5为图3的俯视结构示意图;
图6为图3的局部放大图;
图7为本申请实施例中所述连接单元的结构示意图;
图8为本申请一实施例的液冷散热装置的示意图;
图9为本申请另一实施例的液冷散热装置从一角度看的立体图;
图10为图9所示的液冷散热装置从另一角度看的立体图;
图11为图9所示的液冷散热装置的侧视图;
图12为本申请一实施例的液冷散热装置拆卸机箱盖板的立体图;
图13为图12所示的液冷散热装置去掉机箱盖板的俯视图;
图14为图12所示的液冷散热装置中液冷结构夹持第一电子单元与第二电子单元的分解示意图;
图15为图12所示的液冷散热装置去掉机箱壳体一实施方式的立体图;
图16为图15所示的液冷散热装置去掉机箱壳体另一实施方式的立体图;
图17为图15所示的液冷散热装置去掉机箱壳体从另一角度看的立体图。
附图标记
10-壳体单元,11-承载壳体,13-第一侧板,14-第二侧板,15-安装盖,16-电源转接头,17-通信接头,
141-固定安装板,142-固定安装孔,143提拉板,144-提拉孔,
20-第一液冷板单元,21-第一电子单元,22-第二电子单元,23-第一护板,24-第二护板,25-第一进口接头,26-第一出口接头,27-转接凸缘,
30-第四液冷板单元,31-电源设备,35-第二进口接头,36-第二出口接头,
40-转接管,
50-连接单元,51-导向槽,52-锁止螺钉,53-螺钉孔,
60-控制板,61-转接铜排,
100-液冷散热装置,110-第一液冷板,111-第一进出液口,112-第二进出液口,120-第二液冷板,121-第三进出液口,122-第四进出液口,130-第三液冷板,131-第五进出液口,132-第六进出液口;
200-电子设备,210-第一电子单元,220-第二电子单元,
1000-液冷虚拟货币挖矿机,1210-液冷结构,140-第四液冷板,A7-第七进出液口,A8-第八进出液口,1220-管道结构,1221-液冷管道组,1222-第一分集液器,1223-第二分集液器,1224-进口接头,1225-出口接头,211-正极,212-负极,213-正极,214-连接处,215-连接处,216-连接处,217-连接处,230-供电电源,231-输入端子,240-连接组件,241-正极铜排,2411-正极固定孔,242-正极线缆,243-负极铜排,2441-负极固定孔,244-负极线缆,400-机箱壳体,410-承载壳体,420-第一侧板,430-第二侧板,440-机箱盖板。
具体实施方式
为了更好地理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
在一些相关技术中,在使用液冷板对电子设备进行液冷散热处理时,通常是在一个算力板的一面或者两面布置液冷板,即,一个算力板通常对应一个或两个液冷板,这样,当多个算力板堆叠使用时,液冷板的数量较多,导致转接头数量较多,而转接头处又存在冷却液泄漏的风险,这样可能会导致冷却液泄露的风险点较多。因而,在保证液冷散热效果的前提下,如何有效减少冷却液泄漏风险点的数量成为一个有待解决的问题。
本申请实施例提供了一种液冷散热装置,该液冷散热装置用于给电子设备液冷散热。参看图1至图5,,该液冷散热装置包括壳体单元10和第一液冷板单元20。壳体单元也可称为承载壳体。该壳体单元10用于容纳电子设备,该壳体单元10具有相对设置的第一侧板13和第二侧板14。该第一液冷板单元20置于壳体单元10内,该第一液冷板单元20具有第一进口接头25和第一出口接头26。该电子设备包括第一电子单元21和第二电子单元22。第一液冷板单元20具有相对设置的第一散热面和第二散热面,第一电子单元21贴附于第一散热面,第二电子单元22贴附于第二散热面。该第一进口接头25和第一出口接头26从第一侧板13凸出并用于连通外部冷却液***,冷却液从第一进口接头25进入并从第一出口 接头26流出,以使第一液冷板单元20同时对第一电子单元21和第二电子单元22液冷散热。在本申请中,散热面也称为冷却表面。
具体地,参看图1、图2、图3,该液冷散热装置用于承载电子设备并给电子设备液冷散热。该液冷散热装置的壳体单元10具有相对设置的第一侧板13和第二侧板14。壳体单元10内设有第一液冷板单元20,该第一液冷板单元20例如呈板状,具有两个相对设置的散热面,例如第一散热面和第二散热面。该板状的第一液冷板单元20内部具有供冷却液流通的冷却液流道,该冷却液流道的进出口接头位于第一液冷板单元的同一端,例如,第一进口接头25和第一出口接头26从壳体单元10的第一侧板13凸出。第一进口接头25和第一出口接头26用于连通外部冷却液***,这样,冷却液从第一进口接头25进入第一液冷板单元并从第一出口接头26流出,从而使得该第一液冷板单元能够对置于两个散热面的电子设备液冷散热。
本申请实施例中,该电子设备包括第一电子单元21和第二电子单元22,第一电子单元21和第二电子单元22例如可为虚拟货币挖矿机的算力板(或称为算例板),或者,根据实际需要,该第一电子单元21和第二电子单元22还可为其它需要液冷散热的发热装置。
通常的,能够理解,电子设备可以包括基板和位于基板一面的发热元件,例如基板为铝基板,铝基板的一面布置有发热元件。因封装、贴片等原因,多数情况下发热元件向上、下两个方向的热阻不同。第一电子单元2210与第二电子单元2220工作时产生的80%~90%的热量都集中在铝基板上。本申请实施例中,例如可以将铝基板未布置发热元件的一面贴附于第一液冷板的散热面,也就是说,可将两个电子设备(例如,第一电子单元21和第二电子单元22)以发热元件背向第一液冷板单元20的方式、镜像地布置在第一液冷板单元20的两个散热面上,这样,发热元件产生的热量大部分通过铝基板传导至第一液冷板单元20,实现液冷散热。或者,根据实际需要,还可将两个电子单元以发热元件朝向第一液冷板单元20的方式、镜像地布置在第一液冷板单元20的两个散热面上,此时,发热元件产生的热量直接传导至第一液冷板单元20,实现液冷散热。
本申请实施例中,通过在第一液冷板单元20的两个散热面上均布置电子设备,例如算力板,即一个液冷板单元对应布置两个算力板,这样,相较现有技术的一个算力板对应一个或两个液冷板的情况,在算力板数量不变的情况下,可大大减少液冷板单元的数量,从而大大减少转接头的数量,进而有效减少了冷却液泄漏风险点的数量,实现了在保证液冷散热效果前提下大大降低冷却液泄漏风险的技术效果。
能够理解,当第一液冷板单元为多个时,每一个第一液冷板单元的两个散热面均可布置两个电子设备,然后多个第一液冷板单元可通过分集液装置并联设置。在这种情况下,需要保证的是,多个第一液冷板单元需要保留冷却液的一个进口接头和一个出口接头,以连通外部冷却液***。
一种可能实施方式中,该液冷散热装置还用于给电源设备31液冷散热,该电源设备31置于壳体单元10内,电源设备31与上述电子设备电连接,用于给电子设备供电。电源设备也可称为供电电源。该液冷散热装置可以进一步包括第四液冷板单元30,第四液冷板单元30固定置于壳体单元10内,第四液冷板单元30具有从第一侧板13凸出的第二进口接头35和第二出口接头36。第四液冷板单元30具有第三散热面,电源设备31贴附于该第三散热面。
其中,该第一出口接头26和第二进口接头35可以通过转接管40连通,第一进口接头25和第二出口接头36连通外部冷却液***。或者,第一进口接头25和第二出口接头36通过转接管40连通,第一出口接头26和第二进口接头35连通外部冷却液***。或者,该第一进口接头25和第二进口接头35分别连接第一三通接头,该第一出口接头26和第二出口接头36分别连接第二三通接头,并且,该第一三通接头和第二三通接头连通外部冷却液***。
具体地,结合图3、5,该液冷散热装置的壳体单元10内还设有电源设备31,该电源设备31用于给上述第一电子单元21和第二电子单元22供电。此时,该壳体单元10内还设有第四液冷板单元30,第四液冷板单元30的一个散热面(第三散热面)用于贴附电源设备31,这样,该第四液冷板单元30用于给电源设备31液冷散热。
其中,参看图5,第一液冷板单元20和第四液冷板单元30例如可为串联连通。具体地,该第一出口接头26和第二进口接头35通过转接管40连通,这样,冷却液先流经第一液冷板单元然后再流经第四液冷板单元;或者,第一进口接头25和第二出口接头36通过转接管40连通,此时,冷却液先流经第四液冷板单元然后再流经第一液冷板单元;也就是说,本申请实施例中,该冷却液流经第一液冷板单元和第四液冷板单元,以冷却电子设备和电源设备的先后顺序可根据实际需要确定。
或者,可理解的,该第一液冷板单元20和第四液冷板单元30也可为并联连通。具体地,该第一进口接头25和第二进口接头35分别连接第一三通接头,同时,该第一出口接头26和第二出口接头36分别连接第二三通接头,然后该第一三通接头和第二三通接头再连通外部冷却液***;这样,冷却液同时流经第一液冷板单元和第四液冷板单元。
即,该第一液冷板单元20和第四液冷板单元30可根据实际需要具体采用上述的串联连通方式或并联连通方式。
本申请实施例中,该液冷散热装置还可对电源设备液冷散热,电源设备与上述的电子设备电连接,例如电子设备为算力板,这样,算力板和电源设备构成一个整体模块,方便运输和安装。
一种可能实施方式中,该液冷散热装置还包括连接单元50,第一液冷板单元20和第四液冷板单元30分别通过连接单元50固定置于壳体单元10内。
本申请实施例中,通过连接单元分别将第一液冷板单元和第四液冷板单元固定在壳体单元内。
一种可能实施方式中,该第一液冷板单元20和第四液冷板单元30的两侧设有转接凸缘27,连接单元50分别布置于第一液冷板单元20和第四液冷板单元30的两侧,并且,连接单元50具有供转接凸缘27插接的导向槽51。
具体参看图4,第一液冷板单元20的两侧具有凸出电子设备的转接凸缘27,然后,参看图5、6、7,该连接单元50具有供该转接凸缘27插接的导向槽51,两个连接单元50分列于第一液冷板单元20的两侧,并且,其导向槽51相向设置,这样,第一液冷板单元20可以沿着导向槽51***壳体单元10内;第四液冷板单元30通过连接单元50固定的方式与第一液冷板单元类似,不再赘述。
本申请实施例中,该第一液冷板单元和第四液冷板单元通过插接导向槽的方式固定在壳体单元内,该导向槽对两个液冷板单元具有限位作用,并且方便拆卸。
一种可能实施方式中,第一液冷板单元20和第四液冷板单元30并排设置,第一液冷板单元20和第四液冷板单元30之间的连接单元50一体设置。
具体参看图6,第一液冷板单元20和第四液冷板单元30并排设置,这样,能够理解,两个液冷板之间相邻的连接单元50可一体设置,即,两个导向槽51相对地朝外设于一个转接件上。
一种可能实施方式中,导向槽51的两端设有锁止螺钉52。这样,当第一液冷板单元和第四液冷板单元两侧的转接凸缘插接于导向槽后,在导向槽51两端拧紧锁止螺钉52,可沿导向槽51方向对两个液冷板单元限位,防止液冷板单元滑动。
上述实施例中,例如参看图7,该连接单元50可通过设于下端折弯处的螺钉孔53固定安装在壳体单元10上,然后上述的导向槽51位于连接单元上端的折弯处。
一种可能实施方式中,该壳体单元10包括承载壳体11,承载壳体11具有承载槽,承载壳体11的 两端安装有上述的第一侧板13和第二侧板14,该承载槽上设有安装盖15。安装盖也可以称为机箱盖板。
具体参看图1~3,该承载壳体11例如为平板状并且两端向上折弯,构成承载槽,上述第一液冷板单元20和第四液冷板单元30固定置于该承载槽内,并通过图2中安装盖15覆盖。在承载槽两端封装有第一侧板13和第二侧板14,其中,该第一侧板13具有供液冷板进出口接头凸出的通孔,然后进出口接头再连通外部冷却液***。这样,通过第一侧板将壳体单元内部的电子设备和液冷板与外部冷却液***的接头隔离开,能够有效防止在插拔连接外部冷却液***与液冷板的进出口的接头时,冷却液喷洒到电子设备表面,造成电子设备损坏的情况。
一种可能实施方式中,该第二侧板14的两端分别设有电源转接头16和通信接头17。
其中,该电源转接头16例如可电连接电源设备31,电源设备31电连接控制板60,然后电子设备再通过转接铜排61与控制板60电连接;该通信接头17电连接控制板60;这样,电源线缆和通信线缆分别从第二侧板14的两端接入,防止强弱电之间的相互干扰,方便布线。
另一方面,结合上述实施例,该壳体单元的冷却液接头和电接头分别布置在相对的第一侧板和第二侧板,实现水电分离,提高了使用的安全性。
一种可能实施方式中,该第二侧板14的两端还凸出延伸有固定安装板141,固定安装板141上设有固定安装孔142;固定安装板141向外折弯有提拉板143,提拉板143上设有提拉孔144。
