WO2021253423A1 - Link adaptation for cross-layer rateless transmission - Google Patents

Link adaptation for cross-layer rateless transmission Download PDF

Info

Publication number
WO2021253423A1
WO2021253423A1 PCT/CN2020/097166 CN2020097166W WO2021253423A1 WO 2021253423 A1 WO2021253423 A1 WO 2021253423A1 CN 2020097166 W CN2020097166 W CN 2020097166W WO 2021253423 A1 WO2021253423 A1 WO 2021253423A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
computer
channel quality
representation
time window
Prior art date
Application number
PCT/CN2020/097166
Other languages
French (fr)
Inventor
Kangqi LIU
Liangming WU
Yu Zhang
Chao Wei
Chenxi HAO
Min Huang
Qiaoyu Li
Hao Xu
Wei XI
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/097166 priority Critical patent/WO2021253423A1/en
Publication of WO2021253423A1 publication Critical patent/WO2021253423A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to use of network codes for coding transmissions. Certain embodiments of the technology discussed below can enable and provide link adaptation for cross-layer rateless transmission.
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • spur management may occur in one or more of spur detection and/or removal devices, systems, and methods. Aspects may be utilized in a variety of wireless communication scenarios, including a cross-layer rateless transmission using error-correcting coding. Data may be encoded using rateless coding in the radio link control (RLC) layer, such that error correction can be accomplished through the error-correcting nature of the rateless code, instead of relying on acknowledgement signaling and retransmission.
  • RLC radio link control
  • a base station may determine or receive feedback from served user equipment (UEs) a channel quality measurement distribution in order to determine appropriate coding rates for the rateless code. On receipt of the transmitted data, the served UEs may decode all of the transmitted data even when not receiving all of the transmitted packets and without engaging in and acknowledgement signaling and retransmission error correcting procedure.
  • UEs served user equipment
  • the served UEs may decode all of the transmitted data even when not receiving all of the transmitted packets and without engaging in and acknowledgement signaling and retransmission error correct
  • a method of wireless communication includes partitioning, by a base station, data identified for transmission into a plurality of source packets at the packet data convergence protocol (PDCP) layer, encoding, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o , encoding, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded physical (PHY) layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i , signaling, by the base station, a transmission configuration message to a served UE, wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer, and transmitting, by the base station, the plurality of encoded PHY layer symbols to
  • a method of wireless communication includes receiving, at a UE, a plurality of encoded PHY layer symbols from a serving base station, decoding, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding, decoding, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets, and assembling, by the UE, the plurality of received data packets into received data at the PDCP layer.
  • an apparatus configured for wireless communications includes means for partitioning, by a base station, data identified for transmission into a plurality of source packets at the PDCP layer, means for encoding, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o , means for encoding, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded PHY layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i , means for signaling, by the base station, a transmission configuration message to a served UE, wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer, and means for transmitting, by the base station, the plurality of encoded PHY
  • an apparatus configured for wireless communications includes means for receiving, at a UE, a plurality of encoded PHY layer symbols from a serving base station, means for decoding, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding, means for decoding, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets, and means for assembling, by the UE, the plurality of received data packets into received data at the PDCP layer.
  • a non-transitory computer-readable medium having program code recorded thereon.
  • the program code further includes code to partition, by a base station, data identified for transmission into a plurality of source packets at the PDCP layer, code to encode, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o , code to encode, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded PHY layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i , code to signal, by the base station, a transmission configuration message to a served UE, wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer, and code to transmit, by the base station
  • a non-transitory computer-readable medium having program code recorded thereon.
  • the program code further includes code to receive, at a UE, a plurality of encoded PHY layer symbols from a serving base station, code to decode, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding, code to decode, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets, and code to assemble, by the UE, the plurality of received data packets into received data at the PDCP layer.
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the processor.
  • the processor is configured to partition, by a base station, data identified for transmission into a plurality of source packets at the PDCP layer, to encode, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o , to encode, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded PHY layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i , to signal, by the base station, a transmission configuration message to a served UE, wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer, and to transmit, by the
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the processor.
  • the processor is configured to receive, at a UE, a plurality of encoded PHY layer symbols from a serving base station, to decode, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding, to decode, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets, and to assemble, by the UE, the plurality of received data packets into received data at the PDCP layer.
  • FIG. 1 is a block diagram illustrating details of a wireless communication system according to some embodiments of the present disclosure.
  • FIG. 2 is a block diagram conceptually illustrating a design of a base station and a UE configured according to some embodiments of the present disclosure.
  • FIGs. 3A and 3B are block diagrams illustrating wireless communications in the RLC layer between a base station and UEs in a wireless network.
  • FIG. 4 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure.
  • FIG. 5 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure.
  • FIG. 6 is a block diagram illustrating communications between a base station and a UE in a wireless network configured for rateless encoding in the RLC layer according to one aspect of the present disclosure.
  • FIG. 7 is a block diagram conceptually illustrating an example design of a UE configured for rateless encoding in the RLC layer according to some embodiments of the present disclosure.
  • FIG. 8 is a block diagram conceptually illustrating an example design of a base station configured for rateless encoding in the RLC layer according to some embodiments of the present disclosure.
  • This disclosure relates generally to providing or participating in authorized shared access between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may, for example implement a radio technology such as Global System for Mobile Communication (GSM) .
  • GSM Global System for Mobile Communication
  • 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN.
  • GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs subscriber handsets
  • a mobile phone operator's network may comprise one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. Additionally, an operator network may also include one or more LTE networks, and/or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
  • RATs radio access technologies
  • RANs radio access networks
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the 3GPP is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification.
  • 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard.
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • LTE long term evolution
  • UMTS universal mobile telecommunications system
  • the present disclosure may describe certain aspects with reference to LTE, 4G, or 5G NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects descried with reference to one technology may be understood to be applicable to another technology. Indeed, one or more aspects of the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • 5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTIs transmission time intervals
  • TDD dynamic, low-latency time division duplex
  • FDD frequency division duplex
  • advanced wireless technologies such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • FIG. 1 is a block diagram illustrating details of an example wireless communication system.
  • the wireless communication system may include wireless network 100.
  • Wireless network 100 may, for example, include a 5G wireless network.
  • components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
  • Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include a plurality of operator wireless networks) .
  • base station 105 may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG.
  • base stations 105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f is a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple (e.g., two, three, four, and the like) cells.
  • Wireless network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
  • UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some other suitable terminology.
  • a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary.
  • Some non-limiting examples of a mobile apparatus such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • a mobile such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • PDA personal digital assistant
  • a mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • IoT Internet of things
  • IoE Internet of everything
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UEs that do not include UICCs may also be referred to as IoE devices.
  • UEs 115a-115d of the implementation illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100
  • a UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
  • a mobile apparatus such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like.
  • a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
  • UEs may operate as base stations or other network nodes in some scenarios.
  • Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
  • base stations 105a-105c serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f.
  • Macro base station 105d also transmits multicast services which are subscribed to and received by UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • Wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from macro base stations 105d and 105e, as well as small cell base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
  • V2V vehicle-to-vehicle
  • FIG. 2 shows a block diagram conceptually illustrating an example design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1.
  • base station 105 may be small cell base station 105f in FIG. 1
  • UE 115 may be UE 115c or 115D operating in a service area of base station 105f, which in order to access small cell base station 105f, would be included in a list of accessible UEs for small cell base station 105f.
  • Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
  • transmit processor 220 may receive data from data source 212 and control information from controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc.
  • the data may be for the PDSCH, etc.
  • transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal.
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
  • transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Additionally, transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105.
  • data e.g., for the physical uplink shared channel (PUSCH)
  • control information e.g., for the physical uplink control channel (PUCCH)
  • controller/processor 280 e.g., for the physical uplink control channel (PUCCH)
  • transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable,
  • the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115.
  • Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
  • Controllers/processors 240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIGs. 4 and 5, and/or other processes for the techniques described herein.
  • Memories 242 and 282 may store data and program codes for base station 105 and UE 115, respectively.
  • Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Wireless communications systems operated by different network operating entities may share spectrum.
  • a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time.
  • certain resources e.g., time
  • a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum.
  • the network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum.
  • These time resources, prioritized for use by the network operating entity may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
  • Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
  • UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen-before-talk or listen-before-transmitting
  • CCA clear channel assessment
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions.
  • a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied.
  • RSSI received signal strength indicator
  • a CCA also may include detection of specific sequences that indicate use of the channel.
  • another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • the standards governing many wireless communication technologies provides for communications between compatible network nodes over a protocol stack, which is a collection of communications protocols arranged to implement the communications process.
  • the protocol stacks may be divided into user related communications (user plane) and control signaling (control plane) .
  • the low-and mid-level layers include the physical (PHY) layer, which is the lowest layer that is generally responsible for communication of the data or control information over the spectrum; media access control (MAC) layer, which, among other functions, is generally responsible for mapping between logical channels and transport channels and multiplexing/de-multiplexing data or control information for transmission/reception; radio link control (RLC) layer, which, among other functions, is generally responsible to transfer upper layer product data units (PDUs) and perform error correction via automatic receipt request (ARQ) procedures when operating in acknowledgement mode (AM) ; and packet data convergence protocol (PDCP) layer, which, among other functions, is generally responsible for header compression of internet protocol (IP) packets and for security functions, such as integrity protection and ciphering.
  • a service data adaptation protocol (SDAP) layer has been added on top of the mid-level layers.
  • the main functionality of the SDAP layer is generally to map between quality of service (QoS) flow and a data radio bearer.
  • the control plane includes these same low-and mid-level layers, other than the SDAP layer in 5G NR network, and adds higher-level layers, such as the radio resource control (RRC) layer, which, among other functions, is generally responsible for broadcasting of system information, paging, and establishment/release of RRC connections; and the non-access stratum (NAS) layer, which is generally used to manage the establishment of communication sessions and for maintaining continuous communications with the user equipment as it moves.
  • RRC radio resource control
  • NAS non-access stratum
  • FIGs. 3A and 3B are block diagrams illustrating wireless communications in the RLC layer between base station 105a and UEs 115a and 115b in a wireless network 30.
  • Base station 105a serves two UEs, as illustrated, UEs 115a and 115b.
  • UE 115a (FIG. 3A) is in a stationary or slow-moving position that presents a low Doppler characteristic on wireless network 30.
  • UE 115b (FIG. 3B) is in a fast-moving position at a velocity, v, such as in an automobile, bus, train/high-speed train, or the like, which results in UE 115b presenting a high-Doppler characteristic on wireless network 30.
  • FIGs. 3A and 3B illustrate the transmission blocks (Tx0-Tx5) and receive blocks (Rx0-Rx5) for the communications between base station 105a and UEs 115a and 115b.
  • base station 105a transmits data at Tx0 for receipt by UE 115a at Rx0.
  • the receiving node provides acknowledgement feedback, whether positive acknowledgement (ACK) upon successful receipt and decoding or negative ACK (NACK) when the node does not successfully receive or decode the data.
  • ACK positive acknowledgement
  • NACK negative ACK
  • UE 115a transmits an ACK. If a NACK is, instead, received by the transmitter, then there will be an immediate retransmission.
  • base station 105a transmits data to UE 115a at Tx1, which UE 115a fails to successfully receive, UE 115a transmits a NACK at Rx1.
  • Base station 105a still within Tx1, retransmits the data to UE 115a for receipt at Rx2.
  • UE 115a When UE 115a successfully receives the retransmitted data, it will transmit ACK in response to the Tx1 transmission. This process continues via the RLC layer over the length of the communications between base station 105a and UE 115a with successful transmissions in Tx3 and Rx3 and successfully retransmissions in Tx4, Rx4, and Rx5.
  • base station 105a transmits data at Tx0 for receipt by UE 115b at Rx0. Because of the high-Doppler conditions presented by UE 115b traveling at velocity, v, the channel between base station 105a and UE 115b is fast-fading and may be difficult to track due to the small coherence time of the signals to and from UE 115b. Thus, at Rx0, UE 115b fails to successfully receive the transmission and transmits a NACK to base station 105a. Base station 105a immediately retransmits the data to UE 115b for receipt at Rx1. UE 115b successfully receives the transmission and reports ACK to base station 105a.
  • base station 105a transmits additional data for receipt by UE 115b and Rx2.
  • UE 115b is unable to successfully receive the data and transmits NACK to base station 105a.
  • Base station 105a immediately retransmits the data for receipt by UE 115b at Rx3.
  • UE 115b again is unable to successfully receive the data and transmits NACK to base station 105a, which, again, immediately retransmits the data for receipt by UE 115b at Rx4.
  • UE 115b successfully receives the second retransmission and reports ACK to base station 105a.
  • the communication continues with unsuccessful receipt of transmissions at Tx5, Rx5, and beyond.
  • various aspects of the present disclosure are directed to adding a rateless, error-correcting code to RLC layer communications to replace the ARQ-based error correction.
  • Fountain codes which have been applied in network layer operations and referred to as network codes in 3GPP, are rateless codes in the sense that the resulting coded packet is potential limitless. Transmitted packets encoded using Fountain codes include additional redundant symbols in which the original source packets can be recovered in the receiver when the number of received packets is at least larger than the number of source packets regardless of which packets are received.
  • the Luby transform (LT) code was one of the first fountain codes to achieve near-optimal erasure correcting that used a relatively low-complexity algorithm based on the exclusive OR (XOR) operation for encoding and decoding.
  • Raptor codes were an enhancement of the LT code, which may be roughly considered a low-density, parity check (LDPC) code with a weak LT code.
  • a weak LT code refers to an LT code having a higher code rate using fewer redundant symbols in the encoded transmitted packets.
  • Raptor codes have been applied for use in multimedia broadcast-multicast service (MBMS) transmissions.
  • Network codes have also been proposed for use in integrated access and backhaul (IAB) nodes for 5G NR Release 17 (Rel-17) .
  • Transmitted packets may be represented by the following equation:
  • r k represents the k th decoded source packet
  • N represents the total number of received packets
  • p n represents the n th encoded transmitted packet
  • G′ -1 represents the inverted generator matrix, where n indexes the rows of G′ -1 and k indexes the columns of G′ -1 .
  • the encoded transmitted packets may be recovered at the receiver where G′is invertible to G′ -1 or G′ has a rank of K.
  • G′ -1 is invertible with a minimum of N columns.
  • LT codes were one method developed to efficiently realize the functionality of Fountain codes, which provide an encoding process for each encoding symbol.
  • a degree, d i may be randomly selected from a degree distribution.
  • d i distinct source symbols may be randomly selected having a uniform distribution. These d i distinct source symbols are then processed using an XOR function.
  • a belief propagation (BP) may be used. The BP begins by finding an encoding symbol t j that is connected to only one of source symbol s i .
  • set s i t j and XOR s i to all encoding symbols that are connected to s i . All the edges connected to the source symbol s i are then removed from the process. This process is then repeated until all s i have determined. If there is no encoding symbol that is connected to only one source symbol, then the decoding process will be deemed to have failed.
  • GE Gaussian elimination process
  • Raptor codes reduce the encoding and decoding complexities of LT codes by reducing the average degree.
  • the Raptor codes which, as noted above, may be roughly considered an LDPC plus a weak LT code with a small average degree, such as 3, for example.
  • the encoding process for Raptor codes includes a pre-coding procedure that generates intermediate multiple redundant symbols to be added to the LDPC encoded original source symbols.
  • the pre-processed intermediate symbols include S LDPC symbols, in which each source symbol will appear three times in all of the LDPC symbols, and H half symbols, in which each encoding symbol contains ceil (H/2) source symbols.
  • the final encoding process for each of the encoding symbols includes randomly selecting a degree d i from a degree distribution, and then selecting d i distinct intermediate symbols which are processed with the XOR function.
  • FIG. 4 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure. The example blocks will also be described with respect to base station 105 as illustrated in FIG. 7 (the block base station figure) .
  • FIG. 7 is a block diagram illustrating an example design of a base station 105 configured according to one aspect of the present disclosure.
  • Base station 105 includes the structure, hardware, and components as illustrated for base station 105 of FIG. 2 (the template figure showing the components of the UE and base station) .
  • base station 105 includes controller/processor 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of eNB 105 that provide the features and functionality of base station 105.
  • Base station 105 under control of controller/processor 240, transmits and receives signals via wireless radios 1400a-t and antennas 234a-t.
  • Wireless radios 1400a-t includes various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator/demodulators 232a-t, MIMO detector 236, receive processor 238, transmit processor 220, and TX MIMO processor 230.
