WO2021249480A1 - 一种凝汽器漏空气超标检测方法 - Google Patents

一种凝汽器漏空气超标检测方法 Download PDF

Info

Publication number
WO2021249480A1
WO2021249480A1 PCT/CN2021/099376 CN2021099376W WO2021249480A1 WO 2021249480 A1 WO2021249480 A1 WO 2021249480A1 CN 2021099376 W CN2021099376 W CN 2021099376W WO 2021249480 A1 WO2021249480 A1 WO 2021249480A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
coefficient
air leakage
tube bundle
actual
Prior art date
Application number
PCT/CN2021/099376
Other languages
English (en)
French (fr)
Inventor
熊敬超
魏言
宋自新
彭锦
施璐
曾祺
陈浩然
Original Assignee
中冶南方都市环保工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶南方都市环保工程技术股份有限公司 filed Critical 中冶南方都市环保工程技术股份有限公司
Publication of WO2021249480A1 publication Critical patent/WO2021249480A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Definitions

  • the invention belongs to the technical field of condenser safety detection, and in particular relates to a method for detecting excess air leakage of a condenser.
  • Condenser vacuum factors include circulating water flow, inlet water temperature, unit load, tube bundle dirty degree, condenser seal is not tight, tube bundle layout, etc.
  • the main factor that affects condenser vacuum is air leakage Exceeding the standard and scaling on the water side of the tube bundle. When unclean cooling water flows through the tube bundle, it will gradually scale on the surface of the tube bundle.
  • the scale on the tube bundle will cause: increase the heat transfer resistance of the condenser water side, weaken the heat transfer performance of the cooling tube, and reduce the overall heat transfer coefficient of the condenser; Reduce the cross-sectional area of the pipeline and increase the flow resistance, which leads to an increase in the power of the circulating water pump, which increases the power consumption of the unit; the degree of scaling in the tube bundle is more difficult to measure.
  • most power plants often use rubber ball cleaning, high-pressure water cleaning or chemical cleaning
  • the condenser is cleaned regularly, and the cleaning effect is ideal.
  • the condenser is in a vacuum state during operation. The low pressure levels and the corresponding regenerative system, exhaust cylinders, auxiliary equipment, etc.
  • the purpose of the present invention is to overcome the difficulty in detecting the air leakage quality of the condenser of the cold end system in the prior art.
  • the present invention provides a method for detecting excessive air leakage in a condenser, which includes:
  • the heat balance equation of the condenser is listed, and the actual heat transfer coefficient K 0 is calculated from the heat balance equation;
  • the tube bundle arrangement coefficient C s and the steam side non-condensable gas correction coefficient C a are introduced , and the actual overall cleaning coefficient ⁇ of the condenser can be calculated according to formula (2);
  • Combining formulas (1) and (2) calculates the actual non-condensable gas correction coefficient C a of the condenser, wherein the water intake side cleanness coefficient k and the tube bundle arrangement coefficient C s are both fixed values;
  • the value range of the water side cleaning coefficient k is 0.95-1.
  • the tube bundle arrangement coefficient C s is determined according to a specific condenser tube bundle arrangement mode.
  • the heat balance equation of the condenser is listed according to the operating parameters of the steam turbine and the condenser, and the actual heat transfer coefficient K 0 is calculated from the heat balance equation.
  • the heat balance equation is drawn up according to the condenser heat load, steam turbine exhaust volume, steam turbine exhaust specific enthalpy, condensate specific enthalpy, cooling water flow, cooling water specific heat capacity, cooling water inlet and outlet water temperature, and condenser heat exchange area parameters .
  • the general Berman formula is used to calculate the overall heat transfer coefficient K 1 of the condenser in a clean state.
  • Fig. 1 is a schematic flow chart of the method for detecting excessive air leakage of a condenser according to the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features; in the description of the present invention, unless otherwise specified, the meaning of “multiple” means Two or more.
  • the embodiment of the present invention provides a method for detecting excessive air leakage of a condenser, as shown in FIG. 1, including:
  • the heat balance equation of the condenser is listed, and the actual heat transfer coefficient K 0 is calculated from the heat balance equation;
  • the tube bundle arrangement coefficient C s and the steam side non-condensable gas correction coefficient C a are introduced , and the actual overall cleaning coefficient ⁇ of the condenser can be calculated according to formula (2);
  • the combined formulas (1) and (2) are used to calculate the actual non-condensable gas correction coefficient C a of the condenser, where the water intake side cleanness coefficient k and the tube bundle arrangement coefficient C s are both fixed values;
  • the condenser is a fixed-plate shell and tube heat exchanger, which belongs to the prior art.
  • the tube side (or cooling water side) of the condenser includes cooling tubes, tube sheets, water chambers, etc., and the condenser shell side (or Said steam side) belongs to the vacuum container.
  • the cooling water enters the water chamber from the inlet, enters the water chamber at the other end through the cooling water pipe, and turns to flow out from the outlet.
  • the exhaust steam of the steam turbine enters the outer space of the condenser cooling water pipe from the exhaust steam inlet, that is, the steam side, and condenses into water on the outer surface of the cooling water pipe.
  • the principle of this scheme is: ignore the heat exchange between the condenser and the outside world, list the heat balance equation of the condenser according to the operating parameters of the steam turbine and the condenser, calculate the actual heat transfer coefficient K 0 according to the heat balance equation of the condenser, and introduce Bielman Formula, using Berman's formula to calculate the overall heat transfer coefficient K 1 of the condenser in a clean state, so as to obtain the actual overall cleaning coefficient of the condenser.
  • the tube bundle arrangement coefficient C s and the steam side non-condensable gas correction coefficient C a can be introduced to change the condenser
  • the tube bundle arrangement coefficient C s is a certain value, so that the actual non-condensable gas correction coefficient of the condenser can be obtained.
  • the thermal balance equation (the law of heat exchange) thermal balance equation refers to the transfer of heat between two or several systems with different temperatures until the temperatures of the systems are equal.
  • the heat transferred from a high-temperature object to a low-temperature object is actually the transfer of internal energy.
  • the decrease in the internal energy of the high-temperature object is equal to the increase in the internal energy of the low-temperature object.
  • the actual heat transfer coefficient K 0 can be obtained in the engineering thermal calculation of the concrete condenser.
  • the preferred solution is to list the heat balance equation of the condenser according to the operating parameters of the steam turbine and the condenser, while ignoring the heat exchange between the condenser and the outside world, that is, according to the heat load of the condenser, the exhaust steam volume of the steam turbine, and the exhaust steam ratio of the steam turbine.
  • Enthalpy, condensation water specific enthalpy, cooling water flow rate, cooling water specific heat capacity, cooling water inlet and outlet temperature and condenser heat exchange area parameters are listed as heat balance equations.
  • the actual heat transfer coefficient K 0 is calculated from the heat balance equation. Specifically listing the heat balance equation belongs to the prior art.
  • the empirical formula formation method is: for clean pipes, determine the cooling water inlet temperature, pipe diameter and cooling water flow rate under certain conditions.
  • the basic average heat transfer coefficient of the condenser is based on this, and then according to the test results obtained when one of the above conditions is changed, the basic average heat transfer coefficient is corrected one by one to obtain the condenser The total average heat transfer coefficient. It is also disclosed in the "Surface Steam Condenser Regulations" promulgated by the American Heat Transfer Institute (HEI-1995). Eliminate the coexistence of tube bundle fouling and non-condensable gas, which makes it difficult to judge the impact of non-condensable gas on heat transfer performance. This article uses the domestically-used Berman formula to calculate the overall heat transfer coefficient K 1 of the condenser in a clean state. I won't repeat it here.
  • the tube bundle arrangement coefficient C s is a certain value, which can be determined after the condenser tube bundle arrangement is determined, which belongs to the prior art.
  • the 10th issue of "Thermal Power Generation” in 2016, titled “Numerical Simulation of Condenser Tube Bundle Arrangement Coefficients” pointed out: Combining the calculation methods of 4 kinds of condenser average heat transfer coefficients, discussed the feasibility of the calculation method of tube bundle arrangement coefficients. For flexibility and rationality, we recommend an operable tube bundle arrangement coefficient calculation method, and take the condenser of a 300MW unit as an example.
  • the tube bundle layout coefficients of the four types of dual-process condenser tube bundle modules of the narrow-band downstream type are calculated, and the tube bundle layout coefficients are 1.082, 1.038, 1.094, and 1.169, respectively, indicating that the narrow-band downstream tube bundles with double trapezoidal air-cooling zones are Condenser has the best condensation heat transfer effect.
  • the overall heat transfer coefficient K 1 in the clean state of the condenser is calculated by the Berman formula, so that the condensed steam can be obtained.
  • the actual overall cleaning coefficient ⁇ K 0 /K 1 .
  • the Berman formula does not consider the influence of the tube bundle layout coefficient and the steam side non-condensable gas on the heat transfer performance of the condenser.
  • the tube bundle arrangement coefficient C s is a certain value. According to the above formula, the actual condenser failure can be calculated. Condensed gas correction factor C a .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种凝汽器漏空气超标检测方法,包括:根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,由热平衡方程计算实际传热系数K 0;获取水侧清洁系数k及凝汽器清洁状态下的总体传热系数K 1,引入管束布置系数C s和汽侧不凝结气体修正系数C a;ε=K 0/K 1 (1),ε=C sC ak (2),联合公式(1)和(2)计算得到凝汽器实际不凝结气体修正系数C a,其中,取水侧清洁系数k及管束布置系数C s均为定值;参照设计时不凝结气体修正系数理论值C a0,若C a<C a0,则判定凝汽器严密性满足运行要求,若C a>C a0,则判定凝汽器存在漏气情况。方法充分考虑到了凝汽器的影响因子,能快速准确的检测到凝汽器漏空气量是否超标

Description

一种凝汽器漏空气超标检测方法 技术领域
本发明属于凝汽器安全检测技术领域,具体涉及一种凝汽器漏空气超标检测方法。
背景技术
我国目前仍以火力发电为主,节能降耗一直是我国发展的主题,凝汽器作为冷端***的核心,其传热性能和压力是影响机组安全经济运行的重要因素。凝汽器真空每下降1Kpa,机组汽耗将会增加1.5%~2.5%,当端差每升高1摄氏度,煤耗增加1.5%~2.5%。此外,在机组负荷不变时,凝汽器真空下降将会抬高汽轮机排汽温度,蒸汽流量增大,轴向推力增加,轴承中心偏移而引起机组振动,影响机组安全运行。
凝汽器真空的因素包括循环水流量、进口水温、机组负荷、管束脏污程度、凝汽器密封不严、管束布置等,在实际运行中,影响凝汽器真空的主要因素为漏空气量超标和管束水侧结垢。当不清洁冷却水流经管束时将在管束表面逐渐结垢,管束结垢将会造成:增加凝汽器水侧换热热阻,削弱冷却管传热性能,降低凝汽器总体传热系数;减少管道的流通截面积,流动阻力增大,导致循环水泵功率增加,使机组厂用电增加;管束内结垢程度较难测量,目前大多数电厂常采用胶球清洗、高压水清洗或化学清洗等方式定期对凝汽器进行清洗,清洗效果较为理想。凝汽器在运行过程中处于真空状态,低压各级与相应的回热***、排气缸、辅助设备等密封不严易造成不凝结气体泄露,在蒸汽凝结过程中不凝结气体会在冷却管外壁 上形成一层空气膜,阻碍蒸汽放热,增加汽侧换热热阻。虽然不凝结气体含量较小,但对汽侧换热性能有重要影响,目前对于凝汽器漏空气量是否超标尚缺乏有效的检测方法。
发明内容
本发明的目的是克服现有技术中冷端***的凝汽器漏空气质量检测难的问题。
为此,本发明提供了一种凝汽器漏空气超标检测方法,包括:
根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,由热平衡方程计算实际传热系数K 0
获取水侧清洁系数k及凝汽器清洁状态下的总体传热系数K 1,根据公式(1)计算得到凝汽器实际总体清洁系数ε;
ε=K 0/K 1      (1)
根据凝汽器实际运行情况,引入管束布置系数C s和汽侧不凝结气体修正系数C a,根据公式(2)计算亦可得到凝汽器实际总体清洁系数ε;
ε=C sC ak       (2)
联合公式(1)和(2)计算得到凝汽器实际不凝结气体修正系数C a,其中,所述取水侧清洁系数k及管束布置系数C s均为定值;
参照设计时不凝结气体修正系数理论值C a0,若C a<C a0,则判定凝汽器严密性满足运行要求,若C a>C a0,则判定凝汽器存在漏气情况。
优选地,定义漏气率R=(C a-C a0)/C a0,以定量判定凝汽器漏气的严重情况,且漏气严重度与所述漏气率R成正比。
优选地,所述水侧清洁系数k的取值范围为0.95~1。
优选地,所述管束布置系数C s根据具体的凝汽器管束布置方式确定。
优选地,在忽略凝汽器与外界的换热情况下,根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,由热平衡方程计算实际传热系数K 0
优选地,根据凝汽器热负荷、汽轮机排汽量、汽轮机排汽比焓、凝结水比焓、冷却水流量、冷却水比热容、冷却水进出口水温及凝汽器换热面积参数列热平衡方程。
优选地,采用通用的别尔曼公式计算凝汽器清洁状态下的总体传热系数K 1
本发明的有益效果:本发明提供的这种凝汽器漏空气超标检测方法,包括:根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,由热平衡方程计算实际传热系数K 0;获取水侧清洁系数k及凝汽器清洁状态下的总体传热系数K 1,引入管束布置系数C s和汽侧不凝结气体修正系数C a;ε=K 0/K 1(1),ε=C sC ak(2),联合公式(1)和(2)计算得到凝汽器实际不凝结气体修正系数C a,其中,所述取水侧清洁系数k及管束布置系数C s均为定值;参照设计时不凝结气体修正系数理论值C a0,若C a<C a0,则判定凝汽器严密性满足运行要求,若C a>C a0,则判定凝汽器存在漏气情况。该方法充分考虑到了凝汽器的影响因子,能快速准确的检测到凝汽器漏空气量是否超标,以及超标的程度。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是本发明凝汽器漏空气超标检测方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本发明实施例提供了一种凝汽器漏空气超标检测方法,如图1所示,包括:
根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,由热平衡方程计算实际传热系数K 0
获取水侧清洁系数k及凝汽器清洁状态下的总体传热系数K 1,根据公式(1)计算得到凝汽器实际总体清洁系数ε;
ε=K 0/K 1      (1)
根据凝汽器实际运行情况,引入管束布置系数C s和汽侧不凝结气体修正系数C a,根据公式(2)计算亦可得到凝汽器实际总体清洁系数ε;
ε=C sC ak     (2)
联合公式(1)和(2)计算得到凝汽器实际不凝结气体修正系数C a, 其中,所述取水侧清洁系数k及管束布置系数C s均为定值;
参照设计时不凝结气体修正系数理论值C a0,若C a<C a0,则判定凝汽器严密性满足运行要求,若C a>C a0,则判定凝汽器存在漏气情况。
凝汽器是一种固定板管壳式换热器,属于现有技术,凝汽器管侧(或成冷却水侧)包括冷却管、管板、水室等,凝汽器壳侧(或称汽侧)属于真空容器。冷却水从进口进入水室,经冷却水管进入另一端水室,转向从出口流出。汽轮机排汽从排汽进口进入凝汽器冷却水管外侧空间即汽侧,并在冷却水管外表面凝结成水,凝结水汇集到热水井后由凝结水泵抽出。
该方案的原理为:忽略凝汽器与外界的换热,根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,根据凝汽器热平衡方程计算实际传热系数K 0,引入别尔曼公式,采用别尔曼公式计算凝汽器清洁状态下的总体传热系数K 1,从而得到凝汽器实际总体清洁系数。根据凝汽器实际运行情况,考虑管束布置系数和汽侧不凝结气体对凝汽器传热性能的影响,引入管束布置系数C s和汽侧不凝结气体修正系数C a,可将凝汽器清洁系数分解为ε=C sC ak,凝汽器管束布置方式确定后,其管束布置系数C s即为一定值,从而可以得到凝汽器实际不凝结气体修正系数。通过比较实际不凝结气体修正系数C a与设计时不凝结气体修正系数理论值C a0,判断凝汽器是否存在漏空气。若C a<C a0,则判定凝汽器严密性满足运行要求,若C a>C a0,则判定凝汽器存在漏气情况。
其中,热平衡方程(热交换定律)thermal balance equation,是指温度不同的两个或几个***之间发生热量的传递,直到***的温度相等。在热量交换过程中,遵从能量的转化和守恒定律。从高温物体向低温物体传递的热量,实际上就是内能的转移,高温物体内能的减少量就等于低温物体 内能的增加量。根据热传学理论,假定不考虑凝汽器与外界大气之间的换热,则排汽凝结时放出的热量等于冷却水带走的热量。在具体的凝汽器的工程热力计算中便可求出实际传热系数K 0
优选的方案,在忽略凝汽器与外界的换热情况下,根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,即根据凝汽器热负荷、汽轮机排汽量、汽轮机排汽比焓、凝结水比焓、冷却水流量、冷却水比热容、冷却水进出口水温及凝汽器换热面积参数列热平衡方程。由热平衡方程计算实际传热系数K 0。具体地列热平衡方程属于现有技术。
一般采用理论分析和经验公式相机和的计算方法来计算得到总体传热系数K 1,经验公式形成的方法是:对于清洁管子,在一定的冷却水入口温度、管子直径和冷却水流速下,测定凝汽器的基本平均传热系数,以此为基准,然后根据上述条件中的某一条件改变时所得到的试验结果,逐一对这个基本平均传热系数进行相应的修正,从而得到凝汽器的总平均传热系数。美国热传学会颁布的(HEI-1995)《表面式蒸汽凝汽器规程》中也有公开。消除管束结垢与不凝结气体并存导致难以判断不凝结气体对传热性能的影响问题,本文采用的是国内通用的别尔曼公式计算凝汽器清洁状态下的总体传热系数K 1。在此不再赘述。
管束布置系数C s为一个确定值,当凝汽器管束布置方式确定后就能确定该值,属于现有技术。例如,《热力发电》2016年第10期,名称为《凝汽器管束布置系数数值模拟》指出:结合4种凝汽器平均传热系数的计算方法,讨论了管束布置系数计算方法实施的可行性和合理性,推荐具有可操作性的管束布置系数计算方法,并以300MW机组凝汽器为例,对向心式卵形管束、TEPEE管束的变形形式、仿生树管束和具有双梯形空冷区的窄带顺流 式4种双流程凝汽器管束模块的管束布置系数进行了计算,得出其管束布置系数分别为1.082、1.038、1.094、1.169,表明具有双梯形空冷区的窄带顺流管束的凝汽器凝结传热效果最好。
优选的方案,水侧清洁系数k的取值范围为0.95~1。在凝汽器设计完成后,水侧清洁系数k已经确定。凝汽器清洗后的管束可认为为清洁状态,考虑到有些硬垢很难彻底清理,取水侧清洁系数k=0.95~1。
本发明的有益效果:本发明提供的这种凝汽器漏空气超标检测方法,包括:根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,由热平衡方程计算实际传热系数K 0;获取水侧清洁系数k及凝汽器清洁状态下的总体传热系数K 1,引入管束布置系数C s和汽侧不凝结气体修正系数C a;ε=K 0/K 1(1),ε=C sC ak(2),联合公式(1)和(2)计算得到凝汽器实际不凝结气体修正系数C a,其中,所述取水侧清洁系数k及管束布置系数C s均为定值;参照设计时不凝结气体修正系数理论值C a0,若C a<C a0,则判定凝汽器严密性满足运行要求,若C a>C a0,则判定凝汽器存在漏气情况。该方法充分考虑到了凝汽器的影响因子,能快速准确的检测到凝汽器漏空气量是否超标,以及超标的程度。
在一个具体的实施场景中,下面结合某电厂300MW亚临界机组对本发明具体检测步骤做更进一步的说明:
1、忽略凝汽器与外界的换热,根据凝汽器热负荷,汽轮机排汽量,汽轮机排汽比焓,凝结水比焓,冷却水流量,冷却水比热容,冷却水进出口水温,凝汽器换热面积等参数列热平衡方程,计算凝汽器实际运行情况下的实际传热系数K 0
2、凝汽器胶球清洗后的管束可认为为清洁状态,取水侧清洁系数 k=0.97,采用别尔曼公式计算凝汽器清洁状态下的总体传热系数K 1,从而可得凝汽器实际总体清洁系数ε=K 0/K 1
3、别尔曼公式未考虑管束布置系数和汽侧不凝结气体对凝汽器传热性能的影响,引入管束布置系数C s和汽侧不凝结气体修正系数C a,结合凝汽器实际运行情况,将凝汽器清洁系数分解为ε=C sC ak,凝汽器管束布置方式确定后,其管束布置系数C s即为一定值,根据上述公式从而可以计算得到凝汽器实际不凝结气体修正系数C a
4、比较凝汽器实际不凝结气体修正系数C a与设计时不凝结气体修正系数C a0
若C a<C a0,则判定凝汽器严密性满足运行要求,若C a>C a0,则判定凝汽器存在漏气情况,定义凝汽器漏气率R=(C a-C a0)/C a0,以定量判定凝汽器漏气的严重情况。R越大,说明漏气越严重,反之亦然。
以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。

Claims (7)

  1. 一种凝汽器漏空气超标检测方法,其特征在于,包括:
    根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,由热平衡方程计算实际传热系数K 0
    获取水侧清洁系数k及凝汽器清洁状态下的总体传热系数K 1,根据公式(1)计算得到凝汽器实际总体清洁系数ε;
    ε=K 0/K 1  (1)
    根据凝汽器实际运行情况,引入管束布置系数C s和汽侧不凝结气体修正系数C a,根据公式(2)计算亦可得到凝汽器实际总体清洁系数ε;
    ε=C sC ak  (2)
    联合公式(1)和(2)计算得到凝汽器实际不凝结气体修正系数C a,其中,所述取水侧清洁系数k及管束布置系数C s均为定值;
    参照设计时不凝结气体修正系数理论值C a0,若C a<C a0,则判定凝汽器严密性满足运行要求,若C a>C a0,则判定凝汽器存在漏气情况。
  2. 根据权利要求1所述的凝汽器漏空气超标检测方法,其特征在于:定义漏气率R=(C a-C a0)/C a0,以定量判定凝汽器漏气的严重情况,且漏气严重度与所述漏气率R成正比。
  3. 根据权利要求1所述的凝汽器漏空气超标检测方法,其特征在于:所述水侧清洁系数k的取值范围为0.95~1。
  4. 根据权利要求1所述的凝汽器漏空气超标检测方法,其特征在于:所述管束布置系数C s根据具体的凝汽器管束布置方式确定。
  5. 根据权利要求1所述的凝汽器漏空气超标检测方法,其特征在于:在忽略凝汽器与外界的换热情况下,根据汽轮机和凝汽器运行参数列出凝汽器热平衡方程,由热平衡方程计算实际传热系数K 0
  6. 根据权利要求5所述的凝汽器漏空气超标检测方法,其特征在于:根据凝汽器热负荷、汽轮机排汽量、汽轮机排汽比焓、凝结水比焓、冷却水流量、冷却水比热容、冷却水进出口水温及凝汽器换热面积参数列热平衡方程。
  7. 根据权利要求1所述的凝汽器漏空气超标检测方法,其特征在于:采用通用的别尔曼公式计算凝汽器清洁状态下的总体传热系数K 1
PCT/CN2021/099376 2020-06-11 2021-06-10 一种凝汽器漏空气超标检测方法 WO2021249480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010530025.8 2020-06-11
CN202010530025.8A CN111879464A (zh) 2020-06-11 2020-06-11 一种凝汽器漏空气超标检测方法

Publications (1)

Publication Number Publication Date
WO2021249480A1 true WO2021249480A1 (zh) 2021-12-16

Family

ID=73156849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099376 WO2021249480A1 (zh) 2020-06-11 2021-06-10 一种凝汽器漏空气超标检测方法

Country Status (2)

Country Link
CN (1) CN111879464A (zh)
WO (1) WO2021249480A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544210A (zh) * 2022-01-11 2022-05-27 国能浙江宁海发电有限公司 一种凝汽器传热性能衰减测试方法
CN114705245A (zh) * 2022-03-31 2022-07-05 西安交通大学 一种核电厂低加疏水管路u型水封消失及维持的诊断方法
CN114751557A (zh) * 2022-04-29 2022-07-15 华能国际电力股份有限公司德州电厂 一种凝汽器自动灌水查漏***及方法
CN117892247A (zh) * 2024-03-14 2024-04-16 山西国化能源有限责任公司 一种天然气泄漏检测***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879464A (zh) * 2020-06-11 2020-11-03 中冶南方都市环保工程技术股份有限公司 一种凝汽器漏空气超标检测方法
CN113268921B (zh) * 2021-05-13 2022-12-09 西安交通大学 凝汽器清洁系数预估方法、***、电子设备及可读存储介质
CN113916932B (zh) * 2021-09-22 2024-04-16 安徽艺云玻璃有限公司 一种检测中空玻璃传热系数的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534320A (en) * 1984-03-01 1985-08-13 Westinghouse Electric Corp. Method for determining the amount of dissolved oxygen from above and below water level air leakage in a steam power plant
JP2008275360A (ja) * 2007-04-26 2008-11-13 Fuji Electric Systems Co Ltd 真空系統の空気漏れ検出方法
CN105303037A (zh) * 2015-10-10 2016-02-03 山东电力研究院 一种引起凝汽器真空恶化的临界漏空气量的计算方法
CN107577859A (zh) * 2017-08-29 2018-01-12 华中科技大学 一种凝汽器污垢度在线监测方法
CN109029000A (zh) * 2018-08-01 2018-12-18 华电电力科学研究院有限公司 一种凝汽器清洁度在线监测***及监测方法
CN111879464A (zh) * 2020-06-11 2020-11-03 中冶南方都市环保工程技术股份有限公司 一种凝汽器漏空气超标检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534320A (en) * 1984-03-01 1985-08-13 Westinghouse Electric Corp. Method for determining the amount of dissolved oxygen from above and below water level air leakage in a steam power plant
JP2008275360A (ja) * 2007-04-26 2008-11-13 Fuji Electric Systems Co Ltd 真空系統の空気漏れ検出方法
CN105303037A (zh) * 2015-10-10 2016-02-03 山东电力研究院 一种引起凝汽器真空恶化的临界漏空气量的计算方法
CN107577859A (zh) * 2017-08-29 2018-01-12 华中科技大学 一种凝汽器污垢度在线监测方法
CN109029000A (zh) * 2018-08-01 2018-12-18 华电电力科学研究院有限公司 一种凝汽器清洁度在线监测***及监测方法
CN111879464A (zh) * 2020-06-11 2020-11-03 中冶南方都市环保工程技术股份有限公司 一种凝汽器漏空气超标检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN ZHONG-HE,LV HONG,LI ZHI-GANG: "Calculation of condenser heat transfer coefficient and analysis of the influence of air content and scale on condenser vacuum", JOURNAL OF NORTH CHINA ELECTRIC POWER UNIVERSITY(NATURAL SCIENCE EDITION), vol. 36, no. 1, 30 January 2009 (2009-01-30), pages 59 - 63, XP055879095 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544210A (zh) * 2022-01-11 2022-05-27 国能浙江宁海发电有限公司 一种凝汽器传热性能衰减测试方法
CN114544210B (zh) * 2022-01-11 2023-06-16 国能浙江宁海发电有限公司 一种凝汽器传热性能衰减测试方法
CN114705245A (zh) * 2022-03-31 2022-07-05 西安交通大学 一种核电厂低加疏水管路u型水封消失及维持的诊断方法
CN114705245B (zh) * 2022-03-31 2022-12-27 西安交通大学 一种核电厂低加疏水管路u型水封消失及维持的诊断方法
CN114751557A (zh) * 2022-04-29 2022-07-15 华能国际电力股份有限公司德州电厂 一种凝汽器自动灌水查漏***及方法
CN117892247A (zh) * 2024-03-14 2024-04-16 山西国化能源有限责任公司 一种天然气泄漏检测***
CN117892247B (zh) * 2024-03-14 2024-05-17 山西国化能源有限责任公司 一种天然气泄漏检测***

