WO2021251323A1 - Array substrate and display device - Google Patents

Array substrate and display device Download PDF

Info

Publication number
WO2021251323A1
WO2021251323A1 PCT/JP2021/021512 JP2021021512W WO2021251323A1 WO 2021251323 A1 WO2021251323 A1 WO 2021251323A1 JP 2021021512 W JP2021021512 W JP 2021021512W WO 2021251323 A1 WO2021251323 A1 WO 2021251323A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switching
array substrate
source signal
input
switching elements
Prior art date
Application number
PCT/JP2021/021512
Other languages
French (fr)
Japanese (ja)
Inventor
学 棚原
修造 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2021251323A1 publication Critical patent/WO2021251323A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • This disclosure relates to an array board and a display device.
  • a pair of electrode substrates on which transparent electrodes are arranged are bonded together by a sealing material arranged on the outer edge of the display area of the substrate, and the liquid crystal is enclosed in an internal space formed by the sealing material. It is composed of.
  • the liquid crystal display device includes an active matrix type device and a passive matrix type device.
  • the active matrix type liquid crystal display device has a TFT array substrate in which thin film transistors (TFTs), which are semiconductor switching elements, are arranged in a matrix.
  • TFTs thin film transistors
  • the TFT array substrate and the facing substrate are bonded to each other via a sealing material, and a liquid crystal display is enclosed in the internal space between the TFT array substrate and the facing substrate.
  • a gate wiring, a source wiring, and a pixel electrode are arranged in the display area of the TFT array board.
  • the gate signal propagating through the gate wiring controls on and off of the TFT, which is a semiconductor switching element.
  • the source signal propagating through the source wiring is supplied to the pixel electrodes via a TFT controlled on.
  • a display voltage corresponding to the source signal is applied between the counter electrode and the pixel electrode to drive the liquid crystal.
  • the gate signal propagating the gate wiring and the source signal propagating the source wiring are supplied from the driver IC.
  • lead wiring is arranged from the driver IC to the gate wiring and the source wiring. Further, a sealing material and common wiring are arranged in the frame area. By this common wiring, a common signal for giving a common potential is propagated to the display area.
  • the present disclosure has been made in view of the above-mentioned problems, and an object thereof is to provide a technique capable of suppressing deterioration of display quality due to a deviation in the rising edge of a source signal.
  • the array substrate according to the present disclosure includes a substrate in which a plurality of array-shaped pixels are defined, and a plurality of semiconductor switching elements arranged corresponding to the plurality of pixels and having different timings at which source signals are input. After the source signal is input to all of the plurality of semiconductor switching elements, the gate signal is input to the plurality of semiconductor switching elements.
  • the gate signal is input to the plurality of semiconductor switching elements. As a result, it is possible to suppress deterioration of display quality due to the deviation of the rising edge of the source signal.
  • FIG. 2 It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 2.
  • FIG. 2 is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 2.
  • FIG. It is a figure which shows the operation timing of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 2.
  • FIG. It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 3.
  • FIG. It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 3.
  • FIG. 4 shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 4.
  • FIG. It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 4.
  • FIG. It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 5.
  • FIG. 1 is a plan view showing the configuration of the TFT array substrate 100, which is the array substrate of the liquid crystal display device according to the first embodiment.
  • the TFT array substrate 100 includes a substrate 1 in which a plurality of array-shaped pixels 50, each of which is a unit for displaying an image, are defined.
  • the TFT array substrate 100 includes a plurality of TFTs 51 which are a plurality of semiconductor switching elements arranged corresponding to the pixels 50, and the plurality of TFTs 51 control on and off of supply of a display voltage to be applied to the liquid crystal display. ..
  • the TFT array substrate 100 is a substrate in which the TFTs 51 are arranged in an array like the pixels 50.
  • the TFT array substrate 100 has a substrate 1 on which the TFT 51 is arranged.
  • the substrate 1 is composed of, for example, a glass substrate, a semiconductor substrate, or a resin substrate.
  • the TFT array substrate 100 defines an array region in which the TFTs 51 are arranged in an array, and a frame region provided so as to surround the array region.
  • the array area corresponds to a display area 41 (a region surrounded by a dotted line in FIG. 1) which is an area for displaying an image, and the frame area surrounds the display area 41.
  • the frame region 42 corresponds to the frame region 42 (the region of the TFT array substrate 100 excluding the region surrounded by the dotted line in FIG. 1) provided in.
  • a plurality of gate wirings (scanning signal lines) 43 and a plurality of source wirings (display signal lines) 44 are arranged in the display area 41 of the TFT array substrate 100.
  • the plurality of gate wirings 43 are provided in parallel with each other, the plurality of source wirings 44 are provided in parallel with each other, and the gate wirings 43 and the source wirings 44 are arranged so as to intersect each other.
  • the area surrounded by the adjacent gate wiring 43 and the adjacent source wiring 44 is the pixel 50. Therefore, in the display area 41, the pixels 50 are arranged in a matrix.
  • the frame region 42 of the TFT array substrate 100 includes a scanning signal drive circuit 46a, a display signal drive circuit 46b, a wiring conversion unit 45, lead wiring 47a1, 47a2, 47b1, 47b2, and external connection terminals 48a1, 48a2, 48b1, 48b2. Etc. are arranged.
  • the gate wiring 43 extends from the display area 41 to the vicinity of the boundary between the display area 41 and the frame area 42.
  • the gate wiring 43 is drawn out to the end of the TFT array substrate 100 by being connected to the lead wiring 47a1 formed of the same material as the gate wiring 43 in the vicinity of the boundary. Further, each gate wiring 43 is electrically connected to the scanning signal drive circuit 46a via each external connection terminal 48a1 connected to the end of each lead-out wiring 47a1 at the end of the TFT array substrate 100.
  • the source wiring 44 is electrically connected to the lead wiring 47b1 formed of the same material as the gate wiring 43 in the same layer via the wiring conversion unit 45. Further, each source wiring 44 is electrically connected to the display signal drive circuit 46b via each external connection terminal 48b1 connected to the end of each lead-out wiring 47b1 at the end of the TFT array board 100.
  • the scanning signal drive circuit 46a is electrically connected to the external wiring 49a via the lead wiring 47a2 and the external connection terminal 48a2.
  • the display signal drive circuit 46b is electrically connected to the external wiring 49b via the lead-out wiring 47b2 and the external connection terminal 48b2.
  • the external wirings 49a and 49b are wiring boards such as, for example, an FPC (Flexible Printed Circuit).
  • the scanning signal drive circuit 46a supplies a gate signal (scanning signal) to the gate wiring 43 based on a control signal from the outside.
  • the gate wiring 43 is sequentially selected by this gate signal.
  • the display signal drive circuit 46b supplies a source signal (display signal) to the source wiring 44 based on an external control signal and display data. As a result, the display voltage corresponding to the display data can be supplied to each pixel 50.
  • At least one TFT 51 is arranged in the pixel 50.
  • the TFT 51 is arranged near the intersection of the source wiring 44 and the gate wiring 43.
  • the TFT 51 which is a semiconductor switching element, is turned on by the gate signal from the gate wiring 43.
  • the display potential corresponding to the source signal of the source wiring 44 is applied (supplied) to the pixel electrode connected to the drain electrode of the turned-on TFT 51.
  • the pixel electrode having a flat plate-shaped electrode is arranged opposite to a common electrode (counter electrode) having a comb-shaped electrode or a slit electrode via an insulating film.
  • a common potential is given to the common electrode (counter electrode), and a fringe electric potential corresponding to the display voltage (potential difference between the display potential and the common potential) is generated between the pixel electrode and the common electrode (counter electrode).
  • the detailed configuration of the pixel 50 will be described later.
  • an alignment film 61 is arranged on the surface of the above-mentioned TFT array substrate 100.
  • the facing substrate 60 is arranged on the alignment film 61 side of the TFT array substrate 100 so as to face the TFT array substrate 100.
  • the facing substrate 60 is, for example, a color filter substrate, and is arranged on the visual side of the liquid crystal display device.
  • a color filter 64, a black matrix (BM) 63, an alignment film 61, and the like are arranged on the facing substrate 60.
  • a liquid crystal layer 62 (without hatching in FIG. 2) is sandwiched between the TFT array substrate 100 and the facing substrate 60. That is, a liquid crystal display is introduced between the TFT array substrate 100 and the facing substrate 60.
  • a polarizing plate 65 is provided on each of the outer surfaces of the TFT array substrate 100 and the facing substrate 60.
  • a liquid crystal display panel is configured by the above components.
  • a backlight unit 67 is disposed on the back surface side of the TFT array substrate 100, which is the non-visual side of the liquid crystal display device, via an optical film 66 such as a retardation plate.
  • the liquid crystal display panel and peripheral members such as the optical film 66 and the backlight unit 67 are appropriately housed in a frame (not shown) made of resin, metal, or the like.
  • the liquid crystal display device according to the first embodiment is configured as described above.
  • the liquid crystal oriented by the alignment film 61 is driven. That is, the orientation direction of the liquid crystal display between the TFT array substrate 100 and the facing substrate 60 changes.
  • the polarization state of the light passing through the liquid crystal layer 62 changes. That is, the polarized light of the light that has passed through the polarizing plate 65 and is linearly polarized changes due to the change in the orientation direction of the liquid crystal of the liquid crystal layer 62.
  • the light from the backlight unit 67 is linearly polarized by the polarizing plate 65 on the TFT array substrate 100 side.
  • the amount of light passing through the polarizing plate 65 on the opposite substrate 60 side changes depending on the change in the polarization state. That is, among the transmitted light transmitted from the backlight unit 67 through the liquid crystal display panel, the amount of light passing through the polarizing plate 65 on the viewing side changes depending on the change in the polarization state of the liquid crystal layer 62 and the orientation direction of the liquid crystal. ..
  • the orientation direction of the liquid crystal changes depending on the display voltage between the pixel electrode and the counter electrode. Therefore, by controlling the display voltage, the amount of light passing through the polarizing plate 65 on the visual recognition side can be changed. That is, a desired image can be displayed by changing the display voltage for each pixel 50.
  • FIG. 3 is a plan view showing a pixel configuration in the vicinity of the central portion of the display region 41 of the TFT array substrate 100 according to the first embodiment
  • FIG. 4 is a cross-sectional configuration along the A1-A2 cross-sectional line in FIG. It is sectional drawing which shows.
  • a gate wiring 43 connected to the gate electrode of the TFT 51 is arranged on a substrate 1 made of an insulating material such as a glass substrate.
  • a part of the gate wiring 43 is arranged so as to form a gate electrode.
  • the gate electrode and the gate wiring 43 are formed of a refractory metal such as Cr, Al, Ta, Ti, Mo, W, Ni, Cu, Au, Ag, a low resistance metal, or an alloy film containing these as a main component, or an alloy film containing these as a main component. It is formed by a first conductive film made of these laminated films.
  • the first conductive film is covered with a first insulating film 8 serving as a gate insulating film, and a semiconductor layer 3 is disposed on the first insulating film 8.
  • the semiconductor layer 3 is arranged on the first insulating film 8 so as to overlap the gate wiring 43 in a plan view, and is formed of, for example, amorphous silicon, polycrystalline silicon, or the like.
  • An ohmic contact film 4 doped with conductive impurities is selectively disposed on the semiconductor layer 3.
  • the ohmic contact film 4 is arranged on almost the entire upper surface of the semiconductor layer 3 excluding the channel region of the TFT 51.
  • the region of the semiconductor layer 3 corresponding to the ohmic contact film 4 is a source region or a drain region.
  • the region of the semiconductor layer 3 corresponding to the ohmic contact film 4 on the left side of FIG. 4, which overlaps with the gate electrode (gate wiring 43), is the source region.
  • the ohmic contact film 4 is not arranged on the channel region of the semiconductor layer 3.
  • the ohmic contact film 4 is formed of, for example, n-type amorphous silicon, n-type polycrystalline silicon, or the like, which is heavily doped with impurities such as phosphorus (P).
  • a source electrode 53 and a drain electrode 54 are arranged on the ohmic contact film 4. Specifically, the source electrode 53 is arranged on the ohmic contact film 4 in the source region, and the drain electrode 54 is arranged on the ohmic contact film 4 in the drain region. As described above, in the liquid crystal display devices of FIGS. 3 and 4, the channel etch type TFT 51 is configured.
  • the source electrode 53 and the drain electrode 54 are arranged so as to extend to the outside of the channel region of the semiconductor layer 3. That is, the source electrode 53 and the drain electrode 54 are not arranged on the channel region of the semiconductor layer 3 like the ohmic contact film 4. Further, the source electrode 53 extends to the outside of the channel region of the semiconductor layer 3 and is connected to the source wiring 44. That is, the source wiring 44 is connected to the source electrode 53. In the example of FIG. 3, the source wiring 44 is arranged so as to extend linearly in a direction intersecting the gate wiring 43 in a plan view. As a result, the portion of the source wiring 44 that is branched on the intersection with the gate wiring 43 and extends along the gate wiring 43 becomes the source electrode 53.
  • the drain electrode 54 extends outside the channel region of the semiconductor layer 3 and is electrically connected to the pixel electrode 55.
  • the source electrode 53, the drain electrode 54, and the source wiring 44 include, for example, a metal film containing Al as a main component as an upper layer, and Cr, Ta, Ti, Mo, W, Ni, Cu, as a lower layer. It is a second conductive film having a plurality of layers including a refractory metal such as Au or Ag, a low resistance metal, or an alloy film containing these as a main component. That is, the source wiring 44 in FIG. 4 is, for example, a metal pattern formed in the same layer as the source electrode 53 and the drain electrode 54 with the same material.
  • the pixel electrode 55 is arranged so as to be directly overlapped on the drain electrode 54. That is, the lower surface of the pixel electrode 55 (lower surface of FIG. 4) is arranged so as to be in direct contact with the upper surface of the drain electrode 54 (upper surface of FIG. 4).
  • the pixel electrode 55 extends from above the drain electrode 54 into the pixel 50, and as shown in FIG. 3, covers almost the entire region surrounded by the source wiring 44 and the gate wiring 43 constituting the pixel 50. It is arranged. A part of the pixel electrode 55 configured in this way is arranged so as to overlap the drain electrode 54 in a plan view.
  • the pixel electrode 55 is a transparent conductive film pattern formed of a transparent conductive film such as ITO (Indium Tin Oxide).
  • the pixel electrode 55 is arranged so as to be directly overlapped with the upper layer of the drain electrode 54 without interposing an insulating film.
  • a contact hole for electrically connecting the pixel electrode 55 to the drain electrode 54 becomes unnecessary.
  • the pixels 50 can be arranged without providing a contact hole area for the connection between the drain electrode 54 and the pixel electrodes 55, and as a result, the aperture ratio of the pixels 50 can be increased.
  • the transparent conductive film pattern of the pixel electrode 55 As the transparent conductive film pattern of the pixel electrode 55, the transparent conductive film pattern in the portion directly overlapping the drain electrode 54 and the region surrounded by the source wiring 44 and the gate wiring 43 are arranged on almost the entire surface.
  • the transparent conductive film pattern was integrally formed. Therefore, the former transparent conductive film pattern and the latter transparent conductive film pattern are collectively referred to as a pixel electrode 55.
  • the former transparent conductive film pattern, which does not substantially function as the pixel electrode 55 is regarded as another transparent conductive film pattern formed in the same layer by the transparent conductive film which is the same material as the pixel electrode 55. It may be distinguished from the transparent conductive film pattern of.
