WO2021253876A1 - 光伏快速关断***的控制方法及其应用装置和*** - Google Patents

光伏快速关断***的控制方法及其应用装置和*** Download PDF

Info

Publication number
WO2021253876A1
WO2021253876A1 PCT/CN2021/079463 CN2021079463W WO2021253876A1 WO 2021253876 A1 WO2021253876 A1 WO 2021253876A1 CN 2021079463 W CN2021079463 W CN 2021079463W WO 2021253876 A1 WO2021253876 A1 WO 2021253876A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
photovoltaic
bus
current
switch
Prior art date
Application number
PCT/CN2021/079463
Other languages
English (en)
French (fr)
Inventor
杨宇
俞雁飞
徐君
陈巧地
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to EP21826158.4A priority Critical patent/EP4167422A1/en
Priority to US17/914,702 priority patent/US20230291201A1/en
Priority to AU2021290491A priority patent/AU2021290491B9/en
Publication of WO2021253876A1 publication Critical patent/WO2021253876A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the technical field of photovoltaic grid-connected power generation, and more specifically, relates to a control method of a photovoltaic rapid shutdown system and an application device and system thereof.
  • photovoltaic power generation technology As a renewable energy power generation technology, photovoltaic power generation technology has been widely used.
  • the photovoltaic array in the photovoltaic system outputs direct current, which is converted into alternating current by an inverter and then transmitted to the grid.
  • the voltage of the series photovoltaic array is very high.
  • it is required to be shut down quickly when a safety fault occurs; when the safety fault disappears, it is required to resume power generation, that is, each photovoltaic system in the photovoltaic system
  • the module switcher is turned on again, so that the photovoltaic module connected to it can realize electric energy output.
  • the central controller in order to start the photovoltaic module switcher, the central controller needs to continuously send the heartbeat communication signal, or the switch-off control module located on the DC bus needs to send the periodic excitation pulse source; and in these two solutions, not only The corresponding sending module needs to be added to the photovoltaic inverter system, and an additional receiving module is also needed in the photovoltaic module switch-off, which increases the rapid shutdown cost of the photovoltaic system.
  • the purpose of the present invention is to provide a control method of a photovoltaic fast shutdown system and an application device and system thereof, which are used to reduce the number of photovoltaic module shutdown devices on the basis of realizing the startup and fast shutdown of the photovoltaic system.
  • the receiving module thereby reducing the hardware cost of the photovoltaic fast shutdown system.
  • the first aspect of the present invention discloses a control method of a photovoltaic quick shutdown system, including:
  • the inverter system in the photovoltaic fast shutdown system determines whether the photovoltaic fast shutdown system needs to enter a preset safe state; if the photovoltaic fast shutdown system does not need to enter a preset safe state, the photovoltaic fast shutdown system is Turn off the DC bus in the system to apply voltage and/or current fluctuations; otherwise, stop applying voltage and/or current fluctuations to the DC bus;
  • the photovoltaic module shut-off device in the photovoltaic fast shutdown system determines whether the voltage and/or current of the DC bus connected to it meets the preset conditions; if the voltage and/or current of the DC bus connected to it meets the preset conditions; Or if the current meets the preset condition, control/maintain itself to turn on; otherwise, control/maintain itself to turn off.
  • the time interval during which the inverter system applies voltage and/or current fluctuations to the DC bus is less than the fast shutdown time of the photovoltaic fast shutdown system; and/or,
  • the duration during which the inverter system stops applying voltage and/or current fluctuations to the DC bus is greater than or equal to the fast turn-off time.
  • the preset safety state is: each photovoltaic component switch-off device restricts the corresponding photovoltaic component to realize electric energy output, so that the voltage of the DC bus is less than the preset voltage value within the first preset time.
  • the method before applying voltage and/or current fluctuations to the DC bus in the photovoltaic fast shutdown system, the method further includes:
  • the inverter system judges whether the photovoltaic fast shutdown system has a fault; if there is no fault, executes the steps of applying voltage and/or current fluctuations to the DC bus in the photovoltaic fast shutdown system; otherwise, executes the stop The step of applying voltage and/or current fluctuations to the DC bus.
  • the fault includes: at least one of a grid voltage failure, a grid frequency failure, a ground impedance failure, a DC arcing failure, a manual pressing of a quick turn-off control switch, and a manual shutdown failure.
  • the preset condition includes: a fluctuation greater than a corresponding threshold occurs within a second preset time; wherein the second preset time is less than the fast shutdown time of the photovoltaic fast shutdown system.
  • the photovoltaic module shut-off device in the photovoltaic rapid shutdown system is based on its own output
  • the parameters to determine whether the voltage and/or current of the DC bus to which it is connected meet the preset conditions include:
  • the photovoltaic module shutdown device extracts the effective value of the AC ripple within the second preset time from the output parameter, and determines whether the effective value is greater than or equal to the set AC ripple value; if the effective value is Is greater than or equal to the preset AC ripple value, then it is determined that the voltage and/or current of the DC bus connected to itself meets the preset conditions; otherwise, it is determined that the voltage and/or current of the DC bus connected to itself does not meet the said Pre-conditions.
  • the photovoltaic module shut-off device in the photovoltaic rapid shutdown system is based on its own output
  • the parameters to determine whether the voltage and/or current of the DC bus to which it is connected meet the preset conditions include:
  • the photovoltaic module switch-off device determines whether the difference between the average value of the output parameter of the two current stable periods before and after the moment when the output parameter fluctuation is detected within the second preset time is greater than the corresponding preset value; if the average value of the output parameter is different If the value is greater than the corresponding preset value, it is determined that the voltage and/or current of the DC bus connected to itself meets the preset condition; otherwise, it is determined that the voltage and/or current of the DC bus connected to itself does not meet the preset condition condition.
  • the output parameters include the output voltage value
  • the photovoltaic module switch-off in the photovoltaic fast shutdown system judges itself based on its own output parameters Whether the voltage and/or current of the connected DC bus meet the preset conditions include:
  • the photovoltaic module shut-off device determines whether the voltage before and after the voltage fluctuation is greater than the preset voltage value at the time when the voltage fluctuation is detected within the second preset time; if the voltage before and after the voltage difference is greater than the preset voltage value, it determines itself The voltage of the connected DC bus satisfies the preset condition; otherwise, it is determined that the voltage of the DC bus to which it is connected does not meet the preset condition.
  • the second aspect of the present invention discloses an inverter system, including: a DC voltage control circuit and an inverter;
  • the output terminal of the DC voltage control circuit is connected to the positive pole and/or the negative pole of the DC bus;
  • the DC side of the inverter is connected with the positive and negative poles of the DC bus in the photovoltaic fast shutdown system;
  • the inverter combined with the DC voltage control circuit enables the inverter system to determine whether the photovoltaic fast shutdown system needs to enter a preset safe state; if the photovoltaic fast shutdown system does not need to enter a preset safe state State, apply voltage and/or current fluctuations to the DC bus; otherwise, stop applying voltage and/or current fluctuations to the DC bus.
  • the inverter is used for:
  • the DC voltage control circuit is: a starting voltage module whose input terminal is connected to an energy storage system or a power grid;
  • the start-up voltage module is used to, according to the control of the inverter, apply/stop applying DC voltages of different amplitudes to the corresponding DC bus multiple times.
  • the starting voltage module includes: a transformer, a diode rectifier bridge, and a starting DC/DC circuit;
  • the primary winding of the transformer is connected to the power grid
  • the secondary winding of the transformer is connected to the input end of the diode rectifier bridge;
  • the positive and negative poles of the output ends of the diode rectifier bridge are respectively connected to one end of the start-up DC/DC circuit;
  • the other end of the start-up DC/DC circuit is used as the output end of the start-up voltage module.
  • the transformer is an isolation power frequency transformer or a high frequency isolation transformer
  • the starting DC/DC circuit is a buck circuit, a boost circuit or a buck-boost circuit.
  • the DC voltage control circuit is a DC voltage controller independently arranged on the DC bus, and the communication mode between the DC voltage controller and the inverter is: power line carrier, wireless communication or Wired communication.
  • the DC voltage controller is also used to realize the maximum power point tracking of the DC bus.
  • the third aspect of the present invention discloses a photovoltaic fast shutdown system, including: at least one shutdown system and at least one inverter system according to any one of the second aspect of the present invention, the shutdown system includes: a DC bus, At least N photovoltaic modules and N photovoltaic module switch-offs, N is a positive integer, where:
  • each of the photovoltaic module shutdown devices are cascaded, and the input terminals of each photovoltaic module shutdown device are respectively connected to the output terminals of each corresponding photovoltaic module; each photovoltaic module is turned off
  • the cascaded positive pole of the inverter is connected to the positive pole of the corresponding DC interface of the inverter system through the DC bus positive pole;
  • the cascaded negative pole of each photovoltaic module switch is connected to the inverter system through the DC bus negative pole
  • the corresponding DC interface is connected to the negative pole.
  • the photovoltaic module shutdown device includes: a switch unit, a drive circuit, a processor, a parameter sampling unit, a bypass diode, and an output voltage stabilizing capacitor;
  • the switch unit is arranged on the positive branch or the negative branch of the photovoltaic module switch, and is used to switch on or off the photovoltaic module switch according to the control of the processor;
  • the parameter collection module is configured to collect output parameters of the photovoltaic module switch, and output the collected output parameters to the processor;
  • the bypass diode is used to realize the bypass function of the photovoltaic module shut-off device when the photovoltaic module shut-off device is turned off;
  • the output voltage stabilizing capacitor is used to stabilize the output voltage of the photovoltaic module shutdown device
  • the output terminal of the processor is connected to the control terminal of the switch unit through the drive circuit; the processor is used to combine the parameter acquisition module, the drive circuit, the output voltage stabilizing capacitor, and the switch unit , Enabling the photovoltaic module switch-off device to determine whether the voltage and/or current of the DC bus to which it is connected meets the preset conditions according to its own output parameters; if the voltage and/or current of the DC bus to which it is connected meets the preset conditions Preset conditions, then control/maintain self-opening; otherwise, control/maintain self-closing.
  • the parameter collection module includes: an output voltage collection unit and an output current collection unit;
  • the output current collection unit is used to collect the output current of the photovoltaic module switch
  • the output voltage collecting unit is used to collect the output voltage of the photovoltaic module switch.
  • the parameter collection module further includes: an input voltage collection unit for collecting the input voltage of the photovoltaic module switch.
  • the current collection unit is arranged on the negative branch of the photovoltaic module shut-off device, between the anode of the bypass diode and the output terminal negative electrode of the photovoltaic module shut-off device; or,
  • the current sampling unit is arranged on the negative branch of the photovoltaic module switcher, between the anode of the bypass diode and the negative input of the output voltage collecting unit; or,
  • the current collection unit is arranged on the positive branch of the photovoltaic module switch, between the cathode of the bypass diode and the output terminal of the photovoltaic module switch; or,
  • the current collection unit is arranged on the positive branch of the photovoltaic module switch, between the cathode of the bypass diode and the positive input terminal of the output voltage collection unit.
  • the switch unit includes at least one switch tube module
  • the input terminal of the switch tube module serves as the input terminal of the switch unit, and the output terminal of the switch tube module serves as the output terminal of the switch unit;
  • the switch The control terminal of the module serves as the control terminal of the switch unit;
  • the input end of the series branch formed by each of the switch tube modules in series is used as the input end of the switch unit, and the output end of the series branch is used as the switch The output terminal of the unit; the control terminal of each switch module is used as the control terminal of the switch unit.
  • the inverter system in the photovoltaic fast shutdown system determines whether the photovoltaic fast shutdown system needs to enter a preset safe state; The system does not need to enter the preset safe state, then apply voltage and/or current fluctuations to the DC bus in the photovoltaic fast shutdown system; otherwise, stop applying voltage and/or current fluctuations to the DC bus; the photovoltaic fast shutdown system of the photovoltaic components
  • the switch judges whether the voltage and/or current of the DC bus connected to it meets the preset conditions; if the voltage and/or current of the DC bus connected to it meets the preset conditions, it controls/maintains Turn on itself; otherwise, control/maintain its own turn off; therefore, the photovoltaic module switcher performs turn-on or turn-off based on the fluctuation of the DC bus voltage and/or current, that is, it only passes through its own original sampling device, The switch-on/off
  • FIG. 1 is a schematic diagram of a control method of a photovoltaic quick shutdown system provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another control method of a photovoltaic quick shutdown system provided by an embodiment of the present invention
  • Fig. 3 is a schematic diagram of a current disturbance provided by an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of another current disturbance provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the voltage of a DC bus and the output voltage of a photovoltaic module switch provided by an embodiment of the present invention
  • Fig. 6 is a schematic diagram of a photovoltaic module shut-off device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an inverter system in a photovoltaic fast shutdown system provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another inverter system in a photovoltaic fast shutdown system provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another inverter system in a photovoltaic fast shutdown system provided by an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of a photovoltaic quick shutdown system provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another photovoltaic quick shutdown system provided by an embodiment of the present invention.
  • Fig. 12 is a schematic diagram of another photovoltaic quick shutdown system provided by an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a starting voltage module in an inverter system provided by an embodiment of the present invention.
  • Fig. 14 is a schematic diagram of another photovoltaic quick shutdown system provided by an embodiment of the present invention.
  • Fig. 15 is a schematic diagram of another photovoltaic quick shutdown system provided by an embodiment of the present invention.
  • the terms “include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes no Other elements clearly listed, or also include elements inherent to this process, method, article, or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, article, or equipment that includes the element.
