WO2021255828A1 - Wireless communication system, communication method, base station, and terminal - Google Patents

Wireless communication system, communication method, base station, and terminal Download PDF

Info

Publication number
WO2021255828A1
WO2021255828A1 PCT/JP2020/023597 JP2020023597W WO2021255828A1 WO 2021255828 A1 WO2021255828 A1 WO 2021255828A1 JP 2020023597 W JP2020023597 W JP 2020023597W WO 2021255828 A1 WO2021255828 A1 WO 2021255828A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
sequence
highest priority
terminal
unit
Prior art date
Application number
PCT/JP2020/023597
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 村山
憲一 河村
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022531143A priority Critical patent/JP7485033B2/en
Priority to PCT/JP2020/023597 priority patent/WO2021255828A1/en
Publication of WO2021255828A1 publication Critical patent/WO2021255828A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to a wireless communication system, a communication method, a base station, and a terminal.
  • L5G local 5G
  • the L5G system is not limited to the case where it is operated by only a single operator, and radio wave interference may occur in an adjacent area of another L5G system operated by another operator.
  • the L5G system has been improved in speed, delay, and reliability by using NR (New Radio), which is a 5G wireless communication method (see, for example, Patent Document 1).
  • NR New Radio
  • UEs user terminals to which resources are not allocated transmit immediately even if they are eURLLC (enhanced Ultra-Reliable and Low Latency Communications), which is a UL (uplink) signal that should be transmitted with the highest priority.
  • eURLLC enhanced Ultra-Reliable and Low Latency Communications
  • UL uplink
  • An object of the present invention is to provide a wireless communication system, a communication method, a base station, and a terminal capable of efficiently shortening a waiting time compared to a configured grant without increasing unused resources in normal times. do.
  • the wireless communication system is a wireless communication system connected to a higher-level network and provided with a base station capable of accommodating a plurality of terminals, and each of the terminals is a random access signal that can be separated for each terminal. It has a sequence generation unit that generates a code sequence associated with the highest priority packet, and a sequence control unit that controls the code sequence to be transmitted to the base station when the highest priority packet is generated. , The storage unit that stores the code sequence previously received from each of the terminals by the base station, or the code sequence stored by the storage unit when the base station receives a sequence of random access signals from the terminal.
  • a determination unit for determining whether or not the sequences match a conversion unit for converting the code sequence determined to match the determination units into the highest priority packet, and the highest priority packet converted by the conversion unit are used. It is characterized by having a communication unit for transmitting to a higher-level network.
  • the highest priority packet is set for a random access signal that can be separated for each terminal.
  • a sequence generation step in which each of the terminals generates a associated code sequence
  • a sequence control step in which the terminal controls the terminal to transmit the code sequence to the base station when the highest priority packet is generated, and the terminal.
  • the determination step of determining whether or not the sequences match, the conversion step of converting the code sequence determined to match into the highest priority packet, and the communication process of transmitting the converted highest priority packet to the higher-level network is characterized by including.
  • the base station is a base station that is connected to a higher-level network and can accommodate a plurality of terminals, and associates the highest priority packet with a random access signal that can be separated for each terminal.
  • a storage unit that stores the code sequence in advance, a wireless communication unit that receives the code sequence from the terminal when a highest priority packet is generated, and a code sequence received by the wireless communication unit are converted into the highest priority packet. It is characterized by having a conversion unit for performing a conversion unit and a communication unit for transmitting the highest priority packet converted by the conversion unit to a higher-level network.
  • the terminal includes a sequence generation unit that generates a code sequence in which the highest priority packet is associated with a random access signal, and a wireless communication unit that transmits the code sequence to a base station in advance. It is characterized by having a sequence control unit that controls the code sequence to be transmitted to the base station when the highest priority packet is generated.
  • the waiting time can be efficiently made shorter than the configured grant without increasing the unused resources in normal times.
  • FIG. 1 It is a figure which shows the configuration example of the wireless communication system which concerns on one Embodiment.
  • A is a sequence diagram showing a Dynamic grant in 5G NR of a comparative example.
  • B is a sequence diagram showing a configured grant in 5G NR of the comparative example.
  • It is a functional block diagram which illustrates the function which the terminal which concerns on one Embodiment has.
  • It is a functional block diagram illustrating the function which the base station and the control station which concerns on one Embodiment have.
  • It is a flowchart which exemplifies the operation which a terminal performs at the time of initial setting.
  • FIG. 1 is a diagram showing a configuration example of a wireless communication system 1 according to an embodiment.
  • the wireless communication system 1 is controlled by a plurality of base stations (gNB: nextGenerationNodeB) 3-1 and 3-2, each of which accommodates a plurality of terminals (UE: User Equipment) 2.
  • gNB nextGenerationNodeB
  • UE User Equipment
  • L5G system that has a station 4 and enables wireless communication by NR.
  • base station 3 and the like when any one of a plurality of configurations such as base stations 3-1 and 3-2 is not specified, it is simply abbreviated as base station 3 and the like.
  • the terminal 2 is, for example, a mobile user terminal, and wirelessly communicates with the base station 3.
  • the base station 3 is a radio base station that accommodates a plurality of terminals 2 and provides NR radio, and each is connected to a higher-level network.
  • the control station 4 includes a resource control unit 40, and controls the base stations 3-1 and 3-2 by, for example, wire communication.
  • the resource control unit 40 controls resource allocation of base stations 3-1 and 3-2.
  • the control station 4 and the base stations 3-1 and 3-2 may be configured to perform wireless communication such as IAB (Integrated Access and Backhaul) or WiGig (Wireless Gigabit). Further, the resource control unit 40 may be included in a 5G core network or the like.
  • FIG. 2 is a sequence diagram showing communication between a terminal (UE) and a base station (BS) in a comparative example.
  • FIG. 2A is a sequence diagram showing a Dynamic grant at 5G NR.
  • FIG. 2B is a sequence diagram showing a configured grant at 5G NR.
  • the UE transmits a scheduling request (SR: Scheduling Request) to the BS after UL (uplink) traffic is generated. (S100).
  • SR Scheduling Request
  • the BS When the BS receives the SR, it notifies the UE of the schedule by DCI (Downlink Control Information) (S102).
  • DCI Downlink Control Information
  • the UE transmits a data packet to the BS by PUSCH (Physical Uplink Shared CHannel) (S104). That is, the BS can forward the traffic to the upper network.
  • PUSCH Physical Uplink Shared CHannel
  • the configured grant of the comparative example although it depends on the method of specifying the resource, it was necessary to specify a large number of resources in advance in order to enable immediate transmission of packet data. Further, in the comparative example, if the same resource is specified for a plurality of UEs, a collision occurs, and if different resources are specified for a plurality of UEs, unused resources in normal times increase and efficiency decreases.
  • FIG. 3 is a functional block diagram illustrating the functions of the terminal 2 according to the embodiment.
  • the terminal 2 has a wireless communication unit 20, a sequence control unit 21, a sequence generation unit 22, a storage unit 23, and a conversion unit 24.
  • the wireless communication unit 20 performs wireless communication by NR, for example, with the base station 3. For example, the wireless communication unit 20 receives the packet transmitted by the base station 3 and outputs it to the sequence control unit 21. Further, the wireless communication unit 20 transmits the packet converted by the conversion unit 24 (such as a code sequence described later) to the base station 3 by PUSCH or PUCCH (Physical Uplink Control CHannel) according to the control of the sequence control unit 21.
  • the conversion unit 24 such as a code sequence described later
  • PUCCH Physical Uplink Control CHannel
  • the wireless communication unit 20 transmits the code sequence (correspondence table) described later to the base station 3 in advance at the time of initial setting. Further, when the highest priority packet is generated, the wireless communication unit 20 transmits the corresponding code sequence to the base station 3 with the resource designated by the base station 3.
  • the sequence control unit 21 acquires the resources and sequences allocated to each UE by the base station 3 via the wireless communication unit 20 and outputs them to the sequence generation unit 22. Further, the sequence control unit 21 controls the conversion unit 24 and the wireless communication unit 20 so as to transmit the code sequence described later to the base station 3 when the highest priority packet is generated inside the terminal 2 or outside the terminal 2. do.
  • the sequence generation unit 22 generates a code sequence in which the sequence assigned to each UE and the highest priority packet that may be transmitted are associated with each other, and outputs the code sequence to the storage unit 23. For example, the sequence generation unit 22 generates a code sequence in which the highest priority packet is associated with a random access signal that can be separated for each UE. As a specific example, the sequence generation unit 22 associates a sequence number to be used with a message that may be transmitted.
  • the storage unit 23 stores the code sequence generated by the sequence generation unit 22.
  • the storage unit 23 stores a code sequence in which the sequence assigned to each UE and the highest priority packet that may be transmitted are associated with each other as a correspondence table.
  • the conversion unit 24 converts the highest priority packet into a series using the correspondence table stored in the storage unit 23 under the control of the series control unit 21, for example, and outputs the highest priority packet to the wireless communication unit 20.
