WO2021253418A1 - 基于多孔电热材料发热的电子烟雾化器及其应用 - Google Patents

基于多孔电热材料发热的电子烟雾化器及其应用 Download PDF

Info

Publication number
WO2021253418A1
WO2021253418A1 PCT/CN2020/097157 CN2020097157W WO2021253418A1 WO 2021253418 A1 WO2021253418 A1 WO 2021253418A1 CN 2020097157 W CN2020097157 W CN 2020097157W WO 2021253418 A1 WO2021253418 A1 WO 2021253418A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic cigarette
electric heating
microporous
liquid
oil
Prior art date
Application number
PCT/CN2020/097157
Other languages
English (en)
French (fr)
Inventor
伍鹏飞
Original Assignee
深圳市锐丽科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市锐丽科技有限公司 filed Critical 深圳市锐丽科技有限公司
Priority to PCT/CN2020/097157 priority Critical patent/WO2021253418A1/zh
Publication of WO2021253418A1 publication Critical patent/WO2021253418A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present disclosure belongs to the field of electronic cigarettes, and in particular relates to an electronic cigarette vaporizer based on heat generated by porous electric heating materials and applications thereof.
  • the basic components of electronic cigarettes are atomizer, control circuit, power supply circuit and battery.
  • the atomizer includes an oil storage bin, an air flow channel and an atomizing core.
  • the oil storage bin is equipped with e-liquid
  • the atomization core includes an oil guide body and a heating wire.
  • the oil guide body absorbs the e-liquid in the oil storage bin through the oil inlet hole, and the e-liquid in the oil storage bin continuously flows into the oil guide through the oil inlet hole
  • the heating wire heats and atomizes the smoke oil that has been absorbed in the oil guide body, and the atomized aerosol flows along the aerosol channel to the air outlet for people to inhale. As technology advances, every component is continuously improved and perfected.
  • the atomizer the core component of the electronic cigarette
  • structures such as glass fiber rope, cotton core and microporous ceramics.
  • electronic cigarette products still have technical problems such as oil leakage (condensate leakage) and low energy utilization.
  • the current electronic cigarette vaporizers on the market are separated from the heating body and the oil guide body.
  • the heating circuit made of metal heating wire, metal foil or thick film printed circuit is a solid heating element. The specific surface area of the heating element is small. Only the outermost surface of the heating circuit is in contact with the smoke oil. From a microscopic point of view, the inside of the heating circuit body None of them are in full contact with the e-liquid, and the area of the heating element on the outer surface that contacts the e-liquid is small. Most of the heat generated during work will be transferred to the porous material, and then the porous material will generate heat and atomize the e-liquid. The heat passes through 2 In the second pass, most of it is lost, and more useless work is generated, resulting in low atomization efficiency.
  • the condensed smoke oil is not recovered and flows out from the air flow channel.
  • the air pressure in the oil storage cavity is higher than that of the outside.
  • one of the main purposes of the present disclosure is to propose an electronic cigarette vaporizer based on porous electric heating material and its application.
  • an electronic cigarette vaporizer including:
  • Shell which has a hollow structure
  • the base is set inside the shell, and the air inlet is provided on it;
  • Microporous oil guide and oil storage element inside of which forms an atomizing cavity
  • the e-liquid cavity is arranged between the inner wall of the housing and the microporous oil-conducting and storage element to provide e-liquid for the microporous oil-conducting and storage element;
  • the porous electric heating element is arranged on the microporous oil-conducting and oil-storing element.
  • the suction pipe is arranged above the microporous oil guide and oil storage element.
  • an application of the electronic cigarette atomizer as described above in the field of electronic cigarettes is also provided.
  • Fig. 1 is a schematic diagram of the structure of an electronic cigarette atomizer in an embodiment of the present disclosure
  • Fig. 2 is a schematic cross-sectional structure diagram at A-A in Fig. 1;
  • Fig. 3 is an electron micrograph of a porous electric heating element in an embodiment of the present disclosure.
  • 10-shell 20-base; 21-air inlet; 22-oil pipe; 23-electrode lead; 30-porous electric heating element; 40-porous oil storage and guiding element; 50-smoke oil cavity; 60-atomization Cavity; 70-suction tube; 80-air flow channel; 110-metal fiber; 120-pore.
  • the present disclosure discloses an electronic cigarette vaporizer based on heat generated by porous electric heating materials and its application, including:
  • Shell which has a hollow structure
  • the base is set inside the shell, and the air inlet is provided on it;
  • Microporous oil guide and oil storage element inside of which forms an atomizing cavity
  • the e-liquid cavity is arranged between the inner wall of the housing and the microporous oil-conducting and storage element to provide e-liquid for the microporous oil-conducting and storage element;
