WO2021248849A1 - 一种驱动电压生成方法、装置、存储介质和电子设备 - Google Patents

一种驱动电压生成方法、装置、存储介质和电子设备 Download PDF

Info

Publication number
WO2021248849A1
WO2021248849A1 PCT/CN2020/132990 CN2020132990W WO2021248849A1 WO 2021248849 A1 WO2021248849 A1 WO 2021248849A1 CN 2020132990 W CN2020132990 W CN 2020132990W WO 2021248849 A1 WO2021248849 A1 WO 2021248849A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard
acceleration waveform
resonance frequency
driving voltage
acceleration
Prior art date
Application number
PCT/CN2020/132990
Other languages
English (en)
French (fr)
Inventor
郑亚军
桑成艳
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021248849A1 publication Critical patent/WO2021248849A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads

Definitions

  • the present invention relates to the technical field of smart terminals, and in particular to a method, device, storage medium and electronic equipment for generating a driving voltage.
  • Rich tactile experience can bring a more perfect user experience.
  • mobile devices, touch screen devices or personal computer devices can be configured and produce tactile effects to enhance the experience of application scenarios such as games and calls.
  • haptic effects usually design specific drive signals based on standard drive motors to achieve ideal haptic effects.
  • the tactile effects achieved by the same drive signal on the standard drive motors and the tactile effects achieved on the drive motors actually used in each terminal are not consistent. Different, which makes it impossible for different drive motors to achieve the same tactile effect.
  • the embodiments of the present invention provide a driving voltage generation method, device, storage medium, and electronic equipment to achieve the same tactile effect on different driving motors.
  • an embodiment of the present invention provides a driving voltage generation method, including:
  • the driving voltage is generated according to the acceleration corresponding to the calibrated acceleration waveform.
  • the performing calibration calculation on the obtained standard acceleration waveform according to the judgment result, and generating the calibration acceleration waveform specifically includes:
  • interpolation calculation is performed on the standard acceleration waveform to generate the calibration acceleration waveform.
  • the generating the driving voltage according to the acceleration corresponding to the calibrated acceleration waveform specifically includes:
  • the driving voltage is generated through the electromechanical coupling equation of the system.
  • the obtaining the standard acceleration waveform and the standard resonance frequency includes:
  • the haptic effect is resolved into a standard acceleration waveform and a standard resonance frequency.
  • the obtaining the standard acceleration waveform and the standard resonance frequency includes:
  • an embodiment of the present invention provides a driving voltage generating device, including:
  • the first acquisition module is used to acquire the standard acceleration waveform and the standard resonance frequency
  • the second obtaining module is used to obtain the actual resonance frequency
  • the judgment module is used to judge the relationship between the actual resonant frequency obtained and the standard resonant frequency
  • the first generating module is configured to perform calibration calculation on the obtained standard acceleration waveform according to the judgment result to generate a calibration acceleration waveform
  • the second generating module is configured to generate a driving voltage according to the acceleration corresponding to the calibrated acceleration waveform.
  • the first generating module specifically includes:
  • the first generation sub-module is configured to, if the judgment module determines that the acquired actual resonance frequency is greater than the standard resonance frequency, perform a sampling calculation on the standard acceleration waveform to generate the calibration acceleration waveform;
  • the second generation sub-module is configured to perform interpolation calculation on the standard acceleration waveform to generate the calibrated acceleration waveform if the judgment module determines that the actual resonance frequency obtained is less than the standard resonance frequency.
  • the second generation module is specifically configured to:
  • the driving voltage is generated through the electromechanical coupling equation of the system.
  • an embodiment of the present invention provides a storage medium that includes a stored program, wherein when the program is running, the device where the storage medium is located is controlled to execute the above-mentioned driving voltage generation method.
  • an embodiment of the present invention provides an electronic device, including a memory and a processor, the memory is used to store information including program instructions, and the processor is used to control the execution of the program instructions, wherein the When the program instructions are loaded and executed by the processor, the steps of the above-mentioned driving voltage generation method are realized.
  • the standard acceleration and the standard resonance frequency are acquired; the actual resonance frequency is acquired; the magnitude relationship between the acquired actual resonance frequency and the standard resonance frequency is determined;
  • the acceleration waveform is calibrated and calculated to generate a calibrated acceleration waveform; the driving voltage is generated according to the acceleration corresponding to the calibrated acceleration waveform.
  • calibration calculation is performed on the acquired standard acceleration waveform, the driving voltage is generated according to the acceleration corresponding to the calibration acceleration waveform generated after calculation, and different driving motors are driven according to different driving voltages, so that different driving motors can be Achieve the same tactile effect.
  • FIG. 1 is a flowchart of a method for generating a driving voltage according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another driving voltage generation method provided by an embodiment of the present invention.
  • FIG. 3 is an effect diagram of an acceleration waveform sampling provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of comparison between a driving voltage provided by an embodiment of the present invention and a driving voltage generated by a general equalization method
  • FIG. 5 is a comparison diagram of the tactile effects generated by the driving voltage provided by the embodiment of the present invention and the driving voltage excitation generated by the general equalization algorithm;
  • FIG. 6 is a schematic structural diagram of a driving voltage generating device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an electronic device provided by an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for generating a driving voltage according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 101 Obtain a standard acceleration waveform and a standard resonance frequency.
  • the standard resonance frequency is the resonance frequency of the standard drive motor used by the developer when developing the haptic effect
  • the standard acceleration waveform is the corresponding acceleration waveform when the standard drive motor produces the developed haptic effect.
  • Step 102 Obtain the actual resonance frequency.
  • the actual resonant frequency is the resonant frequency of the drive motor of the end product used by the user.
  • Step 103 Determine whether the actual resonance frequency is greater than or less than the standard resonance frequency.
  • Step 104 Calibrate the acquired standard acceleration waveform according to the judgment result of step 103, and generate a calibrated acceleration waveform.