  • the embodiment of the present invention provides a control method of a photovoltaic rapid shutdown system, which is used to solve the problem that an additional receiving module needs to be provided in the photovoltaic module shutdown device in the prior art, thereby increasing the hardware cost of the photovoltaic module shutdown device.
  • the photovoltaic fast shutdown system includes: at least one shutdown system and at least one inverter system 204, the shutdown system includes: a DC bus 203, at least N photovoltaic modules 201, and N photovoltaic module shutoffs 202, N is a positive integer, where:
  • each photovoltaic module switch 202 In the shutdown system, the output terminals of each photovoltaic module switch 202 are cascaded, and the input terminals of each photovoltaic module switch 202 are respectively connected to the output terminals of each corresponding photovoltaic module 201; each photovoltaic module switch 202 has a stage The connected positive pole is connected to the positive pole of the corresponding DC interface of the inverter system 204 through the positive pole of the DC bus 203; the cascaded negative pole of each photovoltaic module switch 202 is connected to the negative pole of the corresponding DC interface of the inverter system 204 through the negative pole of the DC bus 203.
  • the control method of the photovoltaic fast shutdown system includes:
  • the inverter system judges whether the photovoltaic quick shutdown system needs to enter a preset safe state.
  • the preset safety state is: each photovoltaic module switch-off device limits the corresponding photovoltaic module to achieve electrical energy output, so that the voltage of the DC bus is less than the preset voltage value within the first preset time, that is, the DC The bus voltage is maintained at a lower voltage value.
  • the first preset time is not specifically limited here, it depends on the actual situation, and it is within the protection scope of this application.
  • whether the photovoltaic quick shutdown system needs to enter a preset safe state can be determined according to an instruction from an upper computer, or it can be determined by a voltage detection result, which is the same as the prior art and is not specifically limited here.
  • step S102 is executed, and if the photovoltaic quick shutdown system needs to enter the preset safe state, step S103 is executed.
  • the inverter system applies voltage and/or current fluctuations to the DC bus.
  • the purpose of applying voltage and/or current fluctuations to the DC bus is to change the characteristics of the constant DC state of the voltage and/or current on the DC bus.
  • the voltage and/or current fluctuations of the DC bus are transmitted to the photovoltaic module switcher.
  • the output terminal of the photovoltaic module can know whether it is allowed to turn on.
  • the inverter system controls its own starting power module to apply voltages of different amplitudes to the DC bus multiple times to achieve the purpose of starting each photovoltaic module switch on the DC bus.
  • the amplitude of the applied voltage and its duration are jointly agreed by the photovoltaic module switcher and the inverter system, and are not specifically limited here, and they are all within the protection scope of the present application.
  • the time interval for the inverter system to apply voltage and/or current fluctuations to the DC bus is less than that of the photovoltaic module.
  • the fast shutdown time of the fast shutdown system that is, the fast shutdown time specified in the relevant standards, such as the 30 seconds specified in the standard NEC2017; therefore, as long as the inverter system continues to apply voltage and/or current fluctuations to the DC bus, and If the fluctuation interval is less than the fast turn-off time, the photovoltaic module shut-off device can maintain the turn-on state, and there will be no accidental turn-off.
  • the specific value of the fast turn-off time is not specifically limited here, it depends on the actual situation, and it is within the protection scope of the present application.
  • the inverter system stops applying voltage and/or current fluctuations to the DC bus.
  • the voltage and/or current of the DC bus will be in a constant DC state, and the voltage and/or current delivered by the DC bus to the output terminal of the photovoltaic module switch is also Constant DC state.
  • the duration of the voltage and/or current fluctuations applied to the DC bus should be longer than or equal to The fast shutdown time of the photovoltaic fast shutdown system, that is, the fast shutdown time specified in the relevant standards; therefore, the inverter system stops applying voltage and/or current fluctuations to the DC bus, and the duration is greater than or equal to the fast shutdown time, Then the photovoltaic module shut-off device does not detect the characteristic of fluctuation, and the duration is greater than or equal to the fast shut-off time, then it controls itself to shut down.
  • the photovoltaic module switcher judges whether the voltage and/or current of the DC bus to which it is connected meets a preset condition according to its own output parameters.
  • the output parameters are proportional to the voltage and/or current of the DC bus to which it is connected; therefore, when the inverter system controls the DC bus voltage fluctuation, the output voltage of the photovoltaic module switcher also changes accordingly; in the inverter system control When the DC bus current fluctuates, the output current of the photovoltaic module switcher will also change accordingly.
  • the preset conditions include: fluctuations greater than the corresponding threshold occur within the second preset time; wherein the second preset time is less than the fast shutdown time of the photovoltaic fast shutdown system; that is, if the Before the quick turn-off time is reached, the PV module switcher detects that the DC bus voltage and/or current fluctuates greater than the corresponding threshold value, and then determines that the preset condition is met; if the PV module switcher has not detected the DC bus voltage And/or the current fluctuates greater than the corresponding threshold and the duration is greater than the fast turn-off time, it is determined that the preset condition is not met.
  • the specific process of this step S104 is: judging whether the DC bus connected to oneself has deliberately applied voltage fluctuations according to its own output voltage; or judging whether the DC bus connected to oneself has deliberately applied voltage fluctuations according to its own output current Current fluctuations.
  • step S102 the way the inverter system applies fluctuations to the DC bus in step S102 is different, and the way to determine whether fluctuations occur in step S104 is also different, specifically:
  • step S104 includes: the photovoltaic module switcher extracts the effective value of the AC ripple within the second preset time from its own output parameters, and determines whether the effective value is greater than or equal to the set AC ripple value; if valid If the value is greater than or equal to the preset AC ripple value, it is determined that the voltage and/or current of the DC bus connected to the oneself meets the preset condition; otherwise, it is determined that the voltage and/or current of the DC bus connected to the oneself does not meet the preset condition.
  • the preset frequency here can be set as the second preset frequency in practical applications.
  • the second preset frequency is less than or equal to the first preset frequency to illustrate that the voltage and/or current slowly fluctuate when applied at this time, that is, when the voltage and/or current disturbance schematic diagram shown in FIG.
  • step S104 includes: the photovoltaic module switcher determines the current average of the two output parameter stable periods before and after the output parameter fluctuation is detected within the second preset time Whether the value difference is greater than the corresponding preset value, if the difference is greater than the preset current value, it is determined that the voltage and/or current of the DC bus connected to itself meet the preset conditions; otherwise, it is determined that the voltage and/or voltage of the DC bus connected to itself Or the current does not meet the preset conditions.
  • the fluctuation time is at 5S, and judge whether the difference between the average current value of 0S-5S and the average current value of 5S-15S is greater than the preset current value; If the value is greater than the preset current value, it is determined that the current of the DC bus connected to the self meets the preset condition; otherwise, it is determined that the current of the DC bus connected to the self does not meet the preset condition.
  • step S104 includes: the photovoltaic module switch-off determines that within the second preset time Whether the voltage difference before and after the voltage fluctuation is greater than the preset voltage value when the voltage fluctuation is detected; if the voltage before and after the difference is greater than the preset voltage value, it is determined that the voltage of the DC bus connected to itself meets the preset condition; otherwise, it is determined that the DC connected to itself The voltage of the bus does not meet the preset conditions.
  • the inverter system can suddenly change its own AC output power within one or several grid cycles to apply rapid fluctuations in voltage and/or current to the DC bus; it can also slowly change its own DC input current, To apply voltage and/or current to the DC bus slowly fluctuate; it is also possible to apply multiple voltages of different amplitudes to the DC bus through its internal starting voltage module.
  • the DC voltage controller can implement the above functions. For details, please refer to the inverter system below. Examples.
  • step S105 if the voltage and/or current of the DC bus connected to itself meets the preset condition, step S105 is executed; and if the voltage and/or current of the DC bus connected to itself does not meet the preset condition, execute Step S106.
  • the shutdown device of the photovoltaic module controls/maintains itself to be turned on.
  • the current state of the photovoltaic module switcher is in the on state, it will maintain its own turn on; if the current state is in the off state, it will control itself to turn on so that it is in the on state.
  • the shutdown device of the photovoltaic module controls/maintains itself to shut off.
  • the current state of the photovoltaic module shut-off device is in the on state, it controls itself to be turned off; if the current state is in the off state, it keeps itself off to keep itself in the off state.
  • the photovoltaic module switcher is turned on or off based on the fluctuation of voltage and/or current, that is, it can realize the photovoltaic module only through its original voltage/current sampling device.
  • the turn-on/turn-off communication between the switch and the inverter system eliminates the need to set up additional corresponding receiving equipment, which reduces the hardware cost of the photovoltaic module switch-off and the hardware cost of the photovoltaic fast turn-off system; accordingly, In the inverter system, there is no need to set the turn-on signal sending module, only the module that controls the voltage and/or current fluctuations, thereby reducing the hardware cost of the photovoltaic fast shutdown system.
  • this application uses low-power voltage and current characteristics, which is more reliable and stable, avoids susceptible problems such as power line carrier communication and wireless communication, and improves the stability of the photovoltaic fast shutdown system.
  • the method further includes:
  • the inverter system judges whether the photovoltaic quick shutdown system has a fault.
  • the fault includes at least one of a power grid voltage fault, a power grid frequency fault, a ground impedance fault, a DC arcing fault, a manual quick turn-off control switch, and a manual shutdown fault.
  • step S102 If there is no fault, such as after the fault disappears, step S102 is executed; and if there is a fault, step S103 is executed.
  • the inverter system first judges whether there is a fault before applying voltage and/or current disturbances to control the opening of the photovoltaic module switch-off, so as to avoid the photovoltaic module switch-off when there is a fault in the photovoltaic fast shut-off system. Turning on and the corresponding photovoltaic components realize electric energy output, which leads to the problem of damage to the internal components of the inverter system, and improves the safety of the photovoltaic fast shutdown system.
  • the embodiment of the present invention provides an inverter system, see FIG. 7, including: a DC voltage control circuit (303 shown in FIGS. 7 and 15 or 214 shown in FIGS. 8 and 14) and an inverter 205.
  • a DC voltage control circuit (303 shown in FIGS. 7 and 15 or 214 shown in FIGS. 8 and 14) and an inverter 205.
  • the output terminal of the DC voltage control circuit is connected to the positive pole of the DC bus (as shown in Figure 14 and Figure 15), or the output terminal of the DC voltage control circuit is connected to the positive and negative poles of the DC bus (as shown in Figure 8 and Figure 7). ), or, the output terminal of the DC voltage control circuit is connected to the negative pole of the DC bus (not shown); the DC side of the inverter 205 is connected to the positive and negative poles of the DC bus in the photovoltaic fast shutdown system.
  • the auxiliary power supply of the inverter is supplied by the grid; when the inverter supports off-grid operation, the auxiliary power supply of the inverter is supplied by the grid or an energy storage system.
  • the inverter 205 combined with the DC voltage control circuit enables the inverter system to implement the corresponding steps in the control method of the photovoltaic fast shutdown system described in the above embodiment, which specifically includes: judging whether the photovoltaic fast shutdown system needs to enter a preset safe state ; If the photovoltaic fast shutdown system does not need to enter the preset safe state, apply voltage and/or current fluctuations to the DC bus; otherwise, stop applying voltage and/or current fluctuations to the DC bus.
  • the DC voltage control circuit can be a DC voltage controller 214 (see FIG. 8 and FIG. 14) independently installed on the DC bus, or it may be a starting voltage module 303 (see FIG. 7 and FIG. 14) installed in the inverter 205. As shown in Figure 15); specifically, the two setting positions are described as follows:
  • the DC voltage control circuit is the starting voltage module 303 provided in the inverter 205; the inverter 205 also includes: internal controller (not shown), DC/DC Circuit 302 and inverter circuit 301.
  • the positive and negative ends of the DC/DC circuit 302 are respectively connected to the positive and negative terminals of the output terminal of the starting voltage module 303, and the two connection points are respectively used as the positive and negative electrodes of the DC side of the inverter 205; the DC/DC circuit 302 The other end of is connected to the DC side of the inverter circuit 301; the AC side of the inverter circuit 301 serves as the AC side of the inverter 205.
  • the positive pole of one end of the DC/DC circuit 302 is connected to the negative pole of the output terminal of the starting voltage module 303.
  • the positive pole of the output terminal of the starting voltage module 303 serves as the positive pole of the DC side of the inverter 205.
  • One end of the negative pole of 302 serves as the negative pole of the DC side of the inverter 205; the other end of the DC/DC circuit 302 is connected to the DC side of the inverter circuit 301; and the AC side of the inverter circuit 301 serves as the AC side of the inverter 205.
  • the DC/DC circuit 302 is a Boost circuit, such as a basic boost circuit (as shown in FIG. 7) or a three-level boost circuit (a flying capacitor type three-level boost circuit as shown in FIG. 9).
  • Boost circuit such as a basic boost circuit (as shown in FIG. 7) or a three-level boost circuit (a flying capacitor type three-level boost circuit as shown in FIG. 9).
  • the DC/DC circuit 302 is a basic boost circuit; specifically, one end of the inductor L1 is connected to one end of the input capacitor Cin, the connection point is connected to the positive output terminal of the starting voltage module 303, and the other end of the inductor L1 They are respectively connected to one end of the switching tube K1 and one end of the diode D1, the cathode of the diode D1 is connected to the positive pole of the DC side of the inverter circuit 301, the other end of the switching tube K1 is connected to the other end of the input capacitor Cin, and the connection points are respectively connected to the starting voltage The negative pole of the output terminal of the module 303 and the negative pole of the DC side of the inverter circuit 301 are connected.
  • the DC/DC circuit 302 is a flying capacitor type three-level boost circuit; specifically, one end of the inductor L11 is connected to the input capacitor One end of C10 is connected, and the connection point is connected to the anode of the output terminal of the starting voltage module 303.
  • the other end of the inductor L11 is connected to one end of the switch K2 and one end of the diode D11.
  • the cathode of the diode D11 is connected to the anode and the flying jumper of the diode D12.