  • a base station partitions data identified for transmission into a plurality of source packets at the packet data convergence protocol (PDCP) layer.
  • data to be transmitted may be partitioned into smaller sets of packets and symbols in order for transmissions of the data over radio frequency (RF) spectrum.
  • the partitioned symbols and packets may then be received and assembled by the receiver into the original source data.
  • a base station such as base station 105, under control of controller/processor 240, identifies data for transmission, such as in data buffer 704, in memory 242, and, at the PDCP layer, partitions the identified data into a set of source packets in memory 242.
  • the base station encodes the plurality of source packets into a plurality of encoded source packets at a radio link control (RLC) layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o .
  • RLC radio link control
  • Base station 105 under control of controller/processor 240, executes cross-layer encoding logic 701, stored in memory 242.
  • the functionality and operations of the components of base station 105 enabled with the execution, by controller/processor 240, of the instructions and commands within cross-layer encoding logic 701 provide for base station 105 to use a rateless code for encoding the set of source packets into a plurality of encoded source packets, which include additional of redundant symbols for error correction.
  • Base station 105 under control of controller/processor 240, executes rateless encoder/decoder 702, in memory 242, in order to implement such rateless coding in the RLC layer.
  • the base station encodes each encoded packet of the plurality of encoded source packets with a plurality of encoded physical (PHY) layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i .
  • base station 105 under control of controller/processor 240, executes data channel encoder/decoder 703, stored in memory 242.
  • the execution environment of data channel encoder/decoder 703 provides base station 105 the functionality to encode each of the encoded source packets into a plurality of encoded PHY layer symbols at the PHY layer.
  • Data channel encoder/decoder 703 may use various data channel codes, such as low-density, parity check (LDPC) codes, and the like, to encode these PHY layer symbols.
  • LDPC parity check
  • the base station signals a transmission configuration message to a served user equipment (UE) , wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer.
  • UE user equipment
  • the transmission configuration message configures the served UE for rateless encoded data at the RLC layer.
  • base station 105 within the execution environment of cross-layer encoding logic 701, generates a configuration message for the served UEs that indicates such transmission will include ratelessly encoded data at the RLC layer.
  • Base station 105 may then transmit this configuration message to the served UEs via wireless radios 700a-t and antennas 234a-t.
  • the base station transmits the plurality of encoded PHY layer symbols to the served UE. After encoding the plurality of PHY layer symbols, base station 105 may then transmit the encoded data to the UE via wireless radios 700a-t and antennas 234a-t.
  • FIG. 5 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure. The example blocks will also be described with respect to UE 115 as illustrated in FIG. 15 (the block UE figure) .
  • FIG. 15 is a block diagram illustrating an example design of a UE 115 configured according to one aspect of the present disclosure.
  • UE 115 includes the structure, hardware, and components as illustrated for UE 115 of FIG. 2.
  • UE 115 includes controller/processor 280, which operates to execute logic or computer instructions stored in memory 282, as well as controlling the components of UE 115 that provide the features and functionality of UE 115.
  • Wireless radios 1500a-r includes various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator/demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266.
  • a UE receives a plurality of encoded PHY layer symbols from a serving base station.
  • a UE such as UE 115, engaged in communications may receive a set of encoded PHY layer symbols via antennas 252a-r and wireless radios 800a-r.
  • UE 115 may either detect such encoding according to the aspects of the present disclosure or may receive a configuration message from the serving base station to indicate that the rateless encoding according to the disclosure aspects are present in the received signals.
  • UE 115 executes, under control of controller/processor 282, cross-layer encoding logic 801.
  • the execution environment of cross-layer encoding logic 801 provides UE 115 with the functionality to identify the rateless coding at the RLC layer and data channel coding at the PHY layer according to the various aspects disclosed herein.
  • the UE decodes the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding.
  • UE 115 executes, under control of controller/processor 280, data channel encoder/decoder 802, stored in memory 282.
  • the execution environment of data channel encoder/decoder 802 allows UE 115 to decode the encoded PHY layer symbols at the PHY layer.
  • the UE decodes the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets.
  • UE 115 executes, under control of controller/processor 280, rateless encoder/decoder 803, stored in memory 282.
  • the execution environment of rateless encoder/decoder 803 allows UE 115 to decode the encoded data packets at the RLC layer using a rateless code.
  • the rateless coding provides for additional redundant symbols to be added to the transmitted source data, such that receipt of less than all of the transmitted packets and symbols may still result in recovery of all of the source data based on receipt of a threshold number of the transmitted packets or symbols.
  • the UE assembles the plurality of received data packets into received data at the PDCP layer.
  • UE 115 under control of controller/processor 280, may assemble the received data packets into the received data at the PDCP layer.
  • controller/processor 280 may assemble the received data packets into the received data at the PDCP layer.
  • UE 115 may be capable of recovering the originally-transmitted source data without the legacy acknowledgement/retransmission process. Thus, saving such roundtrip times in the transmission process.
  • FIG. 6 is a block diagram illustrating communications between a base station 105a and UE 115a in a wireless network 60 configured for rateless encoding in the RLC layer according to one aspect of the present disclosure.
  • Data of N d bits identified for transmission is partitioned at PDCP layer 600 into l packets with N b bits per packet.
  • RLC layer 601 a rateless code, having erasure-correction functionality, such as Fountain code, is used to encode across these l packets to generate a stream of L encoded packets.
  • each of the L encoded packets includes N s symbols (x 0 –x Ns-1 ) after error-correction coding and modulation. Each such information symbol (x 0 –x Ns-1 ) has Q bits, where N b ⁇ N s Q.
  • the PDCP or outer coding rate between PDCP layer 600 and RLC layer 601 may be represented by where ⁇ l represents the number of encoded packets received at the receiver for decoding and recovering the source data and ⁇ represents a Raptor code-related parameter that is configured by the network according to ⁇ 1.
  • the PHY or inner coding rate between RLC layer 601 and PHY layer 602 may be represented by
  • the overall efficiency of the encoding process may be represented by the following equation:
  • the encoding process on the side of base station 105a may be assisted by feedback from UE 115a.
  • UE 115a may derive for each channel quality indicator (CQI) value reported in an uplink slot the highest CQI index which satisfies a transport block error probability not to exceed 0.1.
  • CQI channel quality indicator
  • SINR signal-to-noise-plus-interference ratio
  • UE 115a may then include the CQI in a channel state information (CSI) feedback report to base station 105a.
  • This CQI may be used by base station 105a as a representation of the SINR distribution over the communication channel.
  • Base station 105a would use this CQI from UE 115a to calculate a target inside coding rate, r i , according to
  • the PHY packet error rate, ⁇ PHY may be determined according to the following formula:
  • Equation (4) results in the cumulative distribution function (CDF) of R (SINR) .
  • CDF cumulative distribution function
  • the PDCP data loss rate, ⁇ PDCP , using Raptor codes may be determined according to the following two-part equation:
  • Equation (5) results in the data loss rate when the number of received encoded packets, i, is less than l. When fewer than l encoded packets are received at the receiver, data loss occurs. The second part of Equation (5) results in the data loss rate when the number of received encoded packets, i, is greater than or equal to l.
  • the decoding failure of the data with Raptor codes is 0.85 ⁇ 0.567 i-l , which is a predefined decoding failure parameter for Raptor codes.
  • the PDCP data loss rate may be approximated by the following equation:
  • a higher given ⁇ PHY may support a higher coding rate, r i , or modulation order.
  • r i can be represented as a function of both ⁇ PHY and SINR, such as r i ( ⁇ PHY , SINR) .
  • r i can be determined.
  • the network such as via base station 105a, may attempt to jointly optimize r o and r i for the transmission coding according to the various aspects described herein.
  • the optimization procedure may address the trade-off between optimization of performance and maximizing efficiency, which results in two separate optimizations: one optimizing performed under the constraint of a predetermined overall efficiency, ⁇ 0 , and the other maximizing efficiency under the constraint of the performance.
  • the performance optimization procedure may be constrained by the predetermined overall efficiency, ⁇ 0 , under the following relationship:
  • the predetermined value of ⁇ 0 provides that the data should be transmitted using a given number of resource elements (REs) . If r i r o is less than the constrained efficiency value, the data could not be transmitted using the given number of REs.
  • REs resource elements
  • the efficiency maximization may be constrained by the performance under the following relationship:
  • the two optimizations are dual problems, and the network, via base station 105a, determines r o and r i by using one of these optimization procedure.
  • the second optimization procedure for maximizing the efficiency attempts to minimize the number of REs for transmitting the data as long as the PDCP data loss rate, ⁇ PDCP , is less than a predefined value, ⁇ 0 .
  • the PHY error rate, ⁇ PHY is a function of r i and is not an independent variable.
  • the overall process between base station 105a and UE 115a for the cross-layer link adaptation procedure using the rateless code begins by determining the time window length, W, such that the difference between the CDF of either or and the CDF of either or is minor.
  • W may be dependent on the velocity, v, of UE 115a, or other factors which may impact the channel aging effect, such as how the channel changes over time due to movement of the antennas, such as the movement of UE 115a’s antennas, obstacles in the propagation medium, or other environmental changes.
  • the CDF of or may then be calculated using the SINR or R (SINR) observed for the previous W.
  • the network via base station 105a, may solve the optimization procedure for r o and r i using one of the optimization procedures detailed above. After the network, via base station 105a, determines the optimized values of r o and r i , base station 105a applies the determined r o and r i for the intended data transmission.
  • base station 105a calculates the SINR distribution by measuring a reference signal transmitted by UE 115a, such as a sounding reference signal (SRS) .
  • the SINR distribution allows base station 105a to determine the relationship of r i and ⁇ PHY , which may then be used to resolve the optimization of r o and r i .
  • the SINR distribution is obtained via a representation of the SINR distribution received from UE 115a.
  • base station 105a signals multiple different values of ⁇ PHY for UE 115a to use in determining a set of highest coding rates and CQIs corresponding to the different ⁇ PHY values.
  • UE 115a would report these CQI values as representation of channel quality measurement distribution 603.
  • Such reported CQI values may be regarded as a quantized SINR that base station 105a may use to determine the SINR distribution over W, which identifies the relationship of r i and ⁇ PHY .
  • the network via base station 105a, calculates and signals the time window length, W, to UE 115a.
  • UE 115a may then use W when selecting the highest CQI that satisfies a given coding rate or set of coding rates.
  • UE 115a could feedback several pairs of ( ⁇ PHY , r i ) to base station 105a in representation of channel quality measurement distribution 603.
  • base station 105a could first signal a set of ⁇ PHY values to UE 115a.
  • UE 115a may then determine corresponding coding rates, r i , using the signaled ⁇ PHY and based on the SINR distribution or R (SINR) distribution over W.
  • SINR SINR distribution or R
  • the network via base station 105a, calculates and signals the time window length, W, to UE 115a.
  • UE 115a may then use W to determine the mean and variance of the post-processing SINR observed or the maximum available coding rate in the time window length, W, and report such to base station 105a in representation of channel quality measurement distribution 603.
  • UE 115a may determine the mean and variance of the maximum transmission rate over W with a given SINR, or the mean and variance of the SINR over W,
  • UE 115a determines the time window length, W, and uses W in determining a relationship of r i and ⁇ PHY , according to the means described with respect to the third optional aspect. UE 115a would then report W and the relationship of r i and ⁇ PHY to base station 115a in representation of channel quality measurement distribution 603.
  • UE 115a determines the time window length, W, and uses W in the determination of either the mean and variance of the post-processing SINR observed, the maximum available rate during W, the mean and variance of the maximum transmission rate over W with a given SINR, or the mean and variance of the SINR over W, UE 115a may then report these mean and variance values or the maximum available coding rate in the time window length, W, to base station 105a in representation of channel quality measurement distribution 603.
  • base station 105a uses the SINR distribution over W, whether determined by base station 105a or with feedback from UE 115a.
  • SINR distribution is more robust for communications with the fast fading channel/high-Doppler channel experienced by fast-moving UEs, such as UE 115b (FIG. 3B) .
  • the various aspects of the present disclosure may further allow for the reduction of the overall PDCP data loss rate, ⁇ PDCP .
  • the various aspects of the present disclosure provide communications without HARQ/ARQ retransmission error correction for each packet. As a result, the feedback overhead and overall latency may be reduced.
  • Components, the functional blocks, and modules described herein may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • processors e.g., the components, functional blocks, and modules in FIG. 2
  • features discussed herein relating to including a cross-layer rateless transmission using error-correcting coding may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
  • a first example aspect of wireless communication may include partitioning, by a base station, data identified for transmission into a plurality of source packets at the PDCP layer; encoding, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o ; encoding, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded PHY layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i ; signaling, by the base station, a transmission configuration message to a served
  • a second aspect alone or in combination with the first aspect, further including obtaining, by the base station, a representation of a channel quality measurement distribution on a channel over which the plurality of encoded PHY layer symbols are transmitted to the served UE; determining, by the base station, the target outer coding rate, and the target inner coding rate using the representation of the channel quality measurement distribution and a predetermined transmission efficiency, ⁇ 0 , wherein the transmitting the plurality of encoded PHY layer symbols is according to the target outer coding rate and the target inner coding rate.
  • a third aspect, alone or in combination with the second aspect, wherein the obtaining the representation of the channel quality measurement distribution includes determining, by the base station, a time window length, W; and calculating, by the base station, a CDF of a SINR over the time window length, W, on a sounding reference signals (SRS) received from the served UE, wherein the representation of the channel quality measurement distribution corresponds to the CDF of the SINR.
  • SRS sounding reference signals
  • a fourth aspect, alone or in combination with the third aspect, wherein the obtaining the representation of the channel quality measurement distribution includes receiving, by the base station, a channel quality indicator (CQI) in channel state information (CSI) feedback determined by the served UE to satisfy a transport block error probability of 0.1.
  • CQI channel quality indicator
  • CSI channel state information
  • a fifth aspect alone or in combination with the fourth aspect, further including transmitting, by the base station, one or more transport block error probability values for CQI reporting to the served UE; and receiving, by the base station, one or more additional CQIs corresponding to the one or more transport block error probability values, wherein the representation of the channel quality measurement distribution is determined from the one or more CQIs.
  • a sixth aspect alone or in combination with the second aspect, further including transmitting, by the base station, a feedback configuration message to the served UE, wherein the feedback configuration message identifies a selected procedure for the obtaining the representation of the channel quality measurement distribution.
  • a seventh aspect, alone or in combination with the sixth aspect, wherein the obtaining the representation of the channel quality measurement distribution identified by the selected procedure includes determining, by the base station, a time window length, W; signaling, by the base station, the time window length, W, to the served UE; and receiving, by the base station, the representation of the channel quality measurement distribution in a feedback message from the served UE.
  • the representation of the channel quality measurement distribution includes one of an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or a report identifying a mean and a variance of one of a SINR measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or a maximum available coding rate within the time window length, W.
  • a ninth aspect alone or in combination with the sixth aspect, wherein the selected procedure for the obtaining the representation of the channel quality measurement distribution includes receiving, by the base station, a time window length, W, determined by the served UE and the representation of the channel quality measurement distribution in a feedback message from the served UE.
  • the representation of the channel quality measurement distribution includes one of an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or a maximum available coding rate within the time window length, W.
  • SINR signal-to-interference-plus noise ratio
  • determining the time window length, W includes determining the time window length, W, wherein the CDF of or of or threshold value.
  • a twelfth aspect of wireless communication may include receiving, at a UE, a plurality of encoded PHY layer symbols from a serving base station; decoding, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding; decoding, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets; and assembling, by the UE, the plurality of received data packets into received data at the PDCP layer.
  • a thirteenth aspect alone or in combination with the twelfth aspect, further including determining, by the UE, a highest CQI that satisfies a transport block error probability of 0.1; and transmitting, by the UE, a CSI feedback report that includes the highest CQI determined.
  • a fourteenth aspect alone or in combination with the thirteenth aspect, further including receiving, by the UE, one or more transport block error probability values for CQI reporting from the serving base station; determining, by the UE, one or more additional highest CQIs corresponding to the one or more transport block error probability values, wherein the CSI feedback report further includes the one or more additional highest CQIs.
  • a fifteenth aspect alone or in combination with the twelfth aspect, further including receiving, by the UE, a feedback configuration message from the serving base station, wherein the feedback configuration message identifies a selected procedure for the UE to obtain a representation of a channel quality measurement distribution.
  • a sixteenth aspect, alone or in combination with the fifteenth aspect, wherein the selected procedure to obtain the representation of the channel quality measurement distribution includes receiving, by the UE, a time window length, W, from the serving base station; determining, by the UE, the representation of the channel quality measurement distribution over the time window length, W; and transmitting, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  • the determining the representation of the channel quality measurement distribution includes one of determining an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or determining a mean and a variance of one of a SINR measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or identifying a maximum available coding rate within the time window length, W.
  • determining the representation of the channel quality measurement distribution includes determining a time window length, W; and determining the representation of the channel quality measurement distribution over the time window length, W; and transmitting, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  • the determining the representation of the channel quality measurement distribution includes one of determining an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or determining a mean and a variance of one of a SINR measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or identifying a maximum available coding rate within the time window length, W.
  • a twentieth aspect alone or in combination with the sixteenth or eighteenth aspects, wherein the determining the time window length, W, includes determining the time window length, W, wherein the CDF of or of or threshold value.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Link adaptation for cross-layer rateless transmission is disclosed. Data may be encoded using rateless coding in the radio link control (RLC) layer, such that error correction can be accomplished through the error-correcting nature of the rateless code, instead of relying on acknowledgement signaling and retransmission. A base station may determine or receive feedback from served user equipment (UEs) a channel quality measurement distribution in order to determine appropriate coding rates for the rateless code. On receipt of the transmitted data, the served UEs may decode all of the transmitted data even when not receiving all of the transmitted packets and without engaging in and acknowledgement signaling and retransmission error correcting procedure. Other aspects and features are also claimed and described.

