WO2021253267A1 - Method to handle out of local area data network service area - Google Patents

Method to handle out of local area data network service area Download PDF

Info

Publication number
WO2021253267A1
WO2021253267A1 PCT/CN2020/096522 CN2020096522W WO2021253267A1 WO 2021253267 A1 WO2021253267 A1 WO 2021253267A1 CN 2020096522 W CN2020096522 W CN 2020096522W WO 2021253267 A1 WO2021253267 A1 WO 2021253267A1
Authority
WO
WIPO (PCT)
Prior art keywords
subscription
modem
request
connection
ladn
Prior art date
Application number
PCT/CN2020/096522
Other languages
French (fr)
Inventor
Hao Zhang
Tianya LIN
Fojian ZHANG
Jian Li
Chaofeng HUI
Haibo Liu
Pan JIANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/096522 priority Critical patent/WO2021253267A1/en
Publication of WO2021253267A1 publication Critical patent/WO2021253267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to wireless communication associated with local area data network (LADN) .
  • LADN local area data network
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • a method, a computer-readable medium, and an apparatus transmits, to a base station, a request to establish a connection to a local area data network (LADN) .
  • the apparatus receives, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE.
  • the apparatus determines whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem.
  • the apparatus switches a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
  • DDS default data subscription
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G NR frame, DL channels within a 5G NR subframe, a second 5G NR frame, and UL channels within a 5G NR subframe, respectively.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a call flow diagram of signaling between a UE and a base station in accordance with certain aspects of the disclosure.
  • FIG. 5 is a flowchart of a method of wireless communication.
  • FIG. 6 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum.
  • EHF Extremely high frequency
  • EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • Frequency range bands include frequency range 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency range 2 (FR2) , which includes frequency bands above 24.250 GHz.
  • mmW /near mmW radio frequency (RF) band e.g., 3 GHz –300 GHz
  • Base stations /UEs may operate within one or more frequency range bands.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182′′.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may be configured to switch a DDS from a first subscription to a second subscription if the first subscription is unable to establish a connection with an LADN.
  • the UE 104 may comprise a determination component 198 configured to determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem.
  • the UE 104 may transmit, to a base station 102/180, a request to establish a connection to a LADN.
  • the UE 104 may receive, from the base station 102/180, a rejection of the request to establish the connection with the LADN, where the rejection is for the first subscription modem of the UE.
  • the UE may determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem.
  • the UE may switch a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
  • DDS data subscription
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
  • a UE may submit a request to establish a connection with an LADN.
  • a LADN is a data network that a UE may connect to with a LADN session if the UE is located within a geographic service area.
  • the request to establish the connection may be rejected.
  • the request to establish the connection may comprise PDU Session Establishment signal, and the rejection may occur if the UE is out of the service area of the LADN.
  • the UE may not send another request to establish the connection for the LADN DDN provided by the UE during the PDU session establishment procedure until the LADN information for the specific LADN DNN is updated.
  • some UEs such as a dual subscriber identity module (SIM) dual standby (DSDS) UE may receive a rejection to the request to establish a connection to an LADN, such rejection may occur for a first subscription of the DSDS UE, but such rejection may not necessarily mean that the PDU session will be rejected on the second subscription.
  • SIM subscriber identity module
  • DSDS dual standby
  • the present disclosure relates to improving the manner in which a connection to a LADN may be configured for DSDS UEs. If a DSDS UE receives a rejection to the request to establish a connection with the LADN on a first subscription, the UE may be configured to send a request to establish a connection with the LADN on a second subscription. The rejection may occur due to the UE being out of the service area of the LADN.
  • FIG. 4 is a call flow diagram 400 between a UE 402 and a network 404.
  • the first wireless device 402 may be a DSDS UE and may communicate with the network 404 via a base station.
  • the UE 402 may comprise a first subscription modem 406, a second subscription modem 408, or an application 410.
  • the network 404 may correspond to core network 190 such that the UE 402 may communicate with the network via base station 102/180 and, accordingly, a cell may include a geographic coverage area 110 in which communication coverage is provided.
  • the UE 402 may correspond to at least UE 104.
  • the UE 402 may correspond to UE 350.
  • Optional aspects are illustrated with a dashed line.
  • the UE 402 may camp on a cell in standalone (SA) mode, and the DSS may be associated with the first subscription modem 406.
  • the UE 402 may be a DSDS UE have a first subscription modem and a second subscription modem.
  • the first subscription modem 406 may be associated with a first operator
  • the second subscription modem 408 may be associated with a second operator. Both the first and second subscription modems 406, 408 may be configured to support a LADN and the same data network name (DNN) .
  • DNN data network name
  • the application 410 may request a connection to a DNN (e.g., DDN1) of the LADN.
  • the request may be sent to the first subscription modem 406.
  • the first subscription modem 406 may transmit, to the network 404, a connection request.
  • the UE 402 and network 404 communicate with each other via at least one base station (not shown) .
  • the first subscription modem 406 of UE 402 may request a protocol data unit (PDU) session establishment for an available LADN, in response to the request from the application 410.
  • PDU protocol data unit
  • the network 404 may reject the PDU session establishment request from the UE 402.
  • the network 404 may reject the PDU session establishment request from the UE 402 due to the UE 402 being out of the LADN service area.
  • the UE 402 may receive the rejection of the request to establish the PDU session.
  • the rejection for the request to establish the connection with the LADN may be for the first subscription modem 406 of the UE 402.
  • the UE 402 may determine whether a request to establish a connection to a LADN for the second subscription modem 408 of the UE 402 matches with the request for the first subscription modem 406.
  • the UE 402 may indicate or instruct, at 418, the second subscription modem 408 to compare the request to establish the connection with the LADN of the first subscription modem 406 with that of the second subscription modem 408.
  • the second subscription modem 408, at 420 may compare its request to establish the connection with the LADN with that of the first subscription modem 406.
  • the second subscription modem 408, at 422, may provide the results of the comparison to the first subscription modem 406.