  • the transparent conductive film pattern that substantially functions as the pixel electrode 55
  • the transparent conductive film formed in the same layer by the transparent conductive film which is the same material as the pixel electrode 55. It can be interpreted as a membrane pattern. Therefore, the latter transparent conductive film pattern may be interpreted as the transparent conductive film pattern of the pixel electrode 55 without distinguishing the pixel electrode 55.
  • a second insulating film 9 is arranged as an upper insulating film that covers the pixel electrode 55 (transparent conductive film pattern).
  • the second insulating film 9 covers the TFT 51 and functions as a protective film for the TFT 51.
  • the second insulating film 9 is formed of, for example, an insulating film such as silicon nitride or silicon oxide, a coating type (formed by coating) insulating film, or a laminated film thereof.
  • the counter electrode 56 is arranged on the second insulating film 9.
  • the counter electrode 56 is arranged on the pixel electrode 55 via the second insulating film 9, and the counter electrode 56 has a slit 59 for generating a fringe electric field between the counter electrode 56 and the pixel electrode 55.
  • a liquid crystal display device in FFS (Fringe Field Switching) mode can be configured by generating a fringe electric field between the pixel electrode 55 and the counter electrode 56 to drive the liquid crystal display.
  • the second insulating film 9 Since the counter electrode 56 and the pixel electrode 55 are insulated from each other by the second insulating film 9, the second insulating film 9 also functions as an interlayer insulating film, and the counter electrode 56 and the pixel electrode 55
  • the electric capacity portion 52 (FIG. 3) having a holding capacity is formed at the portion where the above is superimposed. That is, the plurality of TFTs 51 are connected to the plurality of electric capacity units 52, respectively.
  • the facing electrodes 56 of the pixels 50 adjacent to each other with the gate wiring 43 interposed therebetween are connected to each other and integrally formed. Specifically, the facing electrodes 56 of the pixels 50 adjacent to each other with the gate wiring 43 interposed therebetween are connected by the facing electrode connecting portion 57.
  • the counter electrode connecting portion 57 of the counter electrode 56 is arranged so as to straddle the gate wiring 43 in a region that does not overlap with the source wiring 44 or the TFT 51. That is, the counter electrode 56 is formed so as to overlap at least a part of the gate wiring 43.
  • the counter electrode 56 and the counter electrode connecting portion 57 are transparent conductive film patterns integrally formed by a transparent conductive film such as ITO.
  • the timing (input timing) at which the source signal is input to the plurality of TFTs 51 is different for the EMI countermeasure.
  • the input timing of the first source signal 72 and the input timing of the second source signal 73 are different.
  • the input timing corresponds to the output timing at which the display signal drive circuit 46b outputs the source signal.
  • FIG. 5 is a diagram showing a display area 41 driven by source signals having different input timings
  • FIG. 6 is a diagram showing input timings of gate signals and source signals.
  • the display area 41 of FIG. 5 includes a first display area 41a and a second display area 41b.
  • the first display area 41a is an area driven by the gate signal 71 and the first source signal 72
  • the second display area 41b in FIG. 5 is an area driven by the gate signal 71 and the second source signal 73. Is.
  • the first source signal 72 rises first, and then the second source signal 73 rises.
  • the gate signal is input to the plurality of TFTs 51 and the gate signal 71 rises. After that, the gate signal 71, the first source signal 72, and the second source signal 73 go down in this order.
  • the gate signal is input to the plurality of TFTs 51. Is entered.
  • the pixel 50 can be charged without being affected by the deviation of the input timings of the first source signal 72 and the second source signal 73, so that the first display area 41a and the first display area 41a can be charged. 2 It is possible to suppress the occurrence of a brightness difference between the display area 41b and the display area 41b. That is, since the display unevenness due to the deviation of the rising edge of the source signal can be suppressed, the deterioration of the display quality can be suppressed.
  • FIG. 7 is a diagram showing a display region 41 driven by source signals having different input timings
  • FIG. 8 is a plan view showing the vicinity of the display signal drive circuit 46b
  • FIG. 9 is a plan view of a gate signal and a source signal. It is a figure which shows the input timing.
  • the display area 41 of FIG. 7 includes a first display area 41a to which the first source signal 72 is input and a second display area 41c to which the second source signal 73 whose input timing is different from that of the first source signal 72 is input. include.
  • the first source signal 72 and the second source signal 73 are alternately output for each of the two external connection terminals 48b1 of the display signal drive circuit 46b.
  • the TFT 51 in the first display area 41a to which the first source signal 72 is input from the external connection terminals 48b1 in the first and second rows from the left end of FIG. 8 is referred to as the first TFT 51.
  • the TFT 51 of the first display area 41a to which the first source signal 72 is input from the external connection terminals 48b1 in the fifth and sixth rows from the left end of FIG. 8 is referred to as a second TFT 51.
  • the TFT 51 in the second display area 41c to which the second source signal 73 is input from the external connection terminals 48b1 in the third and fourth rows from the left end of FIG. 8 is referred to as a third TFT 51.
  • the first TFT 51, the second TFT 51, and the third TFT 51 are a first semiconductor switching element, a second semiconductor switching element, and a third semiconductor switching element.
  • the first source signal 72 is input to the first TFT 51 in the first display area 41a and the second TFT 51 in the first display area 41a. Therefore, the input timing of the source signal in the first TFT 51 and the input timing of the source signal in the second TFT 51 are the same.
  • the first source signal 72 is input to the first TFT 51 of the first display area 41a, and the second source signal 73 is input to the third TFT 51 of the second display area 41c. Therefore, the input timing of the source signal in the first TFT 51 and the input timing of the source signal in the third TFT 51 are different. Further, the third TFT 51 is arranged between the first TFT 51 and the second TFT 51, and the first display area 41a and the second display area 41c are arranged alternately.
  • the number of rows of the first TFT 51, the second TFT 51, and the third TFT 51 is 2, and the first display area 41a and the second display area 41c are arranged alternately.
  • the width of is relatively small. As a result, display unevenness due to the deviation of the rising edge of the source signal is less likely to be visually recognized, and deterioration of display quality can be suppressed.
  • the rising timing of the gate signal 71 is set before the first source signal 72 and the second source signal 73 as shown in FIG. 9, and the charging time of each pixel is lengthened. You may. According to such timing, even high resolution can be supported.
  • the number of rows of the first TFT 51, the second TFT 51, and the third TFT 51 is 2, but the same effect as described above can be obtained even when the number is 1 or more and 10 or less.
  • FIG. 10 is a diagram showing a display area 41 driven by source signals having different input timings
  • FIG. 11 is a plan view showing a detailed configuration of the display area 41.
  • the display area 41 of FIG. 10 includes a first display area 41a to which the first source signal 72 is input and a second display area 41d to which the second source signal 73 whose input timing is different from that of the first source signal 72 is input. include.
  • the difference in the input timing of the source signal in the plurality of TFTs 51 is compensated by the difference in the charging characteristics of the plurality of electric capacitance units 52 between the plurality of counter electrodes 56 and the plurality of pixel electrodes 55. ing.
  • the difference in the charging characteristics of the plurality of electric capacity units 52 corresponds to the difference in the channel width W of the plurality of TFTs 51.
  • the channel width W of the TFT 51d of the second display region 41d driven by the second source signal 73 is larger than the channel width W of the TFT 51a of the first display region 41a driven by the first source signal 72. It's getting bigger.
  • the delay of the second source signal 73 with respect to the first source signal 72 is compensated by the channel width W of the TFTs 51a and 51d. According to such a configuration, the rising edge of the second source signal 73 becomes steeper than the rising edge of the first source signal 72, and the display unevenness due to the deviation of the rising edge of the source signal becomes difficult to be visually recognized, so that the display quality is deteriorated. It can be suppressed.
  • the rising timing of the gate signal 71 is set before the first source signal 72 and the second source signal 73, and each pixel is set.
  • the charging time may be lengthened. According to such timing, even high resolution can be supported.
  • FIG. 12 is a diagram showing a display area 41 driven by source signals having different input timings
  • FIG. 13 is a plan view showing a detailed configuration of the display area 41.
  • the display area 41 of FIG. 12 includes a first display area 41a to which the first source signal 72 is input and a second display area 41e to which the second source signal 73 whose input timing is different from that of the first source signal 72 is input. include.
  • the difference in the input timing of the source signal in the plurality of TFTs 51 is compensated by the difference in the charging characteristics of the plurality of electric capacity units 52 as in the third embodiment.
  • the difference in the charging characteristics of the plurality of electric capacity units 52 corresponds to the difference in the holding capacity of the plurality of electric capacity units 52.
  • the overlapping area between the pixel electrode 55e of the second display region 41e driven by the second source signal 73 and the counter electrode 56 is the pixel of the first display region 41a driven by the first source signal 72. It is smaller than the overlapping area of the electrode 55a and the facing electrode 56.
  • the holding capacity of the electric capacity unit 52e of the second display area 41e is smaller than the holding capacity of the electric capacity part 52a of the first display area 41a.
  • the present invention is not limited to this, and for example, the adjustment is performed by adjusting the thickness of the second insulating film 9 which is an interlayer insulating film. You may be broken.
  • the delay of the second source signal 73 with respect to the first source signal 72 is compensated by the holding capacity of the electric capacity units 52a and 52e. According to such a configuration, the rising edge of the second source signal 73 becomes steeper than the rising edge of the first source signal 72, and the display unevenness due to the deviation of the rising edge of the source signal becomes difficult to be visually recognized, so that the display quality is deteriorated. It can be suppressed.
  • the rising timing of the gate signal 71 is set before the first source signal 72 and the second source signal 73, and each pixel is set.
  • the charging time may be lengthened. According to such timing, even high resolution can be supported.
  • FIG. 14 is a diagram showing a display area 41 driven by source signals having different input timings
  • FIG. 15 is a diagram showing input timings of gate signals and source signals.
  • the display area 41 of FIG. 14 includes a first display area 41a to which the first source signal 72 is input and a second display area 41f to which the second source signal 73 whose input timing is different from that of the first source signal 72 is input. include.
  • the difference in the input timing of the source signal in the plurality of TFTs 51 is compensated by the difference in the charging characteristics of the plurality of electric capacity units 52 as in the third embodiment.
  • the difference in the charging characteristics of the plurality of electric capacity units 52 corresponds to the difference in the signal delay due to the plurality of lead wires (plurality of wirings) connected to the plurality of TFTs 51.
  • the width of the lead-out wiring 47b1 of the first display area 41a driven by the first source signal 72 is wider than the width of the lead-out wiring 47b3 of the second display area 41f driven by the second source signal 73. It's getting thinner. As a result, the signal delay due to the lead-out wiring 47b1 in the first display area 41a is larger than the signal delay due to the lead-out wiring 47b3 in the second display area 41f.
  • the adjustment of the signal delay by the wiring is performed by adjusting the resistance of the wiring is described here, the present invention is not limited to this, and for example, the adjustment of the capacity of the wiring may be performed.
  • the delay of the second source signal 73 with respect to the first source signal 72 is compensated by the signal delay of the wiring.
  • the rising edge of the second source signal 73 becomes steeper than the rising edge of the first source signal 72, and the timing and the second become the desired potential of the first source signal 72.
  • the timing at which the desired potential of the two source signals 73 is reached is almost the same. Therefore, it is difficult to visually recognize the display unevenness due to the deviation of the rising edge of the source signal, and it is possible to suppress the deterioration of the display quality.
  • the rising timing of the gate signal 71 is set before the first source signal 72 and the second source signal 73, and each pixel is set.
  • the charging time may be lengthened. Such timing is preferable in that it can handle up to high resolution.
  • FIG. 16 is a diagram showing a display area 41 driven by source signals having different input timings.
  • the display area 41 of FIG. 16 includes a first display area 41a, a second display area 41g, a third display area 41h, and a fourth display area 41i.
  • the region corresponding to the end portion of the array-shaped array of TFT 51 is referred to as an end region, and the region corresponding to the central portion of the array-shaped array of TFT 51 is referred to as a central region.
  • the end region will be described as being the first display region 41a which is the end of the end, but the present invention is not limited to this, and the first display region 41a and the second display which are the entire ends are described.
  • the area may be 41 g.
  • the central region will be described as being the fourth display region 41i, which is the center of the central portion, but the present invention is not limited to this, and the third display region 41h, which is the entire central portion, and It may be the fourth display area 41i.
  • the liquid crystal display device is configured so that source signals are input to a plurality of TFTs 51 in the order from the end region to the center region. That is, the display signal drive circuit 46b according to the sixth embodiment outputs the source signal at different timings in the order of the first display area 41a, the second display area 41g, the third display area 41h, and the fourth display area 41i in FIG. It is configured to output.
  • the display signal drive circuit 46b has a source signal in the reverse order of the above, that is, in the order of the fourth display area 41i, the third display area 41h, the second display area 41g, and the first display area 41a in FIG. May be configured to output. That is, the liquid crystal display device may be configured so that the source signal is input to the plurality of TFTs 51 in the order from the central region to the end region. Even with such a configuration, the same effect as described above can be obtained.
  • the TFT array substrate 100 is used in the liquid crystal display device in the above description, it may be used in a display device such as an optical display device.
  • a TFT array substrate of an electroluminescence display device including a TFT array substrate, a light emitting layer that emits light by applying an electric field on a pixel electrode of the TFT array substrate, an insulating film covering the light emitting layer, and a common electrode.
  • TFT array substrate 100 may be used.
  • TFT array substrate 100 may be used on a TFT array substrate of an electrophoresis type display device or an electron powder fluid type display device in which microcapsules containing white and black pigment particles are driven by an electric field generated by a TFT array substrate and an external circuit.
  • TFT array substrate 100 may be used.
  • the device in which the TFT array substrate 100 is used may be a device other than the display device.
  • the device in which the TFT array substrate 100 is used may be an image sensor for visible light, ultraviolet light, or radiation in which a photoelectric conversion element is provided on the TFT array substrate 100 instead of the pixel electrodes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The purpose of the present invention is to provide a technology capable of suppressing degradation of display quality due to shifting in the rise of a source signal. This array substrate comprises a substrate and a plurality of semiconductor switching elements. On the substrate, a plurality of pixels disposed in an array are regulated. The plurality of semiconductor switching elements are disposed corresponding to the plurality of pixels, and the timings at which the source signal is input differ for the semiconductor switching elements. After the source signal is input into all of the plurality of semiconductor switching elements, a gate signal is input into the plurality of semiconductor switching elements.