  • the porous electric heating element is arranged on the microporous oil-conducting and oil-storing element.
  • the suction pipe is arranged above the microporous oil guide and oil storage element.
  • the air inlet, the atomization cavity, and the suction tube form a connected air flow channel; the air flow channel and the porous electric heating element are crossed, and the air flow penetrates the porous electric heating element to form smoke aerosol ;
  • the air inlet hole, the atomization cavity, and the suction pipe are located on the same straight line.
  • the material used for the porous electric heating element is a porous electric heating material
  • the porosity of the porous electric heating material is 40% to 95%, and the pore diameter is 3 to 100 microns; the pores of the porous electric heating material are through holes.
  • the thickness of the porous electric heating element is 0.1 to 3 mm;
  • the shape of the porous electric heating element includes a cross structure.
  • the materials used for the porous electric heating element include stainless steel metal fiber, iron-chromium-aluminum metal fiber, titanium-nickel metal fiber, nickel metal fiber, Hastelloy fiber, microporous nickel foam, porous At least one of titanium or porous conductive ceramics.
  • the base is provided with an oil containing pipe that prevents condensate from flowing out of the air inlet;
  • the height of the oil containing pipe is 1 to 3 mm.
  • one or more vent holes are provided on the base
  • the diameter of the vent is 0.3 to 3 mm;
  • the material used for the base includes any one of alumina, zirconia, silicon carbide, polyether ether ketone, polyimide, polytetrafluoroethylene, or silica gel;
  • electrode holes are provided on the base.
  • the material used in the microporous oil guiding and storage element includes a microporous ceramic material
  • the porosity of the microporous ceramic material is 40% to 60%, and the pore diameter is 3 to 100 microns.
  • the resistance between the two electrode pins of the electronic cigarette atomizer is 0.1 to 10 ohms
  • the atomization body in the e-liquid cavity includes a liquid state, a paste shape, or a gel state.
  • the present disclosure also discloses the application of the electronic cigarette atomizer as described above in the field of electronic cigarettes.
  • this embodiment discloses an electronic cigarette vaporizer based on porous electric heating materials for heating, including: a housing 10, a base 20, a porous electric heating element 30 with a porous structure, and a microporous oil-conducting oil storage device.
  • the element 40, the air inlet 21, the e-liquid cavity 50, the atomization cavity 60, and the suction pipe 70 pass through the porous electric heating element 30 that generates heat through convective air to heat and atomize the target liquid to produce smoke aerosol;
  • the porous electric heating element 30 is supplied with liquid externally by the microporous oil-conducting oil storage element 40 covering the outside of the porous electric heating element 30, and condensate is recovered.
  • the air inlet 21, the atomization cavity 60 and the suction pipe 70 constitute an air flow channel 80, and the air flow directly passes through the atomization heating surface.
  • the material used for the base 20 is a food contact grade structural ceramic material, such as alumina, zirconia, silicon carbide, etc., made of single or composite oxide or polymer heat-resistant materials such as polyether ether ketone PEEK, polyimide PI, and polytetrafluoroethylene Ethylene, silica gel, etc.
  • the electrode lead 23 passes through the electrode hole.
  • the height of the oil-containing pipe 22 is 1 mm to 3 mm. This oil-containing pipe 22 can effectively prevent condensate from flowing out of the cartridge from the air inlet 21.
  • the porous electric heating element 30 is a porous electric heating conductive material, including at least one of stainless steel metal fiber, iron-chromium-aluminum metal fiber, titanium-nickel metal fiber, nickel metal fiber, Hastelloy fiber, microporous nickel foam, porous titanium or porous conductive ceramic A sort of.
  • the pore diameter of the porous electrothermal conductive material is between 3 microns and 100 microns, preferably between 5 microns and 50 microns; the thickness is 0.1 to 3 mm; the porosity ranges from 40% to 95%; the micropores of the porous electrothermal material are through holes .
  • the resistance range between the two electrode pins of the electronic cigarette atomizer is 0.1 ohm to 10 ohm, preferably 0.6 ohm to 2.0 ohm.
  • the heating element can also conduct oil.
  • the e-liquid fills the pores in the heating body, thereby increasing the sufficient specific surface area of the heating element and the e-liquid, shortening the atomization heat transfer path, and making the heat concentrated for atomization Smoke oil improves thermal efficiency.
  • the porous electric heating element has a large specific surface area, and the target liquid fills the pores in the heating element.
  • the shape is preferentially designed with a "cross" shape. Any symmetrical two ends can be connected to the positive and negative electrodes of the circuit. During operation, the heating element can directly transfer heat to the atomized target liquid, and the target liquid can be quickly atomized.
