WO2021250726A1 - Separation system, separation method, and separation program - Google Patents

Separation system, separation method, and separation program Download PDF

Info

Publication number
WO2021250726A1
WO2021250726A1 PCT/JP2020/022474 JP2020022474W WO2021250726A1 WO 2021250726 A1 WO2021250726 A1 WO 2021250726A1 JP 2020022474 W JP2020022474 W JP 2020022474W WO 2021250726 A1 WO2021250726 A1 WO 2021250726A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
entry
packet
predetermined information
processing
Prior art date
Application number
PCT/JP2020/022474
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 西口
勇樹 武井
雅幸 西木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/022474 priority Critical patent/WO2021250726A1/en
Publication of WO2021250726A1 publication Critical patent/WO2021250726A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]

Definitions

  • the present invention relates to a separation system, a separation method and a separation program.
  • the present invention has been made in view of the above, and an object of the present invention is to reduce the processing load of SMF and enable separation of C-purén and U-purén.
  • the separation system has a protocol of an observation unit that observes a control signal in a mobile network and acquires predetermined information, and the acquired predetermined information.
  • An entry that defines the processing for the received packet is formed by using the distribution unit that distributes each packet and the predetermined information for each of the distributed protocols, and the entry is inserted into the table associated with each packet. It is characterized by having a unit and a search unit that processes the received packet according to the table and transfers the packet to an adjacent network device.
  • the processing load of SMF can be reduced and the C-purén and the U-purén can be separated.
  • FIG. 1 is a diagram for explaining an outline of the separation system of the present embodiment.
  • FIG. 2 is a diagram for explaining an outline of the separation system of the present embodiment.
  • FIG. 3 is a schematic diagram illustrating a schematic configuration of the separation system of the present embodiment.
  • FIG. 4 is a diagram for explaining the structure of the table.
  • FIG. 5 is a diagram for explaining the processing of the observation unit.
  • FIG. 6 is a diagram for explaining the processing of the observation unit.
  • FIG. 7 is a diagram for explaining the processing of the observation unit.
  • FIG. 8 is a diagram for explaining the processing of the observation unit.
  • FIG. 9 is a diagram for explaining the processing of the observation unit.
  • FIG. 10 is a diagram for explaining the processing of the observation unit.
  • FIG. 11 is a diagram for explaining the processing of the observation unit.
  • FIG. 12 is a diagram for explaining the processing of the observation unit.
  • FIG. 13 is a diagram for explaining the processing of the observation unit.
  • FIG. 14 is a diagram for explaining the processing of the observation unit.
  • FIG. 15 is a diagram for explaining the processing of the observation unit.
  • FIG. 16 is a diagram for explaining the processing of the observation unit.
  • FIG. 17 is a flowchart showing the separation processing procedure of the present embodiment.
  • FIG. 18 is a schematic diagram illustrating the schematic configuration of the separation system of the second embodiment.
  • FIG. 19 is a diagram for explaining the processing of the register management unit.
  • FIG. 20 is a diagram for explaining the processing of the processed portion.
  • FIG. 21 is a diagram for explaining the processing of the processed portion.
  • FIG. 22 is a diagram for explaining the processing of the dummy generation unit and the folding unit.
  • FIG. 23 is a diagram showing an example of a computer that executes a separation program.
  • FIGS. 1 and 2 are diagrams for explaining an outline of the separation system of the present embodiment.
  • the communication transmitted by the UE (User Equipment) 2 is processed by separating the C-prene signal and the U-prene signal into different communication paths.
  • the U-plen signal is transferred to the destination UE 2 via the mobile core (including vEPC) 3 by the SDN switch 10 configured by general-purpose hardware such as a white box switch.
  • the tunnel termination process for terminating the GTP-U tunnel from the radio base station (eNodeB or gNB) 4 tunneled by the GTP-U protocol is performed by the mobile core 3.
  • the tunnel termination process means encapsulation / decapsulation of the GTP-U tunnel header.
  • the SDN switch 10 observes a C-plen signal for setting a bearer for transferring a U-plen signal between the radio base station 4 and the mobile core 3. Then, the SDN switch 10 acquires predetermined information necessary for offloading the U-plen signal and notifies the SDN controller 20 that centrally controls the entire device in the system.
  • the SDN controller 20 distributes the LTE C-prene signal and the 5G C-prene signal according to the protocol type. Further, the SDN controller 20 forms an entry for terminating the tunnel for each distributed protocol, and performs an entry operation for inserting (setting) or deleting the entry in the table of the SDN switch 10. This offloads LTE and 5G U-plen signal processing to the SDN switch 10.
  • the UPF (User Plane Function), which is the U-plen function of the mobile core 3, is separated by CUPS.
  • UPF performs processing according to the match & action rule (table) inserted by SMF3a, which is a C-plen function.
  • rule (1) for identifying the communication to be pulled into the MEC server
  • GTP-U tunnel termination rule (2) is inserted into the UPF each time a terminal executes a connection, disconnection, or handover, so that the processing load of the SMF is large when the number of accommodated terminals is large or when the UPF is deployed in multiple stages. Will increase. Therefore, the separation system 1 of the present embodiment performs tunnel termination processing on the distributed d-UPF3c among the UPFs to generate a U-prene function that does not require cooperation with the SMF on the SDN switch. Reduce the processing load of SMF.
  • FIG. 3 is a schematic diagram illustrating a schematic configuration of the separation system of the present embodiment.
  • the separation system 1 of the present embodiment includes an SDN switch 10 and an SDN controller 20.
  • the SDN switch 10 is realized by a CPU (Central Processing Unit), an NP (Network Processor), an FPGA (Field Programmable Gate Array), etc., executes a processing program stored in a memory, and functions as a control unit 12. Further, the SDN switch 10 includes a storage unit 11 realized by a semiconductor memory element such as a RAM or a flash memory. Further, the SDN switch 10 includes a communication control unit (not shown), and communicates with the SDN controller 20 and other network devices via the communication control unit.
  • a CPU Central Processing Unit
  • NP Network Processor
  • FPGA Field Programmable Gate Array
  • the storage unit 11 stores the table 11a generated by the separation process described later.
  • the table 11a contains entries that specify the processing of the SDN switch 10 for the packets received by the SDN switch 10. That is, the table 11a is associated with entries for each packet.
  • FIG. 4 is a diagram for explaining the configuration of the table 11a.
  • the table 11a may be composed of a plurality of tables such as tables a1 to a4.
  • the SDN switch 10 refers to one of the tables according to the received packet and determines the operation to perform tunnel termination processing in the LTE S1 bearer or 5G.
  • the SDN switch 10 first confirms whether or not the received packet is a GTP-U packet, and if it is a GTP-U packet, determines the operation with reference to the table a1.
  • Table a1 stipulates that, for example, when the TEID (Tunnel Endpoint IDentifier) of the received packet is a predetermined value, the GTP-U header is deencapsulated and the output port is set. Further, in the table a1, it is stipulated that the packet is copied and transferred to the SDN controller 20 in other cases.
  • the table 11a may include a table a4 that determines the operation when the SDN switch 10 determines the operation with reference to the table a1 and transfers the operation to a subsequent network device such as MEC (Mobile Edge Computing). .. Table a4 stipulates that, for example, when forwarding to a predetermined destination IP address, the output port is set.
  • MEC Mobile Edge Computing
  • the SDN switch 10 confirms whether or not it is a C-plen signal. Whether or not it is a C-prene signal is, for example, whether or not it is an S1AP (S1 Application Protocol) packet in LTE, and whether or not it is an NGAP (Next Generation Application Protocol) packet in 5G.
  • S1AP S1 Application Protocol
  • NGAP Next Generation Application Protocol
  • the SDN switch 10 determines the operation with reference to the table a2 when the received packet is a C-plen signal, and in other cases, that is, when the received packet is a U-plen signal, the table is used. The operation is determined with reference to a3.
  • the table a2 stipulates that when the received packet is a C-plen signal, the packet is copied and transferred to the SDN controller 20. Further, in table a3, when the destination IP address (Dst IP) of the received packet is a predetermined UE IP, it is stipulated that the GTP-U header is encapsulated with a predetermined TEID and the output port is set. Has been done. Further, in the table a3, it is specified that the packet is forwarded to the SDN controller 20 in other cases.
  • Dst IP destination IP address
  • the separation system 1 generates a table 11a by a separation process described later and sets it in the storage unit 11 of the SDN switch 10.
  • the TEID of the table a1 and the TEID when the UE IP of the table a3 is the destination are required to generate the table 11a.
  • the S1AP ID between the MME and the UE2 and the S1AP ID between the radio base stations 4-UE2 are required.
  • an NGAP ID between AMF and UE2, an NGAP ID between RAN (Radio Access Network) and UE2, and the like are required. Therefore, as will be described later, the separation system 1 acquires information necessary for tunnel termination processing by observing C-plen signals between the radio base station 4-core network 3 in the separation processing.
  • control unit 12 functions as an observation unit 12a and a search unit 12b.
  • these functional units may be implemented in different hardware.
  • the search unit 12b may be provided in another information processing device in the separation system 1.
  • the observation unit 12a and the search unit 12b may be provided in another information processing device in the separation system 1.
  • the control unit 12 may include other functional units.
  • the control unit 12 may include a first entry forming unit 22b and a second entry forming unit 22c, which will be described later.
  • the SDN controller 20 is realized by a CPU, NP, FPGA, or the like, executes a processing program stored in a memory, and functions as a control unit 22. Further, the SDN controller 20 includes a storage unit 21 realized by semiconductor memory elements such as RAM and flash memory. Further, the SDN controller 20 includes a communication control unit (not shown), and communicates with an external device such as an SDN switch 10 or another network device via the communication control unit. The storage unit 21 may be configured to communicate with the control unit 22 via the communication control unit.
  • the control unit 22 functions as a distribution unit 22a, a first entry forming unit 22b, and a second entry forming unit 22c. Note that these functional units may be mounted on hardware other than the SDN controller 20. For example, the distribution unit 22a, the first entry forming unit 22b, and the second entry forming unit 22c may be mounted on the SDN switch 10 or another information processing device in the separation system 1. Further, the control unit 22 may include other functional units.
  • the observation unit 12a observes the C-prene signal, which is a control signal in the mobile network, and acquires predetermined information. Specifically, the observation unit 12a observes the C-plen signal between the radio base station 4 and the mobile core 3 and acquires the information necessary for the tunnel termination process.
  • the information required for the tunnel termination processing in the S1 bearer can be acquired from the event that triggers the creation / deletion of the S1 bearer.
  • the LTE network C-plen signal is classified into EPS (Evolved Packet System) mobility management (EMM, EPS Mobility Management) and session management (ESM, EPS Session Management). Events that trigger the creation / deletion of S1 bearers are included in the EMM.
  • FIGS. 5 to 16 are diagrams for explaining the processing of the observation unit 12a.
  • FIG. 5 illustrates a state transition diagram of an EMM in an MME responsible for C-plene processing in an LTE network.
  • the state related to EMM is defined by the combination of the state of EMM and the state of ECM (EPS Connection Management).
  • EMM states There are two types of EMM states: “EMM-DREGISTERED” and “EMM-REGISTERRED”. “EMM-DERRISERED” is a state in which the UE 2 is not recognized by the LTE network and does not have an IP. Further, “EMM-REGISTRED” is a state in which UE2 is recognized from the LTE network and an EPS bearer is created.
  • ECM-IDLE is a state in which the radio / S1 bearer has not been created and the radio resource has not been allocated to the UE 2.
  • UE2 in this state cannot use LTE even if it has an IP address.
  • ECM-CONCEPTED is a state in which a radio / S1 bearer is created and radio resources are allocated to UE2.
  • the state becomes "EMM-DERIGISTERRED” and "ECM-IDLE". From this state, the attach message transitions to the "EMM-REGISTRED” and “ECM-CONTECTED” states.
  • the "EMM-REGISTRED” and “ECM-CONNECTED” states are states in which an S1 bearer is created, a GTP tunnel is established, and actual communication by the user is performed.
  • the service request message transitions to the "EMM-REGISTRED” and “ECM-CONTECTED” states.
  • the detached message triggered by UE2 transitions to the state of "EMM-DIREGISTERED” and "ECM-IDLE".
  • EMM-REGISTERED and “ECM-CONNECTED” is changed to the state of "EMM-DERGISTERED” and “ECM-IDLE” by a detach message triggered by UE2 or MME3a, or by an abnormality in the radio section.
  • the handover procedure includes an X2 handover connecting to the same MME and an S1 handover connecting to a different MME.
  • the attach message, the service request message, and the handover message are messages that trigger a transition from a state without communication to a state with communication, and are a trigger for inserting an entry into the table 11a for tunnel termination processing. Become.
  • the User Inactivity message, the detach message, and the handover message are messages that trigger a transition from a state in which communication is present to a state in which there is no communication, and are triggers for deleting an entry in table 11a.
  • the observation unit 12a observes these LTE C-prene signal messages and acquires information necessary for tunnel termination processing in the S1 bearer. Specifically, the observation unit 12a acquires the TEID (see table a1 in FIG. 4) between the eNodeB 4-SGW. Further, the observation unit 12a acquires the S1AP ID between the MME and the UE2 and the S1AP ID between the eNodeB 4-UE2 in order to associate the UE IP with the TEID (see table a3 in FIG. 4).
  • FIG. 6 illustrates a sequence of attach messages.
  • the observation unit 12a receives the S1AP ID between the MME and UE2, the S1AP ID between the eNB 4-UE2, and the GTP tunnel ID between the eNB 4 and the SGW. And get the IP address of UE2. Further, the observation unit 12a acquires the S1AP ID between the MME and UE2, the S1AP ID between the eNB4 and UE2, and the GTP tunnel ID of the eNB4 from the SGW from the "Context Setup Response, Attach Complete" transmitted from the eNB 4 to the MME. ..
  • FIG. 7 illustrates a sequence of service request messages.
  • the observation unit 12a acquires the S1AP ID between the MME and the UE2, the S1AP ID between the eNB4 and the UE2, the GTP tunnel ID of the SGW from the eNB4, and the IP address of the UE2 from the "Context Setup Request" transmitted from the MME to the eNB4. do. Further, the observation unit 12a acquires the S1AP ID between the MME and UE2, the S1AP ID between the eNB 4-UE2, and the GTP tunnel ID of the eNB 4 from the SGW from the "Context Setup Response" transmitted from the eNB 4 to the MME.
  • the observation unit 12a acquires information necessary for tunnel termination processing from the same message for the sequence transmitted from the MME.
  • FIG. 8 illustrates a sequence of S1 handover messages.
  • the observation unit 12a acquires the S1AP ID between the MME and the UE 2 and the SGW GTP tunnel ID from the dst eNB from the "Handover Request" transmitted from the MME to the handover destination eNB 4 (dst eNB). Further, the observation unit 12a acquires the S1AP ID between the MME and UE2, the S1AP ID between the dst eNB and the UE2, and the GTP tunnel ID of the dst eNB from the SGW from the "Handover Request Ack.” Transmitted from the dst eNB to the MME. do.
  • the observation unit 12a acquires the S1AP ID between the MME and the UE2 and the S1AP ID between the src eNB and the UE2 from the "UE Context Release Command / Complete" between the handover source eNB4 (src eNB) and the MME. ..
  • FIG. 9 illustrates a sequence of X2 handover messages.
  • the observation unit 12a acquires the S1AP ID between the dst eNB and the UE2 from the "Path Switch Request" transmitted from the dst eNB to the MME, and the GTP tunnel ID of the dst eNB from the SGW 3b. Further, the observation unit 12a acquires the S1AP ID between the MME and the UE2 and the S1AP ID between the dst eNB and the UE2 from the "Path Switch Request Ack." Transmitted from the MME to the dst eNB.
  • FIG. 10 illustrates a sequence of User Inactivity messages.
  • the observation unit 12a acquires the S1AP ID between the MME and UE2 and the S1AP ID between the dst eNB and UE2 from the "UE Context Release Complete" transmitted from the eNB 4 to the MME.
  • FIG. 11 illustrates a sequence of detached messages.
  • the observation unit 12a acquires the S1AP ID between the MME and UE2 and the S1AP ID between the dst eNB and UE2 from the "UE Context Release Complete" transmitted from the eNB 4 to the MME.
  • FIG. 11 illustrates a sequence transmitted from the UE 2
  • the observation unit 12a acquires information necessary for tunnel termination processing from the same message for the sequence transmitted from the MME.
  • FIG. 12 illustrates a state transition diagram defined from a state managed by AMF (Access and Mobility management Function), which is responsible for mobility management in 5G.
  • AMF Access and Mobility management Function
  • the state managed by AMF is defined by the combination of the 5GMM (Mobility Management) state and the CM (Connection Management) state, as well as the RRC state.
  • 5GMM Mobility Management
  • CM Connection Management
  • the state of 5GMM includes "5GMM-DELGISTERRED” and "5GMM-REGISTRED”.
  • 5GMM-DERIGISTERED is a state in which the UE 2 is not recognized by the 5G network and does not have an IP.
  • 5GMM-REGISTRED is a state in which UE2 is recognized from the 5G network and a bearer is created.
  • CM-IDLE is a state in which a bearer has not been created and radio resources have not been allocated to the UE 2.
  • UE2 in this state cannot use 5G even if it has an IP address.
  • CM-CONCEPTED is a state in which a bearer is created and radio resources are allocated to the UE 2.
  • RRC-CONTECTED There are two types of RRC, “RRC-CONTECTED” and “RRC-INACTIVE”.
  • RRC-CONCEPTED is a state in which radio resources are allocated and a tunnel exists.
  • RRC-INACTIVE is a state in which the tunnel continues to exist even if the radio resource is released, as described above.
  • the handover procedure includes an Xn handover connected to the same AMF and an N2 handover connected to a different AMF.
  • the Regency message is a message that triggers the creation of a tunnel, and triggers an entry to be inserted into the table 11a for performing the tunnel termination process.
  • the Delegation message and the handover message are messages that trigger the deletion of the tunnel, and trigger the deletion of the entry in the table 11a.
  • the observation unit 12a observes the 5G C-prene signal message and acquires the information required for tunnel termination processing in 5G. Specifically, the observation unit 12a acquires the TEID between gNB4-AMF (see table a1 in FIG. 4). Further, the observation unit 12a acquires the NGAP ID between the AMF and the UE 2 and the NGAP ID between the RAN and the UE 2 in order to associate the UE IP with the TEID (see table a3 in FIG. 4).
  • FIG. 13 illustrates a sequence of registration messages.
  • the observation unit 12a receives the NGAP ID between AMF and UE2, the NGAP ID between RAN and UE2, the transport IP address of d-UPF3c, and gNB4 to d from the "Context Setup Request, Attach Accept" transmitted from AMF to gNB4. -Obtain the GTP tunnel ID of UPF3c and the IP address of UE2. Further, the observation unit 12a receives the NGAP ID between AMF and UE2, the NGAP ID between RAN and UE2, the transport IP address of gNB4, and the gNB4 from UPF from the "Context Setup Response, Attach Complete" transmitted from gNB4 to AMF. Get the GTP tunnel ID of.
  • FIG. 14 illustrates a sequence of N2 handover messages.
  • the observation unit 12a receives the NGAP ID between AMF and UE2, the NGAP ID between RAN and UE2, and the GTP tunnel ID between gNB4 and d-UPF3c from the "Handover Request" transmitted from the AMF to the handover destination gNB4 (dsst gNB). To get. Further, the observation unit 12a acquires the NGAP ID between AMF and UE2, the NGAP ID between RAN and UE2, and the GTP tunnel ID of gNB from d-UPF3c from the "Handover Request Ack." Transmitted from dst gNB to AMF. do.
  • the observation unit 12a acquires the NGAP ID between the AMF and the UE2 and the NGAP ID between the gNB and the UE2 from the "UE Context Release Command / Complete" between the handover source gNB4 (src gNB) and the AMF.
  • FIG. 15 illustrates a sequence of Xn handover messages.
  • the observation unit 12a acquires the NGAP ID between gNB4-UE2 from the "Path Switch Request" transmitted from the dst gNB to the AMF, and the GTP tunnel ID of the dst gNB from the d-UPF3c. Further, the observation unit 12a acquires the NGAP ID between the AMF and the UE2 and the NGAP ID between the dst gNB and the UE2 from the "Path Switch Request Ack.” Transmitted from the AMF to the dst gNB.
  • FIG. 16 illustrates a sequence of Delegation messages.
  • the observation unit 12a acquires the NGAP ID between AMF and UE2 and the NGAP ID between gNB4-UE2 from the "UE Context Release Complete" transmitted from gNB4 to AMF.
  • FIG. 16 illustrates a sequence transmitted from the UE 2
  • the observation unit 12a acquires information necessary for tunnel termination processing from the same message for the sequence transmitted from the network.
  • the observation unit 12a notifies the SDN controller 20 of the acquired information.
  • the distribution unit 22a distributes the acquired predetermined information for each protocol. Specifically, the distribution unit 22a distributes the C-prene signal notified from the SDN switch 10 according to the protocol type. In the present embodiment, the distribution unit 22a distributes the C-prene signal to either S1AP or NGAP as the protocol type.
  • first entry forming unit 22b or the second entry forming unit 22c functions as an entry forming unit for each protocol, and forms an entry that defines the processing for the received packet by using the distributed information for each protocol. Then, the entry is inserted into the table 11a associated with each packet.
  • the first entry forming unit 22b forms an entry for tunnel termination processing using the information required for tunnel termination processing notified from the SDN switch 10 with respect to the C-plen signal of S1AP, and the SDN switch 10 Perform an entry operation to insert or delete the table 11a.
  • the second entry forming unit 22c forms an entry for the tunnel termination processing using the information required for the tunnel termination processing notified from the SDN switch 10 for the C-plen signal of the NGAP, and forms a table 11a of the SDN switch 10. Perform an entry operation to insert or delete in.
  • the search unit 12b processes the received packet according to the table 11a, and transfers the packet to the adjacent network device. Specifically, when the search unit 12b receives the packet, the search unit 12b performs the tunnel termination process with reference to the table 11a as described above with reference to FIG.
  • the search unit 12b makes a copy of the packet via the distribution unit 22a, depending on the protocol type, the first entry forming unit 22b or the second entry. It may be transferred to the forming unit 22c. In that case, the first entry forming unit 22b or the second entry forming unit 22c acquires the information necessary for tunnel termination processing from the forwarded packet and forms an entry.
  • the search unit 12b cannot perform the tunnel termination processing, and the mobile core 3 performs the tunnel termination processing.
  • the search unit 12b copies the received uplink communication packet and forwards it to the SDN controller 20. Since the TEID is different between the uplink communication and the downlink communication, in the SDN controller 20, the first entry forming unit 22b or the second entry forming unit 22c transmits the TEID and UE IP of the packet to the storage unit 21 via the distribution unit 22a.
  • the first entry forming unit 22b or the second entry forming unit 22c transmits the TEID and UE IP of the packet to the storage unit 21 via the distribution unit 22a.
  • the search unit 12b copies the received downlink communication packet and transfers it to the SDN controller 20 in the same manner as the uplink communication packet.
  • the first entry forming unit 22b or the second entry forming unit 22c acquires the TEID of the downlink communication packet via the distribution unit 22a.
  • the first entry forming unit 22b or the second entry forming unit 22c refers to (looks up) the storage unit 21 using the UE IP as a key, and acquires the TEID at the time of uplink communication.
  • the first entry forming unit 22b or the second entry forming unit 22c forms an entry and inserts it into the table 11a. After that, the tunnel termination process of the mobile core 3 is offloaded to the SDN switch 10.
  • the separation system 1 can form an entry and insert it into the table 11a even when the SDN switch 10 does not have the session information (entry for the tunnel termination process) for the communication for which the tunnel termination process needs to be performed. It becomes. For example, when the observation of the C-prene signal at the time of session establishment fails, such as attachment in LTE, registration in 5G, handover, etc., or when entry registration fails or is delayed, the SDN switch for tunnel termination processing Offload to 10 is possible.
  • a timeout may be set for the entry of the SDN switch 10.
  • the entry may be deleted as a trigger.
  • the downlink communication from the server is transferred to the radio base station 4 without being discarded.
  • the observation of the C-prene signal at the time of session deletion such as detachment or User Inactivity fails, or if the entry deletion fails, the downlink communication from the server cannot be discarded and is transferred to the wireless base station 4. Can be prevented.
  • the separation system 1 can prevent communication failure and redundant traffic generation due to inconsistency between the session information of the SDN switch 10 and the actual communication.
  • the separation system 1 makes a copy of the U-plen signal as the first entry according to the protocol type when the flow rate of the traffic of the user data signal (U-plen signal) matching the predetermined condition exceeds the predetermined threshold value. It may be transferred to the forming unit 22b or the second entry forming unit 22c. In that case, the first entry forming unit 22b or the second entry forming unit 22c acquires information necessary for tunnel termination processing from the transferred U-plen signal and forms an entry.
  • the search unit 12b counts the flow rate of U-plen traffic that matches a predetermined condition such as 5 doubles of the inner. When the flow rate exceeds a predetermined threshold value, the search unit 12b transfers a copy of the U-plen signal to the first entry forming unit 22b or the second entry forming unit 22c in the same manner as described above.
  • the first entry forming unit 22b or the second entry forming unit 22c acquires information necessary for tunnel termination processing from the transferred U-plen signal and forms an entry.
  • the separation system 1 also offloads the tunnel termination processing to the SDN switch 10 by acquiring information necessary for tunnel termination processing such as TEID and UE IP from the U-prene signal instead of the C-prene signal. Is possible.
  • FIG. 17 is a flowchart showing the separation processing procedure.
  • the flowchart of FIG. 17 is started, for example, at the timing when the observation unit 12a receives the packet.
  • the observation unit 12a observes the C-plen signal between the radio base station 4-mobile core 3 and acquires predetermined information (tunnel information) required for tunnel termination processing (step S11).
  • the observation unit 12a transfers the acquired tunnel information to the SDN controller 20.
  • the distribution unit 22a distributes to the first entry forming unit 22b or the second entry forming unit 22c according to the protocol type (step S12).
  • the first entry forming unit 22b or the second entry forming unit 22c forms an entry for tunnel termination processing using the information required for tunnel termination processing notified from the SDN switch 10 (step S13). Further, the first entry forming unit 22b or the second entry forming unit 22c performs an entry operation of inserting or deleting the formed entry into the table 11a of the SDN switch 10 (step S14).
  • the search unit 12b processes the received packet according to the table 11a and transfers the packet to the adjacent network device (step S15). This completes a series of separation processes.
  • FIG. 18 is a schematic diagram illustrating the schematic configuration of the separation system of the second embodiment.
  • the distribution unit 22a, the first entry forming unit 22b, and the second entry forming unit 22c may be mounted on the SDN switch 10.
  • the search unit 12b is mounted on the data plane of the control unit 12
  • the first entry forming unit 22b and the second entry forming unit 22c are mounted on the control screen of the control unit 12. Since the processing of each functional unit is the same as that of the above embodiment, the description thereof will be omitted.
  • the SDN controller 20 intervenes when the entry is inserted, which may cause a delay in the setting of the table 11a and cause an inconsistent state with the actual communication of the table 11a. Therefore, in the present embodiment, the register management unit 12d that manages the register 11b, which is the internal storage device of the SDN switch 10, is provided, and the setting of the table 11a is realized by using the register 11b.
  • the observation unit 12a stores the acquired predetermined information necessary for the tunnel termination process in the register 11b. Further, the distribution unit 22a distributes predetermined information taken out from the register 11b according to the protocol type to the first entry forming unit 22b or the second entry forming unit 22c. Then, the first entry forming unit 22b and the second entry forming unit 22c each form an entry by using predetermined information extracted from the register 11b according to the protocol type.
  • the separation system 1 can eliminate the intervention of the SDN controller 20 in the insertion of the entry, reduce the delay in inserting the entry, and suppress the inconsistent state of the table 11a.
  • FIG. 19 is a diagram for explaining the processing of the register management unit 12d.
  • the observation unit 12a acquires the information necessary for tunnel termination processing from the C-prene signal, outputs the hash value of the information corresponding to the match condition (key), and sets the action.
  • the parameter is stored in the register 11b as a value. Further, the observation unit 12a notifies the register management unit 12d of the index of the stored register 11b.
  • the register management unit 12d stores the notified index in the queue. Further, the register management unit 12d takes out the index stored at a predetermined interval, polls the register 11b based on the index, and transfers the acquired information to the distribution unit 22a. The distribution unit 22a transfers the acquired register information to the first entry forming unit 22b or the second entry forming unit 22c according to the protocol type.
  • the first entry forming unit 22b or the second entry forming unit 22c forms an entry based on the transferred register information and inserts it into the table 11a. Further, the first entry forming unit 22b or the second entry forming unit 22c notifies the register management unit 12d of the completion of the insertion when the insertion of the entry into the table 11a is completed. The register management unit 12d notified of the completion of insertion releases the register 11b.
  • the separation system 1 can suppress the occurrence of delay due to the intervention of the SDN controller 20 at the time of entry insertion, and can prevent the occurrence of an inconsistent state with the actual communication of the table 11a.
  • the separation system 1 can suppress the occurrence of delay due to the intervention of the SDN controller 20 at the time of entry insertion, and can prevent the occurrence of an inconsistent state with the actual communication of the table 11a.
  • MEC a use case such as MEC
  • the SDN controller 2 includes a machining unit 22d.
  • FIGS. 20 and 21 are diagrams for explaining the processing of the processing unit 22d.
  • the processing unit 22d processes the predetermined information acquired by the observation unit 12a into a fixed length and stores it in the register 11b. Specifically, as shown in FIG. 20, the observation unit 12a notifies the processing unit 22d of the SDN controller 20 of the C-prene signal.
  • the processing unit 22d processes the C-prene signal into a format that is easy to parse and returns it to the SDN switch 10 in-band. For example, the processing unit 22d extracts the index and value stored in the register 11b from the C-prene signal, and processes the packet into a fixed-length packet consisting of only the index and value. This makes it possible for the separation system 1 to implement the parsing of the C-prene signal regardless of the device.
  • the processing unit 22d processes the C-prene signal as illustrated in FIG. 21.
  • FIG. 21 shows an example of processing the “Context Setup Request” of the Regency message.
  • the processed packet is a fixed-length packet including a TEID, a transport IP address, and a PDN IP address.
  • control unit 12 of the SDN switch 10 is provided with a dummy generation unit 12e, and is also realized by the CPU, NP, FPGA, or the like of the opposite device such as the EPC of the mobile core 3 facing the SDN switch 10.
  • the control unit may be provided with a folded unit.
  • the dummy generation unit 12e copies the packet transferred from the search unit 12b, replaces the payload of the packet with dummy data, and returns the packet to the search unit 12b. Further, the return unit returns the packet transferred from the search unit 12b to the search unit 12b.
  • the search unit 12b forwards the packet to the dummy generation unit 12e. Further, the search unit 12b forwards the packet returned from the dummy generation unit 12e to the return unit. Further, the distribution unit 22a transfers the packet returned from the return unit to the first entry forming unit 22b or the second entry forming unit 22c according to the protocol type. Then, the first entry forming unit 22b or the second entry forming unit 22c acquires predetermined information necessary for tunnel termination processing from the transferred packet to form an entry.
  • FIG. 22 is a diagram for explaining the processing of the dummy generation unit 12c and the folding unit 32a.
  • the dummy generation unit 12e stores the packet transferred from the search unit 12b in the queue.
  • the dummy generation unit 12e registers the tunnel ID (TEID) and the packet storage destination queue ID in the table 11a using the srcIP, that is, the UE IP, which is the inner of the received packet, as a key.
  • the dummy generation unit 12e replaces the payload with dummy data, replaces the inner destination IP with the IP address of the opposite device 30, and returns the data to the data plane.
  • the search unit 12b transfers the packet addressed to the opposite device 30 returned from the dummy generation unit 12e to the return unit 32a.
  • the return unit 32a wraps the transferred packet by exchanging the source IP and the destination IP of the packet, and returns the transferred packet to the search unit 12b.
  • the search unit 12b transfers the packet returned from the folding unit 32a to the first entry forming unit 22b or the second entry forming unit 22c via the distribution unit 22a.
  • the first entry forming unit 22b or the second entry forming unit 22c refers to the table 11a using the dstIP of the inner of the received packet, that is, the UE IP as a key, and acquires the tunnel ID of the uplink communication and the queue ID of the packet storage destination. do. Further, the first entry forming unit 22b or the second entry forming unit 22c acquires the tunnel ID for downlink communication from the received packet. Then, the first entry forming unit 22b or the second entry forming unit 22c forms an entry by using the acquired information necessary for the tunnel termination process and inserts it into the table 11a. Further, the first entry forming unit 22b or the second entry forming unit 22c sequentially releases the packets stored in the queue and transfers them to the data plane.
  • the separation system 1 acquires different TEIDs for uplink communication and downlink communication while preventing data from leaking to the mobile core 3 installed on the cloud, and forms an entry for tunnel termination processing. ..
  • the separation system 1 of the present embodiment can tunnel the U-plen signal without going through the mobile core 3 installed on the cloud, especially in the service requiring data concealment. Become.
  • the observation unit 12a observes the C-prene signal in the mobile network and acquires predetermined information.
  • the distribution unit 22a distributes the acquired predetermined information for each protocol.
  • the first entry forming unit 22b or the second entry forming unit 22c forms an entry that defines the processing for the received packet by using the predetermined information for each distributed protocol, and associates the entry for each packet. Insert into table 11a.
  • the search unit 12b processes the received packet according to the table 11a, and transfers the packet to the adjacent network device.
  • observation unit 12a stores the acquired predetermined information in the register 11b, and the first entry forming unit 22b or the second entry forming unit 22c uses the predetermined information taken out from the register 11b to make an entry. Form. This makes it possible to reduce the delay in inserting the entry and suppress the inconsistent state of the table 11a.
  • a processing unit 22d that processes the predetermined information acquired by the observation unit 12a to a fixed length and stores it in the register 11b is further provided. This makes it possible to implement the parsing of the C-prene signal regardless of the device.
  • the search unit 12b copies the packet and transfers it to the first entry forming unit 22b or the second entry forming unit 22c via the distribution unit 22a. do.
  • the first entry forming unit 22b or the second entry forming unit 22c acquires predetermined information from the transferred packet to form an entry. This eliminates the inconsistency state and enables more accurate C / U separation.
  • the search unit 12b copies the U-plen signal and passes through the distribution unit 22a to the first entry forming unit 22b or the second. Transfer to the entry forming unit 22c.
  • the first entry forming unit 22b or the second entry forming unit 22c acquires predetermined information from the transferred U-plen signal to form an entry. This makes it possible to reduce the load on the mobile core 3.
  • the search unit 12b forwards the packet to the dummy generation unit 12e.
  • the dummy generation unit 12e copies the packet transferred from the search unit 12b, replaces the payload of the packet with dummy data, and returns the packet to the search unit 12b.
  • the search unit 12b forwards the packet returned from the dummy generation unit 12e to the return unit 32a.
  • the return unit 32a returns the packet transferred from the search unit 12b to the search unit 12b.
  • the search unit 12b transfers the packet returned from the folding unit 32a to the first entry forming unit 22b or the second entry forming unit 22c via the distribution unit 22a.
  • the first entry forming unit 22b or the second entry forming unit 22c acquires predetermined information from the transferred packet to form an entry. This makes it possible to conceal U-Plen locally.
  • the separation system 1 can be implemented by installing a separation program that executes the above separation process as package software or online software on a desired computer.
  • the information processing apparatus can function as the SDN switch 10 and the SDN controller 20 of the separation system.
  • the information processing device referred to here includes a desktop type or notebook type personal computer.
  • the information processing device includes smartphones, mobile communication terminals such as mobile phones and PHS (Personal Handyphone System), and slate terminals such as PDA (Personal Digital Assistant).
  • the function of the separation system 1 may be implemented in the cloud server.
  • FIG. 23 is a diagram showing an example of a computer that executes a separation program.
  • the computer 1000 has, for example, a memory 1010, a CPU 1020, a hard disk drive interface 1030, a disk drive interface 1040, a serial port interface 1050, a video adapter 1060, and a network interface 1070. Each of these parts is connected by a bus 1080.
  • the memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012.
  • the ROM 1011 stores, for example, a boot program such as a BIOS (Basic Input Output System).
  • BIOS Basic Input Output System
  • the hard disk drive interface 1030 is connected to the hard disk drive 1031.
  • the disk drive interface 1040 is connected to the disk drive 1041.
  • a removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041.
  • a mouse 1051 and a keyboard 1052 are connected to the serial port interface 1050.
  • a display 1061 is connected to the video adapter 1060.
  • the hard disk drive 1031 stores, for example, the OS 1091, the application program 1092, the program module 1093, and the program data 1094. Each of the information described in the above embodiment is stored in, for example, the hard disk drive 1031 or the memory 1010.
  • the separation program is stored in the hard disk drive 1031 as, for example, a program module 1093 in which a command executed by the computer 1000 is described.
  • the program module 1093 in which each process executed by the separation system 1 described in the above embodiment is described is stored in the hard disk drive 1031.
  • the data used for information processing by the separation program is stored as program data 1094 in, for example, the hard disk drive 1031.
  • the CPU 1020 reads the program module 1093 and the program data 1094 stored in the hard disk drive 1031 into the RAM 1012 as needed, and executes each of the above-mentioned procedures.
  • the program module 1093 and program data 1094 related to the separation program are not limited to the case where they are stored in the hard disk drive 1031. For example, they are stored in a removable storage medium and read by the CPU 1020 via the disk drive 1041 or the like. May be done. Alternatively, the program module 1093 and the program data 1094 related to the separation program are stored in another computer connected via a network such as a LAN or WAN (Wide Area Network), and are read out by the CPU 1020 via the network interface 1070. You may.
  • a network such as a LAN or WAN (Wide Area Network)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In the present invention, an observation unit (12a) observes a C-plane signal in a mobile network, and obtains prescribed information. A sorting unit (22a) sorts the obtained prescribed information by protocol. A first entry formation unit (22b) or a second entry formation unit (22c) uses the prescribed information sorted by protocol to form an entry that specifies a process for a received packet, and inserts the entry into a table in which each packet is associated with an entry. A search unit (12b) processes a received packet in accordance with the table (11a), and transfers the packet to an adjacent network device.