参看图2,相对于承载壳体,该第二侧板14的两端凸出延伸有固定安装板141,该固定安装板141上设有固定安装孔142,这样,通过固定安装孔142可方便地将壳体单元10固定安装在外部柜体上;然后,两端的固定安装板141例如还向外垂直折弯有提拉板143,提拉板143上设有提拉孔144,这样方便手提操作。
一种可能实施方式中,该第一电子单元21和第二电子单元22背向液冷板的一面分别设有第一护板23和第二护板24。
即,结合图4,在上述实施例的基础上,在第一电子单元21和第二电子单元22的发热元件表面分别设有第一护板23和第二护板24,可以对发热元件起到保护作用。
一种可能实施方式中,在第一电子单元21和第一液冷板单元20之间设有导热硅脂,和/或,在第二电子单元22和第一液冷板单元20之间设有导热硅脂。该导热硅脂能够利于热量从电子设备传导至第一液冷板单元,提升液冷效果。
一种可能实施方式中,该第一电子单元21包括第一基板,第二电子单元22包括第二基板,第一基板贴附于第一散热面,第二基板贴附于第二散热面;其中,第一散热面和第二散热面为平面,第一基板和第二基板为铝基板,铝基板背向第一液冷板单元20一面设有发热元件。
本申请实施例中,第一电子单元和第二电子单元的基板为铝基板,铝基板设有发热元件的一面背向第一液冷板单元设置,其中,该铝基板是一种具有良好散热功能的金属基覆铜板,铝基板贴附在第一液冷板单元的散热面上,能够使发热元件产生的热量快速高效的传导至第一液冷板单元,进而传导至冷却液,实现快速高效的散热效果。
在上述实施例基础上,例如,当该第一电子单元和第二电子单元为算力板时,该电源设备为算力板供电;也就是说,本申请实施例还公开一种液冷数据处理设备,如虚拟货币挖矿机,该液冷虚拟货币挖矿机包括算力板和承载算力板的液冷散热装置,其中,该液冷散热装置为上述的液冷散热装置。可以理解的,这里的虚拟货币挖矿机仅为示例,电子设备还可以为其他类型的数据处理设备或超算服务器等。
本申请实施例提供了液冷散热装置及液冷数据处理装置,该液冷散热装置包括壳体单元和设于壳体单元内的第一液冷板单元,然后,在第一液冷板单元相对设置的第一散热面和第二散热面分别布置第 一电子单元和第二电子单元,其中,该第一电子单元和第二电子单元例如可均为算力板;即,本实施例的液冷散热装置中,一个液冷板单元对应布置两个算力板,这样,在算力板数量不变的情况下,可大大减少液冷板单元的数量,从而大大减少转接头的数量,进而有效减少了冷却液泄漏风险点的数量,从而解决了在一个算力板对应一个或两个液冷板时导致的冷却液泄漏风险点较多的技术问题,实现了在可以保证液冷散热效果前提下大大降低冷却液泄漏风险的技术效果。
在一些液冷散热技术中,用水冷散热器对算力板进行冷却,每块算力板对应的水冷板都是单一流程和单一流向的设计,因此冷却液在水冷板中流经的流程短,冷却液与算力板之间温差较大,冷却液无法对算力板进行有效散热,可能会导致区域内算力板的温度不均衡,影响虚拟货币挖矿机的使用性能。基于此,有必要针对目前水冷散热器组导致的算力板散热不均匀的问题,提供一种增强散热均匀性的液冷数据处理设备、液冷散热装置及均温方法。
参见图8至图11,本申请实施例提供了一种液冷散热装置100。该液冷散热装置100应用于液冷数据处理设备,如虚拟货币挖矿机中,用于对液冷虚拟货币挖矿机的电子设备200的第一电子单元210与第二电子单元220冷却,以保证液冷虚拟货币挖矿机的使用性能。可以理解的,这里的液冷虚拟货币挖矿机还可以为其他类型的数据处理设备等。当然,在本申请的其他实施方式中,该液冷散热装置100还可以应用于其他需要冷却的电子设备200中。本申请中以液冷散热装置100应用于液冷虚拟货币挖矿机中为例进行说明。
目前,液冷虚拟货币挖矿机中的散热装置通常使用水冷散热器,一般是多个相同的水冷散热器并联设置,中间夹着的算力板也是同向设置的,其在使用时可能会导致区域内算力板的温度不均衡,影响虚拟货币挖矿机的使用性能。为此,本申请提供了一种新型的液冷散热装置100,该液冷散热装置100可以优化电子设备200的散热效果,使得电子设备200的温度均衡,优化液冷虚拟货币挖矿机的使用性能。以下详细介绍液冷散热装置100的具体结构。
参见图8至图11,在一实施例中,液冷散热装置100包括第一液冷板110以及对称位于第一液冷板110两侧的第二液冷板120与第三液冷板130。所述对称例如为上下对称。第一液冷板110具有第一容纳腔以及连通第一容纳腔的第一进出液口111与第二进出液口112;第二液冷板120具有第三进出液口121与第四进出液口122;第三液冷板130具有第五进出液口131与第六进出液口132。第一液冷板110具有第一冷却表面与第二冷却表面,第一电子单元210位于第一液冷板110与第二液冷板120之间,并贴附于第一液冷板110的第一冷却表面;第二电子单元220位于第一液冷板110与第三液冷板130之间,并贴附于第一液冷板110的第二冷却表面。
第一液冷板110为主要的冷却结构。第一液冷板110具有第一容纳腔以及连通第一容纳腔的第一进出液口111与第二进出液口112。第一进出液口111与第二进出液口112为第一液冷板110的进液口与出液口。当第一进出液口111为进液口时,第二进出液口112为出液口。当第一进出液口111为出液口时,第二进出液口112为进液口。冷却液进入第一液冷板110的第一容纳腔后,冷却液会通过第一液冷板110与电子设备200进行热交换,以对电子设备200的第一电子单元210与第二电子单元220进行冷却。
第一液冷板110具有两侧冷却表面,分别为第一冷却表面与第二冷却表面。第一电子单元210贴设在第一冷却表面上,第二电子单元220贴设在第二冷却表面上。第一容纳腔中的冷却液会通过第一冷却表面与第一电子单元210进行热交换,降低第一电子单元210的温度,同时,也会通过第二冷却表面与第二电子单元220进行热交换,降低第二电子单元220的温度。在一实施例中,第一液冷板110为两面对称的结构;当然,在本申请的其他实施方式中,第一液冷板110的两个冷却表面的结构也可存在差异,只要保证散热效果即可。
本申请实施例中,该电子设备200的第一电子单元210与第二电子单元220例如均可为虚拟货币挖矿机的算力板,或者,根据实际需要,该第一电子单元210与第二电子单元220还可为其它需要液冷散热的发热装置。可以理解的,第一电子单元210与第二电子单元220均包括基板和位于基板一面的发热元件,基板例如为铝基板,铝基板的一面布置有发热元件。值得说明的是,对于本申请中的第一电子单元210与第二电子单元220为算力板,因封装、贴片等原因,多数情况下作为发热体的芯片向上、下两个方向的热阻不同。也就是说,第一电子单元210与第二电子单元220背离第一液冷板110的表面也会产生相应的热量。
为了保证电子设备200的工作性能,本申请的液冷散热装置100还在第一液冷板110的两侧设置第二液冷板120与第三液冷板130,第二液冷板120设置在第一电子单元210背离第一液冷板110的表面,第三液冷板130设置在第二电子单元220背离第一液冷板110的表面。也就是说,第一液冷板110、第二液冷板120以及第三液冷板130与第一电子单元210、第二电子单元220形成夹层结构,第一液冷板110位于最中间位置,第二液冷板120与第三液冷板130对称设置在第一液冷板110的两侧,且第一电子单元210设置于第一液冷板110与第二液冷板120之间,第二电子单元220设置于第一液冷板110与第三液冷板130之间。
这样,通过第一液冷板110与第二液冷板120可以对第一电子单元210的两个表面进行冷却,通过第一液冷板110与第三液冷板130对第二电子单元220的两个表面进行冷却,可以优化第一电子单元210与第二电子单元220的冷却效果,降低第一电子单元210与第二电子单元220的温度,使得第一电子单元210与第二电子单元220可以更可靠地工作。而且,通过第一液冷板110、第二液冷板120以及第三液冷板130分别对第一电子单元210与第二电子单元220冷却,还可以使第一电子单元210与第二电子单元220的温度更均衡。
第二液冷板120与第三液冷板130为辅助的冷却结构。当散热要求较高时,第一液冷板110、第二液冷板120以及第三液冷板130组合使用。当散热要求不高时,可以只保留第一液冷板110,将第二液冷板120与第三液冷板130省掉。这样,可以在保证散热需求的同时,降低生产成本。
第二液冷板120具有第二容纳腔以及连通第二容纳腔的第三进出液口121与第四进出液口122。第三进出液口121与第四进出液口122可以为第二液冷板120的进液口与出液口。当第三进出液口121为进液口时,第四进出液口122为出液口。当第三进出液口121为出液口时,第四进出液口122为进液口。冷却液进入第二液冷板120的第二容纳腔后,冷却液会通过第二液冷板120与电子设备200进行热交换,以对电子设备200的第一电子单元210进行冷却。第二液冷板120的一个冷却表面为第三冷却表面。该第三冷却表面朝向第一电子单元210背离第一液冷板110的表面。第二容纳腔中的冷却液会通过第三冷却表面与第一电子单元210进行热交换,降低第一电子单元210的温度。
第三液冷板130具有第三容纳腔以及连通第三容纳腔的第五进出液口131与第六进出液口132。第五进出液口131与第六进出液口132可以为第三液冷板130的进液口与出液口。当第五进出液口131为进液口时,第六进出液口132为出液口。当第五进出液口131为出液口时,第六进出液口132为进液口。冷却液进入第三液冷板130的第三容纳腔后,冷却液会通过第三液冷板130与电子设备200进行热交换,以对电子设备200的第二电子单元220进行冷却。第三液冷板130的一个冷却表面为第四冷却表面。该第四冷却表面朝向第二电子单元220背离第一液冷板110的表面。第三容纳腔中的冷却液会通过第四冷却表面与第二电子单元220进行热交换,降低第二电子单元220的温度。
本申请的液冷散热装置100在装配时,第一电子单元210与第二电子单元220的基板贴在第一液冷板110的第一冷却表面与第二冷却表面上。发热元件工作时产生的热量,可以通过基板传递至第一冷却 表面与第二冷却表面上,实现液冷散热。而且,第二液冷板120与第一电子单元210的发热元件之间可以抵接,保证对第一电子单元210的固定与散热。第三液冷板130与第二电子单元220的发热元件之间可以抵接,保证对第二电子单元220的固定与散热。
上述实施例的液冷散热装置100,在第一液冷板110的两侧对称设置第一电子单元210与第二电子单元220,并且,在第一电子单元210与第二电子单元220的另一侧面还分别布置第二液冷板120与第三液冷板130。通过第一液冷板110与第二液冷板120对第一电子单元210的两个表面进行冷却,通过第一液冷板110和第三液冷板130对第二电子单元220的两个表面进行冷却;有效地解决目前并列式水冷散热器组导致的算力板散热不均匀的问题,通过第一液冷板110、第二液冷板120以及第三液冷板130分别对第一电子单元210与第二电子单元220的两侧进行对称散热,能够有效地优化第一电子单元210与第二电子单元220的散热效果,使得第一电子单元210与第二电子单元220之间的温度均衡,避免出现温差,优化液冷虚拟货币挖矿机的使用性能。
在一实施例中,第一液冷板110、第二液冷板120以及第三液冷板130中的冷却液可以为冷却水,也可以为冷却油或者液氦等。
在一实施例中,第二液冷板120具有第三冷却表面,第三冷却表面具有凸出设置的第一固定凸起,第一固定凸起与第一电子单元210抵接,第二液冷板120的表面与第一电子单元210围设成供第一电子单元210散热的第一散热通道。也就是说,第三冷却表面为第二液冷板120朝向第一液冷板110的表面,第一固定凸起与第一电子单元210的发热元件抵接。第一电子单元210的发热元件产生的热量通过第一固定凸起传递至第二液冷板120进行冷却。而且,第二液冷板120的第三冷却表面与第一电子单元210的基板之间围设成第一散热通道,第一电子单元210工作时散发的热量存在于第一散热通道中,第二液冷板120通过第三冷却表面可以与第一散热通道中的热量进行热交换,以冷却第一电子单元210。
在一实施例中,第一固定凸起为凸台或凸柱等凸出的结构。也就是说,第二液冷板120的第三冷却表面为平面,第一固定凸起凸出于第三冷却表面设置。而且,第三冷却表面相对于第一固定凸起而言是凹陷的,这样,第一电子单元210的基板上可以设置高度更高的器件,可以保证具有足够的安装空间。
在一实施例中,第三液冷板130具有第四冷却表面,第四冷却表面具有凸出设置的第二固定凸起,第二固定凸起与第二电子单元220抵接,第三液冷板130的表面与第二电子单元220围设成供第二电子单元220散热的第二散热通道。也就是说,第四冷却表面为第三液冷板130朝向第一液冷板110的表面,第二固定凸起与第二电子单元220的发热元件抵接。第二电子单元220的发热元件产生的热量通过第二固定凸起传递至第三液冷板130进行冷却。而且,第三液冷板130的第四冷却表面与第二电子单元220的基板之间围设成第二散热通道,第二电子单元220工作时散发的热量存在于第二散热通道中,第三液冷板130通过第四冷却表面可以与第二散热通道中的热量进行热交换,以冷却第二电子单元220。