  • the second subscription modem 408 may provide a success indication, at 422, to the first subscription modem if the request of the second subscription modem 408 matches with the request of the first subscription modem 406. In some aspects, the second subscription modem 408 may provide a fail indication, at 422, to the first subscription modem if the request of the second subscription modem 408 does not match with the request of the first subscription modem 406.
  • the first subscription modem 406 may indicate to the application 410 whether the request at the second subscription modem 408 matches the request for the first subscription modem 406.
  • the first subscription modem 406 may send a match indication to the application 410.
  • the match indication may indicate whether the request to establish the connection to the LADN for the second subscription modem 408 of the UE 402 matches with the request for the first subscription modem 406.
  • the application 410 would not have to determine whether to perform a DDS switch, at 426.
  • the application 410 when a DDS switch is not performed, at 428, the application 410, at 430, informs the first subscription modem 406 to end or stop trying to connect to the DNN of the LADN.
  • the application 410 may determine, at 426, whether to perform a DDS switch. In such aspects, the application 410 may determine to perform the DDS switch.
  • the UE 402 may be configured to switch the DDS from the first subscription modem 406 to the second subscription modem 408. The UE 402 may switch the DDS from the first subscription modem 406 to the second subscription modem 408 based on the determination that the request to establish the connection to the LADN for the second subscription modem 408 matches the request to establish the connection for the first subscription modem 406.
  • the first subscription modem 406 and the second subscription modem 408 may be configured to support a same DNN of the LADN.
  • the first subscription modem 406 is associated with a first operator and the second subscription modem 408 is associated with a second operator.
  • the application 410, at 432, may instruct the first subscription modem 406 to perform the DDS switch to the second subscription modem 408.
  • the first subscription modem 406 may perform the DDS switch at 434.
  • the first subscription modem 406 may provide, at 436, a confirmation of the DDS switch.
  • the UE 402 may send an indication, at 438, comprising the connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem.
  • the application 410 may send the indication 438 comprising the connection request to the second subscription modem 408.
  • the UE 402 may transmit, at 440, the request to establish the connection with the LADN.
  • the second subscription modem 408 may transmit the request to establish the connection with the DNN of the LADN, such that the request to establish the connection with the DNN of the LADN is for the second subscription modem 408.
  • the second subscription modem 408 may request, at 440, a PDU session establishment for the DNN of the LADN.
  • the network 404 may respond, at 422, with an acknowledgment or acceptance of the request for the PDU session establishment from the second subscription modem 408.
  • the UE 402 may communicate with the network 404, via the base station, over the connection with the LADN.
  • the UE 402 may communicate with the base station over the connection with the LADN established by the second subscription modem 408.
  • FIG. 5 is a flowchart 500 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 402; the apparatus 602; the cellular baseband processor 604 which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • One or more of the illustrated operations may be omitted, transposed, or contemporaneous.
  • Optional aspects are illustrated with a dashed line.
  • the methods may allow a UE to switch a DDS from a first subscription to a second subscription if the first subscription is unable to establish a connection with an LADN.
  • the UE may transmit a request to establish a connection to a LADN.
  • 502 may be performed by transmission component 634 of apparatus 602.
  • the UE may transmit the request to establish the connection to the LADN to a base station.
  • the UE may receive a rejection of the request to establish the connection with the LADN.
  • 504 may be performed by reception component 630 of apparatus 602.
  • the UE may receive the rejection of the request to establish the connection with the LADN from the base station.
  • the rejection for the request to establish the connection with the LADN may be for a first subscription modem of the UE.
  • the UE may determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem. For example, 506 may be performed by determination component 640 of apparatus 602.
  • the UE may indicate the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem.
  • 508 may be performed by comparison component 642 of apparatus 602.
  • the first subscription modem may instruct the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem.
  • the UE may receive, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem.
  • 510 may be performed by indication component 644 of apparatus 602.
  • the UE may receive, from the second subscription modem, the indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem.
  • the UE may indicate whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  • 512 may be performed by match component 646 of apparatus 602.
  • the UE may indicate, to an application of the UE, whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  • the first subscription modem may send a match indication to the application of the UE.
  • the match indication may indicate whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  • the UE may switch a DDS from the first subscription modem to the second subscription modem.
  • 514 may be performed by switch component 648 of apparatus 602.
  • the UE may switch the DDS from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
  • the first subscription modem and the second subscription modem may be configured to support a same DNN of the LADN.
  • the first subscription modem is associated with a first operator and the second subscription modem is associated with a second operator.
  • the UE may send an indication comprising a connection request to the second subscription modem.
  • 516 may be performed by request component 650 of apparatus 602.
  • the UE may send the indication comprising the connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem.
  • an application of the UE may send the indication comprising the connection request to the second subscription modem.
  • the UE may transmit the request to establish the connection with the LADN.
  • 518 may be performed by transmission component 634 of apparatus 602.
  • the UE may transmit the request to establish the connection with the LADN to the base station.
  • the second subscription modem may transmit to the base station the request to establish the connection with the LADN.
  • the UE may communicate with the base station base over the connection with the LADN.
  • the UE may be performed by reception component 630 or transmission component 634 of apparatus 602.
  • the UE may communicate with the base station over the connection with the LADN established by the second subscription modem.
  • FIG. 6 is a diagram 600 illustrating an example of a hardware implementation for an apparatus 602.