  • the standard acceleration waveform is calculated to generate a calibrated acceleration waveform; when the actual resonant frequency is less than the standard resonant frequency, the standard acceleration waveform is interpolated to generate a calibrated acceleration waveform.
  • Step 105 Generate a driving voltage according to the acceleration corresponding to the calibrated acceleration waveform.
  • the driving voltage can be solved by the electromechanical coupling equation of the system.
  • the standard acceleration and the standard resonance frequency are acquired; the actual resonance frequency is acquired; the magnitude relationship between the acquired actual resonance frequency and the standard resonance frequency is determined;
  • the acceleration waveform is calibrated and calculated to generate a calibrated acceleration waveform; the driving voltage is generated according to the acceleration corresponding to the calibrated acceleration waveform.
  • calibration calculation is performed on the acquired standard acceleration waveform, the driving voltage is generated according to the acceleration corresponding to the calibration acceleration waveform generated after calculation, and different driving motors are driven according to different driving voltages, so that different driving motors can be Achieve the same tactile effect.
  • FIG. 2 is a flowchart of another driving voltage generation method provided by an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 201 Obtain the haptic effect from the memory.
  • the tactile effect is called by the processor from the memory according to the application requirements. For example, if the application requirement is the vibration of a rifle in a shooting game, the tactile effect corresponding to the vibration of the rifle is retrieved from the memory. If the application requirement is the shock of the pistol in the shooting game, the tactile effect corresponding to the shock of the pistol is retrieved from the memory. If the application requirement is the shock sensation of the alarm clock, the tactile effect corresponding to the shock sensation of the alarm clock is retrieved from the memory.
  • the memory includes a storage unit in an electronic device.
  • the storage includes cloud storage.
  • Step 202 Analyze the haptic effect into a standard acceleration waveform and a standard resonance frequency.
  • the standard acceleration waveform and the standard resonance frequency are obtained by analyzing the haptic effect obtained in step 201, but in other embodiments, the standard acceleration waveform and the standard resonance frequency can be analyzed in advance and stored in the memory. In this case below, the actuator can obtain the corresponding standard acceleration waveform and standard resonance frequency from the memory according to the required tactile effect, without the need for analytical calculations.
  • Step 203 Obtain the actual resonance frequency.
  • the actual resonant frequency of the driving motor when stored as a parameter in the memory, the actual resonant frequency can be directly retrieved from the memory, and when the actual resonant frequency is not stored in the memory, it can be obtained through detection by the sensor chip.
  • Step 204 Determine the actual resonance frequency and the standard resonance frequency, and select the execution step. If yes, execute step 205; if not, execute step 206.
  • Step 205 If the acquired actual resonance frequency is less than the standard resonance frequency, perform interpolation calculation on the standard acceleration waveform to generate a calibrated acceleration waveform, and perform step 208.
  • the generated calibrated acceleration waveform satisfies the formula: Among them, t(a0) is the time corresponding to the standard acceleration waveform, t(a1) is the time corresponding to the calibrated acceleration waveform, Fb0 is the actual resonance frequency, and Fa0 is the standard resonance frequency.
  • Step 206 If the acquired actual resonant frequency is greater than the standard resonant frequency, perform a sampling calculation on the standard acceleration waveform to generate a calibrated acceleration waveform.
  • the generated calibrated acceleration waveform satisfies the formula: Among them, t(a0) is the time corresponding to the standard acceleration waveform, t(a1) is the time corresponding to the calibrated acceleration waveform, Fb0 is the actual resonance frequency, and Fa0 is the standard resonance frequency.
  • FIG. 3 is an effect diagram of acceleration waveform sampling provided by an embodiment of the present invention.
  • the horizontal axis in FIG. 3 is time and the unit is milliseconds; the vertical axis is acceleration and the unit is m/s 2 .
  • Figure 3 includes two curves: standard acceleration waveform 2 and calibrated acceleration waveform 1. Among them, the calibrated acceleration waveform 1 is a waveform obtained by performing an extraction calculation on the standard acceleration waveform 2.
  • Step 207 If the acquired actual resonance frequency is equal to the standard resonance frequency, use the standard acceleration waveform as the calibration acceleration waveform.
  • Step 208 Generate a driving voltage according to the acceleration corresponding to the calibrated acceleration waveform.
  • FIG. 4 is a schematic diagram of comparison between a driving voltage provided by an embodiment of the present invention and a driving voltage generated by a general equalization method.
  • the horizontal axis in FIG. 4 is time and the unit is milliseconds; the vertical axis is driving voltage, The unit is volts.
  • Fig. 4 includes two curves: the driving voltage curve 3 generated by the calibration acceleration in this embodiment and the driving voltage curve 4 generated by the general equalization method.
  • the driving voltage generated by the general equalization method has a larger amplitude than the driving voltage generated in this embodiment, which exceeds the output capacity of the electronic device, and even causes a greater risk of damage to the electronic device.
  • FIG. 5 is a comparison diagram of the tactile effect generated by the driving voltage provided by the present invention and the driving voltage excitation generated by the general equalization algorithm.
  • the horizontal axis in Figure 5 is time, in milliseconds; the vertical axis is acceleration, in meters per second 2 .
  • Figure 5 includes three curves: the acceleration waveform 5 generated by the driving voltage excitation generated by the general equalization algorithm, the acceleration waveform 6 generated by the driving voltage excitation provided by the present invention, and the acceleration waveform 7 corresponding to the haptic effect desired by the developer.
  • acceleration waveform 5 and acceleration waveform 6 are acceleration waveforms generated by excitation on a drive motor used by the same user.
  • the acceleration waveform 5 excited by the driving voltage generated by the general equalization algorithm has severe tailing, which is quite different from the expected acceleration waveform 7.
  • the acceleration waveform 6 excited by the driving voltage generated according to the generation method of the present invention is relatively consistent with the desired acceleration waveform 7. Therefore, the driving voltage generation method of the present invention can generate a driving voltage that is more conducive to achieving the desired haptic effect.
  • the standard acceleration and the standard resonance frequency are acquired; the actual resonance frequency is acquired; the magnitude relationship between the acquired actual resonance frequency and the standard resonance frequency is determined;
  • the acceleration waveform is calibrated and calculated to generate a calibrated acceleration waveform; the driving voltage is generated according to the acceleration corresponding to the calibrated acceleration waveform.