在一实施例中,第二固定凸起为凸台或凸柱等凸出的结构。也就是说,第三液冷板130的第四冷却表面为平面,第二固定凸起凸出于第四冷却表面设置。而且,第四冷却表面相对于第二固定凸起而言是凹陷的,这样,第二电子单元220的基板上可以设置高度更高的器件,可以保证具有足够的安装空间。
在一实施例中,液冷散热装置100还包括连接件。第一电子单元210的基板通过连接件固定于第一液冷板110与第二液冷板120上,避免第一电子单元210的位置发生窜动。第二电子单元220的基板通过连接件固定于第一液冷板110与第三液冷板130上,避免第二电子单元220的位置发生窜动。
在一实施例中,第一液冷板110、第二液冷板120以及第三液冷板130也通过连接件或连接板、连接框架等连接结构固定连接,使得液冷散热装置100形成一个整体模块,便于后期安装使用。
参见图8和图9,在一实施例中,第一进出液口111与第二进出液口112可同侧或异侧设置。第三 进出液口121与第四进出液口122可同侧或异侧设置。第五进出液口131与第六进出液口132可同侧或异侧设置。
值得说明的是,第一进出液口111与第二进出液口112的设置位置原则上不受限制,可以同侧设置,也可异侧设置。示例性地,第一进出液口111与第二进出液口112可以分别设置于第一液冷板110的两侧,如图8所示;当然,第一进出液口111与第二进出液口112也可设置于第一液冷板110的同一侧,如图9至图11所示。
第三进出液口121与第四进出液口122的设置位置原则上不受限制,可以同侧设置,也可异侧设置。示例性地,第三进出液口121与第四进出液口122可以分别设置于第二液冷板120的两侧,如图8所示;当然,第三进出液口121与第四进出液口122也可设置于第二液冷板120的同一侧,如图9至图11所示。
第五进出液口131与第六进出液口132的设置位置原则上不受限制,可以同侧设置,也可异侧设置。示例性地,第五进出液口131与第六进出液口132可以分别设置于第三液冷板130的两侧,如图8所示;当然,第五进出液口131与第六进出液口132也可设置于第三液冷板130的同一侧,如图9至图11所示。
可以理解的,液冷散热装置100配合外部冷源设置,液冷散热装置100的所有进出液口均可以连接至外部冷源。外部冷源将冷却液输送至液冷散热装置100的第一液冷板110、第二液冷板120以及第三液冷板130后,第一液冷板110、第二液冷板120以及第三液冷板130可以对第一电子单元210以及第二电子单元220进行冷却。冷却后的冷却液回流至外部冷源中,通过外部冷源对冷却液进行预冷,以使得冷却液可以循环流动,降低成本。
参见图8至图11,在一实施例中,第一液冷板110、第二液冷板120以及第三液冷板130并联连接。此时,外部冷源将冷却液分别输送至第一液冷板110、第二液冷板120以及第三液冷板130中,以对第一电子单元210以及第二电子单元220进行冷却。
在一实施例中,第一进出液口111、第三进出液口121以及第五进出液口131连接至外部冷源的出液端,第二进出液口112、第四进出液口122以及第六进出液口132连接至外部冷源的进液端。外部冷源通过出液端输出冷却液,经第一进出液口111、第三进出液口121以及第五进出液口131分别进入第一液冷板110、第二液冷板120以及第三液冷板130,再通过对应的第二进出液口112、第四进出液口122以及第六进出液口132经进液端回流至外部冷源中。当然,在本申请的其他实施方式中,第一进出液口111、第三进出液口121以及第五进出液口131连接至外部冷源的进液端,第二进出液口112、第四进出液口122以及第六进出液口132连接至外部冷源的出液端。
在一实施例中,第一进出液口111、第四进出液口122以及第六进出液口132连接至外部冷源的出液端,第二进出液口112、第三进出液口121以及第五进出液口131连接至外部冷源的进液端。外部冷源通过出液端输出冷却液,经第一进出液口111、第四进出液口122以及第六进出液口132分别进入第一液冷板110、第二液冷板120以及第三液冷板130,再通过对应的第二进出液口112、第三进出液口121以及第五进出液口131经进液端回流至外部冷源中。当然,在本申请的其他实施方式中,也可第一进出液口111、第四进出液口122以及第六进出液口132连接外部冷源的进液端,第二进出液口112、第三进出液口121以及第五进出液口131连接至外部冷源的出液端。
在一实施例中,第一液冷板110、第二液冷板120以及第三液冷板130也可串联连接。在一实施例中,第一液冷板110串联第二液冷板120再串联第三液冷板130。此时,外部冷源将冷却液输送至第一液冷板110、第二液冷板120以及第三液冷板130中,以对第一电子单元210以及第二电子单元220进行冷却。当然,在本申请的其他实施方式中,第一液冷板110、第二液冷板120以及第三液冷板130串联连接的顺次也可更改,比如说,第二液冷板120串联第一液冷板110再串联第三液冷板130等等。
在一实施例中,第一液冷板110、第二液冷板120以及第三液冷板130中冷却液的流动方向相同。也就是说,第一进出液口111、第三进出液口121以及第五进出液口131连接至外部冷源的出液端,第二进出液口112、第四进出液口122以及第六进出液口132连接至外部冷源的进液端。
当然,在本申请的其他实施方式中,也可第一进出液口111、第三进出液口121以及第五进出液口131连接至外部冷源的进液端,第二进出液口112、第四进出液口122以及第六进出液口132连接至外部冷源的出液端。
在一实施例中,第一液冷板110中冷却液的流动方向与第二液冷板120以及第三液冷板130中冷却液的流动方向相异。也就是说,第一液冷板110中的冷却液沿一方向流动,第二液冷板120与第三液冷板130中的冷却液沿另一方向流动。示例性地,第一进出液口111、第四进出液口122以及第六进出液口132连接至外部冷源的出液端,第二进出液口112、第三进出液口121以及第五进出液口131连接至外部冷源的进液端。
当然,在本申请的其他实施方式中,也可第一进出液口111、第四进出液口122以及第六进出液口132连接外部冷源的进液端,第二进出液口112、第三进出液口121以及第五进出液口131连接至外部冷源的出液端。
在一实施例中,第一液冷板110、第二液冷板120以及第三液冷板130先串联再并联连接。具体地,第一液冷板110分别串联连接第二液冷板120与第三液冷板130,且第二液冷板120与第三液冷板130并联连接。此时,外部冷源将冷却液输送至第一液冷板110,以对第一电子单元210的一表面以及第二电子单元220的一表面进行冷却。流出第一液冷板110的冷却液分别流入第二液冷板120以及第三液冷板130中,以对第一电子单元210的另一表面以及第二电子单元220的另一表面进行冷却。
示例性地,第一进出液口111连接至外部冷源的出液端,第二进出液口112分别连接第三进出液口121与第五进出液口131,第四进出液口122与第六进出液口132分别连接至外部冷源的进液端。外部冷源的冷却液经出液端以及第一进出液口111进入到第一液冷板110中。第一液冷板110中的冷却液冷却第一电子单元210与第二电子单元220后,从第二进出液口112流出,并经第三进出液口121与第五进出液口131分别进入到第二液冷板120与第三液冷板130中,再对第一电子单元210与第二电子单元220进行冷却,并从第四进出液口122与第六进出液口132经进液端回流至外部冷源。
当然,在本申请的其他实施方式中,第一进出液口111连接至外部冷源的出液端,第二进出液口112分别连接第四进出液口122与第六进出液口132,第三进出液口121与第五进出液口131分别连接至外部冷源的进液端。
本申请还提供一种液冷散热装置100的均温方法,所述均温方法应用于液冷散热装置100中,液冷散热装置100包括第一液冷板110以及位于所述第一液冷板110两侧的第二液冷板120与第三液冷板130;所述第一液冷板110具有第一冷却表面与第二冷却表面,所述第一电子单元210位于所述第一液冷板110与所述第二液冷板120之间,并贴附于所述第一液冷板110的所述第一冷却表面;所述第二电子单元220位于所述第一液冷板110与所述第三液冷板130之间,并贴附于所述第一液冷板110的所述第二冷却表面;
所述均温方法包括如下步骤:
控制所述第一液冷板110、所述第二液冷板120以及所述第三液冷板130串联和/或并联连接;
控制外部冷源向所述第一液冷板110、第二液冷板120以及所述第三液冷板130输送冷却液;
使所述第一液冷板110、所述第二液冷板120以及所述第三液冷板130分别对所述第一电子单元210与所述第二电子单元220进行冷却。
可以理解的,液冷散热装置100还包括控制器,控制器电连接外部冷源,用于控制外部冷源向第一液冷板110、第二液冷板120以及第三液冷板130输送冷却液。值得说明的是,可以事先根据液冷虚拟货币挖矿机的运算能力,布置相应的液冷散热装置100的串并联方式,具体通过冷却管道不同的连接方式实现。冷却管道不同的连接方式可以使得第一液冷板110、第二液冷板120以及第三液冷板130形成不同的连接方式。示例性地,通过冷却管道使第一液冷板110、第二液冷板120以及第三液冷板130之间可以并联连接,也可以先串联再并联或者先并联再串联连接。比如说,第一液冷板110与第二液冷板120串联后,再与第三液冷板130并联;又比如说,第二液冷板120与第三液冷板130并联后,再串联第一液冷板110等等。当然,第一液冷板110、第二液冷板120以及第三液冷板130也可串联连接,比如,第一液冷板110、第二液冷板120以及第三液冷板130直接串联连接等,或者可以根据实际工况调整各个液冷板串联连接的顺序,比如第二液冷板120串联第一液冷板110再串联第三液冷板130等等。
第一液冷板110、第二液冷板120以及第三液冷板130连接完成后,控制器控制外部冷源输送冷却液,通过第一液冷板110、第二液冷板120以及第三液冷板130分别对第一电子单元210、第二电子单元220冷却,优化第一电子单元210与第二电子单元220的散热效果,使得第一电子单元210与第二电子单元220之间的温度均衡,避免出现温差,优化液冷虚拟货币挖矿机的使用性能。
在一实施例中,所述第一液冷板110具有第一容纳腔以及连通所述第一容纳腔的第一进出液口111与第二进出液口112;所述第二液冷板120具有第二容纳腔以及连通所述第二容纳腔的第三进出液口121与第四进出液口122;所述第三液冷板130具有第三容纳腔以及连通所述第三容纳腔的第五进出液口131与第六进出液口132;
所述控制所述第一液冷板110、所述第二液冷板120以及所述第三液冷板130串联和/或并联连接的步骤包括:
控制所述第一进出液口111与所述第二进出液口112其中之一连接至所述外部冷源的出液端,其中之另一连接至所述外部冷源的进液端;
控制所述第三进出液口121与所述第四进出液口122其中之一连接至所述外部冷源的出液端,其中之另一连接至所述外部冷源的进液端;
控制所述第五进出液口131与所述第六进出液口132其中之一连接至所述外部冷源的出液端,其中之另一连接至所述外部冷源的进液端。
第一液冷板110、第二液冷板120以及第三液冷板130并联连接。此时,外部冷源将冷却液分别输送至第一液冷板110、第二液冷板120以及第三液冷板130中,以对第一电子单元210以及第二电子单元220进行冷却。第一液冷板110、第二液冷板120以及第三液冷板130并联时,第一进出液口111与第二进出液口112中一个为出液口,一个为进液口,第三进出液口121与第四进出液口122中一个为进液口一个为出液口,第五进出液口131与第六进出液口132中的一个为进液口一个为出液口。保证第一液冷板110、第二液冷板120以及第三液冷板130中的冷却液相互独立,不会发生混流。
示例性地,第一进出液口111、第三进出液口121以及第五进出液口131连接至外部冷源的出液端,第二进出液口112、第四进出液口122以及第六进出液口132连接至外部冷源的进液端。外部冷源通过出液端输出冷却液,经第一进出液口111、第三进出液口121以及第五进出液口131分别进入第一液冷板110、第二液冷板120以及第三液冷板130,再通过对应的第二进出液口112、第四进出液口122以及第六进出液口132经进液端回流至外部冷源中。当然,在本申请的其他实施方式中,第一进出液口111、第三进出液口121以及第五进出液口131连接至外部冷源的进液端,第二进出液口112、第四进出液口122以及第六进出液口132连接至外部冷源的出液端。