  • FIG. 4 is a functional block diagram illustrating the functions of the base station 3 and the control station 4 according to the embodiment.
  • the control station 4 includes a resource control unit 40, and communicates with the base station 3 by a communication unit (not shown).
  • the resource control unit 40 outputs the sequence range used by the base station 3 and the terminal 2 to the base station 3. Further, the resource control unit 40 acquires the usage sequence and resource information for each terminal 2 from the base station 3.
  • the base station 3 has a signal generation unit 30, a wireless communication unit 31, a demodulation unit 32, a storage unit 33, a determination unit 34, a conversion unit 35, and a communication unit 36.
  • the signal generation unit 30 generates a signal indicating a series range and a resource range that can be used by each of the terminals 2 based on the series range input from the resource control unit 40, and outputs the signal to the wireless communication unit 31.
  • the wireless communication unit 31 performs wireless communication by NR, for example, with each of the terminals 2. For example, the wireless communication unit 31 transmits to each terminal 2 that contains a signal indicating a series range and a resource range that can be used by each of the terminals 2 input from the signal generation unit 30.
  • the wireless communication unit 31 individually assigns contention-based resources (Contention-based UL data transmission resources) to each terminal 2 by, for example, DCI or a connection request signal (RRC (Radio Resource Control) connection request). Specify in.
  • contention-based resources Contention-based UL data transmission resources
  • RRC Radio Resource Control
  • the wireless communication unit 31 transmits the frequency resource allocated to each of the terminals 2.
  • the wireless communication unit 31 transmits PRB (Physical Resource Block) or RE (Resource Element).
  • the wireless communication unit 31 may transmit a time resource (frame or OFDM (Orthogonal Frequency Division Multiplexing) symbol) allocated to each terminal 2. If it is not necessary to allocate time resources individually, the wireless communication unit 31 allocates all time zones.
  • a time resource frame or OFDM (Orthogonal Frequency Division Multiplexing) symbol
  • the wireless communication unit 31 may transmit a sequence number (range of numbers) assigned to each terminal 2. If it is not necessary to assign the sequence number individually, the wireless communication unit 31 permits the use of the entire range.
  • the wireless communication unit 31 may allocate and transmit resources and sequences of different correspondence patterns for each terminal 2. That is, the base station 3 makes it possible to separate the plurality of highest priority packets simultaneously generated by the plurality of accommodated terminals 2 so as not to be in the same series.
  • the wireless communication unit 31 may allocate resources and series of the same corresponding pattern to a plurality of terminals 2 that are performing wireless communication in synchronization with high accuracy and transmit the signals.
  • the wireless communication unit 31 may transmit a contention-based resource to the terminal 2 by multicast.
  • the wireless communication unit 31 receives the code sequence (correspondence table) from each of the terminals 2 in advance and outputs it to the demodulation unit 32. Further, the wireless communication unit 31 receives the code sequence from the terminal 2 when the highest priority packet is generated.
  • the demodulation unit 32 demodulates the signal received from each terminal 2 by the wireless communication unit 31 and outputs it to the storage unit 33, the determination unit 34, and the control station 4. For example, the demodulation unit 32 demodulates the correspondence table (code sequence) transmitted in advance by each terminal 2 at the time of initial setting, and stores it in the storage unit 33. Further, the demodulation unit 32 demodulates the sequence transmitted by the terminal 2 when the highest priority packet is generated, and outputs the sequence to the determination unit 34. Further, the demodulation unit 32 demodulates the usage sequence and resource information of each terminal 2 and outputs the demodulation to the resource control unit 40.
  • the correspondence table code sequence
  • the storage unit 33 stores in advance a code sequence (correspondence table) in which the highest priority packet is associated with a random access signal that can be separated for each terminal 2, for example.
  • the determination unit 34 determines whether or not the sequence matches any of the code sequences stored by the storage unit 33. , The determination result is output to the conversion unit 35.
  • the conversion unit 35 converts the code sequence determined by the determination unit 34 to match into the highest priority packet using the code sequence stored in the storage unit 33, and outputs the converted highest priority packet to the communication unit 36.
  • the communication unit 36 transmits the highest priority packet converted by the conversion unit 35 to the upper network.
  • FIG. 5 is a flowchart illustrating the operation performed by the base station 3 at the time of initial setting.
  • the base station 3 first determines a UE that allows contention-based UL transmission (S300). Then, the base station 3 allocates resources and sequences to be used for each UE and notifies each UE (S302).
  • the base station 3 receives in advance a notification (code sequence) corresponding to the highest priority packet for each UE as a correspondence table (S304), and stores the received code sequence in the storage unit 33 (S306).
  • FIG. 6 is a flowchart illustrating the operation performed by the terminal 2 at the time of initial setting. As shown in FIG. 6, the terminal 2 receives the notification of the resource and the series allocation used for each UE from the base station 3 (S400).
  • the terminal 2 associates the assigned sequence with the highest priority packet to generate a code sequence (correspondence table) (S402), and notifies the base station 3 of the generated code sequence (S404).
  • FIG. 7 is a flowchart illustrating the operation performed by the base station 3 during normal operation. As shown in FIG. 7, the base station 3 attempts to detect a designated sequence (code sequence) from the UL signal (S500). The base station 3 may calculate a correlation value between the correspondence table and the sequence, and determine whether or not the stored code sequence and the received sequence match.
  • code sequence designated sequence
  • S500 the UL signal
  • the base station 3 determines whether or not the highest priority packet could be detected (whether or not the stored code sequence and the received sequence match) (S502). The base station 3 proceeds to the process of S504 when the highest priority packet is detected (S502: Yes), and returns to the process of S500 when the highest priority packet is not detected (S502: No).
  • the base station 3 converts the detected sequence (code sequence) into the highest priority packet (content data). Then, the base station 3 transfers the converted highest priority packet (content data) to the upper network (S506).
  • FIG. 8 is a flowchart illustrating the operation performed by the terminal 2 during normal operation. As shown in FIG. 8, the terminal 2 monitors the input of the highest priority packet (S600).
  • the terminal 2 determines whether or not the highest priority packet has been input (S602). The terminal 2 proceeds to the process of S604 when it is determined that the highest priority packet has been input (S602: Yes), and proceeds to the process of S600 when it is determined that the highest priority packet has not been input (S602: No). Return.
  • the terminal 2 converts the highest priority packet into a sequence (code sequence). Then, the terminal 2 transmits the code sequence to the base station 3 with the resource designated by the base station 3 (S606).
  • each terminal 2 can transmit a UL signal to the base station 3 on a contention basis, and the waiting time is efficiently configured without increasing unused resources in normal times. Can be shorter than grant.
  • each function of the terminal 2, the base station 3, and the control station 4 may be partially or wholly configured by hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array). , CPU or the like may be configured as a program executed by a processor.
  • PLD Processable Logic Device
  • FPGA Field Programmable Gate Array
  • the terminal 2 and the base station 3 according to the present invention can be realized by using a computer and a program, and the program can be recorded on a storage medium or provided through a network.
  • FIG. 9 is a diagram showing a hardware configuration example of the base station 3 according to the embodiment.
  • the base station 3 has an input unit 50, an output unit 51, a communication unit 52, a CPU 53, a memory 54, and an HDD 55 connected via a bus 56, and has a function as a computer. Further, the base station 3 is configured to be able to input / output data to / from the computer-readable storage medium 57.
  • the input unit 50 is, for example, a keyboard, a mouse, or the like.
  • the output unit 51 is a display device such as a display.
  • the communication unit 52 is, for example, a wired and wireless network interface.
  • the CPU 53 controls each part constituting the base station 3 and performs predetermined processing and the like.
  • the memory 54 and the HDD 55 store data and the like.
  • the storage medium 57 is made capable of storing a program or the like for executing the function of the base station 3.
  • the architecture constituting the base station 3 is not limited to the example shown in FIG. Further, the terminal 2 and the control station 4 may have the same hardware configuration as the base station 3.
  • the "computer” here includes hardware such as an OS and peripheral devices.
  • the "computer-readable storage medium” refers to a storage device such as a flexible disk, a magneto-optical disk, a ROM, a portable medium such as a CD-ROM, or the like.
  • a "computer-readable storage medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may include a program or a program that holds a program for a certain period of time, such as a volatile memory inside a computer that is a server or a client in that case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Each of a plurality of terminals according to the present invention comprises: a sequence generating unit that generates a code sequence with which the highest priority packet is associated with respect to random access signals separable for the respective terminal; and a sequence controlling unit that, upon occurrence of the highest priority packet, controls the code sequence to be transmitted to a base station. The base station according to the present invention comprises: a storage unit that stores code sequence received beforehand from each of the terminals; a determination unit that, upon receipt of a sequence of random access signals from the terminal, determines whether the sequence is coincident with any one of the code sequences stored by the storage unit; a conversion unit that converts the code sequence determined to be coincident by the determination unit to the highest priority packet; and a communication unit that transmits the highest priority packet resulting from the conversion by the conversion unit to an upper network.