Description

分離システム、分離方法および分離プログラムSeparation system, separation method and separation program
 本発明は、分離システム、分離方法および分離プログラムに関する。 The present invention relates to a separation system, a separation method and a separation program.
 5Gでは、CUPS(Control and User Plane Separation)といわれる技術により、モバイルコアのCプレン(Control Plane)とUプレン(User Plane)の機能が分離される。これにより、Uプレン機能を担うUPF(User Plane Function)の分散配備による低遅延通信の実現が期待されている(非特許文献1参照)。 In 5G, the functions of mobile core C plane (Control Plane) and U plane (User Plane) are separated by a technology called CUPS (Control and User Plane Separation). As a result, it is expected that low-delay communication will be realized by distributed deployment of UPF (User Plane Function), which is responsible for the U-plen function (see Non-Patent Document 1).
 しかしながら、従来、CUPSを導入した際に、SMF(Session Management Function)の処理負荷が増大するという問題があった。つまり、分離したC/Uプレン間でやり取りされる連携信号のために、Cプレン信号数が増加し、Cプレン機能を担うSMFの処理負荷の増大が懸念されている。5Gでは、UPFの多段配置が可能であるため、例えば、1つのデータパスにつき2つのUPFを配備する場合には、C/Uプレン間の連携信号量は2倍となり、SMFへの負荷はさらに大きくなってしまう。 However, in the past, when CUPS was introduced, there was a problem that the processing load of SMF (Session Management Function) increased. That is, there is a concern that the number of C-plen signals will increase due to the linked signals exchanged between the separated C / U-prens, and the processing load of the SMF that has the C-plen function will increase. Since UPFs can be arranged in multiple stages in 5G, for example, when two UPFs are deployed for one data path, the amount of linkage signal between C / U planes is doubled, and the load on the SMF is further increased. It gets bigger.
 本発明は、上記に鑑みてなされたものであって、SMFの処理負荷を低減して、CプレンとUプレンとの分離を可能とすることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to reduce the processing load of SMF and enable separation of C-purén and U-purén.
 上述した課題を解決し、目的を達成するために、本発明に係る分離システムは、モバイルネットワークにおける制御信号を観測して所定の情報を取得する観測部と、取得された前記所定の情報をプロトコルごとに振り分ける振分部と、振り分けられた前記プロトコルごとの所定の情報を用いて、受信したパケットに対する処理を規定するエントリを形成し、パケットごとに該エントリを対応付けたテーブルに挿入するエントリ形成部と、受信したパケットに前記テーブルに従った処理を行い、該パケットを隣接するネットワーク装置に転送する探索部と、を有することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the separation system according to the present invention has a protocol of an observation unit that observes a control signal in a mobile network and acquires predetermined information, and the acquired predetermined information. An entry that defines the processing for the received packet is formed by using the distribution unit that distributes each packet and the predetermined information for each of the distributed protocols, and the entry is inserted into the table associated with each packet. It is characterized by having a unit and a search unit that processes the received packet according to the table and transfers the packet to an adjacent network device.
 本発明によれば、SMFの処理負荷を低減して、CプレンとUプレンとの分離が可能となる。 According to the present invention, the processing load of SMF can be reduced and the C-purén and the U-purén can be separated.
図1は、本実施形態の分離システムの概要を説明するための図である。FIG. 1 is a diagram for explaining an outline of the separation system of the present embodiment. 図2は、本実施形態の分離システムの概要を説明するための図である。FIG. 2 is a diagram for explaining an outline of the separation system of the present embodiment. 図3は、本実施形態の分離システムの概略構成を例示する模式図である。FIG. 3 is a schematic diagram illustrating a schematic configuration of the separation system of the present embodiment. 図4は、テーブルの構成を説明するための図である。FIG. 4 is a diagram for explaining the structure of the table. 図5は、観測部の処理を説明するための図である。FIG. 5 is a diagram for explaining the processing of the observation unit. 図6は、観測部の処理を説明するための図である。FIG. 6 is a diagram for explaining the processing of the observation unit. 図7は、観測部の処理を説明するための図である。FIG. 7 is a diagram for explaining the processing of the observation unit. 図8は、観測部の処理を説明するための図である。FIG. 8 is a diagram for explaining the processing of the observation unit. 図9は、観測部の処理を説明するための図である。FIG. 9 is a diagram for explaining the processing of the observation unit. 図10は、観測部の処理を説明するための図である。FIG. 10 is a diagram for explaining the processing of the observation unit. 図11は、観測部の処理を説明するための図である。FIG. 11 is a diagram for explaining the processing of the observation unit. 図12は、観測部の処理を説明するための図である。FIG. 12 is a diagram for explaining the processing of the observation unit. 図13は、観測部の処理を説明するための図である。FIG. 13 is a diagram for explaining the processing of the observation unit. 図14は、観測部の処理を説明するための図である。FIG. 14 is a diagram for explaining the processing of the observation unit. 図15は、観測部の処理を説明するための図である。FIG. 15 is a diagram for explaining the processing of the observation unit. 図16は、観測部の処理を説明するための図である。FIG. 16 is a diagram for explaining the processing of the observation unit. 図17は、本実施形態の分離処理手順を示すフローチャートである。FIG. 17 is a flowchart showing the separation processing procedure of the present embodiment. 図18は、第2の実施形態の分離システムの概略構成を例示する模式図である。FIG. 18 is a schematic diagram illustrating the schematic configuration of the separation system of the second embodiment. 図19は、レジスタ管理部の処理を説明するための図である。FIG. 19 is a diagram for explaining the processing of the register management unit. 図20は、加工部の処理を説明するための図である。FIG. 20 is a diagram for explaining the processing of the processed portion. 図21は、加工部の処理を説明するための図である。FIG. 21 is a diagram for explaining the processing of the processed portion. 図22は、ダミー生成部および折り返し部の処理を説明するための図である。FIG. 22 is a diagram for explaining the processing of the dummy generation unit and the folding unit. 図23は、分離プログラムを実行するコンピュータの一例を示す図である。FIG. 23 is a diagram showing an example of a computer that executes a separation program.
 以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment. Further, in the description of the drawings, the same parts are indicated by the same reference numerals.
[分離システムの概要]
 図1および図2は、本実施形態の分離システムの概要を説明するための図である。LTE(Long Term Evolution)ネットワークおよび5Gネットワークにおいて、UE(User Equipment)2が発信した通信は、Cプレン信号とUプレン信号とが異なる通信経路に分離されて処理される。特に、Uプレン信号は、ホワイトボックススイッチ等の汎用ハードウェアで構成されるSDNスイッチ10により、モバイルコア(vEPCを含む)3を介して宛先のUE2に転送される。その際に、GTP-Uプロトコルでトンネル化された無線基地局(eNodeBまたはgNB)4からのGTP-Uトンネルに対し、モバイルコア3で終端するトンネル終端処理が行われる。なお、トンネル終端処理とは、GTP-Uトンネルヘッダのカプセル化(encap)/デカプセル化(decap)を意味する。
[Overview of separation system]
1 and 2 are diagrams for explaining an outline of the separation system of the present embodiment. In the LTE (Long Term Evolution) network and the 5G network, the communication transmitted by the UE (User Equipment) 2 is processed by separating the C-prene signal and the U-prene signal into different communication paths. In particular, the U-plen signal is transferred to the destination UE 2 via the mobile core (including vEPC) 3 by the SDN switch 10 configured by general-purpose hardware such as a white box switch. At that time, the tunnel termination process for terminating the GTP-U tunnel from the radio base station (eNodeB or gNB) 4 tunneled by the GTP-U protocol is performed by the mobile core 3. The tunnel termination process means encapsulation / decapsulation of the GTP-U tunnel header.
 図1に示すように、本実施形態の分離システム1では、SDNスイッチ10が、無線基地局4-モバイルコア3間のUプレン信号を転送するベアラを設定するためのCプレン信号を観測する。そして、SDNスイッチ10は、Uプレン信号のオフロードに必要な所定の情報を取得して、システム内の機器全体の集中制御を行うSDNコントローラ20に通知する。 As shown in FIG. 1, in the separation system 1 of the present embodiment, the SDN switch 10 observes a C-plen signal for setting a bearer for transferring a U-plen signal between the radio base station 4 and the mobile core 3. Then, the SDN switch 10 acquires predetermined information necessary for offloading the U-plen signal and notifies the SDN controller 20 that centrally controls the entire device in the system.
 SDNコントローラ20は、LTEのCプレン信号と、5GのCプレン信号とをプロトコル種別で振り分ける。また、SDNコントローラ20は、振り分けられたプロトコルごとに、トンネルを終端するためのエントリを形成し、SDNスイッチ10のテーブルに挿入(設定)したり削除したりするエントリ操作を行なう。これにより、LTEおよび5GのUプレン信号処理がSDNスイッチ10にオフロードされる。 The SDN controller 20 distributes the LTE C-prene signal and the 5G C-prene signal according to the protocol type. Further, the SDN controller 20 forms an entry for terminating the tunnel for each distributed protocol, and performs an entry operation for inserting (setting) or deleting the entry in the table of the SDN switch 10. This offloads LTE and 5G U-plen signal processing to the SDN switch 10.
 ここで、図2に示すように、5Gでは、CUPSによってモバイルコア3のUプレン機能であるUPF(User Plane Function)が分離される。UPFは、Cプレン機能であるSMF3aが挿入するマッチ&アクションルール(テーブル)に従って処理を行う。 Here, as shown in FIG. 2, in 5G, the UPF (User Plane Function), which is the U-plen function of the mobile core 3, is separated by CUPS. UPF performs processing according to the match & action rule (table) inserted by SMF3a, which is a C-plen function.
 SMFが挿入するルールには、MECサーバへ引き込む通信を識別するルール(1)と、GTP-Uトンネル終端ルール(2)との2種類のルールがある。このうち、ルール(2)は、端末が接続、切断、またはハンドオーバを実行する度にUPFに挿入されるため、収容端末数が多い場合やUPFが多段配備されている場合に、SMFの処理負荷が増大する。そこで、本実施形態の分離システム1は、UPFのうち、分散配備されたd-UPF3cについてトンネル終端処理を行って、SMFとの連携が不要なUプレン機能をSDNスイッチ上に生成することにより、SMFの処理負荷を低減する。 There are two types of rules inserted by SMF: a rule (1) for identifying the communication to be pulled into the MEC server, and a GTP-U tunnel termination rule (2). Of these, rule (2) is inserted into the UPF each time a terminal executes a connection, disconnection, or handover, so that the processing load of the SMF is large when the number of accommodated terminals is large or when the UPF is deployed in multiple stages. Will increase. Therefore, the separation system 1 of the present embodiment performs tunnel termination processing on the distributed d-UPF3c among the UPFs to generate a U-prene function that does not require cooperation with the SMF on the SDN switch. Reduce the processing load of SMF.
[分離システムの構成]
 図3は、本実施形態の分離システムの概略構成を例示する模式図である。図3に例示するように、本実施形態の分離システム1は、SDNスイッチ10、SDNコントローラ20を含んで構成される。
[Separation system configuration]
FIG. 3 is a schematic diagram illustrating a schematic configuration of the separation system of the present embodiment. As illustrated in FIG. 3, the separation system 1 of the present embodiment includes an SDN switch 10 and an SDN controller 20.
 SDNスイッチ10は、CPU(Central Processing Unit)やNP(Network Processor)やFPGA(Field Programmable Gate Array)等で実現され、メモリに記憶された処理プログラムを実行して、制御部12として機能する。また、SDNスイッチ10は、RAM、フラッシュメモリ等の半導体メモリ素子で実現される記憶部11を備える。また、SDNスイッチ10は、図示しない通信制御部を備え、通信制御部を介してSDNコントローラ20や他のネットワーク装置等と通信する。 The SDN switch 10 is realized by a CPU (Central Processing Unit), an NP (Network Processor), an FPGA (Field Programmable Gate Array), etc., executes a processing program stored in a memory, and functions as a control unit 12. Further, the SDN switch 10 includes a storage unit 11 realized by a semiconductor memory element such as a RAM or a flash memory. Further, the SDN switch 10 includes a communication control unit (not shown), and communicates with the SDN controller 20 and other network devices via the communication control unit.
 本実施形態においては、記憶部11は、後述する分離処理で生成されるテーブル11aを記憶する。このテーブル11aは、SDNスイッチ10が受信したパケットに対するSDNスイッチ10の処理を規定するエントリを含む。すなわち、テーブル11aは、パケットごとにエントリを対応付けたものである。 In the present embodiment, the storage unit 11 stores the table 11a generated by the separation process described later. The table 11a contains entries that specify the processing of the SDN switch 10 for the packets received by the SDN switch 10. That is, the table 11a is associated with entries for each packet.
 ここで、図4は、テーブル11aの構成を説明するための図である。図4に例示するように、テーブル11aは、テーブルa1~テーブルa4等の複数のテーブルで構成されてもよい。SDNスイッチ10は、受信したパケットに応じていずれかのテーブルを参照し、動作を決定することにより、LTEのS1ベアラまたは5Gにおけるトンネル終端処理を行う。 Here, FIG. 4 is a diagram for explaining the configuration of the table 11a. As illustrated in FIG. 4, the table 11a may be composed of a plurality of tables such as tables a1 to a4. The SDN switch 10 refers to one of the tables according to the received packet and determines the operation to perform tunnel termination processing in the LTE S1 bearer or 5G.
 具体的には、SDNスイッチ10は、受信したパケットが、まずGTP-Uパケットか否かを確認し、GTP-Uパケットであった場合には、テーブルa1を参照して動作を決定する。テーブルa1には、例えば、受信したパケットのTEID(Tunnel Endpoint IDentifier)が所定の値である場合には、GTP-Uヘッダのデカプセル化と出力ポートの設定とを行うことが規定されている。また、テーブルa1には、それ以外の場合には、パケットをコピーしてSDNコントローラ20へ転送することが規定されている。 Specifically, the SDN switch 10 first confirms whether or not the received packet is a GTP-U packet, and if it is a GTP-U packet, determines the operation with reference to the table a1. Table a1 stipulates that, for example, when the TEID (Tunnel Endpoint IDentifier) of the received packet is a predetermined value, the GTP-U header is deencapsulated and the output port is set. Further, in the table a1, it is stipulated that the packet is copied and transferred to the SDN controller 20 in other cases.
 また、テーブル11aは、SDNスイッチ10がテーブルa1を参照して動作を決定した場合において、MEC(Mobile Edge Computing)等の後続のネットワーク装置に転送する場合の動作を決定するテーブルa4を含んでもよい。テーブルa4には、例えば、所定の宛先IPアドレスに転送する場合に、出力ポートの設定を行うことが規定されている。 Further, the table 11a may include a table a4 that determines the operation when the SDN switch 10 determines the operation with reference to the table a1 and transfers the operation to a subsequent network device such as MEC (Mobile Edge Computing). .. Table a4 stipulates that, for example, when forwarding to a predetermined destination IP address, the output port is set.
 また、SDNスイッチ10は、受信したパケットがGTP-Uパケットでなかった場合には、Cプレン信号か否かを確認する。Cプレン信号か否かとは、例えば、LTEでは、S1AP(S1 Application Protocol)パケットか否かであり、5Gでは、NGAP(Next Generation Application Protocol)パケットか否かである。SDNスイッチ10は、受信したパケットがCプレン信号であった場合には、テーブルa2を参照して動作を決定し、それ以外の場合すなわち受信したパケットがUプレン信号であった場合には、テーブルa3を参照して動作を決定する。 Further, when the received packet is not a GTP-U packet, the SDN switch 10 confirms whether or not it is a C-plen signal. Whether or not it is a C-prene signal is, for example, whether or not it is an S1AP (S1 Application Protocol) packet in LTE, and whether or not it is an NGAP (Next Generation Application Protocol) packet in 5G. The SDN switch 10 determines the operation with reference to the table a2 when the received packet is a C-plen signal, and in other cases, that is, when the received packet is a U-plen signal, the table is used. The operation is determined with reference to a3.
 例えば、テーブルa2には、受信したパケットがCプレン信号であった場合には、パケットをコピーしてSDNコントローラ20へ転送することが規定されている。また、テーブルa3には、受信したパケットの宛先IPアドレス(Dst IP)が所定のUE IPである場合には、GTP-Uヘッダを所定のTEIDでカプセル化し、出力ポートの設定を行うことが規定されている。また、テーブルa3には、それ以外の場合には、パケットをSDNコントローラ20へ転送することが規定されている。 For example, the table a2 stipulates that when the received packet is a C-plen signal, the packet is copied and transferred to the SDN controller 20. Further, in table a3, when the destination IP address (Dst IP) of the received packet is a predetermined UE IP, it is stipulated that the GTP-U header is encapsulated with a predetermined TEID and the output port is set. Has been done. Further, in the table a3, it is specified that the packet is forwarded to the SDN controller 20 in other cases.
 分離システム1は、後述する分離処理により、テーブル11aを生成し、SDNスイッチ10の記憶部11に設定する。テーブル11aの生成には、上記したように、テーブルa1のTEIDと、テーブルa3のUE IPを宛先とする場合のTEIDとが必要である。このテーブルa3において、TEIDとUE IPとを対応付けるためには、例えば、LTEにおいては、MME-UE2間のS1AP IDと、無線基地局4-UE2間のS1AP IDとが必要である。また、5Gにおいては、AMF-UE2間のNGAP ID、RAN(Radio Access Network)-UE2間のNGAP ID等が必要である。そこで、分離システム1は、後述するように、分離処理において、無線基地局4-コアネットワーク3間のCプレン信号を観測することにより、それらのトンネル終端処理に必要な情報を取得する。 The separation system 1 generates a table 11a by a separation process described later and sets it in the storage unit 11 of the SDN switch 10. As described above, the TEID of the table a1 and the TEID when the UE IP of the table a3 is the destination are required to generate the table 11a. In this table a3, in order to associate the TEID with the UE IP, for example, in LTE, the S1AP ID between the MME and the UE2 and the S1AP ID between the radio base stations 4-UE2 are required. Further, in 5G, an NGAP ID between AMF and UE2, an NGAP ID between RAN (Radio Access Network) and UE2, and the like are required. Therefore, as will be described later, the separation system 1 acquires information necessary for tunnel termination processing by observing C-plen signals between the radio base station 4-core network 3 in the separation processing.