示例性地,第一进出液口111、第四进出液口122以及第六进出液口132连接至外部冷源的出液端,第二进出液口112、第三进出液口121以及第五进出液口131连接至外部冷源的进液端。外部冷源通过出液端输出冷却液,经第一进出液口111、第四进出液口122以及第六进出液口132分别进入第一液冷板110、第二液冷板120以及第三液冷板130,再通过对应的第二进出液口112、第三进出液口121以及第五进出液口131经进液端回流至外部冷源中。当然,在本申请的其他实施方式中,也可第一进出液口111、第四进出液口122以及第六进出液口132连接外部冷源的进液端,第二进出液口112、第三进出液口121以及第五进出液口131连接至外部冷源的出液端。
在一实施例中,所述控制所述第一液冷板110、所述第二液冷板120以及所述第三液冷板130串联和/或并联连接的步骤包括:
控制所述第一液冷板110分别串联所述第二液冷板120与所述第三液冷板130;
控制所述外部冷源将冷却液输送至所述第一液冷板110,以冷却所述第一电子单元210的一表面与所述第二电子单元220的一表面;
控制所述第一液冷板110流出的冷却液分别流入所述第二液冷板120与所述第三液冷板130,以冷却所述第一电子单元210的另一表面与所述第二电子单元220的另一表面。
第一液冷板110、第二液冷板120以及第三液冷板130先串联后并联连接。具体地,第一液冷板110分别串联连接第二液冷板120与第三液冷板130,且第二液冷板120与第三液冷板130并联连接。此时,外部冷源将冷却液输送至第一液冷板110,以对第一电子单元210的一表面以及第二电子单元220的一表面进行冷却。流出第一液冷板110的冷却液分别流入第二液冷板120以及第三液冷板130中,以对第一电子单元210的另一表面以及第二电子单元220的另一表面进行冷却。通过中间的第一液冷板110与两侧的第二液冷板120以及第三液冷板130串联连接,可以更好地满足第一电子单元210与第二电子单元220的冷却需求,并促进第一电子单元210与第二电子单元220的温度均衡。
在一实施例中,所述第一液冷板110具有第一容纳腔以及连通所述第一容纳腔的第一进出液口111与第二进出液口112;所述第二液冷板120具有第二容纳腔以及连通所述第二容纳腔的第三进出液口121与第四进出液口122;所述第三液冷板130具有第三容纳腔以及连通所述第三容纳腔的第五进出液口131与第六进出液口132;
所述控制所述第一液冷板110分别串联所述第二液冷板120与所述第三液冷板130的步骤包括:
控制所述第二进出液口112分别连接所述第三进出液口121与所述第五进出液口131,使所述第一液冷板110中的冷却液经所述第二进出液口112及所述第三进出液口121进入所述第二液冷板120;使所述第一液冷板110中的冷却液经所述第二进出液口112及所述第五进出液口131进入所述第三液冷板130;
或者,控制所述第二进出液口112分别连接所述第四进出液口122与所述第六进出液口132,使所述第一液冷板110中的冷却液经所述第二进出液口112及所述第四进出液口122进入所述第二液冷板120;使所述第一液冷板110中的冷却液经所述第二进出液口112及所述第六进出液口132进入所述第三液冷板130。
示例性地,第一进出液口111连接至外部冷源的出液端,第二进出液口112分别连接第三进出液口121与第五进出液口131,第四进出液口122与第六进出液口132分别连接至外部冷源的进液端。外部冷源的冷却液经出液端以及第一进出液口111进入到第一液冷板110中。第一液冷板110中的冷却液冷却第一电子单元210与第二电子单元220后,从第二进出液口112流出,并经第三进出液口121与第五进出液口131分别进入到第二液冷板120与第三液冷板130中,再对第一电子单元210与第二电子单元220 进行冷却,并从第四进出液口122与第六进出液口132经进液端回流至外部冷源。
当然,在本申请的其他实施方式中,第一进出液口111连接至外部冷源的出液端,第二进出液口112分别连接第四进出液口122与第六进出液口132,第三进出液口121与第五进出液口131分别连接至外部冷源的进液端。外部冷源的冷却液经出液端以及第一进出液口111进入到第一液冷板110中。第一液冷板110中的冷却液冷却第一电子单元210与第二电子单元220后,从第二进出液口112流出,并经第四进出液口122与第六进出液口132分别进入到第二液冷板120与第三液冷板130中,再对第一电子单元210与第二电子单元220进行冷却,并从第三进出液口121与第五进出液口131经进液端回流至外部冷源。
在一实施例中,所述控制所述第一液冷板110、所述第二液冷板120以及所述第三液冷板130串联和/或并联连接的步骤包括:
控制所述第二液冷板120与所述第三液冷板130并联后串联所述第一液冷板110;
控制所述外部冷源将冷却液输送至所述第二液冷板120与所述第三液冷板130,以冷却所述第一电子单元210的另一表面与所述第二电子单元220的另一表面;
控制所述第二液冷板120与所述第三液冷板130流出的冷却液分别流入所述第一液冷板110,以冷却所述第一电子单元210的一表面与所述第二电子单元220的一表面。
第一液冷板110、第二液冷板120以及第三液冷板130先并联后串联连接。具体地,第二液冷板120与第三液冷板130先并联连接,再串联连接第一液冷板110。此时,外部冷源将冷却液输送至第二液冷板120以及第三液冷板130,以对第一电子单元210的表面以及第二电子单元220的表面进行冷却。流出第二液冷板120以及第三液冷板130的冷却液分别流入第一液冷板110中,以对第一电子单元210的另一表面以及第二电子单元220的另一表面进行冷却。通过两侧的第二液冷板120以及第三液冷板130并联再与中间的第一液冷板110串联连接,可以更好地满足第一电子单元210与第二电子单元220的冷却需求,并促进第一电子单元210与第二电子单元220的温度均衡。
在一实施例中,所述第一液冷板110具有第一容纳腔以及连通所述第一容纳腔的第一进出液口111与第二进出液口112;所述第二液冷板120具有第二容纳腔以及连通所述第二容纳腔的第三进出液口121与第四进出液口122;所述第三液冷板130具有第三容纳腔以及连通所述第三容纳腔的第五进出液口131与第六进出液口132;
所述控制所述第二液冷板120与所述第三液冷板130并联后串联所述第一液冷板110的步骤包括:
控制所述第三进出液口121与所述第五进出液口131分别连接所述第二进出液口112,使所述第二液冷板120中的冷却液经所述第三进出液口121及所述第二进出液口112进入所述第一液冷板110;使所述第三液冷板130中的冷却液经所述第五进出液口131及所述第二进出液口112进入所述第一液冷板110;
或者,控制所述第四进出液口122与所述第六进出液口132分别连接所述第二进出液口112,使所述第二液冷板120中的冷却液经所述第四进出液口122及所述第二进出液口112进入所述第一液冷板110;使所述第三液冷板130中的冷却液经所述第六进出液口132及所述第二进出液口112进入所述第一液冷板110。
示例性地,第四进出液口122与第六进出液口132分别连接至外部冷源的出液端,第三进出液口121与第五进出液口131分别连接第一进出液口111,第二进出液口112连接至外部冷源的进液端。外部冷源的冷却液经出液端以及第四进出液口122与第六进出液口132分别进入到第二液冷板120与第三液冷板130中。第二液冷板120与第三液冷板130中的冷却液冷却第一电子单元210与第二电子单元220后, 从第三进出液口121与第五进出液口131流出,并经第二进出液口112进入到第一液冷板110中,再对第一电子单元210与第二电子单元220进行冷却,并从第一进出液口111经进液端回流至外部冷源。在本申请的其他实施方式中,第二液冷板120与第三液冷板130中的冷却液冷却第一电子单元210与第二电子单元220后,从第三进出液口121与第五进出液口131流出,并经第一进出液口111进入到第一液冷板110中,再对第一电子单元210与第二电子单元220进行冷却,并从第二进出液口112经进液端回流至外部冷源。
当然,在本申请的其他实施方式中,第三进出液口121与第五进出液口131分别连接至外部冷源的出液端,第四进出液口122与第六进出液口132分别连接第一进出液口111,第二进出液口112连接至外部冷源的进液端。外部冷源的冷却液经出液端以及第三进出液口121与第五进出液口131分别进入到第二液冷板120与第三液冷板130中,第二液冷板120与第三液冷板130中的冷却液冷却第一电子单元210与第二电子单元220后,从第四进出液口122与第六进出液口132流出,并经第一进出液口111进入到第一液冷板110中。第一液冷板110中的冷却液冷却第一电子单元210与第二电子单元220后,并从第二进出液口112流出经进液端回流至外部冷源。在本申请的其他实施方式中,第二液冷板120与第三液冷板130中的冷却液冷却第一电子单元210与第二电子单元220后,从第四进出液口122与第六进出液口132流出,并经第二进出液口112进入到第一液冷板110中。第一液冷板110中的冷却液冷却第一电子单元210与第二电子单元220后,并从第一进出液口111流出经进液端回流至外部冷源。
在一实施例中,所述均温方法还包括如下步骤:
控制所述第一液冷板110中冷却液的流动方向与所述第二液冷板120及所述第三液冷板130的流动方向相同;
或者,控制所述第一液冷板110中冷却液的流动方向与所述第二液冷板120及所述第三液冷板130的流动方向相反;
或者,控制所述第一液冷板110中冷却液的流动方向和所述第二液冷板120与所述第三液冷板130其中之一的流动方向相同,和所述第二液冷板120与所述第三液冷板130其中之另一的流动方向相反。
第一液冷板110、第二液冷板120以及第三液冷板130中冷却液的流动方向相同。也就是说,第一进出液口111、第三进出液口121以及第五进出液口131连接至外部冷源的出液端,第二进出液口112、第四进出液口122以及第六进出液口132连接至外部冷源的进液端。当然,在本申请的其他实施方式中,也可第一进出液口111、第三进出液口121以及第五进出液口131连接至外部冷源的进液端,第二进出液口112、第四进出液口122以及第六进出液口132连接至外部冷源的出液端。
第一液冷板110中冷却液的流动方向与第二液冷板120以及第三液冷板130中冷却液的流动方向相异。也就是说,第一液冷板110中的冷却液沿一方向流动,第二液冷板120与第三液冷板130中的冷却液沿另一方向流动。示例性地,第一进出液口111、第四进出液口122以及第六进出液口132连接至外部冷源的出液端,第二进出液口112、第三进出液口121以及第五进出液口131连接至外部冷源的进液端。当然,也可第一进出液口111、第四进出液口122以及第六进出液口132连接外部冷源的进液端,第二进出液口112、第三进出液口121以及第五进出液口131连接至外部冷源的出液端。
当第一液冷板110中冷却液的流动方向与第二液冷板120以及第三液冷板130中冷却液的流动方向相异时,可以更好地改善第一电子单元210与第二电子单元220的均温效果。以第一电子单元210为例进行说明,第一电子单元210的一表面处的第一液冷板110中冷却液的流动方向与另一表面处的第二液冷板120中的冷却液的流动方向是相反的。对于第一电子单元210来说,第一电子单元210的基板不会同时接触第一液冷板110与第二液冷板120的进水端(低温端)或者出水端(高温端),利于第一电子单 元210上不同区域芯片温度的均衡性。因为冷却液沿流向温度升高,第一电子单元210靠近第一液冷板110的第一进出液口111的一侧,接触第一电子单元210的基板温度降低幅度大,相应的第一电子单元210的芯片一侧温度降低幅度小;而在第一电子单元210靠近第一液冷板110的第二进出液口112的一侧,接触第一电子单元210的基板温度降低幅度小,相应的第一电子单元210的芯片一侧温度降低幅度大,使得第一电子单元210在第一进出液口111和第二进出液口112附近的温度平均值接近。第二电子单元220的冷却效果同理,在此不一一赘述。
第一液冷板110中冷却液的流动方向和第二液冷板120与第三液冷板130其中之一的流动方向相同,和第二液冷板120与第三液冷板130其中之另一的流动方向相异。也就是说,第一液冷板110中的冷却液沿一方向流动,第二液冷板120与第三液冷板130其中一个的冷却液沿一方向流动,其中另一个的冷却液沿另一方向流动。示例性地,第一液冷板110中的冷却液的流动方向与第二液冷板120中的冷却液的流动方向相同,但和第三液冷板130中的冷却液的流动方向相异。当然,也可第一液冷板110中的冷却液的流动方向与第二液冷板120中的冷却液的流动方向相异,但和第三液冷板130中的冷却液的流动方向相同。此时各个液冷板的进出液口的连接方式与上述各实施例中进出液口的连接方式原理实质相同,在此不一一赘述。
