WO2021249971A1 - Energiespeichersystem - Google Patents

Energiespeichersystem Download PDF

Info

Publication number
WO2021249971A1
WO2021249971A1 PCT/EP2021/065220 EP2021065220W WO2021249971A1 WO 2021249971 A1 WO2021249971 A1 WO 2021249971A1 EP 2021065220 W EP2021065220 W EP 2021065220W WO 2021249971 A1 WO2021249971 A1 WO 2021249971A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage system
cooling channel
emergency
cooling
Prior art date
Application number
PCT/EP2021/065220
Other languages
English (en)
French (fr)
Inventor
Peter Kritzer
Fabian HELLWEG
Sascha Möller
Tim Leichner
Original Assignee
Carl Freudenberg Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg Kg filed Critical Carl Freudenberg Kg
Priority to US18/009,339 priority Critical patent/US20230238632A1/en
Priority to CN202180058305.6A priority patent/CN116057754A/zh
Publication of WO2021249971A1 publication Critical patent/WO2021249971A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an energy storage system, comprising a housing in which a plurality of storage cells are arranged, the storage cells each being spaced from one another by means of a device arranged between two adjacent storage cells such that an interspace results.
  • Energy storage systems in particular rechargeable storage devices for electrical energy, are particularly widespread in mobile systems.
  • Rechargeable storage devices for electrical energy are used, for example, in portable electronic devices such as smartphones or laptops.
  • rechargeable storage devices for electrical energy are increasingly used to provide energy for electrically powered vehicles.
  • a wide range of electrically powered vehicles is conceivable, in addition to passenger cars, for example, two-wheelers, small vans or trucks.
  • Applications in robots, ships, aircraft and mobile work machines are also conceivable.
  • Further areas of application for electrical energy storage systems are stationary applications, for example in backup systems, in network stabilization systems and for storing electrical energy from renewable energy sources.
  • a frequently used energy storage system is a rechargeable storage device in the form of a lithium-ion battery.
  • Lithium-ion accumulators like other chargeable stores for electrical energy, usually have several storage cells which are installed together in a housing. Several electrically interconnected storage cells are usually combined to form a module.
  • the energy storage system does not only extend to lithium-ion batteries.
  • Other rechargeable battery systems such as lithium-sulfur batteries, solid-state batteries or metal-air batteries are also conceivable energy storage systems.
  • supercapacitors can also be used as energy storage systems.
  • Energy storage systems in the form of rechargeable storage devices have the highest electrical capacity and the best power consumption and output only in a limited temperature range. If the optimum operating temperature range is exceeded or not reached, the capacity, the power consumption and the power output of the storage unit drop sharply, and the functionality of the energy storage unit is impaired. In addition, excessively high temperatures can irreversibly damage the energy storage device. Accordingly, both permanently occurring elevated temperatures and short-term temperature peaks should be avoided at all costs. In the case of lithium-ion batteries, for example, temperatures of more than 50 ° C and short-term temperature peaks of more than 80 ° C should not be exceeded.
  • a fast charging capability of the energy storage systems is required, particularly in the case of applications in passenger vehicles.
  • the accumulators forming an energy storage system should be charged completely or almost completely within a short time, for example within 15 minutes. Due to the efficiency of the charging system of around 90% to 95%, large amounts of heat are released during the charging process in the energy storage system, which have to be dissipated from the energy storage system. These amounts of heat are not released in normal operating conditions. It is therefore necessary to design the cooling system of the energy storage system in such a way that the amount of heat that occurs during the charging process can be absorbed.
  • Thermal runaway of a single cell can also be triggered by a variety of other mechanisms. These include, for example, short circuits on the outside of the cell, short circuits on the inside of the cell, accidents in which the cell housing is damaged, or improper overcharging of the storage cell. Due to the large number of possible damaging events, a thermal runaway of individual storage cells cannot be completely ruled out.
  • temperatures in the range of 600 ° C. can arise on the housing wall of the cell over a period of about 30 seconds.
  • the device arranged between the storage cells must withstand such stress and reduce the energy transfer to neighboring cells in such a way that the temperature load on the neighboring cells is only about 150 ° C. at most. It is essential to limit the energy transfer to neighboring cells in order to prevent these cells from going through thermally (also referred to as "thermal propagation").
  • the invention is based on the object of providing an energy storage system in which, in the event of a thermal runaway of a storage cell, the risk of overlapping with the overall system is reduced.
  • At least one emergency cooling channel is assigned to the intermediate space which is formed by the device arranged between two adjacent storage cells.
  • the cooling medium absorbs the heat released by a damaged storage cell. It is particularly conceivable that the cooling medium evaporates, with the cooling medium being able to absorb a particularly large amount of heat due to the phase transition (evaporation enthalpy). Accordingly, the emergency cooling channel is not part of the regular cooling device of the energy storage system. A flow through the emergency cooling channel only takes place in the event of damage, when one of the storage cells adjoining an emergency cooling channel is damaged.
  • the energy storage system preferably comprises a cooling device with at least one cooling channel, the cooling channel of the cooling device being able to be brought into flow connection with the emergency cooling channel in the event of damage.
  • the cooling device is designed to keep the storage cells of the energy storage system in the usual operating states within a desired temperature range. Accordingly, the cooling device can also be designed to cool the storage cells during a rapid charging process. Only in the event of damage, i.e. if a Storage cell is irreversibly damaged, a flow connection is established between a cooling channel of the cooling device and the emergency cooling channel, which is assigned to a damaged storage cell, so that cooling medium can exit the cooling channel and flow through the emergency cooling channel.
  • the cooling medium can absorb large amounts of heat and prevent the storage cells adjacent to the damaged storage cell from being thermally overloaded, so that these too are thermally run through.
  • the design of an existing cooling system for emergency cooling is advantageous because the emergency cooling can be implemented without additional weight and without additional costs.
  • the cooling channel can have at least one closure element which opens in the event of damage and creates a flow-conducting connection between the cooling channel and the emergency cooling channel.
  • the closure element blocks the cooling channel so that no cooling medium is lost. Only in the event of damage does the closure element open so that cooling medium can exit the cooling duct and flow through the emergency cooling duct.
  • the hot storage cell heats the cooler that is thermally connected to the storage cell and transfers the thermal energy to the closure element. This can open upon temperature initiation, for example through melting processes, thermal shrinkage or thermally induced actuators.