  • calibration calculation is performed on the acquired standard acceleration waveform, the driving voltage is generated according to the acceleration corresponding to the calibration acceleration waveform generated after calculation, and different driving motors are driven according to different driving voltages, so that different driving motors can be Achieve the same tactile effect.
  • the embodiment of the present invention provides a driving voltage generating device.
  • 6 is a schematic structural diagram of a driving voltage generation provided by an embodiment of the present invention. As shown in FIG. 6, the device includes: a first acquisition module 31, a second acquisition module 32, a judgment module 33, a first generation module 34, and The second generation module 35.
  • the first acquisition module 31 is used to acquire the standard acceleration waveform and the standard resonance frequency.
  • the second obtaining module 32 is used to obtain the actual resonance frequency.
  • the judging module 33 is used for judging the magnitude relationship between the acquired actual resonant frequency and the standard resonant frequency.
  • the first generation module 34 is configured to perform calibration calculation on the obtained standard acceleration waveform according to the judgment result, and generate a calibration acceleration waveform.
  • the second generating module 35 is configured to generate a driving voltage according to the acceleration corresponding to the calibrated acceleration waveform.
  • the first generating module 34 specifically includes:
  • the first generation sub-module 341 is configured to, if the judgment module 33 judges that the acquired actual resonance frequency is greater than the standard resonance frequency, perform a sampling calculation on the standard acceleration waveform to generate a calibrated acceleration waveform.
  • the second generation sub-module 342 is configured to, if the judgment module 33 judges that the acquired actual resonance frequency is less than the standard resonance frequency, perform interpolation calculation on the standard acceleration waveform to generate a calibrated acceleration waveform.
  • the second generating module 35 is specifically configured to generate the driving voltage through the electromechanical coupling equation of the system.
  • the first obtaining module 31 further includes: an obtaining sub-module 311 and a parsing sub-module 312.
  • the obtaining sub-module 311 is used to obtain haptic effects from the memory.
  • the analysis sub-module 312 is used to analyze the haptic effect into a standard acceleration waveform and a standard resonance frequency.
  • the first obtaining module 31 is specifically configured to: obtain the standard acceleration waveform and the standard resonance frequency from the memory.
  • the driving voltage generating device provided in this embodiment can be used to implement the driving voltage generating method in FIG. 1 or FIG.
  • the standard acceleration and the standard resonance frequency are acquired; the actual resonance frequency is acquired; the magnitude relationship between the acquired actual resonance frequency and the standard resonance frequency is determined;
  • the acceleration waveform is calibrated and calculated to generate a calibrated acceleration waveform; the driving voltage is generated according to the acceleration corresponding to the calibrated acceleration waveform.
  • calibration calculation is performed on the acquired standard acceleration waveform, the driving voltage is generated according to the acceleration corresponding to the calibration acceleration waveform generated after calculation, and different driving motors are driven according to different driving voltages, so that different driving motors can be Achieve the same tactile effect.
  • the embodiment of the present invention provides a storage medium, the storage medium includes a stored program, wherein when the program is running, the device where the storage medium is located is controlled to execute each step of the above-mentioned driving voltage generation method embodiment.
  • the storage medium includes a stored program, wherein when the program is running, the device where the storage medium is located is controlled to execute each step of the above-mentioned driving voltage generation method embodiment.
  • An embodiment of the present invention provides an electronic device that includes a memory and a processor, the memory is used to store information including program instructions, the processor is used to control the execution of the program instructions, and the program instructions are loaded and executed by the processor to achieve the above-mentioned drive voltage generation
  • the memory is used to store information including program instructions
  • the processor is used to control the execution of the program instructions
  • the program instructions are loaded and executed by the processor to achieve the above-mentioned drive voltage generation
  • FIG. 7 is a schematic diagram of an electronic device provided by an embodiment of the present invention.
  • the electronic device 40 of this embodiment includes: a processor 41, a memory 42, and a computer program 43 that is stored in the memory 42 and can run on the processor 41.
  • the computer program 43 is executed by the processor 41, In order to avoid repetition, the method for generating the driving voltage in the implementation embodiment will not be repeated here. Or, when the computer program is executed by the processor 41, the function of each model/unit in the driving voltage generating device in the embodiment is realized. In order to avoid repetition, it will not be repeated here.
  • the electronic device 40 includes, but is not limited to, a processor 41 and a memory 42.
  • FIG. 7 is only an example of the electronic device 40, and does not constitute a limitation on the electronic device 40. It may include more or fewer components than shown, or a combination of certain components, or different components.
  • network devices may also include input and output devices, network access devices, buses, and so on.
  • the memory 42 is used to store the haptic effect, the actual resonance frequency, the standard acceleration waveform, or the standard resonance frequency.
  • the electronic device 40 is connected to a cloud storage, and the cloud storage is used to store the haptic effect, the actual resonance frequency, the standard acceleration waveform, or the standard resonance frequency.
  • the electronic device 40 includes a speaker, earphone, computer, or watch.
  • the so-called processor 41 may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 42 may be an internal storage unit of the electronic device 40, such as a hard disk or a memory of the electronic device 40.
  • the memory 42 may also be an external storage device of the electronic device 40, such as a plug-in hard disk equipped on the electronic device 40, a smart memory card (Smart Media Card, SMC), a Secure Digital (SD) card, and a flash memory card (Flash). Card) and so on.
  • the memory 42 may also include both an internal storage unit of the electronic device 40 and an external storage device.
  • the memory 42 is used to store computer programs and other programs and data required by the network device.
  • the memory 42 can also be used to temporarily store data that has been output or will be output.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (Processor) execute the method described in each embodiment of the present invention. Part of the steps.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种驱动电压生成方法、装置、存储介质和电子设备。通过获取标准加速度和标准谐振频率(101);获取实际谐振频率(102);判断获取的实际谐振频率与标准谐振频率的大小关系(103);根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形(104);根据校准加速度波形对应的加速度生成驱动电压(105)。对获取的标准加速度波形进行校准计算,根据计算后生成的校准加速度波形对应的加速度生成驱动电压,并根据不同的驱动电压驱动不同的驱动马达,从而使得不同的驱动马达能够实现同一触觉效果。