  • One end of the capacitor C12 is connected, the cathode of the diode D12 is connected to the positive pole of the DC side of the inverter circuit 301, the other end of the switch K2 is connected to one end of the switch K3 and the other end of the flying capacitor C12, and the other end of the switch K3 It is connected to the other end of the input capacitor Cin, and the connection points are respectively connected to the negative pole of the output terminal of the starting voltage module 303 and the negative pole of the DC side of the inverter circuit 301.
  • the starting voltage module 303 is used to apply multiple different amplitude DC voltages to the corresponding DC bus according to the control of the inverter 205; the starting voltage module 303 is provided by the energy storage system or the grid Input electric energy, that is, the input end of the start-up voltage module 303 is connected to the power grid or the energy storage battery in the energy storage system.
  • the starting voltage module 303 when the starting voltage module 303 is provided by the grid to provide input power, the starting voltage module 303 includes: a transformer 501, a diode rectifier bridge (including D21, D22, D23, and D24 as shown in FIG. 13) and a starting DC/DC Circuit (including C5, R5, K5 and D5 as shown in Figure 13).
  • the primary winding of the transformer 501 is connected to the power grid; the secondary winding of the transformer 501 is connected to the input end of the diode rectifier bridge, and the positive and negative electrodes of the output end of the diode rectifier bridge are respectively connected to one end of the starting DC/DC circuit; the starting DC/DC circuit The other end of is used as the output end of the starting voltage module 303.
  • the transformer 501 is an isolation power frequency transformer or a high frequency isolation transformer; the startup DC/DC circuit is a buck circuit, a boost circuit or a buck-boost circuit.
  • the transformer 501 is a small step-down transformer. For example, it can convert an AC 220V grid voltage into an AC 15V voltage source, and then convert it into a DC voltage after passing through a diode rectifier bridge. It can be adjusted by adjusting the duty cycle of the switch tube K5 in the Buck circuit. Different DC voltages are output, and the duty cycle of the switch tube K5 is not specifically limited here, and it may be within the protection scope of the present application depending on the actual situation.
  • the inverter 205 can be used to quickly change its own AC output power within at least one grid cycle to impose current fluctuations with a fluctuation frequency greater than a preset frequency on the DC bus; or, it can also be used to change its own DC at a low speed. Input current to apply current fluctuations with a fluctuation frequency less than the preset frequency to the DC bus.
  • the DC voltage control circuit is a DC voltage controller 214 independently arranged on the DC bus; specifically, as shown in FIG. 8, the positive and negative poles of one side of the DC voltage controller 214
  • the positive and negative poles of the DC bus 203 are respectively connected correspondingly, and the positive and negative poles of the other side of the DC voltage controller 214 are respectively connected to the positive and negative poles of the DC side of the inverter 205.
  • the inverter 205 includes: an internal controller and an inverter circuit; wherein the DC side of the inverter circuit is used as the DC side of the inverter 205; the AC side of the inverter circuit is used as the AC side of the inverter 205.
  • the positive output terminal of the DC voltage controller 214 is connected to the positive pole of the DC bus 203
  • the negative output terminal of the DC voltage controller 214 is connected to the positive pole of the DC side of the inverter 205
  • the negative pole of the DC side of the inverter 205 is connected.
  • the inverter 205 includes: an internal controller and an inverter circuit; wherein the DC side of the inverter circuit is used as the DC side of the inverter 205; the AC side of the inverter circuit is used as the AC side of the inverter 205.
  • the communication mode between the DC voltage controller 214 and the inverter 205 is: power line carrier, wireless communication or wired communication. Of course, it can also be other communication methods, and there is no specific limitation here, as it depends on the actual situation, and they are all within the protection scope of this application.
  • the DC voltage controller 214 is also used to realize the maximum power point tracking of the DC bus 203.
  • the auxiliary power supply of the DC voltage controller 214 is supplied by the inverter 205, the power grid or the energy storage system.
  • the auxiliary power supply of the DC voltage controller 214 is not specifically limited here, and all are within the protection scope of the present application.
  • the turn-on or turn-off of the photovoltaic module switch can be controlled through the DC voltage control circuit, without the need to start the signal sending unit.
  • the start signal sending unit when the start signal sending unit is set, that is, when the equipment is added to the DC bus, a larger volume DC combiner box or an additional DC combiner box are required to cooperate with the installation during the installation process, which increases the construction cost. .
  • the embodiment of the present invention provides a photovoltaic fast shutdown system, referring to FIG. 10, including: at least one shutdown system and at least one inverter system 204, the shutdown system includes: a DC bus 203, at least N photovoltaic modules 201 and N A photovoltaic module switch-off 202, N is a positive integer, where:
  • each photovoltaic module switch 202 In the shutdown system, the output terminals of each photovoltaic module switch 202 are cascaded, and the input terminals of each photovoltaic module switch 202 are respectively connected to the output terminals of each corresponding photovoltaic module 201; each photovoltaic module switch 202 has a stage The connected positive pole is connected to the positive pole of the corresponding DC interface of the inverter system 204 through the positive pole of the DC bus 203; the cascaded negative pole of each photovoltaic module switch 202 is connected to the negative pole of the corresponding DC interface of the inverter system 204 through the negative pole of the DC bus 203. It should be noted that + means positive and positive, and-means negative.
  • each photovoltaic module switch-off 202 can be connected to only one photovoltaic module 201 (as shown in FIG. 11), and each photovoltaic module switch-off 202 can also be connected to multiple photovoltaic modules 201 (as shown in FIG. 10, as shown in FIG. 10). Two photovoltaic modules 201 are shown as an example).
  • the number of shut-off systems can be one (as shown in Figure 11 and Figure 10), or multiple (as shown in Figure 12, Figure 12 shows two shut-off systems as an example).
  • the number of photovoltaic modules 201 connected to each photovoltaic module shutoff 202 may be the same, or the number of photovoltaic modules 201 connected to each photovoltaic module shutoff 202 may be different, which is not specifically limited here. It depends on the actual situation, and they are all within the protection scope of this application.
  • inverter system 204 For the specific structure and working principle of the inverter system 204, refer to the inverter system 204 provided in the above-mentioned embodiment, which will not be repeated here.
  • the joint control of the photovoltaic module switch-off 202 and the inverter system 204 realizes the startup of the photovoltaic fast switch-off system, which is highly applicable to industries that provide both a switch-off device and an inverter.
  • the hardware cost of the photovoltaic module shutoff 202 and the inverter system 204 in the photovoltaic fast shutdown system is low, and correspondingly, the hardware cost of the photovoltaic fast shutdown system is also low.
  • the aforementioned photovoltaic module switch-off 202 includes: a switch unit (including Q1 and Q2 as shown in FIG. 6), a drive circuit 101, a processor 103, an output voltage stabilizing capacitor Co, a bypass diode Dp, and a parameter acquisition unit (As shown in Figure 6, it includes an input voltage acquisition unit 100, an output voltage acquisition unit 102 and a current acquisition unit 104); where:
  • the switch unit is arranged on the negative branch of the photovoltaic module switch-off 202 (not shown), or the switch unit is arranged on the positive branch of the photovoltaic module switch 202 (as shown in Fig. 6).
  • the switch module The input terminal of Q1 is used as the input terminal of the switch unit and is connected to the positive input terminal Uin+ of the photovoltaic module switch 202, the output terminal of the switch module Q1 is connected to the input terminal of the switch module Q2, and the output terminal of the switch module Q2 is used as the switch module's output terminal.
  • the output terminal; the switch unit is used to realize the turn-on or turn-off of the photovoltaic module switch 202 according to the control of the processor 103.
  • the switch unit includes at least one switch tube module ( Figure 6 shows two switch modules as an example); when the number of switch tube modules is 1, the input terminal of the switch tube module serves as the input terminal of the switch unit, The output terminal of the switch tube module is used as the output terminal of the switch unit; the control terminal of the switch module is used as the control terminal of the switch unit (not shown).
  • the input end of the series branch of each switch tube module in series is used as the input end of the switch unit, and the output end of the series branch is used as the output end of the switch unit; the control of each switch module Both terminals are used as the control terminal of the switch unit; for example, when the number of switch tube modules is 2, as shown in Figure 6, the input terminal of the switch module Q1 is used as the input terminal of the switch unit, and the input terminal of the photovoltaic module switch 202 is positive.
  • the output terminal of the switch module Q1 is connected with the input terminal of the switch module Q2
  • the output terminal of the switch module Q2 is used as the output terminal of the switch module
  • the control terminals of the switch modules Q1 and Q2 are used as the control terminal of the switch unit.
  • the switch module includes at least one switch tube (a switch tube is shown as an example in FIG. 6), and when the number of switch tubes is greater than one, each switch tube is connected in parallel and/or in series.
  • the switch tube is a semiconductor switching device, which can be a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor), as shown in Figure 6
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the parameter collection module is used to collect the output parameters of the photovoltaic module switch-off 202 and output the collected output parameters to the processor 103.
  • the parameter collection module includes: an input voltage collection unit 100, an output voltage collection unit 102, and a current collection unit 104.
  • the input voltage collecting unit 100 is arranged between the positive and negative poles of the input terminal of the photovoltaic module switch 202; specifically, the positive and negative terminals of the input voltage collecting unit 100 are respectively connected to the positive and negative poles of the input terminal of the photovoltaic module switch 202.
  • the output terminal of the input voltage collecting unit 100 is connected to the processor 103; the input voltage collecting unit 100 is used to collect the input voltage of the photovoltaic module switch-off 202, and output the collected input voltage to the processor 103.
  • the negative electrode of the input end of the photovoltaic module switch 202 is also used for grounding.
  • the output voltage collection unit 102 is arranged between the positive and negative poles of the output terminal of the photovoltaic module switch 202; specifically, the positive and negative poles of the output terminal of the output voltage collection unit 102 are respectively connected to the positive and negative poles of the output terminal of the photovoltaic module switch 202, and output
  • the output terminal of the voltage collecting unit 102 is connected to the processor 103; the output voltage collecting unit 102 is used to collect the output voltage of the photovoltaic module switch-off 202, and output the collected output voltage to the processor 103.
  • the current collection unit 104 is used to collect the output current of the photovoltaic module switch 202. When the switch unit is turned on, the bypass diode Dp is turned off, and the current collected by the current collection unit 104 is the output current of the photovoltaic module; when the switch unit is turned off, the current collected by the current collection unit 104 is the current passing through the bypass diode Dp.
  • the impedance of the current collecting unit 104 is very small, and the current collecting unit 104 has a variety of setting methods. The four setting methods are described below:
  • the current collection unit 104 is arranged on the negative branch of the photovoltaic module switch 202, between the anode of the bypass diode Dp and the output terminal Uout- of the photovoltaic module switch 202. Specifically, one end of the current collecting unit 104 is connected to the output terminal cathode Uout- of the photovoltaic module shut-off device 202, and the other end of the current collecting unit 104 is respectively connected to the anode of the bypass diode Dp and the input terminal cathode of the photovoltaic module shut-off device 202. Uin-connected.
  • the current collecting unit 104 is arranged on the negative branch of the photovoltaic module switch 202, between the anode of the bypass diode Dp and the anode of the input terminal of the output voltage collecting unit 102. Specifically, one end of the current collection unit 104 is connected to the anode of the bypass diode Dp and the negative input terminal Uin- of the photovoltaic module switch 202, and the other end of the current collection unit 104 outputs the positive input terminal of the voltage collection unit 102.
  • the pole is connected to the negative electrode Uout- of the output terminal of the photovoltaic module switch 202 (not shown).
  • the current collecting unit 104 is arranged on the anode branch of the photovoltaic module switch-off 202, between the cathode of the bypass diode Dp and the output terminal anode Uout+ of the photovoltaic module switch-off 202. Specifically, one end of the current collecting unit 104 is connected to the anode Uout+ of the output terminal of the photovoltaic module switch 202, and the other end of the current collecting unit 104 is connected to the cathode of the bypass diode Dp (not shown).
  • the current collecting unit 104 is arranged on the anode branch of the photovoltaic module switch 202, between the cathode of the bypass diode Dp and the anode of the input terminal of the output voltage collecting unit 102. Specifically, one end of the current collection unit 104 is respectively connected to the anode Uout+ of the output terminal of the photovoltaic module switch 202 and the input terminal of the output voltage collection unit 102, and the other end of the current collection unit 104 is connected to the cathode of the bypass diode Dp ( Not shown).
  • the anode of the bypass diode Dp is connected to the cathode Uout- of the output terminal of the photovoltaic module switch 202, and its cathode is connected to the anode Uout+ of the output terminal of the photovoltaic module switch 202; the bypass diode Dp is used in the photovoltaic module switch When 202 is switched off, the bypass function of the photovoltaic module switch 202 is realized.
  • the two ends of the output voltage stabilizing capacitor Co are respectively connected to the positive and negative poles of the output terminal of the photovoltaic module switch-off 202; as shown in FIG.
  • the cathode of the circuit diode Dp, the anode of the input terminal of the output voltage acquisition unit 102 and the output terminal of the switch unit are connected, and the other end of the output voltage stabilizing capacitor Co is connected to the cathode of the input terminal of the output voltage acquisition unit 102, the anode of the bypass diode Dp and One end of the current collecting unit 104 is connected; the output voltage stabilizing capacitor Co is used to stabilize the output voltage of the photovoltaic module shut-off device 202.
  • the output terminal of the processor 103 is connected to the control terminal of the switch unit through the drive circuit 101; the processor 103 is used to combine the parameter acquisition module, the drive circuit 101, and the switch unit, so that the photovoltaic module switch 202 can implement the photovoltaic module described in the above embodiment.
  • the corresponding steps in the control method of the fast shutdown system specifically include: judging whether the voltage and/or current of the DC bus connected to it meets the preset conditions according to its own output parameters; if the voltage and/or current of the DC bus connected to it meets the preset conditions; / Or the current meets the preset condition, then control/maintain itself to turn on; otherwise, control/maintain itself to turn off.
  • the photovoltaic module switch-off 202 can realize its own turn-on and turn-off through the output parameters collected by its own parameter collection unit. There is no need to use communication signals and no need to set up additional signal receiving modules to receive the output of the inverter system. The switch on/off of the communication signal reduces the hardware cost of the photovoltaic module switch 202.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