 図3の説明に戻る。制御部12は、図3に例示するように、観測部12aおよび探索部12bとして機能する。なお、これらの機能部は、それぞれ異なるハードウェアに実装されてもよい。例えば、探索部12bが分離システム1内の他の情報処理装置に備えられてもよい。あるいは、観測部12aおよび探索部12bが分離システム1内の他の情報処理装置に備えられてもよい。また、制御部12は、その他の機能部を備えてもよい。例えば、制御部12が後述する第1エントリ形成部22bおよび第2エントリ形成部22cを備えてもよい。 Return to the explanation in Fig. 3. As illustrated in FIG. 3, the control unit 12 functions as an observation unit 12a and a search unit 12b. Note that these functional units may be implemented in different hardware. For example, the search unit 12b may be provided in another information processing device in the separation system 1. Alternatively, the observation unit 12a and the search unit 12b may be provided in another information processing device in the separation system 1. Further, the control unit 12 may include other functional units. For example, the control unit 12 may include a first entry forming unit 22b and a second entry forming unit 22c, which will be described later.
 SDNコントローラ20は、CPUやNPやFPGA等で実現され、メモリに記憶された処理プログラムを実行して、制御部22として機能する。また、SDNコントローラ20は、RAM、フラッシュメモリ等の半導体メモリ素子で実現される記憶部21を備える。また、SDNコントローラ20は、図示しない通信制御部を備え、通信制御部を介してSDNスイッチ10や他のネットワーク装置等の外部の装置と通信する。なお、記憶部21は、通信制御部を介して制御部22と通信する構成でもよい。 The SDN controller 20 is realized by a CPU, NP, FPGA, or the like, executes a processing program stored in a memory, and functions as a control unit 22. Further, the SDN controller 20 includes a storage unit 21 realized by semiconductor memory elements such as RAM and flash memory. Further, the SDN controller 20 includes a communication control unit (not shown), and communicates with an external device such as an SDN switch 10 or another network device via the communication control unit. The storage unit 21 may be configured to communicate with the control unit 22 via the communication control unit.
 制御部22は、振分部22a、第1エントリ形成部22bおよび第2エントリ形成部22cとして機能する。なお、これらの機能部は、SDNコントローラ20以外のハードウェアに実装されてもよい。例えば、振分部22a、第1エントリ形成部22bおよび第2エントリ形成部22cは、SDNスイッチ10あるいは分離システム1内の他の情報処理装置に実装されてもよい。また、制御部22は、その他の機能部を備えてもよい。 The control unit 22 functions as a distribution unit 22a, a first entry forming unit 22b, and a second entry forming unit 22c. Note that these functional units may be mounted on hardware other than the SDN controller 20. For example, the distribution unit 22a, the first entry forming unit 22b, and the second entry forming unit 22c may be mounted on the SDN switch 10 or another information processing device in the separation system 1. Further, the control unit 22 may include other functional units.
 観測部12aは、モバイルネットワークにおける制御信号であるCプレン信号を観測して所定の情報を取得する。具体的には、観測部12aは、無線基地局4-モバイルコア3間のCプレン信号を観測し、トンネル終端処理に必要な情報を取得する。 The observation unit 12a observes the C-prene signal, which is a control signal in the mobile network, and acquires predetermined information. Specifically, the observation unit 12a observes the C-plen signal between the radio base station 4 and the mobile core 3 and acquires the information necessary for the tunnel termination process.
 ここで、LTEネットワークにおいて、S1ベアラにおけるトンネル終端処理に必要な情報は、S1ベアラの作成/削除の契機となるイベントから取得することができる。LTEネットワークのCプレン信号は、EPS(Evolved Packet System)のモビリティ管理(EMM、EPS Mobility Management)とセッション管理(ESM、EPS Session Management)とに分類される。S1ベアラの作成/削除の契機となるイベントは、そのうちのEMMに含まれる。 Here, in the LTE network, the information required for the tunnel termination processing in the S1 bearer can be acquired from the event that triggers the creation / deletion of the S1 bearer. The LTE network C-plen signal is classified into EPS (Evolved Packet System) mobility management (EMM, EPS Mobility Management) and session management (ESM, EPS Session Management). Events that trigger the creation / deletion of S1 bearers are included in the EMM.
 具体的に、図5~図16は、観測部12aの処理を説明するための図である。まず、図5~図11を参照して、LTEネットワークに対する処理を説明する。図5には、LTEネットワークにおいて、Cプレン処理を担うMMEにおけるEMMに関する状態遷移図が例示されている。EMMに関する状態は、EMMの状態とECM(EPS Connection Management)の状態との組み合わせで定義される。 Specifically, FIGS. 5 to 16 are diagrams for explaining the processing of the observation unit 12a. First, processing for the LTE network will be described with reference to FIGS. 5 to 11. FIG. 5 illustrates a state transition diagram of an EMM in an MME responsible for C-plene processing in an LTE network. The state related to EMM is defined by the combination of the state of EMM and the state of ECM (EPS Connection Management).
 EMMの状態には、「EMM-DEREGISTERED」と「EMM-REGISTERED」とがある。「EMM-DEREGISTERED」とは、UE2がLTEネットワークから認識されず、IPを持たない状態である。また、「EMM-REGISTERED」とは、UE2がLTEネットワークから認識され、EPSベアラが作成された状態である。 There are two types of EMM states: "EMM-DREGISTERED" and "EMM-REGISTERRED". “EMM-DERRISERED” is a state in which the UE 2 is not recognized by the LTE network and does not have an IP. Further, "EMM-REGISTRED" is a state in which UE2 is recognized from the LTE network and an EPS bearer is created.
 ECMの状態には、「ECM-IDLE」と「ECM-CONNECTED」とがある。「ECM-IDLE」とは、無線/S1ベアラが作成されておらず、UE2に無線リソースが割り当てられていない状態である。この状態のUE2は、IPアドレスがあってもLTEを使えない。また、「ECM-CONNECTED」とは、無線/S1ベアラが作成され、UE2に無線リソースが割り当てられた状態である。 There are "ECM-IDLE" and "ECM-CONCEPTED" in the state of ECM. "ECM-IDLE" is a state in which the radio / S1 bearer has not been created and the radio resource has not been allocated to the UE 2. UE2 in this state cannot use LTE even if it has an IP address. Further, "ECM-CONCEPTED" is a state in which a radio / S1 bearer is created and radio resources are allocated to UE2.
 図5に示すように、UE2の電源が入ると、「EMM-DEREGISTERED」かつ「ECM-IDLE」の状態になる。この状態から、アタッチメッセージにより、「EMM-REGISTERED」かつ「ECM-CONNECTED」の状態に遷移する。「EMM-REGISTERED」かつ「ECM-CONNECTED」の状態とは、S1ベアラが作成されてGTPトンネルが張られ、ユーザの実際の通信が行われる状態である。 As shown in FIG. 5, when the power of the UE 2 is turned on, the state becomes "EMM-DERIGISTERRED" and "ECM-IDLE". From this state, the attach message transitions to the "EMM-REGISTRED" and "ECM-CONTECTED" states. The "EMM-REGISTRED" and "ECM-CONNECTED" states are states in which an S1 bearer is created, a GTP tunnel is established, and actual communication by the user is performed.
 「EMM-REGISTERED」かつ「ECM-CONNECTED」の状態から、User Inactivityメッセージにより、「EMM-REGISTERED」かつ「ECM-IDLE」の状態に遷移する。なお、SGW-PGW間のS5ベアラは常時張られるもの(Always-ON)とする。 The state of "EMM-REGISTRED" and "ECM-CONTECTED" is changed to the state of "EMM-REGISTRED" and "ECM-IDLE" by the User Inactivity message. The S5 bearer between SGW and PGW is always stretched (Always-ON).
 「EMM-REGISTERED」かつ「ECM-IDLE」の状態からは、サービスリクエストメッセージにより、「EMM-REGISTERED」かつ「ECM-CONNECTED」の状態に遷移する。また、UE2契機のデタッチメッセージにより、「EMM-DEREGISTERED」かつ「ECM-IDLE」の状態に遷移する。 From the "EMM-REGISTRED" and "ECM-IDLE" states, the service request message transitions to the "EMM-REGISTRED" and "ECM-CONTECTED" states. In addition, the detached message triggered by UE2 transitions to the state of "EMM-DIREGISTERED" and "ECM-IDLE".
 「EMM-REGISTERED」かつ「ECM-CONNECTED」の状態から、UE2契機またはMME3a契機のデタッチメッセージにより、あるいは無線区間の異常により、「EMM-DEREGISTERED」かつ「ECM-IDLE」の状態に遷移する。 The state of "EMM-REGISTERED" and "ECM-CONNECTED" is changed to the state of "EMM-DERGISTERED" and "ECM-IDLE" by a detach message triggered by UE2 or MME3a, or by an abnormality in the radio section.
 また、「EMM-REGISTERED」かつ「ECM-CONNECTED」の状態において、ハンドオーバメッセージによっても、異なる「EMM-REGISTERED」かつ「ECM-CONNECTED」の状態に遷移する。なお、ハンドオーバ手順には、同一のMMEに接続するX2ハンドオーバと、異なるMMEに接続するS1ハンドオーバとがある。 Further, in the state of "EMM-REGISTRED" and "ECM-CONTECTED", the state transitions to a different "EMM-REGISTRED" and "ECM-CONTECTED" state depending on the handover message. The handover procedure includes an X2 handover connecting to the same MME and an S1 handover connecting to a different MME.
 このように、アタッチメッセージ、サービスリクエストメッセージおよびハンドオーバメッセージは、通信が無い状態から通信が有る状態に遷移する契機となるメッセージであり、トンネル終端処理を行うためのテーブル11aにエントリを挿入する契機となる。 As described above, the attach message, the service request message, and the handover message are messages that trigger a transition from a state without communication to a state with communication, and are a trigger for inserting an entry into the table 11a for tunnel termination processing. Become.
 また、User Inactivityメッセージ、デタッチメッセージおよびハンドオーバメッセージは、通信が有る状態から通信が無い状態に遷移する契機となるメッセージであり、テーブル11aのエントリを削除する契機となる。 Further, the User Inactivity message, the detach message, and the handover message are messages that trigger a transition from a state in which communication is present to a state in which there is no communication, and are triggers for deleting an entry in table 11a.
 観測部12aは、これらのLTEのCプレン信号メッセージを観測して、S1ベアラにおけるトンネル終端処理に必要な情報を取得する。具体的には、観測部12aは、eNodeB4-SGW間のTEID(図4のテーブルa1参照)を取得する。また、観測部12aは、UE IPとTEIDとを対応付けるため(図4のテーブルa3参照)、MME-UE2間のS1AP IDおよびeNodeB4-UE2間のS1AP IDを取得する。 The observation unit 12a observes these LTE C-prene signal messages and acquires information necessary for tunnel termination processing in the S1 bearer. Specifically, the observation unit 12a acquires the TEID (see table a1 in FIG. 4) between the eNodeB 4-SGW. Further, the observation unit 12a acquires the S1AP ID between the MME and the UE2 and the S1AP ID between the eNodeB 4-UE2 in order to associate the UE IP with the TEID (see table a3 in FIG. 4).
 ここで、図6には、アタッチメッセージのシーケンスが例示されている。観測部12aは、MMEからeNodeB(eNB)4に送信される「Context Setup Request, Attach Accept」から、MME-UE2間のS1AP IDおよびeNB4-UE2間のS1AP ID、eNB4からSGWのGTPトンネルID、およびUE2のIPアドレスを取得する。また、観測部12aは、eNB4からMMEに送信される「Context Setup Response, Attach Complete」から、MME-UE2間のS1AP IDおよびeNB4-UE2間のS1AP ID、SGWからeNB4のGTPトンネルIDを取得する。 Here, FIG. 6 illustrates a sequence of attach messages. From the "Context Setup Request, Attach Accept" transmitted from the MME to the eNodeB (eNB) 4, the observation unit 12a receives the S1AP ID between the MME and UE2, the S1AP ID between the eNB 4-UE2, and the GTP tunnel ID between the eNB 4 and the SGW. And get the IP address of UE2. Further, the observation unit 12a acquires the S1AP ID between the MME and UE2, the S1AP ID between the eNB4 and UE2, and the GTP tunnel ID of the eNB4 from the SGW from the "Context Setup Response, Attach Complete" transmitted from the eNB 4 to the MME. ..
 図7には、サービスリクエストメッセージのシーケンスが例示されている。観測部12aは、MMEからeNB4に送信される「Context Setup Request」から、MME-UE2間のS1AP IDおよびeNB4-UE2間のS1AP ID、eNB4からSGWのGTPトンネルID、およびUE2のIPアドレスを取得する。また、観測部12aは、eNB4からMMEに送信される「Context Setup Response」から、MME-UE2間のS1AP IDおよびeNB4-UE2間のS1AP ID、SGWからeNB4のGTPトンネルIDを取得する。 FIG. 7 illustrates a sequence of service request messages. The observation unit 12a acquires the S1AP ID between the MME and the UE2, the S1AP ID between the eNB4 and the UE2, the GTP tunnel ID of the SGW from the eNB4, and the IP address of the UE2 from the "Context Setup Request" transmitted from the MME to the eNB4. do. Further, the observation unit 12a acquires the S1AP ID between the MME and UE2, the S1AP ID between the eNB 4-UE2, and the GTP tunnel ID of the eNB 4 from the SGW from the "Context Setup Response" transmitted from the eNB 4 to the MME.
 なお、図7には、UE2から発信されるシーケンスが例示されているが、観測部12aは、MMEから発信されるシーケンスについても、同様のメッセージからトンネル終端処理に必要な情報を取得する。 Although the sequence transmitted from the UE 2 is illustrated in FIG. 7, the observation unit 12a acquires information necessary for tunnel termination processing from the same message for the sequence transmitted from the MME.
 図8には、S1ハンドオーバメッセージのシーケンスが例示されている。観測部12aは、MMEからハンドオーバ先のeNB4(dst eNB)に送信される「Handover Request」から、MME-UE2間のS1AP ID、dst eNBからSGWのGTPトンネルIDを取得する。また、観測部12aは、dst eNBからMMEに送信される「Handover Request Ack.」から、MME-UE2間のS1AP IDおよびdst eNB-UE2間のS1AP ID、SGWからdst eNBのGTPトンネルIDを取得する。 FIG. 8 illustrates a sequence of S1 handover messages. The observation unit 12a acquires the S1AP ID between the MME and the UE 2 and the SGW GTP tunnel ID from the dst eNB from the "Handover Request" transmitted from the MME to the handover destination eNB 4 (dst eNB). Further, the observation unit 12a acquires the S1AP ID between the MME and UE2, the S1AP ID between the dst eNB and the UE2, and the GTP tunnel ID of the dst eNB from the SGW from the "Handover Request Ack." Transmitted from the dst eNB to the MME. do.
 また、観測部12aは、ハンドオーバ元のeNB4(src eNB)とMMEとの間の「UE Context Release Command/Complete」から、MME-UE2間のS1AP IDおよびsrc eNB-UE2間のS1AP IDを取得する。 Further, the observation unit 12a acquires the S1AP ID between the MME and the UE2 and the S1AP ID between the src eNB and the UE2 from the "UE Context Release Command / Complete" between the handover source eNB4 (src eNB) and the MME. ..
 なお、S1ハンドオーバでは、「Handover Notify」を契機に、テーブル11aにエントリが挿入される。 In the S1 handover, an entry is inserted in the table 11a triggered by "Handover Notify".
 図9には、X2ハンドオーバメッセージのシーケンスが例示されている。観測部12aは、dst eNBからMMEに送信される「Path Switch Request」からdst eNB-UE2間のS1AP ID、SGW3bからdst eNBのGTPトンネルIDを取得する。また、観測部12aは、MMEからdst eNBに送信される「Path Switch Request Ack.」からMME-UE2間のS1AP IDおよびdst eNB-UE2間のS1AP IDを取得する。 FIG. 9 illustrates a sequence of X2 handover messages. The observation unit 12a acquires the S1AP ID between the dst eNB and the UE2 from the "Path Switch Request" transmitted from the dst eNB to the MME, and the GTP tunnel ID of the dst eNB from the SGW 3b. Further, the observation unit 12a acquires the S1AP ID between the MME and the UE2 and the S1AP ID between the dst eNB and the UE2 from the "Path Switch Request Ack." Transmitted from the MME to the dst eNB.
 なお、X2ハンドオーバでは、「Path Switch Request」を契機に、テーブル11aにエントリが挿入される。また、X2ハンドオーバでは、eNB4からSGWのGTPトンネルIDはハンドオーバ前後で継続して使用されるため、S1AP IDをキー情報として、SGWからeNB4のGTPトンネルIDのみが変更される。 In the X2 handover, an entry is inserted in the table 11a triggered by "Path Switch Request". Further, in the X2 handover, since the GTP tunnel ID of the eNB 4 to the SGW is continuously used before and after the handover, only the GTP tunnel ID of the SGW to the eNB 4 is changed by using the S1AP ID as the key information.
 図10には、User Inactivityメッセージのシーケンスが例示されている。観測部12aは、eNB4からMMEに送信される「UE Context Release Complete」からMME-UE2間のS1AP IDおよびdst eNB-UE2間のS1AP IDを取得する。 FIG. 10 illustrates a sequence of User Inactivity messages. The observation unit 12a acquires the S1AP ID between the MME and UE2 and the S1AP ID between the dst eNB and UE2 from the "UE Context Release Complete" transmitted from the eNB 4 to the MME.
 図11には、デタッチメッセージのシーケンスが例示されている。観測部12aは、eNB4からMMEに送信される「UE Context Release Complete」からMME-UE2間のS1AP IDおよびdst eNB-UE2間のS1AP IDを取得する。 FIG. 11 illustrates a sequence of detached messages. The observation unit 12a acquires the S1AP ID between the MME and UE2 and the S1AP ID between the dst eNB and UE2 from the "UE Context Release Complete" transmitted from the eNB 4 to the MME.
 なお、図11には、UE2から発信されるシーケンスが例示されているが、観測部12aは、MMEから発信されるシーケンスについても、同様のメッセージからトンネル終端処理に必要な情報を取得する。 Although FIG. 11 illustrates a sequence transmitted from the UE 2, the observation unit 12a acquires information necessary for tunnel termination processing from the same message for the sequence transmitted from the MME.
