WO2021251416A1 - リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2021251416A1
WO2021251416A1 PCT/JP2021/021860 JP2021021860W WO2021251416A1 WO 2021251416 A1 WO2021251416 A1 WO 2021251416A1 JP 2021021860 W JP2021021860 W JP 2021021860W WO 2021251416 A1 WO2021251416 A1 WO 2021251416A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
transition metal
active material
electrode active
Prior art date
Application number
PCT/JP2021/021860
Other languages
English (en)
French (fr)
Inventor
宰平 藤本
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP21822346.9A priority Critical patent/EP4163997A1/en
Priority to CN202180041797.8A priority patent/CN115885397A/zh
Priority to US17/925,049 priority patent/US20230187628A1/en
Publication of WO2021251416A1 publication Critical patent/WO2021251416A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery using the same.
  • oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are used as the positive electrode active material, and lithium metal, lithium alloy, metal oxide, or carbon is used as the negative electrode active material.
  • Etc. are used, and an electrolytic solution obtained by dissolving Li salts such as LiClO 4 and LiPF 6 in an organic solvent such as ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate as a supporting salt is used.
  • the electrolyte in particular is a factor that limits battery performance such as high-speed charging, safety, and life due to its chemical properties such as heat resistance and potential window. Therefore, research and development are currently being actively carried out on an all-solid-state lithium-ion secondary battery (hereinafter, also referred to as an all-solid-state battery) in which the performance of the battery is improved by using a solid electrolyte instead of the electrolytic solution.
  • an all-solid-state battery hereinafter, also referred to as an all-solid-state battery in which the performance of the battery is improved by using a solid electrolyte instead of the electrolytic solution.
  • Patent Document 1 proposes that a sulfide solid electrolyte has high lithium ion conductivity and is preferable for use in an all-solid-state battery.
  • Non-Patent Document 1 proposes that a sulfide solid electrolyte has high lithium ion conductivity and is preferable for use in an all-solid-state battery.
  • Non-Patent Document 1 proposes that a sulfide solid electrolyte has high lithium ion conductivity and is preferable for use in an all-solid-state battery.
  • Non-Patent Document 1 proposes that a sulfide solid electrolyte has high lithium ion conductivity and is preferable for use in an all-solid-state battery.
  • Non-Patent Document 1 proposes that a sulfide solid electrolyte has high lithium ion conductivity and is preferable for use in an all-solid-state battery.
  • Non-Patent Document 1 proposes that a sulfide solid electrolyte has
  • LiNiO 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , and LiNi 0.6 Co 0.2 Mn which have high charge / discharge capacities. It is preferable to use a positive electrode active material having a high Ni content such as 0.2 O 2, and as a result of investigating the applicability of the high Ni composition positive electrode active material to an all-solid-state battery, the inventor found these positive electrodes. It has been found that the energy density obtained from the active material is lower than the energy density expected from a lithium ion secondary battery using a conventional electrolytic solution.
  • the present invention is a positive electrode active material having a charge / discharge capacity equivalent to that of a lithium ion secondary battery using an electrolytic solution even when used for a positive electrode of an all-solid-state battery. And its manufacturing method.
  • An object of the present invention is to provide an all-solid-state lithium ion secondary battery having a charge / discharge capacity equivalent to that of a lithium ion secondary battery using an electrolytic solution.
  • the positive electrode active material for a lithium ion secondary battery is for a lithium ion secondary battery having particles of a lithium transition metal composite oxide and a coating layer covering at least a part of the surface of the particles.
  • the positive electrode active material, the lithium transition metal composite oxide is Li and the material amount ratio of the transition metal Li: Ni: Co: M is t: 1-xy: x: y (in the formula, M is Mg, It is at least one element selected from the group consisting of Al, Ca, Si, Mn, Ti, V, Fe, Cu, Cr, Zn, Zr, Nb, Mo and W, and is 0.95 ⁇ t ⁇ 1.
  • the coating layer contains a lithium zirconium compound, and Zr is present on the surface of the positive electrode active material for a lithium ion secondary battery.
  • the ratio Zrs / (Nis + Cos + Zrs) of the material amount Zrs to the sum of the material amounts of Ni, Co, and Zr is Nis + Cos + Zrs, which is 0.80 or more and 0.97 or less.
  • the positive electrode active material for an all-solid-state lithium-ion secondary battery (hereinafter, also referred to as “positive electrode active material”) has a charge / discharge capacity equivalent to that of the lithium ion secondary battery using an electrolytic solution. ) Can be provided.
  • the Zr content of the coating layer may be 0.13 mmol or more and 0.30 mmol or less per 1 m 2 of the surface area of the lithium transition metal composite oxide excluding the coating layer.
  • the coating layer can be uniformly arranged on the entire surface of the particles of the lithium transition metal composite oxide. Then, it is possible to suppress a decrease in the discharge capacity of the lithium ion secondary battery (hereinafter, also referred to as "secondary battery") using the positive electrode active material.
  • the lithium transition metal composite oxide may have a crystal structure belonging to the space group R-3m.
  • the carbon content of the positive electrode active material for the lithium ion secondary battery may be 0.05% by mass or more and 0.40% by mass or less.
  • the conduction of lithium ions at the interface between the positive electrode active material and the solid electrolyte is less likely to be hindered, and the increase in the interface resistance between the positive electrode active material and the solid electrolyte can be suppressed.
  • the volume average particle diameter of the particles of the lithium transition metal composite oxide may be 2 ⁇ m or more and 20 ⁇ m or less.
  • the battery capacity per volume of the lithium ion secondary battery can be sufficiently increased, and excellent battery characteristics such as high safety and high output can be obtained.
  • one aspect of the present invention is characterized in that it is a lithium ion secondary battery including at least a positive electrode using the above-mentioned positive electrode active material for a lithium ion secondary battery, a negative electrode, and a solid electrolyte. ..
  • one aspect of the present invention is a method for producing a positive electrode active material for a lithium ion secondary battery, which has particles of a lithium transition metal composite oxide and a coating layer covering at least a part of the surface of the particles.
  • the oxidative roasting step of obtaining a transition metal composite oxide by oxidative roasting, and the transition metal composite oxide obtained in the oxidative roasting step and a lithium compound are mixed and fired to obtain a lithium transition metal composite.
  • the lithium transition metal composite oxide synthesis step may be calcined at a temperature of 700 ° C. or higher and 800 ° C. or lower under an oxygen atmosphere.
  • the crystal structure of the lithium transition metal composite oxide can be sufficiently grown, cation mixing can be suppressed, and deterioration of the battery characteristics of the secondary battery can be prevented.
  • the zirconium compound in the coating step, is prepared so that the Zr amount of the zirconium compound is 0.13 mmol or more and 0.30 mmol or less per 1 m 2 of the surface area of the lithium transition metal composite oxide.
  • the ratio Zrs / (Nis + Cos + Zrs) of the sum of the amount of substances to Nis + Cos + Zrs may be 0.80 or more.
  • the coating layer can be uniformly arranged on the entire surface of the particles of the lithium transition metal composite oxide. Then, it is possible to suppress an increase in the interfacial resistance between the positive electrode active material and the solid electrolyte. In addition, it is possible to suppress a decrease in the discharge capacity of the lithium ion secondary battery using the positive electrode active material.
  • the substance amount ratio (Li / Zr) of the amount of Li and Zr of the lithium compound and the zirconium compound in the lithium zirconium compound of the coating layer is 1.8 or more. It may be added so as to be 2.2 or less.
  • the coating agent is a mixture of the lithium compound and the zirconium compound used in the coating step dissolved in a solvent, and is liquid at room temperature or melted by the heat treatment of the coating step. It may contain a mixture of the lithium compound and the zirconium compound having a low melting point.
  • the coating layer can be more uniformly arranged on the entire surface of the particles of the lithium transition metal composite oxide.
  • the zirconium compound used in the coating step may be one or more of alkoxides such as zirconium tetrapropoxide and zirconium tetrabutoxide.
  • the heat treatment may be performed in an oxygen atmosphere at a temperature of 300 ° C. or higher and 600 ° C. or lower for 1 hour or longer and 5 hours or shorter.
  • the lithium zirconium compound can be contained in the coating layer, and the morphology of the coating layer can be maintained. Then, it is possible to provide an all-solid-state lithium ion secondary battery having a charge / discharge capacity equivalent to that of the lithium ion secondary battery using an electrolytic solution.
  • a positive electrode active material having a charge / discharge capacity equivalent to that of a lithium ion secondary battery using an electrolytic solution even when used for a positive electrode of an all-solid-state battery, and a method for producing the same. can do. Then, it is possible to provide an all-solid-state lithium ion secondary battery having a charge / discharge capacity equivalent to that of the lithium ion secondary battery using an electrolytic solution.
  • FIG. 1 is a process diagram showing an outline of a method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a cross-sectional configuration of the test battery used for evaluating the battery characteristics.
  • the present inventor covers at least a part of the lithium transition metal composite oxide with a coating layer containing a lithium zirconium compound, and the abundance ratio of zirconium to the transition metal element and the abundance ratio of zirconium to the transition metal element. It was found that by controlling the abundance of zirconium per surface surface, it is possible to provide an all-solid-state lithium-ion secondary battery having a charge / discharge capacity equivalent to that of a lithium-ion secondary battery using an electrolytic solution. This led to the completion of the present invention.
  • preferred embodiments of the present invention will be described.
  • a positive electrode active material for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery according to an embodiment of the present invention will be described in the following order.
  • Positive electrode active material for lithium-ion secondary batteries 1-1. Particles of Lithium Transition Metal Composite Oxide 1-2. Coating layer 1-3. Characteristics of positive electrode active material 2. Method for Manufacturing Positive Electrode Active Material for Lithium Ion Secondary Battery 2-1. Precursor crystallization step 2-2. Oxidation roasting process 2-3. Lithium transition metal composite oxide synthesis process 2-4. Covering process 3. Lithium-ion secondary battery 3-1. Positive electrode 3-2. Negative electrode 3-3. Solid electrolyte 3-4. Shape and composition of secondary battery 3-5. Characteristics of secondary battery 1-1. Particles of Lithium Transition Metal Composite Oxide 1-2. Coating layer 1-3. Characteristics of positive electrode active material 2. Method for Manufacturing Positive Electrode Active Material for Lithium Ion Secondary Battery 2-1. Precursor crystallization step
  • Positive electrode active material for lithium-ion secondary batteries > First, a configuration example of the positive electrode active material for a lithium ion secondary battery of the present embodiment will be described.
  • the positive electrode active material of the present embodiment has particles of a lithium transition metal composite oxide and a coating layer covering at least a part of the surface of the particles.
  • the element M is magnesium (Mg), aluminum (Al), calcium (Ca), silicon (Si), manganese (Mn), titanium (Ti), vanadium (V), iron (Fe), and copper (Cu). , Chromium (Cr), Zirconium (Zn), Zirconium (Zr), Niob (Nb), Molybdenum (Mo), Tungsten (W).
  • the coating layer contains a lithium zirconium compound, and can contain zirconium at a ratio of 0.13 mmol or more and 0.30 mmol or less per 1 m 2 of the surface area of the lithium transition metal composite oxide before coating. Further, lithium zirconate may be used as the lithium zirconium compound.
  • the positive electrode active material for a lithium ion secondary battery of the present embodiment has a ratio (Zrs / (Nis + Cos + Zrs)) of the sum of the amount of substance of Zr present on the surface and the amount of substance of Zr, Ni, and Co of 0.80 or more. It can be 0.97 or less.
  • positive electrode active material for a lithium ion secondary battery of the present embodiment (hereinafter, also simply referred to as “positive electrode active material”) will be specifically described.
  • the positive electrode active material of the present embodiment can have particles of the lithium transition metal composite oxide and a coating layer covering at least a part of the particles of the lithium transition metal composite oxide.
  • the particles of the lithium transition metal composite oxide and the coating layer will be described below.
  • the value of t indicating the content of lithium (Li) can be 0.95 or more and 1.20 or less, and 0. It is preferably 98 or more and 1.10 or less, and more preferably 1.00 or more and 1.10 or less.
  • the value of t By setting the value of t to 0.95 or more, the internal resistance of the secondary battery using the positive electrode active material containing the lithium transition metal composite oxide can be suppressed and the output characteristics can be improved. Further, by setting the value of t to 1.20 or less, the initial discharge capacity of the secondary battery using the positive electrode active material containing the lithium transition metal composite oxide can be maintained high. That is, by setting the value of t in the above range, the output characteristics and the capacity characteristics of the secondary battery using the positive electrode active material containing the lithium transition metal composite oxide can be improved.
  • the above-mentioned lithium transition metal composite oxide nickel (Ni) is an element that contributes to increasing the capacity of a secondary battery using a positive electrode active material containing a lithium transition metal composite oxide.
  • the above-mentioned lithium transition metal composite oxide cobalt (Co) is an element that contributes to the reduction of the irreversible capacity of the secondary battery using the positive electrode active material containing the lithium transition metal composite oxide.
  • the value of x indicating the cobalt content can be more than 0 and 0.22 or less, preferably 0.10 or more and 0.22 or less, and more preferably 0.10 or more and 0.20 or less.
  • the irreversible capacity which is the difference between the charge capacity and the discharge capacity, can be reduced in the secondary battery using the positive electrode active material containing the lithium transition metal composite oxide. .. Further, a high battery capacity can be obtained by setting the value of x to 0.22 or less.
  • the lithium transition metal composite oxide may contain element M, which is an additive element, in addition to the above metal element.
  • element M examples include magnesium (Mg), aluminum (Al), calcium (Ca), silicon (Si), manganese (Mn), titanium (Ti), vanadium (V), iron (Fe), and copper (Cu). ), Chromium (Cr), Zinc (Zn), Zirconium (Zr), Niob (Nb), Molybdenum (Mo), Titanium (W) can be used.
  • the element M is appropriately selected according to the use and required performance of the secondary battery configured by using the positive electrode active material.
  • the value of y indicating the content of the element M can be 0.15 or less, preferably 0.10 or less, and more preferably 0.05 or less. .. Since the lithium transition metal composite oxide does not have to contain the element M, the lower limit of y indicating the content of the element M can be set to 0.
  • a peak attributed to the layered rock salt type crystal structure of the "R-3m” structure can be detected from the diffraction pattern obtained by X-ray diffraction (XRD) measurement.
  • XRD X-ray diffraction
  • the layered rock salt type oxide having an "R-3m” structure is preferable because it can suppress internal resistance especially when the positive electrode active material containing the lithium transition metal composite oxide particles is used as a secondary battery. Is.
  • a lithium transition metal composite oxide having a layered rock salt type crystal structure cannot be obtained in a single phase, and impurities may be mixed. Even when impurities are mixed in this way, the intensities of the heterogeneous peaks other than the layered rock salt type structure of these "R-3m” structures are the peaks attributed to the layered rock salt type structure of the "R-3m” structure. It is preferable not to exceed the strength.
  • the particle size formed by agglomeration of a large number of primary particles having a particle size of 0.1 ⁇ m or more and 2.0 ⁇ m or less is 3.0 ⁇ m or more and 15 It is preferably a secondary particle of 0.0 ⁇ m or less, a single primary particle having a particle size of 1.0 ⁇ m or more and 7.0 ⁇ m or less, or a mixture thereof. Inside each particle, there may be a space or a void surrounded by one or more primary particles.
  • the volume average particle size of the particles of the lithium transition metal composite oxide of the present embodiment is preferably 2 ⁇ m or more and 20 ⁇ m or less, and preferably 2 ⁇ m or more and 15 ⁇ m or less, as measured by a laser diffraction / scattering type particle size distribution meter. It is more preferably 3 ⁇ m or more and 15 ⁇ m or less. This is because when the volume average particle diameter of the particles of the lithium transition metal composite oxide is 2 ⁇ m or more and 20 ⁇ m or less, the secondary battery using the positive electrode active material containing the particles of the lithium transition metal composite oxide as the positive electrode is per volume. This is because the battery capacity can be sufficiently increased and excellent battery characteristics such as high safety and high output can be obtained.
  • the coating layer contains a zirconium-containing compound, that is, a zirconium compound, and covers at least a part of the particles of the lithium transition metal composite oxide.
  • the coating layer may also be composed of a lithium zirconium compound such as lithium zirconate.
  • the coating layer is a region on the surface side of the positive electrode active material of the present embodiment, which is a particle of the lithium transition metal composite oxide as a coated material, that is, a portion or region having a higher zirconium concentration than the central region. Point to that.
  • the coating layer may be partially solid-solved with the lithium transition metal composite oxide.
  • the content of zirconium in the coating layer is not particularly limited, but it is preferable to adjust the content according to the specific surface area of the particles of the lithium transition metal composite oxide to be coated.