Description

アレイ基板及び表示装置Array board and display device
 本開示は、アレイ基板及び表示装置に関する。 This disclosure relates to an array board and a display device.
 液晶表示装置は、通常、それぞれに透明電極が配設された一対の電極基板を、基板の表示領域の外縁に配設されたシール材により貼り合わせ、それによって形成される内部空間に液晶を封入して構成されている。また、液晶表示装置には、アクティブマトリクス型の装置とパッシブマトリクス型の装置とがある。アクティブマトリクス型の液晶表示装置は、半導体スイッチング素子である薄膜トランジスタ(TFT)がマトリクス状に配設されたTFTアレイ基板を有している。TFTアレイ基板と対向基板とは、シール材を介して貼り合わされ、TFTアレイ基板と対向基板との間の内部空間には液晶が封入されている。 In a liquid crystal display device, usually, a pair of electrode substrates on which transparent electrodes are arranged are bonded together by a sealing material arranged on the outer edge of the display area of the substrate, and the liquid crystal is enclosed in an internal space formed by the sealing material. It is composed of. Further, the liquid crystal display device includes an active matrix type device and a passive matrix type device. The active matrix type liquid crystal display device has a TFT array substrate in which thin film transistors (TFTs), which are semiconductor switching elements, are arranged in a matrix. The TFT array substrate and the facing substrate are bonded to each other via a sealing material, and a liquid crystal display is enclosed in the internal space between the TFT array substrate and the facing substrate.
 TFTアレイ基板の表示領域には、ゲート配線と、ソース配線と、画素電極とが配設される。ゲート配線を伝播するゲート信号は、半導体スイッチング素子であるTFTのオン及びオフを制御する。ソース配線を伝播するソース信号は、オンに制御されたTFTを介して画素電極に供給される。画素電極にソース信号が供給されると、対向電極と画素電極との間にソース信号に応じた表示電圧が印加され、液晶が駆動する。ゲート配線を伝播するゲート信号と、ソース配線を伝播するソース信号とは、ドライバICから供給される。表示領域の外側の額縁領域には、ドライバICからゲート配線及びソース配線まで引き出し配線が配設されている。さらに、額縁領域には、シール材及び共通配線が配設される。この共通配線によって、共通電位を与えるための共通信号が表示領域に伝播される。 A gate wiring, a source wiring, and a pixel electrode are arranged in the display area of the TFT array board. The gate signal propagating through the gate wiring controls on and off of the TFT, which is a semiconductor switching element. The source signal propagating through the source wiring is supplied to the pixel electrodes via a TFT controlled on. When the source signal is supplied to the pixel electrode, a display voltage corresponding to the source signal is applied between the counter electrode and the pixel electrode to drive the liquid crystal. The gate signal propagating the gate wiring and the source signal propagating the source wiring are supplied from the driver IC. In the frame area outside the display area, lead wiring is arranged from the driver IC to the gate wiring and the source wiring. Further, a sealing material and common wiring are arranged in the frame area. By this common wiring, a common signal for giving a common potential is propagated to the display area.
 このような液晶表示装置では、電磁妨害(EMI)対策の一つとして、ソース信号の表示領域への入力タイミングを、当該表示領域を区分した複数の領域間で異ならせる技術が提案されている(例えば特許文献1)。 In such a liquid crystal display device, as one of measures against electromagnetic interference (EMI), a technique has been proposed in which the input timing of a source signal to a display area is different among a plurality of areas in which the display area is divided (). For example, Patent Document 1).
特開2003-233358号公報Japanese Unexamined Patent Publication No. 2003-233358
 しかしながら、EMI対策のために、ソース信号の入力タイミングを複数の領域間で異ならせた場合、ソース信号の立ち上がりのずれにより、表示ムラが視認されてしまうという問題があった。特に環境温度が低温である場合、TFTの能力の低下により、表示ムラが顕著に視認されてしまうという問題があった。 However, when the input timing of the source signal is different between a plurality of areas for EMI countermeasures, there is a problem that display unevenness is visually recognized due to the deviation of the rising edge of the source signal. In particular, when the environmental temperature is low, there is a problem that display unevenness is remarkably visually recognized due to a decrease in the capacity of the TFT.
 そこで、本開示は、上記のような問題点を鑑みてなされたものであり、ソース信号の立ち上がりのずれによる表示品質の低下を抑制可能な技術を提供することを目的とする。 Therefore, the present disclosure has been made in view of the above-mentioned problems, and an object thereof is to provide a technique capable of suppressing deterioration of display quality due to a deviation in the rising edge of a source signal.
 本開示に係るアレイ基板は、アレイ状の複数の画素が規定された基板と、前記複数の画素に対応して配設され、ソース信号が入力されるタイミングが異なる複数の半導体スイッチング素子とを備え、前記複数の半導体スイッチング素子の全てに前記ソース信号が入力された後に、前記複数の半導体スイッチング素子にゲート信号が入力される。 The array substrate according to the present disclosure includes a substrate in which a plurality of array-shaped pixels are defined, and a plurality of semiconductor switching elements arranged corresponding to the plurality of pixels and having different timings at which source signals are input. After the source signal is input to all of the plurality of semiconductor switching elements, the gate signal is input to the plurality of semiconductor switching elements.
 本開示によれば、複数の半導体スイッチング素子の全てにソース信号が入力された後に、複数の半導体スイッチング素子にゲート信号が入力される。これにより、ソース信号の立ち上がりのずれによる表示品質の低下を抑制することができる。 According to the present disclosure, after the source signal is input to all of the plurality of semiconductor switching elements, the gate signal is input to the plurality of semiconductor switching elements. As a result, it is possible to suppress deterioration of display quality due to the deviation of the rising edge of the source signal.
実施の形態1に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 1. FIG. 実施の形態1に係る液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid crystal display device which concerns on Embodiment 1. FIG. 実施の形態1に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 1. FIG. 実施の形態1に係る液晶表示装置のTFTアレイ基板の構成を示す断面図である。It is sectional drawing which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 1. FIG. 実施の形態1に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 1. FIG. 実施の形態1に係る液晶表示装置のTFTアレイ基板の動作タイミングを示す図である。It is a figure which shows the operation timing of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 1. FIG. 実施の形態2に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 2. FIG. 実施の形態2に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 2. FIG. 実施の形態2に係る液晶表示装置のTFTアレイ基板の動作タイミングを示す図である。It is a figure which shows the operation timing of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 2. FIG. 実施の形態3に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 3. FIG. 実施の形態3に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 3. FIG. 実施の形態4に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 4. FIG. 実施の形態4に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 4. FIG. 実施の形態5に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 5. 実施の形態5に係る液晶表示装置のTFTアレイ基板の動作タイミングを示す図である。It is a figure which shows the operation timing of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 5. 実施の形態6に係る液晶表示装置のTFTアレイ基板の構成を示す平面図である。It is a top view which shows the structure of the TFT array substrate of the liquid crystal display device which concerns on Embodiment 6.
 以下に、本開示の好ましい実施の形態を説明する。なお、本開示が以下で説明される実施の形態に限定されるものではない。また、説明の明確化のため、以下の記載及び図面は、適宜、省略及び簡略化がなされている。図面は模式的であり、示された構成要素の正確な大きさなどは反映されていない。なお、各図において同一の符号を付された構成要素は、同一または類似する構成要素を示しており、適宜、重複する説明は省略される。 Hereinafter, preferred embodiments of the present disclosure will be described. It should be noted that the present disclosure is not limited to the embodiments described below. Further, in order to clarify the explanation, the following description and drawings are omitted or simplified as appropriate. The drawings are schematic and do not reflect the exact size of the components shown. In each figure, the components with the same reference numerals indicate the same or similar components, and duplicate description is omitted as appropriate.
 <実施の形態1>
 以下、本実施の形態1に係るアレイ基板を備える表示装置は液晶表示装置であるものとして説明する。図1は、本実施の形態1に係る液晶表示装置のアレイ基板であるTFTアレイ基板100の構成を示す平面図である。
<Embodiment 1>
Hereinafter, the display device including the array substrate according to the first embodiment will be described as being a liquid crystal display device. FIG. 1 is a plan view showing the configuration of the TFT array substrate 100, which is the array substrate of the liquid crystal display device according to the first embodiment.
 図1に示すように、TFTアレイ基板100は、それぞれが画像を表示する単位となるアレイ状の複数の画素50が規定された基板1を備える。TFTアレイ基板100は、画素50に対応して配設された複数の半導体スイッチング素子である複数のTFT51を備え、複数のTFT51は、液晶へ印加すべき表示電圧の供給のオン及びオフを制御する。このようにTFTアレイ基板100は、画素50と同様にTFT51がアレイ状に配列された基板である。 As shown in FIG. 1, the TFT array substrate 100 includes a substrate 1 in which a plurality of array-shaped pixels 50, each of which is a unit for displaying an image, are defined. The TFT array substrate 100 includes a plurality of TFTs 51 which are a plurality of semiconductor switching elements arranged corresponding to the pixels 50, and the plurality of TFTs 51 control on and off of supply of a display voltage to be applied to the liquid crystal display. .. As described above, the TFT array substrate 100 is a substrate in which the TFTs 51 are arranged in an array like the pixels 50.
 上述したように、TFTアレイ基板100は、TFT51が配設された基板1を有している。基板1は、例えば、ガラス基板や半導体基板、樹脂基板により構成される。TFTアレイ基板100には、TFT51がアレイ状に配列された領域であるアレイ領域と、アレイ領域を囲むように設けられた額縁領域とが規定されている。液晶表示装置などの表示装置においては、上記アレイ領域は、画像を表示する領域である表示領域41(図1の点線で囲まれる領域)に対応し、上記額縁領域は、表示領域41を囲むように設けられた額縁領域42(TFTアレイ基板100のうち図1の点線で囲まれる領域を除いた領域)に対応する。 As described above, the TFT array substrate 100 has a substrate 1 on which the TFT 51 is arranged. The substrate 1 is composed of, for example, a glass substrate, a semiconductor substrate, or a resin substrate. The TFT array substrate 100 defines an array region in which the TFTs 51 are arranged in an array, and a frame region provided so as to surround the array region. In a display device such as a liquid crystal display device, the array area corresponds to a display area 41 (a region surrounded by a dotted line in FIG. 1) which is an area for displaying an image, and the frame area surrounds the display area 41. Corresponds to the frame region 42 (the region of the TFT array substrate 100 excluding the region surrounded by the dotted line in FIG. 1) provided in.
 TFTアレイ基板100の表示領域41には、複数のゲート配線(走査信号線)43と、複数のソース配線(表示信号線)44とが配設されている。複数のゲート配線43は互いに平行に設けられ、複数のソース配線44は互いに平行に設けられ、ゲート配線43とソース配線44とは互いに交差するように配設されている。隣り合うゲート配線43と、隣り合うソース配線44とで囲まれた領域が画素50となる。したがって、表示領域41では、画素50がマトリクス状に配列される。 A plurality of gate wirings (scanning signal lines) 43 and a plurality of source wirings (display signal lines) 44 are arranged in the display area 41 of the TFT array substrate 100. The plurality of gate wirings 43 are provided in parallel with each other, the plurality of source wirings 44 are provided in parallel with each other, and the gate wirings 43 and the source wirings 44 are arranged so as to intersect each other. The area surrounded by the adjacent gate wiring 43 and the adjacent source wiring 44 is the pixel 50. Therefore, in the display area 41, the pixels 50 are arranged in a matrix.
 TFTアレイ基板100の額縁領域42には、走査信号駆動回路46a、表示信号駆動回路46b、配線変換部45、引き出し配線47a1,47a2,47b1,47b2、及び、外部接続端子48a1,48a2,48b1,48b2などが配設されている。 The frame region 42 of the TFT array substrate 100 includes a scanning signal drive circuit 46a, a display signal drive circuit 46b, a wiring conversion unit 45, lead wiring 47a1, 47a2, 47b1, 47b2, and external connection terminals 48a1, 48a2, 48b1, 48b2. Etc. are arranged.
 ゲート配線43は、表示領域41から表示領域41と額縁領域42との境界付近まで延設されている。ゲート配線43は、当該境界付近においてゲート配線43と同一材料により形成された引き出し配線47a1と接続されることによって、TFTアレイ基板100の端部まで引き出される。また、各ゲート配線43は、TFTアレイ基板100の端部で各引き出し配線47a1の端部に接続された各外部接続端子48a1を介して走査信号駆動回路46aと電気的に接続される。 The gate wiring 43 extends from the display area 41 to the vicinity of the boundary between the display area 41 and the frame area 42. The gate wiring 43 is drawn out to the end of the TFT array substrate 100 by being connected to the lead wiring 47a1 formed of the same material as the gate wiring 43 in the vicinity of the boundary. Further, each gate wiring 43 is electrically connected to the scanning signal drive circuit 46a via each external connection terminal 48a1 connected to the end of each lead-out wiring 47a1 at the end of the TFT array substrate 100.
 ソース配線44は、ゲート配線43と同一材料により同層に形成された引き出し配線47b1と配線変換部45を介して電気的に接続される。また、各ソース配線44は、TFTアレイ基板100の端部で各引き出し配線47b1の端部に接続された各外部接続端子48b1などを介して表示信号駆動回路46bと電気的に接続される。 The source wiring 44 is electrically connected to the lead wiring 47b1 formed of the same material as the gate wiring 43 in the same layer via the wiring conversion unit 45. Further, each source wiring 44 is electrically connected to the display signal drive circuit 46b via each external connection terminal 48b1 connected to the end of each lead-out wiring 47b1 at the end of the TFT array board 100.
 走査信号駆動回路46aは、引き出し配線47a2及び外部接続端子48a2を介して外部配線49aと電気的に接続されている。表示信号駆動回路46bは、引き出し配線47b2及び外部接続端子48b2を介して外部配線49bと電気的に接続されている。外部配線49a,49bは、例えばFPC(Flexible Printed Circuit)などの配線基板である。 The scanning signal drive circuit 46a is electrically connected to the external wiring 49a via the lead wiring 47a2 and the external connection terminal 48a2. The display signal drive circuit 46b is electrically connected to the external wiring 49b via the lead-out wiring 47b2 and the external connection terminal 48b2. The external wirings 49a and 49b are wiring boards such as, for example, an FPC (Flexible Printed Circuit).
 外部からの各種信号は、外部配線49a及び引き出し配線47a2を介して走査信号駆動回路46aと、外部配線49b及び引き出し配線47b2を介して表示信号駆動回路46bとに供給される。走査信号駆動回路46aは外部からの制御信号に基づいて、ゲート信号(走査信号)をゲート配線43に供給する。このゲート信号によって、ゲート配線43が順次選択されていく。表示信号駆動回路46bは外部からの制御信号及び表示データに基づいて、ソース信号(表示信号)をソース配線44に供給する。これにより、表示データに対応する表示電圧を各画素50に供給することができる。 Various signals from the outside are supplied to the scanning signal drive circuit 46a via the external wiring 49a and the lead-out wiring 47a2, and to the display signal drive circuit 46b via the external wiring 49b and the lead-out wiring 47b2. The scanning signal drive circuit 46a supplies a gate signal (scanning signal) to the gate wiring 43 based on a control signal from the outside. The gate wiring 43 is sequentially selected by this gate signal. The display signal drive circuit 46b supplies a source signal (display signal) to the source wiring 44 based on an external control signal and display data. As a result, the display voltage corresponding to the display data can be supplied to each pixel 50.
 画素50内には、少なくとも1つのTFT51が配設されている。例えば、TFT51はソース配線44とゲート配線43との交点近傍に配設される。ゲート配線43からのゲート信号によって、半導体スイッチング素子であるTFT51がオンする。これにより、ソース配線44のソース信号に対応する表示電位が、オンされたTFT51のドレイン電極に接続された画素電極に印加(供給)される。 At least one TFT 51 is arranged in the pixel 50. For example, the TFT 51 is arranged near the intersection of the source wiring 44 and the gate wiring 43. The TFT 51, which is a semiconductor switching element, is turned on by the gate signal from the gate wiring 43. As a result, the display potential corresponding to the source signal of the source wiring 44 is applied (supplied) to the pixel electrode connected to the drain electrode of the turned-on TFT 51.
