WO2021254255A1 - Lcd面板和显示装置 - Google Patents

Lcd面板和显示装置 Download PDF

Info

Publication number
WO2021254255A1
WO2021254255A1 PCT/CN2021/099518 CN2021099518W WO2021254255A1 WO 2021254255 A1 WO2021254255 A1 WO 2021254255A1 CN 2021099518 W CN2021099518 W CN 2021099518W WO 2021254255 A1 WO2021254255 A1 WO 2021254255A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
physical
pixels
lcd panel
Prior art date
Application number
PCT/CN2021/099518
Other languages
English (en)
French (fr)
Inventor
赵鹏
陈彦哲
张翠萍
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021254255A1 publication Critical patent/WO2021254255A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements

Definitions

  • This application belongs to the technical field of display devices, and more specifically, relates to an LCD panel and a display device.
  • LCD Liquid Crystal Display, liquid crystal display
  • LCD uses the change of the electric field intensity sandwiched on the liquid crystal molecules to change the orientation of the liquid crystal molecules to control the intensity of light transmission to display images.
  • liquid crystal displays have been widely used in various large, medium and small terminal display devices due to their light weight, small size, and thin thickness.
  • the purpose of the present application includes, for example, providing an LCD panel and a display device to improve the above-mentioned problems.
  • an LCD panel which includes a plurality of data line electrodes and a plurality of scan line electrodes vertically arranged in the LCD panel area.
  • the data line electrode and the scan line electrode divide the LCD panel area into a plurality of grid areas, and physical sub-pixels are arranged in each grid area.
  • Three physical sub-pixels arranged in sequence along the extending direction of the data line electrode constitute one physical pixel, the three physical sub-pixels include three different colors, and the arrangement order of the three physical sub-pixels in adjacent physical pixels is the same.
  • the ratio of the length of the physical pixel along the extension direction of the scan line electrode to the length along the extension direction of the data line electrode is 1:2.
  • the width of the physical sub-pixel is equal to the width of the scan line electrode.
  • the refresh rate of the LCD panel is 120 Hz.
  • the length of the physical sub-pixel along the extending direction of the data line electrode is the same as the width of the scan line electrode.
  • a display device including an LCD panel and a beam shifting device.
  • One frame of time slot of an LCD panel includes two sub-frame time slots.
  • the physical sub-pixels include first-color physical sub-pixels, second-color physical sub-pixels, and third-color physical sub-pixels.
  • the light beam images emitted by the sub-pixels and the third-color physical sub-pixels correspond to the first-color display sub-pixels, the second-color display sub-pixels, and the third-color display sub-pixels, respectively.
  • the beam shift device is arranged on one side of the LCD panel, and is used to shift the light beam emitted by the physical sub-pixels along the extension direction of the data line electrode, and shift the beam shift generated between adjacent sub-frames to make the third color
  • the position of the display sub-pixel is shifted in the next sub-frame time slot to the scan line electrode area between the first-color display sub-pixel and the adjacent second-color display sub-pixel in the current sub-frame time slot.
  • the display sub-pixels of the third color and the display sub-pixels of the first color respectively correspond to physical sub-pixels in different physical pixels.
  • the beam shifting device includes a light-transmitting plate and a rotation axis extending along the extension direction of the scan line electrode.
  • the light-transmitting plate rotates around the rotation axis, and in a sub-frame time slot, the light-transmitting plate rotates around the rotation axis by preset
  • the angle is used to offset the light beam emitted by the third physical sub-pixel, and the offset is an integer multiple of half of the length of the physical pixel along the extension direction of the data line electrode.
  • the beam shifting device is a lens that translates and shakes along the extension direction of the data line electrode.
  • the micro lens array corresponding to the physical pixels, and the micro lens array is arranged on the side of the LCD panel away from the beam shifting device.
  • the LCD panel provided by the embodiment of the present application, three physical sub-pixels in the same physical pixel are arranged along the extension direction of the data line electrode, and at the same time, a wider scan line electrode is used to separate two adjacent physical sub-pixels.
  • the duty ratio along the extending direction of the data line electrode is relatively low.
  • the LCD panel is matched with a 120Hz refresh rate and two-state XPR (Pixel Offset Technology).
  • the crosstalk between the first sub-frame gap and the second sub-frame gap is low.
  • the timing multiplexing method can be used to obtain Good resolution, reduce production costs, improve display effects, and provide better LCD projection products.
  • FIG. 1 is a schematic structural diagram of a first viewing angle of an LCD panel provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a second viewing angle of an LCD panel provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of an LCD panel provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • 5a is a schematic diagram of a pixel display effect generated by a light beam emitted by a physical sub-pixel in the same physical pixel in a first sub-frame time slot in a display device according to an embodiment of the application;
  • FIG. 5b is a schematic diagram of a pixel display effect generated by a light beam emitted by a physical sub-pixel in the same physical pixel in a second sub-frame time slot in a display device according to an embodiment of the application;
  • 6a is a schematic diagram of a pixel display effect generated by a light beam emitted by a physical sub-pixel in the same physical pixel in a time slot of a frame without a beam shift device;
  • FIG. 6b is a schematic diagram of a pixel display effect generated by a light beam emitted from a frame of time slot of a physical sub-pixel in the same physical pixel in the display device provided by an embodiment of the application.
  • LCD Liquid Crystal Display, abbreviated as liquid crystal display
  • LCD uses the change of the electric field intensity sandwiched on the liquid crystal molecules to change the orientation of the liquid crystal molecules to control the intensity of light transmission to display images.
  • the working principle of a liquid crystal display is based on the characteristic that the light transmittance of liquid crystal molecules changes with the magnitude of the applied voltage.
  • the light first passes through the polarizer and becomes linearly polarized light in the same direction as the polarizer, and is placed on the upper and lower glass substrates.
  • the upper liquid crystal molecules are arranged in the same order.
  • linearly polarized light is split into two beams based on the principle of liquid crystal birefringence, and the two beams have different propagation speeds.
  • the two beams are combined into one beam, the polarization direction of the light will change.
  • the light passing through the liquid crystal layer is gradually distorted, and when it reaches the analyzer, the optical axis vibration direction is deflected by exactly 90 degrees, which is consistent with the direction of the analyzer. At this time, light can pass through the analyzer to form a bright field. When a voltage is applied, the orientation of the liquid crystal molecules disappears under the action of the electric field. After the light passes through the liquid crystal molecules, no polarization in the vibration direction occurs, and it cannot pass through the analyzer, forming a dark field to complete the light modulation.
  • Liquid crystal displays have been widely used in various large, medium and small terminal display devices due to their light weight, small size, and thin thickness.
  • an embodiment of the present application provides an LCD panel 100.
  • the LCD panel 100 may include an array substrate 101, an aligner substrate 103, and a liquid crystal layer 105 located between the array substrate 101 and the aligner substrate 103.
  • the array substrate 101 may include a plurality of thin film transistors, scan lines, data lines, and pixel electrodes.
  • the common electrode and the black matrix (BM) may be provided on the array substrate 101 or on the box substrate 103.