提供一种光伏快速关断***的控制方法及其应用装置和***,逆变***若判断出光伏快速关断***不需要进入预设安全状态,则对直流总线施加电压和/或电流波动;光伏组件关断器(202)依据自身的输出参数进行判断;并在自身所连接的直流总线(203)的电压和/或电流是否满足预设条件时,控制/维持自身开通;因此,光伏组件关断器(202)执行开通或关断的依据是直流总线(203)的电压和/或电流的波动情况,也即其仅通过自身原有的采样器件,即可实现光伏组件关断器(202)与逆变***之间的通信,光伏组件关断器(202)无需再额外设置相应的接收设备,仅需逆变***中增加相应的发送设备即可,降低了光伏快速关断***的硬件成本。

Description

光伏快速关断***的控制方法及其应用装置和***
本申请要求于2020年06月15日提交中国专利局、申请号为202010542614.8、发明名称为“光伏快速关断***的控制方法及其应用装置和***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于光伏并网发电技术领域,更具体的说,尤其涉及一种光伏快速关断***的控制方法及其应用装置和***。
背景技术
光伏发电技术作为一种可再生能源发电技术,得到广泛应用。光伏***中的光伏阵列输出直流电,经逆变器变换成交流电后传输至电网。然而,串联光伏阵列的电压很高,为了提高光伏***的安全性,在出现安全故障时,要求其能够快速关断;当安全故障消失后,要求其恢复发电,也即光伏***中的各个光伏组件关断器重新开通,使自身所连接的光伏组件实现电能输出。
现有技术中,为了启动光伏组件关断器需要中央控制器持续发送心跳通讯信号,或者,需要位于直流总线上的关断控制模块发送周期性激励脉冲源;而这两种方案中,不但在光伏逆变***中需增加相应的发送模块,并且光伏组件关断器中也需设置额外的接收模块,从而增加了光伏***的快速关断成本。
发明内容
有鉴于此,本发明的目的在于提供一种光伏快速关断***的控制方法及其应用装置和***,用于在实现光伏***启动及快速关断的基础之上,减少光伏组件关断器中的接收模块,从而降低光伏快速关断***的硬件成本。
本发明第一方面公开了一种光伏快速关断***的控制方法,包括:
所述光伏快速关断***中的逆变***判断所述光伏快速关断***是否需要进入预设安全状态;若所述光伏快速关断***不需要进入预设安全状态,则对所述光伏快速关断***中的直流总线施加电压和/或电流波动;否则停止对所述直流总线施加电压和/或电流波动;
所述光伏快速关断***中的光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件;若自身所连接的直流总线的电压和/或电流满足预设条件,则控制/维持自身开通;否则控制/维持 自身关断。
可选的,所述逆变***对所述直流总线施加电压和/或电流波动的时间间隔小于所述光伏快速关断***的快速关断时间;和/或,
所述逆变***停止对所述直流总线施加电压和/或电流波动的持续时间,大于等于所述快速关断时间。
可选的,所述预设安全状态为:各个光伏组件关断器限制对应的光伏组件实现电能输出,以使直流总线的电压在第一预设时间内小于预设电压值。
可选的,在对所述光伏快速关断***中的直流总线施加电压和/或电流波动之前,还包括:
所述逆变***判断所述光伏快速关断***是否存在故障;若不存在故障,则执行对所述光伏快速关断***中的直流总线施加电压和/或电流波动的步骤;否则执行停止对所述直流总线施加电压和/或电流波动的步骤。
可选的,所述故障包括:电网电压故障、电网频率故障、对地阻抗故障、直流拉弧故障、人为按下快速关断控制开关和人为控制停机故障中的至少一种。
可选的,所述预设条件包括:在第二预设时间内出现大于相应阈值的波动;其中,所述第二预设时间小于所述光伏快速关断***的快速关断时间。
可选的,若所述逆变***对直流总线施加电压和/或电流波动,且施加的波动频率大于预设频率,则所述光伏快速关断***中的光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件包括:
所述光伏组件关断器从所述输出参数中提取在第二预设时间内交流纹波的有效值,并判断所述有效值是否大于等于设定的交流纹波值;若所述有效值大于等于所述预设的交流波纹值,则判定自身所连接的直流总线的电压和/或电流满足所述预设条件;否则判定自身所连接的直流总线的电压和/或电流不满足所述预设条件。
可选的,若所述逆变***对直流总线施加电压和/或电流波动,且施加的波动频率小于预设频率,则所述光伏快速关断***中的光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条 件包括:
所述光伏组件关断器判断在第二预设时间内检测到输出参数波动时刻的前后两个电流稳定时段的输出参数平均值差值是否大于相应预设值;若所述输出参数平均值差值大于所述相应预设值,则判定自身所连接的直流总线的电压和/或电流满足所述预设条件;否则判定自身所连接的直流总线的电压和/或电流不满足所述预设条件。
可选的,若所述逆变***对直流总线施加电压波动,则所述输出参数包括输出电压值,且所述光伏快速关断***中的光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件包括:
所述光伏组件关断器判断在第二预设时间内检测到电压波动时刻的电压前后差值是否大于预设电压值;若所述电压前后差值大于所述预设电压值,则判定自身所连接的直流总线的电压满足所述预设条件;否则判定自身所连接的直流总线的电压不满足所述预设条件。
本发明第二方面公开了一种逆变***,包括:直流电压控制电路和逆变器;
所述直流电压控制电路的输出端与直流总线的正极和/或负极相连;
所述逆变器的直流侧,与光伏快速关断***中的直流总线的正负极相连;
所述逆变器结合所述直流电压控制电路,使所述逆变***能够判断所述光伏快速关断***是否需要进入预设安全状态;若所述光伏快速关断***不需要进入预设安全状态,则对所述直流总线施加电压和/或电流波动;否则停止对所述直流总线施加电压和/或电流波动。
可选的,所述逆变器用于:
在至少一个电网周期内快速改变自身的交流输出功率,以对直流总线施加波动频率大于预设频率的电流波动;或者,
低速改变自身的直流输入电流,以对直流总线施加波动频率小于预设频率的电流波动。
可选的,所述直流电压控制电路为:输入端连接储能***或者电网的启动电压模块;
所述启动电压模块,用于根据所述逆变器的控制,对/停止对相应直流总线施加多次不同幅值的直流电压。
可选的,若所述启动电压模块的输入端连接电网,则所述启动电压模块包括:变压器、二极管整流桥和启动DC/DC电路;
所述变压器的原边绕组与电网相连;
所述变压器的副边绕组与所述二极管整流桥的输入端相连;
所述二极管整流桥的输出端正负极分别与所述启动DC/DC电路的一端相连;
所述启动DC/DC电路的另一端作为所述启动电压模块的输出端。
可选的,所述变压器为隔离工频变压器或高频隔离变压器;
所述启动DC/DC电路为buck电路、boost电路或buck-boost电路。
可选的,所述直流电压控制电路为独立设置于所述直流总线上的直流电压控制器,所述直流电压控制器与所述逆变器之间的通讯方式为:电力线载波、无线通讯或有线通讯。
可选的,所述直流电压控制器,还用于实现直流总线的最大功率点跟踪。
本发明第三方面公开了一种光伏快速关断***,包括:至少一个关断***和至少一个如本发明第二方面任一所述的逆变***,所述关断***包括:直流总线、至少N个光伏组件和N个光伏组件关断器,N为正整数,其中:
所述关断***中,各个所述光伏组件关断器的输出端级联,各个光伏组件关断器的输入端分别与各自对应的各个光伏组件的输出端相连;各个所述光伏组件关断器级联后的正极通过所述直流总线正极与所述逆变***的对应直流接口正极相连;各个所述光伏组件关断器级联后的负极通过所述直流总线负极与所述逆变***的对应直流接口负极相连。
可选的,所述光伏组件关断器,包括:开关单元、驱动电路、处理器、参数采样单元、旁路二极管和输出稳压电容;
所述开关单元,设置于所述光伏组件关断器的正极支路或者负极支路上,用于根据所述处理器的控制,实现所述光伏组件关断器的开通或关断;
所述参数采集模块,用于采集光伏组件关断器的输出参数,并将采集到的所述输出参数输出至所述处理器;
所述旁路二极管,用于在所述光伏组件关断器关断时实现所述光伏组件关断器的旁路功能;
所述输出稳压电容,用于稳定所述光伏组件关断器关断的输出电压;
所述处理器的输出端通过所述驱动电路与所述开关单元的控制端相连;所述处理器用于结合所述参数采集模块、所述驱动电路、所述输出稳压电容以及所述开关单元,使所述光伏组件关断器能够实现依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件;若自身所连接的直流总线的电压和/或电流满足预设条件,则控制/维持自身开通;否则控制/维持自身关断。
可选的,所述参数采集模块,包括:输出电压采集单元和输出电流采集单元;
所述输出电流采集单元,用于采集所述光伏组件关断器的输出电流;
所述输出电压采集单元,用于采集所述光伏组件关断器的输出电压。
可选的,所述参数采集模块还包括:用于采集所述光伏组件关断器的输入电压的输入电压采集单元。
可选的,所述电流采集单元设置于所述光伏组件关断器的负极支路上、所述旁路二极管的阳极与所述光伏组件关断器的输出端负极之间;或者,
所述电流采样单元设置于所述光伏组件关断器的负极支路上、所述旁路二极管的阳极与所述输出电压采集单元的输入端负极之间;又或者,
所述电流采集单元设置于所述光伏组件关断器的正极支路上、所述旁路二极管的阴极与所述光伏组件关断器的输出端正极之间;又或者,
所述电流采集单元设置于所述光伏组件关断器的正极支路上、所述旁路二极管的阴极与所述输出电压采集单元的输入端正极之间。
可选的,所述开关单元包括至少一个开关管模块;
在所述开关管模块的个数为1时,所述开关管模块的输入端作为所述开关单元的输入端,所述开关管模块的输出端作为所述开关单元的输出端;所述开关模块的控制端作为所述开关单元的控制端;
在所述开关管模块的个数不为1时,各个所述开关管模块串联成的串联支路的输入端作为所述开关单元的输入端,所述串联支路的输出端作为所述开关单元的输出端;各个开关模块的控制端均作为所述开关单元的控制端。
从上述技术方案可知,本发明提供的一种光伏快速关断***的控制方法,光伏快速关断***中的逆变***判断光伏快速关断***是否需要进入预设安全状态;若光伏快速关断***不需要进入预设安全状态,则对光伏快速关断***中的直流总线施加电压和/或电流波动;否则停止对直流总线施加电压和/或电流波动;光伏快速关断***中的光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件;若自身所连接的直流总线的电压和/或电流满足预设条件,则控制/维持自身开通;否则控制/维持自身关断;因此,光伏组件关断器执行开通或关断的依据是直流总线的电压和/或电流的波动情况,也即其仅通过自身原有的采样器件,即可实现光伏组件关断器与逆变***之间的开通/关断通信,光伏组件关断器无需再额外设置相应的接收设备,仅需逆变***中增加相应的发送设备即可,降低了光伏快速关断***的硬件成本。
附图说明
图1是本发明实施例提供的一种光伏快速关断***的控制方法的示意图;
图2是本发明实施例提供的另一种光伏快速关断***的控制方法的示意图;
图3是本发明实施例提供的一种电流扰动的示意图;
图4是本发明实施例提供的另一种电流扰动的示意图;
图5是本发明实施例提供的一种直流总线的电压和光伏组件关断器的输出电压的示意图;
图6是本发明实施例提供的一种光伏组件关断器的示意图;
图7是本发明实施例提供的一种光伏快速关断***中的逆变***的示意图;
图8是本发明实施例提供的一种光伏快速关断***中的另一逆变***的示意图;
图9是本发明实施例提供的一种光伏快速关断***中的另一逆变***的示意图;
图10是本发明实施例提供的一种光伏快速关断***的示意图;
图11是本发明实施例提供的另一种光伏快速关断***的示意图;
图12是本发明实施例提供的另一种光伏快速关断***的示意图;
图13是本发明实施例提供的逆变***中启动电压模块的一种示意图;
图14是本发明实施例提供的另一种光伏快速关断***的示意图;
图15是本发明实施例提供的另一种光伏快速关断***的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明实施例提供一种光伏快速关断***的控制方法,用于解决现有技术中需在光伏组件关断器中设置额外的接收模块,从而增加了光伏组件关断器硬件成本的问题。
参见图10,该光伏快速关断***包括:至少一个关断***和至少一个逆变系204,关断***包括:直流总线203、至少N个光伏组件201和N个光伏组件关断器202,N为正整数,其中:
关断***中,各个光伏组件关断器202的输出端级联,各个光伏组件关断器202的输入端分别与各自对应的各个光伏组件201的输出端相连;各个光伏组件关断器202级联后的正极通过直流总线203正极与逆变***204的对应直流接口正极相连;各个光伏组件关断器202级联后的负极通过直流总线203负极与逆变***204的对应直流接口负极相连。
该光伏快速关断***的控制方法,参见图1,包括:
S101、逆变***判断光伏快速关断***是否需要进入预设安全状态。
在实际应用中,该预设安全状态为:各个光伏组件关断器限制对应的光伏 组件实现电能输出,以使直流总线的电压在第一预设时间内小于预设电压值,也即,直流总线电压维持在较低的电压值。该第一预设时间在此不做具体限定,视实际情况而定即可,均在本申请的保护范围内。而且,光伏快速关断***是否需要进入预设安全状态,可以是根据上位机指令而确定的,也可以是由电压检测结果而确定的,与现有技术相同,此处不做具体限定。
若光伏快速关断***不需要进入预设安全状态,则执行步骤S102,而若光伏快速关断***需要进入预设安全状态,则执行步骤S103。
S102、逆变***对直流总线施加电压和/或电流波动。
需要说明的是,对直流总线施加电压和/或电流波动是为了改变直流总线上电压和/或电流的恒定直流状态的特点,通过直流总线的电压和/或电流波动传递到光伏组件关断器的输出端,使得光伏组件关断器能够得知是否被允许开通。
具体的,需要对直流总线施加电压扰动时,逆变***控制自身的启动电源模块向直流总线施加多次不同幅值的电压,以达到启动直流总线上各个光伏组件关断器的目的。该施加电压的幅值及其持续时间由光伏组件关断器和逆变***共同约定,在此不做具体限定,均在本申请的保护范围内。启动电源模块对直流总线施加多次不同幅值的电压时,直流总线的电压和光伏组件关断器的输出电压之间的关系如图5所示;图5中以施加三次电压为例进行展示,实际应用中并不仅限于此。
为了避免由于逆变***控制直流总线的波动间隔较长而导致光伏组件关断器误关断的问题,在实际应用中,逆变***对直流总线施加电压和/或电流波动的时间间隔小于光伏快速关断***的快速关断时间,也即相关标准中规定的快速关断时间,如标准NEC2017中规定的30秒;因此,只要逆变***持续对直流总线施加电压和/或电流波动,且波动间隔小于快速关断时间,则光伏组件关断器能够保持开通状态,不会存在误关断的情况。该快速关断时间的具体取值,在此不做具体限定,视实际情况而定即可,均在本申请的保护范围内。
S103、逆变***停止对直流总线施加电压和/或电流波动。
需要说明的是,停止对直流总线施加电压和/或电流波动,则直流总线的电压和/或电流为恒定直流状态,直流总线传递到光伏组件关断器的输出端的 电压和/或电流也为恒定直流状态。
为了避免逆变***停止控制直流总线波动的停止时间较短而导致光伏组件关断器误开通的问题,在实际应用中,停止在直流总线施加电压和/或电流波动的持续的时间,大于等于光伏快速关断***的快速关断时间,也即相关标准中规定的快速关断时间;因此,逆变***停止对直流总线施加电压和/或电流波动,且持续时间大于等于快速关断时间,则光伏组件关断器没有检测到波动的特征,且持续时间大于等于快速关断时间,则控制自身关断。
S104、光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件。
需要说明的是,光伏组件关断器自身所连接的直流总线,其上电压和/或电流发生改变,将能改变光伏组件关断器自身的输出参数,也即,光伏组件关断器自身的输出参数与自身所连接的直流总线的电压和/或电流对应呈正比例关系;因此,在逆变***控制直流总线电压波动时,光伏组件关断器的输出电压也相应变化;在逆变***控制直流总线电流波动时,光伏组件关断器的输出电流也会相应变化。
在实际应用中,该预设条件包括:在第二预设时间内出现大于相应阈值的波动;其中,第二预设时间小于光伏快速关断***的快速关断时间;也即,若在该快速关断时间到达之前,光伏组件关断器检测到直流总线的电压和/或电流出现大于相应阈值的波动,则判定满足预设条件;若光伏组件关断器一直未检测到直流总线的电压和/或电流出现大于相应阈值的波动,且持续时间大于该快速关断时间,则判定不满足预设条件。本步骤S104的具体过程为:根据自身的输出电压,判断自身所连接的直流总线是否出现刻意施加的电压波动;或者,根据自的身输出电流,判断自身所连接的直流总线是否出现刻意施加的电流波动。
实际应用中,步骤S102中逆变***施加在直流总线的波动的方式不同,步骤S104中判断是否出现波动的方式也随之不同,具体的:
(1)若步骤S102中逆变***对直流总线施加电压和/或电流波动,且施加的波动频率大于预设频率,实际应用中可以设置此处的预设频率为第一预设频率,以说明此时施加的是电压和/或电流快速波动,即施加如图3所示的电 压和/或电流扰动示意图时,光伏组件关断器的输出参数包括其输出电压值和/或其输出电流值,且步骤S104包括:光伏组件关断器从自身的输出参数中提取在第二预设时间内交流纹波的有效值,并判断有效值是否大于等于设定的交流纹波值;若有效值大于等于预设的交流波纹值,则判定自身所连接的直流总线的电压和/或电流满足预设条件;否则判定自身所连接的直流总线的电压和/或电流不满足预设条件。
(2)若步骤S102中逆变***对直流总线施加电压和/或电流波动,且施加的波动频率小于预设频率,实际应用中可以设置此处的预设频率为第二预设频率,该第二预设频率小于等于第一预设频率,以说明此时施加的是电压和/或电流缓慢波动,即施加如图4所示的电压和/或电流扰动示意图时,光伏组件关断器的输出参数包括输出电压值和/或其输出电流值,且步骤S104包括:光伏组件关断器判断在第二预设时间内检测到输出参数波动时刻的前后两个输出参数稳定时段的电流平均值差值是否大于相应预设值,若差值大于预设电流值,则判定自身所连接的直流总线的电压和/或电流满足预设条件;否则判定自身所连接的直流总线的电压和/或电流不满足预设条件。
以输出参数为输出电流值为例,如图4所示,波动时刻为5S处,判断0S-5S的电流平均值与5S-15S的电流平均值的差值是否大于预设电流值;若差值大于预设电流值,则判定自身所连接的直流总线的电流满足预设条件;否则判定自身所连接的直流总线的电流不满足预设条件。
(3)若步骤S102中逆变***对直流总线施加电压波动,则光伏组件关断器的输出参数包括其输出电压值,且步骤S104包括:光伏组件关断器判断在第二预设时间内检测到电压波动时刻的电压前后差值是否大于预设电压值;若电压前后差值大于预设电压值,则判定自身所连接的直流总线的电压满足预设条件;否则判定自身所连接的直流总线的电压不满足预设条件。
需要说明的是,逆变***可以在某个或几个电网周期内突然改变自身的交流输出功率,来对直流总线施加电压和/或电流快速波动;也可以通过缓慢改变自身的直流输入电流,来对直流总线施加电压和/或电流缓慢波动;还可以通过自身内部的启动电压模块向直流总线施加多次不同幅值的电压。或者,当逆变***中的逆变器硬件条件受限或软件不便于修改,无法施加电压和/或电 流扰动时,可由直流电压控制器来实现上述功能,具体可参见下文中的逆变***实施例。
(1)和(2)中的具体过程仅是一种电流波动示例,其他电流波动情况在此不再一一赘述,视实际情况而定即可,均在本申请的保护范围内。当然,逆变***可以仅采用电流波动或者电压波动的方式,还可以采用同时进行电压波动和电流波动的方式,对直流总线进行控制,其具体的过程在此不再一一赘述,均在本申请的保护范围内。
需要说明的是,若自身所连接的直流总线的电压和/或电流满足预设条件,则执行步骤S105;而若自身所连接的直流总线的电压和/或电流不满足预设条件,则执行步骤S106。
S105、光伏组件关断器控制/维持自身开通。
需要说明的是,若光伏组件关断器当前状态为开通状态,则维持自身开通;若当前状态为关断状态,则控制自身开通,以使自身处于开通状态。
S106、光伏组件关断器控制/维持自身关断。
需要说明的是,若光伏组件关断器当前状态为开通状态,则控制自身关断;若当前状态为关断状态,则维持自身关断,以使自身处于关断状态。
本实施例通过以上过程,使得光伏组件关断器执行开通或关断的依据是电压和/或电流的波动情况,也即其仅通过自身原有的电压/电流采样器件,即可实现光伏组件关断器与逆变***之间的开通/关断通信,无需再额外设置相应的接收设备,降低了光伏组件关断器的硬件成本、降低了光伏快速关断***的硬件成本;相应的,逆变***中也无需设置开通信号发送模块,仅需设置控制电压和/或电流波动的模块,从而降低了光伏快速关断***的硬件成本。另外,本申请使用功率级别低的电压电流特性,更加可靠稳定,避免了如电力线载波通讯、无线通讯等易受干扰的问题,提高光伏快速关断***的稳定性。
此外,在上述步骤S102之前,参见图2,还包括:
S201、逆变***判断光伏快速关断***是否存在故障。
该故障包括:电网电压故障、电网频率故障、对地阻抗故障、直流拉弧故障、人为按下快速关断控制开关和人为控制停机故障中的至少一种。
若不存在故障,如故障消失后,则执行步骤S102;而若存在故障,则执行步骤S103。
在本实施例中,逆变***在施加电压和/或电流扰动来控制光伏组件关断器开通之前,先判断是否存在故障,避免了在光伏快速关断***存在故障时,光伏组件关断器开通、相应光伏组件实现电能输出,导致逆变***内部器件损害的问题,提高光伏快速关断***的安全性。
本发明实施例提供了一种逆变***,参见图7,包括:直流电压控制电路(为图7和图15所示的303,或者为图8和图14所示的214)和逆变器205。
直流电压控制电路的输出端与直流总线的正极相连(如图14和图15所示),或者,直流电压控制电路的输出端与直流总线的正负极相连(如图8和图7所示),又或者,直流电压控制电路的输出端与直流总线的负极相连(未进行图示);逆变器205的直流侧,与光伏快速关断***中的直流总线的正负极相连。
该逆变器为并网逆变器时,逆变器的辅助电源由电网供电;当逆变器支持离网运行时,逆变器的辅助电源由电网或储能***供电。
逆变器205结合直流电压控制电路,使逆变***能够实现上述实施例所述光伏快速关断***的控制方法中的相应步骤,具体包括:判断光伏快速关断***是否需要进入预设安全状态;若光伏快速关断***不需要进入预设安全状态,则对直流总线施加电压和/或电流波动;否则停止对直流总线施加电压和/或电流波动。
需要说明的是,该逆变***的具体执行过程及工作原理,详情参见上述实施例提供的光伏快速关断***的控制方法的相应部分,在此不再一一赘述。
该直流电压控制电路可以是独立设置于直流总线上的直流电压控制器214(参见图8和图14所示),也可以是设置于逆变器205中的启动电压模块303(参见图7和图15所示);具体的,分别对两种设置位置的情况进行说明如下:
(1)如图7和图15所示,直流电压控制电路为设置于逆变器205中的启动电压模块303;逆变器205内还包括:内部控制器(未进行展示)、DC/DC 电路302和逆变电路301。
如图7所示,DC/DC电路302的一端正负极分别与启动电压模块303的输出端正负极对应相连,两个连接点分别作为逆变器205的直流侧正负极;DC/DC电路302的另一端与逆变电路301的直流侧相连;逆变电路301的交流侧作为逆变器205的交流侧。
如图15所示,DC/DC电路302的一端正极与启动电压模块303的输出端负极相连,所述启动电压模块303的输出端正极作为逆变器205的直流侧正极,DC/DC电路302的一端负极作为逆变器205的直流侧负极;DC/DC电路302的另一端与逆变电路301的直流侧相连;逆变电路301的交流侧作为逆变器205的交流侧。
该DC/DC电路302为Boost电路,如基础boost电路(如图7中所示)或三电平boost电路(如图9所示的飞跨电容型三电平boost电路)。
如图7所示,该DC/DC电路302为基础boost电路;具体的,电感L1的一端与输入电容Cin的一端相连,连接点与启动电压模块303的输出端正极相连,电感L1的另一端分别与开关管K1的一端和二极管D1的一端相连,二极管D1的阴极与逆变电路301的直流侧正极相连,开关管K1的另一端和输入电容Cin的另一端相连,连接点分别与启动电压模块303的输出端负极,以及,逆变电路301的直流侧负极相连。
或者,如图9所示(图9中仅示出DC/DC电路302的结构),该DC/DC电路302为飞跨电容型三电平boost电路;具体的,电感L11的一端与输入电容C10的一端相连,连接点与启动电压模块303的输出端正极相连,电感L11的另一端分别与开关管K2的一端和二极管D11的一端相连,二极管D11的阴极分别与二极管D12的阳极和飞跨电容C12的一端相连,二极管D12的阴极与逆变电路301的直流侧正极相连,开关管K2的另一端分别与开关管K3的一端和飞跨电容C12的另一端相连,开关管K3的另一端与输入电容Cin的另一端相连,连接点分别与启动电压模块303的输出端负极,以及,逆变电路301的直流侧负极相连。
在实际应用中,该启动电压模块303,用于根据逆变器205的控制,对/停止对相应直流总线施加多次不同幅值的直流电压;该启动电压模块303由储 能***或电网提供输入电能,即该启动电压模块303的输入端与电网或储能***中的储能电池相连。