Description

無線通信システム、通信方法、基地局、及び端末Wireless communication systems, communication methods, base stations, and terminals
 本発明は、無線通信システム、通信方法、基地局、及び端末に関する。 The present invention relates to a wireless communication system, a communication method, a base station, and a terminal.
 敷地所有者が免許を受けて運用する自営セルラ無線システムとして、例えばL5G(ローカル5G)などの無線通信システムがある。L5Gシステムは、単一の事業者のみが運用する場合に限られず、他の事業者が運用する他のL5Gシステムのエリアが隣接して電波干渉が生じ得ることがある。 As a self-employed cellular wireless system operated by the site owner under license, there is a wireless communication system such as L5G (local 5G). The L5G system is not limited to the case where it is operated by only a single operator, and radio wave interference may occur in an adjacent area of another L5G system operated by another operator.
 また、L5Gシステムは、5Gの無線通信方式であるNR(New Radio)などによって通信の高速化、低遅延化、及び高信頼性化が図られている(例えば、特許文献1参照)。 In addition, the L5G system has been improved in speed, delay, and reliability by using NR (New Radio), which is a 5G wireless communication method (see, for example, Patent Document 1).
 しかしながら、従来は、リソースを割り当てられていないUE(ユーザ端末)は、最優先で送信すべきUL(アップリンク)信号となるeURLLC(enhanced Ultra-Reliable and Low Latency Communications)であっても、即時送信することができないという問題があった。 However, conventionally, UEs (user terminals) to which resources are not allocated transmit immediately even if they are eURLLC (enhanced Ultra-Reliable and Low Latency Communications), which is a UL (uplink) signal that should be transmitted with the highest priority. There was a problem that I couldn't do it.
 また、従来は、UEがeURLLCを即時送信することができるようにするためには、時間的に多くのリソースを予め指定しておく必要があった。さらに、複数のUEに同じリソースを指定すれば衝突が生じ、複数のUEに異なるリソースを指定すれば平常時の不使用リソースが増大し、効率が低下してしまうという問題があった。 Also, in the past, in order for the UE to be able to transmit eURLLC immediately, it was necessary to specify a large number of resources in advance in terms of time. Further, if the same resource is specified for a plurality of UEs, a collision occurs, and if different resources are specified for a plurality of UEs, unused resources in normal times increase and efficiency decreases.
 本発明は、平常時の不使用リソースを増大させることなく、効率的に待ち時間をConfigured grantよりも短くすることができる無線通信システム、通信方法、基地局、及び端末を提供することを目的とする。 An object of the present invention is to provide a wireless communication system, a communication method, a base station, and a terminal capable of efficiently shortening a waiting time compared to a configured grant without increasing unused resources in normal times. do.
 本発明の一態様にかかる無線通信システムは、上位のネットワークに接続され、複数の端末を収容可能な基地局を備えた無線通信システムにおいて、前記端末それぞれが、端末ごとに分離可能なランダムアクセス信号に対して最優先パケットを対応付けた符号系列を生成する系列生成部と、最優先パケットが発生した場合に、前記符号系列を前記基地局へ送信するように制御する系列制御部とを有し、前記基地局が、前記端末それぞれから予め受信した前記符号系列を記憶する記憶部と、前記端末からランダムアクセス信号の系列を受信した場合に、前記記憶部が記憶した前記符号系列のいずれかに対して、当該系列が一致するか否かを判定する判定部と、前記判定部が一致すると判定した前記符号系列を最優先パケットに変換する変換部と、前記変換部が変換した最優先パケットを上位のネットワークに対して送信する通信部とを有することを特徴とする。 The wireless communication system according to one aspect of the present invention is a wireless communication system connected to a higher-level network and provided with a base station capable of accommodating a plurality of terminals, and each of the terminals is a random access signal that can be separated for each terminal. It has a sequence generation unit that generates a code sequence associated with the highest priority packet, and a sequence control unit that controls the code sequence to be transmitted to the base station when the highest priority packet is generated. , The storage unit that stores the code sequence previously received from each of the terminals by the base station, or the code sequence stored by the storage unit when the base station receives a sequence of random access signals from the terminal. On the other hand, a determination unit for determining whether or not the sequences match, a conversion unit for converting the code sequence determined to match the determination units into the highest priority packet, and the highest priority packet converted by the conversion unit are used. It is characterized by having a communication unit for transmitting to a higher-level network.
 また、本発明の一態様にかかる通信方法は、上位のネットワークに接続された基地局と、複数の端末とが行う通信方法において、端末ごとに分離可能なランダムアクセス信号に対して最優先パケットを対応付けた符号系列を前記端末それぞれが生成する系列生成工程と、最優先パケットが発生した場合に、前記符号系列を前記端末が前記基地局へ送信するように制御する系列制御工程と、前記端末それぞれから前記基地局が予め受信した前記符号系列を記憶する記憶工程と、前記端末から前記基地局がランダムアクセス信号の系列を受信した場合に、記憶した前記符号系列のいずれかに対して、当該系列が一致するか否かを判定する判定工程と、一致すると判定した前記符号系列を最優先パケットに変換する変換工程と、変換した最優先パケットを上位のネットワークに対して送信する通信工程とを含むことを特徴とする。 Further, in the communication method according to one aspect of the present invention, in the communication method performed by a base station connected to a higher-level network and a plurality of terminals, the highest priority packet is set for a random access signal that can be separated for each terminal. A sequence generation step in which each of the terminals generates a associated code sequence, a sequence control step in which the terminal controls the terminal to transmit the code sequence to the base station when the highest priority packet is generated, and the terminal. For any of the storage step of storing the code sequence previously received by the base station from each, and the stored code sequence when the base station receives a sequence of random access signals from the terminal. The determination step of determining whether or not the sequences match, the conversion step of converting the code sequence determined to match into the highest priority packet, and the communication process of transmitting the converted highest priority packet to the higher-level network. It is characterized by including.
 また、本発明の一態様にかかる基地局は、上位のネットワークに接続され、複数の端末を収容可能な基地局において、前記端末ごとに分離可能なランダムアクセス信号に対して最優先パケットを対応付けた符号系列を予め記憶する記憶部と、最優先パケットが発生した場合に、前記符号系列を前記端末から受信する無線通信部と、前記無線通信部が受信した前記符号系列を最優先パケットに変換する変換部と、前記変換部が変換した最優先パケットを上位のネットワークに対して送信する通信部とを有することを特徴とする。 Further, the base station according to one aspect of the present invention is a base station that is connected to a higher-level network and can accommodate a plurality of terminals, and associates the highest priority packet with a random access signal that can be separated for each terminal. A storage unit that stores the code sequence in advance, a wireless communication unit that receives the code sequence from the terminal when a highest priority packet is generated, and a code sequence received by the wireless communication unit are converted into the highest priority packet. It is characterized by having a conversion unit for performing a conversion unit and a communication unit for transmitting the highest priority packet converted by the conversion unit to a higher-level network.
 また、本発明の一態様にかかる端末は、ランダムアクセス信号に対して最優先パケットを対応付けた符号系列を生成する系列生成部と、前記符号系列を予め基地局へ送信する無線通信部と、最優先パケットが発生した場合に、前記符号系列を前記基地局へ送信するように制御する系列制御部とを有することを特徴とする。 Further, the terminal according to one aspect of the present invention includes a sequence generation unit that generates a code sequence in which the highest priority packet is associated with a random access signal, and a wireless communication unit that transmits the code sequence to a base station in advance. It is characterized by having a sequence control unit that controls the code sequence to be transmitted to the base station when the highest priority packet is generated.
 本発明によれば、平常時の不使用リソースを増大させることなく、効率的に待ち時間をConfigured grantよりも短くすることができる。 According to the present invention, the waiting time can be efficiently made shorter than the configured grant without increasing the unused resources in normal times.
一実施形態にかかる無線通信システムの構成例を示す図である。It is a figure which shows the configuration example of the wireless communication system which concerns on one Embodiment. (a)は、比較例の5G NRにおけるDynamic grantを示すシーケンス図である。(b)は、比較例の5G NRにおけるConfigured grantを示すシーケンス図である。(A) is a sequence diagram showing a Dynamic grant in 5G NR of a comparative example. (B) is a sequence diagram showing a configured grant in 5G NR of the comparative example. 一実施形態にかかる端末が有する機能を例示する機能ブロック図である。It is a functional block diagram which illustrates the function which the terminal which concerns on one Embodiment has. 一実施形態にかかる基地局及び制御局が有する機能を例示する機能ブロック図である。It is a functional block diagram illustrating the function which the base station and the control station which concerns on one Embodiment have. 基地局が初期設定時に行う動作を例示するフローチャートである。It is a flowchart which exemplifies the operation performed at the time of initial setting by a base station. 端末が初期設定時に行う動作を例示するフローチャートである。It is a flowchart which exemplifies the operation which a terminal performs at the time of initial setting. 基地局が通常運用時に行う動作を例示するフローチャートである。It is a flowchart which exemplifies the operation which a base station performs at the time of a normal operation. 端末が通常運用時に行う動作を例示するフローチャートである。It is a flowchart which exemplifies the operation which a terminal performs at the time of a normal operation. 一実施形態にかかる基地局のハードウェア構成例を示す図である。It is a figure which shows the hardware configuration example of the base station which concerns on one Embodiment.