Description

LINK ADAPTATION FOR CROSS-LAYER RATELESS TRANSMISSION TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to use of network codes for coding transmissions. Certain embodiments of the technology discussed below can enable and provide link adaptation for cross-layer rateless transmission.
INTRODUCTION
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
SUMMARY
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all  contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
Various aspects of the disclosure relate to spur management. Implementations may occur in one or more of spur detection and/or removal devices, systems, and methods. Aspects may be utilized in a variety of wireless communication scenarios, including a cross-layer rateless transmission using error-correcting coding. Data may be encoded using rateless coding in the radio link control (RLC) layer, such that error correction can be accomplished through the error-correcting nature of the rateless code, instead of relying on acknowledgement signaling and retransmission. A base station may determine or receive feedback from served user equipment (UEs) a channel quality measurement distribution in order to determine appropriate coding rates for the rateless code. On receipt of the transmitted data, the served UEs may decode all of the transmitted data even when not receiving all of the transmitted packets and without engaging in and acknowledgement signaling and retransmission error correcting procedure.
In one aspect of the disclosure, a method of wireless communication includes partitioning, by a base station, data identified for transmission into a plurality of source packets at the packet data convergence protocol (PDCP) layer, encoding, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o, encoding, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded physical (PHY) layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i, signaling, by the base station, a transmission configuration message to a served UE, wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer, and transmitting, by the base station, the plurality of encoded PHY layer symbols to the served UE.
In an additional aspect of the disclosure, a method of wireless communication includes receiving, at a UE, a plurality of encoded PHY layer symbols from a serving base station, decoding, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding, decoding, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data  packets, and assembling, by the UE, the plurality of received data packets into received data at the PDCP layer.
In an additional aspect of the disclosure, an apparatus configured for wireless communications includes means for partitioning, by a base station, data identified for transmission into a plurality of source packets at the PDCP layer, means for encoding, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o, means for encoding, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded PHY layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i, means for signaling, by the base station, a transmission configuration message to a served UE, wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer, and means for transmitting, by the base station, the plurality of encoded PHY layer symbols to the served UE.
In an additional aspect of the disclosure, an apparatus configured for wireless communications includes means for receiving, at a UE, a plurality of encoded PHY layer symbols from a serving base station, means for decoding, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding, means for decoding, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets, and means for assembling, by the UE, the plurality of received data packets into received data at the PDCP layer.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon. The program code further includes code to partition, by a base station, data identified for transmission into a plurality of source packets at the PDCP layer, code to encode, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o, code to encode, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded PHY layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i, code to signal, by the base station, a transmission configuration message to a served UE, wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer, and code to transmit, by the base station, the plurality of encoded PHY layer symbols to the served UE.  In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon. The program code further includes code to receive, at a UE, a plurality of encoded PHY layer symbols from a serving base station, code to decode, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding, code to decode, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets, and code to assemble, by the UE, the plurality of received data packets into received data at the PDCP layer. In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes at least one processor, and a memory coupled to the processor. The processor is configured to partition, by a base station, data identified for transmission into a plurality of source packets at the PDCP layer, to encode, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o, to encode, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded PHY layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i, to signal, by the base station, a transmission configuration message to a served UE, wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer, and to transmit, by the base station, the plurality of encoded PHY layer symbols to the served UE.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes at least one processor, and a memory coupled to the processor. The processor is configured to receive, at a UE, a plurality of encoded PHY layer symbols from a serving base station, to decode, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding, to decode, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets, and to assemble, by the UE, the plurality of received data packets into received data at the PDCP layer.
Other aspects, features, and embodiments will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments in conjunction with the accompanying figures. While features may be discussed relative to certain aspects and figures below, all embodiments can include one or more of the advantageous  features discussed herein. In other words, while one or more aspects may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various aspects. In similar fashion, while exemplary aspects may be discussed below as device, system, or method aspects, the exemplary aspects can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
FIG. 1 is a block diagram illustrating details of a wireless communication system according to some embodiments of the present disclosure.
FIG. 2 is a block diagram conceptually illustrating a design of a base station and a UE configured according to some embodiments of the present disclosure.
FIGs. 3A and 3B are block diagrams illustrating wireless communications in the RLC layer between a base station and UEs in a wireless network.
FIG. 4 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure.
FIG. 5 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure.
FIG. 6 is a block diagram illustrating communications between a base station and a UE in a wireless network configured for rateless encoding in the RLC layer according to one aspect of the present disclosure.
FIG. 7 is a block diagram conceptually illustrating an example design of a UE configured for rateless encoding in the RLC layer according to some embodiments of the present disclosure. FIG. 8 is a block diagram conceptually illustrating an example design of a base station configured for rateless encoding in the RLC layer according to some embodiments of the present disclosure.
The Appendix provides further details regarding various embodiments of this disclosure and the subject matter therein forms a part of the specification of this application.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings and appendix, is intended as a description of various configurations and is not intended to limit the scope of the disclosure. Rather, the detailed description includes specific details for the purpose of providing a thorough understanding of the inventive subject matter. It will be apparent to those skilled in the art that these specific details are not required in every case and that, in some instances, well-known structures and components are shown in block diagram form for clarity of presentation.
This disclosure relates generally to providing or participating in authorized shared access between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks. In various implementations, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
A CDMA network, for example, may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may, for example implement a radio technology such as Global System for Mobile Communication (GSM) . The Third Generation Partnership Project (3GPP) defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) . The radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may comprise one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. Additionally, an operator network may also include one or more LTE networks, and/or one or more other networks. The various  different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3GPP is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure may describe certain aspects with reference to LTE, 4G, or 5G NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects descried with reference to one technology may be understood to be applicable to another technology. Indeed, one or more aspects of the present disclosure are related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
For clarity, certain aspects of the apparatus and techniques may be described below with reference to example 5G NR implementations or in a 5G-centric way, and 5G terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to 5G applications.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described  herein may be applied to other communications systems and applications than the particular examples provided.
While aspects and implementations are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip embodiments and/or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
FIG. 1 is a block diagram illustrating details of an example wireless communication system. The wireless communication system may include wireless network 100. Wireless network 100 may, for example, include a 5G wireless network. As appreciated by those skilled in the art, components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the  context in which the term is used. In implementations of wireless network 100 herein, base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include a plurality of operator wireless networks) . Additionally, in implementations of wireless network 100 herein, base station 105 may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In some other examples, each base station 105 and UE 115 may be operated by a single network operating entity.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG. 1,  base stations  105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station which may be a home node or portable access point. A base station may support one or multiple (e.g., two, three, four, and the like) cells.
Wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. In some scenarios, networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. It should be appreciated that, although a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component device/module, or some other suitable terminology. Within the present document, a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary. Some non-limiting examples of a mobile apparatus, such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) . A mobile apparatus may additionally be an “Internet of things” (IoT) or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may also be referred to as IoE devices. UEs 115a-115d of the implementation illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100 A UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
A mobile apparatus, such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like. In FIG. 1, a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations. UEs may operate as base stations or other network nodes in some scenarios. Backhaul communication between base stations of wireless network 100 may occur using wired and/or wireless communication links.
In operation at wireless network 100, base stations 105a-105c serve  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
Wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from  macro base stations  105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer) , UE 115g (smart meter) , and UE 115h (wearable device) may communicate through wireless network 100 either directly with base stations, such as small cell base station 105f, and macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through small cell base station 105f. Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
FIG. 2 shows a block diagram conceptually illustrating an example design of a base station 105 and a UE 115, which may be any of the base stations and one of the UEs in FIG. 1. For a restricted association scenario (as mentioned above) , base station 105 may be small cell base station 105f in FIG. 1, and UE 115 may be UE 115c or 115D operating in a service area of base station 105f, which in order to access small cell base station 105f, would be included in a list  of accessible UEs for small cell base station 105f. Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
At base station 105, transmit processor 220 may receive data from data source 212 and control information from controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc. The data may be for the PDSCH, etc. Additionally, transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal. Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. For example, spatial processing performed on the data symbols, the control symbols, or the reference symbols may include precoding. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
At UE 115, the antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
On the uplink, at UE 115, transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) ) from controller/processor 280. Additionally, transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105. At base station 105, the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115. Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
Controllers/ processors  240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller/processor 240 and/or other processors and modules at base station 105 and/or controller/processor 280 and/or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIGs. 4 and 5, and/or other processes for the techniques described herein.  Memories  242 and 282 may store data and program codes for base station 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Wireless communications systems operated by different network operating entities (e.g., network operators) may share spectrum. In some instances, a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time. Thus, in order to allow network operating entities use of the full designated shared spectrum, and in order to mitigate interfering communications between the different network operating entities, certain resources (e.g., time) may be partitioned and allocated to the different network operating entities for certain types of communication.
For example, a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum. The network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum. These time resources, prioritized for use by the network operating entity, may be utilized by other network operating entities on an opportunistic basis if the prioritized network  operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
In some cases, UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen-before-talk or listen-before-transmitting (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. In some implementations, a CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. A CCA also may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
The standards governing many wireless communication technologies provides for communications between compatible network nodes over a protocol stack, which is a collection of communications protocols arranged to implement the communications process. The protocol stacks may be divided into user related communications (user plane) and control signaling (control plane) . In the user plane, the low-and mid-level layers include the physical (PHY) layer, which is the lowest layer that is generally responsible for communication of the data or control information over the spectrum; media access control (MAC) layer, which, among other functions, is generally responsible for mapping between logical channels and transport channels and multiplexing/de-multiplexing data or control information for transmission/reception; radio link control (RLC) layer, which, among other functions, is generally responsible to transfer upper layer product data units (PDUs) and perform error  correction via automatic receipt request (ARQ) procedures when operating in acknowledgement mode (AM) ; and packet data convergence protocol (PDCP) layer, which, among other functions, is generally responsible for header compression of internet protocol (IP) packets and for security functions, such as integrity protection and ciphering. In 5G NR networks, a service data adaptation protocol (SDAP) layer has been added on top of the mid-level layers. Among other functions, the main functionality of the SDAP layer is generally to map between quality of service (QoS) flow and a data radio bearer. The control plane includes these same low-and mid-level layers, other than the SDAP layer in 5G NR network, and adds higher-level layers, such as the radio resource control (RRC) layer, which, among other functions, is generally responsible for broadcasting of system information, paging, and establishment/release of RRC connections; and the non-access stratum (NAS) layer, which is generally used to manage the establishment of communication sessions and for maintaining continuous communications with the user equipment as it moves.
FIGs. 3A and 3B are block diagrams illustrating wireless communications in the RLC layer between base station 105a and  UEs  115a and 115b in a wireless network 30. Base station 105a serves two UEs, as illustrated,  UEs  115a and 115b. UE 115a (FIG. 3A) is in a stationary or slow-moving position that presents a low Doppler characteristic on wireless network 30. In contrast, UE 115b (FIG. 3B) is in a fast-moving position at a velocity, v, such as in an automobile, bus, train/high-speed train, or the like, which results in UE 115b presenting a high-Doppler characteristic on wireless network 30. FIGs. 3A and 3B illustrate the transmission blocks (Tx0-Tx5) and receive blocks (Rx0-Rx5) for the communications between base station 105a and  UEs  115a and 115b.