  • the internal pores can also be used. Oil storage and transportation.
  • the two ends of the symmetry are responsible for conducting heat to the outer porous material with its porous form, and the thermal gradient generated by electric heating is used to transport oil from the low-temperature area of the periphery to the central heating area, and constantly replenish the target liquid that is heated and evaporated.
  • the oil-conducting and oil-storing element 40 is a microporous material.
  • the microporous material stores and conducts oil through the micropores, and at the same time fixes the porous electric heating element 30.
  • the oil guide and oil storage element 40 is connected with the air flow channel, and the oil storage cavity 50 is connected to the outside through the micropores, and the condensed reflux liquid in the suction pipe can be recovered through the microporous material.
  • the oil guide and oil storage element 40 is connected to the suction pipe 70 to connect to the outside, and can balance the air pressure through the micropores of the microporous material, and prevent oil leakage caused by the pressure difference between the internal and the external.
  • the base 20 is also provided with an oil containing pipe 22 to prevent the condensate from flowing out of the air inlet.
  • the heat generated by the porous electric heating element 30 heats the microporous material of the oil-conducting oil storage element 40.
  • the microporous material transfers the heat to the outer e-liquid or paste-like or gel-like substance, and the outer periphery of the microporous material After the substance is heated, the viscosity of the liquid is reduced, and a thermal gradient is formed, resulting in the Marangoni Effect.
  • the liquid e-liquid will gradually flow from the low temperature zone to the high temperature zone through the tiny pores in the microporous material. Until the smoke oil in the oil tank is completely consumed.
  • the oil guide and storage element 40 includes, but is not limited to, microporous ceramic materials, organic cotton and linen, natural or artificial porous materials, and the like.
  • the microporous ceramic material is prepared by using high-quality raw materials such as zirconia, alumina, silicon carbide, etc. as main materials, using open-pore pore formers (ceramic fiber materials, etc.) or powder raw materials through molding and a special high-temperature sintering process.
  • a kind of microporous ceramic material with open pore diameter and high open porosity ranges from 3 microns to 100 microns.
  • the porosity of the microporous ceramic material ranges from 40% to 60%.
  • the porous electric heating element 30 is fixed on the ceramic base 20, and the positive and negative electrodes of the power supply are connected through a circuit to form a current loop.
  • the porous electric heating element 30 generates electric heat by itself, and the temperature rises rapidly to become a heating element.
  • the high temperature generated by the porous electric heating element 30 forms a thermal gradient in the heating atomization structure, and the e-liquid flows along the thermal gradient from the low temperature area of the microporous material close to the surface of the porous heating element to the high temperature area, continuously supplementing the porous electric heating Inside the heating element.
  • the convective air penetrates the porous electric heating element 30 to evaporate the e-liquid in the pores of the porous electric heating element 30 to form electronic smoke.
  • the electronic cigarette circulates in the channel formed by the microporous material of the oil guiding and storage element 40, and the condensate formed by the relatively large diameter smoke aerosol particles will adhere to the surface of the microporous material.
  • the capillary force generated is absorbed and recovered inside the microporous material.
  • the target atomizer of the present disclosure is stored in the e-liquid cavity 50 and is liquid, paste or gel. It can not only atomize the liquid electronic cigarette solution, but also atomize the paste-like plant extracts and extracts, and is aimed at the human body. Physiologically, medicinal solutions and pastes that can produce regulating or therapeutic effects.
  • the electronic cigarette vaporizer based on porous electric heating material and its application in the present disclosure has at least one of the following advantages over the prior art:
  • the porous electric heating element of the present disclosure can not only atomize but also conduct oil, which improves the efficiency of atomization;
  • the porous oil storage and oil guiding element is used to fix the electrothermal atomization element, and it has the function of oil storage and supplementary oil guiding. It can also recover the smoke oil condensate in the airflow channel through the capillary force generated by the micropores to balance the oil storage cavity Air pressure
  • the present disclosure can not only atomize e-liquid, but also atomize paste-like objects;
  • the oil containing pipe of the present disclosure can effectively prevent condensate from flowing out of the cartridge from the air inlet.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