具体的,当该启动电压模块303由电网提供输入电能时,该启动电压模块303包括:变压器501、二极管整流桥(包括如图13所示的D21、D22、D23和D24)和启动DC/DC电路(包括如图13所示的C5、R5、K5和D5)。
变压器501的原边绕组与电网相连;变压器501的副边绕组与二极管整流桥的输入端相连,二极管整流桥的输出端的正负极分别与启动DC/DC电路的一端相连;启动DC/DC电路的另一端作为启动电压模块303的输出端。
该变压器501为隔离工频变压器或高频隔离变压器;该启动DC/DC电路为buck电路、boost电路或buck-boost电路。
如图13所示,以该启动DC/DC电路为buck电路为例进行展示。变压器501的原边绕组的一端与电网的一端相连,变压器501的原边绕组的另一端与电网的另一端相连;二极管D21的阳极分别与变压器501的副边绕组的一端和二极管D23的阴极相连,二极管D22的阳极分别与变压器501的副边绕组的另一端和二极管D24的阴极相连,二极管D21的阴极分别与二极管D22的阴极、电容C5的一端和开关管K5的一端相连;开关管K5的另一端分别与二极管D5的阴极和电感L5的一端相连;电感L的另一端与电阻R5的一端相连,连接点作为启动电压模块303的输出端正极;电容C5的另一端分别与二极管D23的阳极、二极管D24的阳极、二极管D5的阳极和电阻R5的另一端相连,连接点作为启动电压模块303的输出端负极。
该变压器501为小型降压变压器,例如其可以将交流220V的电网电压转化为交流15V的电压源,再经二极管整流桥后转化为直流电压,通过调节Buck电路中开关管K5的占空比可以输出不同的直流电压,在此不对开关管K5的占空比做具体限定,视实际情况而定即可均在本申请的保护范围内。
此时,逆变器205可以用于在至少一个电网周期内快速改变自身的交流输出功率,以对直流总线施加波动频率大于预设频率的电流波动;或者,也可以用于低速改变自身的直流输入电流,以对直流总线施加波动频率小于预设频率的电流波动。
(2)当逆变器205的硬件条件受限或软件不便于修改,也即逆变器205 无法实现施加电压和/或电流扰动时,采用独立设置于直流总线上的直流电压控制器214的方式能解决逆变***由于逆变器205的无法实现施加电压和/或电流扰动的问题。
如图8和图14所示所示,该直流电压控制电路为独立设置于直流总线上的直流电压控制器214;具体的,如图8所示,直流电压控制器214的一侧正负极分别与直流总线203正负极对应相连,直流电压控制器214的另一侧正负极分别与逆变器205的直流侧正负极对应相连。该逆变器205包括:内部控制器和逆变电路;其中,逆变电路的直流侧作为逆变器205的直流侧;逆变电路的交流侧作为逆变器205的交流侧。如图14所示,直流电压控制器214的输出端正极与直流总线203正极相连,直流电压控制器214的输出端负极与逆变器205的直流侧正极相连,逆变器205的直流侧负极与直流总线负极相连。该逆变器205包括:内部控制器和逆变电路;其中,逆变电路的直流侧作为逆变器205的直流侧;逆变电路的交流侧作为逆变器205的交流侧。
其中,直流电压控制器214与逆变器205之间的通讯方式为:电力线载波、无线通讯或有线通讯。当然也可以是其他通讯方式,在此不做具体限定,视实际情况而定即可,均在本申请的保护范围内。直流电压控制器214,还用于实现直流总线203的最大功率点跟踪。
该直流电压控制器214的辅助电源由逆变器205、电网或储能***供电,直流电压控制器214的辅助电源在此不做具体限定,均在本申请的保护范围内。
在本实施例中,通过直流电压控制电路即可实现控制光伏组件关断器的开通或关断,无需启动信号发送单元。另外,现有技术在设置启动信号发送单元时,即在直流总线上增加的设备时,在安装过程中需要更大体积的直流汇流箱或配置额外的直流汇流箱来配合安装,增加了施工成本。而本实施例中无需再直流总线上增加设备,进而降低了施工成本。
本发明实施例提供了一种光伏快速关断***,参见图10,包括:至少一个关断***和至少一个逆变***204,关断***包括:直流总线203、至少N个光伏组件201和N个光伏组件关断器202,N为正整数,其中:
关断***中,各个光伏组件关断器202的输出端级联,各个光伏组件关断器202的输入端分别与各自对应的各个光伏组件201的输出端相连;各个光伏组件关断器202级联后的正极通过直流总线203正极与逆变***204的对应直流接口正极相连;各个光伏组件关断器202级联后的负极通过直流总线203负极与逆变***204的对应直流接口负极相连。需要说明的是+表示正正极,-表示负极。
具体的,各个光伏组件关断器202可以仅连接一个光伏组件201(如图11所示),各个光伏组件关断器202也可以连接多个光伏组件201(如图10所示,图10以两个光伏组件201为例进行展示)。关断***的个数可以为1个(如图11和图10所示),也可以是多个(如图12所示,图12以两个关断***为例进行展示)。一个关断***中,可以各个光伏组件关断器202所连接的光伏组件201的数量相同,也可以各个光伏组件关断器202所连接的光伏组件201的数量不同,在此不做具体限定,视实际情况而定即可,均在本申请的保护范围内。
该逆变***204的具体结构和工作原理,参见上述实施例提供的逆变***204,在此不再一一赘述。
在本实施例中,光伏组件关断器202和逆变***204的联合控制实现光伏快速关断***的启动,针对同时提供关断器和逆变器的产业的适用性强。并且,本光伏快速关断***中的光伏组件关断器202和逆变***204的硬件成本较低,相应的,该光伏快速关断***的硬件成本也低。
上述光伏组件关断器202,参见图6,包括:开关单元(如图6所示包括Q1和Q2)、驱动电路101、处理器103、输出稳压电容Co、旁路二极管Dp和参数采集单元(如图6所示,包括输入电压采集单元100、输出电压采集单元102和电流采集单元104);其中:
开关单元设置于光伏组件关断器202的负极支路(未进行图示),或者,开关单元设置于光伏组件关断器202的正极支路上(如图6所示),具体的,开关模块Q1的输入端作为开关单元的输入端,与光伏组件关断器202的输入端正极Uin+相连,开关模块Q1的输出端与开关模块Q2的输入端相连,开关模块Q2的输出端作为开关模块的输出端;该开关单元,用于根据处理器103 的控制,实现光伏组件关断器202的开通或关断。
具体的,该开关单元包括至少一个开关管模块(图6以两个开关模块为例进行展示);在开关管模块的个数为1时,开关管模块的输入端作为开关单元的输入端,开关管模块的输出端作为开关单元的输出端;开关模块的控制端作为开关单元的控制端(未进行图示)。在开关管模块的个数不为1时,各个开关管模块串联成的串联支路的输入端作为开关单元的输入端,串联支路的输出端作为开关单元的输出端;各个开关模块的控制端均作为开关单元的控制端;比如开关管模块的个数为2时,如图6所示,开关模块Q1的输入端作为开关单元的输入端,与光伏组件关断器202的输入端正极Uin+相连,开关模块Q1的输出端与开关模块Q2的输入端相连,开关模块Q2的输出端作为开关模块的输出端,开关模块Q1和Q2的控制端作为开关单元的控制端。
该开关模块包括至少一个开关管(图6以一个开关管为例进行展示),在开关管个数大于1时,各个开关管并联和/或串联连接。开关管为半导体开关器件,可以是MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应晶体管),或者,IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管),图6中以MOSFET作为示例进行展示,以开关管为IGBT的示意图在此不再一一展示,均在本申请的保护范围内。
参数采集模块,用于采集光伏组件关断器202的输出参数,并将采集到的输出参数输出至处理器处理器103。
具体的,该参数采集模块包括:输入电压采集单元100、输出电压采集单元102和电流采集单元104。
该输入电压采集单元100,设置于光伏组件关断器202的输入端正负极之间;具体的,该输入电压采集单元100的输入端正负极分别与光伏组件关断器202的输入端正负极对应相连,输入电压采集单元100的输出端与处理器103相连;输入电压采集单元100用于采集光伏组件关断器202的输入电压,并将采集到的输入电压输出至处理器103。需要说明的是,光伏组件关断器202的输入端负极还用于接地。
该输出电压采集单元102,设置于光伏组件关断器202的输出端正负极之间;具体的,该输出电压采集单元102输出端正负极分别与光伏组件关断器 202的输出端正负极对应相连,输出电压采集单元102的输出端与处理器103相连;该输出电压采集单元102用于采集光伏组件关断器202的输出电压,并将采集到的输出电压输出至处理器103。
该电流采集单元104,用于采集光伏组件关断器202的输出电流。当开关单元开通时,旁路二极管Dp截止,电流采集单元104采集的电流为光伏组件的输出电流;当开关单元关断时,电流采集单元104采集的电流为经过旁路二极管Dp的电流。
通常电流采集单元104的阻抗很小,进而该电流采集单元104有多种设置方式,下面对四种设置方式进行说明:
(1)参见图6,电流采集单元104设置于光伏组件关断器202的负极支路上、旁路二极管Dp的阳极与光伏组件关断器202的输出端负极Uout-之间。具体的,电流采集单元104的一端与光伏组件关断器202的输出端负极Uout-相连,电流采集单元104的另一端分别与旁路二极管Dp的阳极和光伏组件关断器202的输入端负极Uin-相连。
(2)电流采集单元104设置于光伏组件关断器202的负极支路上、旁路二极管Dp的阳极与输出电压采集单元102的输入端正极之间。具体的,该电流采集单元104的一端分别与旁路二极管Dp的阳极和光伏组件关断器202的输入端负极Uin-相连,该电流采集单元104的另一端分别输出电压采集单元102的输入端正极和光伏组件关断器202的输出端负极Uout-相连(未进行图示)。
(3)电流采集单元104设置于光伏组件关断器202的正极支路上、旁路二极管Dp的阴极与光伏组件关断器202的输出端正极Uout+之间。具体的,电流采集单元104的一端与光伏组件关断器202的输出端正极Uout+相连,电流采集单元104的另一端与旁路二极管Dp的阴极相连(未进行图示)。
(4)电流采集单元104设置于光伏组件关断器202的正极支路上、旁路二极管Dp的阴极与输出电压采集单元102的输入端正极之间。具体的,电流采集单元104的一端分别与光伏组件关断器202的输出端正极Uout+和输出电压采集单元102的输入端正极相连,电流采集单元104的另一端与旁路二极管Dp的阴极相连(未进行图示)。
旁路二极管Dp的阳极与光伏组件关断器202的输出端负极Uout-相连,其阴极与光伏组件关断器202的输出端正极Uout+相连;该旁路二极管Dp用于在光伏组件关断器202关断时实现光伏组件关断器202的旁路功能。
输出稳压电容Co的两端分别与光伏组件关断器202的输出端正负极相连;如图6所示,输出稳压电容Co的一端分别与光伏组件关断器202的输出端正极Uout+、旁路二极管Dp的阴极、输出电压采集单元102的输入端正极和开关单元的输出端相连,输出稳压电容Co的另一端分别与输出电压采集单元102的输入端负极、旁路二极管Dp的阳极和电流采集单元104的一端相连;该输出稳压电容Co用于稳定光伏组件关断器202关断的输出电压。
处理器103的输出端通过驱动电路101与开关单元的控制端相连;处理器103用于结合参数采集模块、驱动电路101以及开关单元,使光伏组件关断器202能够实现上述实施例所述光伏快速关断***的控制方法中的相应步骤,具体包括:依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件;若自身所连接的直流总线的电压和/或电流满足预设条件,则控制/维持自身开通;否则控制/维持自身关断。
需要说明的是,该光伏组件关断器202对于该光伏快速关断***的控制方法中相应步骤的具体执行过程及工作原理,详情参见上述实施例提供的光伏快速关断***的控制方法的相应部分,在此不再一一赘述。
在本实施例中,光伏组件关断器202通过自身的参数采集单元采集的输出参数,即可实现自身的开通和关断,无需使用通讯信号也无需额外设置信号接收模块来接收逆变***输出的开通/关断的通讯信号,降低光伏组件关断器202的硬件成本。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***或***实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的***及***实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实 际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (22)