In a first example communication illustrated in FIG. 3A, base station 105a transmits data at Tx0 for receipt by UE 115a at Rx0. In the RLC layer, for each data unit processed, the receiving node provides acknowledgement feedback, whether positive acknowledgement (ACK) upon successful receipt and decoding or negative ACK (NACK) when the node does not successfully receive or decode the data. Thus, upon successfully reception and decoding at Rx0, UE 115a transmits an ACK. If a NACK is, instead, received by the transmitter, then there will be an immediate retransmission. Thus, as base station 105a transmits data to UE 115a at Tx1, which UE 115a fails to successfully receive, UE 115a transmits a NACK at Rx1. Base station 105a, still within Tx1, retransmits the data to UE 115a for receipt at Rx2. When UE 115a successfully receives the retransmitted data, it will transmit ACK in response to the Tx1 transmission. This process continues via the RLC layer over the length of the communications between base  station 105a and UE 115a with successful transmissions in Tx3 and Rx3 and successfully retransmissions in Tx4, Rx4, and Rx5.
In a second example communication illustrated in FIG. 3B, base station 105a transmits data at Tx0 for receipt by UE 115b at Rx0. Because of the high-Doppler conditions presented by UE 115b traveling at velocity, v, the channel between base station 105a and UE 115b is fast-fading and may be difficult to track due to the small coherence time of the signals to and from UE 115b. Thus, at Rx0, UE 115b fails to successfully receive the transmission and transmits a NACK to base station 105a. Base station 105a immediately retransmits the data to UE 115b for receipt at Rx1. UE 115b successfully receives the transmission and reports ACK to base station 105a. At Tx2, base station 105a transmits additional data for receipt by UE 115b and Rx2. UE 115b is unable to successfully receive the data and transmits NACK to base station 105a. Base station 105a immediately retransmits the data for receipt by UE 115b at Rx3. UE 115b again is unable to successfully receive the data and transmits NACK to base station 105a, which, again, immediately retransmits the data for receipt by UE 115b at Rx4. UE 115b successfully receives the second retransmission and reports ACK to base station 105a. The communication continues with unsuccessful receipt of transmissions at Tx5, Rx5, and beyond. Because of the fast-fading/high-Doppler channel, communication efficiency and throughput between base station 105a and the fast-moving UE 115b is reduced. In order to address such issue, various aspects of the present disclosure are directed to adding a rateless, error-correcting code to RLC layer communications to replace the ARQ-based error correction.
Fountain codes, which have been applied in network layer operations and referred to as network codes in 3GPP, are rateless codes in the sense that the resulting coded packet is potential limitless. Transmitted packets encoded using Fountain codes include additional redundant symbols in which the original source packets can be recovered in the receiver when the number of received packets is at least larger than the number of source packets regardless of which packets are received. The Luby transform (LT) code was one of the first fountain codes to achieve near-optimal erasure correcting that used a relatively low-complexity algorithm based on the exclusive OR (XOR) operation for encoding and decoding. Raptor codes were an enhancement of the LT code, which may be roughly considered a low-density, parity check (LDPC) code with a weak LT code. A weak LT code refers to an LT code having a higher code rate using fewer redundant symbols in the encoded transmitted packets. In 4G LTE operations, Raptor codes have been applied for use in multimedia broadcast-multicast service (MBMS) transmissions. Network codes have also been proposed for use in integrated access and backhaul (IAB) nodes for 5G NR Release 17 (Rel-17) .
Fountain codes are rateless code with potentially unlimited columns. Transmitted packets may be represented by the following equation:
Figure PCTCN2020097166-appb-000001
Where p j represents the j th encoded transmitted packet, K represents the number of source packets, s k represents the k th source packet, G represents the original generator matrix, where k indexes the row of G and j indexes the column of G The recovered packets may be represented by the following equation:
Figure PCTCN2020097166-appb-000002
Where r k represents the k th decoded source packet, N represents the total number of received packets, p n represents the n th encoded transmitted packet, and G′ -1represents the inverted generator matrix, where n indexes the rows of G′ -1 and k indexes the columns of G′ -1. The encoded transmitted packets may be recovered at the receiver where G′is invertible to G′ -1 or G′ has a rank of K. Within the Fountain code principles, one of the design rules for the original generator matrix, G, is that G′ -1 is invertible with a minimum of N columns.
LT codes were one method developed to efficiently realize the functionality of Fountain codes, which provide an encoding process for each encoding symbol. In a first step of the LT code encoding process, a degree, d i, may be randomly selected from a degree distribution. Next, d i distinct source symbols may be randomly selected having a uniform distribution. These d i distinct source symbols are then processed using an XOR function. In the LT code decoding process, a belief propagation (BP) may be used. The BP begins by finding an encoding symbol t j that is connected to only one of source symbol s i. Next, set s i=t j and XOR s i to all encoding symbols that are connected to s i . All the edges connected to the source symbol s i are then removed from the process. This process is then repeated until all s i have determined. If there is no encoding symbol that is connected to only one source symbol, then the decoding process will be deemed to have failed.
It should be noted that alternative decoding processes may be used to realize the functionality of Fountain codes. One such alternative decoding process is the Gaussian elimination process (GE) . GE is a linear algebra algorithm that includes a sequence of operations performed on a corresponding matrix of coefficients. However, the details of the GE will not be described herein.
As used in LTE networks, Raptor codes reduce the encoding and decoding complexities of LT codes by reducing the average degree. The Raptor codes, which, as noted above, may be roughly considered an LDPC plus a weak LT code with a small average degree, such as 3, for  example. The encoding process for Raptor codes includes a pre-coding procedure that generates intermediate multiple redundant symbols to be added to the LDPC encoded original source symbols. The pre-processed intermediate symbols include S LDPC symbols, in which each source symbol will appear three times in all of the LDPC symbols, and H half symbols, in which each encoding symbol contains ceil (H/2) source symbols. The final encoding process for each of the encoding symbols includes randomly selecting a degree d i from a degree distribution, and then selecting d i distinct intermediate symbols which are processed with the XOR function.
FIG. 4 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure. The example blocks will also be described with respect to base station 105 as illustrated in FIG. 7 (the block base station figure) . FIG. 7 is a block diagram illustrating an example design of a base station 105 configured according to one aspect of the present disclosure. Base station 105 includes the structure, hardware, and components as illustrated for base station 105 of FIG. 2 (the template figure showing the components of the UE and base station) . For example, base station 105 includes controller/processor 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of eNB 105 that provide the features and functionality of base station 105. Base station 105, under control of controller/processor 240, transmits and receives signals via wireless radios 1400a-t and antennas 234a-t. Wireless radios 1400a-t includes various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator/demodulators 232a-t, MIMO detector 236, receive processor 238, transmit processor 220, and TX MIMO processor 230.
At block 400, a base station partitions data identified for transmission into a plurality of source packets at the packet data convergence protocol (PDCP) layer. According to wireless transmission technologies, data to be transmitted may be partitioned into smaller sets of packets and symbols in order for transmissions of the data over radio frequency (RF) spectrum. The partitioned symbols and packets may then be received and assembled by the receiver into the original source data. A base station, such as base station 105, under control of controller/processor 240, identifies data for transmission, such as in data buffer 704, in memory 242, and, at the PDCP layer, partitions the identified data into a set of source packets in memory 242.
At block 401, the base station encodes the plurality of source packets into a plurality of encoded source packets at a radio link control (RLC) layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r oBase station 105,  under control of controller/processor 240, executes cross-layer encoding logic 701, stored in memory 242. The functionality and operations of the components of base station 105 enabled with the execution, by controller/processor 240, of the instructions and commands within cross-layer encoding logic 701 (referred to herein as the “execution environment” of cross-layer encoding logic 701) provide for base station 105 to use a rateless code for encoding the set of source packets into a plurality of encoded source packets, which include additional of redundant symbols for error correction. Base station 105, under control of controller/processor 240, executes rateless encoder/decoder 702, in memory 242, in order to implement such rateless coding in the RLC layer.
At block 402, the base station encodes each encoded packet of the plurality of encoded source packets with a plurality of encoded physical (PHY) layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i. In furtherance of the transmission preparation under the execution environment of cross-layer encoding logic 701, base station 105, under control of controller/processor 240, executes data channel encoder/decoder 703, stored in memory 242. The execution environment of data channel encoder/decoder 703 provides base station 105 the functionality to encode each of the encoded source packets into a plurality of encoded PHY layer symbols at the PHY layer. Data channel encoder/decoder 703 may use various data channel codes, such as low-density, parity check (LDPC) codes, and the like, to encode these PHY layer symbols.
At block 403, the base station signals a transmission configuration message to a served user equipment (UE) , wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer. In order to signal a served UE that a transmission will be made using such a rateless coding at the RLC layer, base station 105, within the execution environment of cross-layer encoding logic 701, generates a configuration message for the served UEs that indicates such transmission will include ratelessly encoded data at the RLC layer. Base station 105 may then transmit this configuration message to the served UEs via wireless radios 700a-t and antennas 234a-t.
At block 404, the base station transmits the plurality of encoded PHY layer symbols to the served UE. After encoding the plurality of PHY layer symbols, base station 105 may then transmit the encoded data to the UE via wireless radios 700a-t and antennas 234a-t.
FIG. 5 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure. The example blocks will also be described with respect to UE 115 as illustrated in FIG. 15 (the block UE figure) . FIG. 15 is a block diagram illustrating an example design of a UE 115 configured according to one aspect of the present disclosure. UE 115  includes the structure, hardware, and components as illustrated for UE 115 of FIG. 2. For example, UE 115 includes controller/processor 280, which operates to execute logic or computer instructions stored in memory 282, as well as controlling the components of UE 115 that provide the features and functionality of UE 115. UE 115, under control of controller/processor 280, transmits and receives signals via wireless radios 1500a-r and antennas 252a-r. Wireless radios 1500a-r includes various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator/demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266.
At block 500, a UE receives a plurality of encoded PHY layer symbols from a serving base station. A UE, such as UE 115, engaged in communications may receive a set of encoded PHY layer symbols via antennas 252a-r and wireless radios 800a-r. UE 115 may either detect such encoding according to the aspects of the present disclosure or may receive a configuration message from the serving base station to indicate that the rateless encoding according to the disclosure aspects are present in the received signals. In response to identifying the encoded PHY layer symbols according to the aspects of the present disclosure, UE 115 executes, under control of controller/processor 282, cross-layer encoding logic 801. The execution environment of cross-layer encoding logic 801 provides UE 115 with the functionality to identify the rateless coding at the RLC layer and data channel coding at the PHY layer according to the various aspects disclosed herein.
At block 501, the UE decodes the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding. Within the execution environment of cross-layer encoding logic 801, UE 115 executes, under control of controller/processor 280, data channel encoder/decoder 802, stored in memory 282. The execution environment of data channel encoder/decoder 802 allows UE 115 to decode the encoded PHY layer symbols at the PHY layer.
At block 502, the UE decodes the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets. Further within the execution environment of cross-layer encoding logic 801, UE 115 executes, under control of controller/processor 280, rateless encoder/decoder 803, stored in memory 282. The execution environment of rateless encoder/decoder 803 allows UE 115 to decode the encoded data packets at the RLC layer using a rateless code. The rateless coding provides for additional redundant symbols to be added to the transmitted source data, such that receipt of less than all of the transmitted packets and  symbols may still result in recovery of all of the source data based on receipt of a threshold number of the transmitted packets or symbols.
At block 503, the UE assembles the plurality of received data packets into received data at the PDCP layer. After decoding the encoded data packets, UE 115, under control of controller/processor 280, may assemble the received data packets into the received data at the PDCP layer. Through the error correction of the rateless coding, UE 115 may be capable of recovering the originally-transmitted source data without the legacy acknowledgement/retransmission process. Thus, saving such roundtrip times in the transmission process.
FIG. 6 is a block diagram illustrating communications between a base station 105a and UE 115a in a wireless network 60 configured for rateless encoding in the RLC layer according to one aspect of the present disclosure. Data of N d bits identified for transmission is partitioned at PDCP layer 600 into l packets with N b bits per packet. In RLC layer 601, a rateless code, having erasure-correction functionality, such as Fountain code, is used to encode across these l packets to generate a stream of L encoded packets. In PHY layer 602, each of the L encoded packets includes N s symbols (x 0 –x Ns-1) after error-correction coding and modulation. Each such information symbol (x 0 –x Ns-1) has Q bits, where N b≤N sQ.
The PDCP or outer coding rate between PDCP layer 600 and RLC layer 601 may be represented by
Figure PCTCN2020097166-appb-000003
where ρl represents the number of encoded packets received at the receiver for decoding and recovering the source data and ρ represents a Raptor code-related parameter that is configured by the network according to ρ≥1. The PHY or inner coding rate between RLC layer 601 and PHY layer 602 may be represented by
Figure PCTCN2020097166-appb-000004
The overall efficiency of the encoding process may be represented by the following equation:
Figure PCTCN2020097166-appb-000005
The encoding process on the side of base station 105a may be assisted by feedback from UE 115a. Under current standards, in PHY layer 602 on the UE side, UE 115a may derive for each channel quality indicator (CQI) value reported in an uplink slot the highest CQI index which satisfies a transport block error probability not to exceed 0.1. UE 105a calculates the signal-to-noise-plus-interference ratio (SINR) of the communication channel and determines the best PHY coding rate that satisfies the transport block error rate, such as the PHY packet error rate, ε PHY, according to ε PHY=0.1. UE 115a may then include the CQI in a channel state information (CSI) feedback report to base station 105a. This CQI may be used by base station 105a as a representation of the SINR distribution over the communication channel. Base  station 105a would use this CQI from UE 115a to calculate a target inside coding rate, r i, according to
Figure PCTCN2020097166-appb-000006
The PHY packet error rate, ε PHY, may be determined according to the following formula:
Figure PCTCN2020097166-appb-000007
Where Pr () represents the probability function and R (SINR) represents the maximum transmission rate at a given SINR, and the resolution of Equation (4) results in the cumulative distribution function (CDF) of R (SINR) . As noted above, the current standards provide for ε PHY = 0.1, which UE 115a would use to determine the highest CQI that meets ε PHY = 0.1.
The PDCP data loss rate, ε PDCP, using Raptor codes may be determined according to the following two-part equation:
Figure PCTCN2020097166-appb-000008
Where L represents the number of encoded packets that were transmitted by the transmitter (e.g., base station 105a) and i represents the number of encoded packets that were received at the receiver (e.g., UE 115a) . The first part of Equation (5) results in the data loss rate when the number of received encoded packets, i, is less than l. When fewer than l encoded packets are received at the receiver, data loss occurs. The second part of Equation (5) results in the data loss rate when the number of received encoded packets, i, is greater than or equal to l. When i≥l encoded packets are received at the receiver, the decoding failure of the data with Raptor codes is 0.85·0.567 i-l, which is a predefined decoding failure parameter for Raptor codes. When the number of encoded packets received, i, is equal to the threshold number of packets for successful error correction, ρl, the PDCP data loss rate may be approximated by the following equation:
Figure PCTCN2020097166-appb-000009
With the PHY packet error rate, ε PHY, according to Equation (4) , a higher given ε PHY may support a higher coding rate, r i, or modulation order. Considering Equation (4) , r i can be represented as a function of both ε PHY and SINR, such as r i (ε PHY, SINR) . Thus, given ε PHY and the distribution of SINR, r i can be determined. The network, such as via base station 105a, may attempt to jointly optimize r o and r i for the transmission coding according to the various aspects described herein. However, the optimization procedure may address the trade-off between optimization of performance and maximizing efficiency, which results in two separate  optimizations: one optimizing performed under the constraint of a predetermined overall efficiency, η 0, and the other maximizing efficiency under the constraint of the performance.
The performance optimization procedure may be constrained by the predetermined overall efficiency, η 0, under the following relationship:
Minimize:
Figure PCTCN2020097166-appb-000010
subject to:
Figure PCTCN2020097166-appb-000011
The predetermined value of η 0 provides that the data should be transmitted using a given number of resource elements (REs) . If r ir o is less than the constrained efficiency value, the data could not be transmitted using the given number of REs.
The efficiency maximization may be constrained by the performance under the following relationship:
Maximize:
Figure PCTCN2020097166-appb-000012
subject to:
Figure PCTCN2020097166-appb-000013
The two optimizations are dual problems, and the network, via base station 105a, determines r o and r i by using one of these optimization procedure. The second optimization procedure for maximizing the efficiency attempts to minimize the number of REs for transmitting the data as long as the PDCP data loss rate, ε PDCP, is less than a predefined value, ε 0.
It should be noted that
Figure PCTCN2020097166-appb-000014
and the optimization procedure is a joint optimization for both r o and r i. The PHY error rate, ε PHY, is a function of r i and is not an independent variable.
The overall process between base station 105a and UE 115a for the cross-layer link adaptation procedure using the rateless code begins by determining the time window length, W, such that the difference between the CDF of either
Figure PCTCN2020097166-appb-000015
or
Figure PCTCN2020097166-appb-000016
and the CDF of either
Figure PCTCN2020097166-appb-000017
or
Figure PCTCN2020097166-appb-000018
is minor. W may be dependent on the velocity, v, of UE 115a, or other factors which may impact the channel aging effect, such as how the channel changes over time due to movement of the antennas, such as the movement of UE 115a’s antennas, obstacles in the propagation medium, or other environmental changes. The CDF of
Figure PCTCN2020097166-appb-000019
or
Figure PCTCN2020097166-appb-000020
may then be calculated using the SINR or R (SINR) observed for the previous W. With the CDF over the time window length, W, the relationship of r i and ε PHY can be obtained according to Equation (4) : 
Figure PCTCN2020097166-appb-000021
With a small difference between the CDFs, as noted above, it can be assumed that the CDF of either 
Figure PCTCN2020097166-appb-000022
or
Figure PCTCN2020097166-appb-000023
is the same as the CDF of either
Figure PCTCN2020097166-appb-000024
or 
Figure PCTCN2020097166-appb-000025
The CDF of either
Figure PCTCN2020097166-appb-000026
or
Figure PCTCN2020097166-appb-000027
over W represents the SINR distribution over W. Therefore, using this assumption, the network, via base station 105a, may solve the optimization procedure for r o and r i using one of the optimization procedures detailed above. After the network, via base station 105a, determines the optimized values of r o and r ibase station 105a applies the determined r o and r i for the intended data transmission.
The determination of the SINR distribution over W or the relationship between r i and ε PHY may be determined in different manners according to the various aspects of the present disclosure. In a first optional aspect, base station 105a calculates the SINR distribution by measuring a reference signal transmitted by UE 115a, such as a sounding reference signal (SRS) . The SINR distribution allows base station 105a to determine the relationship of r i and ε PHY, which may then be used to resolve the optimization of r o and r i. In a second optional aspect, the SINR distribution is obtained via a representation of the SINR distribution received from UE 115a. In such second optional aspect, base station 105a signals multiple different values of ε PHY for UE 115a to use in determining a set of highest coding rates and CQIs corresponding to the different ε PHY values. With reference to prior discussion, the current standard provides for UE 115a to use ε PHY=0.1 to determine the highest CQI. UE 115a would report these CQI values as representation of channel quality measurement distribution 603. Such reported CQI values may be regarded as a quantized SINR that base station 105a may use to determine the SINR distribution over W, which identifies the relationship of r i and ε PHY.
In a third optional aspect, the network, via base station 105a, calculates and signals the time window length, W, to UE 115a. UE 115a may then use W when selecting the highest CQI that satisfies a given coding rate or set of coding rates. UE 115a could feedback several pairs of (ε PHY, r i) to base station 105a in representation of channel quality measurement distribution 603. For example, base station 105a could first signal a set of ε PHY values to UE 115a. UE 115a may then determine corresponding coding rates, r i, using the signaled ε PHY and based on the SINR distribution or R (SINR) distribution over W. UE 115a may then report that  relationship of r i and ε PHY to base station 105a in representation of channel quality measurement distribution 603.
In a fourth optional aspect, the network, via base station 105a, calculates and signals the time window length, W, to UE 115a. UE 115a may then use W to determine the mean and variance of the post-processing SINR observed or the maximum available coding rate in the time window length, W, and report such to base station 105a in representation of channel quality measurement distribution 603. Alternatively, UE 115a may determine the mean and variance of the maximum transmission rate over W with a given SINR, 
Figure PCTCN2020097166-appb-000028
or the mean and variance of the SINR over W, 
Figure PCTCN2020097166-appb-000029
In a fifth optional aspect, UE 115a determines the time window length, W, and uses W in determining a relationship of r i and ε PHY, according to the means described with respect to the third optional aspect. UE 115a would then report W and the relationship of r i and ε PHY to base station 115a in representation of channel quality measurement distribution 603. In a sixth optional aspect, UE 115a determines the time window length, W, and uses W in the determination of either the mean and variance of the post-processing SINR observed, the maximum available rate during W, the mean and variance of the maximum transmission rate over W with a given SINR, 
Figure PCTCN2020097166-appb-000030
or the mean and variance of the SINR over W, 
Figure PCTCN2020097166-appb-000031
UE 115a may then report these mean and variance values or the maximum available coding rate in the time window length, W, to base station 105a in representation of channel quality measurement distribution 603.
With the proposed scheme according to the various aspects of the present disclosure, base station 105a uses the SINR distribution over W, whether determined by base station 105a or with feedback from UE 115a. Such SINR distribution is more robust for communications with the fast fading channel/high-Doppler channel experienced by fast-moving UEs, such as UE 115b (FIG. 3B) . The various aspects of the present disclosure may further allow for the reduction of the overall PDCP data loss rate, ε PDCP. The legacy procedure, when r o=1 and ε PHY=0.1, may then be a special case of the presently proposed aspects. The various aspects of the present disclosure provide communications without HARQ/ARQ retransmission error correction for each packet. As a result, the feedback overhead and overall latency may be reduced.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout  the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Components, the functional blocks, and modules described herein (e.g., the components, functional blocks, and modules in FIG. 2) may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof. In addition, features discussed herein relating to including a cross-layer rateless transmission using error-correcting coding may be implemented via specialized processor circuitry, via executable instructions, and/or combinations thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps (e.g., the logical blocks in FIGS. 4 and 5) described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various aspects of the present disclosure may be implemented in many different ways, including methods, processes, non-transitory computer-readable medium having program code recorded thereon, apparatus having one or more processors with configurations and instructions for performing the described features and functionality, and the like. A first example aspect of wireless communication may include partitioning, by a base station, data identified for transmission into a plurality of source packets at the PDCP layer; encoding, by the base station, the plurality of source packets into a plurality of encoded source packets at a RLC layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o; encoding, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded PHY layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding  rate, r i; signaling, by the base station, a transmission configuration message to a served UE, wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer; and transmitting, by the base station, the plurality of encoded PHY layer symbols to the served UE.
A second aspect, alone or in combination with the first aspect, further including obtaining, by the base station, a representation of a channel quality measurement distribution on a channel over which the plurality of encoded PHY layer symbols are transmitted to the served UE; determining, by the base station, the target outer coding rate, and the target inner coding rate using the representation of the channel quality measurement distribution and a predetermined transmission efficiency, η 0, wherein the transmitting the plurality of encoded PHY layer symbols is according to the target outer coding rate and the target inner coding rate.
A third aspect, alone or in combination with the second aspect, wherein the obtaining the representation of the channel quality measurement distribution includes determining, by the base station, a time window length, W; and calculating, by the base station, a CDF of a SINR over the time window length, W, on a sounding reference signals (SRS) received from the served UE, wherein the representation of the channel quality measurement distribution corresponds to the CDF of the SINR.
A fourth aspect, alone or in combination with the third aspect, wherein the obtaining the representation of the channel quality measurement distribution includes receiving, by the base station, a channel quality indicator (CQI) in channel state information (CSI) feedback determined by the served UE to satisfy a transport block error probability of 0.1.
A fifth aspect, alone or in combination with the fourth aspect, further including transmitting, by the base station, one or more transport block error probability values for CQI reporting to the served UE; and receiving, by the base station, one or more additional CQIs corresponding to the one or more transport block error probability values, wherein the representation of the channel quality measurement distribution is determined from the one or more CQIs.
A sixth aspect, alone or in combination with the second aspect, further including transmitting, by the base station, a feedback configuration message to the served UE, wherein the feedback configuration message identifies a selected procedure for the obtaining the representation of the channel quality measurement distribution.
A seventh aspect, alone or in combination with the sixth aspect, wherein the obtaining the representation of the channel quality measurement distribution identified by the selected procedure includes determining, by the base station, a time window length, W; signaling, by the base station, the time window length, W, to the served UE; and receiving, by the base  station, the representation of the channel quality measurement distribution in a feedback message from the served UE.
An eighth aspect, alone or in combination with the seventh aspect, wherein the representation of the channel quality measurement distribution includes one of an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or a report identifying a mean and a variance of one of a SINR measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or a maximum available coding rate within the time window length, W.
A ninth aspect, alone or in combination with the sixth aspect, wherein the selected procedure for the obtaining the representation of the channel quality measurement distribution includes receiving, by the base station, a time window length, W, determined by the served UE and the representation of the channel quality measurement distribution in a feedback message from the served UE.
A tenth aspect, alone or in combination with the ninth aspect, wherein the representation of the channel quality measurement distribution includes one of an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or a maximum available coding rate within the time window length, W.
An eleventh aspect, alone or in combination with the third, seventh, or ninth aspects, wherein the determining the time window length, W, includes determining the time window length, W, wherein the CDF of
Figure PCTCN2020097166-appb-000032
or
Figure PCTCN2020097166-appb-000033
of
Figure PCTCN2020097166-appb-000034
or
Figure PCTCN2020097166-appb-000035
threshold value.
A twelfth aspect of wireless communication may include receiving, at a UE, a plurality of encoded PHY layer symbols from a serving base station; decoding, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding; decoding, by the UE, the plurality of encoded data packets into a plurality of received data packets at a RLC layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets; and assembling, by the UE, the plurality of received data packets into received data at the PDCP layer.
A thirteenth aspect, alone or in combination with the twelfth aspect, further including determining, by the UE, a highest CQI that satisfies a transport block error probability of 0.1; and transmitting, by the UE, a CSI feedback report that includes the highest CQI determined.
A fourteenth aspect, alone or in combination with the thirteenth aspect, further including receiving, by the UE, one or more transport block error probability values for CQI reporting from the serving base station; determining, by the UE, one or more additional highest CQIs corresponding to the one or more transport block error probability values, wherein the CSI feedback report further includes the one or more additional highest CQIs.
A fifteenth aspect, alone or in combination with the twelfth aspect, further including receiving, by the UE, a feedback configuration message from the serving base station, wherein the feedback configuration message identifies a selected procedure for the UE to obtain a representation of a channel quality measurement distribution.
A sixteenth aspect, alone or in combination with the fifteenth aspect, wherein the selected procedure to obtain the representation of the channel quality measurement distribution includes receiving, by the UE, a time window length, W, from the serving base station; determining, by the UE, the representation of the channel quality measurement distribution over the time window length, W; and transmitting, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
A seventeenth aspect, alone or in combination with the sixteenth aspect, wherein the determining the representation of the channel quality measurement distribution includes one of determining an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or determining a mean and a variance of one of a SINR measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or identifying a maximum available coding rate within the time window length, W.
An eighteenth aspect, alone or in combination with the fifteenth aspect, wherein the determining the representation of the channel quality measurement distribution includes determining a time window length, W; and determining the representation of the channel quality measurement distribution over the time window length, W; and transmitting, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
A nineteenth aspect, alone or in combination with the eighteenth aspect, wherein the determining the representation of the channel quality measurement distribution includes one of determining an indication identifying a relationship between an inner coding rate and a  corresponding PHY packet error rate; or determining a mean and a variance of one of a SINR measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or identifying a maximum available coding rate within the time window length, W.
A twentieth aspect, alone or in combination with the sixteenth or eighteenth aspects, wherein the determining the time window length, W, includes determining the time window length, W, wherein the CDF of
Figure PCTCN2020097166-appb-000036
or
Figure PCTCN2020097166-appb-000037
of
Figure PCTCN2020097166-appb-000038
or
Figure PCTCN2020097166-appb-000039
threshold value.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available  media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Figure PCTCN2020097166-appb-000040
Figure PCTCN2020097166-appb-000041
Figure PCTCN2020097166-appb-000042
Figure PCTCN2020097166-appb-000043
Figure PCTCN2020097166-appb-000044
Figure PCTCN2020097166-appb-000045
Figure PCTCN2020097166-appb-000046
Figure PCTCN2020097166-appb-000047
Figure PCTCN2020097166-appb-000048
Figure PCTCN2020097166-appb-000049
Figure PCTCN2020097166-appb-000050
Figure PCTCN2020097166-appb-000051
Figure PCTCN2020097166-appb-000052
Figure PCTCN2020097166-appb-000053