 平板状電極を有する画素電極は、櫛歯状電極またはスリット電極を有する共通電極(対向電極)と絶縁膜を介して対向配置されている。共通電極(対向電極)には、共通電位が与えられ、画素電極と共通電極(対向電極)との間には、表示電圧(表示電位と共通電位との電位差)に応じたフリンジ電界が生じる。なお、画素50の詳細な構成については、後述する。 The pixel electrode having a flat plate-shaped electrode is arranged opposite to a common electrode (counter electrode) having a comb-shaped electrode or a slit electrode via an insulating film. A common potential is given to the common electrode (counter electrode), and a fringe electric potential corresponding to the display voltage (potential difference between the display potential and the common potential) is generated between the pixel electrode and the common electrode (counter electrode). The detailed configuration of the pixel 50 will be described later.
 次に、本実施の形態1に係る液晶表示装置の全体の断面構成を、図2の断面図を用いて説明する。図2に示すように、上述したTFTアレイ基板100の表面には、配向膜61が配設されている。さらにTFTアレイ基板100の配向膜61側には、対向基板60がTFTアレイ基板100と対向して配置されている。対向基板60は、例えば、カラーフィルター基板であり、液晶表示装置の視認側に配設される。対向基板60には、カラーフィルター64、ブラックマトリクス(Black Matrix:BM)63、及び配向膜61などが配設されている。 Next, the overall cross-sectional configuration of the liquid crystal display device according to the first embodiment will be described with reference to the cross-sectional view of FIG. As shown in FIG. 2, an alignment film 61 is arranged on the surface of the above-mentioned TFT array substrate 100. Further, the facing substrate 60 is arranged on the alignment film 61 side of the TFT array substrate 100 so as to face the TFT array substrate 100. The facing substrate 60 is, for example, a color filter substrate, and is arranged on the visual side of the liquid crystal display device. A color filter 64, a black matrix (BM) 63, an alignment film 61, and the like are arranged on the facing substrate 60.
 TFTアレイ基板100と対向基板60との間には液晶層62(図2ではハッチングを付さず)が狭持される。即ち、TFTアレイ基板100と対向基板60との間には液晶が導入されている。TFTアレイ基板100及び対向基板60の外側の面のそれぞれには、偏光板65が設けられている。以上の構成要素によって、液晶表示パネルが構成される。 A liquid crystal layer 62 (without hatching in FIG. 2) is sandwiched between the TFT array substrate 100 and the facing substrate 60. That is, a liquid crystal display is introduced between the TFT array substrate 100 and the facing substrate 60. A polarizing plate 65 is provided on each of the outer surfaces of the TFT array substrate 100 and the facing substrate 60. A liquid crystal display panel is configured by the above components.
 また、液晶表示装置の反視認側となるTFTアレイ基板100の裏面側には、位相差板などの光学フィルム66を介して、バックライトユニット67が配設されている。そして、液晶表示パネル、並びに、光学フィルム66及びバックライトユニット67などの周辺部材は樹脂や金属などよりなるフレーム(図示省略)内に適宜収納される。本実施の形態1に係る液晶表示装置は以上のように構成される。 Further, a backlight unit 67 is disposed on the back surface side of the TFT array substrate 100, which is the non-visual side of the liquid crystal display device, via an optical film 66 such as a retardation plate. The liquid crystal display panel and peripheral members such as the optical film 66 and the backlight unit 67 are appropriately housed in a frame (not shown) made of resin, metal, or the like. The liquid crystal display device according to the first embodiment is configured as described above.
 画素電極と対向電極との間のフリンジ電界が生じると、配向膜61によって配向されていた液晶が駆動される。即ち、TFTアレイ基板100と対向基板60との間の液晶の配向方向が変化する。これにより、液晶層62を通過する光の偏光状態が変化する。即ち、偏光板65を通過して直線偏光となった光は、液晶層62の液晶の配向方向の変化によって、偏光状態が変化する。具体的にはバックライトユニット67からの光は、TFTアレイ基板100側の偏光板65によって直線偏光になる。この直線偏光が液晶層62を通過することにより、液晶層62の液晶の配向方向に基づいて偏光状態が変化する。 When a fringe electric field is generated between the pixel electrode and the counter electrode, the liquid crystal oriented by the alignment film 61 is driven. That is, the orientation direction of the liquid crystal display between the TFT array substrate 100 and the facing substrate 60 changes. As a result, the polarization state of the light passing through the liquid crystal layer 62 changes. That is, the polarized light of the light that has passed through the polarizing plate 65 and is linearly polarized changes due to the change in the orientation direction of the liquid crystal of the liquid crystal layer 62. Specifically, the light from the backlight unit 67 is linearly polarized by the polarizing plate 65 on the TFT array substrate 100 side. When this linearly polarized light passes through the liquid crystal layer 62, the polarization state changes based on the orientation direction of the liquid crystal of the liquid crystal layer 62.
 偏光状態の変化によって、対向基板60側の偏光板65を通過する光量は変化する。即ち、バックライトユニット67から液晶表示パネルを透過する透過光のうち、視認側の偏光板65を通過する光の光量が、液晶層62での偏光状態の変化、ひいては液晶の配向方向によって変化する。液晶の配向方向は、画素電極と対向電極との間の表示電圧によって変化する。したがって、表示電圧を制御することによって、視認側の偏光板65を通過する光量を変化させることができる。即ち、画素50ごとに表示電圧を変えることによって、所望の画像を表示することができる。 The amount of light passing through the polarizing plate 65 on the opposite substrate 60 side changes depending on the change in the polarization state. That is, among the transmitted light transmitted from the backlight unit 67 through the liquid crystal display panel, the amount of light passing through the polarizing plate 65 on the viewing side changes depending on the change in the polarization state of the liquid crystal layer 62 and the orientation direction of the liquid crystal. .. The orientation direction of the liquid crystal changes depending on the display voltage between the pixel electrode and the counter electrode. Therefore, by controlling the display voltage, the amount of light passing through the polarizing plate 65 on the visual recognition side can be changed. That is, a desired image can be displayed by changing the display voltage for each pixel 50.
 次に、本実施の形態1に係る液晶表示装置のTFT51の配設される表示領域41の詳細構成について図3及び図4を用いて説明する。図3は、実施の形態1に係るTFTアレイ基板100の表示領域41の中央部近傍の画素構成を示した平面図であり、図4は、図3におけるA1-A2断面線に沿った断面構成を示す断面図である。 Next, the detailed configuration of the display area 41 in which the TFT 51 of the liquid crystal display device according to the first embodiment is arranged will be described with reference to FIGS. 3 and 4. FIG. 3 is a plan view showing a pixel configuration in the vicinity of the central portion of the display region 41 of the TFT array substrate 100 according to the first embodiment, and FIG. 4 is a cross-sectional configuration along the A1-A2 cross-sectional line in FIG. It is sectional drawing which shows.
 図3及び図4に示すように、例えば、ガラス基板などの絶縁性材料よりなる基板1上に、TFT51のゲート電極と接続するゲート配線43が配設されている。ここでは、ゲート配線43はその一部がゲート電極を構成するように配設されている。 As shown in FIGS. 3 and 4, for example, a gate wiring 43 connected to the gate electrode of the TFT 51 is arranged on a substrate 1 made of an insulating material such as a glass substrate. Here, a part of the gate wiring 43 is arranged so as to form a gate electrode.
 ゲート電極及びゲート配線43は、例えばCr,Al,Ta,Ti,Mo,W,Ni,Cu,Au,Agなどの高融点金属、低抵抗金属、もしくは、これらを主成分とする合金膜、またはこれらの積層膜からなる第1導電膜によって形成されている。第1導電膜は、ゲート絶縁膜となる第1絶縁膜8によって覆われ、第1絶縁膜8上には半導体層3が配設されている。半導体層3は、平面視においてゲート配線43と重なるように第1絶縁膜8上に配設され、例えば非結晶シリコン、多結晶シリコンなどにより形成されている。 The gate electrode and the gate wiring 43 are formed of a refractory metal such as Cr, Al, Ta, Ti, Mo, W, Ni, Cu, Au, Ag, a low resistance metal, or an alloy film containing these as a main component, or an alloy film containing these as a main component. It is formed by a first conductive film made of these laminated films. The first conductive film is covered with a first insulating film 8 serving as a gate insulating film, and a semiconductor layer 3 is disposed on the first insulating film 8. The semiconductor layer 3 is arranged on the first insulating film 8 so as to overlap the gate wiring 43 in a plan view, and is formed of, for example, amorphous silicon, polycrystalline silicon, or the like.
 半導体層3上には、導電性不純物がドーピングされたオーミックコンタクト膜4が選択的に配設されている。オーミックコンタクト膜4は、TFT51のチャネル領域を除く半導体層3の上面のほぼ全面に配設されている。平面視においてゲート電極と重複する半導体層3のうち、オーミックコンタクト膜4に対応する半導体層3の領域は、ソース領域またはドレイン領域となる。図4の例では、ゲート電極(ゲート配線43)と重複する図4左側のオーミックコンタクト膜4に対応する半導体層3の領域がソース領域となる。そしてゲート電極(ゲート配線43)と重複する図4右側のオーミックコンタクト膜4に対応する半導体層3の領域がドレイン領域となる。半導体層3のうち、ソース領域とドレイン領域とに挟まれた領域がチャネル領域となる。半導体層3のチャネル領域上には、オーミックコンタクト膜4は配設されていない。オーミックコンタクト膜4は、例えば、リン(P)などの不純物が高濃度にドーピングされたn型非結晶シリコンやn型多結晶シリコンなどにより形成される。 An ohmic contact film 4 doped with conductive impurities is selectively disposed on the semiconductor layer 3. The ohmic contact film 4 is arranged on almost the entire upper surface of the semiconductor layer 3 excluding the channel region of the TFT 51. Of the semiconductor layer 3 overlapping the gate electrode in a plan view, the region of the semiconductor layer 3 corresponding to the ohmic contact film 4 is a source region or a drain region. In the example of FIG. 4, the region of the semiconductor layer 3 corresponding to the ohmic contact film 4 on the left side of FIG. 4, which overlaps with the gate electrode (gate wiring 43), is the source region. The region of the semiconductor layer 3 corresponding to the ohmic contact film 4 on the right side of FIG. 4, which overlaps with the gate electrode (gate wiring 43), is the drain region. Of the semiconductor layer 3, the region sandwiched between the source region and the drain region is the channel region. The ohmic contact film 4 is not arranged on the channel region of the semiconductor layer 3. The ohmic contact film 4 is formed of, for example, n-type amorphous silicon, n-type polycrystalline silicon, or the like, which is heavily doped with impurities such as phosphorus (P).
 オーミックコンタクト膜4上には、ソース電極53及びドレイン電極54が配設されている。具体的には、ソース領域のオーミックコンタクト膜4上に、ソース電極53が配設され、ドレイン領域のオーミックコンタクト膜4上に、ドレイン電極54が配設されている。このように、図3及び図4の液晶表示装置では、チャネルエッチ型のTFT51が構成されている。 A source electrode 53 and a drain electrode 54 are arranged on the ohmic contact film 4. Specifically, the source electrode 53 is arranged on the ohmic contact film 4 in the source region, and the drain electrode 54 is arranged on the ohmic contact film 4 in the drain region. As described above, in the liquid crystal display devices of FIGS. 3 and 4, the channel etch type TFT 51 is configured.
 ソース電極53及びドレイン電極54は、半導体層3のチャネル領域の外側へ延在するように配設されている。即ち、ソース電極53及びドレイン電極54は、オーミックコンタクト膜4と同様に半導体層3のチャネル領域上には配設されない。また、ソース電極53は半導体層3のチャネル領域の外側へ延在し、ソース配線44と繋がっている。即ち、ソース配線44はソース電極53と接続している。図3の例では、ソース配線44は、平面視でゲート配線43と交差する方向に直線的に延在するように配設されている。これにより、ソース配線44のうち、ゲート配線43との交差部上において分岐されてゲート配線43に沿って延在した部分が、ソース電極53となっている。ドレイン電極54は、半導体層3のチャネル領域の外側に延在し、画素電極55と電気的に接続されている。 The source electrode 53 and the drain electrode 54 are arranged so as to extend to the outside of the channel region of the semiconductor layer 3. That is, the source electrode 53 and the drain electrode 54 are not arranged on the channel region of the semiconductor layer 3 like the ohmic contact film 4. Further, the source electrode 53 extends to the outside of the channel region of the semiconductor layer 3 and is connected to the source wiring 44. That is, the source wiring 44 is connected to the source electrode 53. In the example of FIG. 3, the source wiring 44 is arranged so as to extend linearly in a direction intersecting the gate wiring 43 in a plan view. As a result, the portion of the source wiring 44 that is branched on the intersection with the gate wiring 43 and extends along the gate wiring 43 becomes the source electrode 53. The drain electrode 54 extends outside the channel region of the semiconductor layer 3 and is electrically connected to the pixel electrode 55.
 図4の例では、ソース電極53、ドレイン電極54、及びソース配線44は、例えば上層としてAlを主成分とした金属膜を含み、下層としてCr,Ta,Ti,Mo,W,Ni,Cu,Au,Agなどの高融点金属もしくは低抵抗金属、またはこれらを主成分とする合金膜を含む複数層の第2導電膜である。即ち、図4のソース配線44は、例えばソース電極53及びドレイン電極54と同一材料により同層に形成される金属パターンである。 In the example of FIG. 4, the source electrode 53, the drain electrode 54, and the source wiring 44 include, for example, a metal film containing Al as a main component as an upper layer, and Cr, Ta, Ti, Mo, W, Ni, Cu, as a lower layer. It is a second conductive film having a plurality of layers including a refractory metal such as Au or Ag, a low resistance metal, or an alloy film containing these as a main component. That is, the source wiring 44 in FIG. 4 is, for example, a metal pattern formed in the same layer as the source electrode 53 and the drain electrode 54 with the same material.
 本実施の形態1では、画素電極55は、ドレイン電極54上に直接重ねて配設されている。即ち、画素電極55の下面(図4の下側の表面)がドレイン電極54の上面(図4の上側の表面)と直接接触するように配設されている。そして、画素電極55は、ドレイン電極54上から画素50内へと延在し、図3に示すように、画素50を構成するソース配線44とゲート配線43とに囲まれた領域のほぼ全面に配設されている。このように構成された画素電極55の一部は、平面視においてドレイン電極54に重複するように配設される。なお、画素電極55は、例えばITO(Indium Tin Oxide)などの透明導電膜によって形成されている透明導電膜パターンである。 In the first embodiment, the pixel electrode 55 is arranged so as to be directly overlapped on the drain electrode 54. That is, the lower surface of the pixel electrode 55 (lower surface of FIG. 4) is arranged so as to be in direct contact with the upper surface of the drain electrode 54 (upper surface of FIG. 4). The pixel electrode 55 extends from above the drain electrode 54 into the pixel 50, and as shown in FIG. 3, covers almost the entire region surrounded by the source wiring 44 and the gate wiring 43 constituting the pixel 50. It is arranged. A part of the pixel electrode 55 configured in this way is arranged so as to overlap the drain electrode 54 in a plan view. The pixel electrode 55 is a transparent conductive film pattern formed of a transparent conductive film such as ITO (Indium Tin Oxide).
 以上のように本実施の形態1では、画素電極55は、絶縁膜を介さずにドレイン電極54の上層に直接重ねて配設されている。このような構成によれば、画素電極55をドレイン電極54と電気的に接続するためのコンタクトホールが不要となる。これは、画素電極55の一部をドレイン電極54上に直接重なるように配設することで、これらの間を電気的に接続できるからである。したがって、ドレイン電極54と画素電極55との接続に対してコンタクトホールのエリアを設けることなく画素50を配設することが可能となり、この結果として画素50の開口率を高くすることができる。 As described above, in the first embodiment, the pixel electrode 55 is arranged so as to be directly overlapped with the upper layer of the drain electrode 54 without interposing an insulating film. With such a configuration, a contact hole for electrically connecting the pixel electrode 55 to the drain electrode 54 becomes unnecessary. This is because a part of the pixel electrode 55 is arranged so as to directly overlap the drain electrode 54, so that they can be electrically connected to each other. Therefore, the pixels 50 can be arranged without providing a contact hole area for the connection between the drain electrode 54 and the pixel electrodes 55, and as a result, the aperture ratio of the pixels 50 can be increased.
 なお上記では、画素電極55の透明導電膜パターンとして、ドレイン電極54上に直接重なる部分における透明導電膜パターンと、ソース配線44とゲート配線43とに囲まれた領域のほぼ全面に配設されている透明導電膜パターンとが一体的に形成されていた。このため、前者の透明導電膜パターン及び後者の透明導電膜パターンを、まとめて画素電極55と記した。しかしながら、実質的に画素電極55として機能しない前者の透明導電膜パターンは、画素電極55と同一材料である透明導電膜により同層に形成された別の透明導電膜パターンであるとして、画素電極55の透明導電膜パターンと区別されてもよい。一方、実質的に画素電極55として機能する後者の透明導電膜パターンは、隣接する画素電極55を主体とすると、当該画素電極55と同一材料である透明導電膜で同層に形成された透明導電膜パターンと解釈できる。このため、後者の透明導電膜パターンは、画素電極55を区別することなく、画素電極55の透明導電膜パターンと解釈してもよい。 In the above, as the transparent conductive film pattern of the pixel electrode 55, the transparent conductive film pattern in the portion directly overlapping the drain electrode 54 and the region surrounded by the source wiring 44 and the gate wiring 43 are arranged on almost the entire surface. The transparent conductive film pattern was integrally formed. Therefore, the former transparent conductive film pattern and the latter transparent conductive film pattern are collectively referred to as a pixel electrode 55. However, the former transparent conductive film pattern, which does not substantially function as the pixel electrode 55, is regarded as another transparent conductive film pattern formed in the same layer by the transparent conductive film which is the same material as the pixel electrode 55. It may be distinguished from the transparent conductive film pattern of. On the other hand, in the latter transparent conductive film pattern that substantially functions as the pixel electrode 55, when the adjacent pixel electrode 55 is the main body, the transparent conductive film formed in the same layer by the transparent conductive film which is the same material as the pixel electrode 55. It can be interpreted as a membrane pattern. Therefore, the latter transparent conductive film pattern may be interpreted as the transparent conductive film pattern of the pixel electrode 55 without distinguishing the pixel electrode 55.