  • the apparatus 602 is a UE and includes a cellular baseband processor 604 (also referred to as a modem) coupled to a cellular RF transceiver 622 and one or more subscriber identity modules (SIM) cards 620, an application processor 606 coupled to a secure digital (SD) card 608 and a screen 610, a Bluetooth module 612, a wireless local area network (WLAN) module 614, a Global Positioning System (GPS) module 616, and a power supply 618.
  • the cellular baseband processor 604 communicates through the cellular RF transceiver 622 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 604 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 604 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 604, causes the cellular baseband processor 604 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 604 when executing software.
  • the cellular baseband processor 604 further includes a reception component 630, a communication manager 632, and a transmission component 634.
  • the communication manager 632 includes the one or more illustrated components.
  • the components within the communication manager 632 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 604.
  • the cellular baseband processor 604 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 602 may be a modem chip and include just the baseband processor 604, and in another configuration, the apparatus 602 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 602.
  • the communication manager 632 includes a determination component 640 that is configured to determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem, e.g., as described in connection with 506 of FIG. 5.
  • the communication manager 632 further includes a comparison component 642 that is configured to indicate the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem, e.g., as described in connection with 508 of FIG. 5.
  • the communication manager 632 further includes an indication component 644 that is configured to receive, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem, e.g., as described in connection with 510 of FIG. 5.
  • the communication manager 632 further includes a match component 646 that is configured to indicate whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem, e.g., as described in connection with 512 of FIG. 5.
  • the communication manager 632 further includes a switch component 648 that is configured to switch a DDS from the first subscription modem to the second subscription modem, e.g., as described in connection with 514 of FIG. 5.
  • the communication manager 632 further includes a request component 650 that is configured to send an indication comprising a connection request to the second subscription modem, e.g., as described in connection with 516 of FIG. 5.
  • the transmission component 634 may be configured to transmit a request to establish a connection to a LADN, e.g., as described in connection with 502 of FIG. 5.
  • the transmission component 634 may be configured to transmit the request to establish the connection with the LADN, e.g., as described in connection with 518 of FIG. 5.
  • the reception component 630 or the transmission component 634 may be configured to communicate with the base station base over the connection with the LADN, e.g., as described in connection with 520 of FIG. 5.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 5. As such, each block in the aforementioned flowchart of FIG. 5 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 602 includes means for transmitting, to a base station, a request to establish a connection to a LADN.
  • the apparatus includes means for receiving, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE.
  • the apparatus includes means for determining whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem.
  • the apparatus includes means for switching a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
  • DDS default data subscription
  • the apparatus further includes means for indicating the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem.
  • the apparatus further includes means for receiving, from the second subscription modem, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem.
  • the apparatus further includes means for indicating, to an application of the UE, whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  • the apparatus further includes means for sending an indication comprising a connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem.
  • the apparatus further includes means for transmitting, to the base station, the request to establish the connection with the LADN.
  • the apparatus further includes means for communicating with the base station base over the connection with the LADN established by the second subscription modem.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 602 configured to perform the functions recited by the aforementioned means.
  • the apparatus 602 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • Example 1 is a method of wireless communication at a UE, comprising transmitting, to a base station, a request to establish a connection to a LADN; receiving, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE; determining whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem; and switching a DDS from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
  • Example 2 the method of Example 1 further includes indicating the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem; and receiving, from the second subscription modem, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem.
  • Example 3 the method of Example 1 or 2 further includes that the first subscription modem sends the signal to the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem.
  • Example 4 the method of any of Examples 1-3 further includes indicating, to an application of the UE, whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  • Example 5 the method of any of Examples 1-4 further includes that the first subscription modem sends the indication to the application of the UE.
  • Example 6 the method of any of Examples 1-5 further includes sending an indication comprising a connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem.
  • Example 7 the method of any of Examples 1-6 further includes that an application of the UE sends the indication comprising the connection request to the second subscription modem.
  • Example 8 the method of any of Examples 1-7 further includes transmitting, to the base station, the request to establish the connection with the LADN; and communicating with the base station base over the connection with the LADN established by the second subscription modem.
  • Example 9 the method of any of Examples 1-8 further includes that the second subscription modem transmits to the base station the request to establish the connection with the LADN.
  • Example 10 the method of any of Examples 1-9 further includes that the first subscription modem and the second subscription modem are configured to support a same DNN of the LADN.
  • Example 11 the method of any of Examples 1-10 further includes that the first subscription modem is associated with a first operator and the second subscription modem is associated with a second operator.
  • Example 12 is a device including one or more processor and one or more memories in electronic communication with the one or more processors storing instructions executable by the one or more processor to cause the system of apparatus to implement a method as in any of Examples 1-11.
  • Example 13 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of Examples 1-11.
  • Example 14 is a non-transitory computer readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of Examples 1-11.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