 また、図12~図16を参照して、5Gネットワークに対する観測部12aの処理を説明する。5Gにおいてトンネル終端処理に必要な情報は、トンネルの作成/削除の契機となるイベントから取得することができる。なお、5Gでは、無線リソースが解放されていてもトンネルが存在し続ける状態(RRC_INACTIVE)が新たに追加されたことから、LTEのようにサービスリクエストおよびUser Inactivityに従って処理を行う必要がない。 Further, the processing of the observation unit 12a for the 5G network will be described with reference to FIGS. 12 to 16. Information required for tunnel termination processing in 5G can be acquired from an event that triggers the creation / deletion of a tunnel. In 5G, since a new state (RRC_INACTIVE) in which the tunnel continues to exist even if the radio resource is released is newly added, it is not necessary to perform processing according to the service request and User Inactivity unlike LTE.
 図12には、5Gでモビリティ管理を担うAMF(Access and Mobility management Function)が管理する状態から定義された状態遷移図が例示されている。AMFが管理する状態は、5GMM(Mobility Management)の状態とCM(Connection Management)の状態との組み合わせに加え、RRCの状態との組み合わせで定義される。 FIG. 12 illustrates a state transition diagram defined from a state managed by AMF (Access and Mobility management Function), which is responsible for mobility management in 5G. The state managed by AMF is defined by the combination of the 5GMM (Mobility Management) state and the CM (Connection Management) state, as well as the RRC state.
 5GMMの状態には、「5GMM-DEREGISTERED」と「5GMM-REGISTERED」とがある。「5GMM-DEREGISTERED」とは、UE2が5Gネットワークから認識されず、IPを持たない状態である。また、「5GMM-REGISTERED」とは、UE2が5Gネットワークから認識され、ベアラが作成された状態である。 The state of 5GMM includes "5GMM-DELGISTERRED" and "5GMM-REGISTRED". "5GMM-DERIGISTERED" is a state in which the UE 2 is not recognized by the 5G network and does not have an IP. Further, "5GMM-REGISTRED" is a state in which UE2 is recognized from the 5G network and a bearer is created.
 CMの状態には、「CM-IDLE」と「CM-CONNECTED」とがある。「CM-IDLE」とは、ベアラが作成されておらず、UE2に無線リソースが割り当てられていない状態である。この状態のUE2は、IPアドレスがあっても5Gを使えない。また、「CM-CONNECTED」とは、ベアラが作成され、UE2に無線リソースが割り当てられた状態である。 There are "CM-IDLE" and "CM-CONTECTED" in the state of CM. "CM-IDLE" is a state in which a bearer has not been created and radio resources have not been allocated to the UE 2. UE2 in this state cannot use 5G even if it has an IP address. Further, "CM-CONCEPTED" is a state in which a bearer is created and radio resources are allocated to the UE 2.
 RRCの状態には、「RRC-CONNECTED」と「RRC-INACTIVE」とがある。「RRC-CONNECTED」とは、無線リソースが割当てられ、トンネルが存在する状態である。また、「RRC-INACTIVE」とは、上記したように、無線リソースが解放されていてもトンネルが存在し続ける状態である。 There are two types of RRC, "RRC-CONTECTED" and "RRC-INACTIVE". "RRC-CONCEPTED" is a state in which radio resources are allocated and a tunnel exists. Further, "RRC-INACTIVE" is a state in which the tunnel continues to exist even if the radio resource is released, as described above.
 図12に示すように、UE2の電源が入ると、「5GMM-DEREGISTERED」かつ「CM-IDLE」の状態になる。この状態から、Registrationメッセージにより、「5GMM-REGISTERED」かつ「CM-CONNECTED」かつ「RRC-CONNECTED」の状態に遷移する。「5GMM-REGISTERED」かつ「CM-CONNECTED」かつ「RRC-CONNECTED」の状態とは、ベアラが作成されてGTPトンネルが張られ、ユーザの実際の通信が行われる状態である。 As shown in FIG. 12, when the power of the UE 2 is turned on, it is in the state of "5GMM-DELGISTERRED" and "CM-IDLE". From this state, the transition message transitions to the states of "5GMM-REGISTRED", "CM-CONCEPTED", and "RRC-CONCEPTED". The states of "5GMM-REGISTRED", "CM-CONCEPTED" and "RRC-CONCEPTED" are states in which a bearer is created, a GTP tunnel is established, and actual communication by the user is performed.
 「5GMM-REGISTERED」かつ「CM-CONNECTED」かつ「RRC-CONNECTED」の状態から、User Inactivityメッセージにより、「5GMM-REGISTERED」かつ「CM-CONNECTED」かつ「RRC-INACTIVE」の状態に遷移する。 From the state of "5GMM-REGISTRED", "CM-CONTECTED" and "RRC-CONTECTED" to the state of "5GMM-REGISTRED", "CM-CONTECTED" and "RRC-INACTIVE" by the User Inactivity message.
 「5GMM-REGISTERED」かつ「CM-CONNECTED」かつ「RRC-INACTIVE」の状態からは、サービスリクエストメッセージにより、「5GMM-REGISTERED」かつ「CM-CONNECTED」かつ「RRC-CONNECTED」の状態に遷移する。また、UE2契機のDeregistrationメッセージにより、「5GMM-DEREGISTERED」かつ「CM-IDLE」の状態に遷移する。 From the state of "5GMM-REGISTRED", "CM-CONTECTED" and "RRC-INACTIVE", the status changes to "5GMM-REGISTRED", "CM-CONTECTED" and "RRC-CONCEPTED" by the service request message. In addition, the state transitions to the "5GMM-DELGISTERED" and "CM-IDLE" states by the Delegation message triggered by UE2.
 「5GMM-REGISTERED」かつ「CM-CONNECTED」かつ「RRC-CONNECTED」の状態から、UE2契機またはMME契機のDeregistrationメッセージにより、あるいは無線区間の異常により、「5GMM-DEREGISTERED」かつ「CM-IDLE」の状態に遷移する。 From the state of "5GMM-REGISTRED", "CM-CONCEPTED" and "RRC-CONCEPTED", to "5GMM-DELGISTERED" and "CM-IDLE" due to a Deregation message triggered by UE2 or MME, or due to an abnormality in the radio section. Transition to the state.
 また、「5GMM-REGISTERED」かつ「CM-CONNECTED」の状態において、ハンドオーバメッセージによっても、異なる「5GMM-REGISTERED」かつ「CM-CONNECTED」かつ「RRC-CONNECTED」の状態に遷移する。なお、ハンドオーバ手順には、同一のAMFに接続するXnハンドオーバと、異なるAMFに接続するN2ハンドオーバとがある。 Further, in the state of "5GMM-REGISTRED" and "CM-CONTECTED", the state of "5GMM-REGISTRED", "CM-CONTECTED" and "RRC-CONCEPTED" is changed depending on the handover message. The handover procedure includes an Xn handover connected to the same AMF and an N2 handover connected to a different AMF.
 このように、Registrationメッセージは、トンネル作成の契機となるメッセージであり、トンネル終端処理を行うためのテーブル11aにエントリを挿入する契機となる。また、Deregistrationメッセージおよびハンドオーバメッセージは、トンネル削除の契機となるメッセージであり、テーブル11aのエントリを削除する契機となる。 In this way, the Regency message is a message that triggers the creation of a tunnel, and triggers an entry to be inserted into the table 11a for performing the tunnel termination process. Further, the Delegation message and the handover message are messages that trigger the deletion of the tunnel, and trigger the deletion of the entry in the table 11a.
 観測部12aは、LTEと同様に、5GのCプレン信号メッセージを観測して、5Gにおいてトンネル終端処理に必要な情報を取得する。具体的には、観測部12aは、gNB4-AMF間のTEID(図4のテーブルa1参照)を取得する。また、観測部12aは、UE IPとTEIDとを対応付けるため(図4のテーブルa3参照)、AMF-UE2間のNGAP IDおよびRAN-UE2間のNGAP IDを取得する。 As with LTE, the observation unit 12a observes the 5G C-prene signal message and acquires the information required for tunnel termination processing in 5G. Specifically, the observation unit 12a acquires the TEID between gNB4-AMF (see table a1 in FIG. 4). Further, the observation unit 12a acquires the NGAP ID between the AMF and the UE 2 and the NGAP ID between the RAN and the UE 2 in order to associate the UE IP with the TEID (see table a3 in FIG. 4).
 ここで、図13には、Registrationメッセージのシーケンスが例示されている。観測部12aは、AMFからgNB4に送信される「Context Setup Request, Attach Accept」から、AMF-UE2間のNGAP IDおよびRAN-UE2間のNGAP ID、d-UPF3cのトランスポートIPアドレス、gNB4からd-UPF3cのGTPトンネルID、およびUE2のIPアドレスを取得する。また、観測部12aは、gNB4からAMFに送信される「Context Setup Response, Attach Complete」から、AMF-UE2間のNGAP IDおよびRAN-UE2間のNGAP ID、gNB4のトランスポートIPアドレス、UPFからgNB4のGTPトンネルIDを取得する。 Here, FIG. 13 illustrates a sequence of registration messages. The observation unit 12a receives the NGAP ID between AMF and UE2, the NGAP ID between RAN and UE2, the transport IP address of d-UPF3c, and gNB4 to d from the "Context Setup Request, Attach Accept" transmitted from AMF to gNB4. -Obtain the GTP tunnel ID of UPF3c and the IP address of UE2. Further, the observation unit 12a receives the NGAP ID between AMF and UE2, the NGAP ID between RAN and UE2, the transport IP address of gNB4, and the gNB4 from UPF from the "Context Setup Response, Attach Complete" transmitted from gNB4 to AMF. Get the GTP tunnel ID of.
 図14には、N2ハンドオーバメッセージのシーケンスが例示されている。観測部12aは、AMFからハンドオーバ先のgNB4(dst gNB)に送信される「Handover Request」から、AMF-UE2間のNGAP IDおよびRAN-UE2間のNGAP ID、gNB4からd-UPF3cのGTPトンネルIDを取得する。また、観測部12aは、dst gNBからAMFに送信される「Handover Request Ack.」から、AMF-UE2間のNGAP IDおよびRAN-UE2間のNGAP ID、d-UPF3cからgNBのGTPトンネルIDを取得する。 FIG. 14 illustrates a sequence of N2 handover messages. The observation unit 12a receives the NGAP ID between AMF and UE2, the NGAP ID between RAN and UE2, and the GTP tunnel ID between gNB4 and d-UPF3c from the "Handover Request" transmitted from the AMF to the handover destination gNB4 (dsst gNB). To get. Further, the observation unit 12a acquires the NGAP ID between AMF and UE2, the NGAP ID between RAN and UE2, and the GTP tunnel ID of gNB from d-UPF3c from the "Handover Request Ack." Transmitted from dst gNB to AMF. do.
 また、観測部12aは、ハンドオーバ元のgNB4(src gNB)とAMFとの間の「UE Context Release Command/Complete」から、AMF-UE2間のNGAP IDおよびgNB-UE2間のNGAP IDを取得する。 Further, the observation unit 12a acquires the NGAP ID between the AMF and the UE2 and the NGAP ID between the gNB and the UE2 from the "UE Context Release Command / Complete" between the handover source gNB4 (src gNB) and the AMF.
 なお、N2ハンドオーバでは、「Handover Notify」を契機に、テーブル11aにエントリが挿入される。 In the N2 handover, an entry is inserted in the table 11a with "Handover Notify" as an opportunity.
 図15には、Xnハンドオーバメッセージのシーケンスが例示されている。観測部12aは、dst gNBからAMFに送信される「Path Switch Request」からgNB4-UE2間のNGAP ID、d-UPF3cからdst gNBのGTPトンネルIDを取得する。また、観測部12aは、AMFからdst gNBに送信される「Path Switch Request Ack.」からAMF-UE2間のNGAP IDおよびdst gNB-UE2間のNGAP IDを取得する。 FIG. 15 illustrates a sequence of Xn handover messages. The observation unit 12a acquires the NGAP ID between gNB4-UE2 from the "Path Switch Request" transmitted from the dst gNB to the AMF, and the GTP tunnel ID of the dst gNB from the d-UPF3c. Further, the observation unit 12a acquires the NGAP ID between the AMF and the UE2 and the NGAP ID between the dst gNB and the UE2 from the "Path Switch Request Ack." Transmitted from the AMF to the dst gNB.
 なお、Xnハンドオーバでは、「Path Switch Request」を契機に、テーブル11aにエントリが挿入される。また、Xnハンドオーバでは、gNB4からd-UPF3cのGTPトンネルIDはハンドオーバ前後で継続して使用されるため、NGAP IDをキー情報として、d-UPF3cからgNB4のGTPトンネルIDのみが変更される。 In the Xn handover, an entry is inserted in the table 11a triggered by "Path Switch Request". Further, in the Xn handover, since the GTP tunnel ID from gNB4 to d-UPF3c is continuously used before and after the handover, only the GTP tunnel ID from d-UPF3c to gNB4 is changed using the NGAP ID as the key information.
 図16には、Deregistrationメッセージのシーケンスが例示されている。観測部12aは、gNB4からAMFに送信される「UE Context Release Complete」からAMF-UE2間のNGAP IDおよびgNB4-UE2間のNGAP IDを取得する。 FIG. 16 illustrates a sequence of Delegation messages. The observation unit 12a acquires the NGAP ID between AMF and UE2 and the NGAP ID between gNB4-UE2 from the "UE Context Release Complete" transmitted from gNB4 to AMF.
 なお、図16には、UE2から発信されるシーケンスが例示されているが、観測部12aは、ネットワークから発信されるシーケンスについても、同様のメッセージからトンネル終端処理に必要な情報を取得する。 Although FIG. 16 illustrates a sequence transmitted from the UE 2, the observation unit 12a acquires information necessary for tunnel termination processing from the same message for the sequence transmitted from the network.
 図3の説明に戻る。観測部12aは、取得した情報をSDNコントローラ20に通知する。SDNコントローラ20では、振分部22aが、取得された所定の情報をプロトコルごとに振り分ける。具体的には、振分部22aは、SDNスイッチ10から通知されたCプレン信号をプロトコル種別によって振り分ける。本実施形態において、振分部22aは、Cプレン信号のプロトコル種別がS1APまたはNGAPのいずれかに振り分ける。 Return to the explanation in Fig. 3. The observation unit 12a notifies the SDN controller 20 of the acquired information. In the SDN controller 20, the distribution unit 22a distributes the acquired predetermined information for each protocol. Specifically, the distribution unit 22a distributes the C-prene signal notified from the SDN switch 10 according to the protocol type. In the present embodiment, the distribution unit 22a distributes the C-prene signal to either S1AP or NGAP as the protocol type.
 また、第1エントリ形成部22bまたは第2エントリ形成部22cが、プロトコルごとのエントリ形成部として機能して、振り分けられたプロトコルごとの情報を用いて、受信したパケットに対する処理を規定するエントリを形成し、パケットごとにエントリを対応付けたテーブル11aに挿入する。 Further, the first entry forming unit 22b or the second entry forming unit 22c functions as an entry forming unit for each protocol, and forms an entry that defines the processing for the received packet by using the distributed information for each protocol. Then, the entry is inserted into the table 11a associated with each packet.
 具体的には、第1エントリ形成部22bは、S1APのCプレン信号について、SDNスイッチ10から通知されたトンネル終端処理に必要な情報を用いて、トンネル終端処理のエントリを形成し、SDNスイッチ10のテーブル11aに挿入したり削除したりするエントリ操作を行なう。また、第2エントリ形成部22cは、NGAPのCプレン信号について、SDNスイッチ10から通知されたトンネル終端処理に必要な情報を用いて、トンネル終端処理のエントリを形成し、SDNスイッチ10のテーブル11aに挿入したり削除したりするエントリ操作を行なう。 Specifically, the first entry forming unit 22b forms an entry for tunnel termination processing using the information required for tunnel termination processing notified from the SDN switch 10 with respect to the C-plen signal of S1AP, and the SDN switch 10 Perform an entry operation to insert or delete the table 11a. Further, the second entry forming unit 22c forms an entry for the tunnel termination processing using the information required for the tunnel termination processing notified from the SDN switch 10 for the C-plen signal of the NGAP, and forms a table 11a of the SDN switch 10. Perform an entry operation to insert or delete in.
 探索部12bは、受信したパケットにテーブル11aに従った処理を行い、該パケットを隣接するネットワーク装置に転送する。具体的には、探索部12bは、パケットを受信した場合に、図4を参照して上述したように、テーブル11aを参照して、トンネル終端処理を行う。 The search unit 12b processes the received packet according to the table 11a, and transfers the packet to the adjacent network device. Specifically, when the search unit 12b receives the packet, the search unit 12b performs the tunnel termination process with reference to the table 11a as described above with reference to FIG.
 なお、探索部12bは、受信したパケットのTEIDがテーブル11aのエントリにない場合に、パケットのコピーを、振分部22aを介してプロトコル種別に応じて、第1エントリ形成部22bまたは第2エントリ形成部22cに転送してもよい。その場合に、第1エントリ形成部22bまたは第2エントリ形成部22cが、転送されたパケットからトンネル終端処理に必要な情報を取得して、エントリを形成する。 When the TEID of the received packet is not in the entry in the table 11a, the search unit 12b makes a copy of the packet via the distribution unit 22a, depending on the protocol type, the first entry forming unit 22b or the second entry. It may be transferred to the forming unit 22c. In that case, the first entry forming unit 22b or the second entry forming unit 22c acquires the information necessary for tunnel termination processing from the forwarded packet and forms an entry.
 ここで、受信したGTP-UパケットのTEIDがテーブル11aのエントリにない場合には、探索部12bはトンネル終端処理を行うことができず、モバイルコア3がトンネル終端処理を行う。 Here, if the TEID of the received GTP-U packet is not in the entry in the table 11a, the search unit 12b cannot perform the tunnel termination processing, and the mobile core 3 performs the tunnel termination processing.
 この場合には、探索部12bは、受信した上り通信のパケットをコピーしてSDNコントローラ20に転送する。上り通信と下り通信とではTEIDが異なるため、SDNコントローラ20では、振分部22aを介して第1エントリ形成部22bまたは第2エントリ形成部22cが、パケットのTEIDおよびUE IPを記憶部21に記憶する。 In this case, the search unit 12b copies the received uplink communication packet and forwards it to the SDN controller 20. Since the TEID is different between the uplink communication and the downlink communication, in the SDN controller 20, the first entry forming unit 22b or the second entry forming unit 22c transmits the TEID and UE IP of the packet to the storage unit 21 via the distribution unit 22a. Remember.
 また、探索部12bは、上り通信のパケットと同様に、受信した下り通信のパケットをコピーしてSDNコントローラ20に転送する。SDNコントローラ20では、振分部22aを介して第1エントリ形成部22bまたは第2エントリ形成部22cが下り通信パケットのTEIDを取得する。第1エントリ形成部22bまたは第2エントリ形成部22cは、UE IPをキーに記憶部21を参照(ルックアップ)して、上り通信時のTEIDを取得する。これにより、第1エントリ形成部22bまたは第2エントリ形成部22cがエントリを形成し、テーブル11aに挿入する。これ以降、モバイルコア3のトンネル終端処理は、SDNスイッチ10にオフロードされる。 Further, the search unit 12b copies the received downlink communication packet and transfers it to the SDN controller 20 in the same manner as the uplink communication packet. In the SDN controller 20, the first entry forming unit 22b or the second entry forming unit 22c acquires the TEID of the downlink communication packet via the distribution unit 22a. The first entry forming unit 22b or the second entry forming unit 22c refers to (looks up) the storage unit 21 using the UE IP as a key, and acquires the TEID at the time of uplink communication. As a result, the first entry forming unit 22b or the second entry forming unit 22c forms an entry and inserts it into the table 11a. After that, the tunnel termination process of the mobile core 3 is offloaded to the SDN switch 10.