  • a closure element which opens due to thermally induced actuators can, for example, comprise elements made of shape memory alloys, or a chemical degradation reaction can take place.
  • the closure element can be a separate component or can be made of the same material and in one piece from the cooling channel.
  • the closure element can be designed as a stopper, which is pressed either into the cooling channel or out of the cooling channel by an increase in pressure.
  • the closure element can be designed as a membrane or film, which opens due to the local effect of temperature.
  • the closure element can be implemented by locally reducing the thickness of the cooling channel.
  • the closure element can be designed as a film. In particular, polymeric or metallic materials come into consideration as the material for the film. The film covers an emergency opening in the cooling channel.
  • the closure element releases the emergency opening.
  • the closure element can melt, pivot, bend open or be chemically degraded.
  • the temperature at which the closure element releases the emergency opening is between 80.degree. C. and 400.degree. C., preferably between 100.degree. C. and 300.degree. The lower the temperature for opening, the faster the reaction in the event of damage. At lower opening temperatures, however, allowable temperature peaks must be observed, for example during fast charging.
  • the opening by the closure element preferably takes place as a result of the temperature. It is particularly advantageous that no sensors or the like are required. Alternatively, however, it is also conceivable to actively open the closure element. In this embodiment, a temperature sensor can send a signal to an actuator, which then opens the closure element.
  • shut-off elements arranged inside the cooling device are also conceivable.
  • the shut-off elements can for example be arranged in the interior of the cooling channel. These can be designed in such a way that they shut off the cooling channel in the event of an emergency opening so that the cooling medium forcibly escapes from the opened emergency opening.
  • the device can have webs which delimit at least one emergency cooling channel.
  • the device can be designed as a spacer, so that the storage cells are at a predetermined distance from one another during normal operation, so that better cooling is provided.
  • the predetermined distance between the memory cells also enables an unhindered Swelling of the storage cells over their service life. As a result, the memory cells are at a distance from one another over their service life.
  • the webs can also contribute to establishing a homogeneous compression over the life of the storage cells.
  • the predetermined distance can ensure that even aged cells are not excessively pressed. Excessive pressing would have negative effects, in particular with regard to the formation of destructive lithium dendrites during low-temperature charging processes or rapid charging processes for aged storage cells.
  • a wall of at least one emergency cooling channel can be formed by the housing wall of an adjacent storage cell.
  • cooling medium flows directly along the housing wall of the damaged storage cell. This results in a particularly large heat transfer to the cooling medium.
  • At least one emergency cooling channel is formed within the device. It is advantageous here that the device can be designed to be mechanically more stable.
  • the device preferably comprises at least two emergency cooling channels, a first emergency cooling channel being assigned to an adjacent storage cell and a second emergency cooling channel being assigned to the other adjacent storage cell.
  • the emergency cooling channel which is assigned to the damaged storage cell, can transport a cooling medium which evaporates within the emergency cooling channel and absorbs large amounts of heat in the process.
  • the emergency cooling channel assigned to the other storage cell can accommodate a cooling medium which, on the other hand, remains liquid. This ensures that the temperature of the undamaged neighboring storage cell is below the evaporation temperature of the cooling medium.
  • the device can be made from plastic, for example from thermoplastics, thermosetting plastics or elastomers. Alternatively, it is conceivable that the device also consists of metallic or ceramic material or is formed from a combination of materials. It is also conceivable to design the device at least partially from elastomeric materials. This is the establishment flexible and can act as a compression element for the storage cells. The design made of elastomers also has the advantage that the emergency cooling channel is sealed off at the side and the transported medium can be directed away along the storage cells.
  • the emergency cooling duct is preferably connected to the surroundings on the side facing away from the cooling duct.
  • evaporated cooling medium in particular can be released very easily from the emergency cooling duct, so that heat is transported.
  • the released cooling medium can mix with the gas flow released from the storage cell, including hot degradation products.
  • the gas flow is, on the one hand, strongly cooled and, on the other hand, strongly diluted.
  • FIG. 5 shows an energy storage system according to a third embodiment
  • FIG. 6 shows an energy storage system according to a fourth embodiment
  • FIG 10 shows an energy storage system with additional control technology.
  • FIG. 1 shows an energy storage system 1, comprising a housing 2 in which a plurality of storage cells 3 are arranged.
  • the memory cells 3 are in the present embodiment as prismatic cells in the form of lithium-ion Accumulators formed and form components of the energy store of an electric vehicle.
  • the storage cells 3 are spaced apart from one another by means of a device 4 arranged between two adjacent storage cells 3, so that an interspace 5 results between adjacent storage cells 3.
  • the device 4 is exemplarily arranged only between two adjacent storage cells 3 so that the space 5 can be better recognized.
  • the device 4 is designed in such a way that an emergency cooling duct 6 is assigned to the intermediate space 5.
  • the energy storage system 1 further comprises a cooling device 7 with a cooling channel 8.
  • the cooling channel 8 has a closure element 9, which opens in the event of damage and creates a flow-conducting connection between the cooling channel 8 and the emergency cooling channel 6.
  • the device 4 is made of plastic. Silicone rubber (VMQ) or liquid silicone (LSR) are particularly preferred due to their temperature resistance. Alternatively, the device 4 is formed from other temperature-stable materials.
  • the cooling channel 8 is provided with a closure element 9 which covers an emergency opening 10 and thus seals the cooling channel 8 in normal operation.
  • FIG 2 shows the energy storage system 1 shown in Figure 1 in plan view. It can be seen that the storage cells 3 are provided with a storage cell emergency opening 16 in the form of a rupture disk.
  • the storage cell emergency opening 16 opens in the event of thermal runaway due to thermal stress and / or pressure due to the decomposition processes taking place inside the storage cell 3. If the storage cell 3 exceeds a predetermined temperature and / or a predetermined pressure, the storage cell emergency opening 16 opens and heated material emerges from the interior of the storage cells 3.
  • Figure 3 shows the energy storage system 1 shown in Figure 1 in plan view. It can be seen here that a device 4 is located between the storage cells 3, so that the adjacent storage cells 3 are spaced from one another, so that an intermediate space 5 results. The device 4 has webs 11 which delimit several emergency cooling channels 6. In this case, one wall of an emergency cooling channel 6 is formed by the housing wall 12 of an adjacent storage cell 3.