 以下に、図面を用いて無線通信システムの一実施形態を説明する。図1は、一実施形態にかかる無線通信システム1の構成例を示す図である。図1に示すように、例えば、無線通信システム1は、それぞれ複数の端末(UE:User Equipment)2を収容する複数の基地局(gNB:next Generation NodeB)3-1,3-2と、制御局4とを有し、NRによる無線通信を可能にされたL5Gシステムである。以下、基地局3-1,3-2のように複数ある構成のいずれかを特定しない場合には、単に基地局3などと略記する。 An embodiment of a wireless communication system will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration example of a wireless communication system 1 according to an embodiment. As shown in FIG. 1, for example, the wireless communication system 1 is controlled by a plurality of base stations (gNB: nextGenerationNodeB) 3-1 and 3-2, each of which accommodates a plurality of terminals (UE: User Equipment) 2. It is an L5G system that has a station 4 and enables wireless communication by NR. Hereinafter, when any one of a plurality of configurations such as base stations 3-1 and 3-2 is not specified, it is simply abbreviated as base station 3 and the like.
 端末2は、例えば移動可能なユーザ端末であり、基地局3との間で無線通信を行う。基地局3は、複数の端末2を収容してNR無線を提供する無線基地局であり、それぞれ上位のネットワークに接続されている。 The terminal 2 is, for example, a mobile user terminal, and wirelessly communicates with the base station 3. The base station 3 is a radio base station that accommodates a plurality of terminals 2 and provides NR radio, and each is connected to a higher-level network.
 制御局4は、リソース制御部40を備え、例えば有線通信によって基地局3-1,3-2に対する制御を行う。リソース制御部40は、基地局3-1,3-2のリソース割り当てなどを制御する。なお、制御局4と基地局3-1,3-2とは、IAB(Integrated Access and Backhaul)又はWiGig(Wireless Gigabit)などの無線による通信を行うように構成されてもよい。また、リソース制御部40は、5Gのコアネットワークなどに含まれていてもよい。 The control station 4 includes a resource control unit 40, and controls the base stations 3-1 and 3-2 by, for example, wire communication. The resource control unit 40 controls resource allocation of base stations 3-1 and 3-2. The control station 4 and the base stations 3-1 and 3-2 may be configured to perform wireless communication such as IAB (Integrated Access and Backhaul) or WiGig (Wireless Gigabit). Further, the resource control unit 40 may be included in a 5G core network or the like.
 次に、一実施形態にかかる無線通信システム1の具体的な説明をするにあたって、先に比較例の端末(UE)と基地局(BS:Base Station)との通信について説明する。図2は、比較例の端末(UE)と基地局(BS)との通信を示すシーケンス図である。図2(a)は、5G NRにおけるDynamic grantを示すシーケンス図である。図2(b)は、5G NRにおけるConfigured grantを示すシーケンス図である。 Next, in giving a specific explanation of the wireless communication system 1 according to the embodiment, first, the communication between the terminal (UE) of the comparative example and the base station (BS: Base Station) will be described. FIG. 2 is a sequence diagram showing communication between a terminal (UE) and a base station (BS) in a comparative example. FIG. 2A is a sequence diagram showing a Dynamic grant at 5G NR. FIG. 2B is a sequence diagram showing a configured grant at 5G NR.
 図2(a)に示すように、標準化済の5G NRにおけるDynamic grantでは、UL(アップリンク)トラフィックが発生してから、UEは、スケジューリング要求(SR:Scheduling Request)をBSに対して送信する(S100)。 As shown in FIG. 2A, in the dynamic grant in the standardized 5G NR, the UE transmits a scheduling request (SR: Scheduling Request) to the BS after UL (uplink) traffic is generated. (S100).
 BSは、SRを受信すると、DCI(Downlink Control Information)によってスケジュールをUEへ通知する(S102)。 When the BS receives the SR, it notifies the UE of the schedule by DCI (Downlink Control Information) (S102).
 その後、UEは、PUSCH(Physical Uplink Shared CHannel)によってデータパケットをBSへ送信する(S104)。つまり、BSは、トラフィックを上位のネットワークに転送することが可能になる。 After that, the UE transmits a data packet to the BS by PUSCH (Physical Uplink Shared CHannel) (S104). That is, the BS can forward the traffic to the upper network.
 一方、図2(b)に示すように、5G NRにおけるConfigured grantでは、ULトラフィックが発生したら、SRを送信することなく、予め指定されたリソースを用いてデータパケットをBSへ送信する(S200)。つまり、BSは、トラフィック発生後のメッセージ交換をすることなく、Dynamic grantよりも早くトラフィックを上位のネットワークに転送することが可能になる。 On the other hand, as shown in FIG. 2B, in the Configured grant in 5G NR, when UL traffic is generated, a data packet is transmitted to the BS using a resource specified in advance without transmitting SR (S200). .. That is, the BS can forward the traffic to the upper network faster than the Dynamic grant without exchanging messages after the traffic is generated.
 しかし、比較例のConfigured grantでは、リソースの指定の仕方にも依存するが、パケットデータの即時送信を可能にするためには、時間的に多くのリソースを予め指定しておく必要があった。また、比較例では、複数のUEに同じリソースを指定すれば衝突が生じ、複数のUEに異なるリソースを指定すれば平常時の不使用リソースが増大し、効率が低下してしまう。 However, in the configured grant of the comparative example, although it depends on the method of specifying the resource, it was necessary to specify a large number of resources in advance in order to enable immediate transmission of packet data. Further, in the comparative example, if the same resource is specified for a plurality of UEs, a collision occurs, and if different resources are specified for a plurality of UEs, unused resources in normal times increase and efficiency decreases.
 次に、図3,図4を用いて、一実施形態にかかる端末2、基地局3、及び制御局4の具体的な構成例について説明する。 Next, a specific configuration example of the terminal 2, the base station 3, and the control station 4 according to the embodiment will be described with reference to FIGS. 3 and 4.
 図3は、一実施形態にかかる端末2が有する機能を例示する機能ブロック図である。図3に示すように、端末2は、無線通信部20、系列制御部21、系列生成部22、記憶部23、及び変換部24を有する。 FIG. 3 is a functional block diagram illustrating the functions of the terminal 2 according to the embodiment. As shown in FIG. 3, the terminal 2 has a wireless communication unit 20, a sequence control unit 21, a sequence generation unit 22, a storage unit 23, and a conversion unit 24.
 無線通信部20は、例えばNRによる無線通信を基地局3との間で行う。例えば、無線通信部20は、基地局3が送信したパケットを受信し、系列制御部21に対して出力する。また、無線通信部20は、系列制御部21の制御に応じて、変換部24が変換したパケット(後述する符号系列など)をPUSCH又はPUCCH(Physical Uplink Control CHannel)によって基地局3へ送信する。 The wireless communication unit 20 performs wireless communication by NR, for example, with the base station 3. For example, the wireless communication unit 20 receives the packet transmitted by the base station 3 and outputs it to the sequence control unit 21. Further, the wireless communication unit 20 transmits the packet converted by the conversion unit 24 (such as a code sequence described later) to the base station 3 by PUSCH or PUCCH (Physical Uplink Control CHannel) according to the control of the sequence control unit 21.
 例えば、無線通信部20は、初期設定時に後述する符号系列(対応表)を予め基地局3へ送信する。また、無線通信部20は、最優先パケットが発生した場合に、対応する符号系列を基地局3により指定されたリソースで基地局3へ送信する。 For example, the wireless communication unit 20 transmits the code sequence (correspondence table) described later to the base station 3 in advance at the time of initial setting. Further, when the highest priority packet is generated, the wireless communication unit 20 transmits the corresponding code sequence to the base station 3 with the resource designated by the base station 3.
 系列制御部21は、基地局3がUEごとに割り当てたリソース及び系列を、無線通信部20を介して取得し、系列生成部22に対して出力する。また、系列制御部21は、端末2内、又は端末2の外部で最優先パケットが発生した場合に、後述する符号系列を基地局3へ送信するように変換部24及び無線通信部20を制御する。 The sequence control unit 21 acquires the resources and sequences allocated to each UE by the base station 3 via the wireless communication unit 20 and outputs them to the sequence generation unit 22. Further, the sequence control unit 21 controls the conversion unit 24 and the wireless communication unit 20 so as to transmit the code sequence described later to the base station 3 when the highest priority packet is generated inside the terminal 2 or outside the terminal 2. do.
 系列生成部22は、UEごとに割り当てられた系列と、送信する可能性がある最優先パケットとを対応付けた符号系列を生成し、記憶部23に対して出力する。例えば、系列生成部22は、UEごとに分離可能なランダムアクセス信号に対して最優先パケットを対応付けた符号系列を生成する。具体例として、系列生成部22は、使用する予定であるシーケンス番号と送信する可能性があるメッセージを対応づける。 The sequence generation unit 22 generates a code sequence in which the sequence assigned to each UE and the highest priority packet that may be transmitted are associated with each other, and outputs the code sequence to the storage unit 23. For example, the sequence generation unit 22 generates a code sequence in which the highest priority packet is associated with a random access signal that can be separated for each UE. As a specific example, the sequence generation unit 22 associates a sequence number to be used with a message that may be transmitted.