 これにより、分離システム1は、トンネル終端処理を行う必要がある通信に対するセッション情報(トンネル終端処理のエントリ)がSDNスイッチ10にない場合にも、エントリを形成してテーブル11aに挿入することが可能となる。例えば、LTEにおけるアタッチ、5GにおけるRegistration、ハンドオーバ等、セッション確立時のCプレン信号の観測に失敗した場合や、エントリの登録が失敗したり遅延したりした場合等にも、トンネル終端処理のSDNスイッチ10へのオフロードが可能となる。 As a result, the separation system 1 can form an entry and insert it into the table 11a even when the SDN switch 10 does not have the session information (entry for the tunnel termination process) for the communication for which the tunnel termination process needs to be performed. It becomes. For example, when the observation of the C-prene signal at the time of session establishment fails, such as attachment in LTE, registration in 5G, handover, etc., or when entry registration fails or is delayed, the SDN switch for tunnel termination processing Offload to 10 is possible.
 なお、SDNスイッチ10のもつエントリには、タイムアウトが設定されてもよい。あるいは、無線基地局4からエラーメッセージを受信した場合に、それを契機としてエントリが削除されるようにしてもよい。これにより、トンネル終端処理を行う通信が存在しないにもかかわらずSDNスイッチ10にエントリがある場合に、サーバからの下り通信を破棄できずに無線基地局4に転送することを防止できる。例えば、デタッチ、User Inactivity等、セッション削除時のCプレン信号の観測に失敗した場合や、エントリの削除に失敗した場合にも、サーバからの下り通信を破棄できずに無線基地局4に転送することを防止できる。 A timeout may be set for the entry of the SDN switch 10. Alternatively, when an error message is received from the radio base station 4, the entry may be deleted as a trigger. As a result, when there is an entry in the SDN switch 10 even though there is no communication for tunnel termination processing, it is possible to prevent the downlink communication from the server from being transferred to the radio base station 4 without being discarded. For example, even if the observation of the C-prene signal at the time of session deletion such as detachment or User Inactivity fails, or if the entry deletion fails, the downlink communication from the server cannot be discarded and is transferred to the wireless base station 4. Can be prevented.
 このようにして、分離システム1は、SDNスイッチ10のもつセッション情報と実通信との不整合による通信不可や冗長なトラフィックの発生を防止することが可能となる。 In this way, the separation system 1 can prevent communication failure and redundant traffic generation due to inconsistency between the session information of the SDN switch 10 and the actual communication.
 また、分離システム1は、所定の条件にマッチするユーザデータ信号(Uプレン信号)のトラフィックの流量が所定の閾値を超えた場合に、Uプレン信号のコピーを、プロトコル種別に応じて第1エントリ形成部22bまたは第2エントリ形成部22cに転送してもよい。その場合に、第1エントリ形成部22bまたは第2エントリ形成部22cが、転送されたUプレン信号からトンネル終端処理に必要な情報を取得して、エントリを形成する。 Further, the separation system 1 makes a copy of the U-plen signal as the first entry according to the protocol type when the flow rate of the traffic of the user data signal (U-plen signal) matching the predetermined condition exceeds the predetermined threshold value. It may be transferred to the forming unit 22b or the second entry forming unit 22c. In that case, the first entry forming unit 22b or the second entry forming unit 22c acquires information necessary for tunnel termination processing from the transferred U-plen signal and forms an entry.
 具体的には、探索部12bが、インナーの5tuple等の所定の条件にマッチするUプレントラフィックの流量をカウントする。流量が所定の閾値を超えた場合に、上記と同様に、探索部12bがUプレン信号のコピーを第1エントリ形成部22bまたは第2エントリ形成部22cに転送する。第1エントリ形成部22bまたは第2エントリ形成部22cは、転送されたUプレン信号からトンネル終端処理に必要な情報を取得して、エントリを形成する。 Specifically, the search unit 12b counts the flow rate of U-plen traffic that matches a predetermined condition such as 5 doubles of the inner. When the flow rate exceeds a predetermined threshold value, the search unit 12b transfers a copy of the U-plen signal to the first entry forming unit 22b or the second entry forming unit 22c in the same manner as described above. The first entry forming unit 22b or the second entry forming unit 22c acquires information necessary for tunnel termination processing from the transferred U-plen signal and forms an entry.
 これにより、分離システム1は、Cプレン信号の代わりにUプレン信号からTEID、UE IP等のトンネル終端処理に必要な情報を取得することによっても、トンネル終端処理をSDNスイッチ10にオフロードすることが可能となる。 As a result, the separation system 1 also offloads the tunnel termination processing to the SDN switch 10 by acquiring information necessary for tunnel termination processing such as TEID and UE IP from the U-prene signal instead of the C-prene signal. Is possible.
[分離処理]
 次に、図17を参照して、本実施形態に係る分離システム1による分離処理について説明する。図17は、分離処理手順を示すフローチャートである。図17のフローチャートは、例えば、観測部12aがパケットを受信したタイミングで開始される。
[Separation process]
Next, with reference to FIG. 17, the separation process by the separation system 1 according to the present embodiment will be described. FIG. 17 is a flowchart showing the separation processing procedure. The flowchart of FIG. 17 is started, for example, at the timing when the observation unit 12a receives the packet.
 まず、SDNスイッチ10において、観測部12aが、無線基地局4-モバイルコア3間のCプレン信号を観測し、トンネル終端処理に必要な所定の情報(トンネル情報)を取得する(ステップS11)。観測部12aは、取得したトンネル情報をSDNコントローラ20に転送する。 First, in the SDN switch 10, the observation unit 12a observes the C-plen signal between the radio base station 4-mobile core 3 and acquires predetermined information (tunnel information) required for tunnel termination processing (step S11). The observation unit 12a transfers the acquired tunnel information to the SDN controller 20.
 SDNコントローラ20では、振分部22aが、プロトコル種別に応じて第1エントリ形成部22bまたは第2エントリ形成部22cに振り分ける(ステップS12)。 In the SDN controller 20, the distribution unit 22a distributes to the first entry forming unit 22b or the second entry forming unit 22c according to the protocol type (step S12).
 第1エントリ形成部22bまたは第2エントリ形成部22cは、SDNスイッチ10から通知されたトンネル終端処理に必要な情報を用いて、トンネル終端処理のエントリを形成する(ステップS13)。また、第1エントリ形成部22bまたは第2エントリ形成部22cは、形成したエントリをSDNスイッチ10のテーブル11aに挿入したり削除したりするエントリ操作を行なう(ステップS14)。 The first entry forming unit 22b or the second entry forming unit 22c forms an entry for tunnel termination processing using the information required for tunnel termination processing notified from the SDN switch 10 (step S13). Further, the first entry forming unit 22b or the second entry forming unit 22c performs an entry operation of inserting or deleting the formed entry into the table 11a of the SDN switch 10 (step S14).
 SDNスイッチ10では、パケットを受信した場合に、探索部12bが、受信したパケットにテーブル11aに従った処理を行い、該パケットを隣接するネットワーク装置に転送する(ステップS15)。これにより、一連の分離処理が終了する。 In the SDN switch 10, when a packet is received, the search unit 12b processes the received packet according to the table 11a and transfers the packet to the adjacent network device (step S15). This completes a series of separation processes.
[第2の実施形態]
 上記実施形態の分離システム1では、振分部22a、第1エントリ形成部22bおよび第2エントリ形成部22cがSDNコントローラ20に実装されているが、本発明はこれに限定されない。例えば、図18は、第2の実施形態の分離システムの概略構成を例示する模式図である。図18に例示するように、振分部22a、第1エントリ形成部22bおよび第2エントリ形成部22cがSDNスイッチ10に実装されてもよい。この場合には、探索部12bは、制御部12のデータプレンに実装され、第1エントリ形成部22bおよび第2エントリ形成部22cは制御部12のコントロールプレンに実装される。各機能部の処理は上記実施形態と同様であるので、説明を省略する。
[Second Embodiment]
In the separation system 1 of the above embodiment, the distribution unit 22a, the first entry forming unit 22b, and the second entry forming unit 22c are mounted on the SDN controller 20, but the present invention is not limited thereto. For example, FIG. 18 is a schematic diagram illustrating the schematic configuration of the separation system of the second embodiment. As illustrated in FIG. 18, the distribution unit 22a, the first entry forming unit 22b, and the second entry forming unit 22c may be mounted on the SDN switch 10. In this case, the search unit 12b is mounted on the data plane of the control unit 12, and the first entry forming unit 22b and the second entry forming unit 22c are mounted on the control screen of the control unit 12. Since the processing of each functional unit is the same as that of the above embodiment, the description thereof will be omitted.
 ここで、上記実施形態では、エントリ挿入時にSDNコントローラ20が介在することにより、テーブル11aの設定に遅延が発生し、テーブル11aの実通信との不整合状態が発生する場合がある。そこで、本実施形態では、SDNスイッチ10の内部記憶装置であるレジスタ11bを管理するレジスタ管理部12dを備え、レジスタ11bを用いてテーブル11aの設定を実現する。 Here, in the above embodiment, the SDN controller 20 intervenes when the entry is inserted, which may cause a delay in the setting of the table 11a and cause an inconsistent state with the actual communication of the table 11a. Therefore, in the present embodiment, the register management unit 12d that manages the register 11b, which is the internal storage device of the SDN switch 10, is provided, and the setting of the table 11a is realized by using the register 11b.
 この場合に、観測部12aは、取得したトンネル終端処理に必要な所定の情報をレジスタ11bに格納する。また、振分部22aがプロトコル種別に応じてレジスタ11bから取り出された所定の情報を第1エントリ形成部22bまたは第2エントリ形成部22cに振り分ける。そして、第1エントリ形成部22bおよび第2エントリ形成部22cは、プロトコル種別に応じてレジスタ11bから取り出された所定の情報を用いて、それぞれエントリを形成する。 In this case, the observation unit 12a stores the acquired predetermined information necessary for the tunnel termination process in the register 11b. Further, the distribution unit 22a distributes predetermined information taken out from the register 11b according to the protocol type to the first entry forming unit 22b or the second entry forming unit 22c. Then, the first entry forming unit 22b and the second entry forming unit 22c each form an entry by using predetermined information extracted from the register 11b according to the protocol type.
 これにより、分離システム1は、エントリの挿入にSDNコントローラ20の介在をなくし、エントリ挿入にかかる遅延を低減し、テーブル11aの不整合状態を抑制することができる。 As a result, the separation system 1 can eliminate the intervention of the SDN controller 20 in the insertion of the entry, reduce the delay in inserting the entry, and suppress the inconsistent state of the table 11a.
 ここで、図19は、レジスタ管理部12dの処理を説明するための図である。具体的には、図19に示すように、観測部12aが、Cプレン信号からトンネル終端処理に必要な情報を取得して、マッチ条件(key)に相当する情報のハッシュ値をindex、アクションのパラメータをvalueとして、レジスタ11bに格納する。また、観測部12aは、格納したレジスタ11bのindexをレジスタ管理部12dに通知する。 Here, FIG. 19 is a diagram for explaining the processing of the register management unit 12d. Specifically, as shown in FIG. 19, the observation unit 12a acquires the information necessary for tunnel termination processing from the C-prene signal, outputs the hash value of the information corresponding to the match condition (key), and sets the action. The parameter is stored in the register 11b as a value. Further, the observation unit 12a notifies the register management unit 12d of the index of the stored register 11b.
 レジスタ管理部12dは、通知されたindexをキューに格納する。また、レジスタ管理部12dは所定の間隔で格納したindexを取り出して、indexをもとにレジスタ11bをポーリングして、取得した情報を振分部22aに転送する。振分部22aは、取得されたレジスタの情報をプロトコル種別に応じて第1エントリ形成部22bまたは第2エントリ形成部22cに転送する。 The register management unit 12d stores the notified index in the queue. Further, the register management unit 12d takes out the index stored at a predetermined interval, polls the register 11b based on the index, and transfers the acquired information to the distribution unit 22a. The distribution unit 22a transfers the acquired register information to the first entry forming unit 22b or the second entry forming unit 22c according to the protocol type.
 第1エントリ形成部22bまたは第2エントリ形成部22cは、転送されたレジスタの情報をもとにエントリを形成し、テーブル11aに挿入する。また、第1エントリ形成部22bまたは第2エントリ形成部22cは、エントリのテーブル11aへの挿入が完了した場合に、レジスタ管理部12dに挿入完了を通知する。挿入完了を通知されたレジスタ管理部12dは、レジスタ11bを解放する。 The first entry forming unit 22b or the second entry forming unit 22c forms an entry based on the transferred register information and inserts it into the table 11a. Further, the first entry forming unit 22b or the second entry forming unit 22c notifies the register management unit 12d of the completion of the insertion when the insertion of the entry into the table 11a is completed. The register management unit 12d notified of the completion of insertion releases the register 11b.
 これにより、分離システム1は、エントリ挿入時にSDNコントローラ20が介在することによる遅延の発生を抑え、テーブル11aの実通信との不整合状態の発生を予防することが可能となる。例えば、MECなどのユースケースにおいて、セッション確立後、直ちにUプレン信号が到着する場合等にもテーブル11aの実通信との不整合状態の発生を予防することが可能となる。 As a result, the separation system 1 can suppress the occurrence of delay due to the intervention of the SDN controller 20 at the time of entry insertion, and can prevent the occurrence of an inconsistent state with the actual communication of the table 11a. For example, in a use case such as MEC, it is possible to prevent the occurrence of an inconsistent state with the actual communication of the table 11a even when the U-plen signal arrives immediately after the session is established.
 ただし、LTE/5GにおいてCプレン信号は可変長である。加えて、観測部12aがレジスタ11bに格納するフィールド値の階層が深い。そのため、観測部12aがCプレン信号をパース(解析)する際の組み合わせの数が増加し、リソースの観点から、デバイスによってはパースの実装が困難な場合がある。そこで、本実施形態では、SDNコントローラ2が加工部22dを備える。 However, in LTE / 5G, the C-prene signal has a variable length. In addition, the hierarchy of field values stored in the register 11b by the observation unit 12a is deep. Therefore, the number of combinations when the observation unit 12a parses (analyzes) the C-prene signal increases, and it may be difficult to implement parse depending on the device from the viewpoint of resources. Therefore, in the present embodiment, the SDN controller 2 includes a machining unit 22d.
 ここで、図20および図21は、加工部22dの処理を説明するための図である。加工部22dは、観測部12aが取得した所定の情報を固定長に加工して、レジスタ11bに格納する。具体的には、図20に示すように、観測部12aが、Cプレン信号をSDNコントローラ20の加工部22dに通知する。加工部22dは、Cプレン信号をパースしやすい形式に加工して、SDNスイッチ10にインバンドで返送する。例えば、加工部22dは、Cプレン信号から、レジスタ11bに格納されるindexおよびvalueを抜き出して、indexおよびvalueのみからなる固定長のパケットに加工する。これにより、分離システム1は、デバイスによらず、Cプレン信号のパースを実装することが可能となる。 Here, FIGS. 20 and 21 are diagrams for explaining the processing of the processing unit 22d. The processing unit 22d processes the predetermined information acquired by the observation unit 12a into a fixed length and stores it in the register 11b. Specifically, as shown in FIG. 20, the observation unit 12a notifies the processing unit 22d of the SDN controller 20 of the C-prene signal. The processing unit 22d processes the C-prene signal into a format that is easy to parse and returns it to the SDN switch 10 in-band. For example, the processing unit 22d extracts the index and value stored in the register 11b from the C-prene signal, and processes the packet into a fixed-length packet consisting of only the index and value. This makes it possible for the separation system 1 to implement the parsing of the C-prene signal regardless of the device.
 例えば、加工部22dは、図21に例示するように、Cプレン信号を加工する。図21には、Registrationメッセージの「Context Setup Request」を加工する例が示されている。図21に示す例では、加工後のパケットは、TEID、トランスポートIPアドレスおよびPDNのIPアドレスを含む固定長のパケットになっている。 For example, the processing unit 22d processes the C-prene signal as illustrated in FIG. 21. FIG. 21 shows an example of processing the “Context Setup Request” of the Regency message. In the example shown in FIG. 21, the processed packet is a fixed-length packet including a TEID, a transport IP address, and a PDN IP address.
 また、本実施形態では、SDNスイッチ10の制御部12にダミー生成部12eを備え、併せて、SDNスイッチ10に対向するモバイルコア3のEPC等の対向装置のCPUやNPやFPGA等で実現される制御部に、折り返し部を備えてもよい。 Further, in the present embodiment, the control unit 12 of the SDN switch 10 is provided with a dummy generation unit 12e, and is also realized by the CPU, NP, FPGA, or the like of the opposite device such as the EPC of the mobile core 3 facing the SDN switch 10. The control unit may be provided with a folded unit.
 例えば、ダミー生成部12eは、探索部12bから転送されたパケットをコピーするとともに、該パケットのペイロードをダミーデータに差し替えて、該パケットを該探索部12bに返送する。また、折り返し部は、探索部12bから転送されたパケットを該探索部12bに返送する。 For example, the dummy generation unit 12e copies the packet transferred from the search unit 12b, replaces the payload of the packet with dummy data, and returns the packet to the search unit 12b. Further, the return unit returns the packet transferred from the search unit 12b to the search unit 12b.