Description

一种驱动电压生成方法、装置、存储介质和电子设备 【技术领域】
本发明涉及智能终端技术领域,尤其涉及一种驱动电压生成方法、装置、存储介质和电子设备。
【背景技术】
丰富的触觉体验可以带来更完美的用户体验,例如移动设备、触摸屏设备或个人计算机的设备,可以被配置并产生触觉效果以提升游戏、通话等应用场景的体验。
触觉效果开发者通常会基于标准驱动马达,设计特定的驱动信号以实现理想的触觉效果。但由于驱动马达个体的差异,特别是谐振频率的差异,及实际功放能力的限制,相同的驱动信号在标准驱动马达上实现的触觉效果和在各终端实际使用的驱动马达上实现的触觉效果并不相同,这使得不同的驱动马达无法实现同一触觉效果。
【发明内容】
有鉴于此,本发明实施例提供了一种驱动电压生成方法、装置、存储介质和电子设备,用以在不同的驱动马达上实现同一触觉效果。
一方面,本发明实施例提供了一种驱动电压生成方法,包括:
获取标准加速度波形和标准谐振频率;
获取实际谐振频率;
判断获取的实际谐振频率与标准谐振频率的大小关系;
根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形;
根据所述校准加速度波形对应的加速度生成驱动电压。
可选地,所述根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形具体包括:
若判断出获取的所述实际谐振频率大于所述标准谐振频率,则对所述标准加速度波形进行抽值计算,生成所述校准加速度波形;
若判断出获取的所述实际谐振频率小于所述标准谐振频率,则对所述标准加速度波形进行插值计算,生成所述校准加速度波形。
可选地,所述根据所述校准加速度波形对应的加速度生成驱动电压具体包括:
通过***机电耦合方程,生成所述驱动电压。
可选地,所述获取标准加速度波形和标准谐振频率包括:
从存储器中获取触觉效果;
将所述触觉效果解析为标准加速度波形和标准谐振频率。
可选地,所述获取标准加速度波形和标准谐振频率包括:
从存储器中获取标准加速度波形和标准谐振频率。
另一方面,本发明实施例提供了一种驱动电压生成装置,包括:
第一获取模块,用于获取标准加速度波形和标准谐振频率;
第二获取模块,用于获取实际谐振频率;
判断模块,用于判断获取的实际谐振频率与标准谐振频率的大小关系;
第一生成模块,用于根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形;
第二生成模块,用于根据所述校准加速度波形对应的加速度生成驱动电压。
可选地,所述第一生成模块具体包括:
第一生成子模块,用于若判断模块判断出获取的所述实际谐振频率大于所述标准谐振频率,则对所述标准加速度波形进行抽值计算,生成所述校准加速度波形;
第二生成子模块,用于若判断模块判断出获取的所述实际谐振频率小于所述标准谐振频率,则对所述标准加速度波形进行插值计算,生成所述校准加速度波形。
可选地,所述第二生成模块具体用于:
通过***机电耦合方程,生成所述驱动电压。
另一方面,本发明实施例提供了一种存储介质,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行上述驱动电压生成方法。
另一方面,本发明实施例提供了一种电子设备,包括存储器和处理器,所述存储器用于存储包括程序指令的信息,所述处理器用于控制程序指令的执行,其特征在于,所述程序指令被处理器加载并执行时实现上述驱动电压生成方法的步骤。
本发明实施例提供的驱动电压生成方法的技术方案中,通过获取标准加速度和标准谐振频率;获取实际谐振频率;判断获取的实际谐振频率与标准谐振频率的大小关系;根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形;根据校准加速度波形对应的加速度生成驱动电压。本发明实施例中,对获取的标准加速度波形进行校准计算,根据计算后生成的校准加速度波形对应的加速度生成驱动电压,并根据不同的驱动电压驱动不同的驱动马达,从而使得不同的驱动马达能够实现同一触觉效果。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种驱动电压生成方法的流程图;
图2为本发明实施例提供的另一种驱动电压生成方法的流程图;
图3为本发明实施例提供的一种加速度波形抽值效果图;
图4为本发明实施例提供的一种驱动电压和一般的均衡方法生成的驱动电压的对比示意图;
图5为本发明实施例提供的驱动电压与一般均衡算法生成的驱动电压激励产生的触觉效果对比图;
图6为本发明实施例提供的一种驱动电压生成装置的结构示意图;
图7为本发明实施例提供的一种电子设备的示意图。
【具体实施方式】
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,甲和/或乙,可以表示:单独存在甲,同时存在甲和乙,单独存在乙这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明实施例提供了一种驱动电压生成方法。图1为本发明实施例提供的一种驱动电压生成方法的流程图,如图1所示,该方法包括:
步骤101、获取标准加速度波形和标准谐振频率。