  • the coating layer preferably contains zirconium at a ratio of 0.13 mmol or more and 0.30 mmol or less, and 0.15 mmol or more and 0.25 mmol or less, per 1 m 2 of the surface area of the particles of the lithium transition metal composite oxide. It is more preferable to contain zirconium in the proportion of.
  • the coating layer is uniformly applied to the entire surface of the lithium transition metal composite oxide particles. This is because it indicates that it can be placed in.
  • the coating layer it is possible to suppress an increase in the interfacial resistance between the positive electrode active material and the solid electrolyte, but at the same time, the internal resistance may increase and the discharge capacity may decrease. Then, by setting the zirconium content per 1 m 2 of the particles of the lithium transition metal composite oxide to 0.30 mmol or less, the coating layer can intercalate lithium with the lithium transition metal composite oxide. / It is preferable because it can suppress the obstruction of the deintercalation reaction, reduce the internal resistance, and suppress the decrease in the discharge capacity.
  • the method for evaluating and calculating the zirconium content of the coating layer is not particularly limited, but an example of the method is shown below.
  • the zirconium content (mmol / g) in 1 g of the positive electrode active material after being coated with the lithium zirconium compound is measured by a method such as chemical analysis.
  • measurement can be performed by ICP (Inductively Coupled Plasma) emission spectroscopic analysis or the like.
  • the specific surface area (m 2 / g) of the particles of the lithium transition metal composite oxide before the coating treatment with the lithium zirconium compound is measured by the BET method or the like by nitrogen adsorption.
  • the zirconium content (mmol / g) in 1 g of the positive electrode active material after being coated with the lithium zirconium compound is the specific surface area (m 2 / g) of the particles of the lithium transition metal composite oxide before the coating treatment.
  • the zirconium content (mmol / m 2 ) per 1 m 2 of the surface area of the particles of the lithium transition metal composite oxide can be calculated.
  • the denominator differs between the zirconium content in 1 g of the positive electrode active material after being coated with the lithium zirconium compound and the specific surface area of the particles of the lithium transition metal composite oxide before the coating treatment without the coating layer. Although it is not a value, since the amount of zirconium used for coating is small, it can be used approximately as the amount of zirconium supported per 1 m 2 of the surface area of the lithium transition metal composite oxide.
  • the particles of the lithium transition metal composite oxide before the coating treatment contain zirconium, it is preferable to use the difference in the zirconium content before and after the coating treatment as the amount of zirconium used for the coating.
  • the degree of coverage of the lithium transition metal composite oxide in the coating layer with respect to the particles is the amount of Zr present on the surface and the amount of Zr, Ni , Co can be known from the ratio with the sum of the substance amounts (Zrs / (Nis + Cos + Zrs)) (hereinafter, also referred to as “ratio of coated metal surface amount”).
  • the ratio of the surface amount of the coated metal is preferably 0.80 or more.
  • zirconium existing as a coating layer that is, zirconium existing as a coating layer without diffusing to the side of the particles of the lithium transition metal composite oxide is sufficiently secured. This is because it means that a sufficiently uniform coating layer is formed so that an increase in interfacial resistance between the active material and the solid electrolyte can be suppressed.
  • the ratio of the surface amount of the coated metal is 0.85 or more, it is more preferable because the increase in the interfacial resistance between the active material and the solid electrolyte can be further suppressed.
  • the lithium ion conductivity can be improved, the internal resistance can be reduced, and the discharge capacity can be reduced as compared with the case where the zirconium compound is used as the coating layer. Can be suppressed.
  • the substance amount ratio (Li / Zr) of Li and Zr of the lithium zirconium compound in the coating layer is preferably 1.8 or more and 2.2 or less. It is preferable that the material amount ratio of Li and Zr of the lithium zirconium compound in the coating layer is 1.8 or more because a lithium zirconium compound having high lithium ion conductivity is produced. Further, by setting the material amount ratio of Li and Zr of the lithium zirconium compound of the coating layer to 2.2 or less, the amount of unreacted lithium compounds can be reduced, and the battery characteristics such as reduction of initial discharge capacity and increase of positive electrode resistance can be achieved. The decrease can be suppressed.
  • the material amount ratio (Li / Zr) of the lithium zirconium compound Li to Zr is set to 1.8 or more and 2.2 or less, it is possible to suppress an increase in the interfacial resistance between the positive electrode active material and the solid electrolyte. ..
  • the positive electrode active material of the present embodiment preferably has the following characteristics.
  • the positive electrode active material of the present embodiment is preferably composed only of the above-mentioned particles of the lithium transition metal composite oxide and the coating layer, but impurities may be mixed in during production.
  • Moisture and carbon in particular are impurities that can be increased by the coating process.
  • Moisture and carbon are preferably controlled within a predetermined range because they may affect the initial discharge capacity.
  • the positive electrode active material of the present embodiment preferably has a carbon content of 0.05% by mass or more and 0.40% by mass or less, and more preferably 0.05% by mass or more and 0.08% by mass or less.
  • the carbon content is preferably 0.05% by mass.
  • the carbon content of the positive electrode active material is the carbon content with respect to the entire positive electrode active material expressed in mass%.
  • the carbon content of the positive electrode active material of the present embodiment can be evaluated by, for example, an infrared absorption method.
  • the positive electrode active material of the present embodiment preferably has a water content (water content) of 0.08% by mass or less.
  • water content water content
  • the hydrolysis reaction of the solid electrolyte can be more reliably suppressed in the secondary battery using the positive electrode active material.
  • the water content of the positive electrode active material of the present embodiment can be 0.08% by mass or less because the hydrolysis reaction of the solid electrolyte can be more reliably suppressed and the deterioration thereof can be suppressed.
  • the water content of the positive electrode active material of the present embodiment can be evaluated by, for example, the Karl Fischer method in which the heating temperature is set to 300 ° C.
  • an all-solid-state battery having a charge / discharge capacity substantially equal to that of a lithium ion secondary battery using an electrolytic solution. can do.
  • FIG. 1 is a process diagram showing an outline of a method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • the method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention is a lithium ion having particles of a lithium transition metal composite oxide and a coating layer covering at least a part of the surface of the particles. This is a method for manufacturing a positive electrode active material for a secondary battery.
  • the method for producing a positive electrode active material according to an embodiment of the present invention can have the following four steps.
  • the transition metal composite hydroxide is obtained by reacting with the above in a reaction vessel.
  • the x and y in the above formula can be in the same suitable range as the x and y described for the particles of the lithium transition metal composite oxide.
  • the oxidative roasting step S2 prepares a transition metal composite oxide. Specifically, for example, the transition metal composite hydroxide obtained in the precursor crystallization step S1 is fired at a temperature of 500 ° C. or higher and 700 ° C. or lower in an oxygen atmosphere to obtain a transition metal composite hydroxide.
  • Lithium transition metal composite oxide synthesis step S3 In the lithium transition metal composite oxide synthesis step S3, the transition metal composite oxide obtained in the oxidation roasting step S2 is mixed with a lithium compound and fired at a temperature of 700 ° C. or higher and 800 ° C. or lower in an oxygen atmosphere. , Lithium transition metal composite oxide is obtained.
  • the coating step S4 forms a coating layer on the surface of the particles of the lithium transition metal composite oxide.
  • the particles of the lithium transition metal composite oxide obtained in the lithium transition metal composite oxide synthesis step S3 are mixed with a liquid coating agent containing a lithium compound and a zirconium compound, dried, and then in an oxygen atmosphere.
  • a coating layer is provided on the surface of the particles of the lithium transition metal composite oxide by performing the heat treatment at a temperature of 300 ° C. or higher and 600 ° C. or lower.
  • the ratio of the metal compound to be dissolved in water is adjusted so that the composition ratio of each metal in the mixed aqueous solution is the same as the composition ratio of each metal in the target transition metal composite hydroxide particles. It is preferable to prepare a mixed aqueous solution.
  • the metal compound sulfate, chloride, nitrate and the like can be used as long as they are water-soluble, but sulfate is preferable from the viewpoint of cost. If a suitable water-soluble raw material is not found for the element M or the like, it may be added in the oxidation roasting step S2 or the lithium transition metal composite oxide synthesis step S3, which will be described later, without adding it to the mixed aqueous solution. ..
  • initial aqueous solution preparation step put water in the reaction vessel and add an appropriate amount of alkaline substance and ammonium ion feeder to prepare an initial aqueous solution (initial aqueous solution preparation step). At this time, it is preferable to prepare the initial aqueous solution so that the pH value is 11.2 or more and 12.2 or less and the ammonia concentration is 2 g / L or more and 15 g / L or less based on the liquid temperature of 25 ° C.
  • transition metal composite hydroxide When the transition metal composite hydroxide is prepared by performing the precursor crystallization step S1, impurities due to the anions constituting the metal compound contained in the mixed aqueous solution used may be mixed in the transition metal composite hydroxide. ..
  • the pH value of the initial aqueous solution 11.2 or higher, it is possible to suppress the mixing of impurities caused by the anions constituting the metal compound of the raw material, which is preferable.
  • the pH value of the initial aqueous solution By setting the pH value of the initial aqueous solution to 12.2 or less, it is preferable that the obtained transition metal composite hydroxide particles can be suppressed from being atomized and have an optimum size.
  • the ammonia concentration of the initial aqueous solution it is preferable to set the ammonia concentration of the initial aqueous solution to 2 g / L or more because the particles of the obtained transition metal composite hydroxide can be easily formed into a spherical shape.
  • the ammonia concentration of the initial aqueous solution it is possible to prevent the solubility of the transition metal forming the ammonia complex from increasing excessively, and to make the composition of the obtained transition metal composite hydroxide more reliable. It is preferable because it can be a target composition.
  • the alkaline substance used when preparing the initial aqueous solution is not particularly limited, but may be one or more selected from sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium hydroxide, and potassium hydroxide. Is preferable. Since the amount of addition can be easily adjusted, it is preferable to add in the form of an aqueous solution.
  • the ammonium ion feeder is not particularly limited, but one or more selected from an aqueous ammonium carbonate solution, an aqueous ammonia solution, an aqueous ammonium chloride solution, and an aqueous ammonium sulfate solution can be preferably used.
  • the above-mentioned mixed aqueous solution can be added dropwise to the initial aqueous solution to prepare a reaction aqueous solution, but the pH value and ammonia concentration of the reaction aqueous solution are also within the above-mentioned suitable ranges. It is preferable to maintain.
  • the atmosphere in the reaction vessel is preferably a non-oxidizing atmosphere, for example, an atmosphere having an oxygen concentration of 1% by volume or less. This is because a non-oxidizing atmosphere, for example, an atmosphere having an oxygen concentration of 1% by volume or less can suppress oxidation of raw materials and the like, which is preferable. Therefore, for example, it is possible to prevent oxidized cobalt from precipitating as fine particles.
  • the temperature of the reaction vessel in the precursor crystallization step S1 is preferably maintained at 40 ° C. or higher and 60 ° C. or lower, and more preferably 45 ° C. or higher and 55 ° C. or lower.
  • it is preferable that the initial aqueous solution and the reaction aqueous solution arranged in the reaction vessel are also maintained in the same temperature range.
  • the temperature of the reaction tank rises naturally due to the heat of reaction and the energy of stirring, it is preferable to set the temperature to 40 ° C or higher because no extra energy is consumed for cooling. Further, by setting the temperature of the reaction vessel to 60 ° C. or lower, the amount of evaporation of ammonia from the initial aqueous solution and the reaction aqueous solution can be suppressed, and the target ammonia concentration can be easily maintained, which is preferable.
  • the initial aqueous solution is put into the reaction vessel, the temperature and the like are adjusted, and then the mixed aqueous solution is dropped into the reaction vessel at a constant rate to prepare the reaction aqueous solution, whereby the transition as a precursor. Crystallization of metal composite hydroxide particles can be performed (crystallization step).
  • the pH value and the ammonia concentration of the reaction aqueous solution are in the same suitable ranges as those described for the initial aqueous solution. Therefore, even when the mixed aqueous solution is dropped into the initial aqueous solution or the reaction aqueous solution, it is preferable that the ammonium ion feeder and the alkaline substance are also dropped into the initial aqueous solution or the reaction aqueous solution at a constant rate. Then, it is preferable to control the pH value of the reaction aqueous solution so as to be maintained at 11.2 or more and 12.2 or less based on the liquid temperature of 25 ° C. and the ammonia concentration at 2 g / L or more and 15 g / L or less.
  • the slurry containing the transition metal composite hydroxide particles recovered from the overflow port provided in the reaction vessel is filtered and dried to obtain powdery transition metal composite hydroxide particles as a precursor. be able to.
  • the oxidation roasting step S2 will be described.
  • the transition metal composite hydroxide obtained in the precursor crystallization step S1 is oxidatively roasted to obtain a transition metal composite oxide.
  • the transition metal composite hydroxide produced in the precursor crystallization step S1 is fired in an oxygen atmosphere and then cooled to room temperature to obtain a transition metal composite oxide.
  • the roasting conditions in the oxidative roasting step S2 are not particularly limited, but it is preferable to bake in an oxygen atmosphere, for example, in an air atmosphere at a temperature of 500 ° C. or higher and 700 ° C. or lower for 1 hour or longer and 12 hours or shorter. This is because the transition metal composite hydroxide particles can be completely converted into the transition metal composite oxide by setting the firing temperature to 500 ° C. or higher, which is preferable. Further, by setting the firing temperature to 700 ° C. or lower, it is possible to suppress the specific surface area of the transition metal composite oxide from becoming excessively small, which is preferable.
  • the firing time is preferably 12 hours or less.
  • the oxygen concentration in the oxygen atmosphere at the time of firing is preferably equal to or higher than the oxygen concentration in the air atmosphere, that is, the oxygen concentration is preferably 20% by volume or more. Since the oxygen atmosphere can be used, the upper limit of the oxygen concentration in the oxygen atmosphere can be 100% by volume.
  • the compound containing the element M when the compound containing the element M could not be co-precipitated in the precursor crystallization step S1, for example, the compound containing the element M was targeted for the transition metal composite hydroxide used in the oxidation roasting step S2. It may be added and baked so as to have the same composition ratio.
  • the compound containing the element M to be added is not particularly limited, and for example, an oxide, a hydroxide, a carbonate, or a mixture thereof can be used.
  • a crushing treatment may be added.
  • the amount of lithium in the transition metal composite oxide particles obtained in the oxidation roasting step S2 with respect to the total amount of the constituent metal elements contained in the particles is 95% or more and 120% or less (lithium mixture preparation step).
  • the lithium compound to be added is not particularly limited, and for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof can be used.
  • the lithium compound it is particularly preferable to use lithium hydroxide having a low melting point and high reactivity.
  • the obtained lithium mixture is calcined in an oxygen atmosphere and then cooled to room temperature to obtain a lithium-containing lithium transition metal composite oxide (calcination step).
  • the firing conditions are not particularly limited, but it is preferable to fire at a temperature of 700 ° C. or higher and 800 ° C. or lower for 1 hour or longer and 24 hours or shorter, for example.
  • the oxygen atmosphere is preferably an atmosphere containing 80% by volume or more of oxygen.
  • the oxygen concentration in the atmosphere By setting the oxygen concentration in the atmosphere to 80% by volume or more, the cation mixing in which Ni atoms are mixed with the Li sites in the obtained lithium transition metal composite oxide is particularly suppressed, and the battery characteristics of the secondary battery are improved. This is because deterioration can be prevented and it is preferable.
  • the oxygen atmosphere can be used, the upper limit of the oxygen concentration in the oxygen atmosphere can be 100% by volume.
  • the firing temperature by setting the firing temperature to 700 ° C. or higher, the crystal structure of the lithium transition metal composite oxide can be stabilized, and the particles of the lithium transition metal composite oxide can be sufficiently grown, which is preferable. Further, by setting the firing temperature to 800 ° C. or lower, it is possible to suppress cation mixing in which Ni atoms are mixed with Li sites in the obtained lithium transition metal composite oxide, and prevent deterioration of battery characteristics of the secondary battery. Therefore, it is preferable.
  • the firing time is 1 hour or more because the temperature inside the firing container can be made uniform and the reaction can be made uniform. Further, even if the firing is performed for a longer time than 24 hours, no significant change is observed in the obtained lithium transition metal composite oxide. Therefore, from the viewpoint of energy efficiency, the firing time is preferably 24 hours or less.
  • a crushing treatment may be added.
  • crushing means that mechanical energy is applied to an agglomerate composed of a plurality of secondary particles generated by sintering necking between secondary particles during firing, and the secondary particles themselves are hardly destroyed. The operation of separating and loosening agglomerates.