 記憶部23は、系列生成部22が生成した符号系列を記憶する。例えば、記憶部23は、UEごとに割り当てられた系列と、送信する可能性がある最優先パケットとを、対応表として対応付けた符号系列を記憶する。 The storage unit 23 stores the code sequence generated by the sequence generation unit 22. For example, the storage unit 23 stores a code sequence in which the sequence assigned to each UE and the highest priority packet that may be transmitted are associated with each other as a correspondence table.
 変換部24は、例えば系列制御部21の制御により記憶部23が記憶する対応表を用いて、最優先パケットを系列に変換し、無線通信部20に対して出力する。 The conversion unit 24 converts the highest priority packet into a series using the correspondence table stored in the storage unit 23 under the control of the series control unit 21, for example, and outputs the highest priority packet to the wireless communication unit 20.
 図4は、一実施形態にかかる基地局3及び制御局4が有する機能を例示する機能ブロック図である。上述したように、制御局4は、リソース制御部40を備え、図示しない通信部によって基地局3との間で通信を行う。 FIG. 4 is a functional block diagram illustrating the functions of the base station 3 and the control station 4 according to the embodiment. As described above, the control station 4 includes a resource control unit 40, and communicates with the base station 3 by a communication unit (not shown).
 リソース制御部40は、基地局3と端末2が使用する系列範囲を基地局3に対して出力する。また、リソース制御部40は、端末2ごとの使用系列及びリソース情報を基地局3から取得する。 The resource control unit 40 outputs the sequence range used by the base station 3 and the terminal 2 to the base station 3. Further, the resource control unit 40 acquires the usage sequence and resource information for each terminal 2 from the base station 3.
 基地局3は、信号生成部30、無線通信部31、復調部32、記憶部33、判定部34、変換部35、及び通信部36を有する。 The base station 3 has a signal generation unit 30, a wireless communication unit 31, a demodulation unit 32, a storage unit 33, a determination unit 34, a conversion unit 35, and a communication unit 36.
 信号生成部30は、リソース制御部40から入力される系列範囲に基づいて、端末2それぞれが使用可能な系列範囲及びリソース範囲を示す信号を生成し、無線通信部31に対して出力する。 The signal generation unit 30 generates a signal indicating a series range and a resource range that can be used by each of the terminals 2 based on the series range input from the resource control unit 40, and outputs the signal to the wireless communication unit 31.
 無線通信部31は、例えばNRによる無線通信を端末2それぞれとの間で行う。例えば、無線通信部31は、信号生成部30から入力された端末2それぞれが使用可能な系列範囲及びリソース範囲を示す信号を収容している各端末2に対して送信する。 The wireless communication unit 31 performs wireless communication by NR, for example, with each of the terminals 2. For example, the wireless communication unit 31 transmits to each terminal 2 that contains a signal indicating a series range and a resource range that can be used by each of the terminals 2 input from the signal generation unit 30.
 具体的には、無線通信部31は、例えばDCI又はコネクション要求信号(RRC(Radio Resource Control) connection request)などによってコンテンションベースのリソース(Contention based UL data transmissionリソース)を端末2それぞれに対して個別に指定する。 Specifically, the wireless communication unit 31 individually assigns contention-based resources (Contention-based UL data transmission resources) to each terminal 2 by, for example, DCI or a connection request signal (RRC (Radio Resource Control) connection request). Specify in.
 このとき、無線通信部31は、端末2それぞれに対して割り当てる周波数リソースを送信する。例えば、無線通信部31は、PRB(Physical Resource Block)又はRE(Resource Element)を送信する。 At this time, the wireless communication unit 31 transmits the frequency resource allocated to each of the terminals 2. For example, the wireless communication unit 31 transmits PRB (Physical Resource Block) or RE (Resource Element).
 また、無線通信部31は、端末2それぞれに対して割り当てる時間リソース(フレーム又はOFDM(Orthogonal Frequency Division Multiplexing)シンボル)を送信してもよい。なお、無線通信部31は、時間リソースを個別に割り当てる必要がない場合には、全時間帯を割り当てる。 Further, the wireless communication unit 31 may transmit a time resource (frame or OFDM (Orthogonal Frequency Division Multiplexing) symbol) allocated to each terminal 2. If it is not necessary to allocate time resources individually, the wireless communication unit 31 allocates all time zones.
 また、無線通信部31は、端末2それぞれに対して割り当てるシーケンス番号(番号の範囲)を送信してもよい。なお、無線通信部31は、シーケンス番号を個別に割り当てる必要がない場合には、全ての範囲の使用を許可することとなる。 Further, the wireless communication unit 31 may transmit a sequence number (range of numbers) assigned to each terminal 2. If it is not necessary to assign the sequence number individually, the wireless communication unit 31 permits the use of the entire range.
 また、無線通信部31は、端末2ごとに異なる対応パターンのリソース及び系列を割り当てて送信してもよい。つまり、基地局3は、収容している複数の端末2によって同時発生する複数の最優先パケットを同一の系列にならないようにして分離可能にする。 Further, the wireless communication unit 31 may allocate and transmit resources and sequences of different correspondence patterns for each terminal 2. That is, the base station 3 makes it possible to separate the plurality of highest priority packets simultaneously generated by the plurality of accommodated terminals 2 so as not to be in the same series.
 また、無線通信部31は、精度よく同期して無線通信を行っている複数の端末2に対し、同じ対応パターンのリソース及び系列を割り当てて送信してもよい。 Further, the wireless communication unit 31 may allocate resources and series of the same corresponding pattern to a plurality of terminals 2 that are performing wireless communication in synchronization with high accuracy and transmit the signals.
 なお、無線通信部31は、マルチキャストによってコンテンションベースのリソースを端末2へ送信してもよい。 Note that the wireless communication unit 31 may transmit a contention-based resource to the terminal 2 by multicast.
 また、無線通信部31は、端末2それぞれから符号系列(対応表)を予め受信し、復調部32に対して出力する。また、無線通信部31は、最優先パケットが発生した場合に、符号系列を端末2から受信する。 Further, the wireless communication unit 31 receives the code sequence (correspondence table) from each of the terminals 2 in advance and outputs it to the demodulation unit 32. Further, the wireless communication unit 31 receives the code sequence from the terminal 2 when the highest priority packet is generated.
 復調部32は、無線通信部31が各端末2から受信した信号を復調し、記憶部33、判定部34、及び制御局4に対して出力する。例えば、復調部32は、初期設定時に各端末2が予め送信した対応表(符号系列)を復調し、記憶部33に記憶させる。また、復調部32は、最優先パケットの発生時に端末2が送信した系列を復調し、判定部34に対して出力する。また、復調部32は、端末2それぞれの使用系列及びリソース情報を復調し、リソース制御部40に対して出力する。 The demodulation unit 32 demodulates the signal received from each terminal 2 by the wireless communication unit 31 and outputs it to the storage unit 33, the determination unit 34, and the control station 4. For example, the demodulation unit 32 demodulates the correspondence table (code sequence) transmitted in advance by each terminal 2 at the time of initial setting, and stores it in the storage unit 33. Further, the demodulation unit 32 demodulates the sequence transmitted by the terminal 2 when the highest priority packet is generated, and outputs the sequence to the determination unit 34. Further, the demodulation unit 32 demodulates the usage sequence and resource information of each terminal 2 and outputs the demodulation to the resource control unit 40.
 記憶部33は、例えば端末2ごとに分離可能なランダムアクセス信号に対して最優先パケットを対応付けた符号系列(対応表)を予め記憶する。 The storage unit 33 stores in advance a code sequence (correspondence table) in which the highest priority packet is associated with a random access signal that can be separated for each terminal 2, for example.
 判定部34は、無線通信部31が端末2からランダムアクセス信号の系列を受信した場合に、記憶部33が記憶した符号系列のいずれかに対して、当該系列が一致するか否かを判定し、判定結果を変換部35に対して出力する。 When the wireless communication unit 31 receives a random access signal sequence from the terminal 2, the determination unit 34 determines whether or not the sequence matches any of the code sequences stored by the storage unit 33. , The determination result is output to the conversion unit 35.
 変換部35は、判定部34が一致すると判定した符号系列を、記憶部33が記憶した符号系列を用いて最優先パケットに変換し、変換した最優先パケットを通信部36に対して出力する。 The conversion unit 35 converts the code sequence determined by the determination unit 34 to match into the highest priority packet using the code sequence stored in the storage unit 33, and outputs the converted highest priority packet to the communication unit 36.
 通信部36は、変換部35が変換した最優先パケットを上位のネットワークに対して送信する。 The communication unit 36 transmits the highest priority packet converted by the conversion unit 35 to the upper network.
 次に、基地局3及び端末2の動作例について、図5~図8を用いて説明する。図5は、基地局3が初期設定時に行う動作を例示するフローチャートである。図5に示すように、基地局3は、まずコンテンションベースのUL送信を許可するUEを決定する(S300)。そして、基地局3は、UEごとに使用するリソース、系列を割り当てて各UEへ通知する(S302)。 Next, operation examples of the base station 3 and the terminal 2 will be described with reference to FIGS. 5 to 8. FIG. 5 is a flowchart illustrating the operation performed by the base station 3 at the time of initial setting. As shown in FIG. 5, the base station 3 first determines a UE that allows contention-based UL transmission (S300). Then, the base station 3 allocates resources and sequences to be used for each UE and notifies each UE (S302).