Claims (80)

  1. A method of wireless communication, comprising:
    partitioning, by a base station, data identified for transmission into a plurality of source packets at the packet data convergence protocol (PDCP) layer;
    encoding, by the base station, the plurality of source packets into a plurality of encoded source packets at a radio link control (RLC) layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o;
    encoding, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded physical (PHY) layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i;
    signaling, by the base station, a transmission configuration message to a served user equipment (UE) , wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer; and
    transmitting, by the base station, the plurality of encoded PHY layer symbols to the served UE.
  2. The method of claim 1, further including:
    obtaining, by the base station, a representation of a channel quality measurement distribution on a channel over which the plurality of encoded PHY layer symbols are transmitted to the served UE;
    determining, by the base station, the target outer coding rate, and the target inner coding rate using the representation of the channel quality measurement distribution and a predetermined transmission efficiency, η 0, wherein the transmitting the plurality of encoded PHY layer symbols is according to the target outer coding rate and the target inner coding rate.
  3. The method of claim 2, wherein the obtaining the representation of the channel quality measurement distribution includes:
    determining, by the base station, a time window length, W; and
    calculating, by the base station, a cumulative distribution function (CDF) of a signal-to-interference-plus-noise ratio (SINR) over the time window length, W, on a sounding  reference signals (SRS) received from the served UE, wherein the representation of the channel quality measurement distribution corresponds to the CDF of the SINR.
  4. The method of claim 4, wherein the obtaining the representation of the channel quality measurement distribution includes:
    receiving, by the base station, a channel quality indicator (CQI) in channel state information (CSI) feedback determined by the served UE to satisfy a transport block error probability of 0.1.
  5. The method of claim 4, further including:
    transmitting, by the base station, one or more transport block error probability values for CQI reporting to the served UE; and
    receiving, by the base station, one or more additional CQIs corresponding to the one or more transport block error probability values, wherein the representation of the channel quality measurement distribution is determined from the one or more CQIs.
  6. The method of claim 2, further including:
    transmitting, by the base station, a feedback configuration message to the served UE, wherein the feedback configuration message identifies a selected procedure for the obtaining the representation of the channel quality measurement distribution.
  7. The method of claim 6, wherein the obtaining the representation of the channel quality measurement distribution identified by the selected procedure includes:
    determining, by the base station, a time window length, W;
    signaling, by the base station, the time window length, W, to the served UE; and
    receiving, by the base station, the representation of the channel quality measurement distribution in a feedback message from the served UE.
  8. The method of claim 7, wherein the representation of the channel quality measurement distribution includes one of:
    an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or
    a report identifying a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    a maximum available coding rate within the time window length, W.
  9. The method of claim 6, wherein the selected procedure for the obtaining the representation of the channel quality measurement distribution includes:
    receiving, by the base station, a time window length, W, determined by the served UE and the representation of the channel quality measurement distribution in a feedback message from the served UE.
  10. The method of claim 9, wherein the representation of the channel quality measurement distribution includes one of:
    an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or
    a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    a maximum available coding rate within the time window length, W.
  11. The method of any of claims 3, 7, and 9, wherein the determining the time window length, W, includes:
    determining the time window length, W, wherein the CDF of
    Figure PCTCN2020097166-appb-100001
    or 
    Figure PCTCN2020097166-appb-100002
    of
    Figure PCTCN2020097166-appb-100003
    or
    Figure PCTCN2020097166-appb-100004
  12. A method of wireless communication, comprising:
    receiving, at a user equipment (UE) , a plurality of encoded physical (PHY) layer symbols from a serving base station;
    decoding, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding;
    decoding, by the UE, the plurality of encoded data packets into a plurality of received data packets at a radio link control (RLC) layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets; and
    assembling, by the UE, the plurality of received data packets into received data at the PDCP layer.
  13. The method of claim 12, further including:
    determining, by the UE, a highest channel quality indicator (CQI) that satisfies a transport block error probability of 0.1; and
    transmitting, by the UE, a channel state information (CSI) feedback report that includes the highest CQI determined.
  14. The method of claim 13, further including:
    receiving, by the UE, one or more transport block error probability values for CQI reporting from the serving base station;
    determining, by the UE, one or more additional highest CQIs corresponding to the one or more transport block error probability values, wherein the CSI feedback report further includes the one or more additional highest CQIs.
  15. The method of claim 12, further including:
    receiving, by the UE, a feedback configuration message from the serving base station, wherein the feedback configuration message identifies a selected procedure for the UE to obtain a representation of a channel quality measurement distribution.
  16. The method of claim 15, wherein the selected procedure to obtain the representation of the channel quality measurement distribution includes:
    receiving, by the UE, a time window length, W, from the serving base station;
    determining, by the UE, the representation of the channel quality measurement distribution over the time window length, W; and
    transmitting, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  17. The method of claim 16, wherein the determining the representation of the channel quality measurement distribution includes one of:
    determining an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or
    determining a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    identifying a maximum available coding rate within the time window length, W.
  18. The method of claim 15, wherein the determining the representation of the channel quality measurement distribution includes:
    determining a time window length, W; and
    determining the representation of the channel quality measurement distribution over the time window length, W; and
    transmitting, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  19. The method of claim 18, wherein the determining the representation of the channel quality measurement distribution includes one of:
    determining an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or
    determining a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    identifying a maximum available coding rate within the time window length, W.
  20. The method of any of claims 16 and 18, wherein the determining the time window length, W, includes
    determining the time window length, W, wherein the CDF of
    Figure PCTCN2020097166-appb-100005
    or 
    Figure PCTCN2020097166-appb-100006
    of
    Figure PCTCN2020097166-appb-100007
    or
    Figure PCTCN2020097166-appb-100008
  21. An apparatus configured for wireless communication, the apparatus comprising:
    means for partitioning, by a base station, data identified for transmission into a plurality of source packets at the packet data convergence protocol (PDCP) layer;
    means for encoding, by the base station, the plurality of source packets into a plurality of encoded source packets at a radio link control (RLC) layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o;
    means for encoding, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded physical (PHY) layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i;
    means for signaling, by the base station, a transmission configuration message to a served user equipment (UE) , wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer; and
    means for transmitting, by the base station, the plurality of encoded PHY layer symbols to the served UE.
  22. The apparatus of claim 21, further including:
    means for obtaining, by the base station, a representation of a channel quality measurement distribution on a channel over which the plurality of encoded PHY layer symbols are transmitted to the served UE;
    means for determining, by the base station, the target outer coding rate, and the target inner coding rate using the representation of the channel quality measurement distribution and a predetermined transmission efficiency, η 0, wherein the transmitting the plurality of encoded PHY layer symbols is according to the target outer coding rate and the target inner coding rate.
  23. The apparatus of claim 22, wherein the means for obtaining the representation of the channel quality measurement distribution includes:
    means for determining, by the base station, a time window length, W; and
    means for calculating, by the base station, a cumulative distribution function (CDF) of a signal-to-interference-plus-noise ratio (SINR) over the time window length, W, on a sounding reference signals (SRS) received from the served UE, wherein the representation of the channel quality measurement distribution corresponds to the CDF of the SINR.
  24. The apparatus of claim 24, wherein the means for obtaining the representation of the channel quality measurement distribution includes:
    means for receiving, by the base station, a channel quality indicator (CQI) in channel state information (CSI) feedback determined by the served UE to satisfy a transport block error probability of 0.1.
  25. The apparatus of claim 24, further including:
    means for transmitting, by the base station, one or more transport block error probability values for CQI reporting to the served UE; and
    means for receiving, by the base station, one or more additional CQIs corresponding to the one or more transport block error probability values, wherein the representation of the channel quality measurement distribution is determined from the one or more CQIs.
  26. The apparatus of claim 22, further including:
    means for transmitting, by the base station, a feedback configuration message to the served UE, wherein the feedback configuration message identifies a selected procedure for the obtaining the representation of the channel quality measurement distribution.
  27. The apparatus of claim 26, wherein the means for obtaining the representation of the channel quality measurement distribution identified by the selected procedure includes:
    means for determining, by the base station, a time window length, W;
    means for signaling, by the base station, the time window length, W, to the served UE; and
    means for receiving, by the base station, the representation of the channel quality measurement distribution in a feedback message from the served UE.
  28. The apparatus of claim 27, wherein the representation of the channel quality measurement distribution includes one of:
    an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or
    a report identifying a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    a maximum available coding rate within the time window length, W.
  29. The apparatus of claim 26, wherein the selected procedure for the means for obtaining the representation of the channel quality measurement distribution includes:
    means for receiving, by the base station, a time window length, W, determined by the served UE and the representation of the channel quality measurement distribution in a feedback message from the served UE.
  30. The apparatus of claim 29, wherein the representation of the channel quality measurement distribution includes one of:
    an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or
    a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    a maximum available coding rate within the time window length, W.
  31. The apparatus of any of claims 23, 27, and 29, wherein the means for determining the time window length, W, includes:
    means for determining the time window length, W, wherein the CDF of 
    Figure PCTCN2020097166-appb-100009
    or
    Figure PCTCN2020097166-appb-100010
    of
    Figure PCTCN2020097166-appb-100011
    or
    Figure PCTCN2020097166-appb-100012
    Figure PCTCN2020097166-appb-100013
  32. An apparatus configured for wireless communication, the apparatus comprising:
    means for receiving, at a user equipment (UE) , a plurality of encoded physical (PHY) layer symbols from a serving base station;
    means for decoding, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding;
    means for decoding, by the UE, the plurality of encoded data packets into a plurality of received data packets at a radio link control (RLC) layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets; and
    means for assembling, by the UE, the plurality of received data packets into received data at the PDCP layer.
  33. The apparatus of claim 32, further including:
    means for determining, by the UE, a highest channel quality indicator (CQI) that satisfies a transport block error probability of 0.1; and
    means for transmitting, by the UE, a channel state information (CSI) feedback report that includes the highest CQI determined.
  34. The apparatus of claim 33, further including:
    means for receiving, by the UE, one or more transport block error probability values for CQI reporting from the serving base station;
    means for determining, by the UE, one or more additional highest CQIs corresponding to the one or more transport block error probability values, wherein the CSI feedback report further includes the one or more additional highest CQIs.
  35. The apparatus of claim 32, further including:
    means for receiving, by the UE, a feedback configuration message from the serving base station, wherein the feedback configuration message identifies a selected procedure for the UE to obtain a representation of a channel quality measurement distribution.
  36. The apparatus of claim 35, wherein the selected procedure to obtain the representation of the channel quality measurement distribution includes:
    means for receiving, by the UE, a time window length, W, from the serving base station;
    means for determining, by the UE, the representation of the channel quality measurement distribution over the time window length, W; and
    means for transmitting, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  37. The apparatus of claim 36, wherein the means for determining the representation of the channel quality measurement distribution includes one of:
    means for determining an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or
    means for determining a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    means for identifying a maximum available coding rate within the time window length, W.
  38. The apparatus of claim 35, wherein the means for determining the representation of the channel quality measurement distribution includes:
    means for determining a time window length, W; and
    means for determining the representation of the channel quality measurement distribution over the time window length, W; and
    means for transmitting, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  39. The apparatus of claim 38, wherein the means for determining the representation of the channel quality measurement distribution includes one of:
    means for determining an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or
    means for determining a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    means for identifying a maximum available coding rate within the time window length, W.
  40. The apparatus of any of claims 36 and 38, wherein the means for determining the time window length, W, includes
    means for determining the time window length, W, wherein the CDF of 
    Figure PCTCN2020097166-appb-100014
    or
    Figure PCTCN2020097166-appb-100015
    of
    Figure PCTCN2020097166-appb-100016
    or
    Figure PCTCN2020097166-appb-100017
    Figure PCTCN2020097166-appb-100018
  41. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    program code executable by a computer for causing the computer to partition, by a base station, data identified for transmission into a plurality of source packets at the packet data convergence protocol (PDCP) layer;
    program code executable by the computer for causing the computer to encode, by the base station, the plurality of source packets into a plurality of encoded source packets at a radio link control (RLC) layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o;
    program code executable by the computer for causing the computer to encode, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded physical (PHY) layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i;
    program code executable by the computer for causing the computer to signal, by the base station, a transmission configuration message to a served user equipment (UE) , wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer; and
    program code executable by the computer for causing the computer to transmit, by the base station, the plurality of encoded PHY layer symbols to the served UE.
  42. The non-transitory computer-readable medium of claim 41, further including:
    program code executable by the computer for causing the computer to obtain, by the base station, a representation of a channel quality measurement distribution on a channel over which the plurality of encoded PHY layer symbols are transmitted to the served UE;
    program code executable by the computer for causing the computer to determine, by the base station, the target outer coding rate, and the target inner coding rate using the representation of the channel quality measurement distribution and a predetermined transmission efficiency, η 0, wherein the transmitting the plurality of encoded PHY layer symbols is according to the target outer coding rate and the target inner coding rate.
  43. The non-transitory computer-readable medium of claim 42, wherein the program code executable by the computer for causing the computer to obtain the representation of the channel quality measurement distribution includes:
    program code executable by the computer for causing the computer to determine, by the base station, a time window length, W; and
    program code executable by the computer for causing the computer to calculate, by the base station, a cumulative distribution function (CDF) of a signal-to-interference-plus-noise ratio (SINR) over the time window length, W, on a sounding reference signals (SRS) received from the served UE, wherein the representation of the channel quality measurement distribution corresponds to the CDF of the SINR.
  44. The non-transitory computer-readable medium of claim 44, wherein the program code executable by the computer for causing the computer to obtain the representation of the channel quality measurement distribution includes:
    program code executable by the computer for causing the computer to receive, by the base station, a channel quality indicator (CQI) in channel state information (CSI) feedback determined by the served UE to satisfy a transport block error probability of 0.1.
  45. The non-transitory computer-readable medium of claim 44, further including:
    program code executable by the computer for causing the computer to transmit, by the base station, one or more transport block error probability values for CQI reporting to the served UE; and
    program code executable by the computer for causing the computer to receive, by the base station, one or more additional CQIs corresponding to the one or more transport block error probability values, wherein the representation of the channel quality measurement distribution is determined from the one or more CQIs.
  46. The non-transitory computer-readable medium of claim 42, further including:
    program code executable by the computer for causing the computer to transmit, by the base station, a feedback configuration message to the served UE, wherein the feedback configuration message identifies a selected procedure for the obtaining the representation of the channel quality measurement distribution.
  47. The non-transitory computer-readable medium of claim 46, wherein the program code executable by the computer for causing the computer to obtain the representation of the channel quality measurement distribution identified by the selected procedure includes:
    program code executable by the computer for causing the computer to determine, by the base station, a time window length, W;
    program code executable by the computer for causing the computer to signal, by the base station, the time window length, W, to the served UE; and
    program code executable by the computer for causing the computer to receive, by the base station, the representation of the channel quality measurement distribution in a feedback message from the served UE.
  48. The non-transitory computer-readable medium of claim 47, wherein the representation of the channel quality measurement distribution includes one of:
    an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or
    a report identifying a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    a maximum available coding rate within the time window length, W.
  49. The non-transitory computer-readable medium of claim 46, wherein the selected procedure for the program code executable by the computer for causing the computer to obtain the representation of the channel quality measurement distribution includes:
    program code executable by the computer for causing the computer to receive, by the base station, a time window length, W, determined by the served UE and the representation of the channel quality measurement distribution in a feedback message from the served UE.
  50. The non-transitory computer-readable medium of claim 49, wherein the representation of the channel quality measurement distribution includes one of:
    an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or
    a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    a maximum available coding rate within the time window length, W.
  51. The non-transitory computer-readable medium of any of claims 43, 47, and 49, wherein the program code executable by the computer for causing the computer to determine the time window length, W, includes:
    program code executable by the computer for causing the computer to determine the time window length, W, wherein the CDF of
    Figure PCTCN2020097166-appb-100019
    or
    Figure PCTCN2020097166-appb-100020
    of 
    Figure PCTCN2020097166-appb-100021
    or
    Figure PCTCN2020097166-appb-100022
  52. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    program code executable by a computer for causing the computer to receive, at a user equipment (UE) , a plurality of encoded physical (PHY) layer symbols from a serving base station;
    program code executable by the computer for causing the computer to decode, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding;
    program code executable by the computer for causing the computer to decode, by the UE, the plurality of encoded data packets into a plurality of received data packets at a radio link control (RLC) layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets; and
    program code executable by the computer for causing the computer to assemble, by the UE, the plurality of received data packets into received data at the PDCP layer.
  53. The non-transitory computer-readable medium of claim 52, further including:
    program code executable by the computer for causing the computer to determine, by the UE, a highest channel quality indicator (CQI) that satisfies a transport block error probability of 0.1; and
    program code executable by the computer for causing the computer to transmit, by the UE, a channel state information (CSI) feedback report that includes the highest CQI determined.
  54. The non-transitory computer-readable medium of claim 53, further including:
    program code executable by the computer for causing the computer to receive, by the UE, one or more transport block error probability values for CQI reporting from the serving base station;
    program code executable by the computer for causing the computer to determine, by the UE, one or more additional highest CQIs corresponding to the one or more transport block error probability values, wherein the CSI feedback report further includes the one or more additional highest CQIs.
  55. The non-transitory computer-readable medium of claim 52, further including:
    program code executable by the computer for causing the computer to receive, by the UE, a feedback configuration message from the serving base station, wherein the feedback configuration message identifies a selected procedure for the UE to obtain a representation of a channel quality measurement distribution.
  56. The non-transitory computer-readable medium of claim 55, wherein the selected procedure for the program code executable by the computer for causing the computer to obtain the representation of the channel quality measurement distribution includes:
    program code executable by the computer for causing the computer to receive, by the UE, a time window length, W, from the serving base station;
    program code executable by the computer for causing the computer to determine, by the UE, the representation of the channel quality measurement distribution over the time window length, W; and
    program code executable by the computer for causing the computer to transmit, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  57. The non-transitory computer-readable medium of claim 56, wherein the program code executable by the computer for causing the computer to determine the representation of the channel quality measurement distribution includes one of:
    program code executable by the computer for causing the computer to determine an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or
    program code executable by the computer for causing the computer to determine a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    program code executable by the computer for causing the computer to identify a maximum available coding rate within the time window length, W.
  58. The non-transitory computer-readable medium of claim 55, wherein the program code executable by the computer for causing the computer to determine the representation of the channel quality measurement distribution includes:
    program code executable by the computer for causing the computer to determine a time window length, W; and
    program code executable by the computer for causing the computer to determine the representation of the channel quality measurement distribution over the time window length, W; and
    program code executable by the computer for causing the computer to transmit, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  59. The non-transitory computer-readable medium of claim 58, wherein the program code executable by the computer for causing the computer to determine the representation of the channel quality measurement distribution includes one of:
    program code executable by the computer for causing the computer to determine an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or
    program code executable by the computer for causing the computer to determine a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    program code executable by the computer for causing the computer to identify a maximum available coding rate within the time window length, W.
  60. The non-transitory computer-readable medium of any of claims 56 and 58, wherein the program code executable by the computer for causing the computer to determine the time window length, W, includes
    program code executable by the computer for causing the computer to determine the time window length, W, wherein the CDF of
    Figure PCTCN2020097166-appb-100023
    or
    Figure PCTCN2020097166-appb-100024
    of 
    Figure PCTCN2020097166-appb-100025
    or
    Figure PCTCN2020097166-appb-100026
  61. An apparatus configured for wireless communication, the apparatus comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured:
    to partition, by a base station, data identified for transmission into a plurality of source packets at the packet data convergence protocol (PDCP) layer;
    to encode, by the base station, the plurality of source packets into a plurality of encoded source packets at a radio link control (RLC) layer using a rateless code, wherein the plurality of source packets are encoded according to a target outer coding rate, r o;
    to encode, by the base station, each encoded packet of the plurality of encoded source packets with a plurality of encoded physical (PHY) layer symbols at a PHY layer using data channel coding, wherein each encoded packet is encoded according to a target inner coding rate, r i;
    to signal, by the base station, a transmission configuration message to a served user equipment (UE) , wherein the transmission configuration message configures the served UE for rateless encoded data at the RLC layer; and
    to transmit, by the base station, the plurality of encoded PHY layer symbols to the served UE.
  62. The apparatus of claim 61, further including configuration of the at least one processor:
    to obtain, by the base station, a representation of a channel quality measurement distribution on a channel over which the plurality of encoded PHY layer symbols are transmitted to the served UE;
    to determine, by the base station, the target outer coding rate, and the target inner coding rate using the representation of the channel quality measurement distribution and a predetermined transmission efficiency, η 0, wherein the transmitting the plurality of encoded PHY layer symbols is according to the target outer coding rate and the target inner coding rate.
  63. The apparatus of claim 62, wherein the configuration of the at least one processor to obtain the representation of the channel quality measurement distribution includes configuration of the at least one processor:
    to determine, by the base station, a time window length, W; and
    to calculate, by the base station, a cumulative distribution function (CDF) of a signal-to-interference-plus-noise ratio (SINR) over the time window length, W, on a sounding reference signals (SRS) received from the served UE, wherein the representation of the channel quality measurement distribution corresponds to the CDF of the SINR.
  64. The apparatus of claim 64, wherein the configuration of the at least one processor to obtain the representation of the channel quality measurement distribution includes configuration of the at least one processor to receive, by the base station, a channel  quality indicator (CQI) in channel state information (CSI) feedback determined by the served UE to satisfy a transport block error probability of 0.1.
  65. The apparatus of claim 64, further including configuration of the at least one processor:
    to transmit, by the base station, one or more transport block error probability values for CQI reporting to the served UE; and
    to receive, by the base station, one or more additional CQIs corresponding to the one or more transport block error probability values, wherein the representation of the channel quality measurement distribution is determined from the one or more CQIs.
  66. The apparatus of claim 62, further including configuration of the at least one processor to transmit, by the base station, a feedback configuration message to the served UE, wherein the feedback configuration message identifies a selected procedure for the obtaining the representation of the channel quality measurement distribution.
  67. The apparatus of claim 66, wherein the configuration of the at least one processor to obtain the representation of the channel quality measurement distribution identified by the selected procedure includes configuration of the at least one processor:
    to determine, by the base station, a time window length, W;
    to signal, by the base station, the time window length, W, to the served UE; and
    to receive, by the base station, the representation of the channel quality measurement distribution in a feedback message from the served UE.
  68. The apparatus of claim 67, wherein the representation of the channel quality measurement distribution includes one of:
    an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or
    a report identifying a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    a maximum available coding rate within the time window length, W.
  69. The apparatus of claim 66, wherein the selected procedure for the configuration of the at least one processor to obtain the representation of the channel quality measurement distribution includes configuration of the at least one processor to receive, by the base station, a time window length, W, determined by the served UE and the representation of the channel quality measurement distribution in a feedback message from the served UE.
  70. The apparatus of claim 69, wherein the representation of the channel quality measurement distribution includes one of:
    an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate determined by the served UE; or
    a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over one of the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    a maximum available coding rate within the time window length, W.
  71. The apparatus of any of claims 63, 67, and 69, wherein the configuration of the at least one processor to determine the time window length, W, includes configuration of the at least one processor to determine the time window length, W, wherein the CDF of 
    Figure PCTCN2020097166-appb-100027
    or
    Figure PCTCN2020097166-appb-100028
    of
    Figure PCTCN2020097166-appb-100029
    or
    Figure PCTCN2020097166-appb-100030
    Figure PCTCN2020097166-appb-100031
  72. An apparatus configured for wireless communication, the apparatus comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured:
    to receive, at a user equipment (UE) , a plurality of encoded physical (PHY) layer symbols from a serving base station;
    to decode, by the UE, the plurality of encoded PHY layer symbols into a plurality of encoded data packets at a PHY layer using data channel coding;
    to decode, by the UE, the plurality of encoded data packets into a plurality of received data packets at a radio link control (RLC) layer using a rateless code, wherein the rateless code provides error correction of the plurality of encoded data packets; and
    to assemble, by the UE, the plurality of received data packets into received data at the PDCP layer.
  73. The apparatus of claim 72, further including configuration of the at least one processor:
    to determine, by the UE, a highest channel quality indicator (CQI) that satisfies a transport block error probability of 0.1; and
    to transmit, by the UE, a channel state information (CSI) feedback report that includes the highest CQI determined.
  74. The apparatus of claim 73, further including configuration of the at least one processor:
    to receive, by the UE, one or more transport block error probability values for CQI reporting from the serving base station;
    to determine, by the UE, one or more additional highest CQIs corresponding to the one or more transport block error probability values, wherein the CSI feedback report further includes the one or more additional highest CQIs.
  75. The apparatus of claim 72, further including configuration of the at least one processor to receive, by the UE, a feedback configuration message from the serving base station, wherein the feedback configuration message identifies a selected procedure for the UE to obtain a representation of a channel quality measurement distribution.
  76. The apparatus of claim 75, wherein the selected procedure for the configuration of the at least one processor to obtain the representation of the channel quality measurement distribution includes configuration of the at least one processor:
    to receive, by the UE, a time window length, W, from the serving base station;
    to determine, by the UE, the representation of the channel quality measurement distribution over the time window length, W; and
    to transmit, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  77. The apparatus of claim 76, wherein the configuration of the at least one processor to determine the representation of the channel quality measurement distribution includes configuration of the at least one processor to one of:
    determine an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or
    determine a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    identify a maximum available coding rate within the time window length, W.
  78. The apparatus of claim 75, wherein the configuration of the at least one processor to determine the representation of the channel quality measurement distribution includes configuration of the at least one processor:
    to determine a time window length, W; and
    to determine the representation of the channel quality measurement distribution over the time window length, W; and
    to transmit, by the UE, the representation of the channel quality measurement distribution in a feedback message to the serving base station.
  79. The apparatus of claim 78, wherein the configuration of the at least one processor to determine the representation of the channel quality measurement distribution includes configuration of the at least one processor to one of:
    determine an indication identifying a relationship between an inner coding rate and a corresponding PHY packet error rate; or
    determine a mean and a variance of one of a signal-to-interference-plus noise ratio (SINR) measurement over the time window length, W, or a maximum transmission rate associated with the SINR measurement; or
    identify a maximum available coding rate within the time window length, W.
  80. The apparatus of any of claims 76 and 78, wherein the configuration of the at least one processor to determine the time window length, W, includes configuration of the at least one processor to determine the time window length, W, wherein the CDF of 
    Figure PCTCN2020097166-appb-100032
    or
    Figure PCTCN2020097166-appb-100033
    of
    Figure PCTCN2020097166-appb-100034
    or
    Figure PCTCN2020097166-appb-100035
    Figure PCTCN2020097166-appb-100036
PCT/CN2020/097166 2020-06-19 2020-06-19 Link adaptation for cross-layer rateless transmission WO2021253423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097166 WO2021253423A1 (en) 2020-06-19 2020-06-19 Link adaptation for cross-layer rateless transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097166 WO2021253423A1 (en) 2020-06-19 2020-06-19 Link adaptation for cross-layer rateless transmission