  • Coating process S4> In the coating step S4, a coating layer containing a lithium zirconium compound is formed on at least a part of the surface of the particles of the lithium transition metal composite oxide obtained in the lithium transition metal composite oxide synthesis step S3.
  • the coating step S4 first, the specific surface area of the lithium transition metal composite oxide obtained in the lithium transition metal composite oxide synthesis step S3 is measured, and a liquid coating agent is applied according to the amount of zirconium carried in the target coating layer. Can be prepared (coating preparation step).
  • a dressing containing a zirconium compound and a lithium compound is prepared.
  • a coating agent containing a zirconium compound and a lithium compound By using a coating agent containing a zirconium compound and a lithium compound, a coating layer containing the lithium zirconium compound can be produced in the heat treatment step described later. Then, the surface of the particles of the lithium transition metal composite oxide can be uniformly coated with the coating layer. It is also possible to use the zirconium compound as a coating agent, add the lithium compound after the drying step described later, and perform the heat treatment step described later, but the lithium compound may be exfoliated during the heat treatment step.
  • the coating agent is not particularly limited as long as it contains zirconium, a zirconium compound and a lithium compound.
  • the coating agent those in which a zirconium compound and a lithium compound are dissolved in a solvent, a low melting point zirconium compound and a lithium compound which are liquid at room temperature or melted by a low temperature heat treatment, and the like are preferable for uniform coating. Can be used.
  • zirconium compound examples include alkoxides such as zirconium tetrapropoxide and zirconium tetrabutoxide, chelates such as zirconium tetraacetylacetonate, an aqueous solution of zirconium sol in which fine particles of zirconium oxide are uniformly dispersed in the aqueous solution, and ammonium zirconium carbonate.
  • the lithium compound is not particularly limited, and for example, lithium hydroxide, lithium oxide, lithium nitrate, lithium ethoxydo, lithium acetate, lithium formate, lithium chloride, lithium sulfate or lithium carbonate, or a mixture thereof can be used. ..
  • As the coating agent a solution of zirconium tetrapropoxide and lithium ethoxydo, which can be easily prepared and can suppress the mixing of impurities, in a mixed solution with ethanol can be preferably used.
  • the amount of the zirconium compound and the lithium compound added is adjusted so that the substance amount ratio (Li / Zr) of the lithium zirconium compound of the coating layer is 1.8 or more and 2.2 or less. It is preferable to do so. It is preferable that the material amount ratio of Li and Zr of the lithium zirconium compound in the coating layer is 1.8 or more because a lithium zirconium compound having high lithium ion conductivity is produced. Further, by setting the material amount ratio of Li and Zr of the lithium zirconium compound of the coating layer to 2.2 or less, the amount of unreacted lithium compounds can be reduced, and the battery characteristics such as reduction of initial discharge capacity and increase of positive electrode resistance can be achieved. The decrease can be suppressed.
  • the material amount ratio (Li / Zr) of the lithium zirconium compound Li to Zr is set to 1.8 or more and 2.2 or less, it is possible to suppress an increase in the interfacial resistance between the positive electrode active material and the solid electrolyte. ..
  • the lithium transition metal composite oxide particles and the coating agent can be mixed.
  • a general mixer can be used for mixing (mixture preparation step). Then, after mixing, drying is performed (drying step), and further heat treatment is performed to fix the lithium zirconium compound as a coating layer (heat treatment step).
  • drying can be performed at a temperature that can remove the solvent and the like of the coating agent.
  • drying can be performed at 80 ° C. or higher and lower than 300 ° C.
  • the heat treatment conditions of the heat treatment step are not particularly limited, but the heat treatment is performed in an oxygen atmosphere, for example, in an air atmosphere at a temperature of 300 ° C. or higher and 600 ° C. or lower, more preferably 300 ° C. or higher and 450 ° C. or lower, for 1 hour or longer and 5 hours or shorter. Is preferable.
  • the mixture is cooled to room temperature to obtain a positive electrode active material which is a particle of a lithium transition metal composite oxide having a coating layer which is a final product.
  • the oxygen concentration in the oxygen atmosphere at the time of heat treatment is preferably equal to or higher than the oxygen concentration in the air atmosphere, that is, the oxygen concentration is preferably 20% by volume or more. This is because it is preferable to set the oxygen atmosphere during the heat treatment to be equal to or higher than the oxygen concentration in the air atmosphere, because it is possible to particularly suppress the occurrence of oxygen defects in the obtained positive electrode active material. Since the oxygen atmosphere can be used, the upper limit of the oxygen concentration in the oxygen atmosphere can be 100% by volume.
  • the firing temperature during the heat treatment By setting the firing temperature during the heat treatment to 300 ° C. or higher, it is possible to particularly suppress the impurities contained in the coating agent from remaining in the positive electrode active material, and the zirconium compound and the lithium compound in the coating layer react with each other. It is preferable because it can exist as a lithium zirconium compound. Further, it is preferable to set the firing temperature to 600 ° C. or lower because it is possible to suppress excessive diffusion of the components of the coating layer and maintain the shape of the coating layer.
  • the firing temperature during the heat treatment is preferably selected so that the coating layer can sufficiently maintain its thickness according to the zirconium-supported amount of the coating layer set as a target.
  • the firing time of the heat treatment is 1 hour or more because impurities contained in the coating agent can be particularly suppressed from remaining in the positive electrode active material. Further, since no significant change is observed in the obtained positive electrode active material even if firing is performed for a time longer than 5 hours, the firing time is preferably 5 hours or less from the viewpoint of energy efficiency.
  • the charge / discharge capacity equivalent to that of the lithium ion secondary battery using an electrolytic solution is equivalent to the charge / discharge capacity. It is possible to provide an all-solid-state battery having the above.
  • All-solid-state lithium-ion secondary battery of the present embodiment (hereinafter, also simply referred to as “secondary battery”) has a configuration including a positive electrode using the positive electrode active material described above, a negative electrode, and a solid electrolyte. be able to.
  • secondary battery has a configuration including a positive electrode using the positive electrode active material described above, a negative electrode, and a solid electrolyte. be able to.
  • each member of the secondary battery of the present embodiment will be described.
  • the embodiments described below are merely examples, and the all-solid-state lithium-ion secondary battery of the present invention will be various based on the embodiments described in the present specification and based on the knowledge of those skilled in the art. It can be implemented in a modified or improved form. Further, the use of the all-solid-state lithium ion secondary battery of the present invention is not particularly limited.
  • the positive electrode can be formed by molding a positive electrode mixture.
  • the positive electrode is appropriately processed according to the battery used. For example, in order to increase the electrode density, a pressure compression process or the like by a press or the like can be performed.
  • the above-mentioned positive electrode mixture can be formed by mixing the above-mentioned positive electrode active material in powder form with a solid electrolyte.
  • the solid electrolyte is added to give the electrode proper ionic conductivity.
  • the material of the solid electrolyte is not particularly limited, but is, for example, a sulfide-based solid electrolyte such as Li 3 PS 4 , Li 7 P 3 S 11 , Li 10 GeP 2 S 12 , Li 7 La 3 Zr 2 O 12 , Li 0. Oxide- based solid electrolytes such as .34 La 0.51 TiO 2.94 and polymer-based electrolytes such as PEO can be used.
  • a binder or a conductive auxiliary agent can be added to the positive electrode mixture.
  • the conductive agent is added to give appropriate conductivity to the electrode.
  • the material of the conductive agent is not particularly limited, and for example, graphite such as natural graphite, artificial graphite and expanded graphite, and carbon black materials such as acetylene black and Ketjen black (registered trademark) can be used.
  • the binder plays a role of binding the positive electrode active material.
  • the binder used in the positive electrode mixture is not particularly limited, and for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylenepropylenediene rubber, styrene-butadiene, cellulose resin, and polyacrylic acid.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluororubber fluororubber
  • ethylenepropylenediene rubber styrene-butadiene
  • cellulose resin cellulose resin
  • polyacrylic acid polyacrylic acid
  • the mixing ratio of each substance in the positive electrode mixture is not particularly limited.
  • the content of the positive electrode active material of the positive electrode mixture can be 50 parts by mass or more and 90 parts by mass or less, and the content of the solid electrolyte can be 10 parts by mass or more and 50 parts by mass or less.
  • the method for producing the positive electrode is not limited to the above-mentioned example, and other methods may be used.
  • the negative electrode can be formed by molding a negative electrode mixture.
  • the negative electrode is formed by substantially the same method as the above-mentioned positive electrode, although the components constituting the negative electrode mixture and the composition thereof are different, and various treatments are performed as necessary in the same manner as the positive electrode.
  • the negative electrode mixture can be prepared by mixing the negative electrode active material and the solid electrolyte.
  • the negative electrode active material for example, an occlusion material capable of storing and desorbing lithium ions can be adopted.
  • the occluded substance is not particularly limited, but one or more selected from, for example, an organic compound calcined body such as natural graphite, artificial graphite, and phenol resin, and a powdery body of a carbon substance such as coke can be used.
  • an organic compound calcined body such as natural graphite, artificial graphite, and phenol resin
  • a powdery body of a carbon substance such as coke
  • a sulfide electrolyte such as Li 3 PS 4 can be used as the solid electrolyte as in the case of the positive electrode.
  • the negative electrode may be a sheet-like member made of a substance containing a metal alloying with lithium such as metallic lithium and indium.
  • Solid electrolyte has a property of being able to withstand a high voltage.
  • Examples of the solid electrolyte include an inorganic solid electrolyte and an organic solid electrolyte.
  • an oxide-based solid electrolyte As the inorganic solid electrolyte, an oxide-based solid electrolyte, a sulfide-based solid electrolyte, etc. are used.
  • the oxide-based solid electrolyte is not particularly limited as long as it contains oxygen (O) and has lithium ion conductivity and electron insulation.
  • Examples of the oxide-based solid electrolyte include lithium phosphate (Li 3 PO 4 ), Li 3 PO 4 N X , LiBO 2 N X , LiNbO 3 , LiTaO 3 , Li 2 SiO 3 , and Li 4 SiO 4- Li 3.
  • the sulfide-based solid electrolyte is not particularly limited, and any sulfide-based solid electrolyte that contains sulfur (S) and has lithium ion conductivity and electron insulating properties can be used.
  • the sulfide-based solid electrolyte for example, Li 2 S-P 2 S 5, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-B 2 S 3, Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5 , LiI-Li 3 PO 4- P 2 S 5 and the like can be mentioned.
  • inorganic solid electrolyte may be used those other than the above, for example, Li 3 N, LiI, may be used Li 3 N-LiI-LiOH and the like.
  • the organic solid electrolyte is not particularly limited as long as it is a polymer compound exhibiting ionic conductivity, and for example, polyethylene oxide, polypropylene oxide, copolymers thereof and the like can be used. Further, the organic solid electrolyte may contain a supporting salt (lithium salt).
  • the secondary battery of the present embodiment composed of the positive electrode, the negative electrode, and the solid electrolyte described above can have various shapes such as a coin type and a laminated type. Regardless of the shape, the positive electrode and the negative electrode can be laminated via the solid electrolyte. Then, the positive electrode current collector and the positive electrode terminal leading to the outside and the negative electrode current collector and the negative electrode terminal leading to the outside are connected by using a current collector lead or the like, and sealed in a battery case. It can be a secondary battery.
  • the secondary battery of the present embodiment using the above-mentioned positive electrode active material is an all-solid-state lithium ion secondary battery having a charge / discharge capacity equivalent to that of the lithium ion secondary battery using an electrolytic solution. be able to.
  • the secondary battery according to the embodiment of the present invention using the above-mentioned positive electrode active material exhibits high capacity.
  • the positive electrode active material of the present embodiment is used as the positive electrode to form the test battery shown in the figure, the current density is 0.2 mA / cm 2 , and the cutoff voltage is 3.7 V (vs. Li-).
  • the initial discharge capacity is preferably 132 mAh / g or more, which is the discharge capacity when the battery is charged to In) and discharged to a cutoff voltage of 1.9 V (vs. Li-In) after a one-hour rest, preferably 140 mAh. It is more preferable that it is / g or more.
  • the application of the secondary battery of this embodiment is not particularly limited, and can be suitably used for applications requiring various power sources. Further, the secondary battery of the present embodiment has a charge / discharge capacity equivalent to that of the lithium ion secondary battery using an electrolytic solution, and can be miniaturized, so that the mounting space is limited. It is also suitable as a power source for electric vehicles.
  • the positive electrode active material for a lithium ion secondary battery a method for producing the same, and a lithium ion secondary battery according to an embodiment of the present invention will be described in detail with reference to Examples.
  • the present invention is not limited to these examples.
  • the methods for analyzing the metal contained in the positive electrode active material and various evaluation methods for the positive electrode active material in Examples and Comparative Examples are as follows.
  • Example 1 1. Production of Lithium Transition Metal Composite Oxide Particles The positive electrode active material was produced by carrying out the following steps.
  • (A) Precursor crystallization step First, 2.5 L of pure water was put into the reaction vessel (5 L) and stirred, and the temperature in the vessel was set to 40 ° C. At this time, the inside of the reaction vessel had a nitrogen atmosphere in which the oxygen concentration was 1% by volume or less. An appropriate amount of 25% by mass aqueous sodium hydroxide solution and 25% by mass ammonia water are added to the water in the reaction vessel so that the pH value becomes 11.5 based on the liquid temperature of 25 ° C. and the ammonia concentration becomes 5 g / L. An initial aqueous solution was prepared (initial aqueous solution preparation step).
  • This mixed aqueous solution was added dropwise to the initial aqueous solution in the reaction vessel at a constant rate to prepare a reaction aqueous solution.
  • 25% by mass aqueous ammonia solution and 25% by mass aqueous sodium hydroxide solution were also added dropwise to the initial aqueous solution at a constant rate, the pH value of the reaction aqueous solution was 11.5 based on the liquid temperature of 25 ° C., and the ammonia concentration was 5 g / L. Controlled to be maintained at.
  • transition metal composite hydroxide particles hereinafter referred to as “composite hydroxide particles” which are precursors of lithium transition metal composite oxide were crystallized (crystallization step).
  • the slurry containing the composite hydroxide particles recovered from the overflow port provided in the reaction vessel is filtered, water-soluble impurities are washed and removed with ion-exchanged water, and then dried to obtain powdered composite water. Oxide particles were obtained.
  • (C) Lithium Transition Metal Composite Oxide Synthesis Step The ratio of the amount of lithium to the total amount of nickel, cobalt, and aluminum contained in the transition metal composite oxide particles is 1. Lithium hydroxide monohydrate weighed to be 02 was added and mixed using a Turbler Shaker Mixer (T2F, manufactured by Dalton Co., Ltd.) to obtain a lithium mixture (lithium mixture preparation step).
  • T2F Turbler Shaker Mixer
  • the above lithium mixture was placed in an alumina bowl, and the obtained lithium mixture was used in an atmosphere firing furnace (Siriconit Co., Ltd., BM-50100M) to 750 the obtained lithium mixture in an oxygen atmosphere having an oxygen concentration of 90% by volume or more. After firing at ° C. for 10 hours, the mixture was cooled to room temperature (calcination step). As a result, lithium transition metal composite oxide particles were obtained.
  • (D) Volume average particle size The volume average particle size of the particles of this lithium transition metal composite oxide was measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrac HRA manufactured by Nikkiso Co., Ltd.). From the result, it was confirmed that it was 7.0 ⁇ m.
  • the positive electrode active material was produced by carrying out the following coating steps on the particles of the above lithium transition metal composite oxide.
  • the total surface area of the total weight of the lithium transition metal composite oxide particles, which are the particles to be coated, was calculated from the specific surface area of the lithium transition metal composite oxide particles.
  • zirconium tetrapropoxide weighed so that the amount of substance of zirconium per 1 m 2 is 0.15 mmol with respect to the total surface area is placed in 6.5 mL of ethanol per 1 g of zirconium tetrapropoxide and stirred. , Zirconium tetrapropoxide was dissolved.
  • lithium ethoxydo weighed so that the material amount ratio (Li / Zr) of Li and Zr of the lithium zirconium compound in the coating layer is 2, is placed in 0.05 mL of ethanol per 1 g of lithium ethoxydo and stirred. Then, lithium ethoxydo was dissolved and mixed with the ethanol solution of the zirconium tetrapropoxide. Further, ethanol was added and diluted so that the molar concentration of Zr in the dressing was 0.08 mol / L (coating preparation step).
  • lithium transition metal composite oxide particles 500 g are placed in a rolling flow coating device (manufactured by Paulek Co., Ltd., model: FP-MP-01D), the supply air temperature is set to 80 ° C., and 1 g of lithium transition metal composite oxide particles.
  • the coating agent was added at a rate of 7 ⁇ L / min for 171 minutes, and dried while mixing. (Mixture preparation step and drying step).