 その後、基地局3は、UEごとに系列を最優先パケットに対応させる通知(符号系列)を対応表として予め受信し(S304)、受信した符号系列を記憶部33に記憶する(S306)。 After that, the base station 3 receives in advance a notification (code sequence) corresponding to the highest priority packet for each UE as a correspondence table (S304), and stores the received code sequence in the storage unit 33 (S306).
 図6は、端末2が初期設定時に行う動作を例示するフローチャートである。図6に示すように、端末2は、UEごとに使用するリソース、系列割り当ての通知を基地局3から受信する(S400)。 FIG. 6 is a flowchart illustrating the operation performed by the terminal 2 at the time of initial setting. As shown in FIG. 6, the terminal 2 receives the notification of the resource and the series allocation used for each UE from the base station 3 (S400).
 そして、端末2は、割り当てられた系列と、最優先パケットとを対応付けて符号系列(対応表)を生成し(S402)、生成した符号系列を基地局3へ通知する(S404)。 Then, the terminal 2 associates the assigned sequence with the highest priority packet to generate a code sequence (correspondence table) (S402), and notifies the base station 3 of the generated code sequence (S404).
 図7は、基地局3が通常運用時に行う動作を例示するフローチャートである。図7に示すように、基地局3は、UL信号から指定した系列(符号系列)の検出を試みる(S500)。なお、基地局3は、対応表と系列との相関値を算出して、記憶している符号系列と、受信した系列とが一致しているか否かを判定してもよい。 FIG. 7 is a flowchart illustrating the operation performed by the base station 3 during normal operation. As shown in FIG. 7, the base station 3 attempts to detect a designated sequence (code sequence) from the UL signal (S500). The base station 3 may calculate a correlation value between the correspondence table and the sequence, and determine whether or not the stored code sequence and the received sequence match.
 基地局3は、最優先パケットを検出することができたか否か(記憶している符号系列と、受信した系列とが一致しているか否か)を判定する(S502)。基地局3は、最優先パケットを検出した場合(S502:Yes)にはS504の処理に進み、最優先パケットを検出しなかった場合(S502:No)にはS500の処理に戻る。 The base station 3 determines whether or not the highest priority packet could be detected (whether or not the stored code sequence and the received sequence match) (S502). The base station 3 proceeds to the process of S504 when the highest priority packet is detected (S502: Yes), and returns to the process of S500 when the highest priority packet is not detected (S502: No).
 S504の処理において、基地局3は、検出した系列(符号系列)を最優先パケット(コンテンツデータ)に変換する。そして、基地局3は、変換した最優先パケット(コンテンツデータ)を上位ネットワークへ転送する(S506)。 In the process of S504, the base station 3 converts the detected sequence (code sequence) into the highest priority packet (content data). Then, the base station 3 transfers the converted highest priority packet (content data) to the upper network (S506).
 図8は、端末2が通常運用時に行う動作を例示するフローチャートである。図8に示すように、端末2は、最優先パケットの入力を監視する(S600)。 FIG. 8 is a flowchart illustrating the operation performed by the terminal 2 during normal operation. As shown in FIG. 8, the terminal 2 monitors the input of the highest priority packet (S600).
 そして、端末2は、最優先パケットが入力されたか否かを判定する(S602)。端末2は、最優先パケットが入力されたと判定した場合(S602:Yes)にはS604の処理に進み、最優先パケットが入力されていないと判定した場合(S602:No)にはS600の処理に戻る。 Then, the terminal 2 determines whether or not the highest priority packet has been input (S602). The terminal 2 proceeds to the process of S604 when it is determined that the highest priority packet has been input (S602: Yes), and proceeds to the process of S600 when it is determined that the highest priority packet has not been input (S602: No). Return.
 S604の処理において、端末2は、最優先パケットを系列(符号系列)に変換する。そして、端末2は、基地局3によって指定されたリソースで符号系列を基地局3へ送信する(S606)。 In the process of S604, the terminal 2 converts the highest priority packet into a sequence (code sequence). Then, the terminal 2 transmits the code sequence to the base station 3 with the resource designated by the base station 3 (S606).
 このように、無線通信システム1は、各端末2がコンテンションベースでUL信号を基地局3へ送信することができ、平常時の不使用リソースを増大させることなく、効率的に待ち時間をConfigured grantよりも短くすることができる。 In this way, in the wireless communication system 1, each terminal 2 can transmit a UL signal to the base station 3 on a contention basis, and the waiting time is efficiently configured without increasing unused resources in normal times. Can be shorter than grant.
 なお、端末2、基地局3、及び制御局4が有する各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。 It should be noted that each function of the terminal 2, the base station 3, and the control station 4 may be partially or wholly configured by hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array). , CPU or the like may be configured as a program executed by a processor.
 例えば、本発明にかかる端末2及び基地局3は、コンピュータとプログラムを用いて実現することができ、プログラムを記憶媒体に記録することも、ネットワークを通して提供することも可能である。 For example, the terminal 2 and the base station 3 according to the present invention can be realized by using a computer and a program, and the program can be recorded on a storage medium or provided through a network.
 図9は、一実施形態にかかる基地局3のハードウェア構成例を示す図である。図9に示すように、例えば基地局3は、入力部50、出力部51、通信部52、CPU53、メモリ54及びHDD55がバス56を介して接続され、コンピュータとしての機能を備える。また、基地局3は、コンピュータ読み取り可能な記憶媒体57との間でデータを入出力することができるようにされている。 FIG. 9 is a diagram showing a hardware configuration example of the base station 3 according to the embodiment. As shown in FIG. 9, for example, the base station 3 has an input unit 50, an output unit 51, a communication unit 52, a CPU 53, a memory 54, and an HDD 55 connected via a bus 56, and has a function as a computer. Further, the base station 3 is configured to be able to input / output data to / from the computer-readable storage medium 57.
 入力部50は、例えばキーボード及びマウス等である。出力部51は、例えばディスプレイなどの表示装置である。通信部52は、例えば有線及び無線のネットワークインターフェースである。 The input unit 50 is, for example, a keyboard, a mouse, or the like. The output unit 51 is a display device such as a display. The communication unit 52 is, for example, a wired and wireless network interface.
 CPU53は、基地局3を構成する各部を制御し、所定の処理等を行う。メモリ54及びHDD55は、データ等を記憶する。記憶媒体57は、基地局3が有する機能を実行させるプログラム等を記憶可能にされている。なお、基地局3を構成するアーキテクチャは図9に示した例に限定されない。また、端末2及び制御局4も基地局3と同様のハードウェア構成であってもよい。 The CPU 53 controls each part constituting the base station 3 and performs predetermined processing and the like. The memory 54 and the HDD 55 store data and the like. The storage medium 57 is made capable of storing a program or the like for executing the function of the base station 3. The architecture constituting the base station 3 is not limited to the example shown in FIG. Further, the terminal 2 and the control station 4 may have the same hardware configuration as the base station 3.
 なお、ここでいう「コンピュータ」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記憶媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体等の記憶装置のことをいう。 Note that the "computer" here includes hardware such as an OS and peripheral devices. Further, the "computer-readable storage medium" refers to a storage device such as a flexible disk, a magneto-optical disk, a ROM, a portable medium such as a CD-ROM, or the like.
 さらに「コンピュータ読み取り可能な記憶媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するものや、その場合のサーバやクライアントとなるコンピュータ内部の揮発性メモリのように、一定時間プログラムを保持しているものを含んでもよい。 Further, a "computer-readable storage medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may include a program or a program that holds a program for a certain period of time, such as a volatile memory inside a computer that is a server or a client in that case.
 以上、図面を参照して本発明の実施形態を説明してきたが、上述の実施形態は、本発明の例示に過ぎず、本発明が上述の実施形態に限定されるものではないことは明らかである。したがって、本発明の技術思想及び範囲を逸脱しない範囲で、構成要素の追加、省略、置換、その他の変更が行われてもよい。 Although the embodiments of the present invention have been described above with reference to the drawings, it is clear that the above-described embodiments are merely examples of the present invention, and the present invention is not limited to the above-mentioned embodiments. be. Therefore, components may be added, omitted, replaced, or otherwise modified without departing from the technical idea and scope of the present invention.
 1・・・無線通信システム、2・・・端末(UE)、3-1,3-2・・・基地局(gNB)、4・・・制御局、20・・・無線通信部、21・・・系列制御部、22・・・系列生成部、23・・・記憶部、24・・・変換部、30・・・信号生成部、31・・・無線通信部、32・・・復調部、33・・・記憶部、34・・・判定部、35・・・変換部、36・・・通信部、40・・・リソース制御部、50・・・入力部、51・・・出力部、52・・・通信部、53・・・CPU、54・・・メモリ、55・・・HDD、56・・・バス、57・・・記憶媒体 1 ... Wireless communication system, 2 ... Terminal (UE), 3-1, 3-2 ... Base station (gNB), 4 ... Control station, 20 ... Wireless communication unit, 21.・ ・ Series control unit, 22 ... Series generation unit, 23 ... Storage unit, 24 ... Conversion unit, 30 ... Signal generation unit, 31 ... Wireless communication unit, 32 ... Demodition unit , 33 ... Storage unit, 34 ... Judgment unit, 35 ... Conversion unit, 36 ... Communication unit, 40 ... Resource control unit, 50 ... Input unit, 51 ... Output unit , 52 ... Communication unit, 53 ... CPU, 54 ... Memory, 55 ... HDD, 56 ... Bus, 57 ... Storage medium