  • the storage cell emergency opening 16 of a storage cell 3 opens and heated, pressurized material emerges from the interior of the storage cells 3. Under the action of the material emerging from the storage cells 3, the closure element 9 releases the emergency opening 10 so that cooling medium emerges from the cooling channel 8. This flows through the emergency cooling channels 6.
  • the cooling medium evaporates and thereby absorbs large amounts of heat due to the phase transition between liquid and gaseous.
  • cooling medium can flow through the emergency cooling channels 6, which are assigned to the adjacent - undamaged - storage cell 3 without a phase transition taking place.
  • the cooling medium does not evaporate directly, as a result of which the surface temperature of the undamaged storage cell 3 remains below the boiling point of the cooling medium.
  • a two-stage protective mechanism is achieved overall. On the one hand, heat is absorbed by the evaporation of cooling medium on the defective storage cell 3 and, on the other hand, the adjacent storage cell 3 is protected by liquid cooling medium.
  • the closure element 9 extends over the entire width of the device 4. Alternatively, the closure element 9 can only extend over a partial area.
  • FIG. 4 shows an alternative embodiment of the energy storage system 1 shown in FIG Memory cells 3 are assigned and is therefore particularly simple. In this embodiment, only a single emergency cooling channel 6 is formed. The present embodiment is particularly cost-effective. Furthermore, the space requirement is particularly small. The device 4 can be printed directly onto the memory cell 3. The closure element 9 is not shown in this figure.
  • FIG. 5 shows a further embodiment of the energy storage system 1 shown in FIG.
  • the webs 11 are designed in such a way that they melt in the event of damage and establish a flow-conducting connection between the cooling channel 8 and the emergency cooling channel 6.
  • FIG. 6 shows a further development of the energy storage system 1 shown in FIG.
  • cooling channels 8 are assigned directly to storage cells 3, with each cooling channel 8 being an emergency cooling channel 6.
  • the channels 6, 8 are separated from one another by webs 11, the webs 11 forming a closure element 9 in the area between the cooling channel 8 and the emergency cooling channel 6.
  • the closure element 9 is designed as a melting area, which melts in the event of damage and thereby establishes a connection between the cooling channel 8 and the emergency cooling channel 6.
  • FIG. 7 shows various configurations of a device 4 which is arranged between adjacent storage cells 3.
  • the device 4 comprises a central layer 17 which extends parallel to the storage cells 3.
  • Sealing elements 18 are arranged on both sides of the device 4. In the event of damage, the sealing elements 18 should have a Ensure the largest possible volume flow of cooling medium through the emergency cooling channel 6.
  • the two devices 4 shown below have a serpentine central position which alternately delimit an emergency cooling channel 6.
  • the devices 4 can be made of metal, ceramic or high-temperature-stable plastics. With these materials it is ensured that the emergency cooling channels 6 are present even if the storage cells 3 are severely deformed.
  • Soft materials such as elastomers, in particular silicone materials, have the advantage that these dimensional changes in the storage cells 3 can partially compensate for during aging and during the charging / discharging process and thus prevent excessive compression of the storage cells 3.
  • the middle layer 17 consists of a ceramic film, the spacer elements and the sealing elements being made of elastomeric material.
  • the middle device 4 and the device 4 arranged below it have closed emergency cooling channels 6. These configurations of the devices 4 are particularly stable and resistant to strongly deforming storage cells 3.
  • the device 4 can have common emergency cooling channels 6 (middle illustration) or separate emergency cooling channels 6 (illustration below).
  • the lower two representations show developments of the central devices 4, the devices 4 having local melting areas 19 so that the housing wall 12 of an adjacent storage cell 3 can be acted upon directly with cooling medium.
  • FIG. 8 shows various configurations of closure elements 9, which open in the event of damage and can establish a flow-conducting connection between cooling channel 8 and emergency cooling channel 6.
  • the closure elements 9 shown in FIG. 8 can optionally be provided on one of the cooling devices 7 described above.
  • the closure element 9 can be a separate component which is introduced into an opening of the cooling channel 8.
  • the closure element 9 can be designed as a molded part, in particular as a stopper.
  • closure element 9 can be designed as a film which is applied in a materially bonded manner to an opening in the cooling channel 8. Furthermore, it is conceivable that a closure element 9 can have an opening device which can be thermally activated and creates a flow-conducting connection between cooling channel 8 and emergency cooling channel 6 when a predetermined temperature is exceeded. Such a closure element 9 can be implemented, for example, by means of a shape memory alloy.
  • the closure element 9 is designed as a film, it can be arranged over an opening or recess in the wall of the cooling channel 8.
  • a film it is advantageous that it can be made very thin and can ensure a flat contact between the cooling channel 8 and the storage cell 3.
  • Thermoplastics such as polyolefins, polyesters, polyamides or polyvinyl alcohols are particularly suitable as film material. Particularly when using copolymers, their melting point can be reduced.
  • Foil materials which are long-term stable with respect to the cooling medium at temperatures of up to 80 ° C. and which melt quickly at temperatures above 120 ° C. and establish a connection between the cooling channel 8 and the emergency cooling channel 6 are particularly advantageous.
  • Metal-based foils for example tin-based alloys, are also conceivable.
  • a binary alloy Sn99Cu1 has a melting point of around 200 ° C.
  • FIG. 9 shows the interspace 5 in the area of a thermally continuous storage cell 3.
  • the thermal penetration of the storage cell 3 leads to the release of a large amount of heated harmful gases which flow out of the storage cell emergency opening 16.
  • the closure element 9 has opened and released the emergency opening 10, so that cooling medium flows from the cooling channel 8 into the device 4.
  • the cooling medium evaporates at least partially.
  • the cooling medium mixes with the harmful gases emitted from the storage cell 3, the cooling medium reducing the temperature of the mixed fluid flow.
  • the cooling medium reduces the flammability and toxicity of the harmful gases. It is also conceivable to direct the gas flow out of the cell structure in a targeted manner through a channel 14.
  • FIG. 10 shows an energy storage system 1, comprising four storage cells 3, which are located on a cooling device 7.
  • the device 4 and the closure element 9 are shown schematically between two of the storage cells 3.
  • a pump 15 causes the cooling medium to flow through the cooling device 7.
  • a switchable shut-off valve 20 is arranged downstream.
  • the closure element 9 releases the emergency opening 10 and cooling medium is supplied to the device 4.
  • the coolant flow is increased by the pump 15 and the shut-off valve 20 is closed. This results in an increased and directed transport of cooling medium through the device 4 and thereby an improved emergency cooling effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Energiespeichersystem (1), umfassend ein Gehäuse (2), in welchem mehrere Speicherzellen (3) angeordnet sind, wobei die Speicherzellen (3) jeweils mittels einer zwischen zwei benachbarten Speicherzellen (3) angeordneten Einrichtung (4) voneinander beabstandet sind, so dass sich ein Zwischenraum (5) ergibt, wobei dem Zwischenraum (5) zumindest ein Notkühlkanal (6) zugeordnet ist.

Description

Energiespeichersystem
Die Erfindung betrifft ein Energiespeichersystem, umfassend ein Gehäuse, in welchem mehrere Speicherzellen angeordnet sind, wobei die Speicherzellen jeweils mittels einer zwischen zwei benachbarten Speicherzellen angeordneten Einrichtung voneinander so beabstandet sind, dass sich ein Zwischenraum ergibt.
Energiespeichersysteme, insbesondere wiederaufladbare Speicher für elektrische Energie, sind vor allem in mobilen Systemen weit verbreitet. Wiederaufladbare Speicher für elektrische Energie werden beispielsweise in tragbaren elektronischen Geräten wie Smartphones oder Laptops eingesetzt. Des Weiteren werden wiederaufladbare Speicher für elektrische Energie vermehrt zum Bereitstellen für Energie für elektrisch angetriebene Fahrzeuge eingesetzt. Dabei ist eine große Bandbreite elektrisch angetriebener Fahrzeuge denkbar, neben Personenkraftwaren beispielsweise auch Zweiräder, Kleintransporter oder Lastkraftwagen. Anwendungen in Robotern, Schiffen, Flugzeugen und mobilen Arbeitsmaschinen sind ebenfalls denkbar. Weitere Einsatzgebiete von elektrischen Energiespeichersystemen sind stationäre Anwendungen, beispielsweise in Backup-Systemen, in Netzwerkstabilisierungssystemen und zur Speicherung elektrischer Energie aus erneuerbaren Energiequellen.
Ein häufig eingesetztes Energiespeichersystem ist dabei ein wiederaufladbarer Speicher in Form eines Lithium-Ionen-Akkumulators. Lithium-Ionen-Akkumulatoren weisen, wie andere aufladbare Speicher für elektrische Energie auch, zumeist mehrere Speicherzellen auf, welche gemeinsam in einem Gehäuse verbaut sind. Mehrere elektrisch miteinander verbundene Speicherzellen werden dabei meist zu einem Modul zusammengefasst. Dabei erstreckt sich das Energiespeichersystem nicht nur auf Lithium-Ionen- Akkumulatoren. Auch andere wiederaufladbare Batteriesysteme wie Lithium- Schwefel-Batterien, Feststoff-Batterien oder Metall-Luft-Batterien sind denkbare Energiespeichersysteme. Des Weiteren kommen auch Superkondensatoren als Energiespeichersystem in Betracht.
Energiespeichersysteme in Form von wiederaufladbaren Speichern weisen die höchste elektrische Kapazität sowie die beste Leistungsaufnahme und -abgabe nur in einem begrenzten Temperaturspektrum auf. Bei Über-, beziehungsweise Unterschreiten des optimalen Betriebstemperaturbereichs fallen die Kapazität, die Leistungsaufnahmefähigkeit und die Leistungsabgabefähigkeit des Speichers stark ab, und die Funktionalität des Energiespeichers ist beeinträchtigt. Zu hohe Temperaturen können darüber hinaus den Energiespeicher irreversibel schädigen. Demnach sollen sowohl dauerhaft auftretende erhöhte Temperaturen als auch kurzfristige Temperaturspitzen unbedingt vermieden werden. Bei Lithium-Ionen- Akkumulatoren sollten beispielsweise dauerhaft Temperaturen von mehr als 50°C und kurzfristige Temperaturspitzen von mehr als 80°C nicht überschritten werden.
Insbesondere bei Anwendungen in Personenkraftwagen wird eine Schnellladefähigkeit der Energiespeichersysteme gefordert. Dabei sollen die ein Energiespeichersystem bildenden Akkumulatoren innerhalb kurzer Zeit, beispielsweise innerhalb von 15 Minuten, vollständig oder nahezu vollständig geladen werden. Aufgrund des Wirkungsgrades des Ladesystems von etwa 90% bis 95% werden während des Ladevorgangs im Energiespeichersystem große Wärmemengen freigesetzt, welche aus dem Energiespeichersystem abgeführt werden müssen. Diese Wärmemengen werden im normalen Betriebszustand nicht freigesetzt. Daher ist es erforderlich, das Kühlsystem des Energiespeichersystems so auszulegen, dass die beim Ladevorgang auftretende Wärmemenge aufgenommen werden kann.
Zu hohe Temperaturen können zu einer irreversiblen Schädigung des Energiespeichersystems führen. In diesem Zusammenhang ist insbesondere bei Lithium-Ionen-Akkumulatoren das sogenannte thermische Durchgehen (thermal runaway) bekannt. Dabei werden in kurzer Zeit hohe thermische Energiemengen sowie gasförmige Abbauprodukte frei, woraus ein hoher Druck und hohe Temperaturen innerhalb der Speicherzelle beziehungsweise innerhalb des Gehäuses, in welchem die Speicherzelle angeordnet ist, resultieren. Dieser Effekt ist insbesondere problematisch bei Energiespeichersystemen mit hoher Energiedichte, wie sie beispielsweise zur Bereitstellung elektrischer Energie in elektrisch angetriebenen Fahrzeugen erforderlich ist. Durch zunehmende Energiemengen der einzelnen Zellen und Erhöhung der Packungsdichte der in dem Gehäuse angeordneten Zellen vergrößert sich die Problematik des thermischen Durchgehens.
Ein thermisches Durchgehen einer einzelnen Zelle kann darüber hinaus noch von einer Vielzahl anderer Mechanismen ausgelöst werden. Hierzu zählen beispielsweise zelläußere Kurzschlüsse, zellinnere Kurzschlüsse, Unfallereignisse, bei welchen das Zellgehäuse zu Schaden kommt, oder eine unsachgemäße Überladung der Speicherzelle. Schon allein aufgrund der Vielzahl möglicher Schadensereignisse kann ein thermisches Durchgehen einzelner Speicherzellen nicht komplett ausgeschlossen werden.
Im Bereich einer durchgehenden Zelle können an der Gehäusewand der Zelle über eine Zeitdauer von etwa 30 Sekunden Temperaturen im Bereich von 600°C entstehen. Dabei ist die Temperaturbelastung umso höher, je höher die Energiedichte der Speicherzellen ist. Die zwischen den Speicherzellen angeordnete Einrichtung muss einer derartigen Beanspruchung standhalten und den Energieübergang auf Nachbarzellen so reduzieren, dass die Temperaturbelastung der Nachbarzellen lediglich höchstens etwa 150°C beträgt. Wesentlich ist die Begrenzung der Energieübertragung auf Nachbarzellen, um zu verhindern, dass auch diese thermisch durchgehen (auch als „Thermal Propagation“ bezeichnet).
Aufgrund der Vielzahl der möglichen Schadensereignisse und der Steigerung der Energiedichte sowohl auf Speicherzellenebene als auch auf
Energiespeichersystemebene steigt das Risiko einer „Thermal Propagation“ stark an. Findet eine solche „Thermal Propagation“ statt, wird in kurzer Zeit nicht nur die Energiemenge einer einzelnen Speicherzelle freigesetzt, sondern die Energiemenge des gesamten Energiespeichersystems, was mit einem explosiven Schadensereignis einhergehen kann.
Der Erfindung liegt die Aufgabe zugrunde, ein Energiespeichersystem bereitzustellen, bei welchem bei einem thermischen Durchgehen einer Speicherzelle die Gefahr des Übergreifens auf das Gesamtsystems reduziert ist.
Diese Aufgabe wird mit den Merkmalen von Anspruch 1 gelöst. Auf vorteilhafte Ausgestaltungen nehmen die Unteransprüche Bezug.
Zur Lösung der Aufgabe ist dem Zwischenraum, welcher durch die zwischen zwei benachbarten Speicherzellen angeordnete Einrichtung gebildet ist, zumindest ein Notkühlkanal zugeordnet.
Dadurch ist es möglich, im Schadfall ein Kühlmedium durch den Zwischenraum zwischen zwei benachbarten Speicherzellen zu leiten. Das Kühlmedium nimmt dabei die Wärme auf, die von einer beschädigten Speicherzelle freigesetzt wird. Dabei ist es insbesondere denkbar, dass das Kühlmedium verdampft, wobei das Kühlmedium durch den Phasenübergang eine besonders große Wärmemenge aufnehmen kann (Verdampfungsenthalpie). Dementsprechend ist der Notkühlkanal nicht Bestandteil der regulären Kühleinrichtung des Energiespeichersystems. Ein Durchströmen des Notkühlkanals erfolgt nur im Schadfall, wenn eine der an einen Notkühlkanal angrenzenden Speicherzellen beschädigt ist.
Dementsprechend umfasst das Energiespeichersystem vorzugsweise eine Kühleinrichtung mit zumindest einem Kühlkanal, wobei der Kühlkanal der Kühleinrichtung im Schadfall mit dem Notkühlkanal in Strömungsverbindung bringbar ist. Die Kühleinrichtung ist ausgelegt, die Speicherzellen des Energiespeichersystems in den üblichen Betriebszuständen innerhalb eines gewünschten Temperaturspektrums zu halten. Dementsprechend kann die Kühleinrichtung auch ausgelegt sein, die Speicherzellen während eines Schnellladeprozesses zu kühlen. Lediglich im Schadfall, also wenn eine Speicherzelle irreversibel geschädigt ist, wird zwischen einem Kühlkanal der Kühleinrichtung und dem Notkühlkanal, der einer beschädigten Speicherzelle zugeordnet ist, eine Strömungsverbindung hergestellt, so dass Kühlmedium aus dem Kühlkanal austreten und den Notkühlkanal durchströmen kann. Das Kühlmedium kann in diesem Fall große Wärmemengen aufnehmen und verhindern, dass die der beschädigten Speicherzelle benachbarten Speicherzellen thermisch überlastet werden, so dass auch diese thermisch durchgehen. Die Ausgestaltung eines bestehenden Kühlsystems zur Notkühlung ist vorteilhaft, weil die Notkühlung ohne zusätzliches Gewicht und ohne zusätzliche Kosten realisiert werden kann.
Der Kühlkanal kann zumindest ein Verschlusselement aufweisen, welches sich im Schadfall öffnet und eine strömungsleitende Verbindung zwischen Kühlkanal und Notkühlkanal herstellt. Im Regelbetrieb sperrt das Verschlusselement den Kühlkanal ab, so dass kein Kühlmedium verloren geht. Lediglich im Schadfall öffnet sich das Verschlusselement, so dass Kühlmedium aus dem Kühlkanal austreten und den Notkühlkanal durchströmen kann. Im konkreten Fall erwärmt die heiße Speicherzelle den an die Speicherzelle thermisch angebundenen Kühler und transferiert die thermische Energie auf das Verschlusselement. Dieses kann sich temperaturinitiiert öffnen, beispielsweise durch Schmelzvorgänge, thermisches Schrumpfen oder thermisch induzierte Aktuatorik. Ein Verschlusselement, welches sich aufgrund thermisch induzierter Aktuatorik öffnet, kann beispielsweise Elemente aus Formgedächtnislegierungen umfassen, oder es kann eine chemische Abbaureaktion stattfinden.
Dabei kann das Verschlusselement ein separates Bauelement sein oder materialeinheitlich und einstückig aus dem Kühlkanal ausgebildet sein. Beispielsweise kann das Verschlusselement als Stopfen ausgebildet sein, welcher durch eine Druckerhöhung entweder in den Kühlkanal hinein oder aus dem Kühlkanal herausgedrückt wird. Alternativ kann das Verschlusselement als Membran oder Folie ausgebildet sein, welche sich aufgrund lokaler Temperatureinwirkung öffnet. Des Weiteren kann das Verschlusselement durch eine lokale Verringerung der Dicke des Kühlkanals realisiert sein. Das Verschlusselement kann als Folie ausgebildet sein. Als Material für die Folie kommen dabei insbesondere polymere oder metallische Werkstoffe in Betracht. Die Folie bedeckt dabei eine Notöffnung des Kühlkanals.
Bei Temperaturen oberhalb einer maximalen Arbeitstemperatur der Kühleinrichtung gibt das Verschlusselement die Notöffnung frei. Dabei kann das Verschlusselement schmelzen, verschwenken, aufbiegen oder chemisch abgebaut werden. Im Hinblick auf die Arbeitstemperatur beträgt die Temperatur, bei welcher das Verschlusselement die Notöffnung freigibt zwischen 80°C und 400°C, vorzugsweise zwischen 100°C und 300°C. Je tiefer die Temperatur für das Öffnen liegt, umso schneller erfolgt eine Reaktion im Schadfall. Zu beachten sind bei tieferen Öffnungstemperaturen aber zulässige Temperaturspitzen, beispielsweise beim Schnellladen.
Vorzugsweise erfolgt das Öffnen durch das Verschlusselement temperaturbedingt. Dabei ist insbesondere vorteilhaft, dass keinerlei Sensoren oder dergleichen benötigt werden. Es ist aber alternativ auch denkbar, das Verschlusselement aktiv zu öffnen. Bei dieser Ausgestaltung kann ein Temperatursensor ein Signal an einen Aktuator geben, welcher dann das Verschlusselement öffnet.
Denkbar ist es zudem, den Kühlkreislauf so auszugestalten, dass beim Öffnen des Verschlusselementes der Transport von Kühlmedium durch die Kühleinrichtung erhöht wird, wodurch sich die Kühlleistung der Notkühlung erhöht. Denkbar sind auch im Inneren der Kühleinrichtung angeordnete Absperrelemente. Die Absperrelemente können beispielsweise im Inneren des Kühlkanals angeordnet sein. Diese können so ausgebildet sein, dass sie im Falle einer Notöffnung den Kühlkanal absperren, so dass das Kühlmedium zwangsweise aus der geöffneten Notöffnung entweicht.
Die Einrichtung kann Stege aufweisen, welche zumindest einen Notkühlkanal begrenzen. Dabei kann die Einrichtung als Abstandshalter ausgebildet sein, so dass die Speicherzellen im Normalbetrieb einen vorgegebenen Abstand zueinander aufweisen, so dass ein besseres Kühlen gegeben ist. Der vorgegebene Abstand zwischen den Speicherzellen ermöglicht darüber hinaus ein ungehindertes Aufquellen der Speicherzellen über deren Lebensdauer. Dadurch weisen die Speicherzellen über die Lebensdauer hinweg einen Abstand zueinander auf.
Die Stege können ferner dazu beitragen, über die Lebensdauer der Speicherzellen eine homogene Verpressung einzustellen. Durch den vorgegebenen Abstand kann sichergestellt werden, dass auch gealterte Zellen nicht übermäßig verpresst werden, Ein übermäßiges Verpressen hätte negative Einflüsse insbesondere im Hinblick auf die Bildung von zerstörenden Lithium-Dendriten bei Tieftemperaturladevorgängen oder Schnellladevorgängen von gealterten Speicherzellen.
Gemäß einer ersten Ausgestaltung kann eine Wandung zumindest eines Notkühlkanales durch die Gehäusewandung einer angrenzenden Speicherzelle gebildet sein. Bei dieser Ausgestaltung strömt im Schadfall Kühlmedium direkt an der Gehäusewandung der beschädigten Speicherzelle entlang. Dadurch ist ein besonders großer Wärmeübergang zum Kühlmedium gegeben.
Gemäß einerweiteren Ausgestaltung ist zumindest ein Notkühlkanal innerhalb der Einrichtung ausgebildet. Hierbei ist vorteilhaft, dass die Einrichtung mechanisch stabiler ausgebildet sein kann. Vorzugsweise umfasst die Einrichtung zumindest zwei Notkühlkanäle, wobei ein erster Notkühlkanal einer benachbarten Speicherzelle und ein zweiter Notkühlkanal der anderen benachbarten Speicherzelle zugeordnet ist. Bei dieser Ausgestaltung ist vorteilhaft, dass der Notkühlkanal, welcher der beschädigten Speicherzelle zugeordnet ist, ein Kühlmedium transportieren kann, welches innerhalb des Notkühlkanals verdampft und dabei große Wärmemengen aufnimmt. Der der anderen Speicherzelle zugeordnete Notkühlkanal kann ein Kühlmedium aufnehmen, welches hingegen flüssig bleibt. Dabei ist sichergestellt, dass die Temperatur der unbeschädigten benachbarten Speicherzelle unterhalb der Verdampfungstemperatur des Kühlmediums liegt.
Die Einrichtung kann aus Kunststoff, beispielsweise aus Thermoplasten, Duroplasten oder Elastomeren, ausgebildet sein. Alternativ ist denkbar, dass die Einrichtung auch aus metallischem oder keramischem Werkstoff besteht oder aus einer Materialkombination ausgebildet ist. Denkbar ist auch, die Einrichtung zumindest teilweise aus elastomeren Werkstoffen auszugestalten. Dadurch ist die Einrichtung flexibel und kann als Verpressungselement für die Speicherzellen fungieren. Die Ausgestaltung aus Elastomeren hat darüber hinaus den Vorteil, dass der Notkühlkanal seitlich abgedichtet wird und das transportierte Medium entlang der Speicherzellen gerichtet abgeführt werden kann.
Vorzugswiese steht der Notkühlkanal auf der dem Kühlkanal abgewandten Seite mit der Umgebung in Verbindung. Dadurch kann insbesondere verdampftes Kühlmedium sehr leicht aus dem Notkühlkanal abgegeben werden, so dass ein Wärmetransport gegeben ist. Zudem kann sich das freigesetzte Kühlmedium nach dem Austreten aus dem Kühlkanal mit dem aus der Speicherzelle freigesetzten Gasstrom, umfassend heiße Abbauprodukte, vermischen. Dadurch wird der Gasstrom zum einen stark abgekühlt und zum andern stark verdünnt. Beides verringert bei Verwendung wässriger Kühlmedien die Brand- bzw. Explosionsgefahr des heißen, aus der Speicherzelle emittierten Gasstroms.
Einige Ausgestaltungen des erfindungsgemäßen Energiespeichersystems werden nachfolgend anhand der Figuren näher erläutert. Diese zeigen, jeweils schematisch:
Fig. 1 ein Energiespeichersystem;
Fig. 2 ein Energiespeichersystem in der Draufsicht;
Fig. 3 ein Energiespeichersystem in der Draufsicht;
Fig. 4 ein Energiespeichersystem gemäß einer zweiten Ausgestaltung;
Fig. 5 ein Energiespeichersystem gemäß einer dritten Ausgestaltung;
Fig. 6 ein Energiespeichersystem gemäß einer vierten Ausgestaltung;
Fig. 7 verschiedene Ausgestaltungen von Einrichtungen;
Fig. 8 verschiedene Ausgestaltungen von Verschlusselementen;
Fig. 9 eine Speicherzelle im Schadfall;
Fig. 10 ein Energiespeichersystem mit zusätzlicher Regelungstechnik.
Figur 1 zeigt ein Energiespeichersystem 1 , umfassend ein Gehäuse 2, in welchem mehrere Speicherzellen 3 angeordnet sind. Die Speicherzellen 3 sind in der vorliegenden Ausgestaltung als prismatische Zellen in Form von Lithium-Ionen- Akkumulatoren ausgebildet und bilden Bestandteile des Energiespeichers eines Elektrofahrzeugs.
Die Speicherzellen 3 sind mittels einer zwischen zwei benachbarten Speicherzellen 3 angeordneten Einrichtung 4 voneinander beabstandet, so dass sich ein Zwischenraum 5 zwischen benachbarten Speicherzellen 3 ergibt. Bei der in Figur 1 gezeigten Darstellung ist die Einrichtung 4 exemplarisch nur zwischen zwei benachbarten Speicherzellen 3 angeordnet, damit der Zwischenraum 5 besser erkennbar ist.
Die Einrichtung 4 ist so ausgebildet, dass dem Zwischenraum 5 ein Notkühlkanal 6 zugeordnet ist. Das Energiespeichersystem 1 umfasst ferner eine Kühleinrichtung 7 mit einem Kühlkanal 8. Der Kühlkanal 8 weist ein Verschlusselement 9 auf, welches sich im Schadfall öffnet und eine strömungsleitende Verbindung zwischen Kühlkanal 8 und Notkühlkanal 6 herstellt.
Die Einrichtung 4 ist aus Kunststoff ausgebildet. Dabei ist Silikon-Kautschuk (VMQ) oder Flüssigsilikon (LSR) aufgrund der Temperaturbeständigkeit besonders bevorzugt. Alternativ ist die Einrichtung 4 aus anderen temperaturstabilen Materialien ausgebildet. Im Bereich der Einrichtung 4 ist der Kühlkanal 8 mit einem Verschlusselement 9 versehen, welches eine Notöffnung 10 bedeckt und somit den Kühlkanal 8 im Normalbetrieb abdichtet.
Figur 2 zeigt das in Figur 1 dargestellte Energiespeichersystem 1 in der Draufsicht. Dabei ist zu erkennen, dass die Speicherzellen 3 mit einer Speicherzellennotöffnung 16 in Form einer Berstscheibe versehen sind. Die Speicherzellennotöffnung 16 öffnet sich beim thermischen Durchgehen aufgrund thermischer Beanspruchung und/oder Druckbeanspruchung aufgrund der im Inneren der Speicherzelle 3 stattfindenden Zersetzungsprozesse. Überschreitet die Speicherzelle 3 eine vorbestimmte Temperatur und/oder einen vorbestimmten Druck, öffnet sich die Speicherzellennotöffnung 16 und erhitztes Material tritt aus dem Inneren der Speicherzellen 3 aus. Figur 3 zeigt das in Figur 1 dargestellte Energiespeichersystem 1 in der Draufsicht. Dabei ist zu erkennen, dass sich zwischen den Speicherzellen 3 eine Einrichtung 4 befindet, so dass die benachbarten Speicherzellen 3 voneinander beabstandet sind, so dass sich ein Zwischenraum 5 ergibt. Die Einrichtung 4 weist Stege 11 auf, welche mehrere Notkühlkanäle 6 begrenzen. Dabei ist jeweils eine Wandung eines Notkühlkanals 6 durch die Gehäusewandung 12 einer angrenzenden Speicherzelle 3 gebildet.
Im Schadfall öffnet sich die Speicherzellennotöffnung 16 einer Speicherzelle 3 und erhitztes, unter Druck stehendes Material tritt aus dem Inneren der Speicherzellen 3 aus. Unter Einwirkung des aus den Speicherzellen 3 austretenden Materials gibt das Verschlusselement 9 die Notöffnung 10 frei, so dass Kühlmedium aus dem Kühlkanal 8 austritt. Dieses strömt durch die Notkühlkanäle 6. Bei den Notkühlkanälen 6, welche der beschädigten Speicherzelle 3 unmittelbar zugeordnet sind, verdampft das Kühlmedium und nimmt dadurch aufgrund des Phasenüberganges zwischen flüssig und gasförmig große Wärmemengen auf. Durch die Notkühlkanäle 6, welche der benachbarten - nicht beschädigten - Speicherzelle 3 zugeordnet sind, kann hingegen Kühlmedium strömen, ohne dass ein Phasenübergang stattfindet. Bei dieser Speicherzelle 3 verdampft demnach das Kühlmedium nicht unmittelbar, wodurch die Oberflächentemperatur der unbeschädigten Speicherzelle 3 unterhalb der Siedetemperatur des Kühlmediums bleibt. Dadurch wird insgesamt ein zweistufiger Schutzmechanismus erzielt. Zum einen erfolgt eine Wärmeaufnahme durch Verdampfen von Kühlmedium an der defekten Speicherzelle 3 und zum anderen erfolgt ein Schutz der benachbarten Speicherzelle 3 durch flüssiges Kühlmedium.
Das Verschlusselement 9 erstreckt sich dabei über die komplette Breite der Einrichtung 4. Alternativ kann sich das Verschlusselement 9 nur über einen Teilbereich erstrecken.
Figur 4 zeigt eine alternative Ausgestaltung des in Figur 3 gezeigten Energiespeichersystems 1. Bei dieser Ausgestaltung besteht die Einrichtung 4 lediglich aus rahmenförmig ausgebildeten Abstandshaltern, welche dem Rand der Speicherzellen 3 zugeordnet sind und ist dadurch besonders einfach ausgebildet. Bei dieser Ausgestaltung bildet sich lediglich ein einziger Notkühlkanal 6. Die vorliegende Ausgestaltung ist besonders kostengünstig. Des Weiteren ist der Bauraumbedarf besonders gering. Die Einrichtung 4 kann direkt auf die Speicherzelle 3 aufgedruckt werden. Das Verschlusselement 9 ist in dieser Figur nicht dargestellt.
Figur 5 zeigt eine weitere Ausgestaltung des in Figur 3 gezeigten Energiespeichersystems 1. Bei der vorliegenden Ausgestaltung befindet sich der Kühlkanal 8 der Kühleinrichtung 7 im Zwischenraum 5 zwischen benachbarten Speicherzellen 3. Die Kühlkanäle 8 sind dabei durch Stege 11 von den Notkühlkanälen 6 getrennt. Die Stege 11 sind dabei so ausgebildet, dass diese im Schadfall schmelzen und eine strömungsleitende Verbindung zwischen Kühlkanal 8 und Notkühlkanal 6 hersteilen.