A configuration to enable a UE to switch a DDS from a first subscription to a second subscription if the first subscription is unable to establish a connection with an LADN. The apparatus transmits, to a base station, a request to establish a connection to a LADN. The apparatus receives, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE. The apparatus determines whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem. The apparatus switches a DDS from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.

Description

METHOD TO HANDLE OUT OF LOCAL AREA DATA NETWORK SERVICE AREA BACKGROUND
Technical Field
The present disclosure relates generally to communication systems, and more particularly, to wireless communication associated with local area data network (LADN) .
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi- access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus transmits, to a base station, a request to establish a connection to a local area data network (LADN) . The apparatus receives, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE. The apparatus determines whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem. The apparatus switches a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G NR frame, DL channels within a 5G NR subframe, a second 5G NR frame, and UL channels within a 5G NR subframe, respectively.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a call flow diagram of signaling between a UE and a base station in accordance with certain aspects of the disclosure.
FIG. 5 is a flowchart of a method of wireless communication.
FIG. 6 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors,  microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio  Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers  may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a  wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Frequency range bands include frequency range 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency range 2 (FR2) , which includes frequency bands above 24.250 GHz. Communications using the mmW /near mmW radio frequency (RF) band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range. Base stations /UEs may operate within one or more frequency range bands. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182″. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include  the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104  may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to switch a DDS from a first subscription to a second subscription if the first subscription is unable to establish a connection with an LADN. For example, the UE 104 may comprise a determination component 198 configured to determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem. The UE 104 may transmit, to a base station 102/180, a request to establish a connection to a LADN. The UE 104 may receive, from the base station 102/180, a rejection of the request to establish the connection with the LADN, where the rejection is for the first subscription modem of the UE. The UE may determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem. The UE may switch a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3  being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts  (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through  ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by  the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368  to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
In some wireless systems, a UE may submit a request to establish a connection with an LADN. A LADN is a data network that a UE may connect to with a LADN session if the UE is located within a geographic service area. However, in some instances, the request to establish the connection may be rejected. The request to establish the connection may comprise PDU Session Establishment signal, and the rejection may occur if the UE is out of the service area of the LADN. In such instances, the UE may not send another request to establish the connection for the LADN DDN provided by the UE during the PDU session establishment procedure until the LADN information for the specific LADN DNN is updated. However, some UEs, such as a dual subscriber identity module (SIM) dual standby (DSDS) UE may receive a rejection to the request to establish a connection to an LADN,  such rejection may occur for a first subscription of the DSDS UE, but such rejection may not necessarily mean that the PDU session will be rejected on the second subscription.
The present disclosure relates to improving the manner in which a connection to a LADN may be configured for DSDS UEs. If a DSDS UE receives a rejection to the request to establish a connection with the LADN on a first subscription, the UE may be configured to send a request to establish a connection with the LADN on a second subscription. The rejection may occur due to the UE being out of the service area of the LADN.
FIG. 4 is a call flow diagram 400 between a UE 402 and a network 404. Optional aspects may be illustrated with a dashed line. In some aspects, the first wireless device 402 may be a DSDS UE and may communicate with the network 404 via a base station. The UE 402 may comprise a first subscription modem 406, a second subscription modem 408, or an application 410. For example, in the context of FIG. 1, the network 404 may correspond to core network 190 such that the UE 402 may communicate with the network via base station 102/180 and, accordingly, a cell may include a geographic coverage area 110 in which communication coverage is provided. Further, the UE 402 may correspond to at least UE 104. In another example, in the context of FIG. 3, the UE 402 may correspond to UE 350. Optional aspects are illustrated with a dashed line.
In some aspects, the UE 402 may camp on a cell in standalone (SA) mode, and the DSS may be associated with the first subscription modem 406. The UE 402 may be a DSDS UE have a first subscription modem and a second subscription modem. The first subscription modem 406 may be associated with a first operator, and the second subscription modem 408 may be associated with a second operator. Both the first and  second subscription modems  406, 408 may be configured to support a LADN and the same data network name (DNN) .
As illustrated at 412, the application 410 may request a connection to a DNN (e.g., DDN1) of the LADN. The request may be sent to the first subscription modem 406. At 414, the first subscription modem 406 may transmit, to the network 404, a connection request. The UE 402 and network 404 communicate with each other via at least one base station (not shown) . The first subscription modem 406 of UE 402 may request a protocol data unit (PDU) session establishment for an available LADN, in response to the request from the application 410.
As illustrated at 416, the network 404 may reject the PDU session establishment request from the UE 402. In some aspects, the network 404 may reject the PDU session establishment request from the UE 402 due to the UE 402 being out of the LADN service area. The UE 402 may receive the rejection of the request to establish the PDU session. The rejection for the request to establish the connection with the LADN may be for the first subscription modem 406 of the UE 402.
As illustrated at 418, the UE 402 may determine whether a request to establish a connection to a LADN for the second subscription modem 408 of the UE 402 matches with the request for the first subscription modem 406. The UE 402 may indicate or instruct, at 418, the second subscription modem 408 to compare the request to establish the connection with the LADN of the first subscription modem 406 with that of the second subscription modem 408. The second subscription modem 408, at 420, may compare its request to establish the connection with the LADN with that of the first subscription modem 406. The second subscription modem 408, at 422, may provide the results of the comparison to the first subscription modem 406. In some aspects, the second subscription modem 408 may provide a success indication, at 422, to the first subscription modem if the request of the second subscription modem 408 matches with the request of the first subscription modem 406. In some aspects, the second subscription modem 408 may provide a fail indication, at 422, to the first subscription modem if the request of the second subscription modem 408 does not match with the request of the first subscription modem 406.