  1. 一种光伏快速关断***的控制方法,其特征在于,包括:
    所述光伏快速关断***中的逆变***判断所述光伏快速关断***是否需要进入预设安全状态;若所述光伏快速关断***不需要进入预设安全状态,则对所述光伏快速关断***中的直流总线施加电压和/或电流波动;否则停止对所述直流总线施加电压和/或电流波动;
    所述光伏快速关断***中的光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件;若自身所连接的直流总线的电压和/或电流满足预设条件,则控制/维持自身开通;否则控制/维持自身关断。
  2. 根据权利要求1所述的光伏快速关断***的控制方法,其特征在于,所述逆变***对所述直流总线施加电压和/或电流波动的时间间隔小于所述光伏快速关断***的快速关断时间;和/或,
    所述逆变***停止对所述直流总线施加电压和/或电流波动的持续时间,大于等于所述快速关断时间。
  3. 根据权利要求1所述的光伏快速关断***的控制方法,其特征在于,所述预设安全状态为:各个光伏组件关断器限制对应的光伏组件实现电能输出,以使直流总线的电压在第一预设时间内小于预设电压值。
  4. 根据权利要求1所述的光伏快速关断***的控制方法,其特征在于,在对所述光伏快速关断***中的直流总线施加电压和/或电流波动之前,还包括:
    所述逆变***判断所述光伏快速关断***是否存在故障;若不存在故障,则执行对所述光伏快速关断***中的直流总线施加电压和/或电流波动的步骤;否则执行停止对所述直流总线施加电压和/或电流波动的步骤。
  5. 根据权利要求4所述的光伏快速关断***的控制方法,其特征在于,所述故障包括:电网电压故障、电网频率故障、对地阻抗故障、直流拉弧故障、人为按下快速关断控制开关和人为控制停机故障中的至少一种。
  6. 根据权利要求1-5任一所述的光伏快速关断***的控制方法,其特征 在于,所述预设条件包括:在第二预设时间内出现大于相应阈值的波动;其中,所述第二预设时间小于所述光伏快速关断***的快速关断时间。
  7. 根据权利要求6所述的光伏快速关断***的控制方法,其特征在于,若所述逆变***对直流总线施加电压和/或电流波动,且施加的波动频率大于预设频率,则所述光伏快速关断***中的光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件包括:
    所述光伏组件关断器从所述输出参数中提取在第二预设时间内交流纹波的有效值,并判断所述有效值是否大于等于设定的交流纹波值;若所述有效值大于等于所述预设的交流波纹值,则判定自身所连接的直流总线的电压和/或电流满足所述预设条件;否则判定自身所连接的直流总线的电压和/或电流不满足所述预设条件。
  8. 根据权利要求6所述的光伏快速关断***的控制方法,其特征在于,若所述逆变***对直流总线施加电压和/或电流波动,且施加的波动频率小于预设频率,则所述光伏快速关断***中的光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件包括:
    所述光伏组件关断器判断在第二预设时间内检测到波动时刻的前后两个输出参数稳定时段的输出参数平均值差值是否大于相应预设值;若所述输出参数平均值差值大于所述相应预设值,则判定自身所连接的直流总线的电压和/或电流满足所述预设条件;否则判定自身所连接的直流总线的电压和/或电流不满足所述预设条件。
  9. 根据权利要求6所述的光伏快速关断***的控制方法,其特征在于,若所述逆变***对直流总线施加电压波动,则所述输出参数包括输出电压值,且所述光伏快速关断***中的光伏组件关断器依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件包括:
    所述光伏组件关断器判断在第二预设时间内检测到电压波动时刻的电压前后差值是否大于预设电压值;若所述电压前后差值大于所述预设电压值,则判定自身所连接的直流总线的电压满足所述预设条件;否则判定自身所连接的直流总线的电压不满足所述预设条件。
  10. 一种逆变***,其特征在于,包括:直流电压控制电路和逆变器;
    所述直流电压控制电路的输出端与直流总线的正极和/或负极相连;
    所述逆变器的直流侧,与光伏快速关断***中的直流总线的正负极相连;
    所述逆变器结合所述直流电压控制电路,使所述逆变***能够判断所述光伏快速关断***是否需要进入预设安全状态;若所述光伏快速关断***不需要进入预设安全状态,则对所述直流总线施加电压和/或电流波动;否则停止对所述直流总线施加电压和/或电流波动。
  11. 根据权利要求10所述的逆变***,其特征在于,所述逆变器用于:
    在至少一个电网周期内快速改变自身的交流输出功率,以对直流总线施加波动频率大于预设频率的电流波动;或者,
    低速改变自身的直流输入电流,以对直流总线施加波动频率小于预设频率的电流波动。
  12. 根据权利要求11所述的逆变***,其特征在于,所述直流电压控制电路为:输入端连接储能***或者电网的启动电压模块;
    所述启动电压模块,用于根据所述逆变器的控制,对/停止对相应直流总线施加多次不同幅值的直流电压。
  13. 根据权利要求12所述的逆变***,其特征在于,若所述启动电压模块的输入端连接电网,则所述启动电压模块包括:变压器、二极管整流桥和启动DC/DC电路;
    所述变压器的原边绕组与电网相连;
    所述变压器的副边绕组与所述二极管整流桥的输入端相连;
    所述二极管整流桥的输出端正负极分别与所述启动DC/DC电路的一端相连;
    所述启动DC/DC电路的另一端作为所述启动电压模块的输出端。
  14. 根据权利要求13所述的逆变***,其特征在于,所述变压器为隔离工频变压器或高频隔离变压器;
    所述启动DC/DC电路为buck电路、boost电路或buck-boost电路。
  15. 根据权利要求14所述的逆变***,其特征在于,所述直流电压控制电路为独立设置于所述直流总线上的直流电压控制器,所述直流电压控制器与所述逆变器之间的通讯方式为:电力线载波、无线通讯或有线通讯。
  16. 根据权利要求15所述的逆变***,其特征在于,所述直流电压控制器,还用于实现直流总线的最大功率点跟踪。
  17. 一种光伏快速关断***,其特征在于,包括:至少一个关断***和至少一个如权利要求10-16任一所述的逆变***,所述关断***包括:直流总线、至少N个光伏组件和N个光伏组件关断器,N为正整数,其中:
    所述关断***中,各个所述光伏组件关断器的输出端级联,各个光伏组件关断器的输入端分别与各自对应的各个光伏组件的输出端相连;各个所述光伏组件关断器级联后的正极通过所述直流总线正极与所述逆变***的对应直流接口正极相连;各个所述光伏组件关断器级联后的负极通过所述直流总线负极与所述逆变***的对应直流接口负极相连。
  18. 根据权利要求17所述的光伏快速关断***,其特征在于,所述光伏组件关断器包括:开关单元、驱动电路、处理器、参数采样单元、旁路二极管和输出稳压电容;
    所述开关单元,设置于所述光伏组件关断器的正极支路或者负极支路上,用于根据所述处理器的控制,实现所述光伏组件关断器的开通或关断;
    所述参数采集模块,用于采集光伏组件关断器的输出参数,并将采集到的所述输出参数输出至所述处理器;
    所述旁路二极管,用于在所述光伏组件关断器关断时实现所述光伏组件关断器的旁路功能;
    所述输出稳压电容,用于稳定所述光伏组件关断器关断的输出电压;
    所述处理器的输出端通过所述驱动电路与所述开关单元的控制端相连;所述处理器用于结合所述参数采集模块、所述驱动电路、所述输出稳压电容以及所述开关单元,使所述光伏组件关断器能够实现依据自身的输出参数,判断自身所连接的直流总线的电压和/或电流是否满足预设条件;若自身所连接的直流总线的电压和/或电流满足预设条件,则控制/维持自身开通;否则控制/维持自身关断。
  19. 根据权利要求18所述的光伏快速关断***,其特征在于,所述参数采集模块,包括:输出电压采集单元和输出电流采集单元;
    所述输出电流采集单元,用于采集所述光伏组件关断器的输出电流;
    所述输出电压采集单元,用于采集所述光伏组件关断器的输出电压。
  20. 根据权利要求19所述的光伏快速关断***,其特征在于,所述参数采集模块还包括:用于采集所述光伏组件关断器的输入电压的输入电压采集单元。
  21. 根据权利要求20所述的光伏快速关断***,其特征在于,所述电流采集单元设置于所述光伏组件关断器的负极支路上、所述旁路二极管的阳极与所述光伏组件关断器的输出端负极之间;或者,
    所述电流采样单元设置于所述光伏组件关断器的负极支路上、所述旁路二极管的阳极与所述输出电压采集单元的输入端负极之间;又或者,
    所述电流采集单元设置于所述光伏组件关断器的正极支路上、所述旁路二极管的阴极与所述光伏组件关断器的输出端正极之间;又或者,
    所述电流采集单元设置于所述光伏组件关断器的正极支路上、所述旁路二极管的阴极与所述输出电压采集单元的输入端正极之间。
  22. 根据权利要求18-21任一所述的光伏快速关断***,其特征在于,所述开关单元包括至少一个开关管模块;
    在所述开关管模块的个数为1时,所述开关管模块的输入端作为所述开关单元的输入端,所述开关管模块的输出端作为所述开关单元的输出端;所述开关模块的控制端作为所述开关单元的控制端;
    在所述开关管模块的个数不为1时,各个所述开关管模块串联成的串联支路的输入端作为所述开关单元的输入端,所述串联支路的输出端作为所述开关单元的输出端;各个开关模块的控制端均作为所述开关单元的控制端。
PCT/CN2021/079463 2020-06-15 2021-03-08 光伏快速关断***的控制方法及其应用装置和*** WO2021253876A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21826158.4A EP4167422A1 (en) 2020-06-15 2021-03-08 Control method for photovoltaic rapid switching-off system, and application apparatus and system therefor
US17/914,702 US20230291201A1 (en) 2020-06-15 2021-03-08 Control method for photovoltaic rapid switching-off system, and application apparatus and system therefor
AU2021290491A AU2021290491B9 (en) 2020-06-15 2021-03-08 Control method for photovoltaic rapid switching-off system, and application apparatus and system therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010542614.8A CN111585308B (zh) 2020-06-15 2020-06-15 光伏快速关断***的控制方法及其应用装置和***
CN202010542614.8 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021253876A1 true WO2021253876A1 (zh) 2021-12-23