  • the obtained positive electrode active material was measured using XPS (Versa ProbeII manufactured by ULVAC-PHI), and the obtained Ni 2 P 3/2 spectrum, Co 2 P 3/2 spectrum, Zr3d spectrum.
  • the amount of substance on the surface of the positive electrode active material is obtained from the semi-quantitative value calculated from the peak area of The ratio (Zrs / Nis + Cos + Zrs) was found to be 0.85.
  • Carbon content of the obtained positive electrode active material was measured by a high-frequency combustion infrared absorption method using a carbon analyzer (LECO model: CS-600) and found to be 0.30 mass. It turned out to be%.
  • test battery A battery having the structure shown in FIG. 2 (hereinafter referred to as “test battery”) was used for evaluating the capacity of the obtained positive electrode active material.
  • the test battery 1 is composed of a case and a powder compact cell 2 housed in the case.
  • the case has a negative electrode can 3 that is hollow and has one end opened, and a positive electrode can 4 that is arranged in the opening of the negative electrode can 3.
  • a positive electrode can 4 that is arranged in the opening of the negative electrode can 3.
  • a space for accommodating the green compact cell 2 is formed between the positive electrode can 4 and the negative electrode can 3.
  • the positive electrode can 4 is fixed to the negative electrode can 3 with a thumbscrew 5 and a nut 6.
  • the negative electrode can 3 has a negative electrode
  • the positive electrode can 4 has a positive electrode (not shown).
  • the case is provided with an insulating sleeve 7, and the insulating sleeve 7 is fixed so as to maintain a non-contact state between the negative electrode can 3 and the positive electrode can 4.
  • a pressure screw 8 is provided at one closed end of the negative electrode can 3, and after fixing the positive electrode can 4 to the negative electrode can 3, the pressure screw 8 is tightened toward the powder cell accommodating space. Then, the green compact cell 2 is held in a pressurized state through the hemispherical washer 9.
  • a screw-in type plug 10 is provided at one end of the negative electrode can 3 where the pressure screw 8 is present.
  • An oaring 11 is provided between the negative electrode can 3 and the positive electrode can 4 and between the negative electrode can 3 and the plug 10, and the gap between the negative electrode can 3 and the positive electrode can 4 is sealed to keep the inside of the case airtight. Be maintained.
  • the green compact cell 2 is composed of a positive electrode layer, a solid electrolyte layer and a negative electrode layer, and is a pellet laminated so as to be arranged in this order.
  • the positive electrode layer is housed in the case so as to contact the inner surface of the positive electrode can 4 through the lower current collector 12, and the negative electrode layer to contact the inner surface of the negative electrode can 3 through the upper current collector 13, the hemispherical washer 9 and the pressure screw 8. ing.
  • the lower current collector 12, the powder compact cell 2, and the upper current collector 13 are protected by the sleeve 14 so that the positive electrode layer and the negative electrode layer do not come into electrical contact with each other.
  • Such a test battery 1 was manufactured as follows.
  • the synthesized solid electrolyte was pressurized at 25 MPa with a pellet forming device to obtain solid electrolyte pellets.
  • 70 mg of the positive electrode active material and 30 mg of the solid electrolyte were mixed in a mortar.
  • a mixture of 15 mg of the solid electrolyte pellet and the positive electrode active material + the solid electrolyte was set in the pellet forming device and pressurized at 360 MPa to form a positive electrode layer on the solid electrolyte pellet.
  • the lower electrode, the pellet with the positive electrode layer facing down, the indium foil, and the upper electrode were laminated in this order and pressurized with 9 kN to form an electrode.
  • the electrodes were sealed in the case, and the pressure screws were tightened with a torque of 6 to 7 Nm.
  • the test battery was manufactured in a glove box having an Ar atmosphere with a dew point controlled at ⁇ 80 ° C.
  • the initial discharge capacity is the current density with respect to the positive electrode after the open circuit voltage OCV (Open Circuit Voltage) is stabilized by leaving it for about 24 hours after manufacturing a test battery using an indium foil for the negative electrode. Is 0.2 mA / cm 2 , and the battery is charged to a cutoff voltage of 3.7 V (vs. Li-In), and after a one-hour rest, the battery is discharged to a cut-off voltage of 1.9 V (vs. Li-In). It was evaluated by measuring the capacity (initial discharge capacity). The measurement result was 140 mAh / g.
  • OCV Open Circuit Voltage
  • Example 1 A secondary battery using lithium transition metal composite oxide particles, a positive electrode active material, and the positive electrode active material was obtained under the same conditions as in Example 1 except that the coating step in Example 1 was not performed. .. Since the coating step was not performed, the lithium transition metal composite oxide particles obtained in "1. Production of Lithium Transition Metal Composite Oxide Particles" serve as the positive electrode active material.
  • the BET specific surface area and volume average particle diameter of the lithium transition metal composite oxide particles before the coating step, the amount of zirconium carried in the coating layer, the amount of Zr substance present on the surface of the positive electrode active material and Ni Table 1 shows the ratio of Co and Zr to the sum of the substance amounts (Zrs / Nis + Cos + Zrs), the carbon content of the positive electrode active material, the water content of the positive electrode active material, and the conditions of the heat treatment temperature in the heat treatment step.
  • the zirconium-supported amount of the coating layer is the zirconium content (mass%) in the positive electrode active material, the atomic weight of zirconium, and the BET specific surface area (0.67 m 2 / g) of the above-mentioned lithium transition metal composite oxide particles. ).
  • Table 2 shows the measurement results of the material amount ratio (Li / Zr) of lithium and zirconium in the coating layer and the initial discharge capacity of the secondary battery in Examples and Comparative Examples.
  • the substance amount ratio (Li / Zr) of lithium and zirconium in the coating layer was calculated from the amount of zirconium added in the coating agent preparation step of the coating step and the amount of lithium.
  • the coating layer of the lithium zirconium compound is formed in Example 1. Further, from the value of Li / Zr, the lithium zirconium compound is considered to be lithium zirconate.
  • Comparative Example 1 it can be seen that the particles of the lithium transition metal composite oxide do not have a coating layer. Further, in Comparative Example 2, it can be seen that the coating layer is a zirconium compound, not a lithium zirconium compound.
  • the initial discharge capacity of the secondary battery of Example 1 was higher than that of Comparative Example 1. It is considered that this is because the surface of the positive electrode active material was coated with lithium zirconate to suppress the increase in the interfacial resistance between the positive electrode active material and the solid electrolyte. Further, the initial discharge capacity of the secondary battery of Example 1 was higher than that of Comparative Example 2. It is considered that this is because the introduction of lithium into the coating layer to obtain lithium zirconate improved the lithium ion conductivity as compared with the case where the zirconium compound was used as the coating layer.
  • the positive electrode active material for a lithium ion secondary battery is not limited to those described in each embodiment and each embodiment of the present invention, and various modifications can be carried out. It is possible.
  • S1 precursor crystallization process S2 oxidation roasting process, S3 lithium transition metal composite oxide synthesis process, S4 coating process, 1 test battery, 2 powder cell, 3 negative electrode can, 4 positive electrode can, 5 thumbscrew, 6 nuts, 7 insulating sleeves, 8 pressure screws, 9 hemispherical washers, 10 plugs, 11 oaring, 12 lower current collectors, 13 upper current collectors, 14 sleeves

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

全固体電池に用いた場合でも、電解液を用いたリチウムイオン二次電池と同等の充放電容量を有する正極活物質を提供する。被覆層を有するリチウム遷移金属複合酸化物正極活物質であって、物質量比Li:Ni:Co:Mがt:1-x-y:x:y(式中、MはMg等より選ばれた少なくとも1種の元素であり、0.95≦t≦1.20、0<x≦0.22、0≦y≦0.15)で表され、被覆層はリチウムジルコニウム化合物を含み、正極活物質の表面に存在する、Zrの物質量と、Ni、Co、Zrの物質量の和との比が、0.80以上0.97以下である。

Description

リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極活物質、その製造方法、およびこれを用いたリチウムイオン二次電池に関する。本出願は、日本国において2020年6月9日に出願された日本特許出願番号特願2020-100294を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 近年、電気自動車の普及にともない、高いエネルギー密度を有する小型で軽量な二次電池の開発が強く望まれている。このような二次電池として、リチウムイオン二次電池がある。
 現在、一般的なリチウムイオン二次電池には、正極活物質にLiCoO、LiNiO、LiMnといった酸化物が用いられ、負極活物質にリチウム金属やリチウム合金、金属酸化物、あるいはカーボン等が用いられ、電解液にエチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの有機溶媒にLiClO、LiPFなどのLi塩を支持塩として溶解させた電解液が用いられている。