一种基于多孔电热材料发热的电子烟雾化器及其应用,该电子烟雾化器包括外壳(10),其内为中空结构;底座(20),设置在外壳(10)内部,其上设有进气孔(21);微孔导油储油元件(40),其内部形成雾化腔(60);烟油腔(50),设置在外壳(10)内壁与微孔导油储油元件(40)之间,为微孔导油储油元件(40)提供烟油;多孔电热发热体(30),设置在微孔导油储油元件(40)上;以及吸气管(70),设置在微孔导油储油元件(40)上方。多孔电热发热体(30)既可雾化又可导油,提高了雾化效率;微孔储油导油元件(40)用来固定电热雾化元件,兼具储油、补充导油的作用,还可以通过微孔产生的毛细力回收气流通道内的烟油冷凝液,平衡储油腔气压;容油管可有效防止冷凝液从进气孔(21)流出烟弹。

Description

基于多孔电热材料发热的电子烟雾化器及其应用 技术领域
本公开属于电子烟领域,具体涉及一种基于多孔电热材料发热的电子烟雾化器及其应用。
背景技术
电子烟基本组件是雾化器、控制电路、供电电路和电池。雾化器内包括储油仓、气流通道和雾化芯。储油仓内装有烟油,雾化芯包括导油体和发热丝,导油体通过进油孔将储油仓中的烟油吸附,储油仓的烟油持续通过进油孔流入导油体,发热丝将导油体中已经吸附的烟油加热雾化后,雾化后的气溶胶沿着气溶胶通道流向出气孔,供人吸食。随着技术进步,每个组件都不断改进和完善。其中电子烟内的核心部件雾化器经历了玻纤绳,棉芯和微孔陶瓷等结构。然而电子烟产品仍存在漏油(冷凝液泄漏)、能量利用率低等技术问题。
现在市场上的电子烟雾化器都是发热体和导油体分离。金属发热丝、金属薄片或厚膜印刷电路制成的发热电路都是实心发热体,发热体的比表面积小,仅仅在发热电路最外表面与烟油接触,在微观角度看,发热电路体内部都没有与电子烟油充分接触,并且在外表面发热体接触烟油面积小,工作时所产生的大部分热量会传导到多孔材料之上,再由多孔材料发热雾化烟油,热量经过了2次传递,损失了大部分,产生较多的无用功,导致雾化效率低。
对于漏油一方面是冷凝烟油没有回收而从气流通道流出。另一方面是由于外界大气压降低,导致储油腔内的气压高于外界,在没有工作的情况下烟油由于内外压差通过导油棉往外渗油。
公开内容
针对上述技术问题,本公开的主要目的之一在于提出一种基于多孔电热材料发热的电子烟雾化器及其应用。
具体地,作为本公开的一个方面,提供了一种电子烟雾化器,包括:
外壳,其内为中空结构;
底座,设置在外壳内部,其上设有进气孔;
微孔导油储油元件,其内部形成雾化腔;
烟油腔,设置在外壳内壁与微孔导油储油元件之间,为微孔导油储油元件提供烟油;
多孔电热发热体,设置在微孔导油储油元件上;以及
吸气管,设置在微孔导油储油元件上方。
作为本公开的另一个方面,还提供了一种如上所述的电子烟雾化器在电子烟领域的应用。
附图说明
图1是本公开实施例中电子烟雾化器的结构示意图;
图2是图1中A-A处的截面结构示意图;
图3是本公开实施例中多孔电热发热体的电镜图。
附图标记说明:
10-外壳;20-底座;21-进气孔;22-容油管;23-电极引线;30-多孔电热发热体;40-多孔储油导油元件;50-烟油腔;60-雾化腔;70-吸气管;80-气流通道;110-金属纤维;120-孔隙。
具体实施方式
本公开公开了一种基于多孔电热材料发热的电子烟雾化器及其应用,包括:
外壳,其内为中空结构;
底座,设置在外壳内部,其上设有进气孔;
微孔导油储油元件,其内部形成雾化腔;
烟油腔,设置在外壳内壁与微孔导油储油元件之间,为微孔导油储油元件提供烟油;
多孔电热发热体,设置在微孔导油储油元件上;以及
吸气管,设置在微孔导油储油元件上方。