Publications (1)

Publication Number Publication Date
WO2021253423A1 true WO2021253423A1 (en) 2021-12-23

Family

ID=79269005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097166 WO2021253423A1 (en) 2020-06-19 2020-06-19 Link adaptation for cross-layer rateless transmission

Country Status (1)

Country Link
WO (1) WO2021253423A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177253A1 (en) * 2017-03-31 2018-10-04 华为技术有限公司 Communication method and device
US20200163077A1 (en) * 2018-05-17 2020-05-21 At&T Intellectual Property I, L.P. Network coding for bandwidth efficient reliability improvement for urllc service

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177253A1 (en) * 2017-03-31 2018-10-04 华为技术有限公司 Communication method and device
US20200163077A1 (en) * 2018-05-17 2020-05-21 At&T Intellectual Property I, L.P. Network coding for bandwidth efficient reliability improvement for urllc service

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED (MEDIATOR): "Rel-17 IAB email discussion - report", 3GPP DRAFT; RP-192520, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Sitges, Spain; 20191209 - 20191212, 2 December 2019 (2019-12-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051834158 *
QUALCOMM INCORPORATED: "HARQ design for URLLC", 3GPP DRAFT; R1-1612079_HARQ_DESIGN_FOR_URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20161114 - 20161118, 5 November 2016 (2016-11-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051190676 *

Similar Documents

Publication Publication Date Title
US11387880B2 (en) Channel state information feedback using channel compression and reconstruction
CN110915154B (en) Dedicated channel state information reporting for control channels
US10587298B1 (en) Transmission throttling for emission exposure management
WO2018231577A1 (en) Multiple mcs tables for nr
WO2021018280A1 (en) Mac ce for beam failure recovery
US11825446B2 (en) UE aided fast carrier selection
WO2022027591A1 (en) Gap configuration in wireless communications
WO2021243481A1 (en) Dynamic dmrs configuration in 5g networks
EP3994935A1 (en) Cross carrier activation of a periodic grant
US20210359818A1 (en) Ptrs resource density recommendation and selection techniques
WO2021253423A1 (en) Link adaptation for cross-layer rateless transmission
WO2021016910A1 (en) Mac ce for beam failure recovery
EP3994821A1 (en) Unified harq id for multiple frequency channels
WO2021212507A1 (en) Packet encoding based on raptor codes to enable adaptive physical layer error rate determination or selection
US20220140980A1 (en) Nested common sequence pool for sequence based non-coherent transmissions
US20240154673A1 (en) Csi age report for enhancement in high doppler channel
WO2021114215A1 (en) Uplink precoder grouping and tpmi feedback for subband precoding
EP3949240A1 (en) Optimization of carrier aggregation capabilities for support of different bands defined in the same frequency range

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941465

Country of ref document: EP

Kind code of ref document: A1