At 424, the first subscription modem 406 may indicate to the application 410 whether the request at the second subscription modem 408 matches the request for the first subscription modem 406. The first subscription modem 406 may send a match indication to the application 410. The match indication may indicate whether the request to establish the connection to the LADN for the second subscription modem 408 of the UE 402 matches with the request for the first subscription modem 406. In some aspects, for example if the second subscription modem 408 sends the match indication having a fail indication, at 422, to the first subscription modem 406, then the application 410 would not have to determine whether to perform a DDS switch, at 426. Thus, when a DDS switch is not performed, at 428, the application 410, at 430, informs the first subscription modem 406 to end or stop trying to connect to the DNN of the LADN.
In some aspects, for example if the second modem 408 sends the match indication having a success indication, at 422, to the first subscription modem 406, then the application 410 may determine, at 426, whether to perform a DDS switch. In such aspects, the application 410 may determine to perform the DDS switch. The UE 402 may be configured to switch the DDS from the first subscription modem 406 to the second subscription modem 408. The UE 402 may switch the DDS from the first subscription modem 406 to the second subscription modem 408 based on the determination that the request to establish the connection to the LADN for the second subscription modem 408 matches the request to establish the connection for the first subscription modem 406. In some aspects, the first subscription modem 406 and the second subscription modem 408 may be configured to support a same DNN of the LADN. In some aspects, the first subscription modem 406 is associated with a first operator and the second subscription modem 408 is associated with a second operator. In some aspects, the application 410, at 432, may instruct the first subscription modem 406 to perform the DDS switch to the second subscription modem 408. The first subscription modem 406 may perform the DDS switch at 434.
In some aspects, the first subscription modem 406 may provide, at 436, a confirmation of the DDS switch. The UE 402 may send an indication, at 438, comprising the connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem. In some aspects, the application 410 may send the indication 438 comprising the connection request to the second subscription modem 408.
The UE 402 may transmit, at 440, the request to establish the connection with the LADN. The second subscription modem 408 may transmit the request to establish the connection with the DNN of the LADN, such that the request to establish the connection with the DNN of the LADN is for the second subscription modem 408. For example, the second subscription modem 408 may request, at 440, a PDU session establishment for the DNN of the LADN. The network 404 may respond, at 422, with an acknowledgment or acceptance of the request for the PDU session establishment from the second subscription modem 408. The UE 402 may communicate with the network 404, via the base station, over the connection with the LADN. The UE 402 may communicate with the base station over the connection with the LADN established by the second subscription modem 408.
FIG. 5 is a flowchart 500 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 402; the apparatus 602; the cellular baseband processor 604 which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . One or more of the illustrated operations may be omitted, transposed, or contemporaneous. Optional aspects are illustrated with a dashed line. The methods may allow a UE to switch a DDS from a first subscription to a second subscription if the first subscription is unable to establish a connection with an LADN.
At 502, the UE may transmit a request to establish a connection to a LADN. For example, 502 may be performed by transmission component 634 of apparatus 602. The UE may transmit the request to establish the connection to the LADN to a base station.
At 504, the UE may receive a rejection of the request to establish the connection with the LADN. For example, 504 may be performed by reception component 630 of apparatus 602. The UE may receive the rejection of the request to establish the connection with the LADN from the base station. The rejection for the request to establish the connection with the LADN may be for a first subscription modem of the UE.
At 506, the UE may determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem. For example, 506 may be performed by determination component 640 of apparatus 602.
In some aspects, for example at 508, the UE may indicate the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem. For example, 508 may be performed by comparison component 642 of apparatus 602. In some aspects, the first subscription modem may instruct the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem.
In some aspects, for example at 510, the UE may receive, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem. For example, 510 may be performed by indication component 644 of apparatus 602. The UE may receive, from the second subscription modem, the indication indicating  whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem.
In some aspects, for example at 512, the UE may indicate whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem. For example, 512 may be performed by match component 646 of apparatus 602. The UE may indicate, to an application of the UE, whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem. In some aspects, the first subscription modem may send a match indication to the application of the UE. The match indication may indicate whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
At 514, the UE may switch a DDS from the first subscription modem to the second subscription modem. For example, 514 may be performed by switch component 648 of apparatus 602. The UE may switch the DDS from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem. In some aspects, the first subscription modem and the second subscription modem may be configured to support a same DNN of the LADN. In some aspects, the first subscription modem is associated with a first operator and the second subscription modem is associated with a second operator.
In some aspects, for example at 516, the UE may send an indication comprising a connection request to the second subscription modem. For example, 516 may be performed by request component 650 of apparatus 602. The UE may send the indication comprising the connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem. In some aspects, an application of the UE may send the indication comprising the connection request to the second subscription modem.
In some aspects, for example at 518, the UE may transmit the request to establish the connection with the LADN. For example, 518 may be performed by transmission component 634 of apparatus 602. The UE may transmit the request to establish the connection with the LADN to the base station. In some aspects, the  second subscription modem may transmit to the base station the request to establish the connection with the LADN.
In some aspects, for example at 520, the UE may communicate with the base station base over the connection with the LADN. For example 520 may be performed by reception component 630 or transmission component 634 of apparatus 602. The UE may communicate with the base station over the connection with the LADN established by the second subscription modem.