在本公开的一些实施例中,所述进气孔、雾化腔和吸气管形成连通的气流通道;气流通道与多孔电热发热体呈交叉状,气流穿透多孔电热 发热体形成烟雾气溶胶;
在本公开的一些实施例中,所述进气孔、雾化腔和吸气管位于同一直线上。
在本公开的一些实施例中,所述多孔电热发热体采用的材料为多孔电热材料;
在本公开的一些实施例中,多孔电热材料的孔隙率为40%至95%,孔隙直径为3至100微米;多孔电热材料的孔隙为通孔。
在本公开的一些实施例中,所述多孔电热发热体的厚度为0.1至3毫米;
在本公开的一些实施例中,所述多孔电热发热体的形状包括十字架结构。
在本公开的一些实施例中,所述的多孔电热发热体采用的材料包括不锈钢金属纤维、铁铬铝金属纤维、钛镍金属纤维、镍金属纤维、哈氏合金纤维、微孔泡沫镍、多孔钛或多孔导电陶瓷中的至少一种。
在本公开的一些实施例中,所述底座上设有防止冷凝液从进气孔流出的容油管;
在本公开的一些实施例中,所述的容油管的高度为1至3毫米。
在本公开的一些实施例中,所述底座座基上设有一个或多个通气孔;
在本公开的一些实施例中,所述通气孔直径为0.3至3毫米;
在本公开的一些实施例中,所述底座采用的材料包括氧化铝、氧化锆、碳化硅、聚醚醚酮、聚酰亚胺、聚四氟乙烯或硅胶中的任一种;
在本公开的一些实施例中,所述底座上设有电极孔。
在本公开的一些实施例中,所述的微孔导油储油元件采用的材料包括微孔陶瓷材料;
在本公开的一些实施例中,微孔陶瓷材料的孔隙率为40%至60%,孔隙直径为3至100微米。
在本公开的一些实施例中,所述电子烟雾化器的两个电极引脚之间的电阻为0.1至10欧姆;
在本公开的一些实施例中,所述烟油腔内的雾化体包括液态状、膏 状或凝胶状。
本公开还公开了如上所述的电子烟雾化器在电子烟领域的应用。
以下通过具体实施例结合附图对本公开的技术方案做进一步阐述说明。需要注意的是,下述的具体实施例仅是作为举例说明,本公开的保护范围并不限于此。
如图1-2所示,本实施例公开了一种基于多孔电热材料发热的电子烟雾化器,包括:外壳10、底座20、具有多孔结构的多孔电热发热体30、微孔导油储油元件40、进气孔21、烟油腔50、雾化腔60、吸气管70,通过对流空气穿透发热的多孔电热发热体30,而对目标液体进行加热雾化,产生烟雾气溶胶;由包覆于多孔电热发热体30外的微孔导油储油元件40对多孔电热发热体30进行***供液、并回收冷凝液。其中,进气孔21、雾化腔60和吸气管70组成气流通道80,气流直接从雾化发热面穿过。
底座20所用材料是食品接触级结构陶瓷材料,如氧化铝、氧化锆、碳化硅等,由单一或复合氧化物或高分子耐热材料聚醚醚酮PEEK、聚酰亚胺PI、聚四氟乙烯、硅胶等。底座20座基中心轴处开有一个或多个通气孔,通气孔径
Figure PCTCN2020097157-appb-000001
底座20上面设有电极孔和进气孔21。电极引线23从电极孔穿出。进气孔21***有高出座基的管体,即容油管22,容油管22高度在1mm~3mm,这个容油管22可有效防止冷凝液从进气孔21流出烟弹。
多孔电热发热体30是多孔电热导电材料,包括不锈钢金属纤维、铁铬铝金属纤维、钛镍金属纤维、镍金属纤维以及哈氏合金纤维、微孔泡沫镍、多孔钛或多孔导电陶瓷中的至少一种。
