WO2021250978A1 - 検体搬送装置 - Google Patents

検体搬送装置 Download PDF

Info

Publication number
WO2021250978A1
WO2021250978A1 PCT/JP2021/012505 JP2021012505W WO2021250978A1 WO 2021250978 A1 WO2021250978 A1 WO 2021250978A1 JP 2021012505 W JP2021012505 W JP 2021012505W WO 2021250978 A1 WO2021250978 A1 WO 2021250978A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
coil
coils
voltage
transport
Prior art date
Application number
PCT/JP2021/012505
Other languages
English (en)
French (fr)
Inventor
悟 金子
康明 青山
遼佑 星
武司 玉腰
啓之 小林
邦昭 鬼澤
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US17/923,616 priority Critical patent/US20230184798A1/en
Priority to EP21821981.4A priority patent/EP4166486A4/en
Priority to CN202180040249.3A priority patent/CN115698727A/zh
Publication of WO2021250978A1 publication Critical patent/WO2021250978A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0477Magnetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0489Self-propelled units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control
    • G01N2035/0493Locating samples; identifying different tube sizes

Definitions

  • the present invention relates to a sample transport device.
  • sample processing devices for clinical examination, the specified analysis items are inspected for samples (samples) such as blood, plasma, serum, urine and body fluid.
  • samples such as blood, plasma, serum, urine and body fluid.
  • sample processing devices can connect a plurality of devices having a function of inspecting each analysis item and automatically process each process.
  • the analysis departments of multiple analysis fields such as biochemistry and immunity are connected by a transport line and operated as one device.
  • the conventional transport line is mainly a belt drive system, and if the transport is stopped due to some abnormality during the transport, the sample cannot be supplied to the device on the downstream side of the transport line.
  • sample processing is increasing due to the sophistication of medical treatment and the progress of the aging society, and in order to improve the processing capacity of the sample processing device, it is possible to transport samples at high speed, at the same time in large quantities, and in multiple directions. Development of various devices is desired.
  • Patent Document 1 describes a laboratory sample delivery system and a corresponding operation method as a laboratory sample delivery system, which provides extremely flexible and high transport performance, in which the laboratory sample delivery system is several container carriers.
  • a container carrier each equipped with at least one magnetically active device, preferably at least one permanent magnet, adapted to carry a sample container, a transfer plane adapted to carry the container carrier, and a transfer plane. It is described that some electromagnetic actuators stationary downward are provided with an electromagnetic actuator adapted to move the container carrier on a transport plane by applying a magnetic force to the container carrier. ing.
  • the laboratory sample distribution system includes a plurality of electromagnetic actuators, and each electromagnetic actuator has a ferromagnetic core and an excitation. It is stated that the winding is provided.
  • a container carrier detection device for detecting the position of the magnetically active device provided on the sample transport carrier.
  • a container carrier detection device is provided in order to detect the existence and position of the container carrier located on the transport plane.
  • the laboratory sample distribution system is provided with a transfer surface, and a plurality of electromagnetic actuators are arranged below the transfer surface. A plurality of position sensors are distributed on this transfer surface. There is a description that a hall sensor is used as the position sensor.
  • Patent Documents 1 and 2 when a large amount of specimens are transported at high speed, these systems require a large number of container carrier detection devices, that is, position sensors, resulting in high cost and reduced reliability due to failure of the detection device. Is a concern. Further, when the position sensor is used in Patent Document 1 and Patent Document 2, the presence or absence of the sample cannot be detected unless the sample approaches the position sensor to some extent, so that there is a problem that the position detection accuracy of the sample is limited.
  • the present invention was created in order to solve the above problems, and an object of the present invention is to provide a sample transport device capable of accurately detecting the position of a sample without the need to provide a position sensor.
  • the present invention has a sample container provided with a magnetic material for accommodating a sample, a transport surface for transporting the sample container, and a surface of the transport surface opposite to the surface facing the magnetic material.
  • a plurality of coils arranged in, a coil drive unit that applies a voltage to the coil, and a position estimation unit that estimates the position of the sample container based on the current change generated when the voltage is applied to the coil by the coil drive unit.
  • the position estimation unit provides a sample transfer device characterized in that a voltage pulse having a phase difference is applied to adjacent coils among a plurality of coils by a coil drive unit to estimate the position of the transfer container. do.
  • a sample transport device capable of accurately detecting the position of a sample without the need to provide a position sensor.
  • the functional block diagram which shows the processing content of the arithmetic unit 40 of FIG. Graph showing the position characteristic of the inductance of the coil 25 Graph showing the position characteristic of the current change amount of the coil 25 Graph showing an example of voltage pulse waveform using PWM conversion method Graph showing other examples of voltage pulse waveforms using PWM conversion method
  • Schematic diagram showing an example of the positional relationship between the coil constituting the sample transport device and the sample Conceptual diagram showing magnetic flux interference between adjacent coils It is a graph which shows the example of the phase relation of the voltage pulse for position detection between adjacent coils. It is a graph which shows the example of the phase relation of the voltage pulse for position detection between adjacent coils.
  • FIG. 1 is a diagram showing a schematic configuration of an embodiment of the sample transport device of the present invention.
  • the sample transport device 1 of the present invention applies a voltage to a magnetic body (permanent magnet) 10, a plurality of coils 25a and 25b provided facing the magnetic body 10, and coils 25a and 25b.
  • a coil driving unit 50 to be applied and a calculation unit 40 including a position estimation unit for estimating the position of the permanent magnet 10 are provided.
  • Current detectors 30a and 30b are provided between the coils 25a and 25b and the coil drive unit 50.
  • the current detectors 30a and 30b, the calculation unit 40 and the coil drive unit 50 are connected to the power supply 55.
  • the “sa and 30b, the calculation unit 40 and the coil drive unit 50 are connected to the power supply 55.
  • the “sa and 30b, the calculation unit 40 and the coil drive unit 50 are connected to the power supply 55.
  • the “sa and 30b, the calculation unit 40 and the coil drive unit 50 are connected to the power supply
  • the permanent magnet 10 is provided in a sample container (transport container) containing a sample to be inspected. Further, a transport surface is provided between the sample container provided with the permanent magnet 10 and the coil 25.
  • the coil 25 is composed of a core 22 which is a columnar shape and is made of a magnetic material, and a winding 21 wound around the outer peripheral side of the core, and is arranged so that the permanent magnet 10 is located on the core 22. By passing an electric current through the winding 21, an electromagnetic force is applied to the permanent magnet 10, and the permanent magnet 10 can slide between the plurality of coils 25 through the transport surface. As a result, the sample container is transported to the desired position.
  • the relative position information between the permanent magnet 10 and the coils 25a and 25b. Is required.
  • the permanent magnet 10 is directly above the coil 25a of one of the two coils, but in this case, even if a current is passed through the coil 25a, no force is generated in the lateral direction, that is, in the transport direction.
  • a current through the coil 25b adjacent to the coil 25a (the coil in which the permanent magnet 10 is not directly above) 25b
  • a force that attracts the permanent magnet 10 to the coil 25b can be generated, and the transport direction (arrow in FIG. 1). Can be transported in the direction). That is, when the position of the permanent magnet 10 is grasped and a force (attracting force) that attracts the permanent magnet 10 is generated by the coil 25b in the transport direction, the force can be efficiently generated and the direction of the force can be controlled. ..
  • the magnetic flux generated by the permanent magnet 10 acts on the coil 25a.
  • the magnitude of the magnetic flux acting on the coil 25a on the near side and the coil 25b on the far side of the permanent magnet 10 are different. That is, the magnitude of the magnetic flux acting on the coil side changes depending on the relative position between the permanent magnet 10 and the coil.
  • the core 22 is made of a magnetic material, and the magnetic flux passing through the core 22 has a property that it becomes difficult to pass as the magnetic flux increases.
  • a voltage is applied to the winding 21 by the coil drive unit 50 and a current is passed, a magnetic flux generated by the current is generated in the core 22. Therefore, the magnetic flux generated by the permanent magnet 10 and the magnetic flux generated by the current flowing through the winding 21 are generated in the core 22.
  • the inductance changes due to the magnetic saturation characteristic of the core 22.
  • the inductance changes depending on the magnitude of the magnetic flux generated in the core 22. That is, the inductance of the winding 21 changes depending on the magnitude of the magnetic flux of the permanent magnet 10.
  • the inductance of the winding 21 changes depending on the position of the permanent magnet 10 (that is, the sample container). Therefore, if the inductance of the winding 21 can be measured, the position of the permanent magnet 10 on the transport surface can be detected.
  • the above is the outline of the position detection method based on the inductance characteristics of the coil.
  • V -d ⁇ / dt ... Equation (1)
  • is a magnetic flux
  • t is a time
  • the voltage V is represented by the amount of change in the magnetic flux per unit time.
  • the inductance L can be obtained by calculation by detecting the amount of change (dI / dt) of the current generated in the winding 21. That is, if the inductance characteristic of the winding 21 that changes depending on the position of the permanent magnet 10 can be grasped in advance, a voltage signal for position detection is applied and the amount of change (dI / dt) of the current generated by the voltage signal is detected. As a result, the position of the permanent magnet 10, that is, the sample container can be obtained. With such a configuration, the position of the sample container can be grasped without a position sensor.
  • the coil drive unit 50 is connected to the winding 21 of the coils 25a and 25b, and current detectors 30a and 30b for detecting the current flowing through the winding 21 are provided.
  • a voltage is applied to the winding 21 by the coil drive unit 50, and the current flowing by the voltage is detected by the current detector 30.
  • the coil drive unit 50 corresponds to, for example, a bidirectional chopper driven by a PWM (Pulse Width Modulation) signal.
  • the current detector 30 for detecting the current includes a shunt resistor, a current transformer, and a Hall current sensor, but the present embodiment is not particularly limited to these.
  • the coil drive unit 50 is connected to the power supply 55, and by controlling the duty of this power supply voltage, a predetermined current is passed through the windings 21 of the coils 25a and 25b.
  • the calculation unit 40 calculates a voltage command applied to the coil drive unit 50 in order to obtain the thrust required for transporting the sample container, and based on the current value detected by the current detector 30, the calculation unit 40 of the coil 25
  • the inductance that is, the amount of change in current dI / dt
  • the calculation unit 40 uses the calculated position information of the permanent magnet 10 to determine the timing at which the current required for transporting the permanent magnet 10 (sample container) is supplied from the coil drive unit 50, and the appropriate coils 25a and 25b are used. Is supplied with current.
  • FIG. 2 is a functional block diagram showing the processing contents of the calculation unit 40 of FIG.
  • the calculation unit 40 inputs a thrust command determined by a target value of the transport speed of the sample container, the duty setting unit 60 determines a voltage pulse signal such as PWM, and outputs the voltage pulse signal to the coil drive unit 50. do.
  • the current value from the current detector 30 is input, and the current change amount calculation unit 61 uses the coil current change amount (dI). / Dt) is calculated, and the position of the sample container is estimated by the sample position estimation unit 62 according to the value.
  • the coil that actually energizes is determined by the energization coil determination unit 63 based on the sample transport target position and the position of the sample container described above, and according to this determination position, the coil switching unit 64 energizes the desired coil. Switch the circuit to be possible.
  • the control block described here can be realized by an arithmetic unit such as a microcomputer.
  • the sample position estimation unit 62 shown in FIG. 2 will be described in detail. As described above, the sample position estimation unit 62 inputs the current change amount (dI / dt, that is, corresponds to the inductance L of the coils 25a and 25b) and outputs the position estimation value of the sample container.
  • FIG. 3 is a graph showing the position characteristics of the inductance of the coil 25
  • FIG. 4 is a graph showing the position characteristics of the amount of change in the current of the coil 25.
  • P3 means that the permanent magnet 10 is directly above the coil 25a
  • P0 means that the permanent magnet 10 is away from the coil 25a and is on the coil 25b arranged adjacent to the coil 25a. ..
  • the inductance increases as the value changes from P3 to P0.
  • this characteristic is a change in inductance generated by the action of the magnetic flux generated by energizing the coil 25 and the magnetic flux generated by the permanent magnet 10.
  • the principle is to estimate the position of the sample container by using the position characteristic of this inductance, but in the actual control logic, since the current change amount of the coil is input, the sample position estimation unit 62. Inside, it is set as a position characteristic data table of the current change amount (dI / dt) as shown in FIG. The relationship between the inductance L and the current change amount (dI / dt) is as shown in the above equation (3).
  • FIG. 5 is a graph showing an example of a voltage pulse waveform using a PWM conversion method.
  • the voltage pulse shown in FIG. 5 is a voltage signal generated by the PWM conversion method, and a voltage pulse signal is generated by comparing the voltage command value with the PWM carrier.
  • PWM conversion converts the magnitude of amplitude into the width of a pulse. Therefore, the voltage pulse shown in the lower part of FIG. 5 contains the information of the voltage command value shown in the upper part of the figure.
  • the voltage command value shown here is the sum of the voltage for generating the thrust for transporting the sample container and the voltage pulse for estimating the position of the sample container. When this voltage is applied to the coil 25, the average current for generating thrust and the current pulsation generated by the pulse are combined into a current.
  • FIG. 5 shows a voltage output method that uses PWM conversion to generate a voltage pulse for position detection that has a relatively high PWM cycle and a lower cycle. If the amount of change in current can be measured, the present invention is not limited to this.
  • FIG. 6 is a graph showing another example of the waveform of the voltage pulse using the PWM conversion method. For example, as shown in FIG. 6, the PWM cycle may be made lower and may be the same as the cycle of the voltage pulse for position detection.
  • FIG. 7 is a diagram showing the overall appearance of the coil of the sample transfer device of the present invention.
  • the coil shape is not particularly limited and may be a quadrangular column shape as shown in FIG. 7.
  • a large number of coils are actually arranged in the sample transfer device, and a voltage pulse is applied to the transfer path and the coil near the sample container according to the sample transfer path among these coils. Transport the sample while grasping the position of the sample container.
  • the electromagnetic transport device as shown in FIG. 7, which is the subject of the present invention, it is desired to increase the transport capacity of the sample, and there is a tendency for mass transport in the future.
  • the number of coils 25 of the sample transfer device increases, the distance between the plurality of coils becomes shorter, the distance between the samples to be conveyed becomes shorter, and adjacent coils are simultaneously moved. There is a high possibility that it will be energized.
  • FIG. 8 is a schematic diagram showing an example of the positional relationship between the coil constituting the sample transport device and the sample
  • FIG. 9 is a conceptual diagram showing magnetic flux interference between adjacent coils.
  • FIG. 8 (1) shows a case where the samples 70a and 70b are directly above the two adjacent coils 25a and 25b, and the coils 25a and 25b detect that the samples 70a and 70b are directly above the two coils 25a and 25b, respectively. , Carry out the transport drive of each sample.
  • FIG. 8 (2) shows a case where the sample 70 is located between two adjacent coils 25a and 25b, and voltage pulses for position detection are applied to the respective coils 25a and 25b, so that the sample 70 is used. Detects that it is located between each coil.
  • FIG. 10 and 11 are graphs showing an example of the phase relationship of voltage pulses for position detection between adjacent coils.
  • FIG. 10 when voltage pulses of the same phase are applied between adjacent coils, current pulsation is generated due to magnetic interference disturbance, and the detected value of the amount of current change generated in each coil is used. There is a possibility that an error will occur. As a result, the estimated value of the sample position may be miscalculated, the thrust characteristics may be deteriorated, and the sample transport capacity may be deteriorated.
  • a position detection voltage pulse between adjacent coils is applied as shown in FIG. It is effective to shift the phase of.
  • FIG. 11 when the phase of the voltage pulse is shifted, the voltage of one pulse changes, and when the amount of current change at that time is detected, the voltage pulse of the other coil does not change and is constant. Therefore, the influence of the detection error of the amount of change in the current due to the disturbance due to the magnetic interference as described above becomes small.
  • the effect of this detection error is smallest when the phase difference of the voltage pulse is 90 degrees as shown in FIG. At this time, the phase difference of the voltage pulse between the adjacent coils does not have to be exactly 90 degrees, and the phase difference should be such that the influence of the magnetic flux interference on the other coil does not affect the sample transport performance. good.
  • the voltage pulse for position detection is applied to both coils at the time when it is assumed that the voltage pulse for position detection is subsequently applied to the adjacent coils based on the information of the transfer path or the like. It suffices to give a phase difference to the voltage pulse to be applied.
  • the influence of magnetic interference between the coils when energizing a plurality of coils in order to transport a large number of samples is suppressed, the position estimation accuracy of the sample carrier is ensured, and the sample transfer device is highly accurate. Thrust control can be realized.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment describes the present invention in an easy-to-understand manner, and is not necessarily limited to the one having all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

位置センサを設ける必要無く、検体の位置を精度良く検出可能な検体搬送装置を提供する。 本発明の検体搬送装置は、検体を収容し、磁性体が設けられた検体容器と、検体容器を搬送する搬送面と、搬送面の磁性体と対向する面と反対側の面に配置された複数のコイル(25a,25b)と、コイル(25a,25b)に電圧を印加するコイル駆動部(50)と、コイル駆動部(50)によってコイルに電圧を印加した際に発生する電流変化に基づいて検体容器の位置を推定する位置推定部を有し、位置推定部は、コイル駆動部によって複数のコイルのうち隣接するコイル同士に位相差をもった電圧パルスを印加し、搬送容器の位置を推定することを特徴とする。

Description

検体搬送装置
 本発明は、検体搬送装置に関する。
 臨床検査のための検体処理装置では、血液、血漿、血清、尿および体液等の検体(サンプル)に対し、指示された分析項目を検査する。これらの検体処理装置は、それぞれの分析項目を検査する機能を有する複数の装置をつなげ、自動的に各工程を処理することができる。つまり、検査室の業務合理化のために、生化学や免疫など複数の分析分野の分析部を搬送ラインで接続し、1つの装置として運用している。従来の搬送ラインは主にベルト駆動方式がメインであり、搬送途中でなんらかの異常により搬送が停止してしまうと、それより下流側の装置に検体を供給できなくなる。また、医療の高度化及び高齢化社会の進展により、検体処理の重要性が高まってきており、検体処理装置の処理能力の向上のため、検体の高速搬送や大量同時搬送および複数方向へ搬送可能な装置の開発が望まれている。
 このような課題に対し、特許文献1には、非常に柔軟であり高い搬送性能を与える、研究室試料配送システムおよび対応する動作方法として、研究室試料配送システムがいくつかの容器キャリアであって、各々が少なくとも1つの磁気的活性デバイス、好ましくは少なくとも1つの永久磁石を備え、試料容器を運ぶように適合された容器キャリアと、容器キャリアを運ぶように適合された搬送平面と、搬送平面の下方に静止して配置された、いくつかの電磁アクチュエータであって、容器キャリアに磁力を印加することによって搬送平面の上で容器キャリアを移動させるように適合された電磁アクチュエータを備えることが記載されている。
 また、特許文献2には、試料分配システムに関連して最適化される動作パラメータを有するラボラトリ試料分配システムとして、ラボラトリ試料分配システムが複数の電磁アクチュエータを備え、各電磁アクチュエータが強磁性コアおよび励磁巻線を備えることが記載されている。
 これらの搬送方法およびシステムでは、検体搬送キャリアに設けられた磁気活性デバイスの位置を検出する容器キャリア検出デバイスが設けられている。特許文献1においては、搬送平面上に位置する容器キャリアの存在および位置を検知するために、容器キャリア検知デバイスが設けられる。また、特許文献2においては、ラボラトリ試料分配システムが移送面を備え、移送面の下方に複数の電磁アクチュエータが配置される。この移送面の上に複数の位置センサが分配される。位置センサとして、ホールセンサが用いられるとの記載がある。
特開2017-77971号公報 特開2017-102103号公報
 上記特許文献1および特許文献2において、検体を大量かつ高速に搬送する場合、これらのシステムでは容器キャリア検出デバイス、すなわち、位置センサが多数必要となり、高コスト化や検出デバイスの故障による信頼性低下が懸念される。さらに、特許文献1および特許文献2において位置センサを使用する場合、検体がある程度位置センサに接近しないと検体の有無を検知できないため、検体の位置検出精度に限界があるといった課題も考えられる。
 本発明は、上記の課題を解決するために生まれたものであり、位置センサを設ける必要無く、検体の位置を精度良く検出可能な検体搬送装置を提供することを目的とする。
 本発明は、上記目的を達成するために、検体を収容し、磁性体が設けられた検体容器と、検体容器を搬送する搬送面と、搬送面の磁性体と対向する面と反対側の面に配置された複数のコイルと、コイルに電圧を印加するコイル駆動部と、コイル駆動部によってコイルに電圧を印加した際に発生する電流変化に基づいて検体容器の位置を推定する位置推定部を有し、位置推定部は、コイル駆動部によって複数のコイルのうち隣接するコイル同士に位相差をもった電圧パルスを印加し、搬送容器の位置を推定することを特徴とする検体搬送装置を提供する。
 本発明のより具体的な構成は、特許請求の範囲に記載される。
 本発明によれば、位置センサを設ける必要無く、検体の位置を精度良く検出可能な検体搬送装置を提供できる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の検体搬送装置の一実施形態の概略構成を示す図 図1の演算部40の処理内容を示す機能ブロック図 コイル25のインダクタンスの位置特性を示すグラフ コイル25の電流変化量の位置特性を示すグラフ PWM変換方式を用いた電圧パルスの波形の一例を示すグラフ PWM変換方式を用いた電圧パルスの波形の他の例を示すグラフ 本発明の検体搬送装置のコイルの全体外観を示す図 検体搬送装置を構成するコイルと検体の位置関係の例を示す模式図 隣接コイル間の磁束干渉を表す概念図 隣接コイル間の位置検出用の電圧パルスの位相関係の例を示すグラフである。 隣接コイル間の位置検出用の電圧パルスの位相関係の例を示すグラフである。
 以下、本発明の実施の形態を詳述する。最初に本発明の検体搬送装置の概略構成について図1を用いて説明する。図1は本発明の検体搬送装置の一実施形態の概略構成を示す図である。図1に示すように、本発明の検体搬送装置1は、磁性体(永久磁石)10と、磁性体10に対向して設けられた複数のコイル25a,25bと、コイル25a,25bに電圧を印加するコイル駆動部50と、永久磁石10の位置を推定する位置推定部を含む演算部40とを備える。コイル25a,25bとコイル駆動部50との間には電流検出器30a,30bが設けられている。電流検出器30a,30b、演算部40およびコイル駆動部50は電源55に接続されている。以下、「検体搬送装置」を「搬送装置」と略称することがある。
 図1には示していないが、永久磁石10は、検査対象となる検体を収容した検体容器(搬送容器)に設けられている。また、永久磁石10が設けられた検体容器とコイル25との間には、搬送面を備える。コイル25は、円柱状で磁性体からなるコア22と、コアの外周側にまかれた巻線21とで構成されており、コア22の上に永久磁石10が位置するよう配置されている。巻線21に電流を流すことにより、永久磁石10に電磁力を作用させ、永久磁石10が搬送面を介して複数のコイル25間を滑るように移動することができる。これによって検体容器が所望の位置まで搬送される。
 このような電磁式の搬送において、電磁力を効率よく永久磁石10に作用させるために、また、検体容器を目的の方向に移動させるためには、永久磁石10とコイル25a,25bの相対位置情報が必要となる。たとえば、図1では永久磁石10が2つのコイルのうちの一方のコイル25aの直上にあるが、この場合、コイル25aに電流を流しても横方向、すなわち搬送方向への力は発生しない。逆に、コイル25aに隣接するコイル(永久磁石10が直上にないコイル)25bに電流を流すことにより、永久磁石10をコイル25bに引き寄せる力を発生することができ、搬送方向(図1の矢印方向)に搬送できる。
つまり、永久磁石10の位置を把握し、これに対して搬送方向にあるコイル25bで引き寄せる力(吸引力)を発生させた場合、効率よく力を発生させ、その力の方向を制御できることになる。
 以上のことから、電磁式の搬送装置1を制御するには、搬送面上にある永久磁石10の位置を検出する必要があることがわかる。この位置情報の必要性から、従来技術にあるように、多数の位置センサを搬送面上に配置して、検体容器の位置を検出している。
 ここで、上述のように多数の位置センサを用いた場合、正確な位置情報は得られるが、新たに位置センサを実装した基板が必要となるため、コストの上昇や装置の大型化をまねくことが考えられる。そこで、位置センサを用いずに検体容器の位置を検出することが望ましくなる。その一手法として、検体容器に付した永久磁石10の位置に応じて変化するコイルのインダクタンスを計測する方法が考えられる。以下に、コイルのインダクタンス特性に基づいた位置検出方式について述べる。
 まず、図1の手前側のコイル25aの上に永久磁石10があった場合、永久磁石10が作る磁束がコイル25aに作用する。ここで、永久磁石10が近い側のコイル25aと、遠い側のコイル25bとでは、作用する磁束の大きさが異なる。つまり、永久磁石10とコイルの相対位置によってコイル側に作用する磁束の大きさが変わることになる。また、コア22は磁性体で構成されており、コア22を通る磁束は、磁束が大きくなると通りにくくなる性質がある。ここで、巻線21にコイル駆動部50により電圧を印加して電流を流すと、その電流によって生じた磁束がコア22に発生する。したがって、コア22には、永久磁石10による磁束と、巻線21に流した電流によって生じる磁束とが発生する。
 一般的に、巻線21に電流を流すと、その周りに磁場が発生し、生じる磁束は流した電流値に比例する。この比例定数はインダクタンスとよばれる。しかし、コア22などの磁性体を有した回路では、コア22の磁気飽和特性により、インダクタンスが変化する。コア22に磁気飽和が発生すると、コア22に生じる磁束の大きさによってインダクタンスが変わる。つまり、永久磁石10の磁束の大きさによって巻線21のインダクタンスが変化する。これは、永久磁石10(すなわち、検体容器)の位置によって巻線21のインダクタンスが変化することを意味する。よって、この巻線21のインダクタンスが計測できれば、搬送面上の永久磁石10の位置を検出できることになる。以上がコイルのインダクタンス特性に基づいた位置検出方式の概要である。
 次に、より具体的な位置検出方式の原理について述べる。まず、巻線21に生じる電圧Vは、以下の式(1)で表される。
V=-dφ/dt…式(1)
 ここで、φは磁束、tは時間である。電圧Vは単位時間当たりの磁束の変化量で表される。
 また、電流I、インダクタンスLとすると、以下の式(2)の関係が成立する。
dI/dt=(1/L)×(dφ/dt)…式(2)
これら式(1)および式(2)から、以下の式(3)の関係が成立する。
dI/dt=-V/L…式(3)
 つまり、一定の電圧を巻線21に印加した場合、式(3)に示すようにインダクタンスLの大きさによって供給される電流Iの時間変化量が変化する。これは、電圧を印加した場合に供給される電流の立ち上がり方が異なること意味する。したがって、巻線21に電圧を印加した場合、巻線21に発生する電流の変化量(dI/dt)を検出することで、インダクタンスLを演算で求めることができる。つまり、永久磁石10の位置によって変化する巻線21のインダクタンス特性が予め把握できていれば、位置検出用の電圧信号を印可し、それによって発生する電流の変化量(dI/dt)を検出することにより、永久磁石10、すなわち検体容器の位置が求められることになる。このような構成によって、位置センサレスで検体容器の位置を把握することができる。
 次に、上述の位置センサレス方法を実現する回路構成について述べる。まず、図1に示すように、コイル25a,25bの巻線21にコイル駆動部50を接続するとともに、巻線21に流れる電流を検出する電流検出器30a,30bを設ける。このように本実施例では、コイル駆動部50により巻線21に電圧を印加し、その電圧によって流れる電流を電流検出器30で検出する。ここで、コイル駆動部50は例えばPWM(Pulse Width Modulation)信号で駆動される双方向チョッパ等が相当する。また、電流を検出する電流検出器30は、シャント抵抗やカレントトランスによるもの、ホール電流センサを用いたものなどがあるが、本実施例においては、特にこれらに限定されるものではない。なお、コイル駆動部50は、電源55に接続されており、この電源電圧をデューティー制御することにより、コイル25a,25bの巻線21に所定の電流を流す。
 演算部40は、検体容器を搬送するために必要な推力を得るためにコイル駆動部50に印加する電圧指令を演算するとともに、電流検出器30によって検出された電流値を基に、コイル25のインダクタンス(すなわち、電流変化量dI/dt)を計測し、コイル25と永久磁石10との相対位置関係を演算して、搬送装置1内における永久磁石10の位置を推定する。演算部40は、この演算した永久磁石10の位置情報を用いて、コイル駆動部50から永久磁石10(検体容器)の搬送に必要な電流を供給するタイミングを決定し、適切なコイル25a,25bに電流を供給させる。
 このときの検体搬送制御の一例を図2のブロック線図に表す。図2は図1の演算部40の処理内容を示す機能ブロック図である。図2に示すように、演算部40は検体容器の搬送速度の目標値で決まる推力指令を入力し、デューティー設定部60でPWM等の電圧パルス信号を決定し、コイル駆動部50に対して出力する。その際、複数あるコイル25a,25bのうち、どのコイルに通電するかを決定するために、電流検出器30からの電流値を入力として、電流変化量演算部61でコイルの電流変化量(dI/dt)を演算し、その値に応じて検***置推定部62において検体容器の位置を推定する。さらに検体の搬送目標位置と前述の検体容器の位置に基づいて実際に通電を行うコイルを通電コイル決定部63で決定し、この決定位置に従い、コイル切り替え部64において、所望のコイルへの通電が可能となるように回路を切り替える。なお、ここで述べた制御ブロックはマイクロコンピュータ等の演算装置で実現することができる。
 図2に示す検***置推定部62について詳細に述べる。検***置推定部62では、前述のように電流変化量(dI/dt、すなわち、コイル25a,25bのインダクタンスLに相当)を入力して検体容器の位置推定値を出力する。図3はコイル25のインダクタンスの位置特性を示すグラフであり、図4はコイル25の電流変化量の位置特性を示すグラフである。図3において、P3は永久磁石10がコイル25aの直上にあることを意味しており、P0は、永久磁石10がコイル25aから遠ざかり、隣接配置されるコイル25b上にあることを意味している。さらに、図3の縦軸Lはコイルのインダクタンスを示している。この特性をみると、P3からP0に変化するにつれて、インダクタンスが増加していることがわかる。この特性は、上述したように、コイル25に通電して発生する磁束と、永久磁石10が発生する磁束の作用によって生じるインダクタンスの変化である。本実施例では、このインダクタンスの位置特性を利用して検体容器の位置を推定することが原理であるが、実際の制御ロジックでは、コイルの電流変化量を入力とするため、検***置推定部62内には、図4に示すような電流変化量(dI/dt)の位置特性データテーブルとして設定する。上記インダクタンスLと電流変化量(dI/dt)の間の関係は上述した式(3)に示す通りである。
 次に、検体容器位置を検出するために必要な電圧の印加方法について述べる。図5はPWM変換方式を用いた電圧パルスの波形の一例を示すグラフである。図5に示す電圧パルスは、PWM変換方式で生成された電圧信号であり、電圧指令値とPWMキャリアを比較することで電圧パルス信号を生成する。一般にPWM変換は振幅の大きさをパルスの幅に変換する。よって、図5下部に示す電圧パルスは、図の上部に示す電圧指令値の情報を含んでいる。ここで示す電圧指令値は検体容器を搬送する推力を発生させるための電圧と、検体容器の位置を推定するための電圧パルスを加算したものとなる。この電圧をコイル25に印加した場合、推力を発生させるための平均電流と、パルスによって発生する電流脈動が合成された電流となる。
 なお、図5では、PWM変換を利用し、相対的に高いPWM周期と、それよりも低い周期となる位置検出用の電圧パルスとなる電圧出力方法を示したが、検体容器を搬送でき、その際の電流変化量を計測できれば、これに限定されるものではない。図6はPWM変換方式を用いた電圧パルスの波形の他の例を示すグラフである。例えば、図6に示すように、PWM周期をより低くし、位置検出用の電圧パルスの周期と同一にしてもよい。
 図7は本発明の検体搬送装置のコイルの全体外観を示す図である。なお、図1では円柱状のコイルを図示したが、コイル形状は特に限定されず、図7に示すように四角柱形状であっても良い。図7に示すように、実際は検体搬送装置には多数のコイルが配置されており、これらのコイルのうち検体の搬送経路に応じて、搬送経路および検体容器付近のコイルに電圧パルスを印加し、検体容器位置を把握しつつ検体搬送を実施する。本発明の対象としている図7に示すような電磁搬送装置では、検体の搬送能力の増大が望まれており、今後大量搬送となる傾向にある。このように、搬送する検体の数が増えると、検体搬送装置のコイル25の数が増え、その複数のコイルの間隔距離が短くなるとともに、搬送する検体の距離が近くなり、隣接のコイルを同時に通電する可能性が高くなる。
 そこで、本発明では、隣接するコイル間に磁束の干渉が生じないように構成する。図8は検体搬送装置を構成するコイルと検体の位置関係例を示す模式図であり、図9は隣接コイル間の磁束干渉を表す概念図である。図8(1)は、隣接する2つのコイル25a,25bのそれぞれの直上に検体70a,70bがある場合で、コイル25a,25bは、それぞれ直上に検体70a,70bがあることを検知しており、それぞれの検体の搬送駆動を行う。一方、図8(2)は、隣接する2つのコイル25a,25bの間に検体70がある場合で、それぞれのコイル25a,25bには、お互い位置検出用の電圧パルスが印加され、検体70がそれぞれのコイルの間に位置していることを検知する。
 このような場合、図9に示すように、それぞれ電圧パルスP1,P2を印加して通電するため、ぞれぞれのコイル25a,25bでは電圧パルスに応じた磁束の変化が生じる。
上述のように、隣接するコイルの間隔が小さい場合、それぞれ発生した磁束の変化を相互に受け、お互い誘起電圧の干渉となって外乱を生じる。本発明で対象としている位置センサレス方式では位置検出用の電圧パルスを印加し、電圧パルスによって発生する電流変化量に基づいて検体の位置を検出する。よって、この磁気的な干渉外乱が発生した場合、隣接するコイル25a,25b相互に電流変化量が変化することになる。
 図10および図11は隣接コイル間の位置検出用の電圧パルスの位相関係の例を示すグラフである。例えば、図10に示すように、隣接するコイル間で同一位相の電圧パルスを印加した場合、磁気的な干渉外乱により電流の脈動が発生し、相互のコイルで発生する電流変化量の検出値に誤差が生じる可能性が出てくる。その結果、検***置の推定値に誤算が生じ、推力特性が低下し、検体搬送能力が低下してしまう可能性がある。
 そこで、以上のような課題を解決するため、本発明では、隣接したコイルに位置検出用電圧パルスを印加し通電する際には、図11に示すように隣接したコイル間の位置検出用電圧パルスの位相をずらすことが有効である。図11のように、電圧パルスの位相をずらした場合には、片方のパルスが電圧変化し、その際の電流変化量を検出する際、他方のコイルの電圧パルスは変化せずに一定であるため、上述のような磁気的干渉による外乱での電流変化量の検出誤差の影響は小さくなる。この検出誤差の影響が最も小さくなるのは、図11に示すように電圧パルスの位相差を90度とした場合である。このとき、隣接したコイル間の電圧パルスの位相差は厳密に90度である必要はなく、他方のコイルへの磁束干渉の影響が検体の搬送性能に影響を与えない程度の位相差とすればよい。
 なお、前述のように、今後搬送装置1の検体搬送量が増加する場合、多数の検体が搬送されることになり、それぞれの検体間で磁束干渉を与えない(受けない)程度の位相差を常にもたせることが困難となることが考えられる。このような場合は図2における通電コイル決定部63において、搬送経路の情報などで、この後、隣接するコイルに位置検出用の電圧パルスを印加することが想定された時点で双方のコイルに印加する電圧パルスに位相差をもたせるようにすればよい。
 上述した構成によれば、多数の検体を搬送するために複数のコイルに通電する際のコイル間の磁気干渉の影響を抑制し、検体キャリアの位置推定精度を確保し、高精度な検体搬送装置の推力制御を実現することができる。
 以上、説明したように、本発明によれば、位置センサを設ける必要無く、検体の位置を精度良く検出可能な検体搬送装置を提供できることが示された。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
上記した実施例は本発明を分かりやすく説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
 1…搬送装置、10…永久磁石、21…巻線、22…コア、25a,25b…コイル、30a,30b…電流検出器、40…演算部、50…コイル駆動部、55…電源、60…デューティー設定部、61…電流変化量演算部、62…検***置推定部、63…通電コイル決定部、64…コイル切り替え部、70a,70b…検体。

Claims (3)

  1.  検体を収容し、磁性体が設けられた検体容器と、
     前記検体容器を搬送する搬送面と、
     前記搬送面の前記磁性体と対向する面と反対側の面に配置された複数のコイルと、
     前記コイルに電圧を印加するコイル駆動部と、
     前記コイル駆動部によって前記コイルに電圧を印加した際に発生する電流変化に基づいて前記検体容器の位置を推定する位置推定部を有し、
     前記位置推定部は、前記コイル駆動部によって前記複数のコイルのうち隣接するコイル同士に位相差をもった電圧パルスを印加し、前記検体容器の位置を推定することを特徴とする検体搬送装置。
  2.  前記位相差が90度であることを特徴とする請求項1に記載の検体搬送装置。
  3.  前記位置推定部は、前記検体容器の先の搬送経路において、前記隣接するコイルへ同時に電圧パルスを印加することが想定された時点で、前記隣接するコイルへ印加するパルス電圧間に位相差をもたせることを特徴とする請求項1または2に記載の検体搬送装置。
PCT/JP2021/012505 2020-06-10 2021-03-25 検体搬送装置 WO2021250978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/923,616 US20230184798A1 (en) 2020-06-10 2021-03-25 Sample transport device
EP21821981.4A EP4166486A4 (en) 2020-06-10 2021-03-25 SAMPLE CARRIER DEVICE
CN202180040249.3A CN115698727A (zh) 2020-06-10 2021-03-25 检体输送装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100731 2020-06-10
JP2020100731A JP7465727B2 (ja) 2020-06-10 2020-06-10 検体搬送装置

Publications (1)

Publication Number Publication Date
WO2021250978A1 true WO2021250978A1 (ja) 2021-12-16

Family

ID=78845588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012505 WO2021250978A1 (ja) 2020-06-10 2021-03-25 検体搬送装置

Country Status (5)

Country Link
US (1) US20230184798A1 (ja)
EP (1) EP4166486A4 (ja)
JP (1) JP7465727B2 (ja)
CN (1) CN115698727A (ja)
WO (1) WO2021250978A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162340A1 (ja) * 2022-02-25 2023-08-31 株式会社日立ハイテク 搬送装置、および搬送方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114402A (ja) * 1985-11-11 1987-05-26 Shinko Electric Co Ltd リニアモ−タ式搬送装置
JPH05153704A (ja) * 1991-11-26 1993-06-18 Hitachi Ltd 平面内磁気反発/吸引浮上搬送制御方法とその装置
JPH05176414A (ja) * 1991-12-20 1993-07-13 Mitsubishi Heavy Ind Ltd 磁気搬送浮上体の位置検出装置
JPH10206104A (ja) * 1997-01-20 1998-08-07 Makome Kenkyusho:Kk 位置検出装置
JP2017077971A (ja) 2011-11-04 2017-04-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 研究室試料配送システムおよび対応する動作方法
JP2017102103A (ja) 2015-10-13 2017-06-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ラボラトリ試料分配システム、および、ラボラトリオートメーションシステム
WO2019082750A1 (ja) * 2017-10-24 2019-05-02 パナソニックIpマネジメント株式会社 平面モータシステム、制御装置、及び、移動方法
WO2019225284A1 (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 平面モータ、及び、制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199616A (ja) * 1992-01-17 1993-08-06 Fujitsu Ltd 搬送装置の制御装置
US8499697B2 (en) 2009-02-20 2013-08-06 General Atomics System and method for vehicle position sensing with use of propulsion windings
EP2977766A1 (en) 2014-07-24 2016-01-27 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
CN111907337A (zh) * 2015-05-29 2020-11-10 株式会社安川电机 输送***以及输送***的控制方法
CN108290166B (zh) * 2015-11-30 2021-07-20 Dh科技发展私人贸易有限公司 用于处理流体的电磁组合件
EP3355065B1 (en) * 2017-01-31 2021-08-18 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
JP7025256B2 (ja) * 2018-03-16 2022-02-24 キヤノン株式会社 ステージ装置、リソグラフィ装置、および物品の製造方法
US10457497B1 (en) * 2018-04-13 2019-10-29 Laitram, L.L.C. Electromagnetic conveyor system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114402A (ja) * 1985-11-11 1987-05-26 Shinko Electric Co Ltd リニアモ−タ式搬送装置
JPH05153704A (ja) * 1991-11-26 1993-06-18 Hitachi Ltd 平面内磁気反発/吸引浮上搬送制御方法とその装置
JPH05176414A (ja) * 1991-12-20 1993-07-13 Mitsubishi Heavy Ind Ltd 磁気搬送浮上体の位置検出装置
JPH10206104A (ja) * 1997-01-20 1998-08-07 Makome Kenkyusho:Kk 位置検出装置
JP2017077971A (ja) 2011-11-04 2017-04-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 研究室試料配送システムおよび対応する動作方法
JP2017102103A (ja) 2015-10-13 2017-06-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ラボラトリ試料分配システム、および、ラボラトリオートメーションシステム
WO2019082750A1 (ja) * 2017-10-24 2019-05-02 パナソニックIpマネジメント株式会社 平面モータシステム、制御装置、及び、移動方法
WO2019225284A1 (ja) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 平面モータ、及び、制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166486A4

Also Published As

Publication number Publication date
EP4166486A4 (en) 2024-05-15
EP4166486A1 (en) 2023-04-19
US20230184798A1 (en) 2023-06-15
CN115698727A (zh) 2023-02-03
JP2021196193A (ja) 2021-12-27
JP7465727B2 (ja) 2024-04-11

Similar Documents

Publication Publication Date Title
JP6602901B2 (ja) ラボラトリ試料分配システム及びラボラトリ自動化システム
JP7325184B2 (ja) 搬送装置、およびそれを備えた検体分析システム、検体前処理装置
CN113939997B (zh) 输送装置
JP7107866B2 (ja) 搬送装置および被搬送物の搬送方法
US11851282B2 (en) Conveying device, sample analysis system and sample pretreatment device including the conveying device, and method for conveying conveyance object
WO2021250978A1 (ja) 検体搬送装置
WO2021065362A1 (ja) 搬送装置、および分析システム
WO2021250938A1 (ja) 搬送装置、および分析システム
WO2023084901A1 (ja) 搬送装置
WO2022137858A1 (ja) 検体搬送装置
WO2023145174A1 (ja) 搬送装置、および搬送方法
WO2023062926A1 (ja) 搬送装置
WO2021245990A1 (ja) 搬送装置、および分析システム
JP7480363B2 (ja) 検体搬送システム、および検体の搬送方法
WO2023162340A1 (ja) 搬送装置、および搬送方法
WO2023228583A1 (ja) 搬送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821981

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821981

Country of ref document: EP

Effective date: 20230110