 画素電極55(透明導電膜パターン)を覆う上層絶縁膜として第2絶縁膜9が配設されている。第2絶縁膜9はTFT51を覆っており、TFT51の保護膜として機能している。第2絶縁膜9は、例えば窒化シリコン、酸化シリコンなどの絶縁膜、塗布型の(塗布により形成される)絶縁膜、またはそれらの積層膜により形成される。 A second insulating film 9 is arranged as an upper insulating film that covers the pixel electrode 55 (transparent conductive film pattern). The second insulating film 9 covers the TFT 51 and functions as a protective film for the TFT 51. The second insulating film 9 is formed of, for example, an insulating film such as silicon nitride or silicon oxide, a coating type (formed by coating) insulating film, or a laminated film thereof.
 本実施の形態1では第2絶縁膜9上に対向電極56が配設されている。対向電極56は、第2絶縁膜9を介して画素電極55上に配設されており、対向電極56には、対向電極56と画素電極55との間にフリンジ電界を発生させるためのスリット59が設けられている。画素電極55と対向電極56との間にフリンジ電界を発生させて液晶を駆動することにより、FFS(Fringe Field Switching)モードの液晶表示装置を構成することができる。 In the first embodiment, the counter electrode 56 is arranged on the second insulating film 9. The counter electrode 56 is arranged on the pixel electrode 55 via the second insulating film 9, and the counter electrode 56 has a slit 59 for generating a fringe electric field between the counter electrode 56 and the pixel electrode 55. Is provided. A liquid crystal display device in FFS (Fringe Field Switching) mode can be configured by generating a fringe electric field between the pixel electrode 55 and the counter electrode 56 to drive the liquid crystal display.
 なお、対向電極56と画素電極55との間は第2絶縁膜9により絶縁されていることから、第2絶縁膜9は、層間絶縁膜としても機能しており、対向電極56と画素電極55とが重畳している部分で保持容量を有する電気容量部52(図3)が形成される。つまり複数のTFT51は、複数の電気容量部52とそれぞれ接続されている。 Since the counter electrode 56 and the pixel electrode 55 are insulated from each other by the second insulating film 9, the second insulating film 9 also functions as an interlayer insulating film, and the counter electrode 56 and the pixel electrode 55 The electric capacity portion 52 (FIG. 3) having a holding capacity is formed at the portion where the above is superimposed. That is, the plurality of TFTs 51 are connected to the plurality of electric capacity units 52, respectively.
 図3の例では、ゲート配線43を挟んで隣接する画素50の対向電極56は、互いに繋げられて一体的に形成されている。具体的には、ゲート配線43を挟んで隣接する画素50の対向電極56同士は、対向電極連結部57により連結されている。ここでは、対向電極56の対向電極連結部57は、ソース配線44またはTFT51と重複しない領域のゲート配線43を跨ぐように配設されている。即ち、対向電極56はゲート配線43の少なくとも一部において重なり合うように形成されている。対向電極56及び対向電極連結部57は、例えばITOなどの透明導電膜によって一体に形成された透明導電膜パターンである。 In the example of FIG. 3, the facing electrodes 56 of the pixels 50 adjacent to each other with the gate wiring 43 interposed therebetween are connected to each other and integrally formed. Specifically, the facing electrodes 56 of the pixels 50 adjacent to each other with the gate wiring 43 interposed therebetween are connected by the facing electrode connecting portion 57. Here, the counter electrode connecting portion 57 of the counter electrode 56 is arranged so as to straddle the gate wiring 43 in a region that does not overlap with the source wiring 44 or the TFT 51. That is, the counter electrode 56 is formed so as to overlap at least a part of the gate wiring 43. The counter electrode 56 and the counter electrode connecting portion 57 are transparent conductive film patterns integrally formed by a transparent conductive film such as ITO.
 次に、本実施の形態1に係る液晶表示装置のゲート信号、ソース信号(表示信号)の動作タイミングを図5及び図6を用いて説明する。本実施の形態1では、EMI対策のために、複数のTFT51にソース信号が入力されるタイミング(入力タイミング)が異なっている。具体的には、第1ソース信号72の入力タイミングと第2ソース信号73の入力タイミングとが異なっている。なお、入力タイミングは、表示信号駆動回路46bがソース信号を出力する出力タイミングに対応している。 Next, the operation timings of the gate signal and the source signal (display signal) of the liquid crystal display device according to the first embodiment will be described with reference to FIGS. 5 and 6. In the first embodiment, the timing (input timing) at which the source signal is input to the plurality of TFTs 51 is different for the EMI countermeasure. Specifically, the input timing of the first source signal 72 and the input timing of the second source signal 73 are different. The input timing corresponds to the output timing at which the display signal drive circuit 46b outputs the source signal.
 図5は、異なる入力タイミングのソース信号で駆動される表示領域41を示す図であり、図6は、ゲート信号及びソース信号の入力タイミングを示す図である。図5の表示領域41は、第1表示領域41aと第2表示領域41bとを含む。第1表示領域41aは、ゲート信号71と第1ソース信号72とで駆動される領域であり、図5の第2表示領域41bは、ゲート信号71と第2ソース信号73とで駆動される領域である。 FIG. 5 is a diagram showing a display area 41 driven by source signals having different input timings, and FIG. 6 is a diagram showing input timings of gate signals and source signals. The display area 41 of FIG. 5 includes a first display area 41a and a second display area 41b. The first display area 41a is an area driven by the gate signal 71 and the first source signal 72, and the second display area 41b in FIG. 5 is an area driven by the gate signal 71 and the second source signal 73. Is.
 図6に示すように、動作のタイミングとして最初に第1ソース信号72が立ち上がり、次に第2ソース信号73が立ち上がる。複数のTFT51の全てにソース信号が入力されて、第1ソース信号72及び第2ソース信号73が所望の電位に到達した後に、複数のTFT51にゲート信号が入力されて、ゲート信号71が立ち上がる。その後、ゲート信号71、第1ソース信号72、及び、第2ソース信号73がこの順に立ち下がる。 As shown in FIG. 6, as the timing of operation, the first source signal 72 rises first, and then the second source signal 73 rises. After the source signal is input to all of the plurality of TFTs 51 and the first source signal 72 and the second source signal 73 reach a desired potential, the gate signal is input to the plurality of TFTs 51 and the gate signal 71 rises. After that, the gate signal 71, the first source signal 72, and the second source signal 73 go down in this order.
 以上のような本実施の形態1に係る液晶表示装置によれば、複数のTFT51に入力タイミングが異なる第1ソース信号及び第2ソース信号が選択的に入力された後に、複数のTFT51にゲート信号が入力される。このような動作タイミングで画素50を駆動することにより、第1ソース信号72及び第2ソース信号73の入力タイミングのずれの影響を受けずに画素50を充電できるので、第1表示領域41aと第2表示領域41bとの間の輝度差の発生を抑制できる。つまり、ソース信号の立ち上がりのずれによる表示ムラを抑制することができるので、表示品質の低下を抑制することができる。 According to the liquid crystal display device according to the first embodiment as described above, after the first source signal and the second source signal having different input timings are selectively input to the plurality of TFTs 51, the gate signal is input to the plurality of TFTs 51. Is entered. By driving the pixel 50 at such an operation timing, the pixel 50 can be charged without being affected by the deviation of the input timings of the first source signal 72 and the second source signal 73, so that the first display area 41a and the first display area 41a can be charged. 2 It is possible to suppress the occurrence of a brightness difference between the display area 41b and the display area 41b. That is, since the display unevenness due to the deviation of the rising edge of the source signal can be suppressed, the deterioration of the display quality can be suppressed.
 <実施の形態2>
 本実施の形態2に係る液晶表示装置の構成を図7、図8及び図9を用いて説明する。図7は、異なる入力タイミングのソース信号で駆動される表示領域41を示す図であり、図8は、表示信号駆動回路46b近傍を示す平面図であり、図9は、ゲート信号及びソース信号の入力タイミングを示す図である。図7の表示領域41は、第1ソース信号72が入力される第1表示領域41aと、第1ソース信号72と入力タイミングが異なる第2ソース信号73が入力される第2表示領域41cとを含む。
<Embodiment 2>
The configuration of the liquid crystal display device according to the second embodiment will be described with reference to FIGS. 7, 8 and 9. FIG. 7 is a diagram showing a display region 41 driven by source signals having different input timings, FIG. 8 is a plan view showing the vicinity of the display signal drive circuit 46b, and FIG. 9 is a plan view of a gate signal and a source signal. It is a figure which shows the input timing. The display area 41 of FIG. 7 includes a first display area 41a to which the first source signal 72 is input and a second display area 41c to which the second source signal 73 whose input timing is different from that of the first source signal 72 is input. include.
 図8に示すように表示信号駆動回路46bの外部接続端子48b1の2つ毎に、第1ソース信号72と第2ソース信号73とが交互に出力される。ここで、図8の左端から1列目及び2列目の外部接続端子48b1から第1ソース信号72が入力される第1表示領域41aのTFT51を第1TFT51と記す。図8の左端から5列目及び6列目の外部接続端子48b1から第1ソース信号72が入力される第1表示領域41aのTFT51を第2TFT51と記す。図8の左端から3列目及び4列目の外部接続端子48b1から第2ソース信号73が入力される第2表示領域41cのTFT51を第3TFT51と記す。なお、第1TFT51、第2TFT51、及び、第3TFT51は、第1半導体スイッチング素子、第2半導体スイッチング素子及び第3半導体スイッチング素子である。 As shown in FIG. 8, the first source signal 72 and the second source signal 73 are alternately output for each of the two external connection terminals 48b1 of the display signal drive circuit 46b. Here, the TFT 51 in the first display area 41a to which the first source signal 72 is input from the external connection terminals 48b1 in the first and second rows from the left end of FIG. 8 is referred to as the first TFT 51. The TFT 51 of the first display area 41a to which the first source signal 72 is input from the external connection terminals 48b1 in the fifth and sixth rows from the left end of FIG. 8 is referred to as a second TFT 51. The TFT 51 in the second display area 41c to which the second source signal 73 is input from the external connection terminals 48b1 in the third and fourth rows from the left end of FIG. 8 is referred to as a third TFT 51. The first TFT 51, the second TFT 51, and the third TFT 51 are a first semiconductor switching element, a second semiconductor switching element, and a third semiconductor switching element.
 第1表示領域41aの第1TFT51と、第1表示領域41aの第2TFT51とには第1ソース信号72が入力される。このため、第1TFT51におけるソース信号の入力タイミングと、第2TFT51におけるソース信号の入力タイミングは同じである。 The first source signal 72 is input to the first TFT 51 in the first display area 41a and the second TFT 51 in the first display area 41a. Therefore, the input timing of the source signal in the first TFT 51 and the input timing of the source signal in the second TFT 51 are the same.
 第1表示領域41aの第1TFT51には第1ソース信号72が入力され、第2表示領域41cの第3TFT51には第2ソース信号73が入力される。このため、第1TFT51におけるソース信号の入力タイミングと、第3TFT51におけるソース信号の入力タイミングは異なる。また、第3TFT51は、第1TFT51と第2TFT51との間に配設されており、第1表示領域41a及び第2表示領域41cは交互に配設されている。 The first source signal 72 is input to the first TFT 51 of the first display area 41a, and the second source signal 73 is input to the third TFT 51 of the second display area 41c. Therefore, the input timing of the source signal in the first TFT 51 and the input timing of the source signal in the third TFT 51 are different. Further, the third TFT 51 is arranged between the first TFT 51 and the second TFT 51, and the first display area 41a and the second display area 41c are arranged alternately.
 ここで本実施の形態2に係る液晶表示装置では、第1TFT51、第2TFT51及び第3TFT51のそれぞれの列の数は2であり、交互に配設された第1表示領域41a及び第2表示領域41cの幅が比較的小さくなっている。これにより、ソース信号の立ち上がりのずれによる表示ムラが視認されにくくなるので、表示品質の低下を抑制することができる。 Here, in the liquid crystal display device according to the second embodiment, the number of rows of the first TFT 51, the second TFT 51, and the third TFT 51 is 2, and the first display area 41a and the second display area 41c are arranged alternately. The width of is relatively small. As a result, display unevenness due to the deviation of the rising edge of the source signal is less likely to be visually recognized, and deterioration of display quality can be suppressed.
 なお、上記により表示ムラが視認されにくくなるので、図9に示すようにゲート信号71の立ち上がるタイミングを第1ソース信号72及び第2ソース信号73よりも前にして、各画素の充電時間を長くしてもよい。このようなタイミングによれば、高解像度まで対応することができる。 Since the display unevenness is less likely to be visually recognized due to the above, the rising timing of the gate signal 71 is set before the first source signal 72 and the second source signal 73 as shown in FIG. 9, and the charging time of each pixel is lengthened. You may. According to such timing, even high resolution can be supported.
 また、以上の説明では、第1TFT51、第2TFT51及び第3TFT51のそれぞれの列の数は2であるとしたが、1以上10以下である場合でも上記と同様の効果を得ることができる。 Further, in the above description, it is assumed that the number of rows of the first TFT 51, the second TFT 51, and the third TFT 51 is 2, but the same effect as described above can be obtained even when the number is 1 or more and 10 or less.
 <実施の形態3>
 本実施の形態3に係る液晶表示装置の構成を図10及び図11を用いて説明する。図10は、異なる入力タイミングのソース信号で駆動される表示領域41を示す図であり、図11は、表示領域41の詳細構成を示す平面図である。図10の表示領域41は、第1ソース信号72が入力される第1表示領域41aと、第1ソース信号72と入力タイミングが異なる第2ソース信号73が入力される第2表示領域41dとを含む。
<Embodiment 3>
The configuration of the liquid crystal display device according to the third embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a diagram showing a display area 41 driven by source signals having different input timings, and FIG. 11 is a plan view showing a detailed configuration of the display area 41. The display area 41 of FIG. 10 includes a first display area 41a to which the first source signal 72 is input and a second display area 41d to which the second source signal 73 whose input timing is different from that of the first source signal 72 is input. include.
 本実施の形態3では、複数のTFT51におけるソース信号の入力のタイミングの差が、複数の対向電極56と複数の画素電極55との間の複数の電気容量部52の充電特性の差によって補償されている。ここで、複数の電気容量部52の充電特性の差は、複数のTFT51のチャネル幅Wの差に対応している。 In the third embodiment, the difference in the input timing of the source signal in the plurality of TFTs 51 is compensated by the difference in the charging characteristics of the plurality of electric capacitance units 52 between the plurality of counter electrodes 56 and the plurality of pixel electrodes 55. ing. Here, the difference in the charging characteristics of the plurality of electric capacity units 52 corresponds to the difference in the channel width W of the plurality of TFTs 51.
 図11の例では、第2ソース信号73で駆動される第2表示領域41dのTFT51dのチャネル幅Wが、第1ソース信号72で駆動される第1表示領域41aのTFT51aのチャネル幅Wよりも大きくなっている。 In the example of FIG. 11, the channel width W of the TFT 51d of the second display region 41d driven by the second source signal 73 is larger than the channel width W of the TFT 51a of the first display region 41a driven by the first source signal 72. It's getting bigger.
 以上のような本実施の形態3に係る液晶表示装置では、第1ソース信号72に対する第2ソース信号73の遅延が、TFT51a,51dのチャネル幅Wによって補償される。このような構成によれば、第2ソース信号73の立ち上がりが第1ソース信号72の立ち上がりよりも急峻になり、ソース信号の立ち上がりのずれによる表示ムラが視認されにくくなるので、表示品質の低下を抑制することができる。 In the liquid crystal display device according to the third embodiment as described above, the delay of the second source signal 73 with respect to the first source signal 72 is compensated by the channel width W of the TFTs 51a and 51d. According to such a configuration, the rising edge of the second source signal 73 becomes steeper than the rising edge of the first source signal 72, and the display unevenness due to the deviation of the rising edge of the source signal becomes difficult to be visually recognized, so that the display quality is deteriorated. It can be suppressed.