  • the thin film transistor may be a top gate type thin film transistor, a bottom gate type thin film transistor, a double gate type thin film transistor, or the like.
  • the thin film transistor includes a gate electrode, a gate insulating layer, an active layer, a source electrode and a drain electrode.
  • the scan line is electrically connected to the gate of the thin film transistor
  • the data line is electrically connected to the source of the thin film transistor
  • the drain of the thin film transistor is electrically connected to the pixel electrode.
  • a plurality of data line electrodes 110 and a plurality of scan line electrodes 112 arranged perpendicularly to each other are arranged in the area of the LCD panel 100.
  • the scan line electrodes 112 extend in the horizontal direction
  • the data line electrodes 110 extend in the vertical direction.
  • the extending direction of the data line electrode 110 is referred to as the "vertical direction”.
  • a plurality of scan line electrodes 112 are arranged at intervals along the longitudinal direction, and a plurality of data line electrodes 110 are arranged at intervals along the transverse direction.
  • the plurality of data line electrodes 110 and the plurality of scan line electrodes 112 divide the LCD panel 100 area into a plurality of grid areas.
  • a plurality of scan line electrodes 112 are arranged at even intervals along the longitudinal direction, and each scan line electrode 112 extends in a horizontal direction; and a plurality of data line electrodes 110 are arranged at even intervals in a horizontal direction, and each data line electrode 110 is arranged along the horizontal direction. Extending in the vertical direction, the grid areas formed thereby have the same size.
  • physical sub-pixels 121 are provided in the grid area formed by the plurality of data line electrodes 110 and the plurality of scan line electrodes 112. Three physical sub-pixels 121 arranged in sequence along the extending direction of the data line electrode 110 constitute one physical pixel 120.
  • the width of the scan line electrode 112 is larger than the width of the data line electrode 110, so that the pixel duty ratio in the horizontal direction is high, and the aperture ratio is high. ; On the contrary, the vertical pixel duty ratio is low, and the aperture ratio is low.
  • three physical sub-pixels 121 in one physical pixel 120 are distributed along a vertical direction, and are separated from each other by a scan line electrode 112.
  • the physical sub-pixels 121 in the grid area between two adjacent scan line electrodes 112 have the same size.
  • the three physical sub-pixels 121 in the same physical pixel 120 include three different colors, and the arrangement order of the three physical sub-pixels 121 in adjacent physical pixels 120 is the same.
  • the three physical sub-pixels 121 arranged along the extension direction of the data line electrode 110 in the same physical pixel 120 may be the first-color physical sub-pixel 123 and the second-color physical sub-pixel 125 in sequence. And the third color physical sub-pixel 127.
  • two adjacent physical sub-pixels 121 are separated by a scan line electrode 112.
  • the first-color physical sub-pixel 123, the second-color physical sub-pixel 125, and the third-color physical sub-pixel 127 may be RGB sub-pixels in sequence, where “R”, “G”, “B "Respectively represent red, green, and blue image data.
  • the arrangement order of the RGB sub-pixels in adjacent physical pixels 120 is the same.
  • the ratio of the length of the same physical pixel 120 along the extension direction (horizontal direction) of the scan line electrode 112 to the length along the extension direction (vertical direction) of the data line electrode 110 is 1:2. That is, the aspect ratio of one physical pixel 120 formed by splicing the first-color physical sub-pixel 123, the second-color physical sub-pixel 125, and the third-color physical sub-pixel 127 adjacently arranged is 1:2.
  • the width dimension of the physical sub-pixel 121 is equal to the width dimension of the scan line electrode 112.
  • the refresh rate of the LCD panel 100 is 120 Hz.
  • the length of any physical sub-pixel 121 along the extension direction of the data line electrode 110 is the same as the width of the scan line electrode 112.
  • the RGB sub-pixels are distributed along the extension direction (vertical direction) of the data line electrode 110, and two adjacent sub-pixels are separated by the scan line electrode 112, and the adjacently arranged RGB sub-pixels
  • the aspect ratio of one physical pixel 120 formed by splicing pixels together is 1:2.
  • XPR pixel shift technology
  • the color displayed in the grid area refers to the final display color corresponding to the physical sub-pixel 121, and does not represent the color of the grid area of the LCD panel 100.
  • the LCD panel 100 itself may be black and white pixels, and different physical sub-pixels 121 can produce different colors through the cooperation of illuminating light, microlenses, and the like.
  • the LCD panel 100 itself may also be pixels with colors (color films), which are illuminated by white light or RGB light to generate colors/modified colors.
  • the embodiment of the present application also provides a display device 200, please refer to FIG. 4.
  • pixel shift technology can be used. That is to say, two sub-pictures with lower resolution are shifted by half a pixel and then superimposed, and the superimposed picture is displayed as a pattern with higher resolution. Compared with the display device 200 with higher resolution, Can reduce production costs.
  • the beam shifting device 210 can be used to realize pixel multiplexing by dithering once, thereby improving the final display resolution.
  • the display device 200 may include an LCD panel 100 and a beam shifting device 210.
  • the beam shifting device 210 is arranged on one side of the LCD panel 100, and the beam shifting device 210 is used to shift the light beam emitted by the physical sub-pixel 121 in the LCD panel 100 along the extension direction (vertical direction) of the data line electrode 110, And the light beam is shifted by the size of half a physical pixel (that is, the width of two physical sub-pixels and the width of one scan line electrode) along the extension direction of the data line electrode 110.
  • the illuminating light passes through the LCD panel 100 to generate an image, it passes through the beam shifting device 210, so that the light beam emitted by the LCD panel 100 periodically dithers along the extension direction (vertical direction) of the data line electrode 110, and finally causes the LCD panel 100 to emit The light beam is offset along the extension direction of the data line electrode 110.
  • one frame time slot of the LCD panel includes two sub-frame time slots, which are the first sub-frame time slot and the second sub-frame time slot, respectively.
  • the refresh rate of the first sub-frame time slot and the second sub-frame time slot may be 60 Hz
  • the refresh rate of a complete one-frame time slot may be 120 Hz.
  • the refresh rate of the LCD panel is 120 Hz, which is equivalent to a refresh rate of 60 Hz.
  • Figure 5a shows the pixel display effect of the light beam emitted by the RGB sub-pixels in the same physical pixel 120 in the first sub-frame time slot
  • Figure 5b shows the output of the RGB sub-pixels in the same physical pixel 120 The pixel display effect produced by the beam shifting device 210 in the second sub-frame time slot.
  • the light beams emitted by the three physical sub-pixels 121 of RGB arranged in the vertical direction in the same physical pixel 120 area correspond to the first color display sub-pixel R and the second color respectively.
  • the beam shifting device 210 shifts the beams emitted by the three physical sub-pixels 121 of RGB in the vertical direction, and the beam shift amount generated between adjacent sub-frame time slots is The size of half a physical pixel is 120.
  • the display sub-pixel B of the third color displayed in the first sub-frame time slot will shift to the first color display sub-pixel in the first sub-frame time slot in the second sub-frame time slot.
  • the position corresponding to the scan line electrode 112 area between the R and the adjacent second color sub-pixel G is displayed.
  • the light beam emitted by the third color display sub-pixel B is shifted from the light beam in the second sub-frame time slot along the extension direction of the data line electrode 110 by the light beam shifting device 210 to the position in the first sub-frame time slot.