其中,标准谐振频率为开发者在开发触觉效果时所使用的标准驱动马达的谐振频率,标准加速度波形为标准驱动马达产生所开发的触觉效果时对应的加速度波形。
步骤102、获取实际谐振频率。
其中,实际谐振频率为用户所使用终端产品的驱动马达的谐振频率。
步骤103、判断实际谐振频率是否大于或小于标准谐振频率。
步骤104、根据步骤103的判断结果对获取的标准加速度波形进行校准,生成校准加速度波形。
其中,当实际谐振频率大于标准谐振频率时,对标准加速度波形进行抽值计算,生成校准加速度波形;当实际谐振频率小于标准谐振频率时,对标准加速度波形进行插值计算,生成校准加速度波形。
步骤105、根据校准加速度波形所对应的加速度生成驱动电压。
其中,驱动电压可通过***机电耦合方程求解。
本发明实施例提供的驱动电压生成方法的技术方案中,通过获取标准加速度和标准谐振频率;获取实际谐振频率;判断获取的实际谐振频率与标准谐振频率 的大小关系;根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形;根据校准加速度波形对应的加速度生成驱动电压。本发明实施例中,对获取的标准加速度波形进行校准计算,根据计算后生成的校准加速度波形对应的加速度生成驱动电压,并根据不同的驱动电压驱动不同的驱动马达,从而使得不同的驱动马达能够实现同一触觉效果。
图2为本发明实施例提供的另一种驱动电压生成方法的流程图,如图2所示,该方法包括:
步骤201、从存储器中获取触觉效果。
其中,该触觉效果由处理器根据应用需求从存储器中调用,例如:若应用需求为射击游戏中步枪的震感,则从存储器中调取步枪的震感对应的触觉效果。若应用需求为射击游戏中***的震感,则从存储器中调取***的震感对应的触觉效果。若应用需求为闹钟的震感,则从存储器中调取闹钟的震感对应的触觉效果。
作为一种可选方案,存储器包括电子设备中的存储单元。
作为另一种可选方案,存储器包括云端存储器。
步骤202、将触觉效果解析为标准加速度波形和标准谐振频率。
在本实施例中标准加速度波形和标准谐振频率是通过步骤201获取的触觉效果解析而得,但在其他实施例中,标准加速度波形和标准谐振频率可以预先解析并存储在存储器中,这种情况下,执行器可根据需要的触觉效果从存储器中获取对应的标准加速度波形和标准谐振频率即可,而不需要进行解析运算。
步骤203、获取实际谐振频率。
其中,当驱动马达的实际谐振频率作为参数存储于存储器中时,可以直接从存储器中调取该实际谐振频率,当该实际谐振频率并未存储于存储器中时,则可通过传感器芯片检测获得。
步骤204、判断获取的实际谐振频率与标准谐振频率的大小,并选择执行步骤若是,执行步骤205;若否,执行步骤206。
步骤205、若获取的实际谐振频率小于标准谐振频率,对标准加速度波形进行插值计算,生成校准加速度波形,执行步骤208。
生成的校准加速度波形满足公式:
Figure PCTCN2020132990-appb-000001
其中,t(a0)为标准加速度波形对应的时间,t(a1)为校准加速度波形对应的时间,Fb0为实际谐振频率,Fa0为标准谐振频率。
步骤206、若获取的实际谐振频率大于标准谐振频率,对标准加速度波形进行抽值计算,生成校准加速度波形。
生成的校准加速度波形满足公式:
Figure PCTCN2020132990-appb-000002
其中,t(a0)为标准加速度波形对应的时间,t(a1)为校准加速度波形对应的时间,Fb0为实际谐振频率,Fa0为标准谐振频率。
图3为本发明实施例提供的一种加速度波形抽值效果图,如图3所示,图3中横轴为时间,单位为毫秒;纵轴为加速度,单位为米/秒 2。图3中包括2条曲线:标准加速度波形2和校准加速度波形1。其中,校准加速度波形1为对标准加速度波形2进行抽值计算后的波形。
步骤207、若获取的实际谐振频率等于标准谐振频率,将标准加速度波形作为校准加速度波形。
步骤208、根据校准加速度波形所对应的加速度生成驱动电压。
图4为本发明实施例提供的一种驱动电压和一般的均衡方法生成的驱动电压的对比示意图,如图4所示,图4中横轴为时间,单位为毫秒;纵轴为驱动电压,单位为伏。图4中包括2条曲线:本实施例中通过校准加速度生成的驱动电压曲线3和一般均衡方法生成的驱动电压曲线4。如图4所示,一般均衡方法生成的驱动电压相较于本实施例生成的驱动电压幅度较大,其超过电子设备的输出能力,甚至对电子设备造成损坏的风险更大。
需要说明的是,在其他实施例中,若实际谐振频率等于标准谐振频率,且存储器中存储有开发者用于驱动标准驱动马达的标准驱动电压,则可不进行上述步骤207、208的操作,而直接调用标准驱动电压即可。
图5为本发明提供的驱动电压与一般均衡算法生成的驱动电压激励产生的触觉效果对比图。如图5所示,图5中横轴为时间,单位为毫秒;纵轴为加速度,单位为米/秒 2。图5中包括3条曲线:一般均衡算法生成的驱动电压激励产生的加速度波形5、本发明提供的驱动电压激励产生的加速度波形6和开发者期望的触觉效果所对应的加速度波形7。其中,加速度波形5和加速度波形6为在同一个用户使用的驱动马达上激励产生的加速度波形。
如图5所示,一般均衡算法生成的驱动电压所激励产生的加速度波形5的拖尾严重,与期望的加速度波形7差异较大。而根据本发明的生成方法生成的驱动电压所激励产生的加速度波形6与期望的加速度波形7较为一致。因此,本发明的驱动电压生成方法能够生成更利于实现期望触觉效果的驱动电压。
本发明实施例提供的驱动电压生成方法的技术方案中,通过获取标准加速度和标准谐振频率;获取实际谐振频率;判断获取的实际谐振频率与标准谐振频率的大小关系;根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形;根据校准加速度波形对应的加速度生成驱动电压。本发明实施例中,对获取的标准加速度波形进行校准计算,根据计算后生成的校准加速度波形对应的加速度生成驱动电压,并根据不同的驱动电压驱动不同的驱动马达,从而使得不同的驱动马达能够实现同一触觉效果。
本发明实施例提供了一种驱动电压生成装置。图6为本发明实施例提供的一种驱动电压生成的结构示意图,如图6所示,该装置包括:第一获取模块31、第二获取模块32、判断模块33、第一生成模块34和第二生成模块35。
第一获取模块31用于获取标准加速度波形和标准谐振频率。
第二获取模块32用于获取实际谐振频率。
判断模块33用于判断获取的实际谐振频率与标准谐振频率的大小关系。
第一生成模块34用于根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形。
第二生成模块35用于根据校准加速度波形对应的加速度生成驱动电压。
本发明实施例中,第一生成模块34具体包括:
第一生成子模块341用于若判断模块33判断出获取的实际谐振频率大于标准谐振频率,则对标准加速度波形进行抽值计算,生成校准加速度波形。
第二生成子模块342用于若判断模块33判断出获取的实际谐振频率小于标准谐振频率,则对标准加速度波形进行插值计算,生成校准加速度波形。
本发明实施例中,第二生成模块35具体用于通过***机电耦合方程,生成驱动电压。
本发明实施例中,第一获取模块31还包括:获取子模块311和解析子模块312。
获取子模块311用于从存储器中获取触觉效果。
解析子模块312用于将触觉效果解析为标准加速度波形和标准谐振频率。
本发明实施例中,第一获取模块31具体用于:从存储器中获取标准加速度波形和标准谐振频率。
本实施例提供的驱动电压生成装置可用于实现上述图1或图2中的驱动电压生成方法,具体描述可参见上述驱动电压生成方法的实施例,此处不再重复描述。
本发明实施例提供的驱动电压生成方法的技术方案中,通过获取标准加速度和标准谐振频率;获取实际谐振频率;判断获取的实际谐振频率与标准谐振频率的大小关系;根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形;根据校准加速度波形对应的加速度生成驱动电压。本发明实施例中,对获取的标准加速度波形进行校准计算,根据计算后生成的校准加速度波形对应的加速度生成驱动电压,并根据不同的驱动电压驱动不同的驱动马达,从而使得不同的驱动马达能够实现同一触觉效果。
本发明实施例提供了一种存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述驱动电压生成方法的实施例的各步骤,具体描述可参见上述驱动电压生成方法的实施例。
本发明实施例提供了一种电子设备,包括存储器和处理器,存储器用于存储包括程序指令的信息,处理器用于控制程序指令的执行,程序指令被处理器加载并执行时实现上述驱动电压生成方法的实施例的各步骤,具体描述可参见上述驱动电压生成方法的实施例。
图7为本发明实施例提供的一种电子设备的示意图。如图7所示,该实施例的电子设备40包括:处理器41、存储器42以及存储在存储器42中并可在处理器41上运行的计算机程序43,该计算机程序43被处理器41执行时实现实施例中的应用于驱动电压生成方法,为避免重复,此处不一一赘述。或者,该计算机程序被处理器41执行时实现实施例中应用于驱动电压生成装置中各模型/单元的 功能,为避免重复,此处不一一赘述。
电子设备40包括,但不仅限于,处理器41、存储器42。本领域技术人员可以理解,图7仅仅是电子设备40的示例,并不构成对电子设备40的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如网络设备还可以包括输入输出设备、网络接入设备、总线等。
作为一种可选方案,存储器42用于存储触觉效果、实际谐振频率、标准加速度波形或标准谐振频率。
作为另一种可选方案,电子设备40与云端存储器连接,云端存储器用于存储触觉效果、实际谐振频率、标准加速度波形或标准谐振频率。
电子设备40包括音箱、耳机、计算机或手表。
所称处理器41可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器42可以是电子设备40的内部存储单元,例如电子设备40的硬盘或内存。存储器42也可以是电子设备40的外部存储设备,例如电子设备40上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器42还可以既包括电子设备40的内部存储单元也包括外部存储设备。存储器42用于存储计算机程序以及网络设备所需的其他程序和数据。存储器42还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也 可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (10)

  1. 一种驱动电压生成方法,其特征在于,包括:
    获取标准加速度波形和标准谐振频率;
    获取实际谐振频率;
    判断获取的实际谐振频率与标准谐振频率的大小关系;
    根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形;
    根据所述校准加速度波形对应的加速度生成驱动电压。
  2. 根据权利要求1所述的方法,其特征在于,所述根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形具体包括:
    若判断出获取的所述实际谐振频率大于所述标准谐振频率,则对所述标准加速度波形进行抽值计算,生成所述校准加速度波形;
    若判断出获取的所述实际谐振频率小于所述标准谐振频率,则对所述标准加速度波形进行插值计算,生成所述校准加速度波形。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述校准加速度波形对应的加速度生成驱动电压具体包括:
    通过***机电耦合方程,生成所述驱动电压。
  4. 根据权利要求1所述的方法,其特征在于,所述获取标准加速度波形和标准谐振频率包括:
    从存储器中获取触觉效果;
    将所述触觉效果解析为标准加速度波形和标准谐振频率。
  5. 根据权利要求1所述的方法,其特征在于,所述获取标准加速度波形和标准谐振频率包括:
    从存储器中获取标准加速度波形和标准谐振频率。
  6. 一种驱动电压生成装置,其特征在于,包括:
    第一获取模块,用于获取标准加速度波形和标准谐振频率;
    第二获取模块,用于获取实际谐振频率;
    判断模块,用于判断获取的实际谐振频率与标准谐振频率的大小关系;
    第一生成模块,用于根据判断结果对获取的标准加速度波形进行校准计算,生成校准加速度波形;
    第二生成模块,用于根据所述校准加速度波形对应的加速度生成驱动电压。
  7. 根据权利要求6所述的装置,其特征在于,所述第一生成模块具体包括:
    第一生成子模块,用于若判断模块判断出获取的所述实际谐振频率大于所述标准谐振频率,则对所述标准加速度波形进行抽值计算,生成所述校准加速度波形;
    第二生成子模块,用于若判断模块判断出获取的所述实际谐振频率小于所述标准谐振频率,则对所述标准加速度波形进行插值计算,生成所述校准加速度波形。
  8. 根据权利要求6所述的装置,其特征在于,所述第二生成模块具体用于:
    通过***机电耦合方程,生成所述驱动电压。
  9. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求1至5中任意一项所述的驱动电压生成方法。
  10. 一种电子设备,包括存储器和处理器,所述存储器用于存储包括程序指令的信息,所述处理器用于控制程序指令的执行,其特征在于,所述程序指令被处理器加载并执行时实现权利要求1至5任意一项所述的驱动电压生成方法的步骤。
PCT/CN2020/132990 2020-06-09 2020-11-30 一种驱动电压生成方法、装置、存储介质和电子设备 WO2021248849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010516264.8 2020-06-09
CN202010516264.8A CN111831114B (zh) 2020-06-09 2020-06-09 一种驱动电压生成方法、装置、存储介质和电子设备