值得说明的是,液冷散热装置100的控制器可以根据第一电子单元210与第二电子单元220的均温效果,来控制第一液冷板110、第二液冷板120以及第三液冷板130中冷却液的流动方向。比如,可以控制第一液冷板110、第二液冷板120以及第三液冷板130中冷却液流向相同,或者第一液冷板110中的冷却液沿一方向流动,第二液冷板120与第三液冷板130中的冷却液沿另一方向流动,或者第一液冷板110中冷却液流向与第二液冷板120中冷却液流向相同而与第三液冷板130中冷却液流向相反,或者第一液冷板110中冷却液流向与第三液冷板130中冷却液流向相同而与第二液冷板120中冷却液流向相反,等等。
本申请还提供一种液冷数据处理设备,如虚拟货币挖矿机,包括电子设备200以及上述实施例中所述的液冷散热装置100,所述电子设备200包括第一电子单元210与所述第二电子单元220,其中所述第一电子单元210与所述第二电子单元220为算力板,所述液冷散热装置100承载所述算力板,以对所述算力板进行冷却。液冷虚拟货币挖矿机采用上述实施例的液冷散热装置100后,可以改善散热效果,进而改善液冷虚拟货币挖矿机工作的可靠性。当然,液冷虚拟货币挖矿机还可以为其他类型的处理设备。
在一实施例中,液冷虚拟货币挖矿机的数量为多个。多个液冷虚拟货币挖矿机层叠设置;或者,多个液冷虚拟货币挖矿机并排设置。当液冷虚拟货币挖矿机需要增加运算能力时,会增加电子设备200的数量,形成液冷柜机。此时,每个液冷虚拟货币挖矿机中的电子设备200的第一电子单元210与第二电子单元220按照上述的液冷散热装置100布局。每个液冷散热装置100夹持电子设备200形成液冷虚拟货币挖矿机后,多个液冷虚拟货币挖矿机可以沿厚度方向层叠设置,也可以沿同一平面展开设置,形成液冷柜机。此时,通过液冷散热装置100改善电子设备200的散热性能,进而改善各个液冷虚拟货币挖矿机的使用性能。
本申请实施例提供了液冷虚拟货币挖矿机、液冷散热装置及均温方法,在第一液冷板的两侧对称设置第一电子单元与第二电子单元,并且,在第一电子单元与第二电子单元的另一侧面还布置第二液冷板与第三液冷板。通过第一液冷板与第二液冷板对第一电子单元的两个表面进行冷却,通过第一液冷板和第三液冷板对第二电子单元的两个表面进行冷却;有效地解决目前水冷散热器组导致的算力板散热不均匀的问题,通过第一液冷板、第二液冷板以及第三液冷板分别对第一电子单元与第二电子单元的两侧进行散热,能够有效地改善第一电子单元与第二电子单元的散热效果,使得第一电子单元与第二电子单元 之间的温度更均衡,减小温差,改善液冷虚拟货币挖矿机的使用性能。
参见图12至图16,本申请实施例还提供一种液冷散热装置100。该液冷散热装置100应用于液冷数据处理装置,如液冷虚拟货币挖矿机1000中,用于对液冷虚拟货币挖矿机1000的电子设备200进行冷却,以保证液冷虚拟货币挖矿机1000的使用性能。
参见图12至图16,在一实施例中,液冷散热装置100包括液冷结构1210以及管道结构1220。液冷结构1210包括第一液冷板110、第二液冷板120以及第三液冷板130,第二液冷板120与第三液冷板130对称设置于第一液冷板110的两侧,第一电子单元210设置于第一液冷板110与第二液冷板120之间,第二电子单元220设置于第一液冷板110与第三液冷板130之间。管道结构1220连接第一液冷板110、第二液冷板120、第三液冷板130与外部冷源,用于输入与输出冷却液。
第一液冷板110为液冷散热装置100主要的冷却结构。第一液冷板110具有容纳冷却液的第一容纳腔。在一实施例中,第一液冷板110的第一容纳腔可以为多流道串并联如S形等,也可以为完整的腔体,还可为其他能够供冷却液流动的结构。
第二液冷板120具有第二容纳腔,冷却液在第二容纳腔中流动。在一实施例中,第二液冷板120的第二容纳腔可以为多流道串并联如S形等,也可以为完整的腔体,还可为其他能够供冷却液流动的结构。冷却液进入第二液冷板120的第二容纳腔后,冷却液会通过第二液冷板120与电子设备200进行热交换,以对电子设备200的第一电子单元210进行冷却。
第三液冷板130具有第三容纳腔,冷却液在第三容纳腔中流动。在一实施例中,第三液冷板130的第三容纳腔可以为多流道串并联如S形等,也可以为完整的腔体,还可为其他能够供冷却液流动的结构。冷却液进入第三液冷板130的第三容纳腔后,冷却液会通过第三液冷板130与电子设备200进行热交换,以对电子设备200的第二电子单元220进行冷却。
在一实施例中,本申请的液冷散热装置100在装配时,第一电子单元210与第二电子单元220的铝基板贴在第一液冷板110的两个表面上。发热元件工作时的热量,可以通过铝基板传递至第一液冷板110上,实现液冷散热。而且,第二液冷板120与第一电子单元210的发热元件之间可以抵接,其发热元件这一侧的热量可以传递至第二液冷板120上,保证对第一电子单元210的冷却效果,实现液冷散热。第三液冷板130与第二电子单元220的发热元件之间可以抵接,其发热元件这一侧的热量可以传递至第三液冷板130上,保证对第二电子单元220的冷却效果,实现液冷散热。
管道结构1220连接第一液冷板110、第二液冷板120、第三液冷板130与外部冷源。外部冷源具有进液端与出液端,管道结构1220连接进液端与出液端。外部冷源的冷却液通过出液端输送至管道结构1220中,并通过管道结构1220分别输送至第一液冷板110、第二液冷板120以及第三液冷板130中。第一液冷板110、第二液冷板120以及第三液冷板130冷却第一电子单元210与第二电子单元220后的冷却液,回流至管道结构1220中,并通过进液端回到外部冷源。外部冷源可以对回收的冷却液进行冷却,再将冷却液输送至管道结构1220中。如此往复实现冷却液的循环利用,降低冷却成本。在一实施例中,外部冷源的冷却液可以为冷却水,也可以为冷却油或者液氦等。
上述实施例的液冷散热装置100,管道组件将外部冷源的冷却液输送至第一液冷板110、第二液冷板120以及第三液冷板130中,通过第一液冷板110、第二液冷板120以及第三液冷板130对第一电子单元210以及第二电子单元220进行冷却,管道组件将冷却后的冷却液输送至外部冷源,可以有效地解决目前芯片散热效率低且芯片间存在温差影响算力板使用性能的问题,提高第一电子单元210以及第二电子单元220的冷却效率,保证散热效果,使得第一电子单元210与第二电子单元220之间的温度均衡,避免出现温差,保证液冷虚拟货币挖矿机1000的使用性能。
在一实施例中,第一液冷板110的冷却能力大于第二液冷板120与第三液冷板130的冷却能力。因第一电子单元210与第二电子单元220的结构限制,朝向第一液冷板110的铝基板的散热量比较大,朝向第二液冷板120与第三液冷板130的发热元件的散热量较小。为保证散热效果,将第一液冷板110的冷却能力提升,以提高第一液冷板110对铝基板的散热能力。相应地,第二液冷板120与第三液冷板130的冷却能力可以适当降低,例如,可以只要保证能够对发热元件散热即可。这样可以在保证第一电子单元210与第二电子单元220散热效果的同时,还能降低结构的复杂程度,降低成本。
在一实施例中,第一液冷板110具有第一容纳腔,第二液冷板120具有第二容纳腔,第三液冷板130具有第三容纳腔。第一容纳腔的散热面积大于第二容纳腔的散热面积,第一容纳腔的散热面积大于第三容纳腔的散热面积。可以理解的,这里的散热面积是指能够进行有效冷却的面积。例如,第一液冷板110内部的流道面积大于第二液冷板120与第三液冷板130内部的流道面积。第一液冷板110内部的流道面积可以大一些,第二液冷板120与第三液冷板130内部的流道面积可以小一些。这样可以在保证散热效果的同时降低制造成本。
进一步地,第一容纳腔中可以设置散热凸起或散热翅片,通过散热凸起或散热翅片增加第一液冷板110的散热能力,进而提高第一液冷板110的冷却效果。
在一实施例中,电子设备200还包括供电电源230,液冷结构1210还包括连接管道结构1220的第四液冷板140,第四液冷板140具有第五冷却表面,第五冷却表面与供电电源230贴合,用于冷却供电电源230。供电电源230为第一电子单元210与第二电子单元220供电,以保证第一电子单元210与第二电子单元220可以正常工作,同时,供电电源230具有输入端子231,用于连接外界电源。
第四液冷板140具有第四容纳腔,冷却液在第四容纳腔中流动。在一实施例中,第四液冷板140的第四容纳腔可以为多流道串并联的通道如S形等,也可以为完整的腔体,还可为其他能够供冷却液流动的结构。冷却液进入第四液冷板140的第四容纳腔后,冷却液会通过第四液冷板140与电子设备200进行热交换,以对电子设备200的供电电源230进行冷却。第四液冷板140具有一个冷却表面即为第五冷却表面。该第五冷却表面朝向供电电源230设置。也就是说,第五冷却表面与供电电源230的表面抵接。第四容纳腔中的冷却液会通过第五冷却表面与供电电源230进行热交换,降低供电电源230的温度。
在一实施例中,第一液冷板110具有第一进出液口111与第二进出液口112;第二液冷板120具有第三进出液口121与第四进出液口122;第三液冷板130具有第五进出液口131与第六进出液口132,第四液冷板140具有第七进出液口A7与第八进出液口A8。管道结构1220串联和/或并联各进出液口。
第一液冷板110具有连通第一容纳腔的第一进出液口111与第二进出液口112。第二液冷板120具有连通第二容纳腔的第三进出液口121与第四进出液口122。第三液冷板130具有连通第三容纳腔的第五进出液口131与第六进出液口132。第四液冷板140具有连通第四容纳腔的第七进出液口A7与第八进出液口A8。第七进出液口A7与第八进出液口A8例如为第四液冷板140的进液口与出液口。当第七进出液口A7为进液口时,第八进出液口A8为出液口。当第七进出液口A7为出液口时,第八进出液口A8为进液口。
通过管道结构1220连接各个液冷板的进出液口实现冷却液的输入与输出。原则上,各个液冷板之间的连接方式原则上不受限制,只要能够实现电子设备200冷却即可。在一实施例中,每一个液冷板的两个进出液口都可以单独和外部冷源连接,此时,第一液冷板110、第二液冷板120、第三液冷板130以及第四液冷板140并联连接。此时,外部冷源分别将冷却液输送至各个液冷板中。当然,第一液冷板110、第二液冷板120、第三液冷板130以及第四液冷板140也可通过管道结构1220串联连接,外部冷源输送的冷却液顺次流动至各个液冷板中。在本申请的其他实施方式中,也可以其中一个或几个液冷板串联连 接,与剩余的液冷板并联连接。
在一实施例中,第一进出液口111与第二进出液口112可同侧或异侧设置。第三进出液口121与第四进出液口122可同侧或异侧设置。第五进出液口131与第六进出液口132可同侧或异侧设置。第七进出液口A7与第八进出液口A8可同侧或异侧设置。
第七进出液口A7与第八进出液口A8的设置位置原则上不受限制,可以同侧设置,也可异侧设置。示例性地,第七进出液口A7与第八进出液口A8可以分别设置于第四液冷板140的两侧;当然,第七进出液口A7与第八进出液口A8也可设置于第四液冷板140的同一侧,如图15所示。
参见图12至图16,在一实施例中,第四液冷板140与第一液冷板110、第二液冷板120以及第三液冷板130串联或并联连接。也就是说,第一液冷板110、第二液冷板120以及第三液冷板130为一个整体,与第四液冷板140可以并联,也可以串联。
在一实施例中,管道结构1220将第四液冷板140与第一液冷板110、第二液冷板120以及第三液冷板130串联连接。冷却液可先进入第四液冷板140后,再进入第一液冷板110、第二液冷板120以及第三液冷板130。因供电电源230的发热量小、耐热性差,用于冷却供电电源230的第四液冷板140,可以作为冷却液的入口,先参与换热,然后再与第一液冷板110、第二液冷板120以及第三液冷板130串联,输送冷却液。这样,冷却供电电源230后的冷却液的温升不会太高,仍能够保证第一电子单元210与第二电子单元220的散热需求。在其他实施例中,冷却液也可最后进入第四液冷板140。
当然,在本申请的其他实施方式中,管道结构1220将第四液冷板140与第一液冷板110、第二液冷板120以及第三液冷板130并联连接。也就是说,冷却液通过管道结构1220分别流入到第一液冷板110、第二液冷板120以及第三液冷板130构成的整体及第四液冷板140中。