 リチウムイオン二次電池の構成要素の中で、特に電解液は耐熱性、電位窓などの化学的特性から、高速充電や安全性、寿命といった電池の性能を制限する要因となっている。そこで、電解液に替わり固体電解質を用いることで電池の性能を向上させた全固体リチウムイオン二次電池(以下、全固体電池ともいう)については、現在、研究開発が盛んに行われている。
 その研究開発の中で、硫化物の固体電解質はリチウムイオンの伝導性が高く、全固体電池に用いるのに好ましいことが、例えば特許文献1に提案されている。しかし、例えば非特許文献1に開示されているように、硫化物の電解質と酸化物の正極活物質が接触すると、充放電中に電解質と正極活物質との界面において反応が起こり、高抵抗相が生成して電池の作動を阻害してしまう。この高抵抗相の生成を抑制するためには、正極活物質の表面にジルコン酸リチウムからなる被覆層を設けることが、例えば非特許文献2などで提案されている。
 一方で、リチウムイオン二次電池を高エネルギー密度化するためには、充放電容量が高いLiNiOやLiNi0.80Co0.15Al0.05、LiNi0.6Co0.2Mn0.2といったNiの含有量が高い正極活物質を用いることが好ましく、そこで、発明者は、全固体電池への高Ni組成正極活物質の適用可能性を調査した結果、これらの正極活物質から得られるエネルギー密度が、従来の電解液を用いたリチウムイオン二次電池から期待されるエネルギー密度を下回ることが見出された。
特開2014-56661号公報
 そこで、本発明は上記の問題性に鑑み、全固体電池の正極に用いた場合でも、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する正極活物質、およびその製造方法を提供することを目的とする。そして、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する全固体リチウムイオン二次電池を提供することを目的とする。
 本発明の一態様に係るリチウムイオン二次電池用正極活物質は、リチウム遷移金属複合酸化物の粒子と、該粒子の表面の少なくとも一部を被覆した被覆層とを有するリチウムイオン二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物はLiおよび遷移金属の物質量比Li:Ni:Co:Mがt:1-x-y:x:y(式中、MはMg、Al、Ca、Si、Mn、Ti、V、Fe、Cu、Cr、Zn、Zr、Nb、MoおよびWからなる群より選ばれた少なくとも1種の元素であり、0.95≦t≦1.20、0<x≦0.22、0≦y≦0.15)で表され、前記被覆層はリチウムジルコニウム化合物を含み、前記リチウムイオン二次電池用正極活物質の表面に存在する、Zrの物質量Zrsと、Ni、Co、Zrの物質量の和Nis+Cos+Zrsとの比Zrs/(Nis+Cos+Zrs)が、0.80以上0.97以下であることを特徴とする。
 このようにすれば、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を示す全固体リチウムイオン二次電池用正極活物質(以下、「正極活物質」とも言う)を提供することができる。
 このとき、本発明の一態様では、前記被覆層を除く前記リチウム遷移金属複合酸化物の表面積1m当たりの、前記被覆層のZr含有量は0.13mmol以上0.30mmol以下としてもよい。
 このようにすれば、被覆層をリチウム遷移金属複合酸化物の粒子の表面全体に均一に配置することができる。そして、正極活物質を用いたリチウムイオン二次電池(以下、「二次電池」とも言う)の放電容量の低下を抑制することができる。
 このとき、本発明の一態様では、前記リチウム遷移金属複合酸化物が空間群R-3mに属する結晶構造としてもよい。
 このようにすれば、本発明の一態様に係るリチウムイオン二次電池用正極活物質を用いたリチウムイオン二次電池の内部抵抗を抑制することができる。
 このとき、本発明の一態様では、前記リチウムイオン二次電池用正極活物質の炭素含有量が0.05質量%以上0.40質量%以下としてもよい。
 このようにすれば、正極活物質と固体電解質界面のリチウムイオンの伝導が阻害されにくく、正極活物質と固体電解質間の界面抵抗の増加を抑制することができる。
 このとき、本発明の一態様では、前記リチウム遷移金属複合酸化物の粒子の体積平均粒子径が2μm以上20μm以下としてもよい。
 このようにすれば、リチウムイオン二次電池の体積当たりの電池容量を十分に大きくすることができ、かつ高安全性、高出力等の優れた電池特性を得ることができる。
 また、本発明の一態様は、少なくとも、上述のリチウムイオン二次電池用正極活物質を用いた正極と、負極と、固体電解質とを備えた、リチウムイオン二次電池であることを特徴とする。
 このようにすれば、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する全固体リチウムイオン二次電池を提供することができる。
 また、本発明の一態様は、リチウム遷移金属複合酸化物の粒子と、該粒子の表面の少なくとも一部を被覆する被覆層とを有するリチウムイオン二次電池用正極活物質の製造方法であって、前記リチウム遷移金属複合酸化物の前駆体である遷移金属複合水酸化物を晶析反応により調製する前駆体晶析工程と、前記前駆体晶析工程で得られた前記遷移金属複合水酸化物を酸化焙焼して遷移金属複合酸化物を得る酸化焙焼工程と、前記酸化焙焼工程で得られた前記遷移金属複合酸化物と、リチウム化合物とを混合し、焼成し、リチウム遷移金属複合酸化物を得るリチウム遷移金属複合酸化物合成工程と、前記リチウム遷移金属複合酸化物合成工程で得られた前記リチウム遷移金属複合酸化物の粒子の表面の少なくとも一部にリチウムジルコニウム化合物を含む前記被覆層を形成する被覆工程とを有し、前記被覆工程では、前記リチウム遷移金属複合酸化物合成工程で得られた前記リチウム遷移金属複合酸化物の粒子と、リチウム化合物とジルコニウム化合物を含む被覆剤を混合し、乾燥し、熱処理を行うことを特徴とする。
 このようにすれば、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する全固体リチウムイオン二次電池を提供することができる。
 このとき、本発明の一態様では、前記リチウム遷移金属複合酸化物合成工程は、酸素雰囲気下、700℃以上800℃以下の温度で焼成してもよい。
 このようにすれば、リチウム遷移金属複合酸化物の結晶構造を十分に成長させることができ、かつ、カチオンミキシングを抑制し、二次電池の電池特性の悪化を防ぐことができる。
 このとき、本発明の一態様では、前記被覆工程は、前記リチウムジルコニウム化合物のZr量が前記リチウム遷移金属複合酸化物の表面積1mあたり0.13mmol以上0.30mmol以下となるよう前記ジルコニウム化合物を添加し、前記被覆工程で得られた前記リチウム遷移金属複合酸化物の酸素以外の成分は、Li:Ni:Co:M=t:1-x-y:x:y(式中、MはMg、Al、Ca、Si、Mn、Ti、V、Fe、Cu、Cr、Zn、Zr、Nb、MoおよびWからなる群より選ばれた少なくとも1種の元素であり、0.95≦t≦1.20、0<x≦0.22、0≦y≦0.15)で表され、前記リチウムイオン二次電池用正極活物質の表面に存在するZrの物質量ZrsとNi、Co、Zrの物質量の和Nis+Cos+Zrsとの比Zrs/(Nis+Cos+Zrs)が0.80以上としてもよい。
 このようにすれば、被覆層をリチウム遷移金属複合酸化物の粒子の表面全体に均一に配置することができる。そして、正極活物質と固体電解質間の界面抵抗の増加を抑制することができる。また、正極活物質を用いたリチウムイオン二次電池の放電容量の低下を抑制することができる。
 このとき、本発明の一態様では、前記被覆工程は、前記リチウム化合物と前記ジルコニウム化合物を前記被覆層のリチウムジルコニウム化合物中のLiとZr量の物質量比(Li/Zr)が1.8以上2.2以下となるように添加してもよい。
 このようにすれば、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する全固体リチウムイオン二次電池を提供することができる。
 このとき、本発明の一態様では、前記被覆剤は、前記被覆工程に使用する前記リチウム化合物と前記ジルコニウム化合物が溶媒に溶解したもの、並びに常温で液状である、又は前記被覆工程の熱処理で融解する低融点の、前記リチウム化合物および前記ジルコニウム化合物の混合物を含んでもよい。
 このようにすれば、被覆層をリチウム遷移金属複合酸化物の粒子の表面全体に、より均一に配置することができる。
 このとき、本発明の一態様では、前記被覆工程に使用する前記ジルコニウム化合物がジルコニウムテトラプロポキシド、ジルコニウムテトラブトキシドなどのアルコキシド類の1種以上であってもよい。
 このようにすれば、被覆層に不純物が混入することを抑制することができる。
 このとき、本発明の一態様では、前記熱処理は、酸素雰囲気で、300℃以上600℃以下の温度で、1時間以上5時間以下行ってもよい。
 このようにすれば、被覆層にリチウムジルコニウム化合物を含ませることができ、かつ、被覆層の形態を保つことができる。そして、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する全固体リチウムイオン二次電池を提供することができる。
 本発明によれば、全固体電池の正極に用いた場合でも、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する正極活物質、およびその製造方法を提供することができる。そして、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する全固体リチウムイオン二次電池を提供することができる。
図1は、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法の概略を示す工程図である。 図2は、電池特性の評価に使用した試験用電池の断面構成の説明図である。
 本発明者は、上記の課題を解決すべく鋭意検討を行った結果、リチウム遷移金属複合酸化物の少なくとも一部をリチウムジルコニウム化合物を含む被覆層で被覆し、遷移金属元素に対するジルコニウムの存在割合および表面積当たりのジルコニウムの存在量を制御することで、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する全固体リチウムイオン二次電池を提供しえるとの知見を得て、本発明を完成するに至った。以下、本発明の好適な実施の形態について説明する。
 以下、本発明を実施するための形態について説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。また、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池について、下記の順に説明する。
 1.リチウムイオン二次電池用正極活物質
  1-1.リチウム遷移金属複合酸化物の粒子
  1-2.被覆層
  1-3.正極活物質の特性
 2.リチウムイオン二次電池用正極活物質の製造方法
  2-1.前駆体晶析工程
  2-2.酸化焙焼工程
  2-3.リチウム遷移金属複合酸化物合成工程
  2-4.被覆工程
 3.リチウムイオン二次電池
  3-1.正極
  3-2.負極
  3-3.固体電解質
  3-4.二次電池の形状、構成
  3-5.二次電池の特性
<1.リチウムイオン二次電池用正極活物質>
 まず、本実施形態のリチウムイオン二次電池用正極活物質の一構成例について説明する。
 本実施形態の正極活物質は、リチウム遷移金属複合酸化物の粒子と、該粒子表面の少なくとも一部を被覆した被覆層とを有する。そして、本実施形態のリチウムイオン二次電池用正極活物質のリチウム遷移金属複合酸化物粒子は、リチウム(Li)と、ニッケル(Ni)、コバルト(Co)と、元素M(M)とを、物質量比が、Li:Ni:Co:M=t:1-x-y:x:yとなるように含むことができる。ただし、0.95≦t≦1.20、0<x≦0.22、0≦y≦0.15を満たすことが好ましい。また、元素Mは、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、ケイ素(Si)、マンガン(Mn)、チタン(Ti)、バナジウム(V)、鉄(Fe)、銅(Cu)、クロム(Cr)、亜鉛(Zn)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)から選択される少なくとも1種の元素とすることができる。
 被覆層はリチウムジルコニウム化合物を含み、被覆前のリチウム遷移金属複合酸化物の表面積1m当り、0.13mmol以上0.30mmol以下の割合でジルコニウムを含有できる。また、リチウムジルコニウム化合物としてジルコン酸リチウムを用いてもよい。
 本実施形態のリチウムイオン二次電池用正極活物質は、表面に存在するZrの物質量とZr、Ni、Coの物質量の和との比(Zrs/(Nis+Cos+Zrs))が、0.80以上0.97以下とすることができる。
 以下、本実施形態のリチウムイオン二次電池用正極活物質(以下、単に「正極活物質」とも記載する)について具体的に説明する。
 本実施形態の正極活物質は、リチウム遷移金属複合酸化物の粒子と、リチウム遷移金属複合酸化物の粒子の少なくとも一部を被覆した被覆層とを有することができる。以下にリチウム遷移金属複合酸化物の粒子、および被覆層について説明する。
<1-1.リチウム遷移金属複合酸化物の粒子>
 リチウム遷移金属複合酸化物の粒子は、リチウム(Li)と、ニッケル(Ni)と、コバルト(Co)と、元素M(M)とを、物質量比が、Li:Ni:Co:M=t:1-x-y:x:yとなるように含むことができる。
 上述のリチウム遷移金属複合酸化物中の各元素の物質量比を表す式中、リチウム(Li)の含有量を示すtの値は0.95以上1.20以下とすることができ、0.98以上1.10以下が好ましく、1.00以上1.10以下がより好ましい。
 tの値を0.95以上とすることで、該リチウム遷移金属複合酸化物を含む正極活物質を用いた二次電池の内部抵抗を抑制し、出力特性を向上させることができる。また、tの値を1.20以下とすることで、該リチウム遷移金属複合酸化物を含む正極活物質を用いた二次電池の初期放電容量を高く維持することができる。すなわち、tの値を上述の範囲とすることで、該リチウム遷移金属複合酸化物を含む正極活物質を用いた二次電池の出力特性、および容量特性を向上させることができる。
 上述のリチウム遷移金属複合酸化物のニッケル(Ni)は、リチウム遷移金属複合酸化物を含む正極活物質を用いた二次電池の高容量化に寄与する元素である。
 上述のリチウム遷移金属複合酸化物のコバルト(Co)は、リチウム遷移金属複合酸化物を含む正極活物質を用いた二次電池の不可逆容量の低減に寄与する元素である。コバルトの含有量を示すxの値は0を超えて0.22以下とすることができ、0.10以上0.22以下が好ましく、0.10以上0.20以下がより好ましい。
 上記のxの値を0超とすることで、該リチウム遷移金属複合酸化物を含む正極活物質を用いた二次電池において、充電容量と放電容量の差分である不可逆容量を低減することができる。また、xの値を0.22以下とすることで高い電池容量を得ることができる。
 また、リチウム遷移金属複合酸化物は、上記金属元素に加えて、添加元素である元素Mを含有してもよい。上述の元素Mとしては、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、ケイ素(Si)、マンガン(Mn)、チタン(Ti)、バナジウム(V)、鉄(Fe)、銅(Cu)、クロム(Cr)、亜鉛(Zn)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)から選択される少なくとも1種の元素を用いることができる。元素Mは、正極活物質を用いて構成される二次電池の用途や要求される性能に応じて適宜選択されるものである。
 元素M自身は酸化還元反応に寄与しないものがあるので、元素Mの含有量を示すyの値は0.15以下とすることができ、0.10以下が好ましく、0.05以下がより好ましい。リチウム遷移金属複合酸化物は、元素Mを含有しなくても良いことから、元素Mの含有量を示すyの下限値は0とすることができる。
 リチウム遷移金属複合酸化物粒子は、X線回折(XRD)測定を行った場合に得られる回折パターンから、「R-3m」構造の層状岩塩型結晶構造に帰属されるピークが検出されることが好ましい。特に、回折パターンから、「R-3m」構造の層状岩塩型結晶構造に帰属されるピークのみが検出されることがより好ましい。これは、「R-3m」構造の層状岩塩型酸化物は、該リチウム遷移金属複合酸化物粒子を含む正極活物質を二次電池とした場合に、特に内部抵抗を抑制することができ好ましいからである。
 ただし、層状岩塩型の結晶構造を持つリチウム遷移金属複合酸化物を単相では得られず、不純物が混入する場合がある。このように不純物が混入する場合であっても、これらの「R-3m」構造の層状岩塩型構造以外の異相ピークの強度は、「R-3m」構造の層状岩塩型構造に帰属されるピーク強度を上回らないことが好ましい。
 リチウム遷移金属複合酸化物の粒子はSEMやTEMなどの電子顕微鏡で観察すると、粒径が0.1μm以上2.0μm以下の一次粒子が多数凝集して形成された粒径が3.0μm以上15.0μm以下の二次粒子や、1.0μm以上7.0μm以下の粒径をもつ単独の一次粒子、またはそれらの混合物であることが好ましい。それぞれの粒子の内部には、1以上の一次粒子により囲まれた空間、空隙があってもよい。
 本実施形態のリチウム遷移金属複合酸化物の粒子の体積平均粒子径は、レーザー回折散乱式の粒度分布計で測定した場合、2μm以上20μm以下であることが好ましく、2μm以上15μm以下であることがより好ましく、3μm以上15μm以下であることがさらに好ましい。これは、リチウム遷移金属複合酸化物の粒子の体積平均粒子径が2μm以上20μm以下の場合、該リチウム遷移金属複合酸化物の粒子を含む正極活物質を正極に用いた二次電池では体積当たりの電池容量を十分に大きくすることができ、かつ高安全性、高出力等の優れた電池特性が得られるからである。
<1-2.被覆層>
 被覆層はジルコニウムを含む化合物、すなわちジルコニウム化合物を含み、リチウム遷移金属複合酸化物の粒子の少なくとも一部を被覆している。被覆層は、例えばジルコン酸リチウム等が挙げられる、リチウムジルコニウム化合物から構成することもできる。被覆層を配置することで、本実施形態の正極活物質を含む正極を備えた二次電池において、正極活物質と固体電解質間の界面抵抗の増加を抑制することができる。
 被覆層と、リチウム遷移金属複合酸化物の粒子とは明確な境界線を有している必要はない。このため、被覆層とは、本実施形態の正極活物質の表面側の領域において、被被覆物質であるリチウム遷移金属複合酸化物の粒子、すなわち中心領域よりも、ジルコニウム濃度が高い部位、領域のことを指す。被覆層は部分的にリチウム遷移金属複合酸化物と固溶していてもよい。
 被覆層のジルコニウムの含有量は特に限定されないが、被覆されるリチウム遷移金属複合酸化物の粒子の比表面積に応じて、その含有量を調整することが好ましい。具体的には被覆層は例えば、リチウム遷移金属複合酸化物の粒子の表面積1m当り、0.13mmol以上0.30mmol以下の割合でジルコニウムを含有することが好ましく、0.15mmol以上0.25mmol以下の割合でジルコニウムを含有することがより好ましい。
 これは、リチウム遷移金属複合酸化物の粒子の表面積(比表面積)1m当りのジルコニウム含有量0.13mmol以上とすることで、該被覆層をリチウム遷移金属複合酸化物の粒子の表面全体に均一に配置できていることを示すからである。
 また、被覆層を設けることで正極活物質と固体電解質間の界面抵抗の増加を抑制することができるが、同時に内部抵抗が増加し、また、放電容量が低下する恐れもある。そして、リチウム遷移金属複合酸化物の粒子の表面積(比表面積)1m当りのジルコニウム含有量を0.30mmol以下とすることで、被覆層が、リチウム遷移金属複合酸化物へのリチウムのインターカレーション/デインターカレーションの反応の障害になることを抑制し、内部抵抗を低減でき、また、放電容量の低下を抑制できるため好ましい。
 被覆層のジルコニウムの含有量の評価、算出方法は特に限定されるものではないが、その方法の一例を以下に示す。まずリチウムジルコニウム化合物による被覆処理を施した後の正極活物質1g中のジルコニウム含有量(mmol/g)を化学分析等の方法で測定する。例えばICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分光分析等により測定を行うことができる。また、リチウムジルコニウム化合物による被覆処理を施す前のリチウム遷移金属複合酸化物の粒子の比表面積(m/g)を窒素吸着によるBET法等により測定する。そして、リチウムジルコニウム化合物による被覆処理を施した後の正極活物質1g中のジルコニウム含有量(mmol/g)を、被覆処理前のリチウム遷移金属複合酸化物の粒子の比表面積(m/g)で割ることで、リチウム遷移金属複合酸化物の粒子の表面積1m当りのジルコニウム含有量(mmol/m)を算出できる。
 リチウムジルコニウム化合物による被覆処理を施した後の正極活物質1g中のジルコニウム含有量と、被覆層の無い、被覆処理前のリチウム遷移金属複合酸化物の粒子の比表面積とでは分母が異なるので厳密な値ではないが、被覆に用いられたジルコニウム量はわずかなので、近似的にリチウム遷移金属複合酸化物の表面積1m当りのジルコニウムの担持量として用いることができる。