如图3所示为多孔电热发热体30采用多孔金属纤维的电镜图,其中,金属纤维110之间形成孔隙120。多孔电热导电材料孔隙直径为3微米-100微米、优选5微米~50微米之间;厚度0.1至3毫米;孔隙率的范围为40%~95%;所述多孔电热材料的微孔为通孔。电子烟雾化器的两个电极引脚之间的电阻范围为0.1欧姆-10欧姆,优选0.6欧姆-2.0 欧姆。多孔电热导电材料工作时是发热元件也可导油,烟油充满发热体内的孔隙,从而增加发热体与电子烟油充分的比表面积,缩短了雾化热传输途径,使热量集中用于雾化烟油,提高了热效率。多孔电热发热体有很大的比表面积,目标液体充满发热体内的孔隙。形状优先选用“十字架”形状设计,其任一对称的两端可以连接电路的正负极,工作时是发热元件可以直接传递热量至雾化目标液体,快速雾化目标液体,其内部孔隙也可存油、输油。另外对称的两端利用其多孔的形态负责导热至***的多孔材料、利用电热产生的热力梯度由***低温区向中心发热区输油,不断补充受热蒸发的目标液体。
导油储油元件40是微孔材料,微孔材料通过微孔储油和导油,同时固定多孔电热发热体30。导油储油元件40和气流通道相接,通过微孔连接储油腔50和外界,同时吸气管内的冷凝回流液可以通过微孔材料回收。所述导油储油元件40与吸气管70相接而与外界相连,可以通过微孔材料的微孔起到平衡气压的作用,防止因内外压力差而产生的漏油。同时气流通道内的冷凝回流的烟油可以被微孔材料吸收重新利用。底座20也设置了容油管22,防止冷凝液从进气孔流出。这些结构解决了电子烟漏油和效率低的问题。由多孔电热发热体30发热所产生的热量加热导油储油元件40的微孔材料,微孔材料把热量传递到***的烟油或者是膏状、凝胶状的物质,微孔材料的***物质受热后使液体的粘度降低,并形成了热力梯度,产生马兰戈尼效应(Marangoni Effect),液态的烟油就会通过微孔材料内的微小孔隙由低温区逐渐向高温区快速地流动,直至将油仓内的烟油消耗完全。
导油储油元件40包括但不限于微孔陶瓷材料、有机棉麻、天然或人造多孔材料等。其中,所述微孔陶瓷材料由以氧化锆、氧化铝、碳化硅等优质原料为主料,利用开孔造孔剂(陶瓷纤维材料等)或者以粉体原料经过成型和特殊高温烧结工艺制备的一种具有开孔孔径、高开口气孔率的一种微孔陶瓷材料。其中,微孔陶瓷材料的孔隙直径大小范围:3微米~100微米。微孔陶瓷材料的孔隙率的范围为:40%~60%。
本公开的工作原理:多孔电热发热体30固定于陶瓷底座20上,经 过电路连通电源正、负极,形成电流回路,多孔电热发热体30自身产生电热,温度快速升高而成为发热体。多孔电热发热体30产生的高温在发热雾化结构体形成了热力梯度,烟油液体沿热力梯度由贴紧于多孔发热体表面的微孔材料的低温区向高温区流动,不断补充至多孔电热发热体内部。对流空气穿透多孔电热发热体30而蒸发多孔电热发热体30微孔内的烟油液体,形成电子烟雾。电子烟雾在导油储油元件40的微孔材料形成的通道内流通,相对较大粒径的烟雾气溶胶颗粒所形成的冷凝液会附着在微孔材料表面,由微孔材料表面的微孔所产生的毛细力吸收,回收到微孔材料内部。
本公开目标雾化体存于烟油腔50内,为液态状、膏状或凝胶状,不但可以雾化液态电子烟溶液,也可以雾化膏状植物提取物、萃取物,及针对人体生理可以产生调节或治疗效果的药物溶液、膏状物。
综上,本公开的基于多孔电热材料发热的电子烟雾化器及其应用相对于现有技术至少具有以下优势之一:
1、本公开的多孔电热发热体既可雾化又可导油,提高了雾化效率;
2、多孔储油导油元件用来固定电热雾化元件,兼具储油、补充导油的作用,还可以通过微孔产生的毛细力回收气流通道内的烟油冷凝液,平衡储油腔气压;
3、本公开不但可以雾化烟油,也可以雾化膏状物体;
4、本公开的容油管可有效防止冷凝液从进气孔流出烟弹。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换,例如:
(1)实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围;