Figur 6 zeigt eine Weiterbildung des in Figur 5 gezeigten Energiespeichersystems 1. Bei der vorliegenden Ausgestaltung ist die Kühleinrichtung 7 ebenfalls in den Zwischenraum 5 zwischen zwei benachbarten Speicherzellen 3 angeordnet und aus der Einrichtung 4 ausgebildet. Bei der vorliegenden Ausgestaltung sind Kühlkanäle 8 direkt Speicherzellen 3 zugeordnet, wobei sich jeweils Kühlkanälen 8 ein Notkühlkanal 6 befindet. Die Kanäle 6, 8 sind durch Stege 11 voneinander getrennt, wobei die Stege 11 im Bereich zwischen Kühlkanal 8 und Notkühlkanal 6 ein Verschlusselement 9 bilden. Dabei ist das Verschlusselement 9 als Schmelzbereich ausgebildet, welcher im Schadfall aufschmilzt und dadurch eine Verbindung zwischen Kühlkanal 8 und Notkühlkanal 6 herstellt.
Figur 7 zeigt verschiedene Ausgestaltungen einer Einrichtung 4, welche zwischen benachbarten Speicherzellen 3 angeordnet wird. Bei der oberen Darstellung umfasst die Einrichtung 4 eine Mittellage 17, welche sich parallel zu den Speicherzellen 3 erstreckt. Über die Mittellage 17 verteilt sind Stege 11 angebracht, welche zwischen der Mittellage 17 und der Gehäusewandung 12 einer Speicherzelle 3 einen Notkühlkanal 6 begrenzen. An den beiden Seiten der Einrichtung 4 sind Dichtelemente 18 angeordnet. Im Schadfall sollen die Dichtelemente 18 einen möglichst großen Volumenstrom von Kühlmedium durch den Notkühlkanal 6 hindurch sicherstellen.
Die beiden darunter gezeigten Einrichtungen 4 weisen eine schlangenförmige Mittellage auf, welche wechselweise einen Notkühlkanal 6 begrenzen.
Die Einrichtungen 4 können aus Metall, Keramik oder hochtemperaturstabilen Kunststoffen ausgebildet sein. Bei diesen Werkstoffen ist sichergestellt, dass die Notkühlkanäle 6 auch bei starker Verformung der Speicherzellen 3 vorhanden sind.
Weiche Materialien wie Elastomere, insbesondere Silikonwerkstoffe, haben den Vorteil, dass diese Dimensionsänderungen der Speicherzellen 3 beim Altern und beim Lade-/Entladevorgang teilweise kompensieren können und somit eine zu starke Verpressung der Speicherzellen 3 verhindern. Denkbar ist auch, dass die Mittellage 17 aus einer keramischen Folie besteht, wobei die Abstandshalteelemente und die Dichtelemente aus elastomerem Werkstoff bestehen.
Die mittlere Einrichtung 4 und die darunter angeordnete Einrichtung 4 weisen geschlossene Notkühlkanäle 6 auf. Diese Ausgestaltungen der Einrichtungen 4 sind besonders stabil und resistent gegenüber sich stark verformenden Speicherzellen 3. Dabei kann die Einrichtung 4 gemeinsame Notkühlkanäle 6 (mittlere Darstellung) oder separate Notkühlkanäle 6 (Darstellung darunter) aufweisen.
Die unteren beiden Darstellungen zeigen Weiterbildungen der mittleren Einrichtungen 4, wobei die Einrichtungen 4 lokale Schmelzbereiche 19 aufweisen, so dass die Gehäusewandung 12 einer angrenzenden Speicherzelle 3 direkt mit Kühlmedium beaufschlagt werden kann.
Figur 8 zeigt verschiedene Ausgestaltungen von Verschlusselementen 9, welche sich im Schadfall öffnen und eine strömungsleitende Verbindung zwischen Kühlkanal 8 und Notkühlkanal 6 hersteilen können. Die Figur 8 gezeigten Verschlusselemente 9 können wahlweise an einer der zuvor beschriebenen Kühleinrichtungen 7 vorgesehen sein. Dabei kann das Verschlusselement 9 ein separates Bauelement sein, welches in eine Öffnung des Kühlkanals 8 eingebracht ist. Das Verschlusselement 9 kann als Formteil, insbesondere als Stopfen ausgebildet sein.
Des Weiteren kann das Verschlusselement 9 als Folie ausgebildet sein, welche stoffschlüssig auf einer Öffnung des Kühlkanals 8 aufgebracht ist. Des Weiteren ist denkbar, dass ein Verschlusselement 9 eine Öffnungseinrichtung aufweisen kann, welche thermisch aktivierbar ist und bei Überschreiten einer vorgegebenen Temperatur eine strömungsleitende Verbindung zwischen Kühlkanal 8 und Notkühlkanal 6 herstellt. Ein derartiges Verschlusselement 9 kann beispielsweise mittels einer Formgedächtnislegierung realisiert werden.
Ist das Verschlusselement 9 als Folie ausgebildet, kann dieses über einer Öffnung oder Aussparung in der Wandung des Kühlkanals 8 angeordnet sein. Bei einer Folie ist vorteilhaft, dass diese sehr dünn ausgestaltet sein kann und einen flächigen Kontakt zwischen Kühlkanal 8 und Speicherzelle 3 sicherstellen kann. Als Folienmaterial kommen insbesondere Thermoplaste wie Polyolefine, Polyester, Polyamide oder Polyvinylalkohole in Betracht. Insbesondere bei Verwendung von Copolymeren kann deren Schmelzpunkt herabgesetzt werden. Besonders vorteilhaft sind Folienmaterialien, welche bei Temperaturen bis zu 80°C langzeitstabil gegenüber dem Kühlmedium sind und bei Temperaturen oberhalb von 120°C schnell aufschmelzen und eine Verbindung zwischen Kühlkanal 8 und Notkühlkanal 6 hersteilen.
Denkbar sind auch metallbasierte Folien, beispielsweise zinnbasierte Legierungen. So weist beispielsweise eine binäre Legierung Sn99Cu1 einen Schmelzpunkt von etwa 200°C auf. Bei Metallfolien ist vorteilhaft, dass diese eine bessere thermische Leitfähigkeit aufweisen, wodurch im Normalbetrieb der Wärmeübergang verbessert ist und im Schadfall ein beschleunigtes Aufschmelzen erfolgen kann.
Mechanische Verschlusselemente 9 sind vorzugsweise aus thermoplastischen Werkstoffen oder Elastomeren ausgebildet. Figur 9 zeigt den Zwischenraum 5 im Bereich einer thermisch durchgehenden Speicherzelle 3. Das thermische Durchgehen der Speicherzelle 3 führt zu einer Freisetzung einer großen Menge erhitzter Schadgase, welche aus der Speicherzellennotöffnung 16 ausströmen. Das Verschlusselement 9 hat sich geöffnet und die Notöffnung 10 freigegeben, so dass Kühlmedium aus dem Kühlkanal 8 in die Einrichtung 4 strömt. Dabei verdampft das Kühlmedium wenigstens teilweise. Im Bereich der Oberseite der Speicherzelle 3 vermischt sich das Kühlmedium mit den aus der Speicherzelle 3 emittierten Schadgasen, wobei das Kühlmedium die Temperatur des gemischten Fluidstroms verringert. Des Weiteren setzt das Kühlmedium die Brennbarkeit und die Toxizität der Schadgase herab. Denkbar ist es zudem, den Gasstrom durch einen Kanal 14 gezielt aus dem Zellverband auszuleiten.
Figur 10 zeigt ein Energiespeichersystem 1, umfassend vier Speicherzellen 3, welche sich auf einer Kühleinrichtung 7 befinden. Zwischen zwei der Speicherzellen 3 ist schematisch die Einrichtung 4 sowie das Verschlusselement 9 dargestellt. Den Durchfluss des Kühlmediums durch die Kühleinrichtung 7 bewirkt eine Pumpe 15. Stromabwärts ist ein schaltbares Absperrventil 20 angeordnet. Beim thermischen Durchgehen einer Speicherzelle 3 gibt das Verschlusselement 9 die Notöffnung 10 frei und der Einrichtung 4 wird Kühlmedium zugeführt. Bei der vorliegenden Ausgestaltung wird bei dieser Situation durch die Pumpe 15 der Kühlmittelstrom erhöht und das Absperrventil 20 geschlossen. Dadurch erfolgt ein erhöhter und gerichteter Transport von Kühlmedium durch die Einrichtung 4 und dadurch eine verbesserte Notkühlwirkung.