 被覆処理前のリチウム遷移金属複合酸化物の粒子がジルコニウムを含有する場合、被覆に用いられたジルコニウム量として、被覆処理前後のジルコニウム含有量の差分を用いることが好ましい。
 被覆層のリチウム遷移金属複合酸化物の粒子に対する被覆面積の程度はX線光電子分光法(XPS:X―ray Photoelectron Spectroscopy)による半定量分析から知られる表面に存在するZrの物質量とZr、Ni、Coの物質量の和との比(Zrs/(Nis+Cos+Zrs))(以下、「被覆金属表面量の比」とも記載する)から知ることができる。
 XPSは特性上、測定対象の表面1nm以上5nm以下の情報を選択的に得ることができるため、材料の表層の組成比を知ることができる。被覆金属表面量の比は0.80以上であることが好ましい。被覆金属表面量の比を0.80以上とすることで、被覆層として存在する、すなわちリチウム遷移金属複合酸化物の粒子の側に拡散せず被覆層として存在するジルコニウムが十分に確保されており、活物質と固体電解質間の界面抵抗の増加を抑制することができるのに十分に均一な被覆層が形成されていることを意味するからである。被覆金属表面量の比が0.85以上の場合、特に活物質と固体電解質間の界面抵抗の増加をより抑制することができるため、より好ましい。
 被覆層にリチウムを導入し、例えばジルコン酸リチウム等のリチウムジルコニウム化合物とすることによって、ジルコニウム化合物を被覆層とした場合よりもリチウムイオン伝導性が向上し、内部抵抗を低減でき、また、放電容量の低下を抑制することができる。
 被覆層のリチウムジルコニウム化合物のLiとZrの物質量比(Li/Zr)は、1.8以上2.2以下となることが好ましい。被覆層のリチウムジルコニウム化合物のLiとZrの物質量比を1.8以上とすることで、リチウムイオン伝導性の高いリチウムジルコニウム化合物が生成するため好ましい。また、被覆層のリチウムジルコニウム化合物のLiとZrの物質量比を2.2以下とすることで、未反応のリチウム化合物を少なくでき、初期放電容量の低下や正極抵抗の増加などの電池特性の低下を抑制できる。また、リチウムジルコニウム化合物のLiとZrの物質量比(Li/Zr)を1.8以上2.2以下とすることで、正極活物質と固体電解質間の界面抵抗の増加を抑制することができる。
<1-3.正極活物質の特性>
 ここまで、リチウム遷移金属複合酸化物の粒子と、被覆層とについて説明したが、本実施形態の正極活物質は以下の特性を有することが好ましい。
 本実施形態の正極活物質は既述のリチウム遷移金属複合酸化物の粒子と、被覆層とのみから構成されていることが好ましいが、製造の際に不純物が混入する場合もある。特に水分と炭素は被覆処理によって増大する可能性のある不純物である。水分と炭素とは、初期放電容量に影響を及ぼす恐れがあることから、所定の範囲内に制御されていることが好ましい。
 本実施形態の正極活物質は、炭素含有量が0.05質量%以上0.40質量%以下であることが好ましく、0.05質量%以上0.08質量%以下であることがさらに好ましい。炭素含有量を0.40質量%以下とすることで、正極活物質と固体電解質界面のリチウムイオンの伝導が阻害されにくく、正極活物質と固体電解質間の界面抵抗の増加を抑制することができるからである。ただし、炭素は、空気中の二酸化炭素等に起因して本実施形態の正極活物質に混入するため、炭素含有量を0.01質量未満とすることは困難である。このため、炭素含有量の下限値は0.05質量%とすることが好ましい。ここで、正極活物質の炭素含有量とは、正極活物質全体に対する炭素の含有量を質量%で表したものである。本実施形態の正極活物質の炭素含有量は、例えば赤外線吸収法等により評価することができる。
 また、本実施形態の正極活物質は、水分量(水分含有量)が、0.08質量%以下であることが好ましい。水分量を0.08質量%以下とすることで、該正極活物質を用いた二次電池において、固体電解質の加水分解反応をより確実に抑制することができる。
 固体電解質が加水分解すると、硫化水素が生じ、劣化して、リチウムイオン伝導性が低下する。しかしながら、上述の様に本実施形態の正極活物質の水分量を0.08質量%以下とすることで固体電解質の加水分解反応をより確実に抑制し、係る劣化を抑制できるため、好ましい。本実施形態の正極活物質の水分量は、例えば加熱温度を300℃としたカールフィッシャー法により評価することができる。
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質によれば、電解液を用いたリチウムイオン二次電池が示す充放電容量とほぼ同等の充放電容量を示す全固体電池を提供することができる。
<2.リチウムイオン二次電池用正極活物質の製造方法>
 次に、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法について図面を使用しながら説明する。図1は、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法の概略を示す工程図である。本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法は、リチウム遷移金属複合酸化物の粒子と、該粒子の表面の少なくとも一部を被覆した被覆層とを有するリチウムイオン二次電池用正極活物質の製造方法である。
 図1に示すように、本発明の一実施形態に係る正極活物質の製造方法は、以下の4工程を有することができる。
第1工程:[前駆体晶析工程S1]
 前駆体晶析工程S1は、リチウム遷移金属複合酸化物の前駆体である遷移金属複合水酸化物を晶析反応により調製する。具体的には例えば、各元素の物質量比が、Ni:Co:M=1-x-y:x:yとなるように、水溶性の原料を用いて混合水溶液を作製し、アルカリ金属水溶液等と共に反応槽で反応させて、遷移金属複合水酸化物を得る。なお、上述の式中のx、yについては、リチウム遷移金属複合酸化物の粒子において説明したx、yと同様の好適な範囲とすることができる。
第2工程:[酸化焙焼工程S2]
 酸化焙焼工程S2は、遷移金属複合酸化物を調製する。具体的には例えば、前駆体晶析工程S1で得られた遷移金属複合水酸化物を、酸素雰囲気中、500℃以上700℃以下の温度で焼成することによって、遷移金属複合酸化物を得る。
第3工程:[リチウム遷移金属複合酸化物合成工程S3]
 リチウム遷移金属複合酸化物合成工程S3では、酸化焙焼工程S2で得た遷移金属複合酸化物を、リチウム化合物と混合し、酸素雰囲気下において、700℃以上800℃以下の温度で焼成することによって、リチウム遷移金属複合酸化物を得る。
第4工程:[被覆工程S4]
 被覆工程S4は、リチウム遷移金属複合酸化物の粒子の表面に被覆層を形成する。具体的には例えば、リチウム遷移金属複合酸化物合成工程S3で得たリチウム遷移金属複合酸化物の粒子と、リチウム化合物とジルコニウム化合物を含む液状の被覆剤を混合し、乾燥後、酸素雰囲気中、300℃以上600℃以下の温度で熱処理を行うことによって、リチウム遷移金属複合酸化物の粒子の表面に被覆層を設ける。
 以下に、本実施形態の正極活物質の製造方法の一構成例をより具体的に説明する。なお、以下の説明は、製造方法の一例であって、製造方法を限定するものではない。
<2-1.前駆体晶析工程S1>
 前駆体晶析工程S1でははじめに、ニッケルを含有する金属化合物、コバルトを含有する金属化合物、および場合によってはさらに元素M(Mは、Mg、Al、Ca、Si、Mn、Ti、V、Fe、Cu、Cr、Zn、Zr、Nb、MoおよびWからなる群より選ばれた少なくとも1種の元素である)を含有する金属化合物を所定の割合で水に溶解させ、混合水溶液を作製する(混合水溶液調製ステップ)。混合水溶液の各金属の組成比が最終的に得られる遷移金属複合水酸化物の組成比と同様となる。そのため、混合水溶液中における各金属の組成比が、目的とする遷移金属複合水酸化物粒子中における各金属の組成比と同じ組成比となるように、水に溶解させる金属化合物の割合を調節して、混合水溶液を調製することが好ましい。金属化合物は水溶性であればよく硫酸塩、塩化物、硝酸塩などを用いることができるが、コストの観点から硫酸塩が好ましい。なお、元素Mなどで水溶性の好適な原料が見出されない場合は、混合水溶液には加えずに後述する酸化焙焼工程S2や、リチウム遷移金属複合酸化物合成工程S3で添加しても良い。
 次に、反応槽に水を入れ、アルカリ性物質と、アンモニウムイオン供給体を適量加えて初期水溶液を調製する(初期水溶液調製ステップ)。この際、初期水溶液のpH値が、液温25℃基準で11.2以上12.2以下、アンモニア濃度が2g/L以上15g/L以下となるように調製することが好ましい。
 前駆体晶析工程S1を行い、遷移金属複合水酸化物を調製する際、用いた混合水溶液に含まれる金属化合物を構成するアニオンに起因する不純物が遷移金属複合水酸化物に混入することがある。しかしながら、初期水溶液のpH値を11.2以上とすることで、係る原料の金属化合物を構成するアニオンに起因する不純物の混入を抑制することができ好ましい。また、初期水溶液のpH値を12.2以下とすることで、得られる遷移金属複合水酸化物粒子について、微粒子化することを抑制し、最適なサイズとすることができ好ましい。
 また、初期水溶液のアンモニア濃度を2g/L以上とすることで、得られる遷移金属複合水酸化物の粒子について、特に球状形状となり易くすることができるため好ましい。そして、初期水溶液のアンモニア濃度を15g/L以下とすることで、アンモニア錯体を形成する遷移金属の溶解度が過度に上昇することを防止し、得られる遷移金属複合水酸化物の組成をより確実に目標組成とすることができるため、好ましい。
 なお、初期水溶液を調製する際に用いるアルカリ性物質としては特に限定されるものではないが、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムから選択された1種類以上であることが好ましい。添加量を容易に調整できることから、水溶液の形態で添加することが好ましい。また、アンモニウムイオン供給体としては、特に限定されるものではないが、炭酸アンモニウム水溶液、アンモニア水、塩化アンモニウム水溶液、硫酸アンモニウム水溶液から選択された1種類以上を好ましく用いることができる。
 前駆体晶析工程S1では、初期水溶液に、既述の混合水溶液を滴下し、反応水溶液とすることができるが、係る反応水溶液についてもpH値、およびアンモニア濃度について、既述の好適な範囲を維持することが好ましい。
 反応槽内の雰囲気は非酸化性雰囲気、例えば酸素濃度が1容量%以下の雰囲気にすることが好ましい。これは、非酸化性雰囲気、例えば酸素濃度を1容量%以下の雰囲気とすることで、原料等が酸化されることを抑制でき好ましいからである。このため、例えば酸化されたコバルトが微粒子として析出すること等を防止することができる。
 前駆体晶析工程S1での反応槽の温度は40℃以上60℃以下に維持されていることが好ましく、45℃以上55℃以下に維持されていることがより好ましい。なお、反応槽を係る温度域に維持するため、反応槽内に配置される初期水溶液や反応水溶液についても同様の温度範囲内に維持されていることが好ましい。
 反応槽は反応熱や撹拌のエネルギーにより、自然に温度が上がるため、40℃以上とすることで、冷却に余分にエネルギーを消費することが無いため好ましい。また、反応槽の温度を60℃以下とすることで、初期水溶液や、反応水溶液からのアンモニアの蒸発量を抑制することができ、目標のアンモニア濃度を容易に維持することができるため好ましい。
 そして、前駆体晶析工程S1では、反応槽に初期水溶液を入れ、温度等の調整をした後、混合水溶液を反応槽に一定速度で滴下して反応水溶液とすることで、前駆体である遷移金属複合水酸化物粒子の晶析を行うことができる(晶析ステップ)。
 既述のように、反応水溶液についてもpH値、およびアンモニア濃度が初期水溶液について説明した場合と同様の好適な範囲にあることが好ましい。このため初期水溶液、もしくは反応水溶液に混合水溶液を滴下する際においても、アンモニウムイオン供給体や、アルカリ性物質も初期水溶液、もしくは反応水溶液に一定速度で滴下することが好ましい。そして、反応水溶液のpH値を、液温25℃基準で11.2以上12.2以下に、アンモニア濃度を2g/L以上15g/L以下に維持されるように制御することが好ましい。
 その後、反応槽に設けられたオーバーフロー口より回収されたこの遷移金属複合水酸化物粒子を含むスラリーをろ過し、乾燥することで、前駆体である粉末状の遷移金属複合水酸化物粒子を得ることができる。
<2-2.酸化焙焼工程S2>
 次に、酸化焙焼工程S2について説明する。酸化焙焼工程S2では、上記前駆体晶析工程S1で得られた遷移金属複合水酸化物を酸化焙焼して遷移金属複合酸化物を得る。酸化焙焼工程S2では、前駆体晶析工程S1で作製した遷移金属複合水酸化物を、酸素雰囲気中で焼成し、その後室温まで冷却することで、遷移金属複合酸化物を得ることができる。
 酸化焙焼工程S2における焙焼条件は特に限定されないが、酸素雰囲気中、例えば空気雰囲気中、500℃以上700℃以下の温度で、1時間以上12時間以下焼成することが好ましい。これは、焼成温度を500℃以上とすることで、遷移金属複合水酸化物粒子を完全に遷移金属複合酸化物へ転化でき好ましいからである。また、焼成温度を700℃以下とすることで、遷移金属複合酸化物の比表面積が過度に小さくなることを抑制でき好ましいからである。
 焼成時間を1時間以上とすることで、焼成容器内の温度を特に均一にすることができ、反応を均一に進行させることができ、好ましい。また、12時間よりも長い時間焼成を行っても、得られる遷移金属複合酸化物の物性に大きな変化は見られないため、エネルギー効率の観点から、焼成時間は12時間以下とすることが好ましい。
 焼成の際の酸素雰囲気中の酸素濃度は、空気雰囲気の酸素濃度以上、すなわち酸素濃度が20体積%以上であることが好ましい。酸素雰囲気とすることもできるため、酸素雰囲気の酸素濃度の上限値は100体積%とすることができる。
 なお、例えば前駆体晶析工程S1で元素Mを含む化合物を共沈できなかった場合、例えば酸化焙焼工程S2に供する遷移金属複合水酸化物に対して、元素Mを含む化合物を目的とした組成比と同じになるように加えて焼成してもよい。加える元素Mを含む化合物としては特に限定されず、例えば、酸化物、水酸化物、炭酸塩、もしくはその混合物等を用いることができる。
 酸化焙焼工程S2の終了後、遷移金属複合酸化物粒子に軽度の焼結が見られる場合には、解砕処理を加えてもよい。
<2-3.リチウム遷移金属複合酸化物合成工程S3>
 リチウム遷移金属複合酸化物合成工程S3は、上記酸化焙焼工程S2で得られた上記遷移金属複合酸化物と、リチウム化合物とを混合し、焼成してリチウム遷移金属複合酸化物を得る。
 リチウム遷移金属複合酸化物合成工程S3ではまず、酸化焙焼工程S2で得られた遷移金属複合酸化物粒子に、この粒子に含まれる成分金属元素の物質量の総和に対して、リチウムの物質量が95%以上120%以下となるようにリチウム化合物を加えて混合することにより、リチウム混合物を得ることができる(リチウム混合物調製ステップ)。
 加えるリチウム化合物としては、特に限定されず、例えば、水酸化リチウム、硝酸リチウム、または炭酸リチウム、もしくはその混合物等を用いることができる。リチウム化合物としては、特に融点が低く反応性が高い水酸化リチウムを用いることが好ましい。
 次に、得られたリチウム混合物を酸素雰囲気中で焼成した後、室温まで冷却し、リチウムを含有するリチウム遷移金属複合酸化物を得ることができる(焼成ステップ)。焼成条件は特に限定されないが、例えば700℃以上800℃以下の温度で、1時間以上24時間以下焼成することが好ましい。
 なお、酸素雰囲気としては、酸素を80体積%以上含む雰囲気であることが好ましい。これは、雰囲気中の酸素濃度を80体積%以上とすることで、得られるリチウム遷移金属複合酸化物中のLiサイトへNi原子が混合するカチオンミキシングを特に抑制し、二次電池の電池特性の悪化を防ぐことができ好ましいからである。酸素雰囲気とすることもできるため、酸素雰囲気の酸素濃度の上限値は100体積%とすることができる。
 そして、焼成温度を700℃以上とすることで、リチウム遷移金属複合酸化物の結晶構造を安定なものとし、また、リチウム遷移金属複合酸化物の粒子を十分に成長させることができ好ましい。また、焼成温度を800℃以下とすることで、得られるリチウム遷移金属複合酸化物中のLiサイトへNi原子が混合するカチオンミキシングを抑制し、二次電池の電池特性の悪化を防ぐことができるため、好ましい。
 焼成時間は、1時間以上とすることで焼成容器内の温度を均一にすることができ、反応を均一に進行させることができるため好ましい。また、24時間よりも長い時間焼成を行っても、得られるリチウム遷移金属複合酸化物に大きな変化は見られないため、エネルギー効率の観点から、焼成時間は24時間以下とすることが好ましい。
 なお、リチウム遷移金属複合酸化物合成工程S3の後、得られるリチウム遷移金属複合酸化物に軽度の焼結が見られる場合には、解砕処理を加えてもよい。解砕により、得られる正極活物質の平均粒径や粒度分布を好適な範囲に調整することができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギを投入して、二次粒子自体をほとんど破壊することなく分離させて、凝集体をほぐす操作をいう。
<2-4.被覆工程S4>
 被覆工程S4は、上記リチウム遷移金属複合酸化物合成工程S3で得られた上記リチウム遷移金属複合酸化物の粒子の表面の少なくとも一部にリチウムジルコニウム化合物を含む被覆層を形成する。
 被覆工程S4ではまず、リチウム遷移金属複合酸化物合成工程S3で得られたリチウム遷移金属複合酸化物の比表面積を測定し、目標とする被覆層のジルコニウム担持量に応じて、液状の被覆剤を調製することができる(被覆剤調製ステップ)。
 被覆剤調製ステップでは、ジルコニウム化合物およびリチウム化合物を含有する被覆剤を調製する。ジルコニウム化合物およびリチウム化合物を含有する被覆剤を用いることで、後述する熱処理ステップにおいてリチウムジルコニウム化合物を含む被覆層を生成することができる。そして、上記リチウム遷移金属複合酸化物の粒子の表面を当該被覆層で均一に被覆することができる。なおジルコニウム化合物を被覆剤とし、後述する乾燥ステップ後にリチウム化合物を添加し、後述する熱処理ステップを行うことも可能であるが、熱処理ステップ時にリチウム化合物が剥離する可能性がある。
 被覆剤はジルコニウムや、ジルコニウム化合物およびリチウム化合物を含有すれば特に限定されない。被覆剤は、均一な被覆のために、ジルコニウム化合物およびリチウム化合物が溶媒に溶解したものや、常温で液状であったり、低温の熱処理で融解したりする低融点のジルコニウム化合物およびリチウム化合物等を好ましく用いることができる。
 ジルコニウム化合物としては例えば、ジルコニウムテトラプロポキシド、ジルコニウムテトラブトキシドなどのアルコキシド類やジルコニウムテトラアセチルアセトネートなどのキレート類、酸化ジルコニウムの微粒子が水溶液中に均一に分散した酸化ジルコニウムゾル水溶液、炭酸ジルコニウムアンモニウム等から選択される1種類以上が挙げられる。リチウム化合物としては、特に限定されず、例えば、水酸化リチウム、酸化リチウム、硝酸リチウム、リチウムエトキシド、酢酸リチウム、ギ酸リチウム、塩化リチウム、硫酸リチウムまたは炭酸リチウム、もしくはその混合物等を用いることができる。被覆剤としては特に、容易に調製することができ、不純物の混入を抑制できる、ジルコニウムテトラプロポキシドおよびリチウムエトキシドをエタノールとの混合溶液に溶解したものを好ましく用いることができる。
 被覆剤調製ステップでは、被覆層のリチウムジルコニウム化合物のLiとZrの物質量比(Li/Zr)が、1.8以上2.2以下となるように、ジルコニウム化合物およびリチウム化合物の添加量を調節することが好ましい。被覆層のリチウムジルコニウム化合物のLiとZrの物質量比を1.8以上とすることで、リチウムイオン伝導性の高いリチウムジルコニウム化合物が生成するため好ましい。また、被覆層のリチウムジルコニウム化合物のLiとZrの物質量比を2.2以下とすることで、未反応のリチウム化合物を少なくでき、初期放電容量の低下や正極抵抗の増加などの電池特性の低下を抑制できる。また、リチウムジルコニウム化合物のLiとZrの物質量比(Li/Zr)を1.8以上2.2以下とすることで、正極活物質と固体電解質間の界面抵抗の増加を抑制することができる。
 被覆工程S4では次に、リチウム遷移金属複合酸化物粒子と、被覆剤とを混合することができる。混合には一般的な混合器を用いることができる(混合物調製ステップ)。そして、混合後に乾燥を行い(乾燥ステップ)、さらに熱処理を行いリチウムジルコニウム化合物を被覆層として固定することができる(熱処理ステップ)。
 乾燥ステップでは、被覆剤の溶媒等を除去できる程度の温度で乾燥を行うことができる。例えば80℃以上300℃未満で乾燥を行うことができる。
 熱処理ステップの熱処理条件は特に限定されていないが、酸素雰囲気、例えば空気雰囲気中、300℃以上600℃以下、より好ましくは300℃以上450℃以下の温度で、1時間以上5時間以下熱処理を行うことが好ましい。熱処理後は、室温まで冷却し、最終生成物である被覆層を有するリチウム遷移金属複合酸化物の粒子である正極活物質を得ることができる。
 熱処理の際の酸素雰囲気中の酸素濃度は、空気雰囲気の酸素濃度以上、すなわち酸素濃度が20体積%以上であることが好ましい。熱処理の際の酸素雰囲気を空気雰囲気の酸素濃度以上とすることで、得られる正極活物質内に酸素欠陥が生じることを特に抑制することができ、好ましいからである。酸素雰囲気とすることもできるため、酸素雰囲気の酸素濃度の上限値は100体積%とすることができる。