(2)上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组 合形成更多的实施例。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种电子烟雾化器,其中,包括:
    外壳,其内为中空结构;
    底座,设置在外壳内部,其上设有进气孔;
    微孔导油储油元件,其内部形成雾化腔;
    烟油腔,设置在外壳内壁与微孔导油储油元件之间,为微孔导油储油元件提供烟油;
    多孔电热发热体,设置在微孔导油储油元件上;以及
    吸气管,设置在微孔导油储油元件上方。
  2. 根据权利要求1所述的电子烟雾化器,其中,
    所述进气孔、雾化腔和吸气管形成连通的气流通道;气流通道与多孔电热发热体呈交叉状,气流穿透多孔电热发热体形成烟雾气溶胶。
  3. 根据权利要求1所述的电子烟雾化器,其中,
    所述进气孔、雾化腔和吸气管位于同一直线上。
  4. 根据权利要求1所述的电子烟雾化器,其中,
    所述多孔电热发热体采用的材料为多孔电热材料。
  5. 根据权利要求4所述的电子烟雾化器,其中,
    所述多孔电热材料的孔隙率为40%至95%,孔隙直径为3至100微米;多孔电热材料的孔隙为通孔;
    所述多孔电热发热体的厚度为0.1至3毫米。
  6. 根据权利要求1所述的电子烟雾化器,其中,
    所述多孔电热发热体的形状包括十字架结构。
  7. 根据权利要求1所述的电子烟雾化器,其中,
    所述的多孔电热发热体采用的材料包括不锈钢金属纤维、铁铬铝金属纤维、钛镍金属纤维、镍金属纤维、哈氏合金纤维、微孔泡沫镍、多孔钛或多孔导电陶瓷中的至少一种。
  8. 根据权利要求1所述的电子烟雾化器,其中,
    所述底座上设有防止冷凝液从进气孔流出的容油管。
  9. 根据权利要求8所述的电子烟雾化器,其中,
    所述的容油管的高度为1至3毫米。
  10. 根据权利要求1所述的电子烟雾化器,其中,
    所述底座座基上设有一个或多个通气孔。
  11. 根据权利要求10所述的电子烟雾化器,其中,
    所述通气孔直径为0.3至3毫米。
  12. 根据权利要求1所述的电子烟雾化器,其中,
    所述底座采用的材料包括氧化铝、氧化锆、碳化硅、聚醚醚酮、聚酰亚胺、聚四氟乙烯或硅胶中的任一种;
    所述底座上设有电极孔。
  13. 根据权利要求1所述的电子烟雾化器,其中,
    所述的微孔导油储油元件采用的材料包括微孔陶瓷材料;
    其中,微孔陶瓷材料的孔隙率为40%至60%,孔隙直径为3至100微米。
  14. 根据权利要求1所述的电子烟雾化器,其中,
    所述电子烟雾化器的两个电极引脚之间的电阻为0.1至10欧姆;
    所述烟油腔内的雾化体包括液态状、膏状或凝胶状。
  15. 如权利要求1至14任一项所述的电子烟雾化器在电子烟领域的应用。
PCT/CN2020/097157 2020-06-19 2020-06-19 基于多孔电热材料发热的电子烟雾化器及其应用 WO2021253418A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097157 WO2021253418A1 (zh) 2020-06-19 2020-06-19 基于多孔电热材料发热的电子烟雾化器及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097157 WO2021253418A1 (zh) 2020-06-19 2020-06-19 基于多孔电热材料发热的电子烟雾化器及其应用