FIG. 6 is a diagram 600 illustrating an example of a hardware implementation for an apparatus 602. The apparatus 602 is a UE and includes a cellular baseband processor 604 (also referred to as a modem) coupled to a cellular RF transceiver 622 and one or more subscriber identity modules (SIM) cards 620, an application processor 606 coupled to a secure digital (SD) card 608 and a screen 610, a Bluetooth module 612, a wireless local area network (WLAN) module 614, a Global Positioning System (GPS) module 616, and a power supply 618. The cellular baseband processor 604 communicates through the cellular RF transceiver 622 with the UE 104 and/or BS 102/180. The cellular baseband processor 604 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 604 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 604, causes the cellular baseband processor 604 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 604 when executing software. The cellular baseband processor 604 further includes a reception component 630, a communication manager 632, and a transmission component 634. The communication manager 632 includes the one or more illustrated components. The components within the communication manager 632 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 604. The cellular baseband processor 604 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 602 may be a modem chip and include just the baseband processor 604, and in another configuration, the  apparatus 602 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 602.
The communication manager 632 includes a determination component 640 that is configured to determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem, e.g., as described in connection with 506 of FIG. 5. The communication manager 632 further includes a comparison component 642 that is configured to indicate the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem, e.g., as described in connection with 508 of FIG. 5. The communication manager 632 further includes an indication component 644 that is configured to receive, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem, e.g., as described in connection with 510 of FIG. 5. The communication manager 632 further includes a match component 646 that is configured to indicate whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem, e.g., as described in connection with 512 of FIG. 5. The communication manager 632 further includes a switch component 648 that is configured to switch a DDS from the first subscription modem to the second subscription modem, e.g., as described in connection with 514 of FIG. 5. The communication manager 632 further includes a request component 650 that is configured to send an indication comprising a connection request to the second subscription modem, e.g., as described in connection with 516 of FIG. 5. The transmission component 634 may be configured to transmit a request to establish a connection to a LADN, e.g., as described in connection with 502 of FIG. 5. The transmission component 634 may be configured to transmit the request to establish the connection with the LADN, e.g., as described in connection with 518 of FIG. 5. The reception component 630 or the transmission component 634 may be configured to communicate with the base station base over the connection with the LADN, e.g., as described in connection with 520 of FIG. 5.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 5. As such, each block in the aforementioned flowchart of FIG. 5 may be performed by a component  and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 602, and in particular the cellular baseband processor 604, includes means for transmitting, to a base station, a request to establish a connection to a LADN. The apparatus includes means for receiving, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE. The apparatus includes means for determining whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem. The apparatus includes means for switching a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem. The apparatus further includes means for indicating the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem. The apparatus further includes means for receiving, from the second subscription modem, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem. The apparatus further includes means for indicating, to an application of the UE, whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem. The apparatus further includes means for sending an indication comprising a connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem. The apparatus further includes means for transmitting, to the base station, the request to establish the connection with the LADN. The apparatus further includes means for communicating with the base station base over the connection with the LADN established by the second subscription modem. The aforementioned means may be one or more of the aforementioned components of the apparatus 602 configured to perform the functions recited by the aforementioned  means. As described supra, the apparatus 602 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The following examples are illustrative only and may be combined with aspects of other embodiments or teachings described herein, without limitation.
Example 1 is a method of wireless communication at a UE, comprising transmitting, to a base station, a request to establish a connection to a LADN; receiving, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE; determining whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem; and switching a DDS from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
In Example 2, the method of Example 1 further includes indicating the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem; and receiving, from the second subscription modem, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem.
In Example 3, the method of Example 1 or 2 further includes that the first subscription modem sends the signal to the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem.
In Example 4, the method of any of Examples 1-3 further includes indicating, to an application of the UE, whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
In Example 5, the method of any of Examples 1-4 further includes that the first subscription modem sends the indication to the application of the UE.
In Example 6, the method of any of Examples 1-5 further includes sending an indication comprising a connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem.
In Example 7, the method of any of Examples 1-6 further includes that an application of the UE sends the indication comprising the connection request to the second subscription modem.
In Example 8, the method of any of Examples 1-7 further includes transmitting, to the base station, the request to establish the connection with the LADN; and communicating with the base station base over the connection with the LADN established by the second subscription modem.
In Example 9, the method of any of Examples 1-8 further includes that the second subscription modem transmits to the base station the request to establish the connection with the LADN.
In Example 10, the method of any of Examples 1-9 further includes that the first subscription modem and the second subscription modem are configured to support a same DNN of the LADN.
In Example 11, the method of any of Examples 1-10 further includes that the first subscription modem is associated with a first operator and the second subscription modem is associated with a second operator.
Example 12 is a device including one or more processor and one or more memories in electronic communication with the one or more processors storing instructions executable by the one or more processor to cause the system of apparatus to implement a method as in any of Examples 1-11.
Example 13 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of Examples 1-11.
Example 14 is a non-transitory computer readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of Examples 1-11.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute  for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (34)