 そして、探索部12bは、受信したパケットの情報がテーブル11aのエントリにない場合に、該パケットをダミー生成部12eに転送する。また、探索部12bは、ダミー生成部12eから返送されたパケットを折り返し部に転送する。また、振分部22aが、折り返し部から返送されたパケットを、プロトコル種別に応じて第1エントリ形成部22bまたは第2エントリ形成部22cに転送する。そして、第1エントリ形成部22bまたは第2エントリ形成部22cは、転送されたパケットからトンネル終端処理に必要な所定の情報を取得して、エントリを形成する。 Then, when the information of the received packet is not in the entry of the table 11a, the search unit 12b forwards the packet to the dummy generation unit 12e. Further, the search unit 12b forwards the packet returned from the dummy generation unit 12e to the return unit. Further, the distribution unit 22a transfers the packet returned from the return unit to the first entry forming unit 22b or the second entry forming unit 22c according to the protocol type. Then, the first entry forming unit 22b or the second entry forming unit 22c acquires predetermined information necessary for tunnel termination processing from the transferred packet to form an entry.
 ここで、図22は、ダミー生成部12cおよび折り返し部32aの処理を説明するための図である。図22に示すように、ダミー生成部12eは、探索部12bから転送されたパケットをキューに格納する。その際に、ダミー生成部12eは、受信したパケットのインナーのsrcIPすなわちUE IPをキーとして、トンネルID(TEID)とパケット格納先のキューのIDとをテーブル11aに登録する。また、ダミー生成部12eは、ペイロードをダミーデータに差し替えるとともに、インナーの宛先IPを対向装置30のIPアドレスに差し替えて、データプレンに返送する。 Here, FIG. 22 is a diagram for explaining the processing of the dummy generation unit 12c and the folding unit 32a. As shown in FIG. 22, the dummy generation unit 12e stores the packet transferred from the search unit 12b in the queue. At that time, the dummy generation unit 12e registers the tunnel ID (TEID) and the packet storage destination queue ID in the table 11a using the srcIP, that is, the UE IP, which is the inner of the received packet, as a key. Further, the dummy generation unit 12e replaces the payload with dummy data, replaces the inner destination IP with the IP address of the opposite device 30, and returns the data to the data plane.
 データプレンでは、探索部12bが、ダミー生成部12eから返送された対向装置30宛のパケットを折り返し部32aに転送する。折り返し部32aは、転送されたパケットを、パケットの送信元IPと送信先IPとを入れ替えることにより折り返して、探索部12bに返送する。探索部12bは、折り返し部32aから返送されたパケットを、振分部22aを介して第1エントリ形成部22bまたは第2エントリ形成部22cに転送する。 In the data plane, the search unit 12b transfers the packet addressed to the opposite device 30 returned from the dummy generation unit 12e to the return unit 32a. The return unit 32a wraps the transferred packet by exchanging the source IP and the destination IP of the packet, and returns the transferred packet to the search unit 12b. The search unit 12b transfers the packet returned from the folding unit 32a to the first entry forming unit 22b or the second entry forming unit 22c via the distribution unit 22a.
 第1エントリ形成部22bまたは第2エントリ形成部22cは、受信したパケットのインナーのdstIPすなわちUE IPをキーとしてテーブル11aを参照し、上り通信のトンネルIDとパケット格納先のキューのIDとを取得する。また、第1エントリ形成部22bまたは第2エントリ形成部22cは、受信したパケットから下り通信のトンネルIDを取得する。そして、第1エントリ形成部22bまたは第2エントリ形成部22cは、取得したトンネル終端処理に必要な情報を用いて、エントリを形成し、テーブル11aに挿入する。また、第1エントリ形成部22bまたは第2エントリ形成部22cは、キューに格納されたパケットを逐次解放してデータプレンに転送する。 The first entry forming unit 22b or the second entry forming unit 22c refers to the table 11a using the dstIP of the inner of the received packet, that is, the UE IP as a key, and acquires the tunnel ID of the uplink communication and the queue ID of the packet storage destination. do. Further, the first entry forming unit 22b or the second entry forming unit 22c acquires the tunnel ID for downlink communication from the received packet. Then, the first entry forming unit 22b or the second entry forming unit 22c forms an entry by using the acquired information necessary for the tunnel termination process and inserts it into the table 11a. Further, the first entry forming unit 22b or the second entry forming unit 22c sequentially releases the packets stored in the queue and transfers them to the data plane.
 これにより、分離システム1は、クラウド上に設置されたモバイルコア3にデータが流出することを防止しつつ、上り通信と下り通信とで異なるTEIDを取得して、トンネル終端処理のエントリを形成する。このように、本実施形態の分離システム1は、特に、データ秘匿を要件とするサービスにおいて、クラウド上に設置されているモバイルコア3を経由することなくUプレン信号をトンネル化することが可能となる。 As a result, the separation system 1 acquires different TEIDs for uplink communication and downlink communication while preventing data from leaking to the mobile core 3 installed on the cloud, and forms an entry for tunnel termination processing. .. As described above, the separation system 1 of the present embodiment can tunnel the U-plen signal without going through the mobile core 3 installed on the cloud, especially in the service requiring data concealment. Become.
 以上、説明したように、本実施形態の分離システム1において、観測部12aが、モバイルネットワークにおけるCプレン信号を観測して所定の情報を取得する。振分部22aが、取得された所定の情報をプロトコルごとに振り分ける。第1エントリ形成部22bまたは第2エントリ形成部22cが、振り分けられたプロトコルごとの所定の情報を用いて、受信したパケットに対する処理を規定するエントリを形成し、パケットごとに該エントリを対応付けたテーブル11aに挿入する。探索部12bが、受信したパケットにテーブル11aに従った処理を行い、該パケットを隣接するネットワーク装置に転送する。 As described above, in the separation system 1 of the present embodiment, the observation unit 12a observes the C-prene signal in the mobile network and acquires predetermined information. The distribution unit 22a distributes the acquired predetermined information for each protocol. The first entry forming unit 22b or the second entry forming unit 22c forms an entry that defines the processing for the received packet by using the predetermined information for each distributed protocol, and associates the entry for each packet. Insert into table 11a. The search unit 12b processes the received packet according to the table 11a, and transfers the packet to the adjacent network device.
 これにより、LTEおよび5Gにおいて、イベントドリブンなトンネルの終端/削除を行って、Uプレン処理にかかる負荷を軽減することが可能となる。特に、5Gにおいて、SMFとの連携が不要なUプレン機能をSDNスイッチ上に生成することにより、SMFの処理負荷を低減したUPFの分散配備が可能となる。このように、SMFの処理負荷を低減してC/Uプレンを分離することが可能となる。 This makes it possible to terminate / delete event-driven tunnels in LTE and 5G and reduce the load on U-plen processing. In particular, in 5G, by generating a U-prene function that does not require cooperation with SMF on the SDN switch, it is possible to distribute UPF with a reduced processing load of SMF. In this way, it is possible to reduce the processing load of the SMF and separate the C / U plane.
 また、観測部12aは、取得した所定の情報をレジス11bタに格納し、第1エントリ形成部22bまたは第2エントリ形成部22cは、レジスタ11bから取り出された所定の情報を用いて、エントリを形成する。これにより、エントリ挿入にかかる遅延を低減し、テーブル11aの不整合状態を抑制することが可能となる。 Further, the observation unit 12a stores the acquired predetermined information in the register 11b, and the first entry forming unit 22b or the second entry forming unit 22c uses the predetermined information taken out from the register 11b to make an entry. Form. This makes it possible to reduce the delay in inserting the entry and suppress the inconsistent state of the table 11a.
 その場合に、観測部12aが取得した所定の情報を固定長に加工して、レジスタ11bに格納する加工部22dを、さらに備える。これにより、デバイスによらず、Cプレン信号のパースを実装することが可能となる。 In that case, a processing unit 22d that processes the predetermined information acquired by the observation unit 12a to a fixed length and stores it in the register 11b is further provided. This makes it possible to implement the parsing of the C-prene signal regardless of the device.
 また、探索部12bは、受信したパケットの情報がテーブル11aのエントリにない場合に、該パケットをコピーして振分部22aを介して第1エントリ形成部22bまたは第2エントリ形成部22cに転送する。第1エントリ形成部22bまたは第2エントリ形成部22cは、転送されたパケットから所定の情報を取得して、エントリを形成する。これにより、不整合状態を解消し、さらに精度高くC/U分離が可能となる。 Further, when the information of the received packet is not in the entry of the table 11a, the search unit 12b copies the packet and transfers it to the first entry forming unit 22b or the second entry forming unit 22c via the distribution unit 22a. do. The first entry forming unit 22b or the second entry forming unit 22c acquires predetermined information from the transferred packet to form an entry. This eliminates the inconsistency state and enables more accurate C / U separation.
 また、探索部12bは、所定のUプレン信号のトラフィックの流量が所定の閾値を超えた場合に、該Uプレン信号をコピーして振分部22aを介して第1エントリ形成部22bまたは第2エントリ形成部22cに転送する。第1エントリ形成部22bまたは第2エントリ形成部22cは、転送されたUプレン信号から所定の情報を取得して、エントリを形成する。これにより、モバイルコア3の負荷軽減が可能となる。 Further, when the flow rate of the traffic of the predetermined U-plen signal exceeds the predetermined threshold value, the search unit 12b copies the U-plen signal and passes through the distribution unit 22a to the first entry forming unit 22b or the second. Transfer to the entry forming unit 22c. The first entry forming unit 22b or the second entry forming unit 22c acquires predetermined information from the transferred U-plen signal to form an entry. This makes it possible to reduce the load on the mobile core 3.
 また、探索部12bは、受信したパケットの情報がテーブル11aのエントリにない場合に、該パケットをダミー生成部12eに転送する。ダミー生成部12eは、探索部12bから転送されたパケットをコピーするとともに、該パケットのペイロードをダミーデータに差し替えて、該パケットを該探索部12bに返送する。探索部12bは、該ダミー生成部12eから返送されたパケットを折り返し部32aに転送する。折り返し部32aは、探索部12bから転送されたパケットを該探索部12bに返送する。探索部12bは、該折り返し部32aから返送されたパケットを、振分部22aを介して第1エントリ形成部22bまたは第2エントリ形成部22cに転送する。第1エントリ形成部22bまたは第2エントリ形成部22cは、転送されたパケットから所定の情報を取得して、エントリを形成する。これにより、Uプレンの局所秘匿化が可能となる。 Further, when the information of the received packet is not in the entry of the table 11a, the search unit 12b forwards the packet to the dummy generation unit 12e. The dummy generation unit 12e copies the packet transferred from the search unit 12b, replaces the payload of the packet with dummy data, and returns the packet to the search unit 12b. The search unit 12b forwards the packet returned from the dummy generation unit 12e to the return unit 32a. The return unit 32a returns the packet transferred from the search unit 12b to the search unit 12b. The search unit 12b transfers the packet returned from the folding unit 32a to the first entry forming unit 22b or the second entry forming unit 22c via the distribution unit 22a. The first entry forming unit 22b or the second entry forming unit 22c acquires predetermined information from the transferred packet to form an entry. This makes it possible to conceal U-Plen locally.
[プログラム]
 上記実施形態に係る分離システム1が実行する処理をコンピュータが実行可能な言語で記述したプログラムを作成することもできる。一実施形態として、分離システム1は、パッケージソフトウェアやオンラインソフトウェアとして上記の分離処理を実行する分離プログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、上記の分離プログラムを情報処理装置に実行させることにより、情報処理装置を分離システムのSDNスイッチ10、SDNコントローラ20として機能させることができる。ここで言う情報処理装置には、デスクトップ型またはノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機やPHS(Personal Handyphone System)などの移動体通信端末、さらには、PDA(Personal Digital Assistant)などのスレート端末などがその範疇に含まれる。また、分離システム1の機能を、クラウドサーバに実装してもよい。
[program]
It is also possible to create a program in which the processing executed by the separation system 1 according to the above embodiment is described in a language that can be executed by a computer. As one embodiment, the separation system 1 can be implemented by installing a separation program that executes the above separation process as package software or online software on a desired computer. For example, by causing the information processing apparatus to execute the above separation program, the information processing apparatus can function as the SDN switch 10 and the SDN controller 20 of the separation system. The information processing device referred to here includes a desktop type or notebook type personal computer. In addition, the information processing device includes smartphones, mobile communication terminals such as mobile phones and PHS (Personal Handyphone System), and slate terminals such as PDA (Personal Digital Assistant). Further, the function of the separation system 1 may be implemented in the cloud server.
 図23は、分離プログラムを実行するコンピュータの一例を示す図である。コンピュータ1000は、例えば、メモリ1010と、CPU1020と、ハードディスクドライブインタフェース1030と、ディスクドライブインタフェース1040と、シリアルポートインタフェース1050と、ビデオアダプタ1060と、ネットワークインタフェース1070とを有する。これらの各部は、バス1080によって接続される。 FIG. 23 is a diagram showing an example of a computer that executes a separation program. The computer 1000 has, for example, a memory 1010, a CPU 1020, a hard disk drive interface 1030, a disk drive interface 1040, a serial port interface 1050, a video adapter 1060, and a network interface 1070. Each of these parts is connected by a bus 1080.
 メモリ1010は、ROM(Read Only Memory)1011およびRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、ハードディスクドライブ1031に接続される。ディスクドライブインタフェース1040は、ディスクドライブ1041に接続される。ディスクドライブ1041には、例えば、磁気ディスクや光ディスク等の着脱可能な記憶媒体が挿入される。シリアルポートインタフェース1050には、例えば、マウス1051およびキーボード1052が接続される。ビデオアダプタ1060には、例えば、ディスプレイ1061が接続される。 The memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012. The ROM 1011 stores, for example, a boot program such as a BIOS (Basic Input Output System). The hard disk drive interface 1030 is connected to the hard disk drive 1031. The disk drive interface 1040 is connected to the disk drive 1041. A removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041. For example, a mouse 1051 and a keyboard 1052 are connected to the serial port interface 1050. For example, a display 1061 is connected to the video adapter 1060.
 ここで、ハードディスクドライブ1031は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093およびプログラムデータ1094を記憶する。上記実施形態で説明した各情報は、例えばハードディスクドライブ1031やメモリ1010に記憶される。 Here, the hard disk drive 1031 stores, for example, the OS 1091, the application program 1092, the program module 1093, and the program data 1094. Each of the information described in the above embodiment is stored in, for example, the hard disk drive 1031 or the memory 1010.
 また、分離プログラムは、例えば、コンピュータ1000によって実行される指令が記述されたプログラムモジュール1093として、ハードディスクドライブ1031に記憶される。具体的には、上記実施形態で説明した分離システム1が実行する各処理が記述されたプログラムモジュール1093が、ハードディスクドライブ1031に記憶される。 Further, the separation program is stored in the hard disk drive 1031 as, for example, a program module 1093 in which a command executed by the computer 1000 is described. Specifically, the program module 1093 in which each process executed by the separation system 1 described in the above embodiment is described is stored in the hard disk drive 1031.
 また、分離プログラムによる情報処理に用いられるデータは、プログラムデータ1094として、例えば、ハードディスクドライブ1031に記憶される。そして、CPU1020が、ハードディスクドライブ1031に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出して、上述した各手順を実行する。 Further, the data used for information processing by the separation program is stored as program data 1094 in, for example, the hard disk drive 1031. Then, the CPU 1020 reads the program module 1093 and the program data 1094 stored in the hard disk drive 1031 into the RAM 1012 as needed, and executes each of the above-mentioned procedures.
 なお、分離プログラムに係るプログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1031に記憶される場合に限られず、例えば、着脱可能な記憶媒体に記憶されて、ディスクドライブ1041等を介してCPU1020によって読み出されてもよい。あるいは、分離プログラムに係るプログラムモジュール1093やプログラムデータ1094は、LANやWAN(Wide Area Network)等のネットワークを介して接続された他のコンピュータに記憶され、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。 The program module 1093 and program data 1094 related to the separation program are not limited to the case where they are stored in the hard disk drive 1031. For example, they are stored in a removable storage medium and read by the CPU 1020 via the disk drive 1041 or the like. May be done. Alternatively, the program module 1093 and the program data 1094 related to the separation program are stored in another computer connected via a network such as a LAN or WAN (Wide Area Network), and are read out by the CPU 1020 via the network interface 1070. You may.
 以上、本発明者によってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれる。 Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings which form a part of the disclosure of the present invention according to the present embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.
 1 分離システム
 2 UE
 3 モバイルコア
 4 無線基地局(eNB、gNB)
 10 SDNスイッチ
 11、21 記憶部
 11a テーブル
 11b レジスタ
 12、22 制御部
 12a 観測部
 12b 探索部
 12d レジスタ管理部
 12e ダミー生成部
 20 SDNコントローラ
 22a 振分部
 22b 第1エントリ形成部
 22c 第2エントリ形成部
 22d 加工部
 30 対向装置
 32a 折り返し部
1 Separation system 2 UE
3 Mobile core 4 Wireless base stations (eNB, gNB)
10 SDN switch 11, 21 Storage unit 11a Table 11b Register 12, 22 Control unit 12a Observation unit 12b Search unit 12d Register management unit 12e Dummy generation unit 20 SDN controller 22a Distribution unit 22b First entry formation unit 22c Second entry formation unit 22d Machining part 30 Opposing device 32a Folded part