  • the light beam emitted by the third-color display sub-pixel B is shifted to be between the first-color display sub-pixel R and the adjacent second-color display sub-pixel G in this sub-frame time slot in the next sub-frame time slot.
  • the position corresponding to the scan line electrode 112 area between the first sub-frame gap and the second sub-frame gap is relatively low, and the first sub-frame time slot is in the first color display sub-pixel R and the second color display
  • the position of the sub-pixel G and the third-color display sub-pixel B after being shifted in the second sub-frame time slot is less overlapped.
  • the third color display sub-pixel displayed in the second sub-frame time slot is The pixel B and the first color display sub-pixel R adjacent thereto respectively correspond to physical sub-pixels 121 in different physical pixels 120.
  • the physical pixel 120 where the third color display sub-pixel B is located and the physical pixel 120 where the first color display sub-pixel R is located are different.
  • the physical pixel 120, and the physical pixel 120 where the third color display sub-pixel B is located is adjacent to the physical pixel 120 where the first color display sub-pixel R is located.
  • the first color display sub-pixel R and the second color display sub-pixel G arranged in the vertical direction are the same physical pixel 120.
  • the beam shifting device 210 may include a light-transmitting flat plate 211 and a rotating shaft 213 extending along the extension direction of the scan line electrode 112.
  • the light-transmitting plate 211 rotates around the rotation axis 213.
  • the light-transmitting plate 211 rotates around the rotation axis 213 by a preset angle, so that the light beams emitted by the physical sub-pixels 121 in the same physical pixel 120 are in the vertical direction.
  • the product is offset, and the offset is an integer multiple of half of the length of the physical pixel 120 along the extending direction of the data line. As shown in FIGS.
  • the light beam emitted by the third physical sub-pixel 121 in the same physical pixel 120 is shifted between the first physical sub-pixel 121 and the second physical sub-pixel 121 in the second sub-frame time slot.
  • the beam shifting device 210 may be a lens that translates and shakes along the extension direction (vertical direction) of the data line electrode 110.
  • the display device 200 provided in the embodiment of the present application further includes a microlens array 220 corresponding to the physical pixels 120 of the LCD panel 100.
  • the microlens array 220 is arranged on the side of the LCD panel 100 away from the light beam shifting device 210, the microlens array 220 is arranged on the light incident side of the LCD panel 100, and the light beam shifting device 210 is arranged on the light emitting side of the LCD panel 100 to display
  • the device 200 can obtain higher light transmittance.
  • the microlens may be a bar-shaped columnar structure extending along the extension direction of the scan line electrode 112, or a plurality of bar-shaped columnar structures may form a two-dimensional microlens array.
  • the display device 200 provided by the embodiment of the present application, by adopting a pixel multiplexing method in two sub-frame gaps within a frame gap, the resolution along the extension direction of the data line electrode 110 is doubled, so that the equivalent is The shape aspect ratio of one display pixel is 1:1.
  • the light beams emitted by the three physical sub-pixels GRB in the same physical pixel 120 respectively correspond to the first color display sub-pixels R, the second color display sub-pixel G, and the third color display sub-pixel B. So that one physical pixel 120 corresponds to one display pixel, and the shape aspect ratio of the display pixel is 1:2.
  • the beam shifting device 210 divides three physical sub-pixels in the same physical pixel 120 in one sub-frame time slot within a frame time slot.
  • the light beam emitted by 121 is offset by half of the size of the physical pixel 120 along the extension direction of the data line electrode 110.
  • the third color display sub-pixel B in the same physical pixel 120 is shifted to correspond to the scan line electrode 112 located between the first physical sub-pixel and the second physical sub-pixel in the same physical pixel 120 s position.
  • the first-color display sub-pixel R in the next physical pixel adjacent to the physical pixel 120 in the vertical direction is shifted from the second physical sub-pixel and the third physical sub-pixel located in the physical pixel 120.
  • the position corresponding to the scan line electrode 112 in the middle; the second color display sub-pixel G in the next physical pixel is shifted from the third physical sub-pixel B in the physical pixel 120 and the first physical pixel in the next physical pixel.
  • the R in the first row, the G in the third row, and the B in the fifth row are displayed in the first subframe time slot; the B in the second row, the R in the fourth row, and the B in the sixth row are displayed G is displayed in the second subframe time slot.
  • the three colors of RBG are simultaneously displayed in the upper area and the lower area, thereby forming a complete display pixel.
  • one physical pixel 120 correspondingly displays two RGB sub-pixels, and the arrangement of the two RGB sub-pixels in the vertical direction is arranged in sequence according to the RGB manner, which can be equivalent to two display pixels. .
  • the light beam emitted by the physical sub-pixel 121 is shifted along the extension direction of the data line electrode 110 by the beam shifting device 210, so that one display pixel corresponding to one physical pixel 120 is equivalent to two Display pixels.
  • one physical pixel 120 can correspond to two display pixels that are equivalent in time sharing, thereby increasing the resolution.
  • the beam shift device 210 can be equivalent to a resolution of 2 ⁇ 1080P.
  • the LCD panel 100 is used to realize the projection display, and the LCD panel 100 similar to a mobile phone or a liquid crystal display can be used as a modulator, instead of using a field sequential (frame sequential system) for pixel multiplexing to directly project the image.
  • the display device 200 provided by the embodiment of the present application adopts a method of pixel multiplexing in two sub-frame time slots within one frame time slot, which improves the equivalent resolution and achieves the same resolution display. Based on the effect, there can be fewer physical pixels 120, thereby reducing production costs.
  • the size of a single physical pixel 120 will be larger, and the aperture ratio of the pixel and the transmittance of the LCD panel 100 can be higher; the screen effect caused by the gap between the physical pixel 120 and the physical pixel 120 will be less.
  • the LCD panel 100 that uses the field sequential is mostly a 180 Hz LCD, and achieves a higher equivalent resolution by shaking the display screen 3 times or rotating the illumination 3 times.
  • the display device 200 provided by the embodiment of the present application only needs the LCD panel 100 to achieve a refresh rate of 120 Hz. Since the cost of the LCD panel 100 with a low refresh rate is lower, the crosstalk caused by the insufficient response speed of the liquid crystal molecules is also less severe.
  • the display device 200 provided by the embodiment of the present application only needs to shake the screen twice to achieve the field sequential (frame sequential) effect, and the required binary XPR (pixel shift technology) device is also easier to implement.
  • the LCD panel 100 and the display device 200 provided by the embodiments of the present application can obtain good resolution and improve the display effect.
  • a 120 Hz refresh rate and two-state XPR pixel shift technology
  • the duty ratio of the extension direction is low.
  • the crosstalk between the first sub-frame gap and the second sub-frame gap is low, so as to obtain a better XPR (Pixel Offset Technology) display effect.
  • the microlens array 220 arranged along the data line electrode 110 can achieve higher light transmittance.
  • the use of time sequence multiplexing method can provide better LCD projection products, and has the advantages of low cost and good display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种LCD面板(100)和显示装置,LCD面板(100)包括垂直排布的多条数据线电极(110)和多条扫描线电极(112),数据线电极(110)和扫描线电极(112)将LCD面板(100)区域划分为多个栅格区域,每个栅格区域中均设置有物理子像素(121)。沿数据线电极(110)延展方向依次排布的三个物理子像素(121)构成一个物理像素(120),三个物理子像素(121)包括三种不同颜色,且相邻物理像素(120)中的三个物理子像素(121)的排布顺序相同。显示装置包括LCD面板(100)和光束偏移装置(210)。光束偏移装置(210)设置于LCD面板(100)的一侧,用于对物理子像素(121)发出的光束产生沿数据线电极(110)延展方向的偏移,偏移量为物理像素(120)沿数据线方向的长度的一半的整数倍。该LCD面板(100)配合120Hz刷新率和二态像素偏移技术XPR,能够获得良好分辨率,提升显示效果。