Family

ID=72125923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079463 WO2021253876A1 (zh) 2020-06-15 2021-03-08 光伏快速关断***的控制方法及其应用装置和***

Country Status (5)

Country Link
US (1) US20230291201A1 (zh)
EP (1) EP4167422A1 (zh)
CN (1) CN111585308B (zh)
AU (1) AU2021290491B9 (zh)
WO (1) WO2021253876A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115360767A (zh) * 2022-07-22 2022-11-18 浙江腾圣储能技术有限公司 双组件串联输入功率微逆控制装置及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585308B (zh) * 2020-06-15 2022-04-08 阳光电源股份有限公司 光伏快速关断***的控制方法及其应用装置和***
WO2022193458A1 (zh) * 2021-03-18 2022-09-22 苏州阿特斯阳光电力科技有限公司 光伏***、光伏组件、本地管理器及光伏***运行方法
CN112803485B (zh) * 2021-03-18 2023-05-30 阳光电源股份有限公司 一种光伏快速关断***及其控制方法
CN112821458B (zh) * 2021-03-23 2024-05-14 阳光电源股份有限公司 一种光伏快速关断***及其控制方法
CN112821866B (zh) * 2021-03-29 2022-07-12 阳光电源股份有限公司 一种光伏快速关断***及其控制方法
WO2023065135A1 (zh) * 2021-10-20 2023-04-27 杭州禾迈电力电子股份有限公司 一种关断器、关断器的通信方法及快速关断光伏***
CN114336622A (zh) * 2022-02-22 2022-04-12 浙江英达威芯电子有限公司 一种关断器控制方法、***、装置及关断控制器
CN117952056B (zh) * 2024-03-27 2024-07-23 锦浪科技股份有限公司 一种光伏逆变***的参数设计方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654028B1 (en) * 2016-03-24 2017-05-16 Eaton Corporation System and method for maximizing efficiency of three-phase inverter-based power systems
CN109038669A (zh) * 2018-08-23 2018-12-18 嘉兴爱索乐信息技术有限公司 实现组件级自动关断的光伏***
CN109787290A (zh) * 2019-03-19 2019-05-21 矽力杰半导体技术(杭州)有限公司 光伏***及其控制电路和控制方法
CN111585308A (zh) * 2020-06-15 2020-08-25 阳光电源股份有限公司 光伏快速关断***的控制方法及其应用装置和***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512245A (zh) * 2017-09-14 2018-09-07 上海盐巴信息科技有限公司 可自动实现组件级关断的光伏***及其控制方法
CN109802441B (zh) * 2019-03-18 2021-06-11 阳光电源股份有限公司 光伏逆变***的直流电弧故障检测方法、装置及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654028B1 (en) * 2016-03-24 2017-05-16 Eaton Corporation System and method for maximizing efficiency of three-phase inverter-based power systems
CN109038669A (zh) * 2018-08-23 2018-12-18 嘉兴爱索乐信息技术有限公司 实现组件级自动关断的光伏***
CN109787290A (zh) * 2019-03-19 2019-05-21 矽力杰半导体技术(杭州)有限公司 光伏***及其控制电路和控制方法
CN111585308A (zh) * 2020-06-15 2020-08-25 阳光电源股份有限公司 光伏快速关断***的控制方法及其应用装置和***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115360767A (zh) * 2022-07-22 2022-11-18 浙江腾圣储能技术有限公司 双组件串联输入功率微逆控制装置及方法
CN115360767B (zh) * 2022-07-22 2023-10-27 浙江腾圣储能技术有限公司 双组件串联输入功率微逆控制装置及方法

Also Published As

Publication number Publication date
AU2021290491B9 (en) 2024-06-27
AU2021290491A1 (en) 2022-10-20
EP4167422A1 (en) 2023-04-19
US20230291201A1 (en) 2023-09-14
CN111585308A (zh) 2020-08-25
AU2021290491B2 (en) 2024-06-06
CN111585308B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2021253876A1 (zh) 光伏快速关断***的控制方法及其应用装置和***
WO2022152066A1 (zh) 一种光伏快速关断***的启动方法、应用装置和***
WO2021208632A1 (zh) 一种快速关断方法、光伏组件关断器和光伏***
AU2012236587B2 (en) System and method for off-line UPS
CN109831093B (zh) 一种用于断路器测试中实现功率因数补偿的电流发生装置
TW201338348A (zh) 不間斷電源系統
EP3758208B1 (en) Two-stage converter and method for starting the same, llc converter, and application system
CN111342684B (zh) 一种单相三电平Buck PFC整流器及其控制方法
CN202750021U (zh) 一种将交流电转换成直流电的转换器
Park et al. A novel control strategy of an active clamped flyback inverter with synchronous rectifier for a photovoltaic AC module system
CN103296747A (zh) 不间断电源***
CN216216500U (zh) 一种晶闸管的驱动电路、制氢电源
CN110957800B (zh) 电梯供电***的供电控制方法以及电梯供电***
CN113381409A (zh) 一种供电调压装置及控制方法
CN103746569A (zh) 一种高功率因数恒压、恒流程控开关电源及供电方法
CN105305858A (zh) 自适应光伏逆变器
US20240243604A1 (en) Power conversion circuit and control method thereof, battery pack, and energy storage system
EP4358386A1 (en) Resonant converter, control method of resonant converter, and related device
CN215646189U (zh) 一种供电调压装置
US20220231613A1 (en) Power supply device and voltage converting method
CN113364040B (zh) 一种光伏并网自动稳压控制装置及方法
CN209930144U (zh) 一种双管反激式开关电源
WO2022198456A1 (zh) 一种软启动电路及变换器
Anistia et al. A Fuzzy Interference System for A Grid-connected Micro-inverter with Phase Control Functions for A Small Solar Power System
CN105811547B (zh) 一种大功率高压直流充电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021290491

Country of ref document: AU

Date of ref document: 20210308

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021826158

Country of ref document: EP

Effective date: 20230116