Also Published As

Publication number Publication date
CN111879464A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2021249480A1 (zh) 一种凝汽器漏空气超标检测方法
CN105299676B (zh) 一种基于中空微纳米多孔陶瓷膜的烟气水分余热回收装置
CN103673747A (zh) 大型换热器快速清洗装备及清洗方法
CN109388844B (zh) 低压省煤器节能效果的修正计算方法
CN112085367B (zh) 一种凝汽器脏污系数在线监测方法及***
CN105423772B (zh) 汽轮机轴封漏汽与锅炉连续排污余热联合制冷电站空冷***及空冷凝汽器换热系数预测方法
CN102313471B (zh) 冷却***的功能监视和/或控制方法及相应的冷却***
CN207007527U (zh) 一种凝汽器
CN105241667B (zh) 基于k‑M模型的凝汽器真空状态判别方法
CN107063734A (zh) 一种凝汽器、凝汽器监测***、凝汽器耗差分析方法
CN103811082B (zh) 核电站冷凝器***及其故障排除方法和装置
CN110455460B (zh) 燃气轮机空气冷却***冷却器快速查漏的方法
CN112051082A (zh) 一种供热***换热器运行中故障诊断方法
CN206832073U (zh) 一种蒸汽冷却回收***
CN202869363U (zh) 大型换热器快速清洗装备
CN106894853B (zh) 凝汽式汽轮机冷端节能诊断方法
CN113804400A (zh) 一种凝汽器冷却管束水侧阻垢监测方法
CN211234865U (zh) 一种在线检漏仪
JP5463727B2 (ja) 復水器冷却管漏洩検査装置
CN208648797U (zh) 一种凝液处理***
CN207716941U (zh) 一种燃气锅炉用石墨冷凝器
CN218584297U (zh) 一种在线分析热管换热器水箱泄漏的装置
Vodeniktov et al. The problem of the surface condenser overall heat transfer coefficient determining at high temperatures of cooling water
CN105184043B (zh) 基于单个无量纲数的凝汽器传热系数计算方法
CN108844399A (zh) 一种基于dcs的凝汽器胶球清洗自启停方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822468

Country of ref document: EP

Kind code of ref document: A1