 なお、上記により表示ムラが視認されにくくなるので、実施の形態2の図9と同様に、ゲート信号71の立ち上がるタイミングを第1ソース信号72及び第2ソース信号73よりも前にして、各画素の充電時間を長くしてもよい。このようなタイミングによれば、高解像度まで対応することができる。 Since the display unevenness is less likely to be visually recognized due to the above, as in FIG. 9 of the second embodiment, the rising timing of the gate signal 71 is set before the first source signal 72 and the second source signal 73, and each pixel is set. The charging time may be lengthened. According to such timing, even high resolution can be supported.
 <実施の形態4>
 本実施の形態4に係る液晶表示装置の構成を図12及び図13を用いて説明する。図12は、異なる入力タイミングのソース信号で駆動される表示領域41を示す図であり、図13は、表示領域41の詳細構成を示す平面図である。図12の表示領域41は、第1ソース信号72が入力される第1表示領域41aと、第1ソース信号72と入力タイミングが異なる第2ソース信号73が入力される第2表示領域41eとを含む。
<Embodiment 4>
The configuration of the liquid crystal display device according to the fourth embodiment will be described with reference to FIGS. 12 and 13. FIG. 12 is a diagram showing a display area 41 driven by source signals having different input timings, and FIG. 13 is a plan view showing a detailed configuration of the display area 41. The display area 41 of FIG. 12 includes a first display area 41a to which the first source signal 72 is input and a second display area 41e to which the second source signal 73 whose input timing is different from that of the first source signal 72 is input. include.
 本実施の形態4では、複数のTFT51におけるソース信号の入力のタイミングの差が、実施の形態3と同様に複数の電気容量部52の充電特性の差によって補償されている。ただし本実施の形態4では、複数の電気容量部52の充電特性の差は、複数の電気容量部52の保持容量の差に対応している。 In the fourth embodiment, the difference in the input timing of the source signal in the plurality of TFTs 51 is compensated by the difference in the charging characteristics of the plurality of electric capacity units 52 as in the third embodiment. However, in the fourth embodiment, the difference in the charging characteristics of the plurality of electric capacity units 52 corresponds to the difference in the holding capacity of the plurality of electric capacity units 52.
 図13の例では、第2ソース信号73で駆動される第2表示領域41eの画素電極55eと対向電極56との重なり面積が、第1ソース信号72で駆動される第1表示領域41aの画素電極55aと対向電極56との重なり面積よりも小さくなっている。これにより、第2表示領域41eの電気容量部52eの保持容量が、第1表示領域41aの電気容量部52aの保持容量よりも小さくなっている。なお、ここでは保持容量の調整が、重なり面積の調整によって行われる例について説明したが、これに限ったものではなく、例えば、層間絶縁膜である第2絶縁膜9の厚さの調整によって行われてもよい。 In the example of FIG. 13, the overlapping area between the pixel electrode 55e of the second display region 41e driven by the second source signal 73 and the counter electrode 56 is the pixel of the first display region 41a driven by the first source signal 72. It is smaller than the overlapping area of the electrode 55a and the facing electrode 56. As a result, the holding capacity of the electric capacity unit 52e of the second display area 41e is smaller than the holding capacity of the electric capacity part 52a of the first display area 41a. Here, an example in which the holding capacity is adjusted by adjusting the overlapping area has been described, but the present invention is not limited to this, and for example, the adjustment is performed by adjusting the thickness of the second insulating film 9 which is an interlayer insulating film. You may be broken.
 以上のような本実施の形態4に係る液晶表示装置では、第1ソース信号72に対する第2ソース信号73の遅延が、電気容量部52a,52eの保持容量によって補償される。このような構成によれば、第2ソース信号73の立ち上がりが第1ソース信号72の立ち上がりよりも急峻になり、ソース信号の立ち上がりのずれによる表示ムラが視認されにくくなるので、表示品質の低下を抑制することができる。 In the liquid crystal display device according to the fourth embodiment as described above, the delay of the second source signal 73 with respect to the first source signal 72 is compensated by the holding capacity of the electric capacity units 52a and 52e. According to such a configuration, the rising edge of the second source signal 73 becomes steeper than the rising edge of the first source signal 72, and the display unevenness due to the deviation of the rising edge of the source signal becomes difficult to be visually recognized, so that the display quality is deteriorated. It can be suppressed.
 なお、上記により表示ムラが視認されにくくなるので、実施の形態2の図9と同様に、ゲート信号71の立ち上がるタイミングを第1ソース信号72及び第2ソース信号73よりも前にして、各画素の充電時間を長くしてもよい。このようなタイミングによれば、高解像度まで対応することができる。 Since the display unevenness is less likely to be visually recognized due to the above, as in FIG. 9 of the second embodiment, the rising timing of the gate signal 71 is set before the first source signal 72 and the second source signal 73, and each pixel is set. The charging time may be lengthened. According to such timing, even high resolution can be supported.
 <実施の形態5>
 本実施の形態5に係る液晶表示装置の構成を図14及び図15を用いて説明する。図14は、異なる入力タイミングのソース信号で駆動される表示領域41を示す図であり、図15は、ゲート信号、ソース信号の入力タイミングを示す図である。図14の表示領域41は、第1ソース信号72が入力される第1表示領域41aと、第1ソース信号72と入力タイミングが異なる第2ソース信号73が入力される第2表示領域41fとを含む。
<Embodiment 5>
The configuration of the liquid crystal display device according to the fifth embodiment will be described with reference to FIGS. 14 and 15. FIG. 14 is a diagram showing a display area 41 driven by source signals having different input timings, and FIG. 15 is a diagram showing input timings of gate signals and source signals. The display area 41 of FIG. 14 includes a first display area 41a to which the first source signal 72 is input and a second display area 41f to which the second source signal 73 whose input timing is different from that of the first source signal 72 is input. include.
 本実施の形態5では、複数のTFT51におけるソース信号の入力のタイミングの差が、実施の形態3などと同様に複数の電気容量部52の充電特性の差によって補償されている。ただし本実施の形態5では、複数の電気容量部52の充電特性の差は、複数のTFT51とそれぞれ接続された複数の引き出し配線(複数の配線)による信号遅延の差に対応している。 In the fifth embodiment, the difference in the input timing of the source signal in the plurality of TFTs 51 is compensated by the difference in the charging characteristics of the plurality of electric capacity units 52 as in the third embodiment. However, in the fifth embodiment, the difference in the charging characteristics of the plurality of electric capacity units 52 corresponds to the difference in the signal delay due to the plurality of lead wires (plurality of wirings) connected to the plurality of TFTs 51.
 図14の例では、第1ソース信号72で駆動される第1表示領域41aの引き出し配線47b1の幅が、第2ソース信号73で駆動される第2表示領域41fの引き出し配線47b3の幅よりも細くなっている。これにより、第1表示領域41aの引き出し配線47b1による信号遅延が、第2表示領域41fの引き出し配線47b3による信号遅延よりも大きくなっている。なお、ここでは配線による信号遅延の調整が、配線の抵抗の調整によって行われる例について説明したが、これに限ったものではなく、例えば、配線の容量の調整によって行われてもよい。 In the example of FIG. 14, the width of the lead-out wiring 47b1 of the first display area 41a driven by the first source signal 72 is wider than the width of the lead-out wiring 47b3 of the second display area 41f driven by the second source signal 73. It's getting thinner. As a result, the signal delay due to the lead-out wiring 47b1 in the first display area 41a is larger than the signal delay due to the lead-out wiring 47b3 in the second display area 41f. Although the example in which the adjustment of the signal delay by the wiring is performed by adjusting the resistance of the wiring is described here, the present invention is not limited to this, and for example, the adjustment of the capacity of the wiring may be performed.
 以上のような本実施の形態5に係る液晶表示装置では、第1ソース信号72に対する第2ソース信号73の遅延が、配線の信号遅延によって補償される。このような構成によれば、図15に示すように、第2ソース信号73の立ち上がりが第1ソース信号72の立ち上がりよりも急峻になり、第1ソース信号72の所望の電位になるタイミングと第2ソース信号73の所望の電位になるタイミングとがほぼ同じになる。このため、ソース信号の立ち上がりのずれによる表示ムラが視認されにくくなるので、表示品質の低下を抑制することができる。 In the liquid crystal display device according to the fifth embodiment as described above, the delay of the second source signal 73 with respect to the first source signal 72 is compensated by the signal delay of the wiring. According to such a configuration, as shown in FIG. 15, the rising edge of the second source signal 73 becomes steeper than the rising edge of the first source signal 72, and the timing and the second become the desired potential of the first source signal 72. The timing at which the desired potential of the two source signals 73 is reached is almost the same. Therefore, it is difficult to visually recognize the display unevenness due to the deviation of the rising edge of the source signal, and it is possible to suppress the deterioration of the display quality.
 なお、上記により表示ムラが視認されにくくなるので、実施の形態2の図9と同様に、ゲート信号71の立ち上がるタイミングを第1ソース信号72及び第2ソース信号73よりも前にして、各画素の充電時間を長くしてもよい。このようなタイミングによれば、高解像度まで対応できるという点で好ましい。 Since the display unevenness is less likely to be visually recognized due to the above, as in FIG. 9 of the second embodiment, the rising timing of the gate signal 71 is set before the first source signal 72 and the second source signal 73, and each pixel is set. The charging time may be lengthened. Such timing is preferable in that it can handle up to high resolution.
 <実施の形態6>
 本実施の形態6に係る液晶表示装置の構成を図16を用いて説明する。図16は、異なる入力タイミングのソース信号で駆動される表示領域41を示す図である。図16の表示領域41は、第1表示領域41aと、第2表示領域41gと、第3表示領域41hと、第4表示領域41iとを含む。
<Embodiment 6>
The configuration of the liquid crystal display device according to the sixth embodiment will be described with reference to FIG. FIG. 16 is a diagram showing a display area 41 driven by source signals having different input timings. The display area 41 of FIG. 16 includes a first display area 41a, a second display area 41g, a third display area 41h, and a fourth display area 41i.
 ここで、TFT51のアレイ状の配列の端部に対応する領域を端領域と記し、TFT51のアレイ状の配列の中央部に対応する領域を中央領域と記す。以下では、端領域は、端部のうちの端である第1表示領域41aであるものとして説明するが、これに限ったものではなく、端部全体である第1表示領域41a及び第2表示領域41gであってもよい。同様に、以下では、中央領域は、中央部のうちの中央である第4表示領域41iであるものとして説明するが、これに限ったものではなく、中央部全体である第3表示領域41h及び第4表示領域41iであってもよい。 Here, the region corresponding to the end portion of the array-shaped array of TFT 51 is referred to as an end region, and the region corresponding to the central portion of the array-shaped array of TFT 51 is referred to as a central region. In the following, the end region will be described as being the first display region 41a which is the end of the end, but the present invention is not limited to this, and the first display region 41a and the second display which are the entire ends are described. The area may be 41 g. Similarly, in the following, the central region will be described as being the fourth display region 41i, which is the center of the central portion, but the present invention is not limited to this, and the third display region 41h, which is the entire central portion, and It may be the fourth display area 41i.
 本実施の形態6に係る液晶表示装置は、端領域から中央領域に向かう順で、ソース信号が複数のTFT51に入力されるように構成されている。つまり、本実施の形態6に係る表示信号駆動回路46bは、図16の第1表示領域41a、第2表示領域41g、第3表示領域41h、第4表示領域41iの順に異なるタイミングでソース信号を出力するように構成されている。 The liquid crystal display device according to the sixth embodiment is configured so that source signals are input to a plurality of TFTs 51 in the order from the end region to the center region. That is, the display signal drive circuit 46b according to the sixth embodiment outputs the source signal at different timings in the order of the first display area 41a, the second display area 41g, the third display area 41h, and the fourth display area 41i in FIG. It is configured to output.
 以上のような本実施の形態6に係る液晶表示装置では、表示領域41の中央におけるソース信号のタイミングの差を小さくできる。これにより、ソース信号の立ち上がりのずれによる表示ムラが視認されにくくなるので、表示品質の低下を抑制することができる。なお、表示信号駆動回路46bは、上記とは逆の順、つまり図16の第4表示領域41i、第3表示領域41h、第2表示領域41g、第1表示領域41aの順に異なるタイミングでソース信号を出力するように構成されてもよい。即ち、液晶表示装置は、中央領域から端領域に向かう順で、ソース信号が複数のTFT51に入力されるように構成されてもよい。このような構成でも上記と同様の効果を得ることができる。 In the liquid crystal display device according to the sixth embodiment as described above, the difference in timing of the source signal in the center of the display area 41 can be reduced. As a result, display unevenness due to the deviation of the rising edge of the source signal is less likely to be visually recognized, and deterioration of display quality can be suppressed. The display signal drive circuit 46b has a source signal in the reverse order of the above, that is, in the order of the fourth display area 41i, the third display area 41h, the second display area 41g, and the first display area 41a in FIG. May be configured to output. That is, the liquid crystal display device may be configured so that the source signal is input to the plurality of TFTs 51 in the order from the central region to the end region. Even with such a configuration, the same effect as described above can be obtained.
 <変形例>
 実施の形態1~6において、表示信号駆動回路46bの数が1つである構成を例として示したが、表示信号駆動回路46bの数が複数である構成でも上記と同様の効果を得ることができる。
<Modification example>
In the first to sixth embodiments, the configuration in which the number of display signal drive circuits 46b is one is shown as an example, but the same effect as described above can be obtained even in the configuration in which the number of display signal drive circuits 46b is multiple. can.
 また、以上の説明ではTFTアレイ基板100は液晶表示装置に用いられたが、光学表示装置などの表示装置に用いられてもよい。例えば、TFTアレイ基板と、TFTアレイ基板の画素電極上に電界を印加することにより発光する発光層と、当該発光層を覆う絶縁膜と、共通電極とを備えるエレクトロルミネッセンス表示装置のTFTアレイ基板に、TFTアレイ基板100が用いられてもよい。または例えば、白と黒との顔料粒子を含むマイクロカプセルをTFTアレイ基板と外部回路とが生成する電界により駆動する電気泳動方式の表示装置、または、電子粉流体方式の表示装置のTFTアレイ基板に、TFTアレイ基板100が用いられてもよい。 Further, although the TFT array substrate 100 is used in the liquid crystal display device in the above description, it may be used in a display device such as an optical display device. For example, a TFT array substrate of an electroluminescence display device including a TFT array substrate, a light emitting layer that emits light by applying an electric field on a pixel electrode of the TFT array substrate, an insulating film covering the light emitting layer, and a common electrode. , TFT array substrate 100 may be used. Or, for example, on a TFT array substrate of an electrophoresis type display device or an electron powder fluid type display device in which microcapsules containing white and black pigment particles are driven by an electric field generated by a TFT array substrate and an external circuit. , TFT array substrate 100 may be used.
 また、TFTアレイ基板100が用いられる装置は、表示装置以外の装置であってもよい。例えば、TFTアレイ基板100が用いられる装置は、画素電極の代わりに光電変換素子をTFTアレイ基板100に設けた、可視光や紫外光や放射線のイメージセンサーであってもよい。 Further, the device in which the TFT array substrate 100 is used may be a device other than the display device. For example, the device in which the TFT array substrate 100 is used may be an image sensor for visible light, ultraviolet light, or radiation in which a photoelectric conversion element is provided on the TFT array substrate 100 instead of the pixel electrodes.
 なお、各実施の形態及び各変形例を自由に組み合わせたり、各実施の形態及び各変形例を適宜、変形、省略したりすることが可能である。 It is possible to freely combine each embodiment and each modification, and appropriately modify or omit each embodiment and each modification.
 1 基板、51 TFT、52 保持容量部、71 ゲート信号、72 第1ソース信号、73 第2ソース信号、100 TFTアレイ基板。 1 substrate, 51 TFT, 52 holding capacitance section, 71 gate signal, 72 first source signal, 73 second source signal, 100 TFT array substrate.

Claims (9)

  1.  アレイ状の複数の画素が規定された基板と、
     前記複数の画素に対応して配設され、ソース信号が入力されるタイミングが異なる複数の半導体スイッチング素子と
    を備え、
     前記複数の半導体スイッチング素子の全てに前記ソース信号が入力された後に、前記複数の半導体スイッチング素子にゲート信号が入力される、アレイ基板。
    A board in which multiple pixels in an array are defined, and
    It is provided with a plurality of semiconductor switching elements arranged corresponding to the plurality of pixels and having different timings at which source signals are input.
    An array substrate in which a gate signal is input to the plurality of semiconductor switching elements after the source signal is input to all of the plurality of semiconductor switching elements.
  2.  アレイ状の複数の画素が規定された基板と、
     前記複数の画素に対応して配設され、ソース信号が入力されるタイミングが異なる複数の半導体スイッチング素子と
    を備え、
     前記複数の半導体スイッチング素子は、
     1列以上の第1半導体スイッチング素子と、
     前記ソース信号の入力のタイミングが前記第1半導体スイッチング素子と同じ1列以上の第2半導体スイッチング素子と、
     前記第1半導体スイッチング素子と前記第2半導体スイッチング素子との間に配設され、前記ソース信号の入力のタイミングが前記第1半導体スイッチング素子と異なる1列以上の第3半導体スイッチング素子と
    を含む、アレイ基板。
    A board in which multiple pixels in an array are defined, and
    It is provided with a plurality of semiconductor switching elements arranged corresponding to the plurality of pixels and having different timings at which source signals are input.
    The plurality of semiconductor switching elements are
    With one or more rows of first semiconductor switching elements,
    A second semiconductor switching element having one or more rows in which the input timing of the source signal is the same as that of the first semiconductor switching element.
    A third semiconductor switching element having one or more rows, which is arranged between the first semiconductor switching element and the second semiconductor switching element and whose source signal input timing is different from that of the first semiconductor switching element, is included. Array board.
  3.  請求項2に記載のアレイ基板であって、
     前記第1半導体スイッチング素子、前記第2半導体スイッチング素子、及び、前記第3半導体スイッチング素子のそれぞれの列の数は10以下である、アレイ基板。
    The array substrate according to claim 2.
    An array substrate in which the number of rows of the first semiconductor switching element, the second semiconductor switching element, and the third semiconductor switching element is 10 or less.
  4.  アレイ状の複数の画素が規定された基板と、
     前記複数の画素に対応して配設され、ソース信号が入力されるタイミングが異なる複数の半導体スイッチング素子と、
     前記複数の半導体スイッチング素子にそれぞれ接続された複数の電気容量部と
    を備え、
     前記複数の半導体スイッチング素子における前記ソース信号の入力のタイミングの差が、前記複数の電気容量部の充電特性の差によって補償されている、アレイ基板。
    A board in which multiple pixels in an array are defined, and
    A plurality of semiconductor switching elements arranged corresponding to the plurality of pixels and having different timings at which source signals are input, and
    It is provided with a plurality of electric capacitance units connected to the plurality of semiconductor switching elements, respectively.
    An array substrate in which a difference in input timing of the source signal in the plurality of semiconductor switching elements is compensated for by a difference in charging characteristics of the plurality of electric capacitance units.
  5.  請求項4に記載のアレイ基板であって、
     前記複数の電気容量部の充電特性の差は、前記複数の半導体スイッチング素子のチャネル幅の差に対応している、アレイ基板。
    The array substrate according to claim 4.
    An array substrate in which the difference in charging characteristics of the plurality of electric capacitance units corresponds to the difference in channel width of the plurality of semiconductor switching elements.
  6.  請求項4または請求項5に記載のアレイ基板であって、
     前記複数の電気容量部の充電特性の差は、前記複数の電気容量部の保持容量の差に対応している、アレイ基板。
    The array substrate according to claim 4 or 5.
    The array substrate, wherein the difference in the charging characteristics of the plurality of electric capacity portions corresponds to the difference in the holding capacity of the plurality of electric capacity portions.
  7.  請求項4から請求項6のうちのいずれか1項に記載のアレイ基板であって、
     前記複数の電気容量部の充電特性の差は、前記複数の半導体スイッチング素子とそれぞれ接続された複数の配線による信号遅延の差に対応している、アレイ基板。
    The array substrate according to any one of claims 4 to 6.
    The difference in the charging characteristics of the plurality of electric capacitance units corresponds to the difference in signal delay due to the plurality of wirings connected to the plurality of semiconductor switching elements, respectively.
  8.  アレイ状の複数の画素が規定された基板と、
     前記複数の画素に対応して配設され、ソース信号が入力されるタイミングが異なる複数の半導体スイッチング素子と
    を備え、
     前記複数の半導体スイッチング素子の配列の端部及び中央部のそれぞれに対応する端領域及び中央領域の一方から他方に向かう順で、前記ソース信号が前記複数の半導体スイッチング素子に入力される、アレイ基板。
    A board in which multiple pixels in an array are defined, and
    It is provided with a plurality of semiconductor switching elements arranged corresponding to the plurality of pixels and having different timings at which source signals are input.
    An array substrate in which the source signal is input to the plurality of semiconductor switching elements in the order from one of the end region and the central region corresponding to the end and the center of the array of the plurality of semiconductor switching elements toward the other. ..
  9.  請求項1から請求項8のうちのいずれか1項に記載のアレイ基板を備える、表示装置。 A display device including the array substrate according to any one of claims 1 to 8.
PCT/JP2021/021512 2020-06-11 2021-06-07 Array substrate and display device WO2021251323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101745 2020-06-11
JP2020-101745 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021251323A1 true WO2021251323A1 (en) 2021-12-16