Publications (1)

Publication Number Publication Date
WO2021253418A1 true WO2021253418A1 (zh) 2021-12-23

Family

ID=79268987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097157 WO2021253418A1 (zh) 2020-06-19 2020-06-19 基于多孔电热材料发热的电子烟雾化器及其应用

Country Status (1)

Country Link
WO (1) WO2021253418A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027354A1 (zh) * 2022-08-04 2024-02-08 常州市派腾电子技术服务有限公司 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013034453A1 (en) * 2011-09-06 2013-03-14 British American Tobacco (Investments) Limited Heating smokeable material
US20150359262A1 (en) * 2014-06-16 2015-12-17 Shenzhen Smoore Technology Limited Preparation method of porous ceramic, porous ceramic, and electronic cigarette
WO2017066955A1 (zh) * 2015-10-22 2017-04-27 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
CN108030150A (zh) * 2017-12-14 2018-05-15 深圳市卓力能电子有限公司 一种电子烟发热丝导油安装结构
CN109549254A (zh) * 2019-01-04 2019-04-02 新化县鹏磊电子陶瓷器材科技有限责任公司 一种全陶瓷的电子烟雾化器及制作方法
CN109619685A (zh) * 2018-12-27 2019-04-16 深圳市赛尔美电子科技有限公司 一种雾化芯、雾化器及电子烟
CN209711529U (zh) * 2018-12-25 2019-12-03 新化县新园电子陶瓷有限公司 雾化芯及电子烟

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013034453A1 (en) * 2011-09-06 2013-03-14 British American Tobacco (Investments) Limited Heating smokeable material
US20150359262A1 (en) * 2014-06-16 2015-12-17 Shenzhen Smoore Technology Limited Preparation method of porous ceramic, porous ceramic, and electronic cigarette
WO2017066955A1 (zh) * 2015-10-22 2017-04-27 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
CN108030150A (zh) * 2017-12-14 2018-05-15 深圳市卓力能电子有限公司 一种电子烟发热丝导油安装结构
CN209711529U (zh) * 2018-12-25 2019-12-03 新化县新园电子陶瓷有限公司 雾化芯及电子烟
CN109619685A (zh) * 2018-12-27 2019-04-16 深圳市赛尔美电子科技有限公司 一种雾化芯、雾化器及电子烟
CN109549254A (zh) * 2019-01-04 2019-04-02 新化县鹏磊电子陶瓷器材科技有限责任公司 一种全陶瓷的电子烟雾化器及制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027354A1 (zh) * 2022-08-04 2024-02-08 常州市派腾电子技术服务有限公司 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法

Similar Documents

Publication Publication Date Title
US11865248B2 (en) Aerosol delivery device and method utilizing a flavoring reservoir
CN111602853A (zh) 基于多孔电热材料发热的电子烟雾化器及其应用
CN209235000U (zh) 雾化芯和包括该雾化芯的雾化器
BR112016025303B1 (pt) Componente de formação de aerossol, dispositivo de liberação de aerossol e método para volatilizar um líquido dentro de um dispositivo de liberação de aerossol
KR20160012109A (ko) 전자 담배
WO2021142786A1 (zh) 电子雾化装置及其雾化器和发热体
WO2021253418A1 (zh) 基于多孔电热材料发热的电子烟雾化器及其应用
WO2021088948A1 (zh) 一种超声波雾化器
CN212414716U (zh) 基于多孔电热材料发热的电子烟雾化器
CN216821765U (zh) 加热组件、热交换器及气溶胶发生装置
WO2022057921A1 (zh) 雾化芯、雾化器和电子雾化装置
CN114794568A (zh) 发热体、雾化组件及电子雾化装置
CN114794567A (zh) 发热体、雾化组件及电子雾化装置
CN218682018U (zh) 一种雾化器、电子雾化装置及雾化组件
CN114794565A (zh) 发热体、雾化组件及电子雾化装置
WO2022087887A1 (zh) 可回收冷凝液的电子烟雾化芯及电子烟
WO2024050719A1 (zh) 一种发热组件、雾化器及电子雾化装置
WO2023214805A1 (ko) 에어로졸 발생 장치용 금속 프린팅을 이용한 세라믹 무화기
CN213604387U (zh) 可回收冷凝液的电子烟雾化芯及电子烟
WO2023116818A1 (zh) 热交换器、分段加热装置及气溶胶发生装置
CN218737241U (zh) 雾化器及电子雾化装置
WO2023082984A1 (zh) 雾化芯、雾化器及电子雾化装置
CN114652022A (zh) 雾化结构件、雾化器及气溶胶生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941462

Country of ref document: EP

Kind code of ref document: A1