Claims (8)

  1.  上位のネットワークに接続され、複数の端末を収容可能な基地局を備えた無線通信システムにおいて、
     前記端末それぞれは、
     端末ごとに分離可能なランダムアクセス信号に対して最優先パケットを対応付けた符号系列を生成する系列生成部と、
     最優先パケットが発生した場合に、前記符号系列を前記基地局へ送信するように制御する系列制御部と
     を有し、
     前記基地局は、
     前記端末それぞれから予め受信した前記符号系列を記憶する記憶部と、
     前記端末からランダムアクセス信号の系列を受信した場合に、前記記憶部が記憶した前記符号系列のいずれかに対して、当該系列が一致するか否かを判定する判定部と、
     前記判定部が一致すると判定した前記符号系列を最優先パケットに変換する変換部と、
     前記変換部が変換した最優先パケットを上位のネットワークに対して送信する通信部と
     を有することを特徴とする無線通信システム。
    In a wireless communication system that is connected to a higher-level network and has a base station that can accommodate multiple terminals.
    Each of the terminals
    A sequence generator that generates a code sequence that associates the highest priority packet with a random access signal that can be separated for each terminal, and a sequence generator.
    It has a sequence control unit that controls the code sequence to be transmitted to the base station when the highest priority packet is generated.
    The base station is
    A storage unit that stores the code sequence received in advance from each of the terminals, and a storage unit.
    When a sequence of random access signals is received from the terminal, a determination unit for determining whether or not the sequence matches any of the code sequences stored in the storage unit, and a determination unit.
    A conversion unit that converts the code sequence determined to match the determination units into the highest priority packet, and
    A wireless communication system characterized by having a communication unit that transmits the highest priority packet converted by the conversion unit to a higher-level network.
  2.  前記基地局は、
     前記端末ごとに使用するリソース及び系列を割り当てて送信し、前記端末それぞれから前記符号系列を予め受信する無線通信部を有すること
     を特徴とする請求項1に記載の無線通信システム。
    The base station is
    The wireless communication system according to claim 1, further comprising a wireless communication unit that allocates and transmits resources and sequences to be used for each terminal and receives the code sequence from each of the terminals in advance.
  3.  前記無線通信部は、
     前記端末ごとに異なる対応パターンのリソース及び系列を割り当てて送信すること
     を特徴とする請求項2に記載の無線通信システム。
    The wireless communication unit is
    The wireless communication system according to claim 2, wherein resources and sequences having different correspondence patterns are allocated and transmitted for each terminal.
  4.  前記無線通信部は、
     同期して無線通信を行っている複数の前記端末に対し、同じ対応パターンのリソース及び系列を割り当てて送信すること
     を特徴とする請求項2に記載の無線通信システム。
    The wireless communication unit is
    The wireless communication system according to claim 2, wherein resources and sequences having the same corresponding pattern are allocated and transmitted to a plurality of terminals that are synchronously performing wireless communication.
  5.  上位のネットワークに接続された基地局と、複数の端末とが行う通信方法において、
     端末ごとに分離可能なランダムアクセス信号に対して最優先パケットを対応付けた符号系列を前記端末それぞれが生成する系列生成工程と、
     最優先パケットが発生した場合に、前記符号系列を前記端末が前記基地局へ送信するように制御する系列制御工程と、
     前記端末それぞれから前記基地局が予め受信した前記符号系列を記憶する記憶工程と、
     前記端末から前記基地局がランダムアクセス信号の系列を受信した場合に、記憶した前記符号系列のいずれかに対して、当該系列が一致するか否かを判定する判定工程と、
     一致すると判定した前記符号系列を最優先パケットに変換する変換工程と、
     変換した最優先パケットを上位のネットワークに対して送信する通信工程と
     を含むことを特徴とする通信方法。
    In the communication method performed by a base station connected to a higher-level network and multiple terminals
    A sequence generation step in which each terminal generates a code sequence in which the highest priority packet is associated with a random access signal that can be separated for each terminal.
    A sequence control step of controlling the terminal to transmit the code sequence to the base station when the highest priority packet is generated.
    A storage step of storing the code sequence previously received by the base station from each of the terminals, and
    A determination step of determining whether or not the sequence matches any of the stored code sequences when the base station receives a sequence of random access signals from the terminal.
    A conversion step of converting the code sequence determined to match into the highest priority packet, and
    A communication method including a communication process of transmitting a converted highest priority packet to a higher-level network.
  6.  前記基地局が前記端末ごとに使用するリソース及び系列を割り当てて送信し、前記端末それぞれから前記符号系列を予め受信する無線通信工程を含むこと
     を特徴とする請求項5に記載の通信方法。
    The communication method according to claim 5, wherein the base station allocates and transmits resources and sequences used for each terminal, and includes a wireless communication step of receiving the code sequence from each of the terminals in advance.
  7.  上位のネットワークに接続され、複数の端末を収容可能な基地局において、
     前記端末ごとに分離可能なランダムアクセス信号に対して最優先パケットを対応付けた符号系列を予め記憶する記憶部と、
     最優先パケットが発生した場合に、前記符号系列を前記端末から受信する無線通信部と、
     前記無線通信部が受信した前記符号系列を最優先パケットに変換する変換部と、
     前記変換部が変換した最優先パケットを上位のネットワークに対して送信する通信部と
     を有することを特徴とする基地局。
    In a base station that is connected to a higher-level network and can accommodate multiple terminals
    A storage unit that stores in advance a code sequence in which the highest priority packet is associated with a random access signal that can be separated for each terminal.
    When the highest priority packet is generated, the wireless communication unit that receives the code sequence from the terminal and
    A conversion unit that converts the code sequence received by the wireless communication unit into the highest priority packet, and
    A base station having a communication unit that transmits the highest priority packet converted by the conversion unit to a higher-level network.
  8.  ランダムアクセス信号に対して最優先パケットを対応付けた符号系列を生成する系列生成部と、
     前記符号系列を予め基地局へ送信する無線通信部と、
     最優先パケットが発生した場合に、前記符号系列を前記基地局へ送信するように制御する系列制御部と
     を有することを特徴とする端末。
     