Description

LCD面板和显示装置 技术领域
本申请属于显示装置技术领域,更具体地,涉及一种LCD面板和显示装置。
背景技术
LCD(Liquid Crystal Display,液晶显示器)是利用夹在液晶分子上电场强度的变化,改变液晶分子的取向控制透光的强弱来显示图像。
目前,液晶显示器由于其具有的重量轻、体积小、厚度薄的特点,已广泛地被用在各种大中小尺寸的终端显示设备中。
在满足LCD显示效果的前提下如何降低生产成本,是本领域技术人员亟需解决的技术问题。
发明内容
本申请的目的包括,例如,提供了一种LCD面板和显示装置,以改善上述问题。
本申请的实施例可以这样实现:
第一方面,提供一种LCD面板,包括在LCD面板区域相互垂直排布的多条数据线电极和多条扫描线电极。数据线电极和扫描线电极将LCD面板区域划分为多个栅格区域,每个栅格区域中均设置有物理子像素。沿数据线电极延展方向依次排布的三个物理子像素构成一个物理像素,三个物理子像素包括三种不同颜色,且相邻物理像素中的三个物理子像素的排布顺序相同。
进一步的,物理像素沿扫描线电极的延展方向的长度与其沿数据线电极的延展方向的长度比为1:2。
进一步的,物理子像素的宽度与扫描线电极的宽度相等。
进一步的,LCD面板的刷新率为120Hz。
进一步的,物理子像素的沿数据线电极的延展方向的长度与扫描线电极的宽度相同。
第二方面,提供一种显示装置,包括LCD面板和光束偏移装置。LCD面板的一帧时隙包括两个子帧时隙,物理子像素包括第一色物理子像素、第二色物理子像素和第三色物理子像素,第一色物理子像素、第二色物理子像素和第三色物理子像素发出的光束成像分别对应第一色显示子像素、第二色显示子像素和第三色显示子像素。光束偏移装置设置于LCD面板的一侧,用于对物理子像素发出的光束产生沿数据线电极延展方向的偏移,偏移在相邻子帧间产生的光束偏移量使得第三色显示子像素的位置在下一子帧时隙偏移至本子帧时隙中第一色显示子像素和相邻的第二色显示子像素之间的扫描线电极区域处。
进一步的,第三色显示子像素和第一色显示子像素分别对应不同的物理像素中的物理子像素。
进一步的,光束偏移装置包括透光平板和沿扫描线电极的延展方向延伸的旋转轴,透光平板绕旋转轴旋转,且在一个子帧时隙内,透光平板绕旋转轴转动预设角度,以使第三物理子像素出射的光束产生偏移,偏移量为物理像素沿数据线电极延展方向的长度的一半的整数倍。
进一步的,光束偏移装置为沿数据线电极的延展方向平移抖动的透镜。
进一步的,还包括与物理像素对应的微透镜阵列,微透镜阵列设置于LCD面板远离光束偏移装置的一侧。
本申请实施例提供的LCD面板,通过将同一物理像素中的三个物理子像素沿数据线电极的延展方向排列,同时,采用较宽的扫描线电极将相邻两个物理子像素隔开,以使LCD面板具有120Hz刷新率,沿数据线电极的延展方向占空比较低。LCD面板配合120Hz的刷新率和二态XPR(像素偏移技术),在像素复用时,第一子帧间隙和第二子帧间隙之间的串扰低,采用时序复用的方式,能够获得良好的分辨率,降低生产成本,提升显示效 果,提供更好的LCD投影产品。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的LCD面板第一视角的结构示意图;
图2为本申请实施例提供的LCD面板第二视角的结构示意图;
图3为本申请实施例提供的LCD面板的结构示意图;
图4为本申请实施例提供的显示装置的结构示意图;
图5a为本申请实施例提供的显示装置中同一物理像素中的物理子像素在第一子帧时隙出射的光束产生的像素显示效果示意图;
图5b为本申请实施例提供的显示装置中同一物理像素中的物理子像素在第二子帧时隙出射的光束产生的像素显示效果示意图;
图6a为在没有光束偏移装置的情况下,同一物理像素中的物理子像素在一帧时隙出射的光束产生的像素显示效果示意图;
图6b为本申请实施例提供的显示装置中同一物理像素中的物理子像素在一帧时隙出射的光束产生的像素显示效果示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
需要说明的是,在不冲突的情况下,本申请的实施例中的特征可以相互结合。
LCD(Liquid Crystal Display,简称液晶显示器),是利用夹在液晶分子 上电场强度的变化,改变液晶分子的取向控制透光的强弱来显示图像。
具体的,液晶显示器的工作原理是基于液晶分子的透光率随与其所施加电压大小变化的特性,光先通过起偏器,变成与偏振片方向一致的线偏振光,并于上下玻璃基板上液晶分子排列的顺序一致。当光通过液晶层时,根据液晶双折射的原理,线偏振光被分解为两束光,且这两束光传播速度不同,在两束光合成一束光时,光的偏振方向会改变。通过液晶层的光会被逐渐扭曲,在达到检偏器时光轴振动方向正好偏转90度,与检偏器的方向一致。此时光能够通过检偏器形成亮场。施加电压时,液晶分子在电场的作用下取向消失,光经过液晶分子之后不发生振动方向的偏振,经过检偏器时无法通过,形成暗场,完成对光的调制。
液晶显示器由于其具有的重量轻、体积小、厚度薄的特点,已广泛地被用在各种大中小尺寸的终端显示设备中。
然而,液晶显示器具有较高分辨率时的成本较高,如何在满足LCD显示效果的前提下,降低生产成本。
基于上述问题,请参照图1,本申请实施例提供了一种LCD面板100。
LCD面板100可以包括阵列基板101、对盒基板103、以及位于阵列基板101与对盒基板103之间的液晶层105。其中,阵列基板101可以包括多个薄膜晶体管、扫描线、数据线以及像素电极。公共电极和黑矩阵(BM)可以设置在阵列基板101上,也可以设置在对盒基板103上。
薄膜晶体管可以是顶栅型薄膜晶体管、底栅型薄膜晶体管、双栅型薄膜晶体管等。薄膜晶体管包括栅极、栅绝缘层、有源层、源极和漏极。其中,扫描线与薄膜晶体管的栅极电连接,数据线与薄膜晶体管的源极电连接,薄膜晶体管的漏极与像素电极电连接。
具体的,请参照图2所示,LCD面板100区域中设置有相互垂直排布的多条数据线电极110和多条扫描线电极112。在图2视角下,扫描线电极112是沿横向延伸,数据线电极110是沿纵向延伸,将画面的行方向(扫描线电极112的延展方向)称为“水平方向”,将画面的列方向(数据线电极110的延展方向)称为“竖直方向”。多条扫描线电极112沿纵向依次间隔排布,多条数据线电极110沿横向依次间隔排布。多条数据线电极110和 多条扫描线电极112将LCD面板100区域划分为多个栅格区域。
可选的,多条扫描线电极112沿纵向均匀间隔排布,每条扫描线电极112均沿水平方向延伸;多条数据线电极110沿横向均匀间隔排布,每条数据线电极110均沿竖直方向延伸,从而形成的栅格区域的大小均相等。
可选的,在由多条数据线电极110和多条扫描线电极112形成的栅格区域中均设置有物理子像素121。沿数据线电极110的延展方向依次排布的三个物理子像素121构成了一个物理像素120。
由于采用LTPS(Low Temperature Poly-Silicon,简称低温多晶硅)技术的LCD面板100上,扫描线电极112的宽度要大于数据线电极110的宽度,从而使得水平方向的像素占空比高,开口率高;相反的,竖直方向的像素占空比低,开口率低。本申请实施例提供的LCD面板100,一个物理像素120中的三个物理子像素121沿着竖直方向分布,互相之间使用扫描线电极112隔开。
可选的,位于相邻两条扫描线电极112之间的栅格区域中的物理子像素121大小相同。同一物理像素120中的三个物理子像素121包括了三种不同颜色,且相邻物理像素120中的三个物理子像素121的排布顺序相同。
如图2所示,可选的,同一物理像素120中沿数据线电极110的延展方向排布的三个物理子像素121可以依次为第一色物理子像素123、第二色物理子像素125以及第三色物理子像素127。沿数据线电极110延展方向,相邻两个物理子像素121之间采用扫描线电极112隔开。
在一可选实施例中,第一色物理子像素123、第二色物理子像素125以及第三色物理子像素127可以依次为RGB子像素,其中,“R”、“G”、“B”分别表示红色、绿色、蓝色的图像数据。相邻物理像素120中的RGB子像素的排布顺序相同。
可选的,同一物理像素120沿扫描线电极112的延展方向(水平方向)的长度与其沿数据线电极110的延展方向(竖直方向)的长度比为1:2。也就是相邻设置的第一色物理子像素123、第二色物理子像素125以及第三色物理子像素127拼接所形成的一个物理像素120的横纵比为1:2。
在一可选的实施例中,如图3所示,物理子像素121的宽度尺寸与扫 描线电极112的宽度尺寸相等。
在一可选的实施例中,LCD面板100的刷新率为120Hz。
在一可选的实施例中,任一物理子像素121的沿数据线电极110的延展方向的长度与扫描线电极112的宽度相同。
本申请实施例提供的LCD面板100,将RGB子像素沿着数据线电极110的延伸方向(竖直方向)分布,相邻两个子像素之间采用扫描线电极112分隔,相邻设置的RGB子像素拼接在一起形成的一个物理像素120的横纵比为1:2。以使沿RGB子像素排布方向(竖直方向)的像素占空比较低,当沿竖直方向进行光束偏移后,有利于获得更好的像素偏移技术(XPR)效果。
需要注意的是,本申请实施例提供的LCD面板100中,栅格区域所显示的颜色指的是物理子像素121所对应的最终显示颜色,不代表LCD面板100的栅格区域本身具有的颜色。其中,LCD面板100本身可以为黑白像素,通过照明光、微透镜等的配合让不同物理子像素121产生不同颜色。或者,LCD面板100本身也可以是具有颜色(彩膜)的像素,通过白光或RGB光照明来产生颜色/修饰颜色。
本申请实施例还提供了一种显示装置200,请参照图4所示。
在提高投影显示分辨率的前提下,降低生产成本,可以采用像素偏移技术(XPR)。也就是说,将两幅分辨率较低的子画面偏移半个像素后进行叠加,叠加后的画面展示为一幅分辨率较高的图案,相比采用较高分辨率的显示装置200,可以降低生产成本。
由于LCD面板100的刷新率为120Hz,可以采用光束偏移装置210通过抖动一次实现像素的复用,进而提高最终的显示分辨率。
请参照图4,显示装置200可以包括LCD面板100和光束偏移装置210。
光束偏移装置210设置于LCD面板100的一侧,光束偏移装置210用于对LCD面板100中物理子像素121发出的光束沿数据线电极110的延展方向(竖直方向)发生偏移,且使得光束沿数据线电极110的延展方向偏移半个物理像素的大小(即两个物理子像素宽度和一个扫描线电极的宽度)。
照明光经过LCD面板100产生图像后,经过光束偏移装置210,以使 LCD面板100出射的光束沿数据线电极110的延展方向(竖直方向)进行周期性的抖动,最终使得LCD面板100出射的光束沿数据线电极110的延展方向进行偏移。
具体的,LCD面板的一帧时隙包括了两个子帧时隙,分别为第一子帧时隙和第二子帧时隙。为了不影响显示效果,第一子帧时隙和第二子帧时隙的刷新率可以为60Hz,完整的一帧时隙的刷新率可以为120Hz。也就是说,LCD面板的刷新率为120Hz,相当于60Hz的刷新率。请参照图5a,所示为同一物理像素120中的RGB子像素在第一子帧时隙内出射的光束产生的像素显示效果,图5b所示为同一物理像素120中的RGB子像素出射的光束在第二子帧时隙内经过光束偏移装置210的偏移后产生的像素显示效果。
请继续参照图5a和5b所示,同一物理像素120区域中的沿竖直方向依次排布的RGB三个物理子像素121出射的光束成像分别对应为第一色显示子像素R、第二色显示子像素G以及第三色显示子像素B。在第二子帧时隙内,光束偏移装置210将RGB三个物理子像素121出射的光束沿竖直方向发生偏移,且在相邻子帧时隙之间产生的光束偏移量为半个物理像素120大小。也就是说,在第一子帧时隙中显示的第三色显示子像素B,在第二子帧时隙中会偏移至与在第一子帧时隙中的第一色显示子像素R和相邻的第二色显示子像素G之间的扫描线电极112区域相对应的位置。
如图5b所示,第三色显示子像素B出射的光束在第二子帧时隙内经过光束偏移装置210沿数据线电极110的延展方向偏移至与第一子帧时隙中的第一色显示子像素R和第二色显示子像素G之间的扫描线电极112相对应的位置。换句话说,第三色显示子像素B出射的光束在下一子帧时隙中被偏移至与本子帧时隙中第一色显示子像素R和相邻的第二色显示子像素G之间的扫描线电极112区域对应的位置,由于第一子帧间隙和第二子帧间隙之间的串扰较低,第一子帧时隙内处于第一色显示子像素R和第二色显示子像素G,与第三色显示子像素B在第二子帧时隙内偏移后的位置交叠较少。
可选的,光束偏移装置210对RGB三个物理子像素121出射的光束沿 竖直方向偏移半个物理像素120大小后,使得在第二子帧时隙内显示的第三色显示子像素B和与其相邻的第一色显示子像素R分别对应不同的物理像素120中的物理子像素121。如图5b所示,在第二子帧时隙内,沿竖直方向排布的第三色显示子像素B所在的物理像素120和第一色显示子像素R所在的物理像素120为不同的物理像素120,且第三色显示子像素B所在的物理像素120与第一色显示子像素R所在的物理像素120相邻。在第二子帧时隙内,沿竖直方向排布的第一色显示子像素R和第二色显示子像素G为同一物理像素120。
在一可选的实施例中,请继续参照图4所示,光束偏移装置210可以包括透光平板211和沿扫描线电极112的延展方向延伸的旋转轴213。透光平板211绕旋转轴213旋转,在一个子帧时隙内,透光平板211绕旋转轴213转动预设角度,以使同一物理像素120中的物理子像素121出射的光束沿竖直方向产品偏移,且偏移量为物理像素120沿数据线延伸方向的长度的一半的整数倍。如图5a和5b所示,同一物理像素120中的第三物理子像素121出射的光束在第二子帧时隙内偏移至与第一物理子像素121和第二物理子像素121之间的扫描线电极112相对应的位置。
在一可选的实施例中,光束偏移装置210可以为沿数据线电极110的延展方向(竖直方向)平移抖动的透镜。
可选的,本申请实施例提供的显示装置200还包括微透镜阵列220,该微透镜阵列220与LCD面板100的物理像素120相对应。微透镜阵列220设置于LCD面板100远离光束偏移装置210的一侧,微透镜阵列220设置于LCD面板100的入光侧,光束偏移装置210设置于LCD面板100的出光侧,以使显示装置200可以获得较高的光透过率。
可选的,微透镜可以为沿扫描线电极112的延展方向延伸的条形柱状结构,或者是多个条形柱状结构形成二维的微透镜阵列。
本申请实施例提供的显示装置200,通过在一帧间隙内的两个子帧间隙中采用像素复用的方法,实现了沿数据线电极110延展方向的分辨率的翻倍,以使等效后的一个显示像素的形状横纵比为1:1。
请参照图6a所示,在没有光束偏移装置210的情况下,在一帧时隙内, 同一物理像素120中的三个物理子像素GRB出射的光束成像分别对应为第一色显示子像素R、第二色显示子像素G以及第三色显示子像素B。以使一个物理像素120对应为一个显示像素,且该显示像素的形状横纵比为1:2。
请参照图6b所示,在设置有光束偏移装置210的情况下,在一帧时隙内的一个子帧时隙中,光束偏移装置210将同一物理像素120中的三个物理子像素121出射的光束沿数据线电极110的延展方向偏移物理像素120大小的一半。在图6b中,同一物理像素120中的第三色显示子像素B偏移至与位于该同一物理像素120中的第一物理子像素和第二物理子像素之间的扫描线电极112相对应的位置。同时,沿竖直方向上与该物理像素120相邻的下一物理像素中的第一色显示子像素R偏移至与位于该物理像素120中第二物理子像素和第三物理子像素之间的扫描线电极112相对应的位置;下一物理像素中的第二色显示子像素G偏移至与位于该物理像素120中第三物理子像素B与下一物理像素中的第一物理子像素R之间的扫描线电极112相对应的位置。换句话说,在图6b中,第一行的R、第三行的G以及第五行的B在第一子帧时隙显示;第二行的B、第四行的R以及第六行的G在第二子帧时隙显示。在一帧中,上面区域和下面区域中均同时显示了RBG三色,从而构成一个完整的显示像素。
因此,在一帧时隙内,一个物理像素120对应显示了两个RGB子像素,两个RGB子像素沿竖直方向的排列方式均是按照RGB方式依次排列,可以等效为两个显示像素。
本申请实施例提供的显示装置200,通过光束偏移装置210对物理子像素121出射的光束沿数据线电极110的延展方向发生偏移,使得一个物理像素120对应的一个显示像素等效为两个显示像素。换句话说,一个物理像素120可以对应分时的实现等效的两个显示像素,从而增加了分辨率。当LCD面板100为1080P的分辨率时,经过光束偏移装置210可以等效为2×1080P的分辨率。
利用LCD面板100实现投影显示,可以采用类似手机或者液晶显示器的LCD面板100作为调制器,而不采用field sequential(帧序制)进行像素复用直接将画面投射出去。本申请实施例提供的显示装置200相对于上述 方法,是在一帧时隙内的两个子帧时隙中采用了像素复用的方法,提升了等效的分辨率,在实现同等分辨率显示效果的基础上,可以具有更少的物理像素120,进而降低生产成本。同时,单个物理像素120的大小会更大,像素的开口率和LCD面板100的透过率都可以更高;物理像素120与物理像素120之间的缝隙导致的纱窗效应会更轻微。
使用field sequential(帧序制)的LCD面板100,大多为180Hz的LCD,通过对显示画面抖动3次或者照明轮转3次实现更高的等效分辨率。本申请实施例提供的显示装置200相对于该方法,仅需要LCD面板100实现120Hz的刷新率即可。由于低刷新率的LCD面板100的成本会更低一些,液晶分子响应速度不足导致的串扰也更轻微一些。另外,本申请实施例提供的显示装置200仅需要抖动画面两次即可实现field sequential(帧序制)的效果,所需要的二态XPR(像素偏移技术)器件也更容易实现。
本申请实施例提供的LCD面板100和显示装置200,配合120Hz的刷新率和二态XPR(像素偏移技术),能够获得良好的分辨率,提升显示效果。通过将同一物理像素120中的三个物理子像素RGB沿数据线电极110的延展方向排列,同时采用较宽的扫描线电极112将相邻两个物理子像素121隔开,沿数据线电极110的延展方向占空比较低,在像素复用时,第一子帧间隙和第二子帧间隙之间的串扰低,以获得更好的XPR(像素偏移技术)显示效果。沿着数据线电极110排布的微透镜阵列220,可以获得较高的光透过率。采用时序复用的方法实现,能够提供更好的LCD投影产品,具有成本低、显示效果好的优点。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种LCD面板,其特征在于,包括在LCD面板区域相互垂直排布的多条数据线电极和多条扫描线电极,所述数据线电极和所述扫描线电极将所述LCD面板区域划分为多个栅格区域,每个所述栅格区域中均设置有物理子像素;
    沿所述数据线电极延展方向依次排布的三个物理子像素构成一个物理像素,所述三个物理子像素包括三种不同颜色,且相邻所述物理像素中的三个物理子像素的排布顺序相同。
  2. 根据权利要求1所述的LCD面板,其特征在于,所述物理像素沿所述扫描线电极的延展方向的长度与其沿所述数据线电极的延展方向的长度比为1:2。
  3. 根据权利要求1所述的LCD面板,其特征在于,所述物理子像素的宽度与所述扫描线电极的宽度相等。
  4. 根据权利要求1所述的LCD面板,其特征在于,所述LCD面板的刷新率为120Hz。
  5. 根据权利要求1所述的LCD面板,其特征在于,所述物理子像素的沿所述数据线电极的延展方向的长度与所述扫描线电极的宽度相同。
  6. 一种显示装置,其特征在于,包括:
    如权利要求1-5任一项所述的LCD面板,所述LCD面板的一帧时隙包括两个子帧时隙,所述物理子像素包括第一色物理子像素、第二色物理子像素和第三色物理子像素,所述第一色物理子像素、所述第二色物理子像素和所述第三色物理子像素发出的光束成像分别对应第一色显示子像素、第二色显示子像素和第三色显示子像素;以及
    光束偏移装置,所述光束偏移装置设置于所述LCD面板的一侧,用于对物理子像素发出的光束产生沿所述数据线电极延展方向的偏移,所述偏移在相邻子帧间产生的光束偏移量使得所述第三色显示子像素的位置在下一子帧时隙偏移至本子帧时隙中所述第一色显示子像素和相邻的第二色显 示子像素之间的扫描线电极区域处。
  7. 根据权利要求6所述的显示装置,其特征在于,所述第三色显示子像素和所述第一色显示子像素分别对应不同的物理像素中的物理子像素。
  8. 根据权利要求6所述的显示装置,其特征在于,所述光束偏移装置包括透光平板和沿所述扫描线电极的延展方向延伸的旋转轴,所述透光平板绕所述旋转轴旋转,且在一个子帧时隙内,所述透光平板绕所述旋转轴转动预设角度,以使第三物理子像素出射的光束产生偏移,偏移量为所述物理像素沿数据线电极延展方向的长度的一半的整数倍。
  9. 根据权利要求6所述的显示装置,其特征在于,所述光束偏移装置为沿所述数据线电极的延展方向平移抖动的透镜。
  10. 根据权利要求6所述的显示装置,其特征在于,还包括与所述物理像素对应的微透镜阵列,所述微透镜阵列设置于所述LCD面板远离所述光束偏移装置的一侧。
PCT/CN2021/099518 2020-06-16 2021-06-10 Lcd面板和显示装置 WO2021254255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010550893.2A CN113805372A (zh) 2020-06-16 2020-06-16 Lcd面板和显示装置
CN202010550893.2 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021254255A1 true WO2021254255A1 (zh) 2021-12-23

Family

ID=78943362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099518 WO2021254255A1 (zh) 2020-06-16 2021-06-10 Lcd面板和显示装置

Country Status (2)

Country Link
CN (1) CN113805372A (zh)
WO (1) WO2021254255A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114333676A (zh) * 2021-12-31 2022-04-12 武汉天马微电子有限公司 显示面板的驱动方法、显示面板及显示装置
CN115857216A (zh) * 2022-12-15 2023-03-28 维沃移动通信有限公司 显示方法、设备和***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080030663A1 (en) * 2006-08-03 2008-02-07 Hitachi Displays, Ltd. Transflective liquid crystal display device
US20100014313A1 (en) * 2008-07-17 2010-01-21 Sharp Kabushiki Kaisha Display
CN103529614A (zh) * 2013-10-30 2014-01-22 北京京东方光电科技有限公司 阵列基板、显示装置及其驱动方法
CN104597609A (zh) * 2015-02-06 2015-05-06 京东方科技集团股份有限公司 像素阵列、显示装置以及显示方法
CN105761659A (zh) * 2016-03-25 2016-07-13 友达光电股份有限公司 显示装置
CN109599072A (zh) * 2018-12-18 2019-04-09 惠科股份有限公司 一种显示装置、驱动方法和显示器
CN109690387A (zh) * 2016-07-13 2019-04-26 视瑞尔技术公司 显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080030663A1 (en) * 2006-08-03 2008-02-07 Hitachi Displays, Ltd. Transflective liquid crystal display device
US20100014313A1 (en) * 2008-07-17 2010-01-21 Sharp Kabushiki Kaisha Display
CN103529614A (zh) * 2013-10-30 2014-01-22 北京京东方光电科技有限公司 阵列基板、显示装置及其驱动方法
CN104597609A (zh) * 2015-02-06 2015-05-06 京东方科技集团股份有限公司 像素阵列、显示装置以及显示方法
CN105761659A (zh) * 2016-03-25 2016-07-13 友达光电股份有限公司 显示装置
CN109690387A (zh) * 2016-07-13 2019-04-26 视瑞尔技术公司 显示装置
CN109599072A (zh) * 2018-12-18 2019-04-09 惠科股份有限公司 一种显示装置、驱动方法和显示器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114333676A (zh) * 2021-12-31 2022-04-12 武汉天马微电子有限公司 显示面板的驱动方法、显示面板及显示装置
CN114333676B (zh) * 2021-12-31 2023-12-15 武汉天马微电子有限公司 显示面板的驱动方法、显示面板及显示装置
CN115857216A (zh) * 2022-12-15 2023-03-28 维沃移动通信有限公司 显示方法、设备和***

Also Published As

Publication number Publication date
CN113805372A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
JP4003714B2 (ja) 電気光学装置及び電子機器
US9341880B2 (en) Liquid crystal display panel and driving method thereof, and display device
JP6053278B2 (ja) 2画面表示装置
KR100908964B1 (ko) 컬러 표시 장치
US8289480B2 (en) Liquid crystal display device
JP4407690B2 (ja) 液晶表示装置
WO2021254255A1 (zh) Lcd面板和显示装置
JP2006259135A (ja) 表示装置およびカラーフィルタ基板
TWI606275B (zh) 畫素矩陣及其顯示方法
US20190146271A1 (en) Transparent liquid crystal display
KR20090103789A (ko) 영상 신호 처리 회로, 표시 장치, 액정 표시 장치, 투사형 표시 장치 및 영상 신호 처리 방법
TWI608281B (zh) 顯示面板
KR20160029195A (ko) 액정 표시 장치
US8319918B2 (en) Multi-domain display using fringe fields
JP2012118538A (ja) カラー表示装置,液晶表示装置、および半透過液晶表示装置
JP2015099331A (ja) 液晶表示装置
JP2016071363A (ja) 半透過半反射型液晶パネル
US10714029B2 (en) Display device having a plurality of subpixel electrodes arranged in different directions
JP4917377B2 (ja) ディスプレイ装置
US20230176430A1 (en) Display device
WO2020008921A1 (ja) 表示装置
JP2008268839A (ja) 画像表示装置
WO2011081160A1 (ja) 液晶表示装置
JP2006010980A (ja) 表示装置及びその画像表示方法
JP4501979B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825411

Country of ref document: EP

Kind code of ref document: A1