  1. A method of wireless communication at a user equipment (UE) , comprising:
    transmitting, to a base station, a request to establish a connection to a local area data network (LADN) ;
    receiving, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE;
    determining whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem; and
    switching a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
  2. The method of claim 1, further comprising:
    indicating the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem; and
    receiving, from the second subscription modem, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem.
  3. The method of claim 2, wherein the first subscription modem sends a signal to the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem.
  4. The method of claim 1, further comprising:
    indicating, to an application of the UE, whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  5. The method of claim 4, wherein the first subscription modem sends a match indication to the application of the UE which indicates whether the request to establish  the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  6. The method of claim 1, further comprising:
    sending an indication comprising a connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem.
  7. The method of claim 6, wherein an application of the UE sends the indication comprising the connection request to the second subscription modem.
  8. The method of claim 6, further comprising:
    transmitting, to the base station, the request to establish the connection with the LADN; and
    communicating with the base station over the connection with the LADN established by the second subscription modem.
  9. The method of claim 8, wherein the second subscription modem transmits to the base station the request to establish the connection with the LADN.
  10. The method of claim 1, wherein the first subscription modem and the second subscription modem are configured to support a same data network name (DNN) of the LADN.
  11. The method of claim 1, wherein the first subscription modem is associated with a first operator and the second subscription modem is associated with a second operator.
  12. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    transmit, to a base station, a request to establish a connection to a local area data network (LADN) ;
    receive, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE;
    determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem; and
    switch a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
  13. The apparatus of claim 12, wherein the at least one processor configured to:
    indicate the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem; and
    receive, from the second subscription modem, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem.
  14. The apparatus of claim 13, wherein the first subscription modem sends a signal to the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem.
  15. The apparatus of claim 12, wherein the at least one processor configured to:
    indicate, to an application of the UE, whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  16. The apparatus of claim 15, wherein the first subscription modem sends a match indication to the application of the UE which indicates whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  17. The apparatus of claim 12, wherein the at least one processor configured to:
    send an indication comprising a connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem.
  18. The apparatus of claim 17, wherein an application of the UE sends the indication comprising the connection request to the second subscription modem.
  19. The apparatus of claim 17, wherein the at least one processor configured to:
    transmit, to the base station, the request to establish the connection with the LADN; and
    communicate with the base station over the connection with the LADN established by the second subscription modem.
  20. The apparatus of claim 19, wherein the second subscription modem transmits to the base station the request to establish the connection with the LADN.
  21. The apparatus of claim 12, wherein the first subscription modem and the second subscription modem are configured to support a same data network name (DNN) of the LADN.
  22. The apparatus of claim 12, wherein the first subscription modem is associated with a first operator and the second subscription modem is associated with a second operator.
  23. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for transmitting, to a base station, a request to establish a connection to a local area data network (LADN) ;
    means for receiving, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE;
    means for determining whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem; and
    means for switching a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that  the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
  24. The apparatus of claim 23, further comprising:
    means for indicating the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem; and
    means for receiving, from the second subscription modem, an indication indicating whether the request to establish the connection with the LADN of the second subscription modem matches the request of the first subscription modem.
  25. The apparatus of claim 24, wherein the first subscription modem sends a signal to the second subscription modem to compare the request to establish the connection with the LADN of the second subscription modem.
  26. The apparatus of claim 23, further comprising:
    means for indicating, to an application of the UE, whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  27. The apparatus of claim 26, wherein the first subscription modem sends a match indication to the application of the UE which indicates whether the request to establish the connection to the LADN for the second subscription modem of the UE matches with the request for the first subscription modem.
  28. The apparatus of claim 23, further comprising:
    means for sending an indication comprising a connection request to the second subscription modem in response to the DDS switched from the first subscription modem to the second subscription modem.
  29. The apparatus of claim 28, wherein an application of the UE sends the indication comprising the connection request to the second subscription modem.
  30. The apparatus of claim 28, further comprising:
    means for transmitting, to the base station, the request to establish the connection with the LADN; and
    means for communicating with the base station over the connection with the LADN established by the second subscription modem.
  31. The apparatus of claim 30, wherein the second subscription modem transmits to the base station the request to establish the connection with the LADN.
  32. The apparatus of claim 23, wherein the first subscription modem and the second subscription modem are configured to support a same data network name (DNN) of the LADN.
  33. The apparatus of claim 23, wherein the first subscription modem is associated with a first operator and the second subscription modem is associated with a second operator.
  34. A computer-readable medium storing computer executable code, the code when executed by a processor cause the processor to:
    transmit, to a base station, a request to establish a connection to a local area data network (LADN) ;
    receive, from the base station, a rejection of the request to establish the connection with the LADN, the rejection for a first subscription modem of the UE;
    determine whether a request to establish a connection to a LADN for a second subscription modem of the UE matches with the request for the first subscription modem; and
    switch a default data subscription (DDS) from the first subscription modem to the second subscription modem based on the determination that the request to establish the connection to the LADN for the second subscription modem matches the request to establish the connection for the first subscription modem.
PCT/CN2020/096522 2020-06-17 2020-06-17 Method to handle out of local area data network service area WO2021253267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096522 WO2021253267A1 (en) 2020-06-17 2020-06-17 Method to handle out of local area data network service area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096522 WO2021253267A1 (en) 2020-06-17 2020-06-17 Method to handle out of local area data network service area