Family

ID=78846226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021512 WO2021251323A1 (en) 2020-06-11 2021-06-07 Array substrate and display device

Country Status (2)

Country Link
TW (1) TW202207191A (en)
WO (1) WO2021251323A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130120344A1 (en) * 2011-11-15 2013-05-16 Shenzhen China Star Optoelectronics Technology Co., Ltd. Output compensation circuit and output compensation method for lcd data drive ic, and lcd
JP2013120981A (en) * 2011-12-06 2013-06-17 Renesas Electronics Corp Data driver, display panel drive device and display device
US20130257847A1 (en) * 2012-04-03 2013-10-03 Samsung Electronics Co., Ltd. Display device and image data signagl outputting method thereof
JP2015143781A (en) * 2014-01-31 2015-08-06 ラピスセミコンダクタ株式会社 display device driver
US20170004792A1 (en) * 2014-12-08 2017-01-05 Boe Technology Group Co. Ltd. Driving method, driving circuit and display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130120344A1 (en) * 2011-11-15 2013-05-16 Shenzhen China Star Optoelectronics Technology Co., Ltd. Output compensation circuit and output compensation method for lcd data drive ic, and lcd
JP2013120981A (en) * 2011-12-06 2013-06-17 Renesas Electronics Corp Data driver, display panel drive device and display device
US20130257847A1 (en) * 2012-04-03 2013-10-03 Samsung Electronics Co., Ltd. Display device and image data signagl outputting method thereof
JP2015143781A (en) * 2014-01-31 2015-08-06 ラピスセミコンダクタ株式会社 display device driver
US20170004792A1 (en) * 2014-12-08 2017-01-05 Boe Technology Group Co. Ltd. Driving method, driving circuit and display apparatus

Also Published As

Publication number Publication date
TW202207191A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
US11003273B2 (en) Display device with sensor
US8743330B2 (en) Liquid crystal display device
US11796878B2 (en) Active matrix substrate and display panel
JP6438187B2 (en) Display device
KR101896377B1 (en) Liquid crystal display device having minimized bezzel
US10698545B2 (en) Display device with position input function
KR20150078248A (en) Display device
US20100060815A1 (en) Liquid crystal display device
US10622384B2 (en) Liquid crystal display panel and liquid crystal display
US20050098785A1 (en) Display panel
US20180203318A1 (en) Display device
KR101621559B1 (en) Liquid crystal display device
US11385513B2 (en) Liquid crystal display device and liquid crystal display device manufacturing method
WO2021251323A1 (en) Array substrate and display device
KR20080038538A (en) Liquid crystal display
US20240256067A1 (en) Display device with sensor
CN116263549A (en) Active matrix substrate and display panel
KR20050039951A (en) Liquid crystal display
KR20080022361A (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822643

Country of ref document: EP

Kind code of ref document: A1