在一实施例中,第一液冷板110、第二液冷板120及第三液冷板130串联或并联连接;或者,第一液冷板110分别串联第二液冷板120与第三液冷板130,且第二液冷板120与第三液冷板130并联连接。本申请实施例中以第四液冷板140与形成整体的第一液冷板110、第二液冷板120及第三液冷板130串联为例进行说明。
在一实施例中,第一液冷板110、第二液冷板120以及第三液冷板130并联连接。此时,第四液冷板140输出的冷却液分别输送至第一液冷板110、第二液冷板120以及第三液冷板130中,以对第一电子单元210以及第二电子单元220进行冷却。
第一电子单元210与第二电子单元220通过第一液冷板110、第二液冷板120以及第三液冷板130的串联、并联组合,使得冷却液在第一电子单元210与第二电子单元220之间往复流动,来提高第一电子单元210与第二电子单元220的散热效率,以及减小冷却液与第一电子单元210或第二电子单元220最高温度之间的温差,从而提高冷却液温度,可满足余热回收的要求。
参见图12至图16,在一实施例中,管道结构1220包括进口接头1224、出口接头1225、液冷管道组1221、第一分集液器1222以及第二分集液器1223。液冷管道组1221可通过第一分集液器1222与第二分集液器1223连接第一液冷板110、第二液冷板120、第三液冷板130以及第四液冷板140。液冷管道组1221还通过进口接头1224与出口接头1225连接至外部冷源。
进口接头1224与出口接头1225用于实现液冷管道组1221与外部冷源的连接。进口接头1224连接外部冷源的出液端,出口接头1225连接外部冷源的进液端。外部冷源中的冷却液经出液端以及进口接头1224进入液冷管道组1221中,液冷管道组1221中的冷却液通过出口接头1225及进液端回流至外部冷源中。
液冷管道组1221包括多个冷却管道,冷却管道分别连接第一液冷板110、第二液冷板120、第三液 冷板130以及第四液冷板140的各个进出液口,并通过第一分集液器1222与第二分集液器1223实现各个液冷板的串并联连接,以满足不同的冷却需求。在一实施例中,各冷却管道为硬管或定制异形管件等。
第一分集液器1222具有第一接头、第二接头以及第三接头。第一分集液器1222通过第一接头、第二接头以及第三接头实现第一液冷板110、第二液冷板120以及第三液冷板130的串并联连接。示例性地,第一接头连接第一液冷板110的第二进出液口112,第二接头连接第二液冷板120的第四进出液口122,第三接头连接第三液冷板130的第六进出液口132。各个进出液口与接头之间通过冷却管道连接。在一实施例中,第一接头、第二接头以及第三接头可以同侧设置,也可异侧设置。
第二分集液器1223具有第四接头、第五接头以及第六接头。第二分集液器1223通过第四接头、第五接头以及第六接头实现第一液冷板110、第二液冷板120以及第三液冷板130的串并联连接后冷却液的输出。示例性地,第四接头连接第二液冷板120的第三进出液口121,第五接头连接第三液冷板130的第五进出液口131,第六接头连接出口接头1225。各个进出液口与接头之间通过冷却管道连接。在一实施例中,第四接头、第五接头以及第六接头可以同侧设置,也可异侧设置。
值得说明的是,第一分集液器1222与第二分集液器1223的接头可因为连接的冷却管道不同,而具有不同的功能。比如说,在前述实施例中,第一分集液器1222为分液器,第二分集液器1223为集液器。当然,在本申请的其他实施方式中,调换冷却管道的连接方式,可以改变第一分集液器1222与第二分集液器1223的功能。如图12中,冷却液自第三进出液口121和第五进出液口131先进入第二液冷板120和第三液冷板130时,第一分集液器1222则为集液器,而第二分集液器1223为分液器。本申请实施例中,第二分集液器1223与第一分集液器1222分体设置,如图15所示;当然,第二分集液器1223与第一分集液器1222也可为一体结构,如图16所示。在本申请的其他实施方式中,第一分集液器1222与第二分集液器1223还可为三通阀(或三通接头)等。
参见图14至图16,在一实施例中,进口接头1224连接第四液冷板140的第七进出液口A7,第四液冷板140的第八进出液口A8连接第一液冷板110的第一进出液口111,第一液冷板110的第二进出液口112通过第一分集液器1222分别连接第二液冷板120的第四进出液口122与第三液冷板130的第六进出液口132,第二液冷板120的第三进出液口121与第三液冷板130的第五进出液口131通过第二分集液器1223连接出口接头1225。
在本申请中,以第四液冷板140串联第一液冷板110后、再分别串联第二液冷板120与第三液冷板130且第二液冷板120与第三液冷板130并联为例,说明进出液口的连接以及冷却液的流动。
外部冷源的出液端通过进口接头1224连接第四液冷板140的第七进出液口A7,第四液冷板140的第八进出液口A8连接第一液冷板110的第一进出液口111,第一液冷板110的第二进出液口112通过第一分集液器1222连接第二液冷板120的第四进出液口122以及第三液冷板130的第六进出液口132。第二液冷板120的第三进出液口121与第三液冷板130的第五进出液口131通过第二分集液器1223经出口接头1225连接外部冷源的进液端。
外部冷源输出的冷却液通过进口接头1224以及液冷管道组1221先进入到第四液冷板140中,通过第四液冷板140对供电电源230进行冷却。与供电电源230换热后的冷却液经液冷管道组1221流入第一液冷板110中,通过第一液冷板110分别对第一电子单元210的一表面与第二电子单元220的一表面进行冷却。随后,冷却液流出第一液冷板110经第一分集液器1222分流分别进入第二液冷板120与第三液冷板130中,再对第一电子单元210的另一表面与第二电子单元220的另一表面进行冷却。冷却后的冷却液流出第二液冷板120与第三液冷板130,通过第二分集液器1223汇聚到出口接头1225,进而回流至外部冷源中。
而且,冷却液在第一液冷板110、第二液冷板120以及第三液冷板130之间流动时,第一液冷板110中冷却液的流动方向与第二液冷板120、第三液冷板130中冷却液的流动方向可以相反。这样,可以保证冷却液在第一电子单元210两侧的流动方向是不同的,在第一电子单元210的两侧形成相对的流动,使得第一电子单元210的温度均衡,并可缩小冷却液与第一电子单元210之间的温差。在一实施例中,第二液冷板120、第三液冷板130的流道阻力之和与第一液冷板110的流道阻力之和基本一致,保证整个液冷结构1210中的流速一致。
当然,在本申请的其他实施方式中,各个液冷板的进出液口的连接方式以及冷却液的流动方向可以适当调整,其连接方式及原理实质相同,在此不一一赘述。
本申请还提供一种液冷虚拟货币挖矿机1000,包括电子设备200以及上述实施例中的液冷散热装置100。电子设备200包括第一电子单元210、第二电子单元220以及供电电源230,液冷散热装置对第一电子单元210、第二电子单元220以及供电电源230进行冷却。本申请的液冷虚拟货币挖矿机1000采用上述实施例的液冷散热装置100后,可以保证电子设备200的散热效果,进而保证液冷虚拟货币挖矿机1000工作的可靠性。当然,液冷虚拟货币挖矿机1000还可以为其他类型的数据处理设备。
在一实施例中,液冷虚拟货币挖矿机1000还包括机箱壳体400,电子设备200以及液冷散热装置100的液冷结构1210与管道结构1220均设置于机箱壳体400中。机箱壳体400为液冷散热装置100的壳体。机箱壳体400具有安装空间,该安装空间用于安装虚拟货币挖矿机的电子设备200的电子单元、液冷结构1210以及管道结构1220。机箱壳体400还起防护作用,避免外界杂物进入,同时还能避免外界物体碰触到电子设备200,保证电子设备200可以正常工作。另外,机箱壳体400还可以使得液冷散热装置100的各个零部件形成一个整体,便于使用。
在一实施例中,机箱壳体400包括承载壳体410以及设置于承载壳体410的第一侧板420、第二侧板430以及机箱盖板440,第一侧板420与第二侧板430相对设置,机箱盖板440盖设于承载壳体410的顶部,电子设备200的输入端子231设置于第一侧板420,管道结构1220的进口接头1224与出口接头1225设置于第二侧板430。承载壳体410呈U形设置。第一侧板420与第二侧板430设置在承载底壳的两个相对的侧面,机箱盖板440盖设于承载壳体410,这样,第一侧板420、第二侧板430、承载壳体410以及机箱盖板440可以形成具有安装空间的箱体。
而且,进口接头1224与出口接头1225穿过第二侧板430伸出,用于连接外部冷源。供电电源230的输入端子穿过第一侧板420伸出,便于与外界电源连接。而且,第一侧板420的内部设置固定件,固定件将第一分集液器1222与第二分集液器1223固定。
参见图12至图17,在一实施例中,液冷虚拟货币挖矿机1000还包括连接组件240,连接组件240分别将第一电子单元210与第二电子单元220连接至供电电源230。连接组件240电连接第一电子单元210与供电电源230,电连接第二电子单元220与供电电源230。这样供电电源230向第一电子单元210与第二电子单元220供电,使得第一电子单元210与第二电子单元220正常工作。
在一实施例中,连接组件240包括铜排以及连接线缆,第一电子单元210通过铜排与连接线缆连接至供电电源230。铜排的两端分别与第一电子单元210、第二电子单元220电连接,并且铜排的其中一端通过连接线缆电连接到供电电源230。
参见图17,在一实施例中,连接组件240包括正极铜排241、负极铜排243、正极线缆242以及负极线缆244。正极铜排241与负极铜排243交叉设置。第一电子单元210的正极213设置正极铜排241,第一电子单元210的负极212设置负极铜排243;第二电子单元220的正极211设置正极铜排241,第二电子单元220的负极(图中未示)设置负极铜排243。第一电子单元210的正极213、第二电子单元220 的负极设置在正极铜排241、负极铜排243的相同端,第一电子单元210的负极212、第二电子单元220的正极211设置在负极铜排243与正极铜排241的相同端。正极铜排241具有与正极线缆242连接的正极固定孔2411,正极固定孔2411位于正极铜排241靠内的位置;负极铜排243具有与负极线缆244连接的负极固定孔2441,负极固定孔2441位于负极铜排243靠外的位置。可以理解的,这里的靠内的位置是指,正极固定孔2411位于正极铜排241与第一电子单元210的正极213连接处217以及正极铜排241与第二电子单元220的正极211连接处215之间的位置;这里的靠外的位置是指,负极固定孔2441位于负极铜排243与第一电子单元210的负极212连接处214以及负极铜排243与第二电子单元220的负极连接处216之外的位置。
在一实施例中,正极线缆242的长度大于负极线缆244的长度。这样可以避免正极与负极的各部件接反,避免第一电子单元210与第二电子单元220被烧坏,保证使用安全。当然,在本申请的其他实施方式中,正极与负极的连接结构也可不同,以达到防止正负极接反的目的。
本申请实施例的液冷虚拟货币挖矿机及液冷散热装置,通过管道结构连接液冷结构的第一液冷板、第二液冷板以及第三液冷板,而且,第一液冷板的两侧分别设置第一电子单元与第二电子单元,在第一电子单元与第二电子单元的外侧还布置第二液冷板与第三液冷板。管道组件将外部冷源的冷却液输送至第一液冷板、第二液冷板以及第三液冷板中,通过第一液冷板、第二液冷板以及第三液冷板对第一电子单元以及第二电子单元进行冷却,管道组件将冷却后的冷却液输送至外部冷源。有效地解决目前芯片散热效率低且芯片间存在温差影响算力板使用性能的问题,提高第一电子单元以及第二电子单元的冷却效率,保证散热效果,使得第一电子单元与第二电子单元之间的温度均衡,避免出现温差,保证液冷虚拟货币挖矿机的使用性能。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
本申请中涉及的器件、装置、设备、***的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、***。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
还需要指出的是,在本申请的装置、设备和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本申请的等效方案。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合均应包含在本发明保护的范围之内。

Claims (32)

  1. 一种液冷散热装置,其特征在于,所述液冷散热装置用于给电子设备液冷散热,所述液冷散热装置包括:
    壳体单元,所述壳体单元用于容纳所述电子设备;
    第一液冷板,所述第一液冷板置于所述壳体单元内,所述第一液冷板具有第一进口接头和第一出口接头;
    其中,所述电子设备包括第一电子单元和第二电子单元,所述第一液冷板具有相对设置的第一冷却表面和第二冷却表面,所述第一电子单元贴附于所述第一冷却表面,所述第二电子单元贴附于所述第二冷却表面;
    冷却液从所述第一进口接头进入并从所述第一出口接头流出,以使所述第一液冷板同时对所述第一电子单元和所述第二电子单元液冷散热。
  2. 根据权利要求1所述的液冷散热装置,其特征在于,所述壳体单元具有相对设置的第一侧板和第二侧板,所述第一进口接头和所述第一出口接头从所述第一侧板凸出并用于连通外部冷却液***。
  3. 根据权利要求1所述的液冷散热装置,其特征在于,所述液冷散热装置还用于给电源设备液冷散热,所述电源设备置于所述壳体单元内,所述电源设备与所述电子设备电连接,用于给所述电子设备供电;
    其中,所述液冷散热装置进一步包括:
    第四液冷板,所述第四液冷板置于所述壳体单元内,所述第四液冷板具有第二进口接头和第二出口接头;所述第四液冷板具有第三冷却表面,所述电源设备贴附于所述第三冷却表面;
    其中,所述第一出口接头和所述第二进口接头通过转接管连通,所述第一进口接头和所述第二出口接头连通外部冷却液***;或者,
    所述第一进口接头和所述第二出口接头通过所述转接管连通,所述第一出口接头和所述第二进口接头连通外部冷却液***;或者,
    所述第一进口接头和所述第二进口接头分别连接第一三通接头,所述第一出口接头和所述第二出口接头分别连接第二三通接头,并且,所述第一三通接头和所述第二三通接头连通外部冷却液***。
  4. 根据权利要求3所述的液冷散热装置,其特征在于,所述液冷散热装置还包括连接单元,所述第一液冷板和所述第四液冷板分别通过所述连接单元固定置于所述壳体单元内;或者,所述第一液冷板和所述第四液冷板的两侧设有转接凸缘,所述连接单元分别布置于所述第一液冷板和所述第四液冷板的两侧,并且,所述连接单元具有供所述转接凸缘插接的导向槽。
  5. 根据权利要求4所述的液冷散热装置,其特征在于,所述第一液冷板和所述第四液冷板并排设置,所述第一液冷板和所述第四液冷板之间的所述连接单元一体设置。
  6. 根据权利要求4所述的液冷散热装置,其特征在于,所述导向槽的两端设有锁止螺钉。
  7. 根据权利要求1所述的液冷散热装置,其特征在于,所述壳体单元包括承载壳体,所述承载壳体具有承载槽,所述承载壳体的两端安装有所述第一侧板和所述第二侧板,所述承载槽上设有安装盖;所述第二侧板的两端分别设有电源转接头和通信接头。
  8. 根据权利要求2所述的液冷散热装置,其特征在于,所述第二侧板的两端还凸出延伸有固定安装板,所述固定安装板上设有固定安装孔;所述固定安装板向外折弯有提拉板,所述提拉板上设有提拉孔。
  9. 根据权利要求1~8中任一项所述的液冷散热装置,其特征在于,所述第一电子单元和所述第二电子单元背向所述第一液冷板的一面分别设有第一护板和第二护板。
  10. 根据权利要求1~8中任一项所述的液冷散热装置,其特征在于,在所述第一电子单元和所述第一液冷板之间设有导热硅脂,和/或,在所述第二电子单元和所述第一液冷板之间设有导热硅脂。
  11. 根据权利要求1~8中任一项所述的液冷散热装置,其特征在于,所述第一电子单元包括第一基板,所述第二电子单元包括第二基板,所述第一基板贴附于所述第一冷却表面,所述第二基板贴附于所述第二冷却表面;
    其中,所述第一冷却表面和所述第二冷却表面为平面,所述第一基板和所述第二基板为铝基板,所述铝基板背向所述第一液冷板一面设有发热元件。
  12. 根据权利要求1所述的液冷散热装置,其特征在于,所述液冷散热装置还包括对称位于所述第一液冷板两侧的第二液冷板与第三液冷板;
    所述第一液冷板具有第一冷却表面与第二冷却表面,所述第一电子单元位于所述第一液冷板与所述第二液冷板之间,并贴附于所述第一液冷板的所述第一冷却表面;所述第二电子单元位于所述第一液冷板与所述第三液冷板之间,并贴附于所述第一液冷板的所述第二冷却表面。
  13. 根据权利要求12所述的液冷散热装置,其特征在于,所述第二液冷板具有第三冷却表面,所述第三冷却表面具有凸出设置的第一固定凸起,所述第一固定凸起与所述第一电子单元抵接,所述第三冷却表面与所述第一电子单元围设成供所述第一电子单元散热的第一散热通道;和/或,所述第三液冷板具有第四冷却表面,所述第四冷却表面具有凸出设置的第二固定凸起,所述第二固定凸起与所述第二电子单元抵接,所述第四冷却表面与所述第二电子单元围设成供所述第二电子单元散热的第二散热通道。
  14. 根据权利要求12所述的液冷散热装置,其特征在于,所述第一液冷板具有第一进出液口与第二进出液口;所述第二液冷板具有第三进出液口与第四进出液口;所述第三液冷板具有第五进出液口与第六进出液口;
    所述第一进出液口与所述第二进出液口同侧或异侧设置;
    所述第三进出液口与所述第四进出液口同侧或异侧设置;
    所述第五进出液口与所述第六进出液口同侧或异侧设置。
  15. 根据权利要求12所述的液冷散热装置,其特征在于,所述第一液冷板的冷却能力大于所述第二液冷板与所述第三液冷板的冷却能力;
    所述第一液冷板具有第一容纳腔,所述第二液冷板具有第二容纳腔,所述第三液冷板具有第三容纳腔;所述第一容纳腔的散热面积大于所述第二容纳腔的散热面积,所述第一容纳腔的散热面积大于所述第三容纳腔的散热面积。
  16. 根据权利要求12所述的液冷散热装置,其特征在于,所述液冷散热装置还包括电源设备以及第四液冷板,其中,所述第四液冷板具有第五冷却表面,所述第五冷却表面与所述电源设备贴合,用于冷却所述电源设备;所述第四液冷板具有第七进出液口与第八进出液口。
  17. 根据权利要求16所述的液冷散热装置,其特征在于,所述第四液冷板与所述第一液冷板、所述第二液冷板以及所述第三液冷板串联或并联连接。
  18. 根据权利要求12所述的液冷散热装置,其特征在于,所述第一液冷板、所述第二液冷板及所述第三液冷板串联或并联连接;
    或者,所述第一液冷板分别串联所述第二液冷板与所述第三液冷板,且所述第二液冷板与所述第三液冷板并联连接。
  19. 根据权利要求12所述的液冷散热装置,其特征在于,所述第一液冷板中冷却液的流动方向与所述第二液冷板及所述第三液冷板的流动方向相同;
    或者,所述第一液冷板中冷却液的流动方向与所述第二液冷板及所述第三液冷板的流动方向相反;
    或者,所述第一液冷板中冷却液的流动方向和所述第二液冷板与所述第三液冷板其中之一的流动方向相同,和所述第二液冷板与所述第三液冷板其中之另一的流动方向相反。
  20. 根据权利要求14或16所述的液冷散热装置,其特征在于,所述液冷散热装置还包括管道结构,所述管道结构串联和/或并联各进出液口;所述管道结构包括进口接头、出口接头、液冷管道组、第一分集液器以及第二分集液器;
    所述液冷管道组可通过所述第一分集液器与所述第二分集液器连接所述第一液冷板、所述第二液冷板、所述第三液冷板和/或所述第四液冷板;
    所述液冷管道组还通过所述进口接头与所述出口接头连接至所述外部冷源。
  21. 根据权利要求20所述的液冷散热装置,其特征在于,所述进口接头连接所述第四液冷板的第七进出液口,所述第四液冷板的所述第八进出液口连接所述第一液冷板的所述第一进出液口,所述第一液冷板的所述第二进出液口通过所述第一分集液器分别连接所述第二液冷板的第四进出液口与所述第三液冷板的第六进出液口,所述第二液冷板的所述第三进出液口与所述第三液冷板的第五进出液口通过所述第二分集液器连接所述出口接头。
  22. 一种液冷数据处理设备,其特征在于,所述液冷数据处理设备包括电子设备和承载所述电子设备的液冷散热装置,其中,所述液冷散热装置为权利要求1~21中任一项所述的液冷散热装置,所述电子设备包括第一电子单元与第二电子单元,其中所述第一电子单元与所述第二电子单元为算力板。
  23. 根据权利要求22所述的液冷数据处理设备,其特征在于,所述液冷数据处理设备还包括连接组件,所述连接组件分别将所述第一电子单元与所述第二电子单元连接至所述电源设备。
  24. 根据权利要求23所述的液冷数据处理设备,其特征在于,所述连接组件包括铜排以及连接线缆,所述第一电子单元和/或所述第二电子单元通过所述铜排与所述连接线缆连接至所述电源设备。
  25. 根据权利要求23所述的液冷数据处理设备,其特征在于,所述连接组件包括正极铜排、负极铜排、正极线缆以及负极线缆;第一电子单元和/或所述第二电子单元的正极设置所述正极铜排,所述第一电子单元和/或所述第二电子单元的负极设置所述负极铜排;所述正极铜排具有与所述正极线缆连接的正极固定孔,所述正极固定孔位于所述正极铜排靠内的位置;所述负极铜排具有与所述负极线缆连接的负极固定孔,所述负极固定孔位于所述负极铜排靠外的位置;
    所述正极线缆的长度大于所述负极线缆的长度。
  26. 一种液冷散热装置的均温方法,其特征在于,所述均温方法应用于液冷散热装置中,所述液冷散热装置用于对电子设备的第一电子单元与第二电子单元进行冷却,包括第一液冷板以及位于所述第一液冷板两侧的第二液冷板与第三液冷板;所述第一液冷板具有第一冷却表面与第二冷却表面,所述第一电子单元位于所述第一液冷板与所述第二液冷板之间,并贴附于所述第一液冷板的所述第一冷却表面;所述第二电子单元位于所述第一液冷板与所述第三液冷板之间,并贴附于所述第一液冷板的所述第二冷却表面;
    所述均温方法包括如下步骤:
    控制所述第一液冷板、所述第二液冷板以及所述第三液冷板串联和/或并联连接;
    控制外部冷源向所述第一液冷板、第二液冷板以及所述第三液冷板输送冷却液;
    使所述第一液冷板、所述第二液冷板以及所述第三液冷板分别对所述第一电子单元与所述第二电子单元进行冷却。
  27. 根据权利要求26所述的均温方法,其特征在于,所述第一液冷板具有第一进出液口与第二进出 液口;所述第二液冷板具有第三进出液口与第四进出液口;所述第三液冷板具有第五进出液口与第六进出液口;
    所述控制所述第一液冷板、所述第二液冷板以及所述第三液冷板串联和/或并联连接的步骤包括:
    控制所述第一进出液口与所述第二进出液口其中之一连接至所述外部冷源的出液端,其中之另一连接至所述外部冷源的进液端;
    控制所述第三进出液口与所述第四进出液口其中之一连接至所述外部冷源的出液端,其中之另一连接至所述外部冷源的进液端;
    控制所述第五进出液口与所述第六进出液口其中之一连接至所述外部冷源的出液端,其中之另一连接至所述外部冷源的进液端。
  28. 根据权利要求26所述的均温方法,其特征在于,所述控制所述第一液冷板、所述第二液冷板以及所述第三液冷板串联和/或并联连接的步骤包括:
    控制所述第一液冷板分别串联所述第二液冷板与所述第三液冷板;
    控制所述外部冷源将冷却液输送至所述第一液冷板,以冷却所述第一电子单元的一表面与所述第二电子单元的一表面;
    控制所述第一液冷板流出的冷却液分别流入所述第二液冷板与所述第三液冷板,以冷却所述第一电子单元的另一表面与所述第二电子单元的另一表面。
  29. 根据权利要求28所述的均温方法,其特征在于,所述第一液冷板具有第一进出液口与第二进出液口;所述第二液冷板具有第三进出液口与第四进出液口;所述第三液冷板具有第五进出液口与第六进出液口;
    所述控制所述第一液冷板分别串联所述第二液冷板与所述第三液冷板的步骤包括:
    控制所述第二进出液口分别连接所述第三进出液口与所述第五进出液口,使所述第一液冷板中的冷却液经所述第二进出液口及所述第三进出液口进入所述第二液冷板;使所述第一液冷板中的冷却液经所述第二进出液口及所述第五进出液口进入所述第三液冷板;
    或者,控制所述第二进出液口分别连接所述第四进出液口与所述第六进出液口,使所述第一液冷板中的冷却液经所述第二进出液口及所述第四进出液口进入所述第二液冷板;使所述第一液冷板中的冷却液经所述第二进出液口及所述第六进出液口进入所述第三液冷板。
  30. 根据权利要求26所述的均温方法,其特征在于,所述控制所述第一液冷板、所述第二液冷板以及所述第三液冷板串联和/或并联连接的步骤包括:
    控制所述第二液冷板与所述第三液冷板并联后串联所述第一液冷板;
    控制所述外部冷源将冷却液分别输送至所述第二液冷板与所述第三液冷板,以冷却所述第一电子单元的另一表面与所述第二电子单元的另一表面;
    控制所述第二液冷板与所述第三液冷板的流出的冷却液进入所述第一液冷板,以冷却所述第一电子单元的一表面与所述第二电子单元的一表面。
  31. 根据权利要求30所述的均温方法,其特征在于,所述第一液冷板具有第一进出液口与第二进出液口;所述第二液冷板具有第三进出液口与第四进出液口;所述第三液冷板具有第五进出液口与第六进出液口;
    所述控制所述第二液冷板与所述第三液冷板并联后串联所述第一液冷板的步骤包括:
    控制所述第三进出液口与所述第五进出液口分别连接所述第二进出液口,使所述第二液冷板中的冷却液经所述第三进出液口及所述第二进出液口进入所述第一液冷板;使所述第三液冷板中的冷却液经所 述第五进出液口及所述第二进出液口进入所述第一液冷板;
    或者,控制所述第四进出液口与所述第六进出液口分别连接所述第二进出液口,使所述第二液冷板中的冷却液经所述第四进出液口及所述第二进出液口进入所述第二液冷板;使所述第三液冷板中的冷却液经所述第六进出液口及所述第二进出液口进入所述第一液冷板。
  32. 根据权利要求26至31任一项所述的均温方法,其特征在于,所述均温方法还包括如下步骤:
    控制所述第一液冷板中冷却液的流动方向与所述第二液冷板及所述第三液冷板的流动方向相同;
    或者,控制所述第一液冷板中冷却液的流动方向与所述第二液冷板及所述第三液冷板的流动方向相反;
    或者,控制所述第一液冷板中冷却液的流动方向和所述第二液冷板与所述第三液冷板其中之一的流动方向相同,和所述第二液冷板与所述第三液冷板其中之另一的流动方向相反。
PCT/CN2021/088962 2020-06-22 2021-04-22 液冷散热装置、液冷数据处理设备以及均温方法 WO2021258837A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/912,407 US20230189477A1 (en) 2020-06-22 2021-04-22 Liquid-cooling heat dissipation apparatus, liquid-cooling data processing device and temperature equalization method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010571752.9A CN111625073A (zh) 2020-06-22 2020-06-22 一种液冷散热装置及液冷虚拟货币挖矿机
CN202010571752.9 2020-06-22
CN202011312974.5A CN112764499A (zh) 2020-11-20 2020-11-20 液冷虚拟货币挖矿机、液冷散热装置及均温方法
CN202011308704.7 2020-11-20
CN202011312974.5 2020-11-20
CN202011308704.7A CN114518787A (zh) 2020-11-20 2020-11-20 液冷虚拟货币挖矿机及液冷散热装置

Publications (1)

Publication Number Publication Date
WO2021258837A1 true WO2021258837A1 (zh) 2021-12-30

Family

ID=79282787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088962 WO2021258837A1 (zh) 2020-06-22 2021-04-22 液冷散热装置、液冷数据处理设备以及均温方法

Country Status (2)

Country Link
US (1) US20230189477A1 (zh)
WO (1) WO2021258837A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046827A1 (en) * 2020-08-10 2022-02-10 Beijing Silicon Based Voyage Technology Co., Ltd. Server
CN116191772A (zh) * 2023-04-24 2023-05-30 苏州普源金属制品有限公司 一种电机冷却保护装置、设计方法及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117956769B (zh) * 2024-03-26 2024-07-09 南方电网数字电网科技(广东)有限公司 一种配电通信网络安全管理***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485906A (zh) * 2002-09-24 2004-03-31 ������������ʽ���� 电子装置
US20100326628A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
CN108170239A (zh) * 2018-01-30 2018-06-15 石家庄东远散热技术有限公司 一种用于挖矿装置的水冷散热器
CN108922875A (zh) * 2018-07-31 2018-11-30 北京比特大陆科技有限公司 一种水冷散热器及计算设备
CN209657297U (zh) * 2019-03-20 2019-11-19 杭州嘉楠耘智信息科技有限公司 虚拟数字货币处理设备
CN111625073A (zh) * 2020-06-22 2020-09-04 深圳比特微电子科技有限公司 一种液冷散热装置及液冷虚拟货币挖矿机
CN211878562U (zh) * 2020-05-12 2020-11-06 深圳比特微电子科技有限公司 液冷散热***及具有液冷散热***的虚拟货币挖矿机
CN212278664U (zh) * 2020-05-12 2021-01-01 深圳比特微电子科技有限公司 适于电子设备液冷散热的液冷板及具有其的散热单元

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199018B2 (ja) * 2003-02-14 2008-12-17 株式会社日立製作所 ラックマウントサーバシステム
JP6569514B2 (ja) * 2015-12-22 2019-09-04 富士通株式会社 受熱器、冷却ユニット及び電子機器
US10522442B2 (en) * 2017-06-29 2019-12-31 Performance Motion Devices, Inc. Dissipating heat from an electronic device in a protective housing
US10582645B1 (en) * 2018-09-28 2020-03-03 Hewlett Packard Enterprise Development Lp Cooling apparatus for electronic components
US10955883B1 (en) * 2019-10-15 2021-03-23 Hewlett Packard Enterprise Development Lp Power supply dry disconnect liquid cooling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485906A (zh) * 2002-09-24 2004-03-31 ������������ʽ���� 电子装置
US20100326628A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
CN108170239A (zh) * 2018-01-30 2018-06-15 石家庄东远散热技术有限公司 一种用于挖矿装置的水冷散热器
CN108922875A (zh) * 2018-07-31 2018-11-30 北京比特大陆科技有限公司 一种水冷散热器及计算设备
CN209657297U (zh) * 2019-03-20 2019-11-19 杭州嘉楠耘智信息科技有限公司 虚拟数字货币处理设备
CN211878562U (zh) * 2020-05-12 2020-11-06 深圳比特微电子科技有限公司 液冷散热***及具有液冷散热***的虚拟货币挖矿机
CN212278664U (zh) * 2020-05-12 2021-01-01 深圳比特微电子科技有限公司 适于电子设备液冷散热的液冷板及具有其的散热单元
CN111625073A (zh) * 2020-06-22 2020-09-04 深圳比特微电子科技有限公司 一种液冷散热装置及液冷虚拟货币挖矿机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046827A1 (en) * 2020-08-10 2022-02-10 Beijing Silicon Based Voyage Technology Co., Ltd. Server
CN116191772A (zh) * 2023-04-24 2023-05-30 苏州普源金属制品有限公司 一种电机冷却保护装置、设计方法及存储介质

Also Published As

Publication number Publication date
US20230189477A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2021258837A1 (zh) 液冷散热装置、液冷数据处理设备以及均温方法
WO2020181953A1 (zh) 散热方法、散热装置、和机柜
US8755179B2 (en) Thermal interposer liquid cooling system
US11963338B2 (en) Cooling system for electronic modules
US7408776B2 (en) Conductive heat transport cooling system and method for a multi-component electronics system
JP5756573B2 (ja) 別々に回転自在なマニホルド区域を有する冷却材マニホルド
US7405936B1 (en) Hybrid cooling system for a multi-component electronics system
JP5671731B2 (ja) 液冷冷却装置、電子機器ラック、およびその製作方法
US10024606B2 (en) Fabricating thermal transfer structure with in-plane tube lengths and out-of-plane tube bend(s)
WO2021227846A1 (zh) 适于电子设备液冷散热的液冷板及散热单元
EP2812769A1 (en) Heat dissipating system
CN113365477B (zh) 冷却装置、机柜及数据处理设备
JP2004246615A (ja) 電子装置とその筐体、並びにそのための電子モジュール
CN111625073A (zh) 一种液冷散热装置及液冷虚拟货币挖矿机
CN115079795A (zh) 一种液冷服务器及其液冷散热硬盘模组
TW202246723A (zh) 冷板以及電腦系統
CN212906116U (zh) 服务器
CN112306168B (zh) 服务器
WO2023078397A1 (zh) 液冷服务器
TW202242605A (zh) 冷卻裝置、冷卻組合件、以及用於冷卻計算系統的方法
CN213750905U (zh) 液冷虚拟货币挖矿机及液冷散热装置
CN212276359U (zh) 一种液冷散热装置及液冷虚拟货币挖矿机
JP2016057997A (ja) プリント回路基板を収容可能な電気通信コンピューティングモジュール
US11096302B2 (en) Server
WO2024001749A1 (zh) 一种光模块的液冷结构及光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21830041

Country of ref document: EP

Kind code of ref document: A1