 熱処理の際の焼成温度は、300℃以上とすることで被覆剤に含まれていた不純物が正極活物質内に残留することを特に抑制でき、かつ、被覆層のジルコニウム化合物とリチウム化合物が反応しリチウムジルコニウム化合物として存在できるようになるため好ましい。また、焼成温度を600℃以下とすることで、被覆層の成分が過度に拡散されることを抑制し、被覆層の形態を保つことができるため好ましい。なお、熱処理の際の焼成温度は、目標に設定した被覆層のジルコニウム担持量等に応じて、被覆層が十分にその厚みを維持できるように選択することが好ましい。
 熱処理の焼成時間を1時間以上とすることで、被覆剤に含まれていた不純物が正極活物質内に残留することを特に抑制できるため好ましい。また、5時間よりも長い時間焼成を行っても、得られる正極活物質に大きな変化は見られないことから、エネルギー効率の観点から、焼成時間は5時間以下とすることが好ましい。
 被覆工程S4後に得られる正極活物質に軽度の焼結が見られる場合には、解砕処理を加えてもよい。
 以上のように、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法によれば、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する全固体電池を提供することができる。
<3.全固体リチウムイオン二次電池>
 次に、本実施形態の全固体リチウムイオン二次電池の一構成例について説明する。本実施形態の全固体リチウムイオン二次電池(以下、単に「二次電池」とも記載する)は、既述の正極活物質を用いた正極と、負極と、固体電解質とを備えた構成を有することができる。以下、本実施形態の二次電池の各部材について説明する。なお、以下に説明する実施形態は例示に過ぎず、本発明の全固体リチウムイオン二次電池は、本明細書に記載されている実施形態をもとに、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の全固体リチウムイオン二次電池は、その用途を特に限定されない。
<3-1.正極>
 正極は、正極合剤を成型し、形成することができる。なお、正極は、使用する電池にあわせて適宜処理される。たとえば、電極密度を高めるためにプレスなどによる加圧圧縮処理等を行うこともできる。
 上述の正極合剤は、粉末状になっている前述の正極活物質と、固体電解質とを混合して形成できる。
 固体電解質は、電極に適当なイオン伝導性を与えるために添加されるものである。その固体電解質の材料は特に限定されないが、例えばLiPS、Li11、Li10GeP12などの硫化物系固体電解質や、LiLaZr12、Li0.34La0.51TiO2.94などの酸化物系固体電解質やPEOなどのポリマー系電解質を用いることができる。
 なお、正極合剤には結着剤や導電助剤を添加することもできる。導電剤は、電極に適当な導電性を与えるために添加されるものである。導電剤の材料は特に限定されないが、例えば天然黒鉛、人造黒鉛および膨張黒鉛などの黒鉛や、アセチレンブラック、ケッチェンブラック(登録商標)等のカーボンブラック系材料を用いることができる。
 結着剤は、正極活物質をつなぎ止める役割を果たすものである。係る正極合剤に使用される結着剤は特に限定されないが、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸等から選択された1種類以上を用いることができる。
 また、正極合剤における各物質の混合比は特に限定されるものではない。例えば、正極合剤の正極活物質の含有量を50質量部以上、90質量部以下、固体電解質の含有量を10質量部以上、50質量部以下とすることができる。
 ただし、正極の作製方法は、上述した例示のものに限られることなく、他の方法によってもよい。
<3-2.負極>
 負極は、負極合剤を成型し、形成することができる。負極は、負極合剤を構成する成分やその配合等は異なるものの、実質的に上述の正極と同様の方法によって形成され、正極と同様に必要に応じて各種処理が行われる。
 負極合剤は、負極活物質と固体電解質とを混合することで調製できる。負極活物質としては例えば、リチウムイオンを吸蔵および脱離できる吸蔵物質を採用することができる。
 吸蔵物質は特に限定されないが、例えば天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、およびコークスなどの炭素物質の粉状体等から選択された1種類以上を用いることができる。係る吸蔵物質を負極活物質に採用した場合には、正極同様に、固体電解質として、LiPS等の硫化物電解質を用いることができる。
 また負極は、例えば金属リチウムやインジウムなどのリチウムと合金化する金属を含有する物質により構成されたシート状の部材とすることもできる。
<3-3.固体電解質>
 固体電解質は、高電圧に耐えうる性質を有する。固体電解質としては、無機固体電解質、有機固体電解質が挙げられる。
 無機固体電解質として、酸化物系固体電解質、硫化物系固体電解質等が用いられる。
 酸化物系固体電解質としては、特に限定されず、酸素(O)を含有し、かつ、リチウムイオン伝導性と電子絶縁性とを有するものであれば用いることができる。酸化物系固体電解質としては、例えば、リン酸リチウム(LiPO)、LiPO、LiBO、LiNbO、LiTaO、LiSiO、LiSiO-LiPO、LiSiO-LiVO、LiO-B-P、LiO-SiO、LiO-B-ZnO、Li1+XAlTi2-X(PO(0≦X≦1)、Li1+XAlGe2-X(PO(0≦X≦1)、LiTi(PO、Li3XLa2/3-XTiO(0≦X≦2/3)、LiLaTa12、LiLaZr12、LiBaLaTa12、Li3.6Si0.60.4等が挙げられる。
 硫化物系固体電解質としては、特に限定されず、硫黄(S)を含有し、かつ、リチウムイオン伝導性と電子絶縁性とを有するものであれば用いることができる。硫化物系固体電解質としては、例えば、LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-B、LiPO-LiS-SiS、LiPO-LiS-SiS、LiPO-LiS-SiS、LiI-LiS-P、LiI-LiPO-P等が挙げられる。
 なお、無機固体電解質としては、上記以外のものを用いてよく、例えば、LiN、LiI、LiN-LiI-LiOH等を用いてもよい。
 有機固体電解質としては、イオン伝導性を示す高分子化合物であれば、特に限定されず、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、これらの共重合体などを用いることができる。また、有機固体電解質は、支持塩(リチウム塩)を含んでいてもよい。
<3-4.二次電池の形状、構成>
 次に、本実施形態の二次電池の部材の配置、構成の例について説明する。以上のように説明してきた正極、負極、固体電解質で構成される本実施形態の二次電池は、コイン型や積層型など、種々の形状にすることができる。いずれの形状をとる場合であっても、正極および負極を、固体電解質を介して積層させることができる。そして、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通じる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して二次電池とすることができる。
 既述の正極活物質を用いた本実施形態の二次電池は、電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有する全固体リチウムイオン二次電池とすることができる。
<3-5.二次電池の特性>
 上述の正極活物質を用いた本発明の一実施形態に係る二次電池は、高容量を発現する。具体的には、本実施形態の正極活物質を正極に用いて、図に示す試験用電池を構成し、電流密度を0.2mA/cmとして、カットオフ電圧3.7V(vs.Li-In)まで充電し、1時間の休止後、カットオフ電圧1.9V(vs.Li-In)まで放電した場合の放電容量である、初期放電容量が132mAh/g以上であることが好ましく、140mAh/g以上であることがより好ましい
 本実施形態の二次電池の用途は特に限定されるものではなく、各種電源が要求される用途に好適に用いることができる。また、本実施形態の二次電池は電解液を用いたリチウムイオン二次電池が示す充放電容量と同等の充放電容量を有し、小型化が可能であることから、搭載スペースに制約を受ける電気自動車用電源としても好適である。
 次に、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池について、実施例により詳しく説明する。なお、本発明は、これらの実施例に限定されるものではない。なお、実施例および比較例における正極活物質に含有される金属の分析方法および正極活物質の各種評価方法は、以下の通りである。
[実施例1]
1.リチウム遷移金属複合酸化物の粒子の製造
 以下の工程を実施することで、正極活物質の製造を行った。
(a)前駆体晶析工程
 はじめに、反応槽(5L)内に、純水を2.5L入れて撹拌しながら、槽内温度を40℃に設定した。このときの反応槽内は、酸素濃度が1容量%以下である窒素雰囲気とした。この反応槽内の水に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量加えて、pH値が液温25℃基準で11.5に、アンモニア濃度が5g/Lとなるように初期水溶液を調製した(初期水溶液調製ステップ)。
 同時に、硫酸ニッケルと、硫酸コバルトと、硫酸アルミニウムを、ニッケルとコバルトとアルミニウムの物質量比が、Ni:Co:Al=0.82:0.15:0.03となるように純水に溶解して、2.0mol/Lの混合水溶液を調製した(混合水溶液調製ステップ)。
 この混合水溶液を、反応槽の初期水溶液に対して一定速度で滴下し、反応水溶液とした。この際、25質量%アンモニア水および25質量%水酸化ナトリウム水溶液も一定速度で初期水溶液に滴下し、反応水溶液のpH値が、液温25℃基準で11.5に、アンモニア濃度が5g/Lに維持されるように制御した。係る操作により、リチウム遷移金属複合酸化物の前駆体である遷移金属複合水酸化物粒子(以下、「複合水酸化物粒子」という)を晶析させた(晶析ステップ)。
 その後、反応槽に設けられたオーバーフロー口より回収された複合水酸化物粒子を含むスラリーをろ過し、イオン交換水で水溶性の不純物を洗浄除去したのち、乾燥することで、粉末状の複合水酸化物粒子を得た。
(b)酸化焙焼工程
 雰囲気焼成炉(株式会社シリコニット製、BM-50100M)を用いて、作製した複合水酸化物粒子を酸素濃度が20体積%である空気雰囲気下、600℃、2時間焼成した後、室温まで冷却し、遷移金属複合酸化物粒子を得た。
(c)リチウム遷移金属複合酸化物合成工程
 遷移金属複合酸化物粒子に、この複合酸化物粒子に含まれるニッケル、コバルト、アルミニウムの物質量の総和に対して、リチウムの物質量の比が1.02となるように秤量した水酸化リチウム一水和物を加えて、ターブラーシェーカーミキサ(株式会社ダルトン製、T2F)を用いて混合することにより、リチウム混合物を得た(リチウム混合物調製ステップ)。
 上記リチウム混合物をアルミナ製匣鉢に装入し、雰囲気焼成炉(株式会社シリコニット製、BM-50100M)を用いて、得られたリチウム混合物を、酸素濃度が90体積%以上の酸素雰囲気中、750℃で、10時間焼成した後、室温まで冷却した(焼成ステップ)。これにより、リチウム遷移金属複合酸化物粒子を得た。
2.リチウム遷移金属複合酸化物の粒子の評価
 得られたリチウム遷移金属複合酸化物の粒子に対して、以下の評価を行った。
(a)組成
 ICP発光分光分析器(VARIAN社製、725ES)を用いた定量分析により、リチウム遷移金属複合酸化物は、Li、Ni、Co、Alの物質量比が、Li:Ni:Co:Al=1.02:0.82:0.15:0.03で表されるものであることを確認した。
(b)結晶構造
 このリチウム遷移金属複合酸化物の粒子の結晶構造を、XRD(PANALYTICAL社製、X‘Pert、PROMRD)を用いて測定したところ、回折パターンにR-3m構造に帰属されるピークが検出される層状岩塩型の結晶構造であることが確認された。
(c)比表面積
 このリチウム遷移金属複合酸化物の粒子のBET比表面積を、全自動BET比表面積測定装置(株式会社マウンテック製、マックソーブ)を用いて測定した。その結果から0.67m/gであることを確認した。
(d)体積平均粒子径
 このリチウム遷移金属複合酸化物の粒子の体積平均粒子径を、レーザー回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いて測定した。その結果から7.0μmであることを確認した。
3.正極活物質の製造
 上記リチウム遷移金属複合酸化物の粒子に対して、以下の被覆工程を実施することで正極活物質の製造を行った。被覆を施す粒子である、リチウム遷移金属複合酸化物粒子の総重量がもつ全表面積をリチウム遷移金属複合酸化物粒子の比表面積から算出した。そして、該全表面積に対して、1mあたりのジルコニウムの物質量が0.15mmolになるように秤量したジルコニウムテトラプロポキシドを、ジルコニウムテトラプロポキシド1gあたり6.5mLのエタノールに入れ、撹拌して、ジルコニウムテトラプロポキシドを溶解した。次に、被覆層のリチウムジルコニウム化合物のLiとZrの物質量比(Li/Zr)が2となるように秤量したリチウムエトキシドを、リチウムエトキシド1gあたり0.05mLのエタノールに入れ、撹拌して、リチウムエトキシドを溶解し、前記ジルコニウムテトラプロポキシドのエタノール溶液と混合した。さらに、被覆剤中のZrのモル濃度が0.08mol/Lとなるようにエタノールを加えて希釈した(被覆剤調製ステップ)。
 転動流動コーティング装置(株式会社パウレック製、型式:FP-MP-01D)内にリチウム遷移金属複合酸化物粒子500gを入れ、給気温度を80℃に設定し、リチウム遷移金属複合酸化物粒子1gあたり被覆剤を7μL/minの速度で171分添加し、混合しながら乾燥させた。(混合物調製ステップおよび乾燥ステップ)。
 雰囲気焼成炉(株式会社シリコニット製、型式:BM-50100M)を用いて、酸素雰囲気下、400℃で、5時間熱処理した(熱処理ステップ)。その後、室温まで冷却し、正極活物質である被覆層を有するリチウム遷移金属複合酸化物の粒子を得た。
4.正極活物質の評価
 このようにして得られた正極活物質に対して、以下の評価を行った。
(a)組成
 ICP発光分光分析器(VARIAN社製、725ES)を用いた分析により、この正極活物質は、Zrを0.90質量%含むものであり、被覆処理前の比表面積との比較により、被覆層のジルコニウム担持量は0.15mmol/mであることがわかった。
(b)表面分析
 得られた正極活物質を、XPS(アルバック・ファイ製、Versa ProbeII)を用いて測定し、得られたNi3/2スペクトル、Co3/2スペクトル、Zr3dスペクトルのピーク面積から算出された半定量値から正極活物質表面の物質量を得て、上記の組成分析の結果と共に、表面に存在するZrの物質量とNi、Co、Zrの物質量の和との比(Zrs/Nis+Cos+Zrs)は0.85であることがわかった。
(c)炭素含有量
 得られた正極活物質の炭素含有量を、炭素分析装置(LECO社製 型式:CS-600)を用いて、高周波燃焼赤外吸収法で測定したところ、0.30質量%であることがわかった。
(d)水分量
 得られた正極活物質の水分量を、カールフィッシャー水分計(京都電子工業株式会社製 型式:MKC210)を用いて加熱温度が300℃の条件で測定したところ、0.05質量%であることがわかった。
5.二次電池の作製
 得られた正極活物質の容量の評価には、図2に示す構造の電池(以下、「試験用電池」という)を使用した。試験用電池1は、ケースと、ケース内に収容された圧粉体セル2から構成されている。
 ケースは、中空かつ一端が開口された負極缶3と、この負極缶3の開口部に配置される正極缶4とを有しており、正極缶4を負極缶3の開口部に配置すると、正極缶4と負極缶3との間に圧粉体セル2を収容する空間が形成されるように構成されている。正極缶4は負極缶3に対して蝶ネジ5とナット6で固定される。
 負極缶3は負極、正極缶4は正極のそれぞれの不図示の端子を備えている。ケースは絶縁スリーブ7を備えており、この絶縁スリーブ7によって、負極缶3と正極缶4との間が非接触の状態を維持するように固定されている。
 負極缶3の閉止された一端には、加圧ネジ8が備えられており、正極缶4を負極缶3に固定した後、加圧ネジ8を圧粉体セル収容空間に向けて締めこむことで、半球座金9を通して圧粉体セル2を加圧状態に保持する。負極缶3の加圧ネジ8が存在する一端には、ねじ込み式のプラグ10が備えられている。負極缶3と正極缶4の間および負極缶3とプラグ10の間には、オーリング11が備えられており、負極缶3と正極缶4の間の隙間が密封し、ケース内の気密が維持される。
 また、圧粉体セル2は、正極層、固体電解質層および負極層とからなり、この順で並ぶように積層されたペレットである。正極層が下部集電体12を通して正極缶4の内面に接触し、負極層が上部集電体13、半球座金9および加圧ネジ8を通して負極缶3の内面に接触するようにケースに収容されている。下部集電体12、圧粉体セル2および上部集電体13はスリーブ14によって正極層、負極層が電気的に接触しないように保護されている。
 このような試験用電池1を、以下のようにして作製した。
 初めに、合成した固体電解質80mgをペレット形成器で25MPaで加圧し、固体電解質ペレットを得た。つぎに正極活物質70mgと、固体電解質30mgを乳鉢で混合した。固体電解質ペレットと、正極活物質+固体電解質の混合物15mgをペレット形成器にセットし、360MPaで加圧し、固体電解質ペレット上に正極層を形成した。下から順に、下部電極、正極層を下向きにしたペレット、インジウム箔、上部電極の順に積層し、9kNで加圧し、電極を構成した。電極をケース内に封入し、加圧ネジを6~7N・mのトルクで締め付けた。試験用電池は、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。
6.二次電池の評価
 作製した試験用電池の性能を示す充放電容量を以下のように評価した。
(a)初期放電容量
 初期放電容量は、負極にインジウム箔を用いた試験用電池を製作してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.2mA/cmとしてカットオフ電圧3.7V(vs.Li-In)まで充電し、1時間の休止後、カットオフ電圧1.9V(vs.Li-In)まで放電したときの放電容量(初期放電容量)を測定することにより評価した。測定結果は140mAh/gであった。
[比較例1]
 実施例1における被覆工程を実施しなかった点以外には実施例1と同様の条件でリチウム遷移金属複合酸化物の粒子、正極活物質、および該正極活物質を用いた二次電池を得た。なお、被覆工程を実施しなかったため、「1.リチウム遷移金属複合酸化物の粒子の製造」で得られたリチウム遷移金属複合酸化物の粒子が、正極活物質となる。
[比較例2]
 「2.リチウムイオン二次電池用正極活物質の製造方法」の被覆工程を実施する際に、被覆剤調製ステップで、目標とする被覆層のジルコニウム担持量を0.15mmol/mとし、リチウムエトキシドを溶解させずに被覆剤を調製した点以外は実施例1と同様の条件でリチウム遷移金属複合酸化物の粒子、正極活物質、および該正極活物質を用いた二次電池を得た。
 実施例、比較例における、被覆工程前のリチウム遷移金属複合酸化物粒子のBET比表面積および体積平均粒子径、被覆層のジルコニウム担持量、正極活物質の表面に存在するZrの物質量とNi、Co、Zrの物質量の和との比(Zrs/Nis+Cos+Zrs)、正極活物質の炭素含有量、正極活物質の水分量および熱処理ステップにおける熱処理温度の条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ここで、被覆層のジルコニウム担持量は、正極活物質におけるジルコニウムの含有量(質量%)、ジルコニウムの原子量および、上述したリチウム遷移金属複合酸化物の粒子のBET比表面積(0.67m/g)より算出した。
 実施例および比較例における、被覆層中のリチウムとジルコニウムの物質量比(Li/Zr)、二次電池の初期放電容量の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ここで、被覆層中のリチウムとジルコニウムの物質量比(Li/Zr)は、被覆工程の被覆剤調製ステップで添加したジルコニウムの量とリチウムの量から算出した。
 表1のジルコニウム担持量および表2のLi/Zrの値から、実施例1ではリチウムジルコニウム化合物の被覆層が形成されていることが分かる。また、Li/Zrの値から、リチウムジルコニウム化合物はジルコン酸リチウムと考えられる。
 そして、比較例1ではリチウム遷移金属複合酸化物の粒子に被覆層が存在しないことが分かる。また、比較例2では被覆層はジルコニウム化合物であり、リチウムジルコニウム化合物でないことが分かる。
 実施例1の二次電池の初期放電容量は、比較例1よりも高い値となった。これは、正極活物質表面をジルコン酸リチウムで被覆することによって、正極活物質と固体電解質間の界面抵抗の増加を抑制したためと考えられる。また、実施例1の二次電池の初期放電容量は、比較例2よりも高い値となった。これは、被覆層にリチウムを導入しジルコン酸リチウムとすることによって、ジルコニウム化合物を被覆層とした場合よりもリチウムイオン伝導性が向上したためと考えられる。