Claims (8)

  1.  モバイルネットワークにおける制御信号を観測して所定の情報を取得する観測部と、
     取得された前記所定の情報をプロトコルごとに振り分ける振分部と、
     振り分けられた前記プロトコルごとの所定の情報を用いて、受信したパケットに対する処理を規定するエントリを形成し、パケットごとに該エントリを対応付けたテーブルに挿入するエントリ形成部と、
     受信したパケットに前記テーブルに従った処理を行い、該パケットを隣接するネットワーク装置に転送する探索部と、
     を有することを特徴とする分離システム。
    An observation unit that observes control signals in a mobile network and acquires predetermined information,
    A distribution unit that distributes the acquired predetermined information for each protocol, and
    An entry forming unit that forms an entry that defines the processing for the received packet by using the predetermined information for each of the distributed protocols, and inserts the entry into the associated table for each packet.
    A search unit that processes received packets according to the table and forwards the packets to an adjacent network device.
    A separation system characterized by having.
  2.  前記観測部は、取得した前記所定の情報をレジスタに格納し、
     前記エントリ形成部は、前記レジスタから取り出された前記所定の情報を用いて、前記エントリを形成することを特徴とする請求項1に記載の分離システム。
    The observation unit stores the acquired predetermined information in a register, and stores the acquired information in a register.
    The separation system according to claim 1, wherein the entry forming unit forms the entry by using the predetermined information extracted from the register.
  3.  前記観測部が取得した前記所定の情報を固定長に加工して、前記レジスタに格納する加工部を、さらに備えることを特徴とする請求項2に記載の分離システム。 The separation system according to claim 2, further comprising a processing unit that processes the predetermined information acquired by the observation unit into a fixed length and stores the information in the register.
  4.  前記探索部は、受信したパケットの情報が前記テーブルのエントリにない場合に、該パケットをコピーして前記振分部を介して前記エントリ形成部に転送し、
     前記エントリ形成部は、転送された前記パケットから前記所定の情報を取得して、エントリを形成する
     ことを特徴とする請求項1に記載の分離システム。
    When the information of the received packet is not in the entry of the table, the search unit copies the packet and transfers it to the entry forming unit via the distribution unit.
    The separation system according to claim 1, wherein the entry forming unit acquires the predetermined information from the transferred packet to form an entry.
  5.  前記探索部は、所定のユーザデータ信号のトラフィックの流量が所定の閾値を超えた場合に、該ユーザデータ信号をコピーして前記振分部を介して前記エントリ形成部に転送し、
     前記エントリ形成部は、転送された前記ユーザデータ信号から前記所定の情報を取得して、エントリを形成する
     ことを特徴とする請求項1に記載の分離システム。
    When the flow rate of the traffic of a predetermined user data signal exceeds a predetermined threshold value, the search unit copies the user data signal and transfers it to the entry forming unit via the distribution unit.
    The separation system according to claim 1, wherein the entry forming unit acquires the predetermined information from the transferred user data signal to form an entry.
  6.  前記探索部から転送されたパケットをコピーするとともに、該パケットのペイロードをダミーデータに差し替えて、該パケットを該探索部に返送するダミー生成部と、
     前記探索部から転送されたパケットを該探索部に返送する折り返し部と、をさらに備え、
     前記探索部は、受信したパケットの情報が前記テーブルのエントリにない場合に、該パケットを前記ダミー生成部に転送し、該ダミー生成部から返送されたパケットを前記折り返し部に転送し、該折り返し部から返送されたパケットを、前記振分部を介して前記エントリ形成部に転送し、
     前記エントリ形成部は、転送された前記パケットから所定の情報を取得して、エントリを形成する
     ことを特徴とする請求項1に記載の分離システム。
    A dummy generation unit that copies the packet transferred from the search unit, replaces the payload of the packet with dummy data, and returns the packet to the search unit.
    Further, a return unit for returning the packet transferred from the search unit to the search unit is provided.
    When the information of the received packet is not in the entry of the table, the search unit forwards the packet to the dummy generation unit, transfers the packet returned from the dummy generation unit to the return unit, and returns the packet. The packet returned from the unit is transferred to the entry forming unit via the distribution unit, and the packet is transferred to the entry forming unit.
    The separation system according to claim 1, wherein the entry forming unit acquires predetermined information from the transferred packet to form an entry.
  7.  分離システムで実行される分離方法であって、
     モバイルネットワークにおける制御信号を観測して所定の情報を取得する観測工程と、
     取得された前記所定の情報をプロトコルごとに振り分ける振分工程と、
     振り分けられた前記プロトコルごとの所定の情報を用いて、受信したパケットに対する処理を規定するエントリを形成し、パケットごとに該エントリを対応付けたテーブルに挿入するエントリ形成工程と、
     受信したパケットに前記テーブルに従った処理を行い、該パケットを隣接するネットワーク装置に転送する探索工程と、
     を含んだことを特徴とする分離方法。
    A separation method performed in a separation system,
    An observation process that observes control signals in a mobile network and acquires predetermined information,
    A distribution process that distributes the acquired predetermined information for each protocol, and
    An entry forming step of forming an entry that defines processing for a received packet by using the predetermined information for each of the distributed protocols, and inserting the entry into a table associated with each packet.
    A search step of processing a received packet according to the table and forwarding the packet to an adjacent network device.
    A separation method characterized by containing.
  8.  モバイルネットワークにおける制御信号を観測して所定の情報を取得する観測ステップと、
     取得された前記所定の情報をプロトコルごとに振り分ける振分ステップと、
     振り分けられた前記プロトコルごとの所定の情報を用いて、受信したパケットに対する処理を規定するエントリを形成し、パケットごとに該エントリを対応付けたテーブルに挿入するエントリ形成ステップと、
     受信したパケットに前記テーブルに従った処理を行い、該パケットを隣接するネットワーク装置に転送する探索ステップと、
     をコンピュータに実行させるための分離プログラム。
    Observation steps to observe control signals in mobile networks and acquire predetermined information,
    A distribution step that distributes the acquired predetermined information for each protocol, and
    An entry forming step that forms an entry that defines the processing for the received packet by using the predetermined information for each of the distributed protocols, and inserts the entry into the associated table for each packet.
    A search step in which the received packet is processed according to the table and the packet is forwarded to an adjacent network device.
    A separate program that lets your computer run.
PCT/JP2020/022474 2020-06-08 2020-06-08 Separation system, separation method, and separation program WO2021250726A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022474 WO2021250726A1 (en) 2020-06-08 2020-06-08 Separation system, separation method, and separation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022474 WO2021250726A1 (en) 2020-06-08 2020-06-08 Separation system, separation method, and separation program