Publications (1)

Publication Number Publication Date
WO2021248849A1 true WO2021248849A1 (zh) 2021-12-16

Family

ID=72898517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132990 WO2021248849A1 (zh) 2020-06-09 2020-11-30 一种驱动电压生成方法、装置、存储介质和电子设备

Country Status (2)

Country Link
CN (1) CN111831114B (zh)
WO (1) WO2021248849A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111831114B (zh) * 2020-06-09 2024-02-20 瑞声科技(新加坡)有限公司 一种驱动电压生成方法、装置、存储介质和电子设备
CN113852719A (zh) * 2021-09-28 2021-12-28 瑞声开泰声学科技(上海)有限公司 一种多个马达振动效果关系的确定方法及其相关设备
CN115357124B (zh) * 2022-09-20 2023-09-05 武汉市聚芯微电子有限责任公司 一种振动控制方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621876A (zh) * 2012-12-13 2018-01-23 意美森公司 具有增加lra带宽的触觉***
CN107665051A (zh) * 2016-07-27 2018-02-06 意美森公司 用于触觉致动器的制动特性检测***
CN109274309A (zh) * 2018-09-28 2019-01-25 Oppo广东移动通信有限公司 马达控制方法、装置、电子设备及存储介质
CN109361337A (zh) * 2018-12-13 2019-02-19 上海艾为电子技术股份有限公司 线性谐振装置的驱动电压波形的频率校准方法及相关装置
US10606355B1 (en) * 2016-09-06 2020-03-31 Apple Inc. Haptic architecture in a portable electronic device
CN111831114A (zh) * 2020-06-09 2020-10-27 瑞声科技(新加坡)有限公司 一种驱动电压生成方法、装置、存储介质和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113049B (zh) * 2008-10-06 2012-11-21 三菱电机株式会社 信号接收装置及信号传输***
EP2940855A4 (en) * 2012-12-31 2016-08-24 Lg Electronics Inc DEVICE AND METHOD FOR GENERATING VIBRATIONS
US10991499B2 (en) * 2018-03-22 2021-04-27 Cirrus Logic, Inc. Drive waveform adjustments to compensate for transducer resonant frequency
CN111158473B (zh) * 2019-12-19 2023-11-10 瑞声科技(新加坡)有限公司 信号校准的方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621876A (zh) * 2012-12-13 2018-01-23 意美森公司 具有增加lra带宽的触觉***
CN107665051A (zh) * 2016-07-27 2018-02-06 意美森公司 用于触觉致动器的制动特性检测***
US10606355B1 (en) * 2016-09-06 2020-03-31 Apple Inc. Haptic architecture in a portable electronic device
CN109274309A (zh) * 2018-09-28 2019-01-25 Oppo广东移动通信有限公司 马达控制方法、装置、电子设备及存储介质
CN109361337A (zh) * 2018-12-13 2019-02-19 上海艾为电子技术股份有限公司 线性谐振装置的驱动电压波形的频率校准方法及相关装置
CN111831114A (zh) * 2020-06-09 2020-10-27 瑞声科技(新加坡)有限公司 一种驱动电压生成方法、装置、存储介质和电子设备

Also Published As

Publication number Publication date
CN111831114A (zh) 2020-10-27
CN111831114B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2021248849A1 (zh) 一种驱动电压生成方法、装置、存储介质和电子设备
CN109543064B (zh) 歌词显示处理方法、装置、电子设备及计算机存储介质
US10404753B2 (en) Method and apparatus for detecting security using an industry internet operating system
US10579837B2 (en) Method, device and electronic apparatus for testing capability of analyzing a two-dimensional code
EP1986109A1 (en) Obtaining feedback for an accessed information item
CN109379678A (zh) 非线性补偿方法、装置、存储介质及终端设备
CN109684008A (zh) 卡片渲染方法、装置、终端及计算机可读存储介质
US20190107929A1 (en) Method and device for loading content of page, and electronic device
CN113761741A (zh) 振动马达的控制方法和控制装置、电子设备和存储介质
CN112994980A (zh) 时延测试方法、装置、电子设备和存储介质
CN111553097A (zh) 触控显示装置马达的驱动信号获取方法及终端设备
CN109634986B (zh) ***监测方法、装置、计算机及计算机可读存储介质
US20170171491A1 (en) Method and Electronic Device for Adjusting Video Subtitles
US20170168672A1 (en) Method and electronic device for data updating
CN111352530A (zh) 电容按键信号阈值范围的调整方法、装置及终端设备
WO2022000638A1 (zh) 一种触觉效果的实现方法及设备、计算机可读存储介质
US20210042519A1 (en) Method for evaluating vibrating sensation similarity, apparatus and storage medium
CN111352023B (zh) 晶振检测方法、装置及计算机可读存储介质
US20140129507A1 (en) Information processing device, information processing method and program
WO2022000560A1 (zh) 触觉体验的评估方法、装置和存储介质
CN108181988B (zh) 一种lra马达驱动芯片的控制方法以及装置
CN113627107A (zh) 确定电源电压数据的方法、装置、电子设备和介质
CN111375209A (zh) 一种捕鱼游戏应用程序的登录方法、计算机装置以及计算机可读存储介质
US9842177B1 (en) Behavioral modeling of jitter due to power supply noise for input/output buffers
CN110909190B (zh) 数据搜索方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940044

Country of ref document: EP

Kind code of ref document: A1