 なお、上記のように本発明の各実施形態および各実施例について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。またリチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池の構成、動作も本発明の各実施形態および各実施例で説明したものに限定されず、種々の変形実施が可能である。
S1 前駆体晶析工程、S2 酸化焙焼工程、S3 リチウム遷移金属複合酸化物合成工程、S4 被覆工程、1 試験用電池、2 圧粉体セル、3 負極缶、4 正極缶、5 蝶ネジ、6 ナット、7 絶縁スリーブ、8 加圧ネジ、9 半球座金、10 プラグ、11 オーリング、12 下部集電体、13 上部集電体、14 スリーブ

Claims (13)

  1.  リチウム遷移金属複合酸化物の粒子と、該粒子の表面の少なくとも一部を被覆した被覆層とを有するリチウムイオン二次電池用正極活物質であって、
     前記リチウム遷移金属複合酸化物はLiおよび遷移金属の物質量比Li:Ni:Co:Mがt:1-x-y:x:y(式中、MはMg、Al、Ca、Si、Mn、Ti、V、Fe、Cu、Cr、Zn、Zr、Nb、MoおよびWからなる群より選ばれた少なくとも1種の元素であり、0.95≦t≦1.20、0<x≦0.22、0≦y≦0.15)で表され、
     前記被覆層はリチウムジルコニウム化合物を含み、
     前記リチウムイオン二次電池用正極活物質の表面に存在する、Zrの物質量Zrsと、Ni、Co、Zrの物質量の和Nis+Cos+Zrsとの比Zrs/(Nis+Cos+Zrs)が、0.80以上0.97以下であることを特徴とする、リチウムイオン二次電池用正極活物質。
  2.  前記被覆層を除く前記リチウム遷移金属複合酸化物の表面積1m当たりの、前記被覆層のZr含有量は0.13mmol以上0.30mmol以下である、請求項1に記載のリチウムイオン二次電池用正極活物質。
  3.  前記リチウム遷移金属複合酸化物が空間群R-3mに属する結晶構造である、請求項1又は2に記載のリチウムイオン二次電池用正極活物質。
  4.  前記リチウムイオン二次電池用正極活物質の炭素含有量が0.05質量%以上0.40質量%以下である、請求項1乃至3のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
  5.  前記リチウム遷移金属複合酸化物の粒子の体積平均粒子径が2μm以上20μm以下である、請求項1乃至4のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
  6.  少なくとも、請求項1乃至5のいずれか一項に記載のリチウムイオン二次電池用正極活物質を用いた正極と、負極と、固体電解質とを備えた、リチウムイオン二次電池。
  7.  リチウム遷移金属複合酸化物の粒子と、該粒子の表面の少なくとも一部を被覆した被覆層とを有するリチウムイオン二次電池用正極活物質の製造方法であって、
     前記リチウム遷移金属複合酸化物の前駆体である遷移金属複合水酸化物を晶析反応により調製する前駆体晶析工程と、
     前記前駆体晶析工程で得られた前記遷移金属複合水酸化物を酸化焙焼して遷移金属複合酸化物を得る酸化焙焼工程と、
     前記酸化焙焼工程で得られた前記遷移金属複合酸化物と、リチウム化合物とを混合し、焼成し、リチウム遷移金属複合酸化物を得るリチウム遷移金属複合酸化物合成工程と、
     前記リチウム遷移金属複合酸化物合成工程で得られた前記リチウム遷移金属複合酸化物の粒子の表面の少なくとも一部にリチウムジルコニウム化合物を含む前記被覆層を形成する被覆工程とを有し、
     前記被覆工程では、前記リチウム遷移金属複合酸化物合成工程で得られた前記リチウム遷移金属複合酸化物の粒子と、リチウム化合物とジルコニウム化合物を含む被覆剤を混合し、乾燥し、熱処理を行うことを特徴とする、リチウムイオン二次電池用正極活物質の製造方法。
  8.  前記リチウム遷移金属複合酸化物合成工程は、酸素雰囲気下、700℃以上800℃以下の温度で焼成する、請求項7に記載のリチウムイオン二次電池用正極活物質の製造方法。
  9.  前記被覆工程は、前記リチウムジルコニウム化合物のZr量が前記リチウム遷移金属複合酸化物の表面積1mあたり0.13mmol以上0.30mmol以下となるよう前記ジルコニウム化合物を添加し、
     前記被覆工程で得られた前記リチウム遷移金属複合酸化物の酸素以外の成分は、Li:Ni:Co:M=t:1-x-y:x:y(式中、MはMg、Al、Ca、Si、Mn、Ti、V、Fe、Cu、Cr、Zn、Zr、Nb、MoおよびWからなる群より選ばれた少なくとも1種の元素であり、0.95≦t≦1.20、0<x≦0.22、0≦y≦0.15)で表され、前記リチウムイオン二次電池用正極活物質の表面に存在するZrの物質量ZrsとNi、Co、Zrの物質量の和Nis+Cos+Zrsとの比Zrs/(Nis+Cos+Zrs)が0.80以上である、請求項7又は8に記載のリチウムイオン二次電池用正極活物質の製造方法。
  10.  前記被覆工程は、前記リチウム化合物と前記ジルコニウム化合物を前記被覆層の前記リチウムジルコニウム化合物中のLiとZr量の物質量比(Li/Zr)が1.8以上2.2以下となるように添加することを特徴とする請求項7乃至9のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  11.  前記被覆剤は、前記被覆工程に使用する前記リチウム化合物と前記ジルコニウム化合物が溶媒に溶解したもの、並びに常温で液状である、又は前記被覆工程の熱処理で融解する低融点の、前記リチウム化合物および前記ジルコニウム化合物の混合物を含むことを特徴とする請求項7乃至10のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  12.  前記被覆工程に使用する前記ジルコニウム化合物がジルコニウムテトラプロポキシド、ジルコニウムテトラブトキシドなどのアルコキシド類の1種以上であることを特徴とする請求項7乃至11のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  13.  前記熱処理は、酸素雰囲気で、300℃以上600℃以下の温度で、1時間以上5時間以下行う、請求項7乃至12のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
PCT/JP2021/021860 2020-06-09 2021-06-09 リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池 WO2021251416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21822346.9A EP4163997A1 (en) 2020-06-09 2021-06-09 Positive electrode active material for lithium ion secondary batteries, method for producing said positive electrode active material, and lithium ion secondary battery
CN202180041797.8A CN115885397A (zh) 2020-06-09 2021-06-09 锂离子二次电池用正极活性物质、其制造方法、及锂离子二次电池
US17/925,049 US20230187628A1 (en) 2020-06-09 2021-06-09 Positive electrode active material for lithium ion secondary batteries, method for producing said positive electrode active material, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100294 2020-06-09
JP2020100294A JP2021197209A (ja) 2020-06-09 2020-06-09 リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2021251416A1 true WO2021251416A1 (ja) 2021-12-16

Family

ID=78845701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021860 WO2021251416A1 (ja) 2020-06-09 2021-06-09 リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20230187628A1 (ja)
EP (1) EP4163997A1 (ja)
JP (1) JP2021197209A (ja)
CN (1) CN115885397A (ja)
WO (1) WO2021251416A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023111232A1 (en) * 2021-12-17 2023-06-22 Umicore Lithium nickel-based composite oxide as a positive electrode active material for rechargeable solid-state batteries
WO2023153343A1 (ja) * 2022-02-08 2023-08-17 住友化学株式会社 リチウム二次電池用正極活物質粉末、電極および固体リチウム二次電池
WO2023153346A1 (ja) * 2022-02-08 2023-08-17 住友化学株式会社 固体リチウム二次電池用正極活物質及び固体リチウム二次電池用正極活物質の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056661A (ja) 2012-09-11 2014-03-27 Toyota Motor Corp 硫化物固体電解質
JP2014116149A (ja) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd リチウムイオン二次電池及びリチウム二次電池用正極活物質の製造方法
WO2016017783A1 (ja) * 2014-07-31 2016-02-04 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
JP2016024968A (ja) * 2014-07-22 2016-02-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
JP2017107827A (ja) * 2015-11-27 2017-06-15 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
WO2018043382A1 (ja) * 2016-08-30 2018-03-08 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
CN110649252A (zh) * 2019-11-01 2020-01-03 贵州中伟资源循环产业发展有限公司 锂电池三元材料LiNi0.8Co0.1Mn0.1O2表面包覆Li2ZrO3的方法
CN110690416A (zh) * 2019-06-10 2020-01-14 浙江超威创元实业有限公司 一种锂二次电池用高镍三元正极材料及其制备方法
JP2020033234A (ja) * 2018-08-30 2020-03-05 住友金属鉱山株式会社 遷移金属複合水酸化物の製造方法、遷移金属複合水酸化物、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質
JP2020100294A (ja) 2018-12-21 2020-07-02 本田技研工業株式会社 移動体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056661A (ja) 2012-09-11 2014-03-27 Toyota Motor Corp 硫化物固体電解質
JP2014116149A (ja) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd リチウムイオン二次電池及びリチウム二次電池用正極活物質の製造方法
JP2016024968A (ja) * 2014-07-22 2016-02-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
WO2016017783A1 (ja) * 2014-07-31 2016-02-04 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
JP2017107827A (ja) * 2015-11-27 2017-06-15 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
WO2018043382A1 (ja) * 2016-08-30 2018-03-08 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP2020033234A (ja) * 2018-08-30 2020-03-05 住友金属鉱山株式会社 遷移金属複合水酸化物の製造方法、遷移金属複合水酸化物、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質
JP2020100294A (ja) 2018-12-21 2020-07-02 本田技研工業株式会社 移動体
CN110690416A (zh) * 2019-06-10 2020-01-14 浙江超威创元实业有限公司 一种锂二次电池用高镍三元正极材料及其制备方法
CN110649252A (zh) * 2019-11-01 2020-01-03 贵州中伟资源循环产业发展有限公司 锂电池三元材料LiNi0.8Co0.1Mn0.1O2表面包覆Li2ZrO3的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NARUMI OHTA ET AL.: "LiNb03-coated LiCo02 as cathode material for all solid-state lithium secondary batteries", ELECTROCHEMISTRY COMMUNICATIONS, vol. 9, 2007, pages 1486 - 1490, XP002721427, DOI: 10.1016/j.elecom.2007.02.008
SEITARO ITO ET AL.: "A rocking chair type all-solid-state lithium ion battery adopting Li20-Zr02 coated LiNiO. 8Co0. 15A10. 0502 and a sulfide based electrolyte", JOURNAL OF POWER SOURCES, vol. 248, 2014, pages 943 - 950, XP055602755, DOI: 10.1016/j.jpowsour.2013.10.005

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023111232A1 (en) * 2021-12-17 2023-06-22 Umicore Lithium nickel-based composite oxide as a positive electrode active material for rechargeable solid-state batteries
WO2023153343A1 (ja) * 2022-02-08 2023-08-17 住友化学株式会社 リチウム二次電池用正極活物質粉末、電極および固体リチウム二次電池
WO2023153346A1 (ja) * 2022-02-08 2023-08-17 住友化学株式会社 固体リチウム二次電池用正極活物質及び固体リチウム二次電池用正極活物質の製造方法

Also Published As

Publication number Publication date
JP2021197209A (ja) 2021-12-27
US20230187628A1 (en) 2023-06-15
EP4163997A1 (en) 2023-04-12
CN115885397A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
JP2021103689A (ja) 非水系電解質二次電池用正極活物質とその製造方法
WO2018043669A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2018123951A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2021251416A1 (ja) リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池
WO2022025212A1 (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
US11594726B2 (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2020177860A (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムニッケルマンガンコバルト含有複合酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2020027158A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
EP4033566A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP2020027700A (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JPWO2020171111A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JPWO2020171126A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JPWO2020171125A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2020033234A (ja) 遷移金属複合水酸化物の製造方法、遷移金属複合水酸化物、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質
JP7177395B2 (ja) 全固体リチウムイオン二次電池用正極活物質および全固体リチウムイオン二次電池
JP7274125B2 (ja) 全固体リチウムイオン二次電池用正極活物質および全固体リチウムイオン二次電池
EP3951947A1 (en) Positive-electrode active material for lithium-ion secondary cell, method for manufacturing positive-electrode active material, and lithium-ion secondary cell
JP7272134B2 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7272140B2 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7205198B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP2022038350A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2021005548A (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2023228958A1 (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
WO2023228959A1 (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
JP7439473B2 (ja) リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021822346

Country of ref document: EP

Effective date: 20230109