Claims

Patentansprüche
1. Energiespeichersystem (1), umfassend ein Gehäuse (2), in welchem mehrere Speicherzellen (3) angeordnet sind, wobei die Speicherzellen (3) jeweils mittels einer zwischen zwei benachbarten Speicherzellen (3) angeordneten Einrichtung (4) voneinander beabstandet sind, so dass sich ein Zwischenraum (5) ergibt, dadurch gekennzeichnet, dass dem Zwischenraum (5) zumindest ein Notkühlkanal (6) zugeordnet ist.
2. Energiespeichersystem nach Anspruch 1 , umfassend eine Kühleinrichtung (7) mit zumindest einem Kühlkanal (8), wobei der Kühlkanal (8) im Schadfall mit dem Notkühlkanal (6) in Strömungsverbindung bringbar ist.
3. Energiespeichersystem nach Anspruch 2, dadurch gekennzeichnet, dass der Kühlkanal (8) zumindest ein Verschlusselement (9) aufweist, welches sich im Schadfall öffnet und eine strömungsleitende Verbindung zwischen Kühlkanal (8) und Notkühlkanal (6) herstellt.
4. Energiespeichersystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Einrichtung (4) Stege (11) aufweist, welche Notkühlkanäle (6) begrenzen.
5. Energiespeichersystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Wandung zumindest eines Notkühlkanals (6) durch die Gehäusewandung (12) einer angrenzenden Speicherzelle (3) gebildet ist.
6. Energiespeichersystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest ein Notkühlkanal (6) innerhalb der Einrichtung (4) ausgebildet ist.
7. Energiespeichersystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass wenigstens zwei Notkühlkanäle (6) vorgesehen sind, wobei ein erster Notkühlkanal (6) einer benachbarten Speicherzelle (3) und ein zweiter Notkühlkanal (6) der anderen benachbarten Speicherzelle (3) zugeordnet ist.
8. Energiespeichersystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Einrichtung (4) aus Kunststoff, aus Metall oder aus Keramik ausgebildet ist.
9. Energiespeichersystem nach einem Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Einrichtung (4) separat zu der Speicherzelle (3) ausgebildet ist.
10. Energiespeichersystem nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Notkühlkanal (6) auf der dem Kühlkanal (8) abgewandten Seite mit der Umgebung in Verbindung steht.
11. Energiespeichersystem nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Verschlusselement (9) thermisch aktivierbar ist.
12. Energiespeichersystem nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Verschlusselement (9) als Formteil ausgebildet ist.
13. Energiespeichersystem nach Anspruch 12, dadurch gekennzeichnet, dass das Verschlusselement (9) als Folie oder Stopfen ausgebildet ist.
14. Energiespeichersystem nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass sich das auf der dem Kühlkanal (8) gegenüber liegenden Seite aus dem Notkühlkanal (6) ausströmende Kühlmedium mit dem aus der Speicherzelle (3) austretenden Schadgas mischt.
PCT/EP2021/065220 2020-06-10 2021-06-08 Energiespeichersystem WO2021249971A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/009,339 US20230238632A1 (en) 2020-06-10 2021-06-08 Energy storage system
CN202180058305.6A CN116057754A (zh) 2020-06-10 2021-06-08 储能***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020115396.1 2020-06-10
DE102020115396.1A DE102020115396A1 (de) 2020-06-10 2020-06-10 Energiespeichersystem

Publications (1)

Publication Number Publication Date
WO2021249971A1 true WO2021249971A1 (de) 2021-12-16

Family

ID=76355509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/065220 WO2021249971A1 (de) 2020-06-10 2021-06-08 Energiespeichersystem

Country Status (4)

Country Link
US (1) US20230238632A1 (de)
CN (1) CN116057754A (de)
DE (1) DE102020115396A1 (de)
WO (1) WO2021249971A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240030519A1 (en) * 2022-07-19 2024-01-25 GM Global Technology Operations LLC Thermal management systems with passive quenching sacks for liquid immersion cooled battery assemblies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046496A1 (de) * 2009-11-06 2011-05-12 SB LiMotive Company Ltd., Suwon Notkühlverfahren und Notkühlsystem
DE102013016797A1 (de) * 2013-10-10 2015-04-16 Daimler Ag Vorrichtung zur Notkühlung einer Batterie
DE102016219286A1 (de) * 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit Energiespeicherzellen deren Seitenflächen mit einem Muster versehen sind
DE102016223004A1 (de) * 2016-11-22 2018-05-24 Robert Bosch Gmbh Notkühlsystem für einen Energiespeicher, Batterie sowie Verfahren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219283A1 (de) 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit zwischen den Zellen angeordneten Kühlplatten zur Notkühlung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046496A1 (de) * 2009-11-06 2011-05-12 SB LiMotive Company Ltd., Suwon Notkühlverfahren und Notkühlsystem
DE102013016797A1 (de) * 2013-10-10 2015-04-16 Daimler Ag Vorrichtung zur Notkühlung einer Batterie
DE102016219286A1 (de) * 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit Energiespeicherzellen deren Seitenflächen mit einem Muster versehen sind
DE102016223004A1 (de) * 2016-11-22 2018-05-24 Robert Bosch Gmbh Notkühlsystem für einen Energiespeicher, Batterie sowie Verfahren

Also Published As

Publication number Publication date
DE102020115396A1 (de) 2021-12-16
CN116057754A (zh) 2023-05-02
US20230238632A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
EP2382678B1 (de) Batteriemodul mit isolierendem schichtelement
EP2432043B1 (de) Dichtungsrahmen zur Verwendung in einer Batterie sowie Batterie
WO2018233902A1 (de) Flexible kühlplatte für eine batterie
DE102018113815B4 (de) Energiespeichersystem
EP2514002A1 (de) Kühl-/heizelement für einen akkumulator
DE102018112284A1 (de) Batterie mit Löschvorrichtung und Kraftfahrzeug
DE102012215056A1 (de) Batteriesystem und Kraftfahrzeug
EP2221901A1 (de) Galvanische Zelle mit Umhüllung II
WO2011089182A1 (de) Batteriesystem mit wärmespeicherplatte
WO2015114074A1 (de) Galvanische batteriezelle, insbesondere wiederaufladbare lithium-schwefel-batteriezelle, mit volumenausgleichselement
DE102007063269A1 (de) Batteriemodul mit mehreren Einzelzellen
DE102017218248A1 (de) Batteriezellen-Modul, Sekundär-Batterie und Kraftfahrzeug
WO2011073425A1 (de) Kühl-/heizelement für einen akkumulator
DE102012224330A1 (de) Elektrische Akkumulatorvorrichtung mit elastischen Elementen
WO2011073426A1 (de) Akkumulator
WO2021249971A1 (de) Energiespeichersystem
WO2019068549A1 (de) Anordnung von batteriezellen und flugzeug mit einer derartigen anordnung
DE102009058955A1 (de) Volumenausgleichsanordnung für Akkumulator
DE102008059958B4 (de) Einzelzelle und Batterie mit einer Mehrzahl elektrisch seriell und/oder parallel miteinander verbundener Einzelzellen
DE102013224915A1 (de) Modul mit mindestens zwei Zellen zum Ausgeben elektrischer Energie und ein zwischen den Zellen angeordnetes Trennelement
DE102012005788A1 (de) Wandlerzelle mit einem Zellgehäuse, Batterie mit zumindest zwei dieser Wandlerzellen und Verfahren zum Herstellen einer Wandlerzelle
DE102017001683A1 (de) Energiespeichersystem
DE102018108962A1 (de) Batteriezellenmodul und Kraftfahrzeug mit demselben
DE102013220174A1 (de) Batteriemodul und Batteriepack
DE102021201340A1 (de) Kühlkörper für Akkumulatorzellen sowie Akkumulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21731144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21731144

Country of ref document: EP

Kind code of ref document: A1