Publications (1)

Publication Number Publication Date
WO2021250726A1 true WO2021250726A1 (en) 2021-12-16

Family

ID=78847014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022474 WO2021250726A1 (en) 2020-06-08 2020-06-08 Separation system, separation method, and separation program

Country Status (1)

Country Link
WO (1) WO2021250726A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116720A (en) * 2012-12-07 2014-06-26 Fujitsu Ltd Network system, offload device, and method for controlling traffic in network system
JP2015035729A (en) * 2013-08-09 2015-02-19 日本電信電話株式会社 Communication system and communication method
JP2017509235A (en) * 2014-03-24 2017-03-30 インテル アイピー コーポレーション Using OMA managed objects to support application-specific congestion control in mobile networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116720A (en) * 2012-12-07 2014-06-26 Fujitsu Ltd Network system, offload device, and method for controlling traffic in network system
JP2015035729A (en) * 2013-08-09 2015-02-19 日本電信電話株式会社 Communication system and communication method
JP2017509235A (en) * 2014-03-24 2017-03-30 インテル アイピー コーポレーション Using OMA managed objects to support application-specific congestion control in mobile networks

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
JP7440562B2 (en) Information transmission method and device
US10743355B2 (en) Communication system and base station
AU2019249989B2 (en) Message transmission method, apparatus and system
JP5144804B2 (en) Self backhauling in LTE
JP7081891B2 (en) Transmission methods, communication devices, computer programs, chip systems and communication systems
US10798620B2 (en) Communication method in handover process and apparatus
US20200351749A1 (en) Method and apparatus for transmitting data to a network node in a wireless communication system
US10136412B2 (en) Communication system, communication apparatus, and control method and control apparatus thereof
WO2017036248A1 (en) Data transmission method, device and system
US20190090169A1 (en) Communication method in handover process and apparatus
WO2020233249A1 (en) Packet transmission method and related apparatus
JP7035082B2 (en) User plane link establishment methods, base stations, and mobility management devices
KR20170133793A (en) Method and system of signaling procedure for mobile communication core network
WO2020034920A1 (en) Method and apparatus for changing wireless capabilities of processing terminal apparatus
WO2020001355A1 (en) Method and device for avoiding packet fragmentation
US11445479B2 (en) Radio network slicing in 5G new radio (NR)
JP6638091B2 (en) Transmission method of downlink packet in function separated core network
CN103428742A (en) Method and device for processing SCTP (stream control transmission protocol) link failure of an S1 interface
US20160156753A1 (en) Enhanced gprs tunnel protocol tunnel endpoint identifier
Shanmugalingam et al. Programmable mobile core network
US20170303139A1 (en) Methods and systems for providing standalone LTE based communication networks
WO2021250726A1 (en) Separation system, separation method, and separation program
WO2021149233A1 (en) Separation system, separation method, and separation program
EP2862414B1 (en) Data compression in a communications network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP