WO2021248465A1 - 无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜 - Google Patents

无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜 Download PDF

Info

Publication number
WO2021248465A1
WO2021248465A1 PCT/CN2020/095860 CN2020095860W WO2021248465A1 WO 2021248465 A1 WO2021248465 A1 WO 2021248465A1 CN 2020095860 W CN2020095860 W CN 2020095860W WO 2021248465 A1 WO2021248465 A1 WO 2021248465A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
woven fabric
bonding
melting point
softening point
Prior art date
Application number
PCT/CN2020/095860
Other languages
English (en)
French (fr)
Inventor
陈莉
林陆菁
杨雪梅
陈秀峰
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Priority to KR1020227039947A priority Critical patent/KR20230002768A/ko
Priority to JP2022573619A priority patent/JP2023528395A/ja
Priority to EP20940422.7A priority patent/EP4145613A4/en
Priority to PCT/CN2020/095860 priority patent/WO2021248465A1/zh
Priority to CN202080001117.5A priority patent/CN114080723B/zh
Priority to US17/928,412 priority patent/US20230216142A1/en
Publication of WO2021248465A1 publication Critical patent/WO2021248465A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/115Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by applying or inserting filamentary binding elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • D04H13/001Making non-woven fabrics from staple fibres, filaments or yarns, bonded to at least one web-like material, e.g. woven, knitted non-woven fabric, paper, leather, during consolidation
    • D04H13/007Making non-woven fabrics from staple fibres, filaments or yarns, bonded to at least one web-like material, e.g. woven, knitted non-woven fabric, paper, leather, during consolidation strengthened or consolidated by welding together the various components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of materials, in particular, to a non-woven fabric and a preparation method thereof, a lithium battery diaphragm, and a lithium battery diaphragm base film.
  • the mainstream lithium-ion battery separators on the market are porous polyolefin membranes based on polyethylene (PE) and polypropylene (PP).
  • separators of different specifications are used according to the application, such as single-layer, double-layer and three-layer wet methods. Or dry diaphragm.
  • Porous polyolefin separators have been used in large-scale industrialization due to their high cost performance, but their poor thermal stability has become a bottleneck restricting the further improvement of battery energy density.
  • the polyolefin lithium battery separator has a large thermal shrinkage at a high temperature of >140°C. When the separator thermally shrinks severely, the positive and negative poles of the battery are easily contacted and short-circuited, causing the thermal runaway of the battery and spontaneous combustion and spontaneous explosion.
  • Non-woven separators have great application potential in high-energy lithium battery systems due to their excellent heat resistance.
  • the non-woven fabric diaphragm has high porosity and high thermal stability, and can reach a heat-resistant temperature above 150°C.
  • the three-dimensional pore structure of the non-woven fabric can ensure a high electrolyte retention rate and effectively prevent short circuits caused by the puncture of the diaphragm. There was a problem.
  • Non-woven fabrics have a natural large pore size and high porosity. In order to prevent dendrites from growing through the pore size, their thickness must be increased. Therefore, it is difficult to meet both the pore size and thickness requirements of lithium ion battery separators. Under the existing technology, It cannot be used directly as a lithium-ion battery separator, and is generally only suitable for use as a base film of a lithium-ion battery composite separator.
  • the coating layer on the non-woven fabric needs to have excellent consistency, which in turn requires the uniformity of the non-woven fabric and the smoothness of the coating surface, and the non-woven fabric coating surface
  • the adhesiveness also needs to be excellent to ensure that the coating layer and the non-woven fabric are firmly bonded to each other, and the coating layer and the non-woven fabric do not delaminate or peel off.
  • the purpose of the embodiments of the present application is to provide a non-woven fabric and a preparation method thereof, a lithium battery separator film, and a lithium battery separator base film, which are intended to improve the bonding performance of the non-woven fabric and other materials such as coatings.
  • the first aspect of the present application provides a non-woven fabric.
  • the raw material of the non-woven fabric includes backbone fibers and bonding fibers.
  • the bonding fiber includes a first bonding fiber and a second bonding fiber.
  • the melting point or softening point of the first bonding fiber is 120-220°C; the melting point or softening point of the second bonding fiber is 100-170°C, and the melting point or softening point of the second bonding fiber is higher than that of the first bonding fiber.
  • the melting point or softening point is lower than 15°C.
  • the melting point or softening point of the backbone fiber is higher than the melting point or softening point of the first binder fiber by more than 20°C.
  • the second bonding fiber has a relatively low melting point or softening point, 105 to 170°C, and is first melted during the thermal calendering process to form a discontinuous fine uneven structure on the surface of the non-woven fabric.
  • the melting point or softening point of the backbone fiber is higher than that of the first bonding fiber and the second bonding fiber, and it can have high dimensional stability during the hot pressing process.
  • the first bonding fiber is partially melted, and the second bonding fiber is completely Melting, bonding each fiber to each other, and forming a three-dimensional network structure of non-woven fabric after cooling.
  • the melting point or softening point of the second bonding fiber is lower than the melting point or softening point of the first bonding fiber by more than 15°C.
  • the degree of melting at each temperature during the formation of the non-woven fabric forms a fine uneven structure on the surface.
  • the concave-convex structure can make the coating layer and the non-woven fabric have an anchoring effect for realizing strong bonding.
  • the coating slurry is embedded in the fine cavities on the surface of the non-woven fabric, and the coating cannot move after curing, resulting in extremely strong bonding strength.
  • the melting point or softening point of the second bonding fiber is 20-100° C. lower than the melting point or softening point of the first bonding fiber.
  • the fiber lengths of the first bonding fiber and the second bonding fiber are both 1 to 6 mm, and the fiber diameters of the first bonding fiber and the second bonding fiber are both smaller than or Equal to 10 ⁇ m.
  • the fiber length of the backbone fiber is 1 ⁇ 6mm; the fiber diameter of the backbone fiber is less than or equal to 4 ⁇ m;
  • the fiber diameter of the first bonding fiber and the second bonding fiber are both 2.5-9 ⁇ m; the fiber diameter of the backbone fiber is 1-3.5 ⁇ m.
  • the backbone fiber accounts for 60-80% of the total mass of the non-woven fabric backbone fiber and bonding fiber.
  • the backbone fibers account for 65 to 75% of the total mass of the non-woven fabric backbone fibers and bonding fibers.
  • the second bonding fiber accounts for 10-40% of the total mass of the bonding fiber.
  • the second bonding fiber accounts for 20-30% of the total mass of the bonding fiber.
  • the density of the non-woven fabric is 0.50-0.9 g/cm 3
  • the average pore diameter is not more than 4.5 ⁇ m
  • the ratio of the maximum pore diameter to the average pore diameter is 1-10.
  • the material of the backbone fiber includes polyester fiber, polyolefin fiber, polyamide fiber, polyimide fiber, polytetrafluoroethylene fiber, polyphenylene sulfide fiber, polyether ether At least one of ketone fiber, polyacrylonitrile fiber, polycarbonate fiber and aramid fiber.
  • the material of the first bonding fiber includes at least one of undrawn polyester fiber, polyvinylidene fluoride fiber, polyamide fiber, copolyamide fiber, and polyolefin fiber.
  • the material of the second bonding fiber includes at least one of polyolefin fiber, copolyester fiber, and copolyamide fiber.
  • the second aspect of the present application provides a method for preparing a non-woven fabric.
  • the heat-pressing treatment temperature is higher than the melting point or softening point temperature of the second binding fiber by more than 10°C, and the heat-pressing treatment temperature is not higher than the The melting point or softening point temperature of the backbone fiber; optionally, the hot pressing speed of the hot pressing treatment is 1-100 m/min.
  • a third aspect of the present application provides a lithium battery separator base film, and the lithium ion separator base film includes the non-woven fabric provided in the above-mentioned first aspect.
  • a fourth aspect of the present application provides a lithium battery separator.
  • the lithium battery separator includes a coating and the base film provided in the second aspect, and the coating is attached to the surface of the base film.
  • the non-woven fabric Due to the uneven surface structure of the non-woven fabric provided by the present application, it can improve the meshing property of the non-woven fabric, increase the contact area between the coating slurry and the non-woven fabric, and make the surfaces of the two inlaid with each other to generate meshing force to achieve strong strength The effect of joining.
  • the uniformity and excellent meshing properties of the non-woven fabric enable the coating layer and the non-woven fabric to be firmly combined with each other, and the coating layer and the non-woven fabric do not delaminate or peel off.
  • Figure 1 is a surface electron micrograph of the non-woven fabric described in Example 1.
  • FIG. 2 is a surface electron micrograph of the non-woven fabric described in Comparative Example 1.
  • FIG. 2 is a surface electron micrograph of the non-woven fabric described in Comparative Example 1.
  • FIG. 3 is a surface electron micrograph of the non-woven fabric described in Comparative Example 2.
  • FIG. 4 is a surface electron micrograph of the non-woven fabric described in Comparative Example 3.
  • FIG. 4 is a surface electron micrograph of the non-woven fabric described in Comparative Example 3.
  • FIG. 5 is a surface electron micrograph of the non-woven fabric described in Comparative Example 4.
  • FIG. 5 is a surface electron micrograph of the non-woven fabric described in Comparative Example 4.
  • FIG. 6 is a surface electron micrograph of the non-woven fabric sample described in Comparative Example 5.
  • the method of composite coating on the non-woven fabric support layer is usually to first prepare the coating slurry, and then apply the slurry to the surface of the non-woven fabric by micro-gravure roll coating, spray coating, dip coating, etc., and then dry to coat the surface. The layer is cured.
  • the binding force between the coating and the non-woven fabric is the result of the interaction between the interfaces of different materials.
  • the influencing factors are complex and may be affected by the interfacial tension, surface free energy, and functional groups between the coating and the non-woven fabric. Group properties, inter-interface reactions, etc.
  • the main source of the binding force between the coating and the non-woven fabric is the molecular force of the system, namely van der Waals attraction and hydrogen bonding force.
  • the coating and the base film are combined by chemical bonds, but the formation of chemical bonds is not common. To form chemical bonds, certain conditions must be met. It is impossible to form chemical bonds at all contact points between the adhesive and the substrate.
  • the bonding force between the coating layer and the non-woven fabric is mainly caused by the coating slurry penetrating into the pores or uneven structure on the surface of the non-woven fabric. The essence of this connection force is friction.
  • the coating slurry cannot well infiltrate the surface of the non-woven fabric, and the air bubbles remain in the pores so that the coating slurry is elevated at the pores of the non-woven fabric, reducing the coating slurry
  • the actual contact area between the material and the non-woven fabric will cause serious problems such as the weakening of the bonding force of the coating and the non-woven fabric, and the significant decrease in the performance of the non-woven fabric coating diaphragm.
  • the non-woven fabric, lithium battery separator, and lithium battery separator base film of the embodiments of the present application will be specifically described below.
  • the raw materials of the non-woven fabric include backbone fibers and bonding fibers; the bonding fibers include a first bonding fiber and a second bonding fiber; the melting point or softening point of the first bonding fiber is 120-220°C
  • the melting point or softening point of the second bonding fiber is 100 ⁇ 170°C; and the melting point or softening point of the second bonding fiber is 15°C or more lower than the melting point or softening point of the first bonding fiber; the melting point or softening of the backbone fiber The point is higher than the melting point or softening point of the first binder fiber by more than 20°C.
  • the material of the backbone fiber includes polyester fiber, polyolefin fiber, polyamide fiber, polyimide fiber, polytetrafluoroethylene fiber, polyphenylene sulfide fiber, polyether At least one of ether ketone fiber, polyacrylonitrile fiber, polycarbonate fiber and aramid fiber.
  • the polyester fiber may be selected from polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyisophthalic resin, and the like.
  • the polyolefin fiber can be selected from polyethylene, polypropylene, polyvinyl chloride, polystyrene, ES (Ethylene-Propylene Side By Side) fiber, etc.
  • the polyamide fiber can be, for example, PA66.
  • the material of the first bonding fiber includes at least one of undrawn polyester fiber, polyvinylidene fluoride fiber, polyamide fiber, copolyamide fiber, and polyolefin fiber.
  • the undrawn polyester fiber may be selected from polyethylene terephthalate, polybutylene terephthalate, and the like.
  • Polyolefin fibers can be selected from polyethylene, polypropylene, polyvinyl chloride, polystyrene, ES fibers, and the like.
  • the material of the second bonding fiber includes at least one of polyolefin fiber, copolyester fiber, and copolyamide fiber.
  • polyolefin fibers can be selected from polyethylene, polypropylene, polyvinyl chloride, polystyrene, ES fibers, and the like.
  • Copolyester fibers can be selected from CoPET, CoPBT (copolymerized polybutylene terephthalate) and the like.
  • Copolyamide fibers can be selected from PA6/6, PA6/66, PA6/66/12, PA6/66/69, PA6/66/610, PA6/66/612, PA6/66/1010, PA6/612/12, PA6/610/12, PA6/66/69/12, PA6/66/11/12, etc.
  • first bonding fiber, the second bonding fiber, and the backbone fiber can also be selected from other materials.
  • the melting point or softening point of the first bonding fiber may be 120°C, 125°C, 130°C, 140°C, 145°C, 155°C, 167°C, 183°C, 190°C, 200°C, 210°C or 220°C and so on.
  • the melting point or softening point of the second bonding fiber may be 100°C, 105°C, 108°C, 120°C, 126°C, 138°C, 147°C, 156°C, 162°C, 170°C, or the like.
  • the melting point or softening point of the backbone fiber is higher than the melting point or softening point of the first binder fiber by 20°C, 21°C, 23°C, 25°C, 26°C, 28°C, 30°C, 40°C, 50°C, 60°C, 100 °C, 150°C, 200°C, 280°C and so on.
  • the second bonding fiber has a relatively low melting point or softening point, 105 to 170°C, and is first melted during the thermal calendering process to form a discontinuous fine uneven structure on the surface of the non-woven fabric.
  • the melting point or softening point of the backbone fiber is higher than that of the first bonding fiber and the second bonding fiber, and can have high dimensional stability during the hot pressing process.
  • the first bonding fiber and the second bonding fiber are partially or completely Melting, bonding each fiber to each other, and forming a three-dimensional network structure of non-woven fabric after cooling. If the melting point or softening point of the first and second bonding fibers is too low, it will cause excessive melting and serious sticking during the hot pressing process; the melting point or softening point of the first and second bonding fibers is too high It cannot be melted in time during hot pressing, and it is difficult to obtain the desired fine uneven structure on the surface of the non-woven fabric.
  • the concave-convex structure can make the coating layer and the non-woven fabric have an anchoring effect for realizing strong bonding.
  • the coating slurry is embedded in the fine cavities on the surface of the non-woven fabric, and the coating cannot move after curing, resulting in extremely strong bonding strength.
  • the melting point or softening point of the second bonding fiber is lower than the melting point or softening point of the first bonding fiber by more than 15°C.
  • the melting point or softening point of the second bonding fiber is set according to the melting point or softening point of the first bonding fiber, so as to select the material.
  • the melting point or softening point of the second binding fiber is 15°C, 18°C, 20°C, 25°C, 45°C, 40°C, 28°C, 30°C, 50°C lower than the melting point or softening point of the first binding fiber Or 70°C, 90°C or 115°C and so on.
  • the melting point or softening point of the second bonding fiber is lower than the melting point or softening point of the first bonding fiber by more than 15°C.
  • the degree of melting at each temperature during the formation of the non-woven fabric forms a fine uneven structure on the surface.
  • the backbone fiber accounts for 60-80% of the total mass of the backbone fiber and the bonding fiber; in other words, the backbone fiber accounts for 60-80% of the total mass of all fibers, for example, the backbone fiber accounts for all the fibers. 60%, 62%, 67%, 69%, 72%, 74%, 76% or 80% of the total mass, etc.
  • the content of the backbone fiber as the main body of the structure is low, it will affect the mechanical strength of the non-woven fabric.
  • the main function of the backbone fiber is to provide support strength. If the content of the backbone fiber is high, the backbone fiber will not be fully bonded and solidified by the bonding fiber. Affect the volume density of the non-woven fabric, and the mechanical strength is also difficult to guarantee.
  • the second bonding fiber accounts for 10-40% of the total mass of the bonding fiber; as mentioned above, the melting point of the second bonding fiber is lower, and the content of the second bonding fiber is less, which will affect the non-woven fabric The formation of fine concave-convex structure on the surface; a high content of the second bonding fiber will cause the polymer to melt on the surface of the non-woven fabric, causing serious pore blockage and failing to obtain the desired pore structure.
  • the fiber lengths of the first bonding fiber and the second bonding fiber are both 1 to 6 mm, and the fiber diameters of the first bonding fiber and the second bonding fiber are both Less than or equal to 10 ⁇ m.
  • the fiber length of the backbone fiber is 1 to 6 mm; the fiber diameter of the backbone fiber is less than or equal to 4 ⁇ m.
  • the fiber length of the first bonding fiber and the second bonding fiber may be 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, or the like.
  • the fiber diameter of the first bonding fiber and the second bonding fiber can be 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4.5 ⁇ m, 6 ⁇ m, 6.2 ⁇ m, 7.2 ⁇ m, 7.6 ⁇ m, 8.0 ⁇ m, 9.2 ⁇ m, or 10 ⁇ m, etc. .
  • the fiber length of the backbone fiber can be 1mm, 2.5mm, 3mm, 3.6mm, 4.2mm, 5.1mm or 6mm and so on.
  • the fiber diameter of the backbone fiber may be 0.2 ⁇ m, 0.6 ⁇ m, 1.2 ⁇ m, 1.8 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.2 ⁇ m, 3.6 ⁇ m, 4 ⁇ m, or the like.
  • the fiber length of the backbone fiber and the bonding fiber is 1 to 6 mm.
  • the fiber length of the backbone fiber and the bonding fiber is less than 1mm, and there may be a problem of too low strength of the non-woven fabric; the fiber length of the backbone fiber and the bonding fiber is greater than 6mm, and the excessively long fibers are easy to agglomerate and entangle, causing serious non-woven fabrics. Defects in appearance and performance.
  • the diameter of the backbone fiber is less than or equal to 4 ⁇ m, the diameter of the bonding fiber is less than or equal to 10 ⁇ m, and the thickness of the obtained non-woven fabric is moderate. If the diameter of the backbone fiber is greater than 4 ⁇ m and the diameter of the bonding fiber is greater than 10 ⁇ m, the resulting non-woven fabric has a larger thickness.
  • the non-woven fabric is used for lithium battery separators, and the battery can be filled with less active materials, reducing the battery capacity.
  • the diameter of the backbone fiber is greater than 4 ⁇ m and the diameter of the bonding fiber is greater than 10 ⁇ m, which increases the possibility of large holes in the non-woven fabric.
  • the coating slurry easily penetrates from the upper layer to the lower layer through the through holes, thereby increasing the number of needles in the coating layer. Possibility of defects such as holes.
  • the length and diameter of the backbone fiber and the bonding fiber are within the above range, so that the pore size of the final non-woven fabric can be in an appropriate range; the concave-convex structure on the inner wall of the hole can improve the meshing of the non-woven fabric and the coating.
  • Controlling the length and diameter of the backbone fiber and the bonding fiber to control the pore size which can avoid the formation of coating pinholes due to excessive pore structure, and the coating penetrates the back of the non-woven fabric, and even causes electrochemical safety problems; it can avoid excessive pore size.
  • the small size makes it difficult for the coating to penetrate into the hole and engage with the uneven structure, resulting in low peel strength.
  • the average pore diameter of the obtained non-woven fabric is not greater than 4.5 ⁇ m, and the ratio of the maximum pore diameter to the average pore diameter is 1-10. It is beneficial to prevent the coating slurry from penetrating from the coating surface to the back surface, causing the coating slurry to adhere to the surface of the guide roller and cause foreign matter contamination.
  • the density of the non-woven fabric is 0.50 to 0.9 g/m 3 . It can prevent the coating slurry from penetrating from the coated surface to the back side, and reduce the probability of non-woven fabric blocking holes, can ensure sufficient porosity so as not to affect the ion transmission efficiency, and ensure the electrical performance of the non-woven fabric separator.
  • the non-woven fabric of the present application can be obtained by preparing fiber base paper from various raw materials, and then subjecting the formed fiber base paper to hot calendering treatment.
  • the surface of the non-woven fabric provided by the embodiments of the application has a fine uneven structure, so that when the surface of the non-woven fabric is coated, the uneven structure of the non-woven fabric can improve the adhesiveness of the non-woven fabric and improve the coating slurry
  • the wetting ability of the surface of the non-woven fabric increases the contact area between the coating slurry and the non-woven fabric, so that the surfaces of the two are inlaid with each other to generate meshing force and achieve the effect of strong bonding.
  • the non-woven fabric provided in the embodiments of the present application can be used to prepare the base film of the lithium battery separator. It should be noted that in other embodiments of the present application, the non-woven fabric can be used in other scenarios, and it is particularly suitable for For the application of coating or slurry for strong bonding, the embodiments of the present application do not limit the application of the non-woven fabric.
  • the present application also provides a method for preparing the above-mentioned non-woven fabric.
  • the heat-pressing treatment temperature is higher than the melting point or softening point temperature of the second bonding fiber by more than 10°C, for example 10-200°C higher, and the heat-pressing treatment temperature is higher than the aforementioned
  • the backbone fiber has a low melting point or softening point temperature.
  • the second bonding fiber can be almost completely melted, and the first bonding fiber is partially melted; in the process of hot pressing, the second bonding fiber is extruded to form a concave-convex structure, and accordingly, the first A bonding fiber bonds the backbone fiber.
  • the hot pressing speed of the hot pressing treatment is 1-100 m/min. At this hot pressing speed, it is possible to prevent the second bonding fiber from clogging the formed pores.
  • the application also provides a lithium battery separator base film, the lithium ion separator base film includes the non-woven fabric described in the claims.
  • the present application also provides a lithium battery separator.
  • the lithium battery separator includes a coating and the above-mentioned base film, and the coating is attached to the surface of the base film.
  • the non-woven fabric provided in the embodiments of the present application can improve the adhesiveness of the non-woven fabric due to the uneven structure on the surface of the non-woven fabric, increase the contact area between the coating slurry and the non-woven fabric, and make the surfaces of both Mutual inlays generate meshing force to achieve the effect of strong joining.
  • the uniformity and excellent adhesiveness of the non-woven fabric enable the coating layer and the non-woven fabric to be firmly combined with each other, and the coating layer and the non-woven fabric do not delaminate or peel off.
  • Examples 1 to 6 respectively provide a non-woven fabric, and the specific fiber ratio is shown in Table 1;
  • the raw materials of each embodiment were used to make fiber base paper with an areal density of 12g/m 2 using an inclined wire machine, and then the base paper was subjected to hot calendering treatment.
  • the hot press used a steel roller/soft roller combination.
  • the hot pressing temperature of each example See Table 1.
  • the non-woven fabric was obtained by hot pressing.
  • the obtained non-woven fabric was cut into A4 size samples, and alumina ceramic particles were coated on one of its outer surfaces through a mesh roll.
  • the solid content of the coating slurry was 35% alumina/10% PVDF by weight. After coating, drying and drying are performed, and finally the non-woven fabric coating sample of this embodiment is obtained.
  • Comparative Example 1 to Comparative Example 5 respectively provide a non-woven fabric, and the specific fiber ratio is shown in Table 2.
  • each comparative example was used to make fiber base paper with an areal density of 12g/m 2 using an inclined wire paper machine, and then the base paper was subjected to hot calendering treatment.
  • the hot press used a steel roller/soft roller combination.
  • the hot pressing temperature of each comparative example See Table 2, to obtain a non-woven fabric.
  • the obtained non-woven fabric was cut into A4 size samples, and alumina ceramic particles were coated on one of its outer surfaces through a mesh roll.
  • the solid content of the coating slurry was 35% alumina/10% PVDF by weight. After coating, drying and drying are performed, and finally the non-woven fabric coating sample of this embodiment is obtained.
  • the "area density" of the non-woven fabric is measured.
  • the "thickness" of the non-woven fabric is measured; the "density” of the non-woven fabric is obtained by dividing the "area density” of the non-woven fabric and the "thickness” of the non-woven fabric.
  • the "pore size" of the non-woven fabric is measured.
  • Figure 1 is a surface electron micrograph of the non-woven fabric described in Example 1.
  • FIG. 2 is a surface electron micrograph of the non-woven fabric described in Comparative Example 1.
  • FIG. 3 is a surface electron micrograph of the non-woven fabric described in Comparative Example 2.
  • FIG. 4 is a surface electron micrograph of the non-woven fabric described in Comparative Example 3.
  • FIG. 5 is a surface electron micrograph of the non-woven fabric described in Comparative Example 4.
  • Comparative Example 1 show that when the melting point or softening point of the main fiber used is close to the same as that of the first bonding fiber, that is, the difference between the melting point or softening point of the main fiber and the melting point or softening point of the first bonding fiber is less than 20 °C; As shown in Figure 2, excessive polymer melts on the surface of the non-woven fabric, causing serious pore blockage, making it difficult to obtain the desired pore structure, and the fine uneven structure on the surface of the non-woven fabric cannot be formed.
  • Comparative Example 2 show that when the difference between the melting point or softening point of the first bonding fiber and the melting point or softening point of the second bonding fiber is less than 15°C, the first bonding fiber and the softening point The second bonding fiber melts almost simultaneously. As shown in Figure 3, the fine uneven structure on the surface of the non-woven fabric cannot be formed.
  • the test results of Comparative Example 3 show that when the melting point or softening point of the first bonding fiber used is higher than 220°C and the difference between the melting point or softening point of the second bonding fiber is greater than 15°C, the first bonding fiber is The bonding fibers cannot be melted in time, the fibers cannot be fully bonded and solidified, and the structure of the non-woven fabric is loose. As shown in Figure 4, the fine uneven structure on the surface of the non-woven fabric cannot be formed.
  • Comparative Example 4 show that when the melting point or softening point of the second bonding fiber used is lower than 100°C, the difference between the melting point or softening point of the first bonding fiber and the melting point or softening point of the second bonding fiber is greater than 15 At °C, as shown in Figure 5, the second bonding fiber is excessively melted during the hot pressing process, and the sticking roll is severe, which affects the surface smoothness of the non-woven fabric, and the fine uneven structure on the surface of the non-woven fabric cannot be formed.
  • FIG. 6 is a surface electron micrograph of the non-woven fabric sample described in Comparative Example 5.
  • FIG. 6 the non-woven fabric of Comparative Example 5 has no uneven structure formed in the holes, resulting in low peel strength.
  • the non-woven fabrics of Examples 1-7 of this application have good properties, especially the peel strength of the coating layer is significantly higher than the peel strength of the samples of Comparative Examples 1-5, indicating that the bonding strength of the coating layer to the support layer has been significantly improved. Enhanced.
  • the non-woven fabric provided by the embodiments of the present disclosure has good adhesiveness, and can increase the contact area between the coating slurry and the non-woven fabric, so that the surfaces of the two are inlaid with each other to generate meshing force, and achieve a strong The effect of joining.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Abstract

一种无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜,涉及材料领域。无纺布的原料包括主干纤维和粘结纤维;粘结纤维包括第一粘结纤维和第二粘结纤维;第一粘结纤维的熔点或软化点为120~220℃;第二粘结纤维的熔点或软化点为100~170℃,且第二粘结纤维的熔点或软化点比第一粘结纤维低15℃以上;主干纤维的熔点或软化点比第一粘结纤维高20℃以上。所述无纺布的表面具有微细的凹凸结构,使得在无纺布表面进行涂布时,无纺布的凹凸结构可以提高无纺布的胶粘性,提高涂覆浆料对无纺布表面的浸润能力,增加涂覆浆料与无纺布的接触面积,使两者的表面相互镶嵌产生啮合力,达到强力接合的效果。

Description

无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜 技术领域
本申请涉及材料领域,具体而言,涉及一种无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜。
背景技术
市场上主流的锂离子电池隔膜是以聚乙烯(PE)、聚丙烯(PP)为主的多孔聚烯烃膜,一般根据应用采用不同规格的隔膜,如单层、双层及三层的湿法或干法隔膜。多孔聚烯烃隔膜因高性价比而被大规模工业化使用,但其热稳定性差的这一缺点成为了制约电池能量密度进一步提高的瓶颈。聚烯烃锂电池隔膜在>140℃高温下的热收缩大,隔膜热收缩严重时,电池正负两极易接触短路,引发电池的热失控而发生自燃自爆。
无纺布隔膜因其优异的耐热性能而在高能量锂电池体系中具有极大应用潜力。无纺布隔膜具有高孔隙率和高热稳定性,可达到150℃以上的耐热温度,同时无纺布的三维孔隙结构可以保证较高的电解液保有率,并有效防止隔膜刺穿引起的短路问题出现。
无纺布具有天然的大孔径和高孔隙率,为了防止枝晶通过孔径生长,必须增加其厚度,因此难以同时满足锂离子电池隔膜在孔径和厚度两方面的要求,在现有技术下,从而无法直接作为锂离子电池隔膜使用,一般只适于作为锂离子电池复合隔膜的基膜使用。
为了保证锂离子电池隔膜的高性能,无纺布上的涂覆层需要有优异的一致性,进而要求无纺布的均匀性与涂布面的平滑性优异,而且无纺布涂布面的胶粘性也需优异,以保证涂覆层与无纺布彼此牢固结合,涂层与无纺布不发生分层、剥离的现象。
发明内容
本申请实施例的目的在于提供一种无纺布及其制备方法、锂电池隔 膜及锂电池隔膜基膜,其旨在提高无纺布与涂层等其他材料的结合性能。
本申请第一方面提供一种无纺布,无纺布的原料包括主干纤维和粘结纤维。
粘结纤维包括第一粘结纤维和第二粘结纤维。
第一粘结纤维的熔点或软化点为120~220℃;第二粘结纤维的熔点或软化点为100~170℃,且第二粘结纤维的熔点或软化点比第一粘结纤维的熔点或软化点低15℃以上。
主干纤维的熔点或软化点比第一粘结纤维的熔点或软化点高20℃以上。
第二粘结纤维的熔点或软化点较低,为105~170℃,进行热压延处理时首先发生熔化从而在无纺布表面形成不连续的微细凹凸结构。主干纤维的熔点或软化点均高于第一粘结纤维和第二粘结纤维,在热压处理过程中能具有高的尺寸稳定性,第一粘结纤维局部熔化,第二粘结纤维全部熔化,将各纤维彼此粘连,冷却后形成无纺布的三维网状结构。第二粘结纤维的熔点或软化点比第一粘结纤维的熔点或软化点低15℃以上,在热压处理过程中第二粘结纤维先熔化,然后第一粘结纤维再熔化,控制无纺布的形成过程中各个温度下的熔化程度从而在表面形成微细凹凸结构。凹凸结构可以使涂布层与无纺布具有实现强力接合的锚固效应。涂覆浆料嵌入无纺布表面的微细凹孔,涂层固化之后不能发生移动,从而产生极强的结合强度。
在本申请第一方面的一些实施例中,第二粘结纤维的熔点或软化点比第一粘结纤维的熔点或软化点低20~100℃。
在本申请第一方面的一些实施例中,第一粘结纤维和第二粘结纤维 的纤维长度均为1~6mm,且第一粘结纤维和第二粘结纤维的纤维直径均小于或等于10μm。
主干纤维的纤维长度为1~6mm;主干纤维的纤维直径小于或等于4μm;
可选地,第一粘结纤维和第二粘结纤维的纤维直径均为2.5-9μm;主干纤维的纤维直径为1~3.5μm。
在本申请第一方面的一些实施例中,主干纤维占无纺布主干纤维和粘结纤维总质量的60~80%。
可选地,主干纤维占无纺布主干纤维和粘结纤维总质量的65~75%。
在本申请第一方面的一些实施例中,第二粘结纤维占粘结纤维总质量的10~40%。
可选地,第二粘结纤维占粘结纤维总质量的20~30%。
在本申请第一方面的一些实施例中,无纺布的密度为0.50~0.9g/cm 3,平均孔径不大于4.5μm,最大孔径与平均孔径之比为1~10。
在本申请第一方面的一些实施例中,主干纤维的材料包括聚酯纤维,聚烯烃纤维,聚酰胺纤维,聚酰亚胺纤维,聚四氟乙烯纤维,聚苯硫醚纤维,聚醚醚酮纤维,聚丙烯腈纤维,聚碳酸酯纤维以及芳纶纤维中的至少一种。
在本申请第一方面的一些实施例中,第一粘结纤维的材料包括未拉伸聚酯纤维,聚偏氟乙烯纤维,聚酰胺纤维,共聚酰胺纤维以及聚烯烃纤维中的至少一种。
第二粘结纤维的材料包括聚烯烃纤维,共聚聚酯纤维以及共聚酰胺纤维中的至少一种。
本申请第二方面提供一种无纺布的制备方法,热压处理温度比所述第二粘结纤维的熔点或软化点温度高10℃以上,且所述热压处理温度 不高于所述主干纤维的熔点或软化点温度;可选地,热压处理的热压速度为1~100m/min。
本申请第三方面提供一种锂电池隔膜基膜,锂离子隔膜基膜包括上述第一方面提供的无纺布。
本申请第四方面提供一种锂电池隔膜,锂电池隔膜包括涂层和上述第二方面提供的基膜,涂层附着于基膜的表面。
本申请提供的无纺布由于其表面的凹凸结构,其可以提高无纺布的啮合性,增加涂覆浆料与无纺布的接触面积,使两者的表面相互镶嵌产生啮合力,达到强力接合的效果。
无纺布的均匀性与优异的啮合性,使涂覆层与无纺布彼此牢固结合,涂层与无纺布不发生分层、剥离的现象。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1中所述的无纺布的表面电镜图。
图2为对比例1中所述的无纺布的表面电镜图。
图3为对比例2中所述的无纺布的表面电镜图。
图4为对比例3中所述的无纺布的表面电镜图。
图5为对比例4中所述的无纺布的表面电镜图。
图6为对比例5中所述的无纺布样品的表面电镜图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在无纺布支撑层上复合涂覆层的方法通常是先制备涂覆浆料,然后将浆料通过微凹辊涂、喷涂、浸涂等方式涂布到无纺布表面,经过干燥使涂层固化。涂层与无纺布之间的结合力的产生是不同材料界面间接触后相互作用的结果,影响因素复杂,可能会受到涂层与无纺布之间的界面张力、表面自由能、官能基团性质、界面间反应等影响。基于吸附理论和扩散理论,涂层与无纺布的结合力的主要来源是体系的分子作用力,即范德华引力和氢键力。基于化学键理论,涂层与基膜通过化学键结合,但化学键的形成并不普遍,要形成化学键必须满足一定的条件,不可能做到使胶粘剂与基底之间的接触点都形成化学键。基于机械理论,涂布层与无纺布之间的结合力的产生主要是由于涂覆浆料渗透到无纺布表面的孔隙或凹凸结构之处,固化后因镶嵌在界面区产生啮合力,这种连接力的本质是摩擦力。
若无纺布涂布面的啮合性差,涂覆浆料不能很好地浸润无纺布表面,气泡留在孔隙中使涂覆浆料在无纺布的孔隙处被架空,减少了涂覆浆料与无纺布的实际接触面积,将造成涂层与无纺布结合力减弱、无纺布涂覆隔膜性能显著降低等严重问题。
下面对本申请实施例的无纺布、锂电池隔膜及锂电池隔膜基膜进行具体说明。
一种无纺布,无纺布的原料包括主干纤维和粘结纤维;粘结纤维包 括第一粘结纤维和第二粘结纤维;第一粘结纤维的熔点或软化点为120~220℃;第二粘结纤维的熔点或软化点为100~170℃;且第二粘结纤维的熔点或软化点比第一粘结纤维的熔点或软化点低15℃以上;主干纤维的熔点或软化点比第一粘结纤维的熔点或软化点高20℃以上。
作为示例性地,在本申请的实施例中,主干纤维的材料包括聚酯纤维,聚烯烃纤维,聚酰胺纤维,聚酰亚胺纤维,聚四氟乙烯纤维,聚苯硫醚纤维,聚醚醚酮纤维,聚丙烯腈纤维,聚碳酸酯纤维以及芳纶纤维中的至少一种。
例如,聚酯纤维可以选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚三亚甲基对苯二甲酸酯、聚间苯二甲酸树脂等。聚烯烃纤维可以选自聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、ES(Ethylene-Propylene Side By Side)纤维等,聚酰胺纤维例如可以为PA66等。
第一粘结纤维的材料包括未拉伸聚酯纤维,聚偏氟乙烯纤维,聚酰胺纤维,共聚酰胺纤维以及聚烯烃纤维中的至少一种。
例如,未拉伸聚酯纤维可以选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯等。聚烯烃纤维可以选自聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、ES纤维等。
第二粘结纤维的材料包括聚烯烃纤维,共聚聚酯纤维以及共聚酰胺纤维中的至少一种。
例如,聚烯烃纤维可以选自聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、ES纤维等。共聚聚酯纤维可以选自CoPET、CoPBT(共聚聚对苯二甲酸丁二醇酯)等。共聚酰胺纤维可以选自PA6/6、PA6/66、PA6/66/12、PA6/66/69、PA6/66/610、PA6/66/612、PA6/66/1010、PA6/612/12、 PA6/610/12、PA6/66/69/12、PA6/66/11/12等。
需要说明的是,在本申请的其他实施例中,第一粘结纤维、第二粘结纤维以及主干纤维也可以选用其他材料。
作为示例性地,第一粘结纤维的熔点或软化点可以为120℃、125℃、130℃、140℃、145℃、155℃、167℃、183℃、190℃、200℃、210℃或者220℃等。
第二粘结纤维的熔点或软化点可以为100℃、105℃、108℃、120℃、126℃、138℃、147℃、156℃、162℃或者170℃等。
主干纤维的熔点或软化点比第一粘结纤维的熔点或软化点高20℃、21℃、23℃、25℃、26℃、28℃、30℃、40℃、50℃、60℃、100℃、150℃、200℃、280℃等等。
第二粘结纤维的熔点或软化点较低,为105~170℃,进行热压延处理时首先发生熔化从而在无纺布表面形成不连续的微细凹凸结构。
主干纤维的熔点或软化点均高于第一粘结纤维和第二粘结纤维,在热压处理过程中能具有高的尺寸稳定性,第一粘结纤维和第二粘结纤维局部或全部熔化,将各纤维彼此粘连,冷却后形成无纺布的三维网状结构。第一粘结纤维、第二粘结纤维的熔点或软化点过低会导致热压处理过程中过度熔化、粘辊严重;第一粘结纤维、第二粘结纤维的熔点或软化点过高则在热压时不能及时熔化,从而难以在无纺布表面获得期望的微细凹凸结构。
凹凸结构可以使涂布层与无纺布具有实现强力接合的锚固效应。涂覆浆料嵌入无纺布表面的微细凹孔,涂层固化之后不能发生移动,从而产生极强的结合强度。
第二粘结纤维的熔点或软化点比所述第一粘结纤维的熔点或软化点低15℃以上。换言之,第二粘结纤维的熔点或软化点根据第一粘结纤维的熔点或软化点进行设定,从而进行选材。例如,第二粘结纤维的熔点或软化点比第一粘结纤维的熔点或软化点低15℃、18℃、20℃、25℃、45℃、40℃、28℃、30℃、50℃或者70℃、90℃或者115℃等等。
第二粘结纤维的熔点或软化点比第一粘结纤维的熔点或软化点低15℃以上,在热压处理过程中第二粘结纤维先熔化,然后第一粘结纤维再熔化,控制无纺布的形成过程中各个温度下的熔化程度从而在表面形成微细凹凸结构。
在本申请的一些实施例中,主干纤维占主干纤维和所述粘结纤维总质量的60~80%;换言之,主干纤维占所有纤维总质量的60~80%,例如,主干纤维占所有纤维总质量的60%、62%、67%、69%、72%、74%、76%或者80%等等。
作为结构主体的主干纤维若是含量较低,会影响无纺布的机械强度,主干纤维主要作用在于提供支撑强度,若是主干纤维若是含量较高,主干纤维将不能被粘结纤维充分粘连固合,影响无纺布的体积密度,机械强度亦难以保证。
进一步地,第二粘结纤维占粘结纤维总质量的10~40%;承上所述,第二粘结纤维的熔点较低,第二粘结纤维的含量较少将会影响无纺布表面微细凹凸结构的形成;第二粘结纤维的含量较多则会导致聚合物在无纺布表面熔化,堵孔严重,不能获取期望的孔隙结构。
作为示例性地,在本申请的一些实施例中,第一粘结纤维和第二粘结纤维的纤维长度均为1~6mm,且第一粘结纤维和第二粘结纤维的纤维直径均小于或等于10μm。主干纤维的纤维长度为1~6mm;主干纤维的纤维直径小于或等于4μm。
作为示例性地,第一粘结纤维和第二粘结纤维的纤维长度可以为1mm、2mm、3mm、4mm、5mm或者6mm等等。第一粘结纤维和第二粘结纤维的纤维直径均可以为0.5μm、1μm、2μm、3μm、4.5μm、6μm、6.2μm、7.2μm、7.6μm、8.0μm、9.2μm、或者10μm等等。
主干纤维的纤维长度可以为1mm、2.5mm、3mm、3.6mm、4.2mm、5.1mm或者6mm等等。主干纤维的纤维直径可以为0.2μm、0.6μm、1.2μm、1.8μm、2.5μm、3μm、3.2μm、3.6μm或者4μm等等。
主干纤维和粘结纤维的纤维长度为1~6mm。主干纤维和粘结纤维的纤维长度小于1mm,可能存在无纺布强度过低的问题;主干纤维和粘结纤维的纤维长度大于6mm,过长的纤维易团聚缠结,造成无纺布严重的外观性能缺陷。
主干纤维的直径小于或等于4μm,粘结纤维的直径小于或等于10μm,得到的无纺布的厚度适中。如果主干纤维的直径大于4μm,粘结纤维的直径大于10μm,得到的无纺布的厚度较大,该无纺布用于锂电池隔膜,电池内可装填的活性物质少,降低电池的容量。另外,主干纤维的直径大于4μm,粘结纤维的直径大于10μm,增加无纺布产生大孔洞的可能性,涂覆浆料容易通过通孔从上层渗透到下层,从而增加了涂布层产生针孔等缺陷的可能性。
此外,主干纤维和粘结纤维的长度和直径在上述范围内,可以使最终得到的无纺布的孔径在一个适当的范围内;孔的内壁存在凹凸结构可以提高无纺布与涂层的啮合性,控制主干纤维和粘结纤维的长度和直径控制孔径大小,可以避免孔结构过大形成涂层针孔,涂层渗透到无纺布背面,甚至造成电化学安全性问题;可以避免孔径过小使涂层较难渗入孔内与凹凸结构啮合,造成剥离强度低。
在本申请的一些实施例中,得到的无纺布的平均孔径不大于4.5μm,最大孔径与平均孔径之比为1-10。有利于防止涂覆浆料从涂布 面渗透到背面造成涂覆浆料粘附在导辊表面,造成异物污染。
进一步地,无纺布的密度为0.50~0.9g/m 3。可以阻止涂覆浆料从涂布面渗透到背面,且降低无纺布堵孔的概率,可以保证足够的空隙率从而不影响离子的传输效率,保证无纺布隔膜的电性能。
作为示例性地,本申请的无纺布可以通过各个原料制备纤维原纸,然后再将已成型的纤维原纸进行热压延处理制备得到。
本申请实施例提供的无纺布的表面具有微细的凹凸结构,使得在无纺布表面进行涂布时,无纺布的凹凸结构可以提高无纺布的胶粘性,提高涂覆浆料对无纺布表面的浸润能力,增加涂覆浆料与无纺布的接触面积,使两者的表面相互镶嵌产生啮合力,达到强力接合的效果。
本申请的实施例提供的无纺布可以用于制备锂电池隔膜的基膜,需要说明的是,在本申请的其他实施例中,无纺布可以用于其他场景,其特别适用于需要与涂层或者浆料等进行强力结合的用途,本申请的实施例不对无纺布的用途进行限定。
本申请还提供一种上述无纺布的制备方法,热压处理温度比第二粘结纤维的熔点或软化点温度高10℃以上,例如高10-200℃,且热压处理温度比所述主干纤维的熔点或软化点温度低。
在上述热压处理的温度下,可以使第二粘结纤维几乎完全熔融,第一粘结纤维部分熔融;在热压的过程中,第二粘结纤维挤出形成凹凸结构,相应地,第一粘结纤维粘结主干纤维。
进一步地,热压处理的热压速度为1~100m/min。在该热压速度下可以避免第二粘结纤维堵塞形成的孔。
本申请还提供一种锂电池隔膜基膜,锂离子隔膜基膜包括权利要所述的无纺布。
本申请还提供一种锂电池隔膜,锂电池隔膜包括涂层和上述的基膜,所述涂层附着于所述基膜的表面。
承上所述,本申请实施例提供的无纺布由于其表面的凹凸结构,其可以提高无纺布的胶粘性,增加涂覆浆料与无纺布的接触面积,使两者的表面相互镶嵌产生啮合力,达到强力接合的效果。
无纺布的均匀性与优异的胶粘性,使涂覆层与无纺布彼此牢固结合,涂层与无纺布不发生分层、剥离的现象。
以下结合实施例对本申请的特征和性能作进一步的详细描述。
实施例1-实施例6
实施例1-实施例6分别提供一种无纺布,具体纤维配比如表1所示;
将各实施例的原料分别采用斜网纸机抄制面密度12g/m 2的纤维原纸,再将原纸进行热压延处理,热压机采用钢辊/软辊组合,各个实施例的热压温度见表1,热压得到无纺布。
接着将所得无纺布裁减出A4大小的样品,并在其一外表面通过网辊进行氧化铝陶瓷颗粒涂覆,涂覆浆料固含量为按重量计35%氧化铝/10%PVDF,涂覆后进行烘干干燥,最终得到本实施例的无纺布涂覆样品。
表1实施例1-实施例6的纤维配料
Figure PCTCN2020095860-appb-000001
Figure PCTCN2020095860-appb-000002
对比例1-对比例5
对比例1-对比例5分别提供一种无纺布,具体纤维配比如表2所示。
将各对比例的原料分别采用斜网纸机抄制面密度12g/m 2的纤维原纸,再将原纸进行热压延处理,热压机采用钢辊/软辊组合,各个对比例的热压温度见表2,得到无纺布。
接着将所得无纺布裁减出A4大小的样品,并在其一外表面通过网辊进行氧化铝陶瓷颗粒涂覆,涂覆浆料固含量为按重量计35%氧化铝/10%PVDF,涂覆后进行烘干干燥,最终得到本实施例的无纺布涂覆样品。
表2对比例1-对比例5的纤维配料
Figure PCTCN2020095860-appb-000003
Figure PCTCN2020095860-appb-000004
试验例
对各个实施例以及各个对比例中得到的无纺布进行性能检测。测试结果如表3所示,检测标准如下:
依据GB/T 451.2-2002测定无纺布的“面密度”。
依据GB/T 451.3-2002测定无纺布的“厚度”;无纺布的“密度”由无纺布的“面密度”与无纺布的“厚度”相除得到。
依据GB/T 32361-2015测定无纺布的“孔径”。
依据GB/T 12914-2008测定无纺布的“拉伸强度”。
依据GB/T 2792-2014测定涂布层的“剥离强度”。
表3各个实施例以及对比例产品的性能测试结果
Figure PCTCN2020095860-appb-000005
Figure PCTCN2020095860-appb-000006
图1为实施例1中所述的无纺布的表面电镜图。图2为对比例1中所述的无纺布的表面电镜图。图3为对比例2中所述的无纺布的表面电镜图。图4为对比例3中所述的无纺布的表面电镜图。图5为对比例4中所述的无纺布的表面电镜图。
请参阅表3以及图1-图6。
对比例1试验结果表明,当所采用的主干纤维的熔点或软化点与第一粘结纤维接近相同,即主干纤维的熔点或软化点比第一粘结纤维的熔点或软化点之差少于20℃时;如图2所示,过量的聚合物在无纺布表面熔化,导致堵孔严重,难以获得期望的孔隙结构,且无纺布表面的微细凹凸结构不能形成。
对比例2试验结果表明,当所采用的第一粘结纤维的熔点或软化点与第二粘结纤维的熔点或软化点之差少于15℃时,在热压过程中第一粘结纤维与第二粘结纤维近乎同步发生熔化,如图3所示,无纺布表面的微细凹凸结构不能形成。
对比例3试验结果表明,当所采用的第一粘结纤维的熔点或软化点高于220℃,与第二粘结纤维的熔点或软化点之差大于15℃时,在热压过程中第一粘结纤维不能及时熔化,各纤维之间不能实现充分粘连固合,无纺布结构松散,如图4所示,无纺布表面的微细凹凸结构不能形成。
对比例4试验结果表明,当所采用的第二粘结纤维的熔点或软化点低于100℃,第一粘结纤维的熔点或软化点与第二粘结纤维的熔点或软 化点之差大于15℃时,如图5所示,在热压过程中第二粘结纤维过度熔化,粘辊严重,影响无纺布的表面平滑度,且无纺布表面的微细凹凸结构不能形成。
图6为对比例5中所述的无纺布样品的表面电镜图。如图6所示,对比例5的无纺布的孔内未形成凹凸结构,导致其剥离强度较低。
本申请实施例1-7的无纺布具有良好的性能,尤其是涂布层的剥离强度明显高于对比例1-5样品的剥离强度,表明涂布层对支撑层的结合强度得到了显著增强。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
综上所述,本公开的实施例提供的无纺布具有较好的胶粘性,可以增加涂覆浆料与无纺布的接触面积,使两者的表面相互镶嵌产生啮合力,达到强力接合的效果。

Claims (10)

  1. 一种无纺布,其特征在于,所述无纺布的原料包括主干纤维和粘结纤维;
    所述粘结纤维包括第一粘结纤维和第二粘结纤维;
    所述第一粘结纤维的熔点或软化点为120~220℃;所述第二粘结纤维的熔点或软化点为100~170℃,且所述第二粘结纤维的熔点或软化点比所述第一粘结纤维的熔点或软化点低15℃以上;
    所述主干纤维的熔点或软化点比所述第一粘结纤维的熔点或软化点高20℃以上。
  2. 根据权利要求1所述的无纺布,其特征在于,
    所述第二粘结纤维的熔点或软化点比所述第一粘结纤维的熔点或软化点低20~100℃。
  3. 根据权利要求1所述的无纺布,其特征在于,
    所述第一粘结纤维和所述第二粘结纤维的纤维长度均为1~6mm,且所述第一粘结纤维和所述第二粘结纤维的纤维直径均小于或等于10μm;
    所述主干纤维的纤维长度为1~6mm;所述主干纤维的纤维直径小于或等于4μm。
  4. 根据权利要求1所述的无纺布,其特征在于,
    所述主干纤维占所述主干纤维和所述粘结纤维总质量的60~80%;
    可选地,所述主干纤维占所述主干纤维和所述粘结纤维总质量的65~75%。
  5. 根据权利要求1所述的无纺布,其特征在于,
    所述第二粘结纤维占所述粘结纤维的总质量的10~40%;
    可选地,所述第二粘结纤维占所述粘结纤维总质量的20~30%。
  6. 根据权利要求1-5任一项所述的无纺布,其特征在于,
    所述无纺布的密度为0.50~0.9g/cm 3,平均孔径小于或等于4.5μm,最大孔径与平均孔径之比为1~10。
  7. 根据权利要求1-5任一项所述的无纺布,其特征在于,
    所述主干纤维的材料包括聚酯纤维,聚烯烃纤维,聚酰胺纤维,聚酰亚胺纤维,聚四氟乙烯纤维,聚苯硫醚纤维,聚醚醚酮纤维,聚丙烯腈纤维,聚碳酸酯纤维以及芳纶纤维中的至少一种;
    可选地,所述第一粘结纤维的材料包括未拉伸聚酯纤维,聚偏氟乙烯纤维,聚酰胺纤维,共聚酰胺纤维以及聚烯烃纤维中的至少一种;
    所述第二粘结纤维的材料包括聚烯烃纤维,共聚聚酯纤维以及共聚酰胺纤维中的至少一种。
  8. 如权利要求1-7任一项所述无纺布的制备方法,其特征在于,
    热压处理温度比所述第二粘结纤维的熔点或软化点温度高10℃以上,且所述热压处理温度不高于所述主干纤维的熔点或软化点温度;
    可选地,热压处理的热压速度为1~100m/min。
  9. 一种锂电池隔膜基膜,其特征在于,所述锂电池隔膜基膜包括权利要求1-7任一项所述的无纺布。
  10. 一种锂电池隔膜,其特征在于,所述锂电池隔膜包括涂层和权利要求9所述的基膜,所述涂层附着于所述基膜的表面。
PCT/CN2020/095860 2020-06-12 2020-06-12 无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜 WO2021248465A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227039947A KR20230002768A (ko) 2020-06-12 2020-06-12 부직포 및 그 제조 방법, 리튬 배터리 분리막 및 리튬 배터리 분리막 기저막
JP2022573619A JP2023528395A (ja) 2020-06-12 2020-06-12 不織布、その作製方法、リチウム電池用セパレータおよびリチウム電池用セパレータベースフィルム
EP20940422.7A EP4145613A4 (en) 2020-06-12 2020-06-12 NONWOVEN FABRIC AND PREPARATION METHOD THEREFOR, LITHIUM BATTERY DIAPHRAGM AND LITHIUM BATTERY DIAPHRAGM BASE MEMBRANE
PCT/CN2020/095860 WO2021248465A1 (zh) 2020-06-12 2020-06-12 无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜
CN202080001117.5A CN114080723B (zh) 2020-06-12 2020-06-12 无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜
US17/928,412 US20230216142A1 (en) 2020-06-12 2020-06-12 Non-woven fabric and preparation method therefor, lithium battery diaphragm, and lithium battery diaphragm base membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095860 WO2021248465A1 (zh) 2020-06-12 2020-06-12 无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜

Publications (1)

Publication Number Publication Date
WO2021248465A1 true WO2021248465A1 (zh) 2021-12-16

Family

ID=78846801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095860 WO2021248465A1 (zh) 2020-06-12 2020-06-12 无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜

Country Status (6)

Country Link
US (1) US20230216142A1 (zh)
EP (1) EP4145613A4 (zh)
JP (1) JP2023528395A (zh)
KR (1) KR20230002768A (zh)
CN (1) CN114080723B (zh)
WO (1) WO2021248465A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917255A (zh) * 2006-09-01 2007-02-21 常州市康捷电池材料有限公司 复合尼龙隔膜及其制造方法
CN103931021A (zh) * 2012-10-25 2014-07-16 托普泰克Hns株式会社 二次电池隔膜用pet无纺布以及包含其的二次电池用隔膜
CN104160527A (zh) * 2013-02-06 2014-11-19 托普泰克Hns株式会社 具有倒置结构的复合无纺布隔膜
CN107248563A (zh) * 2013-02-05 2017-10-13 三菱制纸株式会社 锂离子二次电池分隔件用无纺布基材和锂离子二次电池分隔件
CN108598337A (zh) * 2017-12-26 2018-09-28 广州华创化工材料科技开发有限公司 一种锂离子电池隔膜基材及其制备方法和应用
WO2019017354A1 (ja) * 2017-07-18 2019-01-24 日本バイリーン株式会社 電気化学素子用セパレータ
CN110429227A (zh) * 2019-07-03 2019-11-08 莱州联友金浩新型材料有限公司 一种纤维型锂离子电池隔膜的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354093A (ja) * 1998-06-04 1999-12-24 Miki Tokushu Seishi Kk 二次電池用セパレータ
JP5225173B2 (ja) * 2009-03-30 2013-07-03 三菱製紙株式会社 リチウムイオン二次電池用セパレータ
JP2017104840A (ja) * 2015-03-05 2017-06-15 三菱製紙株式会社 半透膜支持体及びその製造方法
CN107558291A (zh) * 2017-08-04 2018-01-09 杭州福斯特应用材料股份有限公司 半透膜支撑体用无纺布

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917255A (zh) * 2006-09-01 2007-02-21 常州市康捷电池材料有限公司 复合尼龙隔膜及其制造方法
CN103931021A (zh) * 2012-10-25 2014-07-16 托普泰克Hns株式会社 二次电池隔膜用pet无纺布以及包含其的二次电池用隔膜
CN107248563A (zh) * 2013-02-05 2017-10-13 三菱制纸株式会社 锂离子二次电池分隔件用无纺布基材和锂离子二次电池分隔件
CN104160527A (zh) * 2013-02-06 2014-11-19 托普泰克Hns株式会社 具有倒置结构的复合无纺布隔膜
WO2019017354A1 (ja) * 2017-07-18 2019-01-24 日本バイリーン株式会社 電気化学素子用セパレータ
CN108598337A (zh) * 2017-12-26 2018-09-28 广州华创化工材料科技开发有限公司 一种锂离子电池隔膜基材及其制备方法和应用
CN110429227A (zh) * 2019-07-03 2019-11-08 莱州联友金浩新型材料有限公司 一种纤维型锂离子电池隔膜的制备方法

Also Published As

Publication number Publication date
KR20230002768A (ko) 2023-01-05
EP4145613A4 (en) 2023-10-25
CN114080723A (zh) 2022-02-22
EP4145613A1 (en) 2023-03-08
CN114080723B (zh) 2022-10-14
US20230216142A1 (en) 2023-07-06
JP2023528395A (ja) 2023-07-04

Similar Documents

Publication Publication Date Title
JP6058874B2 (ja) イオン交換膜及びその製造方法
JP6068444B2 (ja) セパレータ
JP4009622B2 (ja) 超薄型で多孔質且つ機械的に安定な不織布、その製造法、並びにその使用法
CN104766938A (zh) 一种复合型锂离子电池隔膜及其制备方法
JP2011035373A (ja) 蓄電デバイス用セパレータ
JPWO2011004853A1 (ja) 多孔質電極基材及びその製造方法
KR20180055277A (ko) 다공성 에틸렌-초산비닐 공중합체 층을 가지는 분리막 및 이의 제조방법
CN105619991B (zh) 一种复合锂离子电池隔膜材料及其制备方法
JP4499852B2 (ja) 分離膜支持体とその製造方法
WO2021248464A1 (zh) 用作水处理膜支撑层的无纺布及其制备方法以及水处理膜
WO2021248465A1 (zh) 无纺布及其制备方法、锂电池隔膜及锂电池隔膜基膜
JP6022787B2 (ja) 不織布及びリチウムイオン二次電池用セパレータ
WO2021134312A1 (zh) 湿法无纺布,其制备方法以及包含其的水处理膜
JP2010287697A (ja) 蓄電デバイス用セパレータ
CN113725556B (zh) 无纺布以及电池隔膜
CN108305973B (zh) 一种具有涂层的复合隔膜及制备方法和应用
JP2020161243A (ja) リチウム二次電池セパレータ用不織布基材及びリチウム二次電池セパレータ
CN114335902A (zh) 一种复合隔膜及其制备方法和应用
JP2013118062A (ja) 塗工成分が担持された多孔シートの製造方法および製造装置
KR20190129814A (ko) 다공성 에틸렌-초산비닐 공중합체 층을 가지는 분리막 및 이의 제조방법
JPWO2018221503A1 (ja) セパレータ
JP6277653B2 (ja) 多孔質電極基材の製造方法
WO2023115624A1 (zh) 截面结构一致性高的隔膜及其制备方法
JP2024033095A (ja) 固体電解質粒子用支持体
CN115395176A (zh) 一种隔膜及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227039947

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022573619

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020940422

Country of ref document: EP

Effective date: 20221130

NENP Non-entry into the national phase

Ref country code: DE