Publications (1)

Publication Number Publication Date
WO2021253267A1 true WO2021253267A1 (en) 2021-12-23

Family

ID=79268809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096522 WO2021253267A1 (en) 2020-06-17 2020-06-17 Method to handle out of local area data network service area

Country Status (1)

Country Link
WO (1) WO2021253267A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194954A1 (en) * 2018-04-06 2019-10-10 Convida Wireless, Llc Methods of managing connections to a local area data network (ladn) in a 5g network
CN110476475A (en) * 2017-03-27 2019-11-19 高通股份有限公司 Local area data net connectivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476475A (en) * 2017-03-27 2019-11-19 高通股份有限公司 Local area data net connectivity
WO2019194954A1 (en) * 2018-04-06 2019-10-10 Convida Wireless, Llc Methods of managing connections to a local area data network (ladn) in a 5g network

Similar Documents

Publication Publication Date Title
US11445491B2 (en) Reduced capability/complexity NR bandwidth part configuration
US20200413476A1 (en) Ue assisted fast transition between rrc states
US11758547B2 (en) Default PDSCH beam selection
US10973044B1 (en) Default spatial relation for SRS/PUCCH
US10897752B2 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
US11476984B2 (en) Flexible spectrum usage with carrier aggregation
US11678223B2 (en) Transmission power control command accumulation for NR-dual connectivity
US11791971B2 (en) Component carrier group based bandwidth part switching
US20210112434A1 (en) Preconfigured gaps for measurements based on configured bwps
US11405809B2 (en) Radio link monitoring reference signals for UEs that do not support CSI-RS based radio link monitoring
WO2022077207A1 (en) Assisted connectivity
US20230276353A1 (en) Fast slicing switching via scg suspension or activation
WO2021237677A1 (en) METHOD AND APPARATUS FOR A VoLTE SERVICE WITH NSA NR NETWORK
WO2021223152A1 (en) Apparatus and method to restrain inappropriate measurement event
WO2021253267A1 (en) Method to handle out of local area data network service area
US11457460B2 (en) Inter-cell interference coordination in mmWave networks
US11870589B2 (en) Method and apparatus with multi-configuration HARQ message
US20220116892A1 (en) Uplink spatial filter and power control for joint channel estimation across physical uplink control channels
WO2022061698A1 (en) Recover from downlink data transfer failure
WO2022006855A1 (en) Avoid registration in standalone mode for non-standalone subscriber
WO2022056666A1 (en) Methods and apparatus for video over nr-dc
WO2022047609A1 (en) Methods and apparatus for embb capability utilizing modems
US20220039006A1 (en) Dynamic cell functionality determination in l1/l2 based mobility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940854

Country of ref document: EP

Kind code of ref document: A1