    A sequence generator that generates a code sequence that associates the highest priority packet with a random access signal,
    A wireless communication unit that transmits the code sequence to the base station in advance,
    A terminal having a sequence control unit that controls transmission of the code sequence to the base station when a highest priority packet is generated.
PCT/JP2020/023597 2020-06-16 2020-06-16 Wireless communication system, communication method, base station, and terminal WO2021255828A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022531143A JP7485033B2 (en) 2020-06-16 2020-06-16 Wireless communication system, communication method, base station, and terminal
PCT/JP2020/023597 WO2021255828A1 (en) 2020-06-16 2020-06-16 Wireless communication system, communication method, base station, and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/023597 WO2021255828A1 (en) 2020-06-16 2020-06-16 Wireless communication system, communication method, base station, and terminal

Publications (1)

Publication Number Publication Date
WO2021255828A1 true WO2021255828A1 (en) 2021-12-23

Family

ID=79268659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023597 WO2021255828A1 (en) 2020-06-16 2020-06-16 Wireless communication system, communication method, base station, and terminal

Country Status (2)

Country Link
JP (1) JP7485033B2 (en)
WO (1) WO2021255828A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199978A1 (en) * 2013-06-10 2014-12-18 京セラ株式会社 User terminal, base station and processor
JP2017511088A (en) * 2014-02-16 2017-04-13 エルジー エレクトロニクス インコーポレイティド Data transmission method and apparatus in wireless communication system
US20180368179A1 (en) * 2017-06-16 2018-12-20 Qualcomm Incorporated Differentiated random access in new radio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199978A1 (en) * 2013-06-10 2014-12-18 京セラ株式会社 User terminal, base station and processor
JP2017511088A (en) * 2014-02-16 2017-04-13 エルジー エレクトロニクス インコーポレイティド Data transmission method and apparatus in wireless communication system
US20180368179A1 (en) * 2017-06-16 2018-12-20 Qualcomm Incorporated Differentiated random access in new radio

Also Published As

Publication number Publication date
JPWO2021255828A1 (en) 2021-12-23
JP7485033B2 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
KR102583720B1 (en) Method and apparatus for random access on a wireless communication network
JP5015254B2 (en) Handoff access method and device based on random access channel
US11425708B2 (en) Resource management method and related device
JP2006033892A (en) Radio network controller peer-to-peer exchange of user equipment measurement information
KR20110006634A (en) Methods and apparatus to index the preambles in the bandwidth request channel
CN110583074A (en) URLLC support using two radio resource pools
JP2017517963A (en) Power allocation method and apparatus
JP2011182063A (en) Radio communication system and inter-base station cooperative communication control method
US20160338079A1 (en) Method and apparatus for controlling priority in device to device communication
US10873879B2 (en) Data transmission method, device, and system
WO2021255828A1 (en) Wireless communication system, communication method, base station, and terminal
JP4786359B2 (en) Mobile station, radio access network apparatus, and resource request method
CN112584532A (en) Information determination method of uplink channel, terminal and network side equipment
JP2022540974A (en) COMMUNICATION METHOD, COMMUNICATION DEVICE AND COMPUTER PROGRAM
JP2022528381A (en) Communication method and device
US20220400502A1 (en) Policy-Based Resource Pool Allocation for Low-Latency IIOT and Other Applications
US11108597B2 (en) Data transmission method and apparatus
JP6409166B2 (en) Wireless communication system, terminal, base station, and processing method
CN113439463A (en) Terminal and communication method
EP4243549A2 (en) Communication method and transmitting terminal device
JP2007019835A (en) Scheduling method and mobile communication system
JPWO2020031312A1 (en) Base stations, terminals, wireless communication systems
KR101569296B1 (en) Dynamic and Spectrum Efficient Resource Allocation Procedure for Device Discovery in In-band or Out-of-band full-duplex D2D Communication Systems
JPWO2020136817A1 (en) Base station equipment, terminal equipment, and communication systems
KR101199124B1 (en) Apparatus for establishing call connection in carrier aggregation environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940966

Country of ref document: EP

Kind code of ref document: A1